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Abstract

Last Time Buy Problems with Sequential Capacity Reservations

by

Erik P Bertelli

Doctor of Philosophy in Engineering – Industrial Engineering and Operations Research

University of California, Berkeley

Professor Candace Arai Yano, Chair

Many modern consumer electronics firms design their own products but outsource the pro-
duction to contract manufacturers. Some of these products are also multi-generational, with
short product life cycles and updated versions released on a regular schedule. Therefore,
firms must eventually make an end-of-production decision for each product generation. We
consider a new version of the last time buy problem—traditionally, a procurement quan-
tity problem for the last possible purchase of a product—facing such a consumer electronics
firm. In our problem setting, the contract manufacturer requires the firm to make sequential
capacity reservations to retain the option to procure new units, a contract feature that com-
monly arises when the contract manufacturer has a high opportunity cost of capacity. The
presence of the sequential capacity reservation requirement also creates the need to decide
the timing of the last time buy, prior to which orders can be placed in each period. We
formulate the problem as a dynamic program and identify properties of the optimal policy
that are different and more complex than under the usual simpler assumption that capacity
reservations (or analogously, production setups) do not need to be for sequential periods.

The dynamic program to find the optimal strategy for any problem instance is computa-
tionally intensive. From a numerical study, we observed that most optimal strategies have
up to two order-up-to levels, a low-to-moderate value—appropriate for satisfying this pe-
riod’s demand—to be used with low starting inventory levels, and a higher order-up-to
level—appropriate for serving as the last time buy—to be used with starting inventory levels
above a threshold. We developed a heuristic solution procedure based on these insights that
performs near optimally (with an average optimality gap of 0.03% for our set of problem
instances) and takes very little computing time.

We also consider a variant of our original problem in which the firm must commit to the
timing of the last time buy at the beginning of the problem horizon. From a numerical
study, we found that the value of the option to dynamically extend the capacity reservation,
as in our original problem variant, is quite small due to the effects of the sequential capacity
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reservation requirement. We also consider an extension with an option to buy back units from
the firm’s customers after the last time buy has been made, which is especially applicable
when all remaining demand is for warranty replacement units and the buy-back units can
be refurbished to satisfy warranty claims. We consider both the case in which the customer
response to the buy-back offer is deterministic and the case in which it is stochastic. From
a numerical study, we find that the introduction of the buy-back offer has the potential to
greatly reduce the firm’s expected costs, and this is true whether the customer response
to the buy-back offer is deterministic or stochastic. Furthermore, our results suggest that,
in a sequential capacity reservation setting, the buy-back option is more valuable than the
flexibility afforded by a period-to-period capacity reservation contract.
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Chapter 1

Introduction

“Smart” devices, products that include some form of computer to perform various tasks,
have become a ubiquitous part of the modern economy. These products range from large,
complicated machines such as automobiles to small and previously simple products such
as light bulbs. The research in this dissertation is particularly relevant to consumer elec-
tronic products that are intermediate in their complexity and cost. Examples include smart-
phones, wearable fitness trackers, and small Internet-of-Things connected devices such as
smart switches or smart plugs. A key feature of these modern consumer electronic devices is
that they are multi-generational, with short product life cycles. Consumers expect that up-
dated versions, with new and improved features, will be released on a regular schedule. For
these product lines, new generations are introduced, and older versions are eventually phased
out. The timing of each introduction and phase-out is often dictated by market forces, such
as the need to match a competitor’s new product launch or to have the next-generation item
in stock for the holiday season. Further, eventual obsolescence usually occurs due to changes
in the supporting hardware and/or software technology. We are interested in the inventory
management problem facing a consumer electronics firm that offers such multi-generational
products and has control over the timing of the end of production for models that are being
phased out of retail sales.

Any consideration of this inventory management problem facing a consumer electronics
firm must account for the method by which it produces the product under consideration.
A common feature of the consumer electronics industry is the widespread use of contract
manufacturers. In 1981, in the very early days of the consumer electronics industry, IBM
introduced the IBM Personal Computer and chose to outsource the processor to Intel and
the operating system to Microsoft rather than develop them in-house. As pointed out by
Lüthje [33] and Sturgeon [47], IBM also chose to outsource the assembly of the motherboards
to a firm called SCI, which at the time was a supplier in the aerospace industry. While Intel
and Microsoft became household names, SCI is less well known, but went on to become a
large player in the growing contract manufacturing industry. According to company financial
statements, Sanmina (the successor to SCI following a series of mergers) had revenues of $6.7
billion in 2021 [43]. However, this pales in comparison to the revenues of the company that
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dominates the electronics contract manufacturing industry, Foxconn (also known as Hon Hai
Precision Industry), which had 2021 revenues of $215 billion [17], more than either Microsoft
($168 billion [35]) or Intel ($79 billion [13]). It is clear that contract manufacturing is now
an established part of the consumer electronics industry.

A contract manufacturer often devotes a set of resources, such as assembly lines, ma-
chinery, and personnel, exclusively to a customer’s product. At the same time, the contract
manufacturing industry is dominated by a small number of large corporations, and therefore
a typical contract manufacturer has multiple customers simultaneously, even firms that are
direct competitors in the same product segment. The contract manufacturer therefore has
a large opportunity cost of setting aside resources for a given product. As any product ap-
proaches the end of its selling horizon, the number of units being produced begins to decline,
and, consequently, the contract manufacturer would prefer to shift its limited resources to
other more lucrative, higher-volume products. Therefore, the contract manufacturer will seek
a contract mechanism that requires its customers to bear some or all of these opportunity
costs. One simple mechanism is a fixed cost per period that does not depend on the quantity
produced, which is a cost structure that also arises in many production/inventory problems,
alongside variable costs that are a function of the quantity produced. In the case of the
contract manufacturer, the opportunity cost would be a part of the fixed cost. We consider
a setting in which a contract manufacturer imposes a per-period fixed cost on its customer
for every period that the customer retains access to the production line. We characterize
this fixed cost as a capacity reservation fee.

It is within this context that we introduce a new variant of the last time buy problem
in this dissertation. A detailed literature review of the last time buy problem is presented
in Chapter 2, but the essence of the traditional problem is that a firm must determine how
many units to purchase to satisfy all remaining demand for a given product in view of the
economic tradeoffs between the cost of shortages and the cost of excess inventory that is
no longer useful. In our variant of the problem, the firm must not only determine the size
of the last time buy, but also its timing. The firm is motivated to end the production of a
product to avoid continuing to pay the per-period capacity reservation fee which is charged
by the contract manufacturer. In contrast to the more standard setup cost often included in
other inventory models (i.e., a fixed charge that must be paid only if production is positive),
this capacity reservation fee is assessed if the firm wishes to reserve the right to place future
orders, regardless of whether an order is placed in a given period. Further, if the firm does
not pay the capacity reservation fee, the contract manufacturer will terminate production
of the current active product and switch its use to another product, possibly one sold by
another firm. One important consequence of these two conditions is that all periods in which
the production line is available for use must be sequential.

The sequential requirement for the capacity reservation is a key feature that differentiates
our models from others in the literature. Within this framework, we consider three major
variants. In the first variant, which we refer to as the pre-commit variant, the duration of
the capacity reservation must be decided by the firm at the beginning of an appropriate
planning horizon. This variant applies in settings in which the contract manufacturer has
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a good deal of market power relative to the firm and can therefore demand that the firm
commit to the timing of the last time buy well in advance. The pre-commit variant also
serves as a baseline against which to compare the other variants of our problem.

The second variant, which we refer to as the dynamic variant, is more flexible: the firm
can extend the capacity reservation on a period-by-period basis. This situation is more
likely to arise if the firm has a large amount of market power relative to that of the contract
manufacturer. For example, a large multinational may order such large volumes across a
wide range of product segments that it is able to demand flexible contracting terms. We
model this variant of the problem as a dynamic program, with periodic options to extend
the capacity reservation. However, the contract manufacturer still requires the firm to pay
sequential per-period capacity reservation fees to compensate it for the large opportunity cost
mentioned earlier. The difference between the expected costs of the dynamic and pre-commit
variants also provides an estimate of the value of the contract flexibility.

Finally, the third variant, which we refer to as the dynamic variant with a one-time buy-
back option, is identical to the previous dynamic variant with one additional feature: the
firm may make a one-time buy-back offer to existing customers after ending the capacity
reservation with the intent of refurbishing the buy-back units. This variant is applicable
when the late-stage demand is for units to satisfy warranty claims. In the case of consumer
electronics, the combination of short product life cycles and long warranty periods—often
required by law, such as in the European Union [12]—creates a situation in which warranty
replacement demand extends far past the time of the last retail sale. However, warranties
on consumer electronics normally allow the replacement of a defective or failed unit with an
item of similar quality. This opens up the possibility of using refurbished units to satisfy
warranty claims. The opportunity to make a one-time buy-back offer to customers allows the
firm to acquire a potentially substantial number of refurbishable units after the contracted
production of the product has ended. This option may allow the firm to end the capacity
reservation earlier or reduce the size of the last time buy, or a combination of the two.

The remainder of this dissertation is organized as follows. In Chapter 2, we provide a
review of pertinent literature. In Chapter 3, we present a formal problem statement detailing
the problem setting as well as the assumptions underlying our models. In Chapter 4, we
formulate the pre-commit variant of the problem. In Chapter 5, we formulate the dynamic
variant of the problem and derive some properties of the optimal policy structure. In Chapter
6, we present a heuristic method for solving the dynamic variant of the problem. In Chapter
7, we present a numerical study that compares the performance of the heuristic with that of
optimal strategies for both the pre-commit variant and the dynamic variant. In Chapter 8,
we consider the dynamic variant with buy-back and explore how the addition of the one-time
buy-back option changes the optimal solutions in a numerical study. Finally, in Chapter 9,
we conclude with a summary of our contributions and a discussion of possible future work.
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Chapter 2

Literature Review

Our work builds primarily upon the literature on last time buy problems. We first present
a comprehensive literature review of last time buy problems categorized according to the
nature of the extension of the basic problem. We then present a brief overview of results
on lost sales inventory problems as well as inventory problems with capacity reservation
requirements that are directly relevant to our research.

2.1 Previous Work on the Last Time Buy Problem

The problem of deciding how much of a product to order or produce so as to satisfy all
remaining demand until the end of the planning horizon is commonly called the last time buy
problem, but it is also known as the lifetime buy, the end-of-life buy, the final order problem,
or the all-time requirement problem. This problem is most commonly motivated by settings
in which a supplier is discontinuing an essential component and a manufacturer that utilizes
the component must decide on a last-time-buy order quantity so that the manufacturer may
satisfy all anticipated future demand, either with a high probability or in a manner that
limits expected shortages. For instance, a manufacturer may be informed that a supplier is
discontinuing a specific component, and therefore must decide how many of the discontinued
components to order to enable the manufacturer to continue production until an alternative
component can be identified and incorporated into the product. A similar situation arises
when the component is a repair part for a machine and the firm operating the machine must
decide how many spare parts to purchase in order to keep the machine operating for a desired
length of time. A third example of a scenario in which this problem arises is a manufacturer
that must decide how many units to produce and hold in inventory in order to satisfy all
remaining demand that may arise from future warranty claims for a discontinued product.

Moore [36] provides the earliest study of the last time buy problem. He is primarily
interested in forecasting the all-time requirement, which is the demand for a part from the
present for all time periods into the future. He uses this forecast as the deterministic demand
input for an n-stage dynamic inventory model that accounts for ordering and inventory
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holding costs to satisfy this requirement. He compares the cost of the optimal solution
to his dynamic model to that incurred by using the economic order quantity (EOQ) and
shows that, although the dynamic model results in a larger number of orders being placed,
it eliminates the obsolescence cost due to leftover units at the end of the time horizon and
lowers the inventory holding costs. Although the main emphasis in Moore’s paper is on the
forecasting method, the problem described in this paper serves as a foundation for this entire
area of research.

Stochastic demand is the first generalization of this problem to be considered in the
literature. In cases with stochastic demand, researchers either assume that the service level
is specified as a constraint or the service level is optimized by minimizing the total expected
cost, including shortage costs, inventory holding costs, and costs of production. Fortuin [16]
was the first to consider the predefined service level version of the problem in the setting of a
manufacturer seeking to manage spare parts inventory. He assumes that demand comes from
a non-stationary and uncorrelated Gaussian process with an exponentially decreasing mean.
This allows him to represent the total demand over the time horizon as a single Gaussian
random variable and find the optimal last-time-buy quantity at the start of the time horizon
for a given service level. Fortuin [15] then extends this model by allowing the desired service
level to vary over time. He observes that, in order to maintain a constant service level over
the entire time horizon, the actual service levels in earlier periods turn out to be considerably
higher than the corresponding required levels. It is only in the final period that the actual
service level approaches the desired service level. By allowing the desired service level to
decrease over time, the manufacturer can realize considerable savings relative to maintaining
a constant service level.

One of the first cost minimization approaches with stochastic demand was proposed by
Teunter and Haneveld [50]. They consider this problem in the context of a single machine
with multiple essential components, each requiring a separate last-time-buy decision to be
made at the beginning of the time horizon. The owner of the machine desires for it to operate
until a given time, but the machine is considered inoperable at the earliest time at which
a spare part is no longer available to repair a broken component. If the machine becomes
inoperable prior to this desired horizon, the owner of the machine incurs a fixed penalty
cost as well as a variable cost that is proportional to the length of time that the machine
is inoperable. The demand for each of the components is generated by a Poisson process
that is not necessarily independent of the demand for the other components. Teunter and
Haneveld present a model to minimize the expected cost, which consists of the purchasing
and inventory holding costs of the essential components as well as the penalty costs due
to the machine becoming inoperable prior to the desired end-of-service period. They show
that the multi-component problem can be approximately decomposed into many single-
component problems if the out-of-service penalties are very large relative to the ordering
and inventory holding costs of the components. They then derive optimality conditions for
the last-time-buy quantities.

Researchers have considered many extensions to the last time buy problem with stochastic
demand. Bradley and Guerrero [5, 6] and Hur et al. [24] consider the case of a last time buy
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problem in which the decision must be made jointly for two or more different components,
rather than just for a single component. Pourakbar and Dekker [39] analyze a last time
buy problem in which customers are segmented into classes with different associated profits
and costs and develop strategies to ration inventory among these classes. Leifker et al. [31]
consider a situation in which, at the conclusion of the current service contract, there is a
state-dependent probability that the customer may request an extension (with prearranged
terms) to which the firm may or may not agree. They seek to optimize the size of the last
time buy in the presence of this mutual option. However, unlike the three papers mentioned
above, the vast majority of extensions incorporate alternative sources for satisfying demand
other than inventory from the last time buy itself. These alternatives may include a different
supplier that charges a higher marginal cost or, in the spare parts setting, allowing the firm to
repair rather than replace defective items. However, a few extensions also involve considering
the timing of the last time buy itself. In particular, the firm may extend the production run
for some period of time, allowing the firm to save on inventory holding costs.

The extensions to the basic last time buy problem that involve alternative methods for
satisfying demand can be organized into five categories: (1) allowing the firm to contract
with additional production sources to supplement the initial inventory purchased in the last
time buy, (2) allowing the firm to harvest additional spare parts from returned items, (3)
allowing the firm to repair some defective items rather than replace the entire item from
new finished goods inventory, (4) allowing the firm to make a product buy-back or trade-in
offer to source additional items that can be used to satisfy future demand, and (5) allowing
the firm to decide the timing of the last time buy itself. Some models involve only one type
of extension, while others combine two different extensions in a more complicated decision
structure.

Our research offers two major contributions. First, we are the first to introduce a pro-
duction/inventory model in which the production line must remain available for sequential
periods. That is, the firm cannot place an order in a period by paying a setup cost for that pe-
riod, but instead can only retain access to the production line by paying per-period capacity
reservation payments in sequential periods. This unique cost structure is what incentivizes
the firm to eventually end the capacity reservation. We make use of the pre-commit and
dynamic models to explore how the cost structure affects the firm’s optimal strategy under
different assumptions about the structure of the capacity reservation contract. In the pre-
commit model, we require the firm to commit in advance to a specific number of periods of
capacity reservation, while in the dynamic model we allow the firm to choose to extend the
capacity reservation on a period-to-period basis.

Second, to the best of our knowledge, our work is the first to consider the combination of
features (4) and (5), which we explore in our third model. Of the four non-timing extensions
to the last time buy problem, the combination of a buy-back offer with a decision about
the timing of the last time buy is the most relevant to the consumer electronics industry,
where it is often impractical to resume the capacity reservation with the initial contract
manufacturer or to switch to another contract manufacturer after the capacity reservation
with the first contract manufacturer has ended. In either case, the contract manufacturer



CHAPTER 2. LITERATURE REVIEW 7

would incur expensive fixed costs and might require considerable time to set up a production
line to produce the product in question. Therefore, either option would not be sensible given
the short product life cycles. Consumer electronic devices are often too small and complex
to harvest spare parts from or repair in a cost-effective manner; however, functioning units
can be refurbished to an acceptable level of quality for use as warranty replacement units.
These functioning units can be sourced from either product returns or buy-back/trade-in
offers. In the consumer electronics market, customers are rarely contractually required to
return their used items at pre-determined times (unlike in the market for capital equipment,
for instance). However, voluntary buy-back or trade-in offers are common. Finally, the
buy-back is especially complementary in the context of the sequential capacity reservation
whose cost structure incentivizes the firm to make the last time buy earlier than it would
in a model with a traditional setup cost, while the buy-back allows the firm to preserve the
option to acquire units later in the horizon, if necessary.

