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Abstract
Candida albicans is a fungal commensal-pathogen that persistently associates with its mammalian
hosts. Between the commensal and pathogenic lifestyles, this microorganism inhabits host niches
that differ markedly in the levels of bioavailable iron. A number of recent studies have exposed C.
albicans specializations for acquiring iron from specific host molecules in regions where iron is
scarce, while also defending against iron-related toxicity in regions where iron occurs in surfeit.
Together, these results point to a central role for iron homeostasis in the evolution of this
important human pathogen.

Introduction
Unlike the majority of pathogenic fungi, C. albicans remains perpetually associated with its
mammalian hosts [1]. It typically exists as a commensal of the mammalian microbiome,
occupying mucocutaneous surfaces such as skin, the genitourinary tract, and particularly the
gastrointestinal tract. C. albicans also functions as an opportunistic pathogen and can
disseminate to virtually any internal organ. This ability to adapt to host microenvironments
differing markedly in the levels of key micronutrients is a hallmark of C. albicans biology.
For example, C. albicans is among the most common pathogens recovered from the human
bloodstream [2], a region characterized by extremely low levels of iron (~10−24 M Fe3+)
because of low aqueous solubility at neutral pH, combined with active sequestration by the
host [3]. In contrast, dietary iron remains abundant throughout its commensal niche in the
gastrointestinal tract, and iron may even approach toxic levels in regions where local acidity
or hypoxia increases its bioavailability [4]. Recent investigations of C. albicans mechanisms
for acquiring necessary iron in the bloodstream and tissues while also defending against iron
toxicity in the gut provide insights into the importance of iron as an evolutionary force in the
most common human fungal pathogen.

Mechanisms of iron acquisition in the bloodstream
Roughly two-thirds of mammalian total body iron occurs in the bloodstream, mostly in the
form of hemoglobin in red blood cells [5]. In addition, the minute amount of extracellular
transferrin-bound iron serves as the major mechanism for iron distribution [5]. Such
fastidious sequestration of iron protects healthy hosts against iron-catalyzed toxic free
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radical generation (via Fenton chemistry [6]) and provides “nutritional immunity” against
infection with iron-dependent pathogens [7]. Moreover, in the presence of pathogens such as
C. albicans, host inflammatory responses further reduce serum iron levels through
mechanisms such as decreased intestinal absorption and retention within reticuloendothelial
cells [8,9]. People lacking these defenses, such patients with hemochromatosis and other
iron overload syndromes, have an excess risk for bloodstream infections with C. albicans
and other pathogens [10].

Modern medical practices have nevertheless contributed to an increased incidence of
candidemia, worldwide [11–13]. Medical therapies such as intravenous catheters [12,14,15],
surgery [12,14,15], antibiotics [15,16], and immunosuppressants [15] promote C. albicans
bloodstream infections through disruption of host immune and epithelial barriers and by
altering the microbiome. Once introduced into the bloodstream, C. albicans can acquire iron
from the very molecules that are used by the host to sequester it [17–20] (Figure 1). For
example, several groups have identified C. albicans hemolytic activity capable of releasing
hemoglobin from host erythrocytes [21–23]. Free hemoglobin or its heme/hemin metal-
porphyrin ring are bound by a hemoglobin receptor, Rbt5, on the fungal cell surface [24],
followed by endocytosis of Rbt5-hemoglobin complexes [25] and release of ferrous iron by
the heme oxidase, Hmx1 [19,26]. Notably, C. albicans encodes four additional homologs of
Rbt5, of which one (Rbt51) has also been demonstrated to bind to hemin and to confer
hemin utilization capability when expressed in the nonpathogenic model yeast,
Saccharomyces cerevisiae [24].

C. albicans can also utilize host transferrin in vitro as a sole source of iron [20]. It is
uncertain whether C. albicans expresses a transferrin receptor, similar to certain bacterial
pathogens [27], but the observation that it requires direct contact with transferrin in order to
utilize it [20] suggests that this may be the case. Ferric iron derived from transferrin is taken
up by a reductive iron uptake system that is conserved with the well-described high affinity
iron uptake system of S. cerevisiae (reviewed in [27] and [28]). Fe3+ is first reduced to
soluble Fe2+ by a cell surface-associated ferric reductase [29,30]. In coupled reactions, Fe2+

is then oxidized and imported into the fungal cytoplasm by a multicopper ferroxidase/iron
permease complex [30,31]. C. albicans encodes 17 putative ferric reductases, five putative
multicopper ferroxidases, and four putative ferric permeases [32] with potential functions in
reductive iron uptake, and different subsets of these enzymes are expressed under different
in vitro conditions (e.g.[20,33,34]). Of the two ferric permeases, only Ftr1 is expressed when
iron is scarce, and FTR1 is essential in a murine bloodstream infection model of virulence
[34].