Table 2.1 presents a list of papers on the last time buy problem in chronological order
and classified by the same five categories of extensions described above. We first review
models in which the timing of the last time buy has been predetermined, focusing on the
alternative sources of inventory as categorized in the first four columns of the table. We then
turn to models in which the timing of the last time buy can be jointly optimized by the firm
in conjunction with the size of the last time buy; pertinent papers have check marks in the
final column of the table.

Last Time Buy with Pre-Determined Timing

We now consider the literature on last time buy or similar problems in which the timing of
the last time buy has been predetermined. We organize this subsection by type of extension
listed in the first four columns of Table 2.1.

Additional Source of Supply

One of the most straightforward extensions to the last time buy problem is to incorporate
the opportunity to source more units from an alternate supplier. The alternate supplier
typically would be an aftermarket supplier whose product is often differentiated by a higher
price (either per unit or due to additional fixed costs) than that of the original supplier. The
alternate source of supply may also be a different component that is still in active production,
but this may entail a costly redesign of the entire product. Finally, there may also be an
option to change the service strategy entirely, and instead satisfy demand with a different
product or through cash payments in the case of warranty claims. A common feature of all
these alternatives is the ability to satisfy demand after the last time buy through a more
costly option, which we have grouped together under the title “additional source of supply.”

The first consideration of the additional source of supply option was studied by Guerts
and Moonen [22], who allow for a single order with zero setup cost at the start of the time
horizon as well as follow-up orders in subsequent periods that incur a positive setup cost but
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Table 2.1: Selected Papers On Last Time Buy Problems

Additional Product Product Timing
Paper Source of Supply Returns Repair Trade-Ins of LTB

Moore (1971) [36] ✓
Fortuin (1980) [16]
Fortuin (1981) [15]
Geurts and Moonen (1992) [22] ✓
Teunter and Haneveld (1998) [50]
Teunter and Fortuin (1999) [48] ✓
Teunter and Haneveld (2002) [49] ✓
Cattani and Souza (2003) [8] ✓
Kleber and Inderfurth (2007) [28] ✓
Inderfurth and Mukherjee (2008) [26] ✓ ✓
van Kooten and Tan (2009) [51] ✓
Kleber et al. (2012) [29] ✓ ✓
Leifker et al. (2012) [30] ✓
Pourakbar et al. (2012) [40] ✓ ✓
Inderfurth and Kleber (2013) [25] ✓ ✓
van der Heijden and Iskandar (2013) [23] ✓
Pourakbar et al. (2014) [41] ✓
Shen and Willems (2014) [45] ✓
Behfard et al. (2015, 2018) [1] [2] ✓
Cole et al. (2015, 2016) [10, 11] ✓
Frenk et al. (2019) [18, 19, 20] ✓
Shi and Liu (2020) [46] ✓
Ozyoruk et al. (2022) [37] ✓ ✓
Our contribution ✓ ✓

the same per-unit procurement cost. Thus, the additional source of supply in this model, i.e.,
the follow-up orders, only differ from the original order in that they incur positive setup costs.
They assume a fixed time horizon with stationary Poisson demand. They present a dynamic
programming formulation of the problem and find the (near-) optimal initial order and
subsequent reorder policies for a range of parameter values. They also consider the sensitivity
of these solutions to uncertainty in the parameter values to determine which parameters have
a large impact on the optimal solution. The dynamic version of our problem (see Chapter 5)
is somewhat similar to that addressed by Guerts and Moonen but our problem differs in three
distinct ways: (1) our problem has a positive capacity reservation cost in the first period;
(2) we require continuity of the capacity reservation; and (3) our model admits arbitrary
demand distributions. The first and third differences do not add substantial complications,
but, as we will see later, the continuity requirement for the capacity reservation leads to
qualitatively different characteristics of optimal and good heuristic policies.

Shen and Willems [45] consider the problem facing a manufacturer who has been informed
that a component of its product is being phased out. The manufacturer has the option of
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using an alternate supplier with larger fixed and variable costs of ordering. The authors also
introduce the option to eventually transition to an entirely new substitute component via a
product redesign after some positive lead time; obtaining the new component incurs both
fixed and variable costs. Therefore, they instead characterize the last time buy as a “bridge
buy” that enables the manufacturer to continue selling the current product until the system
transitions to the newly redesigned product. They show that the expected profit function
is non-concave but are able to determine the optimal “bridge buy” quantity numerically.
Shi and Liu [46] also consider the option to redesign the product. They consider a firm
producing a product that relies on a component part being discontinued at a deterministic
date in the future. They formulate a two-stage dynamic program that has the form of
an optimal stopping problem. In each period, the firm must decide whether to initiate a
product redesign that makes use of an alternative component. Depending on that decision,
the firm must also replenish or dispose of the spare part inventory for the legacy component
and (after the redesign has been initiated) the alternative component. They find that a
threshold policy is optimal, in which the design refresh is initiated once inventory drops
below a period-specific threshold.

Some versions of the last time buy problem with additional sources of supply are
continuous-time models. Teunter and Haneveld [49] consider a continuous-time model in
which continued production is allowed after the last time buy but at a higher per-unit
production cost with no setup costs. They assume demand is characterized by a Poisson
process with a constant intensity throughout the problem horizon. The continuous-time
framework allows them to find the optimal last-time-buy order-up-to level as well as the
optimal order-up-levels for the higher-cost production option applicable to specific time
intervals after the last time buy. They note that the optimal order-up-to levels after the last
time buy are decreasing as the end of the horizon approaches. Leifker et al. [30] also consider
a continuous-time model with an indefinite time horizon in which the firm generates revenue
by selling spare parts to its customers. They consider two variants of the problem. In the
first, the firm has the option to procure additional units as needed at a higher per-unit cost
after the last time buy, while in the second the firm instead pays a lost sales penalty directly
to the customer for any unmet demand. They show that, in the first variant with the option
for additional production, the overall profit function is concave with respect to the size of
the initial last time buy. For the second variant with a lost sales penalty, they are unable to
confirm concavity but develop an upper bound that allows them to narrow down the number
of potential solutions and thereby find the optimal last-time-buy quantity numerically. There
are other papers (e.g., [51]) with continuous-time models, but they include other strategies
that are more complicated; we will discuss them later in this literature review.

Another form of alternative sourcing involves switching to a different service strategy. In
a series of papers, Frenk et al. consider this option in a continuous time framework with
demand modeled as a non-homogeneous Poisson process. The manufacturer first places the
last time buy at the beginning of the time horizon. Then, at a time of the manufacturer’s
choosing, it may discard all inventory and instead satisfy demand via an alternative strategy
(such as replacement with a newer generation product) at a higher per-unit cost. In [20]
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they consider the static variant of the problem to find the optimal last-time-buy quantity and
switching time. In [18] and [19] they consider the dynamic variant as an optimal stopping
time problem and solve for the optimal policy via dynamic programming. A number of other
papers ([25, 26, 37, 40]) allow for additional production in conjunction with other strategies
that are more complicated, and therefore we will discuss them later in this literature review.

Product Returns

Another source of inventory is product returns from customers. Teunter and Fortuin [48]
introduced this feature in the context of a spare parts system by incorporating an outside
process that contributes a random number of units in each period. They assume that all
returned units can be instantly remanufactured at zero cost and returned to the supply of
spare parts. They also allow any number of available units to be discarded in any period
to save on inventory holding costs. They find a near-optimal last-time-buy quantity as
well as an optimal dispose-down-to level in each period after the last time buy. Kleber
and Inderfurth [28] build upon [48] by including a per-unit remanufacturing cost. In their
model, at the beginning of the problem horizon, a single last-time-buy order must be placed.
In every subsequent period, the manufacturer may remanufacture any number of available
returned units. The authors assume inventory holding costs are incurred on spare parts but
not on returned items that have not yet been remanufactured. They also assume complete
backordering with backordering costs incurred in intermediate periods, while shortage costs
are incurred on any unfulfilled demand at the end of the horizon. They use a newsvendor-
like heuristic to determine a near-optimal last-time-buy quantity as well as near-optimal
remanufacture-up-to levels in subsequent periods.

Inderfurth and Mukherjee [26] extend the Kleber and Inderfurth [28] model by adding
the option of an outside manufacturer with a higher per-unit production cost. They first
propose a decision tree model with a limited time horizon and a small number of scenarios.
However, they point out that detailed production and remanufacturing decisions necessitate
a decision tree with an “almost exponentially increasing” size. Therefore, they also propose
a stochastic dynamic programming formulation of the problem to determine the number of
additional units to procure as well as the number of units to remanufacture. Although the
dynamic programming formulation is intractable for realistic problem sizes, they suggest a
simple time-dependent order-up-to and remanufacture-up-to policy based on a newsvendor-
type analysis as a heuristic. They then compare the cost of their heuristic policy to that
of the optimal solution for an example problem and find that the heuristic policy is only
about 5% higher in cost than the more complex optimal policy. Inderfurth and Kleber [25]
build upon this work to explore the performance of the two-parameter order-up-to heuristic
developed in [26]. They carry out a numerical study and find that it yields near-optimal
results in almost all instances. In Pourakbar et al. [41], the authors consider a slightly
different setting in which a capital goods manufacturer has contracted with its customers
for pre-planned phaseouts of the product. As customers purchase newer equipment, they
return the older generation to the manufacturer. The manufacturer can harvest parts from
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these returns to be used for repairs of in-service equipment. The authors initially model the
return timing and yields as deterministic but also extend the model to allow for stochastic
return times and quantities. Importantly, the authors also note that these returns shrink
the maximum warranty demand by removing products from circulation.

Repair

In the context of a machine that may require spare parts to continue operating, a natural
extension of the last time buy problem is allowing the manufacturer to repair some parts
rather than replace them. Van Kooten and Tan [51] consider a situation with the possibility
of repairing failed components and returning them to the supply of spare parts in order to
use those repaired units to satisfy future demand for components. They model these repairs
as taking an exponential time as well as having a random yield. Any successful repairs
result in a good-as-new spare part and any units whose repairs fail are discarded. This
allows the authors to model the system using a continuous-time transient Markov chain for
a given last-time-buy quantity. As each warranty claim arrives, one spare part is removed
from inventory to satisfy the warranty demand and a repairable part is gained. After the
repair lead time, a unit is moved from the repairable supply to the spare parts supply (if
the repair succeeds) or it is lost permanently (if the repair fails). There are two absorbing
states in which no more warranty claims can be satisfied, both of which the firm views as
unacceptable in terms of customer service. In the first absorbing state, there are no spare
parts or repairable units remaining, and therefore no further demand can be satisfied. In the
second absorbing state, the repair backlog is above a threshold at which customer service
is regarded as unacceptable. They find the distribution of time until the system reaches
an absorbing state, which allows them to find a last-time-buy quantity that guarantees a
specified service level during the time horizon. They also show that, rather than analyzing
the Markov chain directly, they can use a binomial approximation of the time to reach the
absorbing state that can be computed more efficiently. Behfard et al. [1, 2] consider a
similar problem for a product with a single component with a repair option, with a known
constant yield and positive lead time for repair. They assume a time-dependent base stock
policy for repair, under which defective components are only repaired when the inventory of
replacement parts falls below the base stock level in that period. Using a numerical search,
they find a near-optimal last-time-buy quantity and base stock policy for the repair option.

In contrast to the aforementioned models that allow for repairs of components, other
models allow for repairs of the entire defective units. For instance, van der Heijden and
Iskandar [23] consider the case of a product with an increasing failure rate. The manufacturer
must place the last time buy at the beginning of the decision horizon and pay a per-unit
purchase cost. It may also choose to repair any failed units at a per-unit cost which is lower
than the production cost. However, because the repair is assumed to be minimal, the unit
is returned to operational status with the same distribution of remaining life as before the
repair. Therefore, the repaired product’s failure rate is unchanged, and there is a critical age
threshold above which it is no longer cost-effective to repair the product. They present a
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model to jointly optimize the final order quantity and the product-age replacement threshold
and find near-optimal values using a numerical search.

Finally, Pourakbar et al. [40] consider the last time buy with a repair option in the
context of consumer electronics, which is similar to our setting. Due to price erosion, they
anticipate that, at some point before the end of the time horizon, the unit price of the
product will drop below the repair cost. Therefore, they consider an alternative policy of
offering customers a newer version of the product or a discount on a next-generation product.
They seek to jointly optimize the size of the last time buy for spare parts and a switching
time, at which all remaining spare part inventory is scrapped and after which demand will
be satisfied by the alternative policy. At any time before this switching time, the firm may
attempt to repair defective devices. If the repair fails, the defective device is replaced via
the alternative policy, and an additional penalty is paid. The authors consider both a static
policy, optimizing the order quantity and switching time at the beginning of the problem
horizon, and a dynamic policy, in which the switching time can be chosen based on new
information as time progresses.

Product Trade-Ins

Multi-generational products enable product buy-backs or trade-ins (for the next genera-
tion product) to serve as another method of satisfying warranty demand after the last-time-
buy decision has been made. While other authors have allowed for returned products that
are then remanufactured, they all treat the product returns as a random process over which
the manufacturer has no control. In reality, a manufacturer may offer a cash-back incentive
or product discount to existing customers to entice them to trade in their older products
in order to increase the supply of returns available for remanufacturing. The first paper to
model this possibility is by Kleber et al. [29]. In their deterministic model, a firm sells spare
parts to repair the units held by its existing customer base. In each period, after demand
for spare parts occurs, the manufacturer may choose to buy back failed products in their
entirety rather than repair them by replacing a broken part, incurring a per unit buy-back
cost and forgoing the revenue from selling a spare part. However, the failed product can
then be remanufactured at a per-unit cost in order to yield an additional spare part that
can be used in the future. They present a mixed integer linear program (MILP) formulation
and find the optimal final order quantity, buy-back quantity, and remanufacturing quantity
in a multi-period system with deterministic product failure rates and deterministic reman-
ufacturing yields. They also note that the buy-backs reduce the total possible demand by
removing products from circulation.

Cole et al. [10, 11] also consider a trade-in offer, with the distinction that the offer is
made to customers before their items have failed. They assume that customer valuations of
the items they already own are uniformly distributed and ordered by the age of the product.
They further assume that any customer will accept any trade-in offer that is higher than their
personal valuation. Therefore, given the uniformly distributed valuations of the customers,
a larger trade-in offer would correspond to a linear increase in trade-in volume; customers
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with older items take advantage of lower trade-in offers and progressively more customers
with newer items take advantage of the trade-in offer as its value increases. They analyze
a last time buy coupled with two different trade-in policies. The first is a “full trade-in”
policy, in which a one-time offer is made to all customers, while the second is a “matching
trade-in” policy, in which only a portion of customers are offered a trade-in in each period
in order to match the rate of supply with the rate of demand. Due to the assumption
that customer valuation is a function of the age of the product, the “matching trade-in”
policy sends customers trade-in offers in order of their warranty expiration date. Using a
deterministic analysis, they evaluate the cost of these policies and find that a trade-in may
be advantageous for both consumers and the manufacturer. The consumers benefit from
the opportunity for some of them to receive a cash payment greater than their personal
valuation of the product, and the manufacturer benefits from the reduction in potential
warranty demand that may need to be satisfied. The authors then briefly comment on the
effect of uncertainty in demand or trade-in yield. They conclude that a one-time trade-in
offer made to a sizable portion of the warranty population, with the potential for follow-up
offers later in the time horizon, is likely to be preferable to exclusively pursuing either a “full
trade-in” policy or a “matching trade-in” policy. Making a large initial offer that is accepted
by a large portion of the population is preferable because it causes a significant drop in the
warranty population, and therefore reduces future warranty claims.

Last Time Buy with Choice of Timing

We now turn to the literature on models in which the timing of the last time buy is
a decision variable. Only a few authors consider this option. The earliest paper in this
area is by Moore [36] who considers a case with deterministic demand. Accounting for the
fixed and variable costs of production as well as inventory holding costs, Moore presents
an optimization model designed to determine the timing of the last time buy along with
production quantities up to and including the last time buy. Cattani and Souza [8] consider
the possibility of postponing the last time buy rather than placing it at time zero in a case
with stochastic demand in a make-to-order system. They assume the manufacturer pays a
variable cost of production but no fixed costs of ordering. On the other hand, the supplier
faces a maintenance cost that is non-decreasing in the duration of the postponement of the
last time buy, which reflects the costs required to keep the production line available. Under
various demand assumptions, they conclude that any delay of the last time buy benefits the
manufacturer at the expense of the supplier due to both the maintenance costs incurred by
the supplier. They also observe that an earlier last time buy necessitates a larger total order
quantity because it needs to account for greater total uncertainty of demand. They then
perform a game theoretic analysis to show that a benefit-sharing mechanism offered by the
manufacturer is necessary to induce the supplier to agree to delay the last time buy and
thereby achieve a mutually beneficial outcome.

A recent article examines a problem similar to ours, but with some differences in the
assumptions about the decision structure. Ozyoruk et al. [37] consider the problem of
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dynamically optimizing decisions pertinent to the end-of-life phase of a product. In each
period, the firm can choose one of three options: (1) place an order with a setup cost; (2)
satisfy demand from inventory (“continuation”); or (3) dispose of all inventory, end the
production option, and permanently transition to an outside supplier with a higher per-unit
cost (“stopping”). The disposal option simplifies the problem by eliminating the need to
account for the carry-over inventory. They formulate the problem as an optimal stopping
time problem with additional decisions. They use Martingale theory to aid in the calculation
of the value function and obtain a number of structural results. They show that, for the
state space defined by the period and the starting inventory level, the optimal policy regions
are disjoint but often intertwined and lack monotone boundaries. However, they are able
to identify the ordering, continuation, and stopping regions. This result enables them to
recursively calculate the distribution of the stopping time (when the system will transition
to the outside supplier) for any given period and inventory level. They then report numerical
results for a range of parameter settings. It is important to note that, in their model, the
incentive for the firm to end production by transitioning to the outside supplier comes from
the opportunity to avoid inventory holding costs through disposal. This is in contrast to
our model, where the firm is motivated to end production in order to avoid the per-period
capacity reservation costs that are required to keep the production line available.

2.2 Lost-Sales Inventory Problems

In periodic review inventory models, shortages are mainly handled in one of two ways:
backordering or lost sales. In a model with backordering, any unmet demand is only tem-
porarily left unsatisfied before eventually being satisfied with the next available unit of
inventory. In some models, this process incurs a per-unit and/or per-unit per-period backo-
rdering cost, but the salient point is that the demand is eventually satisfied (except perhaps
at the end of the horizon in a finite horizon problem). This allows the use of the inventory
position (on-hand inventory plus on-order inventory minus backorders) to fully define the
inventory state for a given period. However, in a lost-sales model, any demand that cannot
be immediately satisfied from inventory is considered to be lost and may also incur a per-unit
shortage cost. As pointed out in Bijvank and Vis [3], this means that the inventory position
is no longer sufficient to fully define the inventory state, which instead must separately track
the on-hand inventory as well as each order that has yet to arrive, resulting in a state space
that is exponential in the lead time. For this reason, it is well known that lost-sales inventory
models are more difficult to analyze, even though in real-world consumer environments the
lost-sales assumption is often more appropriate than a backordering assumption [3].

As briefly mentioned in the introduction, our models have a type of fixed ordering costs
in the form of the sequential capacity reservation fee as well as zero lead time and lost
sales assumptions. In Bijvank and Vis’s [3] review of lost-sales inventory models, they point
out that, in lost-sales models with normal fixed order costs (i.e., without the requirement
for continuity) and zero lead time, multiple authors have found a (R, s, S) policy to be
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optimal [9, 52, 53, 56]. In such a policy, R is the number of periods between reviews, s is
the reorder point, and S is the order-up-to level. The reorder point s is required to avoid
paying unnecessary fixed costs. However, in our model, the periods in which production may
occur must be sequential, which is why we characterize them as capacity reservation costs
rather than traditional fixed ordering costs. Therefore, the firm cannot avoid the capacity
reservation cost if it plans to ever place an order in the future. To the best of our knowledge,
no lost-sales inventory model makes use of our sequential capacity reservation cost structure.

Our main reason for assuming lost sales is computational convenience. After the last time
buy, unmet demand is lost because no other sources of inventory are available (except in our
problem variant with a buy-back option). By assuming lost sales rather than backordering in
periods prior to the last time buy, we avoid the need to consider negative levels of inventory
in the dynamic programming state space. To ensure that lost sales would be limited in
practical applications, in our numerical studies, we utilize shortage costs that would lead to
the moderate-to-high service levels typically observed in pertinent contexts.

2.3 Capacity Reservation Problems

There is a very substantial literature on capacity reservation problems in which the buyer
reserves capacity in the target period typically at a constant cost per unit of capacity and
then has the option to utilize the capacity at an additional constant cost per unit. Such
a capacity reservation is often considered alongside one or both of the following options:
(i) the opportunity to make an early purchase in the current period at a discounted cost
per unit and (ii) the opportunity to make a “spot” purchase in the target period (when
the demand occurs) either at a constant cost per unit that is known in advance or at an
unknown spot price. Cachon [7] provides a comprehensive overview of contracting in supply
chain problems, including capacity reservation contracts. We refer the reader to Wu et al.
[55] and Mart́ınez-Costa et al. [34] for surveys of this literature and to references in Qi et
al. [42] and Li et al. [32] for examples of more recent research. The literature that we have
mentioned thus far pertains to settings in which there is a single uncertain demand to be
satisfied, usually representing the demand for the entire sales season of a seasonal product.

There is a small literature on multi-period capacity reservation problems. Costa and
Silver [14] consider a multi-period inventory problem in which both the demand and supplier
capacity in each period are stochastic. Prior to the first period, the firm must determine how
much capacity to reserve in each period until the end of the planning horizon. The authors
develop an exact solution based on a combination of branch-and-bound methods and dynamic
programming. However, this problem differs from ours in that there is no requirement to
reserve capacity in sequential periods. Furthermore, the authors require the entire capacity
reservation to be made at the beginning of the planning horizon. Building on this work,
Boulaksil et al. [4] consider a multi-period inventory problem in which an original equipment
manufacturer (OEM) has outsourced production to a contract manufacturer (CM). The CM
serves multiple OEMs and requires each OEM to place capacity reservations before ordering.
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The CM then either accepts or partially rejects these reservations by some decision rule that
is unknown to the OEMs. The authors present a stochastic dynamic programming model
as well as some characteristics of the optimal policy. In general, they show that CM is able
to achieve good results with relatively small reservation costs. However, this setting differs
from ours in that the CM’s production line is not used exclusively to satisfy the demand
of one OEM, but is rather shared across many OEMs. This pooling allows the CM to be
more flexible with the capacity reservation arrangement than our setting allows. A number
of other papers (e.g., [26, 38, 44]) consider multi-period capacity reservation problems with
varying assumptions; however, this literature is primarily concerned with the size of the
capacity reservation, not the duration.

The nature of the capacity reservation in our problem context differs in several ways.
First, the buyer reserves a pre-agreed increment of capacity (e.g., the capacity of a produc-
tion line) that is large enough to accommodate any reasonable order size near the end of
the product’s life cycle. Therefore, there is no capacity quantity decision. The cost of the
reservation accounts for the supplier’s opportunity cost of capacity on the pertinent produc-
tion facility. All variable procurement costs are included in the per-unit cost charged to the
buyer. Second, the capacity reservation periods must be sequential because it is too difficult
for the supplier to reconfigure the production line (if needed) and to train employees to
produce another product, possibly just for a short period of time. This also helps to explain
why our capacity reservation cost reflects the opportunity cost of capacity in any intervening
periods in which the buyer chooses not to place an order.

Karmarkar et al. [27] consider an extension of the single-item dynamic lot-sizing problem
in which the firm incurs a setup cost to switch a production machine from “off” to “on” as well
as a fixed “reservation” cost in any subsequent period in which the machine remains on. They
mention that this arrangement is more appropriate for products in which the production run
lengths are commonly longer than the period lengths. They point out that, if the setup cost
is zero, their problem becomes the classic Wagner-Whitin dynamic lot-sizing problem [54].
Karmarkar et al. present a dynamic programming algorithm for the uncapacitated case.
However, in their problem the firm can restart production at any time after the machine
has been turned off, possibly after producing some units, by paying the setup cost again,
while in our problem any shutdown is permanent. The nature of the reservation in the
Karmarkar et al. paper is the same as in our model but we do not have setup costs in our
model. They highlight the key difference between setup and reservation costs, the latter of
which represents the cost of “tying up the machine so that other products cannot be made
on it.” [27] These same underlying economic and operational phenomena motivate our use
of capacity reservation fees, although the requirement for sequential reservations and the
presence of stochastic demand make our problem more challenging.
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Chapter 3

Problem Statement

We consider a problem facing a firm that sells a multi-generational product near the end
of its product life cycle. At some predetermined time, the firm will discontinue the older
generation of the product and exclusively sell the newer generation of the product. This
leaves the firm with the question of when to stop ordering the older generation item and how
much inventory to have available at that time. This problem is a variant of the last time
buy problem in which the firm has the choice of when to place the last time buy as well as
how large the purchase should be.

We assume a fixed time horizon with a predetermined time after which the firm intends to
stop selling the older generation of the product. This is consistent with our primary setting
of interest, the high-tech consumer electronics industry, in which the discontinuation time of
each generation is decided by the firm, usually many months prior to the end of the product’s
selling horizon. We also assume that, given the history of demand, the firm can construct a
statistical distribution of demand in each time period until the last possible period in which
demand can occur, which we represent as the end of the time horizon. Although in reality,
the firm would continue to update the demand forecasts over time as new data arrives, for
simplicity we assume that the demand distributions are fixed at the beginning of the time
horizon and are not updated based on new information. The demand may represent some
combination of retail demand and demand for warranty replacement units, but we do not
differentiate between these in our base model.

We specifically consider situations in which the product is assembled or produced by a
contract manufacturer that has set up a production line specifically for the product under
consideration. Time and effort are required for the contract manufacturer to change over
the production line to produce a different product, so, under normal conditions, the contract
manufacturer does not do so until production of the current product is terminated by the
firm. The contract manufacturer charges the firm a capacity reservation fee per period while
the line is set up to produce the product under consideration. This means that the firm must
continue to pay the per-period capacity reservation fee in order to keep the production line
at the contract manufacturer available even if the firm does not intend to order any units
for the current period. We assume this cost is linear in the number of periods and there is
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no discount or surcharge for making a reservation for a longer period of time. We make this
assumption because this cost primarily represents the contract manufacturer’s opportunity
cost: keeping the production line available to the firm in question prevents the contract
manufacturer from allocating that equipment or personnel to other products. It is worth
emphasizing that the firm may choose to pay the capacity reservation fee entirely for the
option of being able to order in a future period. This differentiates the capacity reservation
fee in our model from the setup cost for ordering included in more traditional inventory
models.

The decision horizon may begin at any point during the product life cycle, but it would
typically begin when demand for the product has declined sufficiently that the firm may
prefer to use the contract manufacturer’s resources to produce another product, e.g., the
next generation product. Our problem is a planning problem, which is primarily concerned
with the capacity reservation decision. Therefore, we utilize a discrete-time model in which
each period is sized to the length of a typical capacity reservation, e.g., a month or quarter.

We assume there are no restrictions on the order quantity during the time interval under
consideration, as the product is near the end of its life cycle when demand is declining and
therefore we assume that anticipated future demand in any period will be below production
capacity. We also make the simplifying assumption that, in any period in which capacity
has been reserved, there is no minimum order quantity. We assume the firm uses a state-
dependent order-up-to policy, so in each period it must choose an order-up-level that may
depend on the starting inventory level. Due to the complexity of the problem, which we
discuss in more detail later, it is not possible to show that a simple state-dependent policy
is guaranteed to be optimal. However, we believe that a state-dependent order-up-to policy
is sufficiently general to allow us to find near-optimal solutions, as it is feasible for the
firm to select a unique order-up-to level for every possible combination of starting inventory
and period, which is a more complex policy than any firm could realistically implement in
practice. We restrict consideration to this class of policies and seek optimal solutions within
this class.

We assume that there is no lead time, so any units that are ordered arrive in the same
period and are available to satisfy demand during that period. The periods in our model
correspond to capacity reservations for durations of months or quarters. In our model, the
contract manufacturer is primarily performing final assembly, which can be completed in
a short period of time. Shipments from the contract manufacturer would typically occur
weekly. Further, in the consumer electronics setting, the combination of high value and
small size and weight of the items would lead the firm to prefer rapid transportation options,
such as air freight, along with frequent, e.g., weekly, shipments. If capacity reservations are
for monthly or quarterly periods and shipments occur weekly, then the lead time would be
only a fraction of a reservation period. Therefore, the zero lead time assumption is a rea-
sonable approximation while at the same time greatly simplifying our model by eliminating
differences between the on-hand inventory and the inventory position. This allows us to
focus on our primary interest, the timing of the last-time-buy decision.

In all three variants of our problem, at some point, the firm will have exhausted all
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possible sources of inventory, either by ending the capacity reservation or, in the case of
our third problem variant, by making the one-time buy-back offer. As a result, any unmet
demand after this point must be lost as there are no more opportunities to order units, and
therefore we cannot use a model with full backordering. We make a simplifying assumption
that any unmet demand in any period is lost permanently (with no backordering allowed),
even in periods prior to the last time buy. As mentioned earlier in Section 2.2, there is an
important technical reason for this assumption, as it allows us to avoid a potentially much
larger state space that would arise if inventory levels were allowed to be negative.

As part of our lost-sales model, we assume the firm incurs a shortage cost for each
unit of unmet demand. In the consumer electronics setting, the lost-sales assumption may
be justified because the product in question is in a competitive category in which brand
switching is very common. If this is the case, the shortage cost may represent the lost
profit associated with losing a customer to a competitor. There are also other contexts,
such as demand for spare parts for units under warranty, in which unmet demand represents
a breach of contract, and therefore should incur an immediate penalty. In this case, the
shortage cost may represent the cost of a cash payment to the customer in compensation.
Alternatively, this shortage cost may represent the lost profit arising from replacing the
customer’s broken product with a new next-generation product that the customer may have
otherwise purchased at a later time. All of the above interpretations support relatively high
shortage costs, leading to high service levels and limited lost sales prior to the last time buy,
further supporting our assumption of a lost-sales model throughout the problem horizon.

The firm’s objective is to minimize the expected cost of satisfying demand over the
remaining time horizon. Because the production process is well established by the point in
time when the firm needs to make a last-time-buy decision, all costs should be well known
to the firm. We assume that all costs are positive values. We also assume that all costs are
constant over the time horizon of concern. This assumption is justified due to the relatively
short time horizon of the problem. For that same reason, we do not discount costs but it
is straightforward to do so if desired. In addition to the per-period capacity reservation fee,
the firm must pay the per-unit variable procurement cost for any units ordered, a per-unit
inventory holding cost for any units in inventory at the end of any period, and a per-unit
shortage cost for any unmet demand in any period. We assume that no disposal of inventory
is allowed in any period, with the sole exception of the end of the time horizon, when excess
units are discarded with no salvage value and at zero cost. While in reality, older generations
of products may have a small value in secondary markets, in general, the high-tech nature of
these products means they become obsolete quickly, and therefore for simplicity, we assume
their salvage value is zero. It is straightforward to generalize our model to include salvage
values and disposal costs.

We study three different variants of the last-time-buy problem described above, all of
which include the requirement that the firm must continue to pay periodic capacity reser-
vation fees in order to keep the production line at a contract manufacturer available. All
assumptions above apply to each variant unless otherwise specified. In Section 3.1 we con-
sider the simplest version of the problem, in which the firm must pre-commit to the duration
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of the capacity reservation at the start of the time horizon. In Section 3.2 we consider a
dynamic variant of the problem, in which the firm can decide in each period whether to
extend the capacity reservation. Finally, in Section 3.3 we consider an extension of the dy-
namic variant of the problem, in which the firm has the option to make a one-time product
buy-back offer in any period after the capacity reservation has been ended. In the other two
variants of the problem, we do not explicitly differentiate between retail demand and demand
for warranty replacement units. However, in this variant, we assume that all late-horizon
demand is for warranty replacement units, and therefore the buy-back units can be refur-
bished to serve as an alternate source of units to satisfy warranty claims. We will discuss
the details and assumptions of this buy-back offer in the relevant section.

3.1 Pre-Commit Variant

We now describe our first problem variant in which the firm must pre-commit at the
beginning of the decision horizon to the remaining duration of the capacity reservation.
However, in each intervening period, the firm may order any quantity of the product; only
the timing of the last possible order is pre-committed. The sequence of events is as follows:

1. At the start of the decision horizon, select the final period of the capacity reservation
and pay the per-period capacity reservation fees through the selected period.

2. In each period up to and including the last period of the capacity reservation:

a) Order and pay for units.

b) Receive units.

c) Fulfill demand to the extent inventory is available.

d) Incur any inventory holding or shortage costs.

e) Proceed to the next period.

3. In each period after the conclusion of the capacity reservation (note that there are no
decisions in this situation):

a) Fulfill demand to the extent inventory is available.

b) Incur any inventory holding or shortage costs.

c) Proceed to the next period.

This pre-commit variant will primarily serve as a baseline for comparison with the dy-
namic variants of the model, which are detailed below. We note, however, that capacity
reservation contracts do exist in which the term of the reservation must be decided in ad-
vance, possibly with some flexibility for modification at a cost.
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3.2 Dynamic Variant

We now discuss the dynamic variant of this problem. Instead of pre-committing to reserve
capacity for a number of periods, the firm contracts with the manufacturer on a period-to-
period basis, paying the capacity reservation fee to keep the product line available. Once the
firm chooses not to pay the capacity reservation fee, the firm will no longer be able to order
units from the contract manufacturer. Decisions concerning both the capacity reservation
and, if applicable, the order quantity for the current period are made at the beginning of
each period. In practical application, the capacity reservation decision may actually be
made in the latter part of the preceding period. Our assumption regarding the timing of the
decision is an approximation, but it is not far from reality in instances where the contract
manufacturer’s contribution to the production is primarily manual assembly. Assuming the
firm chooses to continue the capacity reservation, the sequence of events is as follows:

1. Pay the capacity reservation fee.

2. Order and pay for units.

3. Receive units.

4. Fulfill demand to the extent inventory is available.

5. Incur any inventory holding or shortage costs.

6. Proceed to the next period.

In the first period in which the firm chooses not to pay the capacity reservation fee, and
in all subsequent periods, the firm faces the following sequence of events (note that there are
no decisions in this situation):

1. Fulfill demand to the extent inventory is available.

2. Incur any inventory holding or shortage costs.

3. Proceed to the next period.

The optimal solution for the pre-commit variant described in Section 3.1 will yield an
upper bound on the optimal expected cost of the dynamic problem described here, because
the cost elements are the same but the decision space is more constrained. This upper bound
is interesting because the difference between it and the optimal expected cost of the dynamic
problem represents the value of the flexibility afforded by the option to decide dynamically
whether to continue the capacity reservation or not. Some firms facing competition in
securing contract manufacturing capacity face the pre-commit version of the problem, while
others with more power relative to the contract manufacturer may be able to take advantage
of the flexibility afforded by the dynamic variant.
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3.3 Dynamic Variant with One-Time Buy-Back

Option

We now discuss a variant of the dynamic version of this problem that includes the option
for a one-time product buy-back offer. This variant is especially relevant in the context of
warranty demand for a discontinued product. We assume that, at this stage in the product
life cycle, there is no future retail demand and the only remaining demand is from warranty
claims. The goal of the buy-back is to source additional units which may be refurbished and
used to satisfy future warranty demand.