Strategies for iron acquisition in tissues
Approximately one-third of mammalian total body iron occurs bound to ferritin in tissues
and macrophages [5]. A single ferritin heteropolymer binds as many as 4500 iron atoms, and
cytoplasmic iron-ferritin complexes are generally extremely stable [35]. Only a few bacterial
pathogens such as Neisseria meningitidis have been shown to use ferritin as an iron source
[36]. Among fungi, C. albicans can also utilize ferritin when provided under standard in
vitro conditions or directly from host epithelial cells in culture [37]. When co-cultured with
a human oral epithelial cell line, invading C. albicans hyphae aggregate host ferritin onto
their surfaces using a hypha-specific cell surface protein, Als3. In vitro, fungal-mediated
acidification of the laboratory culture media is required to dissociate Fe3+ from ferritin [37].
Fe3+ is transported into the fungal cytoplasm via the same reductive iron uptake system [37]
described above for transferrin. Intriguingly, Als3 also plays important roles in C. albicans
biofilm formation [38,39], adhesion to host epithelial and endothelial cells [40], and induced
endocytosis of hyphae [41]. Further, deletion of ALS3 abrogates C. albicans virulence in
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oral epithelial infection models [37,40] but not in a bloodstream infection model [42]. Thus,
Als3 integrates iron uptake and virulence functions, a characteristic displayed by several
other key players in C. albicans iron homeostasis, as discussed below.

In common with numerous other fungal and bacterial species, C. albicans possesses a third
system of iron uptake that targets siderophores rather than host molecules [43]. Siderophores
are small ferric iron chelators that bind with extremely high affinity (iron formation
constants Kd range from 10−20–10−50 M), some of which can extract iron from transferrin
and lactoferrin [27,44–46]. It is unclear whether C. albicans synthesizes its own
siderophores: siderophore activity has been reported for this species [47,48] but its genome
does not encode the known fungal biosynthetic enzymes [44]. Regardless, C. albicans has
been demonstrated to utilize exogenous ferrichrome-type siderophores via the Sit1
siderophore importer [43], an ortholog of S. cerevisiae Arn1 [49]. Similar to ALS3, deletion
of SIT1 abrogates C. albicans virulence in a reconstituted human epithelial infection model
[43] but not in a bloodstream infection model [43,50]. Future studies will be required to
determine whether Sit1 plays a role in mixed infection models that include additional
siderophore-producing microorganisms.

Zinc acquisition via a “zincophore”
Iron is not the only essential micronutrient, and host sequestration of manganese and zinc
also contributes to nutritional immunity [51]. C. albicans was recently reported to scavenge
zinc by means of Pra1, a small, secreted protein dubbed a “zincophore,” by analogy with
iron-scavenging siderophores [52]. Similar to the story with ferritin utilization, during
infection of human endothelial cell monolayers, invading C. albicans hyphae are able to
aggregate host zinc onto their cell surfaces. The aggregation activity requires both Pra1,
which exhibits zinc-binding activity in vitro, and a predicted cell surface zinc transporter,
Zrt1, which binds to Pra1 and is thought to recruit soluble Pra1-zinc complexes to the fungal
cell surface [52]. Pra1 was previously shown to have multiple interactions with components
of the host innate immune system, including engagement of a leukocyte receptor that
promotes neutrophil migration and fungal killing [53] and interactions with host
complement regulators that favor fungal escape [54]. Notably, PRA1 and ZRT1 are adjacent
on C. albicans chromosome 4, and the conservation of synteny among evolutionarily distant
fungi (including nonpathogens) suggests that zinc acquisition is the original function of this
system [52].

Defense against iron excess in the gut, a major site of commensalism
Topologically, the mammalian gut exists outside of the body, and dietary iron is not
included in estimates of total body iron. A typical Western diet contains approximately 15
mg of daily iron, of which less than 10% is absorbed [4]. Net iron remains relatively high
throughout the GI tract, with large boosts in iron bioavailability predicted in regions of
acidity, such as the stomach [4], and oxygen-depletion, such as the large intestine [55].
Gastrointestinal commensals thus face the risk of potential iron-associated toxicity (toxic
free radicals generated in the Fenton reaction [56]), at least in some regions of the gut.