We assume that, at some point before the end of the time horizon, the firm may make
a buy-back offer to existing customers who own the product in question. We assume that
the firm can choose the buy-back price and can estimate the number of customers who will
take advantage of the offer at any given buy-back price. For simplicity, we initially assume
that the total number of units acquired from customers is a deterministic function of the
buy-back price. However, later in this section, we introduce an extension in which we relax
this assumption by allowing the total number of units to be a stochastic function of the
buy-back price.

We assume that the buy-back offer can occur only after the firm has ended the capacity
reservation at the contract manufacturer. This assumption is not too restrictive because the
firm must offer a buy-back price that is high enough to induce some customers to part with
their devices, and the customer’s expectation for the value of the item is tied to the retail
price they paid, which is often double the production cost or more. Therefore, the unit cost
of the buy-back will be higher than the per-unit procurement cost of ordering them from
the contract manufacturer, so the firm would not utilize the buy-back offer if the option to
order from the contract manufacturer were still available. Requiring that the buy-back offer
occurs after the last time buy allows us to simplify the decision structure without greatly
compromising the model’s realism.

We assume that the buy-back offer can only be made once. Our rationale for this as-
sumption can be explained as follows. Suppose for a moment that multiple buy-back offers
were possible. If the customer’s personal valuation of the product is assumed to be constant
over the time horizon (which would be reasonable in the short term), then any follow-up
buy-back offer after a previous offer would only yield incremental units if a higher per-unit
buy-back price were offered. This means that the buy-back yield of each subsequent offer
would depend not just on the current value of the offer but also on the values of all previous
buy-back offers made. This would cause the decision structure to be very complicated, and
for that reason, we restrict the buy-back offer to be a one-time option only. In practice, the
combination of the administrative inconvenience of offering a buy-back and the relatively
short time between the depletion of newly-produced parts available for warranty (i.e., the
point at which a buy-back offer first becomes useful) and the end of the time horizon means
that the firm will realistically have only one opportunity to organize a buy-back with its
customers, so this assumption is not very restrictive.
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Obviously, new units may be used to satisfy warranty claims. However, most warranties
only require the replacements to be of a similar quality to the used, in-service units. There-
fore, we assume that the firm is able to refurbish the buy-back units to a quality level that is
adequate to satisfy warranty requirements, which may be lower than that of new units. For
example, their durability may be lower. We assume the inventory holding costs of new and
refurbished units are not sufficiently dissimilar to distinguish them, so as an approximation,
we treat them as equal.

We assume that the firm has a good estimate of the cost and yield of this refurbishing
process due to the mature stage of the product within its life cycle as well as the firm’s
experience with previous warranty claims. We also assume that a deterministic fraction of
units can be refurbished. We combine the cost to acquire the buy-back units and the cost to
refurbish them into a single “buy-back cost,” and we express the total cost of a buy-back offer
as a function of the net number of buy-back units added to inventory after refurbishment.

After considering this deterministic model, we also consider an extension in which the
total number of units acquired from customers is a stochastic function of the buy-back price.
In this extension, the firm chooses a per-unit buy-back price to offer to its customers, but
the number of customers who respond to the offer is random, with the expected number of
responding customers increasing with the buy-back price. However, we retain the assumption
that a deterministic fraction of buy-back units can be refurbished at a constant per-unit cost
and therefore continue to represent the cost to acquire and refurbish each unit as a single
“buy-back cost.” This per-unit “buy-back cost” is incurred for a random number of units,
causing the overall buy-back cost to be a stochastic function of the buy-back price selected
by the firm. We discuss the implementation of the stochastic buy-back model in detail in
Section 8.5.

We now discuss the sequence of events facing the firm. In periods in which the firm
chooses to continue the capacity reservation with the contract manufacturer, the sequence
of events is identical to that described in Section 3.2:

1. Pay the capacity reservation fee.

2. Order and pay for units.

3. Receive units.

4. Fulfill demand to the extent inventory is available.

5. Incur any inventory holding or shortage costs.

6. Proceed to the next period.

However, after the capacity reservation has been terminated, the firm now has the option
to make a one-time buy-back offer and therefore faces the following sequence of events in
each period:
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1. If the one-time buy-back option has not yet been exercised and the firm chooses to
exercise it in the current period:

a) Choose a buy-back quantity, collect those items, and then refurbish and return
those items to inventory.

b) Pay the corresponding buy-back and refurbishing costs.

2. Fulfill demand to the extent inventory is available.

3. Incur any inventory holding or shortage costs.

4. Proceed to the next period.

After the one-time option has been exercised, it can no longer be exercised in any subsequent
period. Therefore, in each period after the buy-back has been offered, the firm has no
decisions remaining and faces the following sequence of events:

1. Fulfill demand to the extent inventory is available.

2. Incur any inventory holding or shortage costs.

3. Proceed to the next period.

The solution to the dynamic variant described in Section 3.2 provides an upper bound
on the optimal expected cost of this variant. The difference between the respective expected
costs represents the value of the flexibility offered by the buy-back option.

In the following chapters, we present formulations of the three problem variants described
above and characterize properties of the corresponding optimal solutions. We also present a
heuristic for the dynamic variant of the problem and contrast its performance with that of
the optimal solution found via dynamic programming.

In the next three chapters, we present formulations of our various problem variants.
Due to the presence of binary decision variables for extending the capacity reservation at
a fixed cost per period, binary decision variables for selecting the buy-back option, inter-
relations among certain binary variables, as well as inventory-related decisions and costs
under stochastic demand and buy-back yields (as applicable), our formulations are nonlin-
ear mixed-integer dynamic programs. As such, some of our formulations include constructs
and constraints that are more complicated than in many production/inventory models.
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Chapter 4

Pre-Commit Model

We consider capacity reservation and procurement decisions facing a firm that sells a
product over a fixed time horizon of N periods. The periods are numbered in chronological
order, with period 1 being the first period of the problem horizon and period N being the
final period in which demand occurs. The production line for the product is assumed to be
available for reservation at a contract manufacturer at the start of the problem horizon and
the firm has a known number of units, I1, in stock, where In denotes the number of units in
inventory at the beginning of period n.

In the pre-commit variant of the problem, at the beginning of the first period, the firm
must decide how many consecutive periods it would like to reserve capacity at the contract
manufacturer. Although there are many ways to represent this decision, for mathematical
convenience, we represent this decision with the vector y, which consists of binary variables
yn : n = 1, ..., N , which are set equal to 1 if production capacity is reserved in period n,
and 0 otherwise. We define a dummy variable y0 = 1 that indicates capacity was reserved
immediately prior to the beginning of the problem horizon, which ensures that we have the
option of reserving capacity in the first period and possibly continuing. For each period the
firm reserves capacity it must pay a capacity reservation fee cf , so a choice of n periods
would incur a cost of ncf .

Let Sn(In) represent the order-up-to level in period n if there are In units on hand
at the beginning of the period. For compactness, we will often represent the order-up-to
variable simply as Sn. This value is a constrained order-up-to level, with the restriction
that Sn ≥ In, because disposal is not allowed by assumption, and, in practice, firms rarely
dispose of inventory when they anticipate being able to use it within a short period of time.
The firm must pay a per unit procurement cost cp. Therefore, the total ordering cost in
period n is cp(Sn − In). Unmet demand is permanently lost and incurs a per-unit shortage
cost cs. Any excess units in inventory at the end of any period incur a per-unit inventory
holding cost ch, except at the end of the horizon, when any excess units are disposed of
with zero salvage value and no disposal cost. It is straightforward to generalize our model
and methodology to incorporate positive salvage values or disposal costs. In each period n,
demand is represented by the random variable Dn with a corresponding probability density
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function fn.
We seek to optimize the firm’s decisions over the time horizon. We do this by construct-

ing a dynamic program which expresses the cost in each period as a function of the current
period costs plus the expected cost-to-go assuming optimal decisions are made in all subse-
quent periods. These costs depend on the two-dimensional state of the system at the time,
defined by the starting inventory level and the binary variable indicating whether or not the
production line was reserved for the current period.

Throughout the dissertation, the term “policy” is used when describing the general form
of the solution (such as an order-up-to-S inventory policy), whereas “strategy” is used when
referring to the full, state-contingent dynamic programming solution for a specific problem
instance. In the pre-commit variant of the problem, the optimal strategy consists of: (1) the
optimal duration of the sequential capacity reservation, and (2) the optimal state-dependent
order-up-to level for each period for which capacity was reserved.

We next present the dynamic programming formulation. In our formulations, we separate
the decision variables from the state variables using a pipe (|) to make clear the distinction.

4.1 Model Formulation

We use Cn(Sn|In,y) to denote the value function corresponding to producing up to Sn

units in period n when the firm has pre-committed to the capacity reservation defined by
the vector of decision variables y and starts period n with In units on hand. Throughout,
we use an asterisk (∗) to signify the optimal expected cost-to-go function. This represents
the cost associated with the firm making the optimal decision in the current period and all
subsequent periods for the given state variables. Therefore, we use C∗

n(In,y) to denote the
optimal expected cost-to-go associated with the state variables (In,y).

We can now recursively define the value and cost-to-go functions for all periods. The
terminal value function is:

CN+1(·) = 0 (4.1)

because all inventory is disposed of at the end of the horizon with no salvage value and no
disposal cost. It is clear that we also have:

C∗
N+1(·) = 0 (4.2)

because there are no decisions to make at the end of the horizon. However, because the ter-
minal value function does not impact the firm’s decisions, we exclude it from the formulation
in the remainder of this chapter.

For period N , we have the value function:

CN(SN |IN ,y) = cp(SN − IN) + cs

∫ ∞

SN

(x− SN)fN(x)dx (4.3)
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with the obvious constraint SN ≥ IN . In the final period, the only costs that apply are
the procurement costs, if any, and the expected shortage costs. We also have the optimal
expected cost-to-go:

C∗
N(IN ,y) = min

IN≤SN≤IN+MyN
CN(SN |IN ,y) (4.4)

where M is a very large constant. The upper bound in the constraint on SN is a big-M
constraint which specifies that an order can be placed only if allowed by the pre-committed
capacity reservation; this constraint links the binary capacity reservation decision with the
order quantity decision. The lower bound in the constraint on SN ensures that the selected
order-up-to level is greater than or equal to the starting inventory level. Therefore, if the firm
has not pre-committed up to and including period N , yN = 0 and consequently, SN = IN .

For any period n ∈ {2, 3, ...N − 1}, we have the value function:

Cn(Sn|In,y) =cp(Sn − In) + ch

∫ Sn

0

(Sn − x)fn(x)dx+ cs

∫ ∞

Sn

(x− Sn)fn(x)dx

+

∫ Sn

0

C∗
n+1(Sn − x,y)fn(x)dx+

∫ ∞

Sn

C∗
n+1(0,y)fn(x)dx (4.5)

with the constraint Sn ≥ In. In (4.5), the first term is the variable procurement cost, the
second and third terms are the expected inventory holding and shortage costs, respectively,
in period n, and the final two terms are collectively the optimal expected cost-to-go in
period n+ 1. Due to our lost sales assumption, the inventory at the end of period n is zero
if demand exceeds Sn, and therefore we separate the expectation by whether the demand
results in positive or zero inventory at the end of period n after demand has occurred, which
is also the inventory level at the beginning of period n+1. We also have the optimal expected
cost-to-go:

C∗
n(In,y) = min

In≤Sn≤In+Myn
Cn(Sn|In,y) (4.6)

where the constraint ensures that an order can be placed only if allowed by the pre-committed
capacity reservation and that the selected order-up-to level must be greater than or equal to
the starting inventory level.

Finally, for period 1, we have the value function:

C1(S1,y|I1) =cf

N∑
n=1

yn + cp(S1 − I1)

+ ch

∫ S1

0

(S1 − x)f1(x)dx+ cs

∫ ∞

S1

(x− S1)f1(x)dx

+

∫ S1

0

C∗
2(S1 − x,y)f1(x)dx+

∫ ∞

S1

C∗
2(0,y)f1(x)dx (4.7)
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with the constraint S1 ≥ I1. The first term represents the cost of pre-committing to the
capacity reservation for the selected number of periods, the second term is the variable
procurement cost of ordering up to S1 units, the third and fourth terms are the expected
inventory holding and shortage costs, respectively, in period 1, and the final two terms are
the optimal expected cost-to-go in period 2 accounting for cases in which the final inventory
in period 1 is positive or zero after demand has occurred, respectively. We also have the
optimal expected cost-to-go:

C∗
1(I1) = min

yn∈{0,1},yn≤yn−1 ∀ n∈{1,2...N}

{
min

I1≤S1≤I1+My1
C1(S1,y|I1)

}
(4.8)

In the inner minimization, the constraint once again ensures an order can be placed only if the
capacity reservation has been extended for the current period. For the outer minimization,
the first constraint limits y to binary choices while the second ensures that all periods for
which capacity is reserved are sequential.

4.2 Properties of the Optimal Solution

Throughout the remainder of this section, when we refer to the optimal order-up-to level,
we mean the optimal order-up-to level satisfying the constraint Sn(In) ≥ In. We will first
show that at least one such optimal constrained order-up-to level exists.

Proposition 4.1. An optimal constrained order-up-to S∗
n(In) exists that minimizes the value

function Cn(Sn|In,y) for arbitrary n and In.

Proof. See Appendix A.

With the existence of an optimal order-up-to level established, we will now establish a
few results that are helpful in calculating the optimal strategy. We will first consider the
cost-to-go function for all periods after the capacity reservation has been ended.

Proposition 4.2. Suppose period m is the final period of the pre-committed capacity reser-
vation. Then, for all n ∈ {m + 1,m + 2, ...N} the optimal expected cost-to-go C∗

n(In,y) is
convex in the starting inventory level In.

Proof. With the capacity reservation ended, we have yn = 0 for n > m, and the constraint in
equation (4.6) is binding, so no further units can be purchased. Therefore the only remaining
costs are the linear inventory holding and shortage costs for all remaining periods. It is well
known that this results in an expected cost function which is convex in In.

With the convexity of all periods after the capacity reservation established, we now
consider the value function in the final period of the capacity reservation.
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Theorem 4.3. Suppose period n is the final period of the pre-committed capacity reservation.
The value function Cn(Sn|In,y) for a given starting inventory level In is convex in the order-
up-to level Sn for Sn ≥ In.

Proof. Consider the value function Cn(Sn|In,y) defined in (4.5). The first term is linear
in Sn. The expected inventory holding cost and shortage cost in terms two and three,
respectively, are convex in Sn. Finally, the integrand in each of the final two terms is convex
in the first argument by Proposition 4.2, and, because convexity is preserved in expectation,
the final two terms are also convex in Sn. Therefore the overall value function is convex in
the order-up-to level Sn.

Theorem 4.3 allows us to find the optimal order-up-to level through a procedure such as
bisection search for a given starting inventory level In when period n is the final period of the
capacity reservation. In Section 6.2 we make use of this property in our construction of the
heuristic for the dynamic variant. However, Theorem 4.3 only allows us to find the optimal
state-dependent order-up-to level in the final period of the capacity reservation itself. For the
pre-commit model overall, we find the optimal strategy numerically, as detailed in Chapter
7.
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Chapter 5

Dynamic Model

We now consider the dynamic version of the problem, in which the firm contracts with
the contract manufacturer on a period-to-period basis. Much of the setting and notation
are the same as in the previous model, with the main difference being that instead of a
pre-committing to a production availability schedule y ahead of time, the firm can decide
in each period if it would like to keep the production line available. The sequential capacity
reservation requirement still holds: provided that the production line was reserved in the
previous period, the firm may pay the capacity reservation fee cf and keep the option to
order in the current period. Once again we define the binary decision variable yn to be
equal to one if the production line is reserved in period n, and zero otherwise. We also
introduce a new binary state variable αn, which is equal to one if the capacity reservation
was extended in period n − 1, and zero otherwise. We assume that α1 = 1 so that it is
feasible to reserve capacity in period 1 and possibly beyond that. All other variables and
parameters are unchanged from the pre-commit version of the problem.

In the remainder of this chapter, we present our formulation and initial analysis.

5.1 Model Formulation

After the capacity reservation has been terminated (i.e., αn = 0) there are no more
decisions to make and therefore the value function in any period n only depends on the
remaining state variable In. Let Cn(In, αn = 0) be the value function in period n starting
with In units of inventory and with the capacity reservation ended before the beginning of
the period.

As in Chapter 4, the terminal value function is:

CN+1(·) = 0 (5.1)

because all inventory is disposed of at the end of the horizon with no salvage value and no
disposal cost. It is clear that we also have:

C∗
N+1(·) = 0 (5.2)
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because there are no decisions to make at the end of the horizon. However, because the
terminal value function does not affect the firm’s decisions, we exclude it from the formulation
in the remainder of this chapter.