How does C. albicans defend against iron-related toxicity in areas of iron excess, while
retaining the capacity for aggressive iron uptake in host niches of iron depletion? One
answer lies in its evolution of unique transcriptional regulatory circuit for maintaining iron
homeostasis (Figure 2). In most characterized fungi (apart from S. cerevisiae), a highly
conserved GATA family transcription factor represses genes for iron uptake factors when
environmental iron is replete (see Box 1) [57–64]. C. albicans maintains an ortholog of this
factor, Sfu1 [65,66], which directly represses genes for iron uptake factors, including
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components of the hemoglobin uptake system, the reductive iron uptake system, and the Sit1
siderophore transporter [67]. Indeed, SFU1 is essential for defense against high iron in vitro
and for normal commensal fitness in the mammalian gut [67].

Box 1 (with Figure)

Evolution of iron homeostasis in fungi

Most characterized fungal species maintain cellular iron homeostasis by regulating the
expression of iron uptake and iron utilization via a simple transcriptional switch. As
depicted for the prototypical model yeast, S. pombe, a GATA family transcription factor
with iron-sensing activity (Fep1) is expressed when environmental iron is replete. Fep1
directly represses iron uptake genes and PHP4, the gene for the regulatory subunit of the
CCAAT binding complex. When environmental iron is low, Php4 directly represses
genes for nonessential iron-utilizing processes as well as FEP1. A common ancestor to
the Candida and Saccharomyces lineages gained two transcription factors (Sef1 and Aft1
precursors), leading to rewiring of the circuit. In C. albicans, Sef1 was intercalated into
the existing circuit and associated with virulence genes in addition to iron uptake genes.
The coregulation of iron uptake genes by both Sfu1 and Sef1 creates a feed forward loop
predicted to buffer the expression of coregulated genes against transient fluctuations in
environmental iron. In S. cerevisiae, the GATA factor was lost, and regulation of iron
uptake genes was transferred to Aft1 and Aft2 (produced by a whole genome duplication
event in the Saccharomyces lineage).

SFU1 is not required for virulence in the bloodstream, however; rather, an sfu1 knockout
mutant exhibits enhanced fitness in competitive infections in this environment, presumably
because of enhanced expression of iron uptake factors [67]. At least three different
transcription factors mediate the fungal response to iron sequestration in the bloodstream.
Rim101 is a Cys2His2 zinc finger transcription factor required for expression of iron uptake
genes under neutral or alkaline conditions [68]. Rim101 also activates known virulence
genes [69,70] and is required for virulence in bloodstream [71] and oropharyngeal [72]
infection models. Similarly, two transcription factors that form a circuit with Sfu1 are also
required for virulence in the bloodstream (Figure 2): Hap43, a highly conserved regulatory
component of the CCAAT binding protein (CBP) complex [73,74] (whose Aspergillus
fumigatus and Cryptococcus neoformans orthologs likewise promote virulence in these
species [75,76]) and Sef1, a Zn2Cys6 zinc knuckle transcriptional activator that was
introduced relatively recently into the C. albicans lineage [67,77]. Under iron-depleted
conditions, the Hap43/CBP complex directly represses SFU1 and genes for nonessential
iron-utilizing processes, such as aerobic respiration and iron-sulfur cluster assembly
[67,73,74,78]. Under these same conditions, Sef1 directly activates HAP43, genes for all
three modes of iron uptake, as well as virulence genes thought to act independently of iron
[67]. Sef1 also affects fitness in a gastrointestinal infection model [67], suggesting that some
at least some regions of the gut are effectively depleted for iron.
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Reminiscent of Rim101, Sef1 integrates the expression of iron uptake and virulence genes,
and this transcriptional regulator is itself regulated at multiple levels. When environmental
iron is replete, SEF1 transcription is directly inhibited by Sfu1, as described above.
Remarkably, Sfu1 also directly inhibits Sef1 protein activity by sequestering it in the
cytoplasm, where it is rapidly degraded [79]. Under iron-depleted conditions, however, Sef1
is phosphorylated by the protein kinase, Ssn3, and transported into the nucleus, where it
induces the transcription of iron uptake genes [79]. We hypothesize that the introduction of
Sef1 into C. albicans iron homeostasis, along with mechanisms controlling its expression
and protein activity, allowed for finer control of a critical gene regulon in the context of
fluctuating host iron levels.