We begin with period N and then define Cn(In, αn = 0) recursively using the fact that
αn+1 = αn+2 = . . . = αN−1 = 0. The value function in period N if the capacity reservation
has been ended and the initial inventory is IN units consists only of the expected shortage
costs:

CN(IN , αN = 0) = cs

∫ ∞

IN

(x− IN)fN(x)dx (5.3)

Similarly, we can define the value function after the capacity reservation has been ended for
an arbitrary period n < N with In units of starting inventory as follows:

Cn(In,αn = 0) = ch

∫ In

0

(In − x)fn(x)dx+ cs

∫ ∞

In

(x− In)fn(x)dx

+

∫ In

0

C∗
n+1(In − x, αn+1 = 0)fn(x)dx+

∫ ∞

In

C∗
n+1(0, αn+1 = 0)fn(x)dx (5.4)

The first two terms are, respectively, the expected inventory holding cost and the expected
shortage cost in period n. The third and fourth terms together are the expected cost-to-go
in period n+ 1. We also note that, because there are no decisions to make in this situation,
the optimal expected cost-to-go is equivalent to the value function, and therefore in our
notation, for an arbitrary period n:

C∗
n(In, αn = 0) = Cn(In, αn = 0) (5.5)

Although there are no decisions to make, we are still interested in properties of the cost-to-go
function that will help to characterize the optimal strategy. We next show that C∗

n(In, αn =
0) is convex.

Proposition 5.1. The optimal expected cost-to-go after the capacity reservation has been
ended, for any arbitrary period n, C∗

n(In, αn = 0) is convex in the starting inventory level In.

In the final period N , this result follows directly from the linear inventory holding and
shortage costs. We next show by induction that convexity also holds for any arbitrary period
n.

Proof. Consider the period-N value function as defined in (5.3). In this case, the shortage
cost function is linear, and therefore the value function is convex in the starting inventory IN .
As the optimal expected cost-to-go is equivalent to the value function in (5.5), the optimal
expected cost-to-go function is also convex in the starting inventory IN . We next show by
induction that the convexity property carries over to any arbitrary period n.

Assume for the purpose of induction that the expected cost-to-go function in period
n+1 is convex in the starting inventory level In+1. Consider the value function for a period
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n < N as defined in (5.4). Once again, the inventory holding and shortage costs are linear
and therefore the expected inventory holding and shortage costs are convex in the starting
inventory In. The third and fourth terms together are the optimal expected cost-to-go
in period n + 1, which is convex in the initial inventory by assumption, and convexity is
preserved under expectation. Therefore, by induction, Cn(In, αn = 0) is convex in the initial
inventory In for any period n.

The form of the value function when the firm has the option to extend the capacity
reservation depends on the period. If it is the final period N , the value function includes only
expected shortage costs in addition to the fixed and variable procurement costs. Therefore,
the value function if the firm extends the capacity reservation and orders up to SN units in
period N is:

CN(SN , yN |IN , αn = 1) =cfyN + cp(SN − IN) + cs

∫ ∞

Sn

(x− Sn)fn(x)dx (5.6)

with the constraint IN ≤ SN ≤ IN +MyN . On the other hand, for any other period n < N ,
the value function associated with extending the capacity reservation and producing up to
Sn units in period n is:

Cn(Sn, yn|In, αn = 1) = cfyn + cp(Sn − In)

+ ch

∫ Sn

0

(Sn − x)fn(x)dx+ cs

∫ ∞

Sn

(x− Sn)fn(x)dx

+

∫ Sn

0

C∗
n+1(Sn − x, αn+1 = yn)fn(x)dx+

∫ ∞

Sn

C∗
n+1(0, αn+1 = yn)fn(x)dx (5.7)

with the constraint In ≤ Sn ≤ In + Myn. The first two terms in the above expression
represent the cost of ordering up to Sn units, consisting of the capacity reservation fee plus
the variable procurement cost. The third and fourth terms are the expected inventory holding
and shortage costs in the current period. Finally, the fifth and sixth terms together represent
the optimal expected cost-to-go from period n + 1 and onward, given the resulting end-of-
period inventory level and the fact that the capacity reservation was extended in period n.
The fifth term accounts for cases in which demand is less than or equal to the order-up-to
level, while the sixth term accounts for cases in which demand exceeds the order-up-to level.

If the firm chooses to not extend the capacity reservation in period n, that corresponds
to setting yn = 0 and Sn = In. In that case, (5.7) becomes equivalent to (5.4) and the value
function is the same as if the period had started with the capacity reservation not available.
We can now consider the optimal expected cost-to-go.

Let C∗
n(In, αn = 1) be the optimal expected cost-to-go from period n onward when the

capacity reservation can be extended:

C∗
n(In, αn = 1) = min

yn∈{0,1},In≤Sn≤In+Myn
Cn(Sn, yn|In, αn = 1) (5.8)
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The constraints in the minimization account for the two requirements that (1) the order
quantity can be positive only if the capacity reservation is extended in the same period and
(2) the chosen order-up-to level must be at least as large as the starting inventory (i.e., no
disposal). The sequential capacity requirement is enforced through the setting of αn+1 = yn
in the value function defined in (5.7). Once again, notice that a solution of yn = 0 forces
Sn = In and αn+1 = 0, in which case (5.8) would be equivalent to (5.4).

We now consider the optimal order-up-to level assuming that the firm decides to extend
the capacity reservation. Let S∗

n(In) be an optimal state-dependent order-up-to level that
minimizes C(Sn, yn = 1|In, αn = 1) subject to the constraint Sn ≥ In. First, we show that
such an order-up-to level exists:

Proposition 5.2. For an arbitrary period n and starting inventory level In, there exists
at least one optimal constrained order-up-to level S∗

n(In) that minimizes the value function
Cn(Sn, yn = 1|In, αn = 1).

Proof. See Appendix A.

Because at least one optimal constrained order-up-to level exists, the firm can choose
between (1) extending the reservation and ordering up to S∗

n(In), and (2) not extending the
reservation. So we have an equivalent expression to (5.8):

C∗
n(In, αn = 1) = min

{
Cn(S

∗
n(In), yn = 1|In, αn = 1) , Cn(In, αn = 0)

}
(5.9)

where the optimal costs of both alternatives, as shown in the braces of (5.9), depend on the
starting inventory level In. Our analysis will focus on the relationship between these two
functions for a given period n as a function of the starting inventory level In.

We will now explore some properties of the optimal solution.

5.2 Properties of the Optimal Solution

Throughout the remainder of this section, when we refer to an optimal order-up-to level,
we mean an optimal constrained order-up-to level satisfying the constraint Sn(In) ≥ In.
Due to the structure of the DP value function, we cannot rule out the possibility of multiple
optimal order-up-to levels for a given starting inventory. Consider a two-period problem with
a deterministic demand of 100 units per period, a per-unit per-period inventory holding cost
of 1, a per-period capacity reservation cost of 100, a per-unit shortage cost of 100, and a
per-unit procurement cost of 1. In this example, the shortage cost is so large relative to the
procurement cost that it is optimal to satisfy all demand. If we assume there is no inventory
available at the beginning of the horizon, the two reasonable solutions are to either: (1) order
100 units in each period or (2) order 200 units in the first period and hold the remaining
100 units in inventory until the second period. Because the capacity reservation fee is equal
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to the cost to hold 100 units in inventory for one period, these two solutions have the same
cost. As a result, the optimal order-up-to level for any given starting inventory level is not
necessarily unique.

Our numerical results show that, in practice, there are often two types of optimal order-
up-to levels that occur across starting inventory levels: either a “small” order-up-to level that
would satisfy the current period’s demand with a high probability or a “large” order-up-to
level that is sufficient to serve as the last time buy. In the problem instance described in the
previous paragraph, 100 would be the “small” order-up-to level and 200 would be the “large”
order-up-to level. Furthermore, in cases where both types of order-up-to levels are optimal
in a given period but for different starting inventory levels, the “small” order-up-to level is
generally optimal for smaller starting inventory levels while the “large” order-up-to level is
generally optimal for larger starting inventory levels. We now use an example problem from
our numerical study (see Chapter 7) containing both types of optimal order-up-to levels to
further illustrate some properties of the optimal solution.

(a) Optimal Order-Up-To Levels in Period 6 (b) Value Function in Period 6 as a Function of
Sn for I6 = 0

Figure 5.1: Example of an Optimal Order-Up-To Strategy

Figure 5.1 was generated from a discretized problem instance in our numerical study.
Figure 5.1a plots the optimal order-up-to level as a function of the starting inventory level
and clearly shows that there are two prominent optimal order-up-to levels that result in
positive order quantities. For starting inventory levels between 0 and 85, it is optimal to
order up to 85 units. However, for starting inventory levels between 100 and 365, it is optimal
to order up to 390 units. (Note that for starting inventory levels between 85 and 100, it is
optimal to extend the capacity reservation but order nothing, a strategy we will discuss in
greater detail in Chapter 7.) Both of the optimal order-up-to levels that result in positive
order quantities (85 and 390) are visible as local minima of the value function (equation (5.7))
plotted in Figure 5.1b with respect to the order-up-to level, Sn. This implies that there may
exist some starting inventory level for which the value function associated with these two
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order-up-to levels are equal, especially in a case with continuous demand quantities and
starting inventory levels. This complicates attempts to characterize the optimal order-up-to
levels. However, we can make the following claim:

Theorem 5.3. If the capacity reservation is extended in an arbitrary period n, the smallest
optimal constrained order-up-to level S∗

n(In) is monotonically non-decreasing in the starting
inventory level In.

Without loss of generality—because the DP value function incorporates all of the con-
sequences of the current decision on expected future costs—we can focus on the smallest
optimal order-up-to level for each In. We will establish our claim by considering an arbi-
trary period n and starting inventory level In along with the corresponding smallest optimal
order-up-to level S∗

n(In) and showing that for any larger starting inventory level, any smaller
order-up-to level is either (1) not feasible, or (2) more costly. As part of the proof, we will
also prove the following corollary:

Corollary 5.3.1. If the capacity reservation is extended in any arbitrary period n, for any
starting inventory level In with its corresponding smallest optimal constrained order-up-to
level S∗

n(In), then S∗
n(Ĩn) = S∗

n(In) for all starting inventory levels Ĩn such that In ≤ Ĩn ≤
S∗
n(In).

This corollary is especially useful because it means that, for any arbitrary starting in-
ventory level that we use as a point of reference and its corresponding optimal constrained
order-up-to level, the same order-up-to level is also optimal for all starting inventory levels
between the referenced starting inventory level and its corresponding order-up-to level. Note
that it may not be optimal to extend the capacity reservation for some (or all) of those
intermediate starting inventory levels, but, if the firm chooses to extend the capacity reser-
vation, this corollary implies that the optimal order-up-to policy across all starting inventory
levels will be a set of order-up-to levels, each of which is optimal over a compact interval of
starting inventory levels. This finding informs our heuristic presented in Chapter 6, in which
we attempt to find near-optimal candidate order-up-to levels prior to solving the dynamic
program.

We now present the proofs of Theorem 5.3 and Corollary 5.3.1.

Proof. Without loss of generality, assume the starting inventory level in period n is În. Let
S∗
n(În) be the order-up-to level Sn that minimizes Cn(Sn, yn = 1|În, αn = 1) subject to

Sn ≥ In. As we have mentioned, it is possible there are multiple optima; therefore, let Ŝn

be the smallest value of S∗
n(În).

Consider any starting inventory level Ĩn such that Ĩn ≥ În with an S̃n defined analogously
to Ŝn. We will now prove that S̃n ≥ Ŝn for any Ĩn such that Ĩn ≥ În.

Recall that the order-up-to levels are constrained, and therefore we know that Ŝn ≥ În
and S̃n ≥ Ĩn. This fact, combined with our requirement that Ĩn ≥ În, means it is sufficient
to consider two mutually exclusive and collectively exhaustive cases:
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Case 1: Ĩn > Ŝn. The first case is straightforward. In this case, the fact that the feasible
range of values for Sn is restricted to Sn ≥ In is enough to guarantee that S̃n ≥ Ĩn > Ŝn and
therefore S̃n > Ŝn.

Case 2: Ŝn ≥ Ĩn. The second case is more complicated. In this case, we will not only
prove that the optimal order-up-to levels are monotonically non-decreasing, but we will also
prove that they are identical. As a result, the proof for Case 2 also establishes Corollary
5.3.1. Notice that in the definition of Cn(Sn, yn = 1|In, αn = 1) in (5.7) only the second term
depends on In. Therefore, for a given (In, Sn), it is easy to see that the following is true for
any I such that Sn ≥ I ≥ In:

Cn(Sn, yn = 1|In, αn = 1) = Cn(Sn, yn = 1|I, αn = 1) + cp(I − In) (5.10)

By the optimality of Ŝn for În, we know that the value function at Ŝn must be less than or
equal to the value function at any other feasible value of Sn, and therefore for any Sn ≥ În
we have:

Cn(Ŝn, yn = 1|În, αn = 1) ≤ Cn(Sn, yn = 1|În, αn = 1) (5.11)

Now consider the restricted range Sn ≥ Ĩn. Because Ŝn ≥ Ĩn and Ĩn ≥ În, we know the
above inequality must also hold for all Sn ≥ Ĩn (i.e., the restriction of the range does not
make Ŝn infeasible). Using (5.10) with Ĩn as our value of I, we expand the above inequality
for any Sn ≥ Ĩn into:

Cn(Ŝn, yn = 1|Ĩn, αn = 1) + cp(Ĩn − În) ≤ Cn(Sn, yn = 1|Ĩn, αn = 1) + cp(Ĩn − În) (5.12)

which simplifies to:

Cn(Ŝn, yn = 1|Ĩn, αn = 1) ≤ Cn(Sn, yn = 1|Ĩn, αn = 1) (5.13)

Because (5.13) applies to any Sn ≥ Ĩn, this means that Ŝn is the value of Sn that minimizes
Cn(Sn, yn = 1|Ĩn, αn = 1) subject to Sn ≥ Ĩn. Therefore, Ŝn is also the optimal order-up-to
level for the starting inventory level Ĩn, and, as a result, we have S̃n = Ŝn, as desired.

Together, these two cases prove that S̃n ≥ Ŝn for any Ĩn ≥ În, and therefore S∗
n(In) is

monotonically non-decreasing in In. Note that this result required that we break potential
ties in case of multiple optimal order-up-to levels by selecting the smallest optimal order-
up-to level, as mentioned in Theorem 5.3.

We have also proved the result of Corollary 5.3.1 in this proof. Note that Corollary 5.3.1
applies to all starting inventory levels I such that In ≤ Ĩn ≤ S∗

n(In), which is equivalent to
Case 2 in this proof.

Corollary 5.3.1 enables us to better understand the optimal order-up-to levels plotted in
Figure 5.1. For the starting inventory interval from 0 to 85, the optimal order-up-to level
is 85 units, just as we would expect. Similarly, the order-up-to level of 390 is optimal over
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a starting inventory interval of 100 to 390. For the starting inventory levels between 85
and 100, it is optimal to not order any units. This is a special case in which S∗

n(In) = In
and, therefore, also satisfies Corollary 5.3.1. The key result is that any optimal order-up-
to level that results in a positive order quantity (i.e., any S∗

n(In) > In) also defines the
upper threshold of a starting inventory interval for which it is an optimal order-up-to level
(i.e., S∗

n(In) is an optimal Sn for all starting inventory levels from In to S∗
n(In)). We will

further characterize these intervals and order-up-to levels in our numerical study presented
in Chapter 7.
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Chapter 6

Heuristic Method for the Dynamic
Variant

While examining solutions for the problem in Chapter 5 for moderately-sized problem
instances with discretized demand and inventory levels, we noticed that the structure of the
optimal solutions often follows a pattern. Specifically, given that the firm has chosen to
extend the capacity reservation, the optimal order-up-to level is often one of the following
values that depend upon the firm’s expected future behavior: (i) if the firm expects to extend
the capacity reservation for at least one more period but is low on inventory, it will choose a
“small” order-up-to level; (ii) if it expects to extend the capacity reservation for at least one
more period but has sufficient inventory for the current period, it will place an order for zero
units but extend the capacity reservation, thereby preserving its options in the future; and
(iii) if it does not expect to extend the capacity reservation in the future, it will order-up-to
a “large” level that it expects to suffice for the remainder of the horizon.

Using these observations, we develop a heuristic policy. Rather than consider all possible
order-up-to levels, the firm considers only the three strategies described above along with the
option of not extending the reservation. More specifically, the firm can order nothing and not
extend the capacity reservation, it can order nothing but extend the capacity reservation, it
can order up to a continuing-buy order-up-to level, which we denote as Sc

n, or it can order
up to a last-time-buy order-up-to level, which we denote as Sℓ

n. All other aspects of the
problem are unchanged; we are only restricting the set of possible order-up-to levels. This
heuristic can be applied to the dynamic variant of the problem defined in Chapter 5 or
(with modification) to the variant with a buy-back defined in Chapter 8. However, for the
remainder of this chapter, we will focus on the dynamic variant as defined in Chapter 5.

In our heuristic policy, the value function in any period n when the capacity reservation
can be extended (originally defined in equation (5.8)) becomes:

C∗
n(In, αn = 1) = min

yn∈{0,1},In≤Sn≤In+Myn,Sn∈{In,Sc
n,S

ℓ
n}
Cn(Sn, yn|In, αn = 1) (6.1)

where the constraint has been modified to restrict the Sn variable to one of the three heuristic
options. In a numerical analysis described in Chapter 7, we show that the heuristic achieves
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good results when the values of Sc
n and Sℓ

n are chosen appropriately. A key simplification
in the heuristic is that both of these values depend only on the period and not on the
starting inventory level, i.e., they are state-independent. Therefore, the computational effort
required to find these candidate order-up-to levels is much less than it would be to find the
state-dependent optimal solution by solving the full dynamic program.

6.1 Calculating the Continuing-Buy Order-Up-To

Level

The continuing-buy order-up-to level represents the target amount of inventory when the
firm plans to extend the capacity reservation for at least one more period after the current
period. As such, the inventory level can be determined by a newsvendor-type analysis that
trades off the cost of holding additional inventory against the cost of shortages. In doing so,
we make a few simplifying assumptions.

The newsvendor shortage cost in our model is simply cs−cp, that is, the shortage penalty
from a lost sale minus the avoided variable procurement cost. This accurately reflects the
true cost incurred by the firm due to the lost sales assumption.

The newsvendor overage cost is more complicated. In situations with stationary demand
and an infinite horizon, after a possible transient period in which there is excess inventory,
it will never be the case that leftover inventory at the end of one period exceeds the optimal
starting inventory in the next period. In such a case, one does not have to account for any
consequent inventory-related costs and therefore the overage cost can be set to the single
period inventory holding cost ch. However, in other instances, the starting inventory may
exceed the order-up-to levels for one or more periods, in which case the overage cost for an
incremental unit will include a per-period inventory holding cost of ch in each period until
it is sold, and if it is not sold until the end of the horizon, then also the loss on disposal,
cp. However, in practical settings, it is unlikely that an excess unit of inventory is held
for many periods, partly due to the use of an order-up-to policy that accounts for on-hand
inventory. Moreover, a continuing buy tends to be the best option early in the horizon when
the odds of any given unit of inventory never being used are the lowest, thus leaving only
the sum of per-period inventory holding costs, which are small (particularly in comparison
to the shortage cost) in practice, as the main component of the overage cost. Although we
recognize that it is an underestimate of an expected overage cost that actually varies from
period to period, for simplicity, we will use the same overage cost of ch for all periods.

Given this simplification, we can easily define the continuing-buy order-up-to level Sc
n in

any period n as:

Sc
n = F−1

n

(
cs − cp

cs − cp + ch

)
(6.2)

where F−1
n (·) is the inverse c.d.f. of demand in period n.
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6.2 Calculating the Last-Time-Buy Order-Up-To

Level

In contrast to the heuristic continuing-buy order-up-to level discussed in the last section,
our proposed heuristic last-time-buy order-up-to level is more complicated to calculate. We
can simplify the problem by assuming that the firm will not extend the capacity reservation
after ordering up to this large last-time-buy order-up-to level. This turns the choice of Sℓ

n

for a given n into a more standard last-time-buy problem. However, due to our lost sales
assumption, we cannot directly use the results of any previous paper.

If the firm does not expect to extend the capacity reservation in period n + 1, then it
will choose to purchase up to the last-time-buy order-up-to level in period n, and the value
function can be written as:

Cn(Sn|In, αn = 1) = cf + cp(Sn − In) + C∗
n(Sn, αn = 0) (6.3)

where C∗
n(Sn, αn = 0) is the optimal cost-to-go with Sn units of inventory in period n when

the firm can no longer extend the capacity reservation. This expands to:

Cn(Sn|In, αn = 1) = cf + cp(Sn − In)

+ ch

N−1∑
i=n

∫ Sn

0

(Sn − x)fni(x)dx+ cs

∫ ∞

Sn

(x− Sn)fnN(x)dx (6.4)

where fni(·) is the p.d.f. of the cumulative demand from period n through period i with
n ≤ i ≤ N − 1 and fnN(·) is the p.d.f. of the cumulative demand from period n through
period N . Note that we have used uncensored cumulative demand distributions in the
integral expressions in (6.4). Although this would not provide an accurate representation of
costs under our assumption of lost sales if there were ongoing replenishments, the expression
in (6.4) is for the case of a last time buy in period n with an order-up-to level Sn. In this
setting, inventory declines as each demand is observed until all inventory is depleted, if that
eventually occurs, say, in period n′. The expressions for inventory holding costs in period
n′ and all subsequent periods in (6.4) become equal to zero, accurately capturing inventory
holding costs after any depletion. Similarly, shortages must be tabulated from period n′

onward. The last term accurately accounts for all shortages because the total supply at the
beginning of period n is Sn and the density of aggregate demand from period n onward is
reflected in fnN .

After differentiating (6.4) with respect to Sn we have:

∂

∂Sn

Cn(Sn|In, αn = 1) = cp + ch

N−1∑
i=n

Fni(Sn)− cs(1− FnN(Sn)) (6.5)

where Fni(·) is the c.d.f. of the cumulative demand from period n through period i with
n ≤ i ≤ N − 1 and FnN(·) is the c.d.f. of the cumulative demand from period n through
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period N . After differentiating again with respect to Sn we have:

∂2

∂S2
n

Cn(Sn|In, αn = 1) = ch

N−1∑
i=n

fni(Sn) + csfnN(Sn) (6.6)

Clearly, the above expression is non-negative, and therefore the value function is convex in
Sn. Therefore, we can use the first-order necessary condition to find the optimal value of Sn.
Setting expression (6.5) equal to zero and rearranging terms yields:

cp + ch

N−1∑
i=n

Fni(Sn) + csFnN(Sn) = cs (6.7)

Given the convexity of the value function, we can utilize a bisection search to find the optimal
Sn in period n, which we use as our heuristic last-time-buy order-up-to level, Sℓ

n. We should
also note that the above expression does not depend on In in any way, so the same candidate
solution can be used for any starting inventory value in period n.

6.3 Implementation of the Heuristic

Given the candidate order-up-to values Sc
n and Sℓ

n, we can now use the heuristic to find
an approximate solution to the problem. We do so by recursively solving the simplified
dynamic program using the heuristic value function defined for all periods 1 ≤ n ≤ N and
starting inventory levels In:

C∗
n(In, αn = 1) = min

yn∈{0,1},In≤Sn≤In+Myn,Sn∈{In,Sc
n,S

ℓ
n}
Cn(Sn, yn|In, αn = 1) (6.8)

where Cn(Sn, yn|In, αn = 1) is defined as in equation (5.7). In practice, it is necessary to
discretize the demand and inventory levels to a consistent level of granularity in order to
make the problem tractable (as is also the case with the full dynamic program). However,
because this heuristic involves only two state-independent candidate order-up-to levels, the
computing time to find the approximate solution is much less than the time required to solve
the full dynamic program for all possible state-dependent order-up-to levels.
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Chapter 7

Numerical Study

In the previous three chapters, we presented the pre-commit and dynamic variants of
our problem, and a heuristic for solving the dynamic variant. Due to the non-convexity
of the various DP value functions, the optimal strategy for each problem instance must be
determined numerically. (We use the term strategy to mean the full specification of the state-
dependent solution for the DP.) In this chapter, we present the results of a comprehensive
numerical study, the purpose of which is twofold: (1) to explore characteristics of the optimal
strategies, including the form of the optimal strategy as a function of the starting inventory
level and time period, (2) to compare the performance of the heuristic for the dynamic
variant against the optimal solutions for both the pre-commit and dynamic variants, and to
understand how the performance gaps are affected by problem parameters.

7.1 Description of Problem Parameters

In our numerical study, we use a 12-period horizon, which is long enough to observe
differences in the timing of the last time buy if demand and cost parameters are chosen
suitably.

We use five different demand patterns, where their descriptors characterize the pattern of
the mean demand over time. All have the same total demand during the 12-period horizon
but they differ in the shapes of their trajectories. The Flat demand pattern has a constant
mean and provides a baseline for comparison. We have two declining demand patterns,
one with Linear Decline and another with Exponential Decline; these are examples of what
might occur near the end of a product’s warranty horizon following the end of retail sales.
Our fourth demand pattern, Single Peak has one peak and reflects a situation in which
new product adoption is gradual and then wanes, or in the case of warranty demand, it
progressively increases as the installed base increases and then progressively decreases as
units pass their warranty horizon and/or consumers stop using their devices because they
have moved on to a newer product. Our fifth demand pattern, Double Peak, has two peaks.
In the case of new product demand, the pattern would parallel that of a product with two
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seasonal peaks, such as one associated with the holiday buying season and another associated
with the beginning of a sports season. In the case of warranty demand, one peak could be the
result of a spike in demand at product launch combined with infant mortality as is common
with electronic products, and the later peak could be due to built-in obsolescence. We report
the vector of mean demands (by period) for these demand patterns in Table 7.1 and show
them graphically in Figure 7.1. We report the standard deviation of demand (by period) in
Table 7.2 for the five demand patterns, and throughout the numerical study, we assume that
demands are Normally distributed and statistically independent across periods. We selected
the standard deviations for each period to be the largest possible without creating negative
demand values in the demand discretization process that we describe in Section 7.2. These
large standard deviations allow us to examine challenging, high-variance scenarios.

Table 7.1: Demand Patterns - Expected Values by Period

Period
Demand Pattern 1 2 3 4 5 6 7 8 9 10 11 12
Flat 100 100 100 100 100 100 100 100 100 100 100 100
Linear Decline 155 145 135 125 115 105 95 85 75 65 55 45
Exponential Decline 275 205 155 115 85 65 50 50 50 50 50 50
Single Peak 50 60 80 100 125 185 185 125 100 80 60 50
Double Peak 50 75 100 300 75 50 75 200 100 75 50 50

Table 7.2: Demand Patterns - Standard Deviations by Period

Period
Demand Pattern 1 2 3 4 5 6 7 8 9 10 11 12
Flat 20 20 20 20 20 20 20 20 20 20 20 20
Linear Decline 30 30 30 30 20 20 20 20 10 10 10 10
Exponential Decline 60 50 30 20 20 10 10 10 10 10 10 10
Single Peak 10 10 20 20 30 40 40 30 20 20 10 10
Double Peak 10 10 20 70 10 10 10 50 20 10 10 10

We chose cost parameters that collectively enable us to generate a set of problem param-
eters with a range of anticipated last-time-buy periods using the Flat demand pattern. With
some back-of-the-envelope calculations detailed in Appendix B, we were able to determine
that with a mean demand of 100 per period, holding the unit procurement cost fixed at a
(normalized) 100 and the per unit per period inventory holding cost fixed at 12, capacity
reservation costs of 2000, 4000, 8000 and 16,000 would lead to the last time buy being placed
in periods 11, 9, 6, and 1, respectively. Recall that each additional period of demand covered
by the last time buy must be held for a progressively longer duration, and thus the result-
ing savings in the capacity reservation costs must be large enough to compensate for that
inventory cost increase; otherwise the firm will extend the capacity reservation.
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Figure 7.1: Expected Demand by Period for Each Demand Pattern

We chose shortage costs of 200, 400, 600, 800, and 1000, which correspond to service
levels (newsvendor critical fractiles) of 50%, 75%, 83%, 88%, and 90%, respectively, in the
last period of the horizon when leftover units would need to be disposed with zero salvage
value. In earlier periods, leftover units would not need to be disposed of and would only incur
the usual inventory holding cost, and for these periods, the service levels corresponding to
the five shortage costs turn out to be 89.3%, 96.3%, 97.7%, 98.3%, and 98.7%, respectively.
Both sets of service levels are within typical ranges utilized in practice.

In Table 7.3 we summarize the parameters for our numerical study. Additionally, we
note that we vary the same cost parameters as those selected by Ozyoruk et al. [37] in
their numerical study, although we also note that their model includes a few other costs
(e.g., salvage costs) that are not considered in our model, although it would be easy to
incorporate such costs. Between the five demand patterns, five shortage costs, and four
capacity reservation fees, we have a total of one hundred unique parameter combinations.

7.2 Implementation Details

For computational tractability, we discretized the Normal distributions (for demands)
by defining a range of possible demand values for each period in a manner inspired by
Galloway [21]. In this method, the discretized random variable, X, has M possible demand
values, x1, x2, . . . , xM and the components of the probability density function P (X = xi), i =
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Table 7.3: Numerical Study - All Parameter Values

Parameters Set of Values
N number of periods 12
Total expected demand 1200
cp per-unit procurement cost 100
ch per-unit per-period inventory holding cost 12
cs per-unit shortage cost {200, 400, 600, 800, 1000}
cf per-period capacity reservation cost {2000, 4000, 8000, 16000}
Demand Patterns 5 options, see Tables 7.1 and 7.2

1, . . . ,M are defined by

P (X = xi) =
f(xi)

C
(7.1)

where f(·) is the probability density function of a Normal distribution with mean µ and
standard deviation σ, and

C =
M∑
i=1

f(xi) (7.2)

In our implementation, we set xi = µ− 4σ+0.5(i− 1)σ, i = 1, . . . ,M with M = 17, i.e.,
values from four standard deviations below the mean to four standard deviations above the
mean in increments of one-half of a standard deviation. Table 7.4 shows the discretization
based on the standard Normal. Clearly, the mean is exactly zero and the standard deviation
is also quite accurate, with a value of 0.9998. This method of discretization differs from the
traditional one in which the Normal cumulative density is partitioned using equal-interval
segments, but it approximates the variance of the distribution more accurately. For example,
in the case of our chosen anchor points, the traditional discretization would lead to a standard
deviation of 1.0103.

As a consequence of our discretization of the Normal distribution and our choices of the
(time-dependent) means and variances of the distributions in our numerical study, all of the
pertinent demand quantities are multiples of 5. Because we are interested in solving the
problems starting with zero initial inventory, it is sufficient to consider order-up-to levels
that are multiples of 5, and our solution algorithms are implemented accordingly.

We implemented our optimal and heuristic solution algorithms in Python™ and performed
the computations on a desktop computer with an AMD Ryzen™ 7 3800X processor running
at 3.9 GHz. CPU times are approximately 25 minutes to find the optimal dynamic solution
and approximately 161 minutes to find the optimal pre-commit solution due to the need
to search over the full range of possible commitment durations and find the conditionally
optimal strategy for each. Our heuristic for the dynamic policy, on the other hand, required
only about 6 seconds of computing time. For the full results of the numerical analysis for all
100 problem instances, see Tables B.1 through B.5 in Appendix B.
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Table 7.4: Discrete Approximation of the Standard Normal

(a) Probability Mass Function

(b) PMF Values

Values Probability
-4 0.0001
-3.5 0.0004
-3 0.0022
-2.5 0.0088
-2 0.0270
-1.5 0.0648
-1 0.1210
-0.5 0.1760
0 0.1995
0.5 0.1760
1 0.1210
1.5 0.0648
2 0.0270
2.5 0.0088
3 0.0022
3.5 0.0004
4 0.0001

µ 0
σ 0.9998

7.3 Characteristics of the Optimal Strategy

We are interested in the characteristics of the optimal strategy for the dynamic variant
of our problem, as well as the performance of the heuristic relative to that of the dynamic
variant, and the penalty a firm would incur due to the loss of flexibility from using the
pre-commit policy. We focus on the characteristics of the optimal strategy for the dynamic
variant for the remainder of this section and discuss the other performance differences in the
subsequent section.

In Corollary 5.3.1, we showed that, if the firm chooses to extend the capacity reservation,
the optimal order-up-to strategy across all starting inventory levels will be a set of order-
up-to levels, each of which is optimal over a compact interval of starting inventory levels. In
this numerical study, we show that, in practice, this property of the optimal strategy often
leads to two easily identifiable order-up-to levels. Borrowing terminology from the heuristic
presented in Chapter 6, we refer to these order-up-to levels as the continuing-buy and the
last-time-buy order-up-to levels.

The continuing-buy order-up-to level is optimal when the firm expects to extend the
capacity reservation for at least one more period. This situation normally occurs when the
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starting inventory level is below what is needed to service demand in the current period. On
the other hand, the last-time-buy order-up-to level is optimal when the firm does not expect
to extend the capacity reservation again. Note that, in the dynamic variant, it is possible
that, after placing what was expected to be (with high probability) the last time buy, the
firm may still choose to extend the capacity reservation in the next period. In our numerical
study, this only occurs when demand is much larger than expected in the period in which
the last time buy was just placed. Thus, it is more accurate to refer to the last time buy
as the anticipated last time buy, but for brevity we will continue to refer to it as simply
the last time buy. The same could be said for the continuing buy, although because the firm
maintains the option to extend the capacity reservation in the next period (even if it may
not necessarily choose to exercise it), we do not believe this nomenclature requires the same
clarification.

Structure of Optimal Strategies within a Single Period

We begin this subsection by briefly describing the most common form of optimal strategy
that we observed in the numerical results to provide a backdrop for discussing the more
complex optimal strategies that we observed. We emphasize that due to our choices of the
demand parameters, our discretization of the pertinent Normal densities, and our assumption
of zero inventory at the beginning of the horizon, all possible optimal order-up-to levels are
multiples of 5, and in our solution procedures, we either explicitly or implicitly consider
all multiples of 5. As such, all of our calculations for the dynamic variant of the problem
are exact, up to the level of precision of numerical representations in the computer. Thus,
the strategies that we discuss here are optimal, not the result of numerical imprecision or
rounding issues.

In the most commonly occurring form of optimal strategy, which we discuss in more detail
later, the strategy can be characterized by three thresholds of starting inventory and two
order-up-to levels, where these values are time-dependent. Letting Ia, Ib, and Ic represent the
three thresholds of starting inventory and SL and SH represent the low and high order-up-to
levels, respectively, and dropping the time-dependence for ease of exposition, the common
form of the optimal strategy is: (a) for starting inventory below Ia, continue the capacity
reservation and order up to SL (which we call a continuing buy for short); (b) for starting
inventory at or above Ia and below Ib, continue the capacity reservation but do not order
(which we call extend only for short); (c) for starting inventory between at or above Ib and
below Ic, continue the reservation and place an anticipated last time buy by ordering up
to SH (which we call last time buy for short); and (d) for starting inventory at or above
Ic, do not continue the capacity reservation and do not order (which we call end capacity
reservation for short).