From iron homeostasis to developmental switches
Similar to free-living fungi, C. albicans must adapt to stark differences in the abundance of
iron and other essential micronutrients within different niches of the mammalian host.
Where this metal is scarce, C. albicans succeeds by extracting iron from host iron-
sequestering molecules. Ferritin and transferrin are utilized by means of an ancient reductive
iron uptake system, which C. albicans has customized with the introduction of additional
homologs of each component and a novel ferritin receptor, Als3. Specific roles for the ferric
reductase, multicopper ferroxidase, and iron permease homologs remain to be defined, but a
plausible hypothesis is that different alleles are optimized for uptake of iron from different
host compartments. Homologs of Rbt5 may serve analogous roles in hemoglobin utilization.
Also, the recent discovery of a role for Pra1 as a “zincophore” speaks to the importance of
micronutrients other than iron and implies the existence of as yet undiscovered mechanisms
targeting these alternative nutrients..

Some bacterial pathogens use iron depletion as a kind of location marker, signifying entry
into the mammalian host and triggering the expression of virulence factors [46]. C. albicans
appears to use a similar logic, such that key transcriptional regulators of iron uptake genes
such as Sef1 and Rim101 also activate the expression of virulence factors. Moreover, the
coupling of virulence with nutrient uptake functions extends to the iron and zinc uptake
effectors, Als3 and Pra1, which play additional, direct roles in virulence.

Finally, in its commensal role within the mammalian gastrointestinal tract, C. albicans
encounters much higher levels of iron. It is possible that, by the converse of the logic
described above, high iron levels may signify the gastrointestinal milieu and the need to
express commensalism factors. My research group recently discovered that passage of C.
albicans through the host digestive tract induces a developmental switch to a novel
commensal cell type (Box 2) [80]. “GUT” (gastrointestinally induced transition) cells
strongly outcompete previously defined virulent (“white”) and sexually-competent
(“opaque”) cell types within a mouse gastrointestinal infection model and express a distinct
transcriptome [80]. Compared to white and opaque cells, GUT cells upregulate SFU1 and
downregulate SEF1 and iron uptake genes, as well as altering the expression of metabolic
genes to match the nutrient composition of the distal mammalian GI tract [80]. Future
experiments will be required to determine what additional factors promote the commensal
lifestyle and whether they are triggered by levels of iron, zinc, and other critical nutrients.

Box 2 (with Figure)

C. albicans white and GUT cell types differ in the expression of iron uptake
genes

White cells (left) exhibit a round-to-oval cell morphology and are the default C. albicans
cell type. White cells are virulent in murine bloodstream models of virulence. GUT
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(Gastrointestinally IndUced Transition) cells (right) correspond to a recently described
developmental state that is triggered by passage of C. albicans yeasts through the
mammalian gastrointestinal tract. GUT cells exhibit elongated cell morphology and
enhanced commensal fitness but are attenuated for virulence in the bloodstream.
Consistent with these functional specializations, white and GUT cells express inverse sets
of iron-related genes, with SEF1 and iron uptake genes induced in white cells and SFU1
induced in GUT cells. Shown are scanning electron micrographs of white and GUT cells,
with scale bars corresponding to 2μ. (Images from Chen and Noble, unpublished).
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Highlights

The yeast C. albicans is a commensal and pathogen of humans and other mammals.

Iron and zinc are sequestered in mammalian blood and tissues but not in the gut.

C. albicans virulence requires specialized mechanisms for acquiring host iron and
zinc.

Limitation of iron uptake promotes C. albicans commensalism in the gut.
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Figure 1. C. albicans mechanisms for acquiring iron and zinc from the host
C. albicans has evolved systems targeting host hemoglobin, host transferrin, host ferritin,
and siderophores as sources of iron, and the Pra1/Zrt1 system for scavenging zinc. The
depicted transferrin receptor (“X”) is hypothetical (hyp.) The depicted variants of the
hemoglobin receptor, iron reductase, multicopper ferroxidase, and iron permease are
members of larger gene families with demonstrated in vitro activity.
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Figure 2. C. albicans regulation of iron homeostasis, virulence, and commensalism
In C. albicans, the transcription factors controlling iron homeostasis are also required for
virulence or commensalism. SEF1 is induced in the bloodstream, where iron is scarce, and is
required for virulence in a murine bloodstream infection model. Its direct binding targets
include genes for all three of its iron uptake systems, as well as known virulence factors,
similar to the responses of certain bacterial pathogens that use iron depletion as a cue for
virulence gene expression. By contrast, C. albicans SFU1 is induced in iron-replete
environments such as the GI tract and represses genes for iron uptake factors. It remains to
be determined whether the iron surfeit serves as a cue for the expression of commensalism
factors.
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