Of the 1200 (100 x 12) combinations of problem instances and periods within the horizon,
only 34 exhibited optimal strategies that cannot be characterized by the optimal strategy
described above. Below, we describe the two types of complex strategies that together
account for all 34 observed instances.
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The first complex strategy, observed for 17 problem-instance-period combinations, is
only slightly more complicated than the most commonly occurring strategy detailed above.
Rather than three thresholds of starting inventory and two order-up-to levels, this strategy
has an additional threshold between Ib and Ic. This threshold does not lead to an additional
order-up-to level, but it does introduce an extend only decision between the last time buy
and end capacity reservation decisions. Letting Id represent the new threshold, the optimal
strategy is: (a) for starting inventory below Ia, a continuing buy, as before; (b) for starting
inventory at or above Ia and below Ib, extend only, as before; (c) for starting inventory at
or above Ib and below Id, a last time buy ; (d) for starting inventory at or above Id and
below Ic, extend only ; and (e) for starting inventory at or above Ic, end capacity reservation,
as before. This implies that, for some problem instances, the net benefit of extending the
capacity reservation (and therefore maintaining the option to order in a future period) is
positive even when the inventory is larger than the (anticipated) last-time-buy order-up-to
level. In every problem instance with this complex strategy, the new threshold is very close to
the end-capacity-reservation threshold (within 25 units, which is 25% of the average demand
per period in our problem instances).

The other complex strategy, observed for the other 17 problem-instance-period combina-
tions, deviates from the most commonly occurring strategy by having five or more thresholds
of starting inventory and three or more order-up-to levels that result in positive order quan-
tities. Without exception, the additional thresholds are clustered closely together and are
near the end-capacity-reservation threshold. Furthermore, the optimal order-up-to levels
associated with these thresholds are very close to the threshold inventory levels themselves,
resulting in small order quantities. In Figure 7.2a we plot the optimal constrained order-up-
to level as a function of the starting inventory for a problem instance with the Single Peak
demand pattern, a capacity reservation cost of 4000, and a shortage cost of 400 that has
such a complex optimal strategy. Also shown by a dotted vertical line is the threshold of
starting inventory below which it is optimal to continue the capacity reservation. The dotted
horizontal lines show the various order-up-to levels that result in positive order quantities.
In Figure 7.2b we show an enlargement of the plot in the region of starting inventory levels
near where the complexities arise.

For this problem instance, the optimal strategy detailed in Figure 7.2 has six starting
inventory thresholds, leading to three intervals of starting inventory with associated order-
up-to levels that result in positive order quantities and three intervals of starting inventory
in which the extend only strategy is optimal. In Table 7.5 we provide the optimal strategy
for all seven intervals of starting inventory demarcated by the six thresholds. Of particular
note are the extend only strategies are optimal for two singleton starting inventory intervals
(605 and 625). Both of these values correspond to one of the optimal order-up-to levels, so
it would be equally correct to view each of these singleton points as the upper limit of a
starting inventory interval in which it is optimal to order up to 605 (or 625, respectively).

Other problem instances have optimal strategies with even more thresholds, in some cases
leading to up to five optimal order-up-to levels that result in positive order quantities. In all
cases, the additional thresholds are close to each other and to the end-capacity-reservation
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(a) Optimal Order-Up-To Levels in Period 7 (b) Optimal Order-Up-To Levels Detailed

Figure 7.2: An Example of a Complex Strategy - Single Peak Demand Pattern with cf = 4000
and cs = 1000

Table 7.5: All Starting Inventory Intervals of the Complex Optimal Strategy for the Single
Peak Demand Pattern with cf = 4000 and cs = 1000 by Starting Inventory Interval

Starting Inventory Optimal Strategy
[0, 260] Order-Up-To 265

[265, 545] Extend Only
[550, 600] Order-Up-To 605

605 Extend Only
[610, 620] Order-Up-To 625

625 Extend Only
[630, ∞) End Capacity Reservation

threshold. Although such cases are rare, the existence of these optimal strategies greatly
complicates any attempt to characterize the general form of the optimal policy.

In view of what we have observed in the examples discussed above, we cannot claim that
the optimal policy is simple. In particular, it is possible that there are thresholds of starting
inventory beyond the three that arise in the commonly-occurring pattern, and generally
speaking, for each additional inventory threshold, there is either a different associated order-
up-to level or an additional extend only interval. Fortunately, in every problem instance in
our numerical study with a complex optimal policy, the additional inventory thresholds are
close in value, as are the additional order-up-to levels, and the additional extend only intervals
are small or even singletons. As such, if one is not concerned about implementing a truly
optimal policy, it is likely to be sufficient to utilize sensible approximate values for inventory
thresholds and order-up-to levels in the event that the starting inventory level happens to
fall within an interval with a complex optimal policy. For example, in the problem instance
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corresponding to Figure 7.2 and Table 7.5, an order-up-to level of 625 could be used for
the starting inventory range of [550, 625], and additional costs would be incurred due to a
slightly suboptimal order-up-to level only if the starting inventory happens to fall into the
given interval. On average across the starting inventory range of [550, 625], the expected cost
of the simplified strategy is only 0.03% higher than the cost of the complex optimal strategy.
As such, the operational benefits of the simplified strategy far outweigh the expected cost
increase.

We now return to the most commonly-occurring form of the optimal strategy, as outlined
earlier, and provide some intuition for its structure. In Figure 7.3a, we plot the optimal
constrained order-up-to level as a function of starting inventory for a problem instance with
Flat demand, a capacity reservation cost of 8000 and a shortage cost of 400. Also shown
by a dotted vertical line is the threshold of starting inventory below which it is optimal
to continue the capacity reservation. The dotted horizontal lines show the low and high
order-up-to levels associated with the continuing buy and last time buy, respectively.

(a) Optimal Order-Up-To Levels in Period 1 (b) Expected Cost-to-Go in Period 1

Figure 7.3: An Example of a Typical Optimal Strategy - Flat Demand Pattern with cf =
8000 and cs = 400

The four intervals of starting inventory formed by the thresholds mentioned above are also
evident in the expected cost-to-go function, which is shown in Figure 7.3b. In the interval
of smallest starting inventory values in which the continuing buy is optimal, the function is
linearly decreasing because each additional unit of starting inventory decreases the number
of units that needs to be purchased. In the next larger interval of starting inventory, the
extend only policy is optimal, implying a zero order. The expected cost-to-go function is
convex decreasing because each additional unit of starting inventory decreases the number
to be purchased in the future, but it also generates increasingly greater expected inventory
holding costs because of the declining probability that it will be sold in the current period.
In the next larger interval of starting inventory, the (anticipated) last time buy policy is
optimal, i.e., the firm should order up to the second (higher) order-up-to level. Due to the
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order-up-to nature of the policy in this region, the expected cost to go is linearly increasing
for the same reason as in the continuing buy interval. The expected cost-to-go in the end
capacity reservation interval is convex as shown in Proposition 5.1. The non-convexity
of the expected cost-to-go functions obviates the possibility of proving clean theoretical
results. For some problem parameters, the expected cost-to-go functions are unimodal in
the starting inventory, as in Figure 7.3b, and in most instances, we have found the functions
to be sufficiently well behaved that it is not difficult to find optimal solutions numerically.
However, for some problem parameters, the expected cost-to-go functions in some periods
are not unimodal. As such, some care needs to be taken when solving the DP.

Above, we briefly explained why the expected cost-to-go function takes on a specific shape
in each pertinent interval of starting inventory levels. Below, we provide further details on
the economic tradeoffs that lead to the specifics of the optimal strategy for the numerical
example under consideration.

Although the capacity reservation cost is moderately high in this problem instance, if the
starting inventory is low, it is better to extend the reservation and place an order intended to
satisfy the current period’s demand than to order enough for the entire horizon (recall that
Figure 7.3a shows the optimal strategy for period 1). Ordering enough to satisfy demand for
a few periods is suboptimal because it would still be necessary to pay the capacity reservation
costs if the firm wishes to order again.

For slightly higher values of starting inventory, the inventory is sufficient to provide the
desired level of service for the current period but the inventory level is below or well below
the desired amount to satisfy demand for the remainder of the horizon. In such a situation,
an order in the current period would generate unnecessary inventory holding costs, but the
firm almost surely needs the option to place another order and thus chooses to extend the
capacity reservation but does not place an order.

For the next larger interval of starting inventory, the inventory is nearly as large as the
last-time-buy inventory target would be if one were required to place a last-time-buy in that
period. One might think it would be optimal not to place an order and perhaps only extend
the capacity reservation. However, the purchase of a modest number of units is optimal if
the incremental inventory holding costs are less than the expected savings from reducing the
probability of needing to extend the capacity reservation for yet another period. In such
situations, it is optimal to place an anticipated last time buy, up to a second (higher) order-
up-to level. This higher order-up-to level arises due to the sequential capacity reservation
requirement: if the firm were not required to pay the capacity reservation fee in the current
period to maintain the option to order later, it would choose not to order now and then
order in a later period, if needed. Facing the sequential capacity reservation requirement,
the firm can be better off incurring additional inventory holding costs because it eliminates
the need to extend the capacity reservation for potentially many periods. Note that we refer
to the order as an anticipated last time buy because, in the dynamic model, the firm could
extend the capacity reservation if an unexpectedly high demand warrants it.

In both this example and in solutions to all of our other problem instances, there is a
single inventory threshold above which it is optimal to end the capacity reservation. Al-
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though we were not able to prove that this holds in general, we were unable to construct a
counterexample. This is not surprising as the observation aligns with intuition: for a suffi-
ciently high starting inventory level, it is not economically sensible to continue the capacity
reservation. We note that because of the sequential capacity reservation requirement in our
model, we would expect the inventory threshold for ending the capacity reservation to be
higher than if the sequential requirement were relaxed.

Another consequence of the sequential capacity requirement is the noticeable disconti-
nuity in the optimal order-up-to levels plotted in Figure7.3a. The optimal last-time-buy
order-up-to level in the figure is 1190 units, but the end-capacity-reservation threshold is
1095 units, creating a discontinuity in the optimal order-up-to levels at a starting inventory
level of 1095. The reason for this result is that for starting inventory levels between 1095
and 1190, it is not worthwhile to pay the capacity reservation fee of 8000 to order 95 or fewer
units. Instead, it is less expensive not to order and to incur the expected shortage costs.
For starting inventory levels below 1095, however, it is better to order up to 1190. This
fundamental tradeoff also arises in standard inventory models with fixed costs of ordering,
in which it is common for the optimal policy to include a threshold of on-hand inventory
below which an order is placed and above which no order is placed.

The end-capacity-reservation threshold is difficult to characterize in general, as it de-
pends on the cost parameters, period, and expected remaining demand. We offer a few
observations on the effects of the cost parameters. We have observed in our numerical study
that, holding all else constant, the threshold is smaller for larger capacity reservation fees,
as we would expect. Extending the capacity reservation becomes a less attractive option
as the fee increases, and, as a result, the magnitude of the discontinuity in the optimal
order-up-to levels also becomes larger. On the other hand, as one increases the shortage cost
with all other parameters held constant, the end-capacity-reservation threshold increases
(i.e., diagrammatically, the dotted vertical line moves to the right), both in absolute terms
and as a percentage of the last-time-buy order-up-to level. As a result, the magnitude of
the discontinuity in the optimal order-up-to levels decreases as the shortage cost increases,
as the higher shortage cost is a greater deterrent to starting a period with less than the
unconstrained optimal inventory level. However, as the end-capacity-reservation threshold
depends on the intersection point of the end-reservation and extend-reservation cost-to-go
functions, it is difficult to characterize analytically, even if (as is true for our heuristic) we
know the last-time-buy order-up-to level.

We now illustrate the observations described above with some results from our numerical
study. In Figure 7.4 we plot the optimal order-up-to levels and end-capacity-reservation
thresholds in the first period for four different problem instances. These four problem in-
stances all have the Flat demand pattern, but the cost parameters vary. The capacity
reservation fee is 4000 for the first row and 8000 for the second row, and the shortage cost
is 400 for the first column and 600 for the second column. As expected, the end-capacity-
reservation threshold decreases by row (i.e., as the capacity reservation fee increases) but
increases by column (i.e., as the shortage cost increases). This is only one example, but it is
representative of the results of our numerical study overall.
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(a) cf = 4000 and cs = 400 (b) cf = 4000 and cs = 600

(c) cf = 8000 and cs = 400 (d) cf = 8000 and cs = 600

Figure 7.4: Optimal Strategy in Period 1 for Various Cost Parameter Combinations - Flat
Demand Pattern

Changes in the Optimal Strategy Across the Time Horizon

Thus far, we have only considered the optimal strategy in the first period as a function of
the starting inventory level. We now briefly examine how the optimal strategy changes from
period to period. Returning to the same problem instance used as the basis for Figure 7.3, we
now plot the optimal order-up-to level curves for every period in Figure 7.5. However, it can
be difficult to discern the various thresholds and optimal strategy types in the twelve-period
chart. Therefore, we also provide a more compact graphical representation of the optimal
strategy in Figure 7.6, but without the order-up-to levels. Figure 7.6 shows the optimal
strategy type (continuing buy, last time buy, extend only, or end capacity reservation) for
each period and starting inventory level combination. Not surprisingly, as time proceeds,
the two choices that imply the need for future extensions of the capacity reservation, i.e.,
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the continuing buy or extend only, become less viable and are eventually dominated by other
choices.

We have observed that some problem instances have optimal strategies whose changes
across the time periods are not as simple as those we have seen thus far. Figure 7.7 illustrates
the optimal strategy for the problem instance with the Double Peak demand pattern, a
capacity reservation cost of 4000, and a shortage cost of 200. This example shows that the
boundaries between strategy regions are not always monotonically decreasing (as they are
in the case of the Flat demand pattern in Figure 7.6). This is a result of the trajectory
of demand in the Double Peak demand pattern. The optimal continuing-buy order-up-to
level increases over the first four periods as the expected demand also increases in those
periods. In fact, the optimal strategies in periods one and two include only the continuing
buy, extend only, and end capacity reservation strategies. Due to the highly variable demand
in the Double Peak demand pattern, it is not in the firm’s interest to place a last time buy
early in the horizon. In period three, the last time buy appears in the optimal strategy for
the first time, before eventually dominating all other strategies from period eight onward.
As a result of the high variance demand pattern, the structure of the optimal policy is
complex and changes significantly from one period to the next. However, in any one period,
the optimal strategy still consists of the most common strategy described in the previous
subsection: at most four intervals of starting inventory, with each corresponding to one of
the continuing buy, extend only, last time buy, and end capacity reservation strategies.
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Figure 7.6: Optimal Strategy Boundaries - Flat Demand Pattern with cf = 8000 and cs =
400

Figure 7.7: An Optimal Strategy with Non-Monotone Boundaries - Double Peak Demand
Pattern with cf = 4000 and cs = 200
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7.4 Performance Comparisons

We report results for our set of 100 problem instances assuming beginning-of-horizon
inventory levels of zero. Both the heuristic and the optimal pre-commit solutions were very
close to optimal. Table 7.6 presents summary results of optimality gaps, which we calculate
in two ways: (i) the percentage gap considering all costs; and (ii) an estimated percentage
gap considering controllable costs, where controllable costs do not include the variable costs
to cover expected demand. The values in the table are the average, minimum, and maximum
optimality gaps across the 100 problem instances.

Table 7.6: Numerical Study - Summary of Results

Optimality Gap Adjusted Optimality Gap
Problem Variant Avg Min Max Avg Min Max
Dynamic Variant - Heuristic 0.03% 0.00% 0.27% 0.09% 0.00% 0.93%
Pre-commit Variant - Optimal 0.06% 0.00% 0.44% 0.19% 0.00% 1.01%

From these results, it appears that our heuristic methods for determining the continuing-
buy and last-time-buy order-up-to levels and our approach for making the choice between
them in each period, are more than adequate for finding excellent solutions, and require
minimal computing times, however, there are a handful of problem instances with optimality
gaps between heuristic and optimal dynamic strategies worth investigating. For one such
instance, with the Single Peak demand pattern, a capacity reservation cost of 8000, and a
shortage cost of 1000, the heuristic has an optimality gap of 0.16% and an adjusted optimality
gap of 0.39%. In Figures 7.8 and 7.9, we plot for each period the order-up-to level curves for
the optimal and heuristic strategies, respectively.

The two strategies have identical continuing-buy order-up-to levels and end-capacity-
reservation thresholds in each period. However, a careful comparison reveals there are small
differences in the last-time-buy order-up-to levels in periods five through ten. The optimal
strategy is to place continuing buys in the first six periods followed by an (anticipated) last
time buy up to 645 units in period seven, as detailed in Table 7.7. The optimal strategy in
period eight is to extend the capacity reservation if the starting inventory level is below 415
units and to end the capacity reservation otherwise. This implies that, if demand in period
seven exceeds 230 units (which, for our discretized demand distribution with a mean of 185
and standard deviation of 40, occurs with a 10% probability) the firm should extend the
capacity reservation once again in period eight. This is an excellent example of a problem
instance in which the last-time-buy order-up-to level is actually an anticipated last-time-
buy order-up-to level; there is a small but meaningful probability that the firm would extend
the capacity reservation in the dynamic problem.
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As shown in Table 7.7, the heuristic strategy has an identical continuing buy strategy
through period six. The major differences are that in period seven the heuristic strategy calls
for ordering up to 660 units (instead of the optimal 645) and in period eight ordering up to
460 units (instead of the optimal 450). Both of these differences are bolded in Table 7.7. The
heuristic strategy thus reflects the assumption that no more orders may be placed after the
last time buy, whereas the optimal strategy allows an extension of the capacity reservation
and an additional order in the event of an unusually large demand immediately after the
(anticipated) last time buy. The heuristic’s resulting larger-than-optimal order-up-to level
in period seven accounts for the heuristic optimality gap of 0.16%, which is relatively large
among our problem instances.

Table 7.7: Comparison of the Optimal and Heuristic Strategies through Period 8 for Select
Starting Inventory Levels for the Problem Instance with the Single Peak Demand Pattern,
cf = 8000, and cs = 1000. These Starting Inventory Intervals are the Only Relevant Intervals
If the Firm Begins Period 1 with No Inventory and Correctly Adheres to Either Strategy.

Starting Order-Up-To Level
Period Inventory Level Optimal Heuristic Strategy

1 < 70 70 70 Continuing Buy
2 < 80 80 80 Continuing Buy
3 < 120 120 120 Continuing Buy
4 < 140 140 140 Continuing Buy
5 < 185 185 185 Continuing Buy
6 < 265 265 265 Continuing Buy
7 < 610 645 660 Last Time Buy

< 415 450 460 Last Time Buy
8

{
≥ 415 n/a n/a End Capacity Reservation

More surprising is that the optimal pre-commit strategies are also very near optimal. For
35% of problem instances, the pre-commit strategy is the same as the optimal strategy. Such
situations are more prevalent when the capacity reservation fee is extremely high (16,000 in
our problem set) and neither the shortage costs nor the demand variability is high enough
to make an investment in flexibility worthwhile.

We observed that the largest optimality gaps for the pre-commit variant occurred, not
surprisingly, in cases with high capacity reservation fees and high shortage costs along with
high demand variance early in the horizon. In such cases, one would like to avoid extending
the capacity reservation beyond that determined in the pre-commit solution at nearly any
cost—but the combination of high shortage costs and high demand variance makes the option
to extend the capacity reservation for just one more period beyond that in the pre-commit
solution extremely valuable in averting large quantities of high-cost shortages if unexpectedly
high demand materializes.

One key reason why the optimal pre-commit strategies perform so well is that the
continuing-buy order quantities are unconstrained and the system operates with order-up-to
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levels, so even if an extremely high or low demand observation occurs, the system effectively
“regenerates” at the beginning of the next period. As such, the impact of any demand ob-
servation on the economic tradeoffs pertaining to the timing of the last time buy is limited.
Furthermore, our assumption of lost sales combined with our use of relatively high service
levels also dampens the effect of high demands on the timing of the last-time buy in the
dynamic variant of the problem. Although the computing times to determine the optimal
pre-commit solution are long, thus limiting its implementation in practice, a practical heuris-
tic would entail determining the timing of the last time buy based on a deterministic analysis
and using our heuristic policy to determine the order-up-to levels.

Table 7.8: Numerical Study - Summary of Results by Cost Parameter

(a) Shortage Cost

Optimality Gap
cs Heuristic Pre-commit
200 0.01% 0.01%
400 0.02% 0.03%
600 0.03% 0.06%
800 0.04% 0.09%
1000 0.03% 0.09%

(b) Capacity Reservation Cost

Optimality Gap
cf Heuristic Pre-commit

2000 0.04% 0.06%
4000 0.04% 0.07%
8000 0.01% 0.05%
16000 0.01% 0.05%

Tables 7.8a and 7.8b present the average optimality gap across problem instances with the
same shortage cost or capacity reservation cost, respectively. As expected, larger optimality
gaps are associated with larger shortage costs, especially for the pre-commit variant of the
problem because the pre-commit variant provides no flexibility to adjust the inventory after
the last time buy. On the other hand, smaller optimality gaps were observed in problem
instances with larger capacity reservation costs, especially for the heuristic. This is to be
expected, as the heuristic’s two order-up-to levels (per period) are calculated by assuming
the firm either will or will not continue the capacity reservation in the next period, and
higher capacity reservation costs make it less likely the firm will choose to deviate from its
plans.
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Chapter 8

Dynamic Model with One-Time
Buy-Back Option

We now consider a variant of the dynamic version of this problem in which we introduce
the option of a one-time buy-back offer. Much of the setting and notation are the same as
in the previous model, with the main difference being the addition of the option to make a
one-time buy-back offer after the firm ends the capacity reservation.

We model two versions of the buy-back offer. In the first half of this chapter, we consider
a version in which the buy-back quantity is a decision variable and the buy-back cost is a
deterministic function of the selected quantity. Using this deterministic model, we develop
the associated value and cost-to-go functions in Section 8.1, characterize the optimal solution
in Section 8.2, modify our heuristic to account for the buy-back option in Section 8.3, and
present the results of a numerical study in Section 8.4. Then, in Section 8.5, we introduce a
version of the buy-back offer in which the buy-back quantity is a stochastic function of the
buy-back price selected by the firm. We conclude with a numerical study of the stochastic
buy-back model in Section 8.6.

We begin with the deterministic buy-back option. We represent the total cost to acquire,
refurbish, and return B net units to inventory by r(B). We assume r(·) is convex, as this
reflects the increasing marginal cost of securing more units via buy-back. We also assume
that r(0) = 0, as negligible cost and effort will yield essentially zero units. We assume that
r′(·) ≥ cp, as the customer’s valuation of the item is tied to the retail price, which is often
double the production cost or more. We also assume that r′(0) < cs, which is necessary for
the buy-back to be economically justified. If this assumption did not hold, then the optimal
buy-back quantity in every situation would be zero units and the optimal buy-back decision
would be trivial. We also assume that there exists some finite B such that r′(B) > cs, which
ensures that there is some buy-back quantity above which it is better to incur shortages than
to buy back additional units. This is consistent with consumer behavior, as some customers
may have high personal valuations for their items and will not be willing to part with them
for any reasonable price. To represent the buy-back decision, we introduce a new binary
decision variable zn, which is equal to one if the buy-back is offered in period n, and zero
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otherwise. We also introduce a new binary state variable βn, which is equal to one if the buy-
back option is still available in the current period, and zero otherwise. All other variables
and parameters are unchanged from the dynamic variant of the problem in Chapter 5.

In the remainder of the chapter, we present our formulation, analysis, and a numerical
study. The formulation is complicated by the binary variables (αn and βn) in the state
definition, which affect the set of decisions that can be made. For this reason, we divide
our development of the value functions according to the values of these state variables, and
for each such combination, we present the value function first for period N , and then for
an arbitrary n < N . First, we consider the situation in which the capacity reservation has
ended and the buy-back option has been exercised. We then consider the situation in which
the capacity reservation has ended but the buy-back option is still available. Finally, we
consider the setting in which the capacity reservation can still be extended and the buy-back
option has yet to be exercised.

8.1 Model Formulation

As in previous chapters, the terminal value function is:

CN+1(·) = 0 (8.1)

and therefore:

C∗
N+1(·) = 0 (8.2)

because there are no decisions to make at the end of the horizon. However, because the
terminal value function does not affect the firm’s decisions, we exclude it from the formulation
in the remainder of this chapter.

After the capacity reservation has been terminated and the buy-back offer has been made,
there are no more decisions to make and therefore the value function only depends on the
state variables In, αn, and βn. We develop the value function by first considering the final
period N and then recursively expressing the value function for period n < N . The various
cost functions are analogous to those in Section 5.1 but now include the additional state
variable βn as well as the decision variables zn and B. The value function in period N after
the capacity reservation has been terminated, the buy-back offer has been made, and the
starting inventory level is IN , is composed entirely of the shortage costs:

CN(IN , αN = 0, βN = 0) = cs

∫ ∞

IN

(x− IN)fN(x)dx (8.3)

The value function in any arbitrary n < N after the capacity reservation has been terminated,
the buy-back offer has been made, and the starting inventory level is In, is the sum of the
expected inventory holding costs, expected shortage costs, and the expected cost-to-go for
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the remaining periods:

Cn(In, αn = 0, βn = 0) =ch

∫ In

0

(In − x)fn(x)dx+ cs

∫ ∞

In

(x− In)fn(x)dx

+

∫ In

0

C∗
n+1(In − x, αn+1 = 0, βn+1 = 0)fn(x)dx

+

∫ ∞

In

C∗
n+1(0, αn+1 = 0, βn+1 = 0)fn(x)dx (8.4)

We once again claim that, because the inventory holding and shortage costs are linear, the
value function is also convex in the starting inventory level. We should also note that,
because there are no decisions to make in this situation, the optimal expected cost-to-go is
equivalent to the value function, and therefore for any period n:

C∗
n(In, αn = 0, βn = 0) = Cn(In, αn = 0, βn = 0) (8.5)

We will now consider the value function when the firm has not yet made the buy-back offer,
the definition of which depends on whether the firm is in the final period N or in any other
period. When the buy-back option is available in period N , the firm may choose to buy back
B units and pay the corresponding acquisition and refurbishment cost r(B). It should be
noted that, because this buy-back offer is a one-time option and the units become available
to satisfy demand in the same period, the value function after the buy-back offer has been
made is the same as if the buy-back offer had already been made in a previous period,
and instead the firm has an additional B units in inventory at the start of period N at an
additional cost of r(B). Therefore, we can represent the value function in period N when
the firm chooses to buy back B units as:

CN(B, zN = 1|IN , αN = 0, βN = 1) = r(B) + C∗
N(IN +B,αN = 0, βN = 0) (8.6)

On the other hand, if the firm chooses to not offer the buy-back in period N , it instead
satisfies demand in the final period to the extent possible with the available inventory. The
firm only incurs expected shortage costs, as all inventory is disposed at the end of the
horizon. Thus, the value function associated with not offering the buy-back in period N can
be written as:

CN(zN = 0|IN , αN = 0, βN = 1) = cs

∫ ∞

IN

(x− IN)fN(x)dx (8.7)

The expressions in (8.6) and (8.7) differ in the value assigned to the zN variable. The firm
faces the decision in period N of which option to take. The value function in period N then
becomes:

CN(B, zN |IN , αN = 0, βN = 1) =zN

[
r(B) + C∗

N(IN +B,αN = 0, βN = 0)

]
+ (1− zN)

[
cs

∫ ∞

IN

(x− IN)fN(x)dx

]
(8.8)
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We can now turn to an arbitrary period n < N . By the same argument we used to develop
(8.6), we can write the value function in an arbitrary period n < N as a function of the
number of buy-back units as follows:

Cn(B, zn = 1|In, αn = 0, βn = 1) = r(B) + C∗
n(In +B,αn = 0, βn = 0) (8.9)

On the other hand, if the firm chooses to forgo the buy-back option in an arbitrary period
n < N , the firm faces the expected inventory holding and shortage costs from satisfying
demand to the extent possible with the available inventory. The firm also retains the option
to offer the buy-back in a future period, which is reflected in the value of βn+1 in the cost-to-
go function for the next period, n+ 1. Therefore, we can represent the value function in an
arbitrary period n < N when the firm chooses to not offer a buy-back in the current period
as:

Cn(zn = 0|In, αn = 0, βn = 1)

=

∫ In

0

[
ch(In − x) + C∗

n+1(In − x, αn+1 = 0, βn+1 = 1)
]
fn(x)dx

+

∫ ∞

In

[
cs(x− In) + C∗

n+1(0, αn+1 = 0, βn+1 = 1)
]
fn(x)dx (8.10)

Given the expressions (8.9) and (8.10), we can once again express the value function that
accounts for the choice of whether to offer the buy-back now as:

Cn(B, zn|In, αn = 0, βn = 1) = zn

[
r(B) + C∗

n(In +B,αn = 0, βn = 0)

]
+ (1− zn)

[ ∫ In

0

[
ch(In − x) + C∗

n+1(In − x, αn+1 = 0, βn+1 = 1)
]
fn(x)dx

+

∫ ∞

In

[
cs(x− In) + C∗

n+1(0, αn+1 = 0, βn+1 = 1)
]
fn(x)dx

]
(8.11)

With the value function in period N defined by (8.8) and in an arbitrary period n < N
defined by (8.11), we can now express the optimal expected cost-to-go in any period n with
the buy-back option available as:

C∗
n(In, αn = 0, βn = 1) = min

zn∈{0,1},0≤B≤Mzn
Cn(B, zn|In, αn = 0, βn = 1) (8.12)

In this optimization, the constraints reflect the requirement that the buy-back quantity can
only be positive if the buy-back offer is made in period n, where once again M is a very
large positive number.

We now turn to the value function when the firm still has the option to extend the
capacity reservation, starting with the final period N and then considering the case of any
arbitrary period n < N . If the capacity reservation was extended in period N − 1, the
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firm faces the decision in period N to either extend the reservation for another period
or terminate the capacity reservation permanently. Suppose that the firm chooses not to
extend the reservation. It must then try to satisfy demand with the starting inventory IN
in conjunction with potential units obtained from a future buy-back offer, which is still
available. Therefore, the value function associated with terminating the capacity reservation
in period N is equivalent to the cost-to-go of having the option to make the buy-back offer,
i.e.,

CN(yN = 0|IN , αN = 1, βN = 1) = C∗
N(IN , αN = 0, βN = 1) (8.13)

Alternatively, if the firm chooses to extend the reservation in period N , it incurs the capacity
reservation fee cf and must choose an order-up-to level SN and pay for any units ordered.
It must also pay the expected shortage costs associated with the SN units of inventory that
are now available. Note that we do not allow the firm to both order units and offer the
buy-back in the same period, and therefore, the value function of extending the reservation
in the final period N and ordering up to SN units is:

CN(SN , yN = 1|IN , αN = 1, βN = 1) = cf + cp(SN − IN) + cs

∫ ∞

SN

(x− SN)fN(x)dx (8.14)

with the constraint SN ≥ IN . Note that the expressions in (8.13) and (8.14) are distinguished
by the value of the binary decision variable yN . As before, we write the value function in
period N when the capacity reservation was extended in period N − 1 as:

CN(SN , yN |IN , αN = 1, βN = 1) =yN

[
cf + cp(SN − IN) + cs

∫ ∞

SN

(x− SN)fN(x)dx

]
+ (1− yN)C

∗
N(IN , αN = 0, βN = 1) (8.15)

with the constraint IN ≤ SN ≤ IN +MyN .
With the value function defined for the final period N , we can now turn to an arbitrary

period n < N . By the same argument we used to develop (8.13), we can write the expected
cost-to-go of terminating the capacity reservation in any arbitrary period n < N as:

Cn(yn = 0|In, αn = 1, βn = 1) = C∗
n(In, αn = 0, βn = 1) (8.16)

On the other hand, the value function of extending the reservation in an arbitrary period n <
N and ordering up to Sn units consists of the capacity reservation fee, variable procurement
costs, the expected inventory holding and shortage costs in period n, and the cost-to-go
of entering the next period with the remaining inventory and the option of extending the
capacity reservation still available. This value function can be expressed as:

Cn(Sn, yn = 1|In, αn = 1, βn = 1) = cf + cp(Sn − In)

+

∫ Sn

0

[
ch(Sn − x) + C∗

n+1(Sn − x, αn+1 = 1, βn+1 = 1)
]
fn(x)dx

+

∫ ∞

Sn

[
cs(x− Sn) + C∗

n+1(0, αn+1 = 1, βn+1 = 1)
]
fn(x)dx (8.17)
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with the constraint that Sn ≥ In. As before, we write the overall value function in an
arbitrary period n < N when the capacity reservation was extended in period n− 1 as:

Cn(Sn, yn|In, αn = 1, βn = 1) = yn

[
cf + cp(Sn − In)

+

∫ Sn

0

[
ch(Sn − x) + C∗

n+1(Sn − x, αn+1 = 1, βn+1 = 1)
]
fn(x)dx

+

∫ ∞

Sn

[
cs(x− Sn) + C∗

n+1(0, αn+1 = 1, βn+1 = 1)
]
fn(x)dx

]
+ (1− yn)C

∗
n(In, αn = 0, βn = 1) (8.18)

with the constraint In ≤ Sn ≤ In + Myn. With the value function in period N defined
by (8.15) and in any arbitrary period n < N defined by (8.18), we can now express the
optimal expected cost-to-go in any period n ∈ {1, ..., N} when the capacity reservation can
be extended as:

C∗
n(In, αn = 1, βn = 1) = min

yn∈{0,1},In≤Sn≤In+Myn
Cn(Sn, yn|In, αn = 1, βn = 1) (8.19)

The constraints in the above minimization reflect the requirement that units can only be
ordered in the current period if the capacity reservation is extended.

With the formulation complete, we now turn to some properties of the optimal buy-back
policy.

8.2 Properties of the Optimal Buy-Back Policy

We now investigate properties of the buy-back value function. We should first note
that, although the state variables differ between the dynamic variant in Chapter 5 and the
model presented in this chapter, if no further decisions can be made, the expected cost-to-go
functions are identical. Therefore, for an arbitrary n, C∗

n(In, αn = 0, βn = 0) as defined in
equation (8.5) is convex in the starting inventory level In.

We would like to determine the optimal buy-back quantity B if the firm decides to offer a
buy-back in the current period, n. The value functions associated with offering the buy-back
in either period N , as shown in equation (8.6), or any arbitrary period n < N , as shown in
equation (8.9), are both composed of the buy-back cost function and the expected cost-to-go
after there are no decisions remaining. Therefore, the following argument applies equally
to both. Consider the function Cn(B, zn = 1|In, αn = 0, βn = 1) expressed in (8.9) and
repeated below:

Cn(B, zn = 1|In, αn = 0, βn = 1) = r(B) + C∗
n(In +B,αn = 0, βn = 0)

Proposition 8.1. Given that the firm has decided to offer the buy-back in an arbitrary period
n, the buy-back value function Cn(B, zn = 1|In, αn = 0, βn = 1) as defined in (8.9) is jointly
convex in (In, B).
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Proof. This is a function in two variables, In and B, because all other state and decision
variables have been fixed. By assumption, the first term r(·) is convex. Similarly, we have
shown that the second term is convex in its first argument. Because B and In +B are both
affine maps, both terms in (8.9) are also convex and, therefore because the sum of convex
functions is convex, the overall expression is jointly convex in (In, B).

One consequence of the joint convexity of (8.9) is that a value of B that minimizes (8.9)
for a given starting inventory level In can be found easily. Let B∗

n(In) be an optimal buy-back
quantity that minimizes (8.9) for a given period n and starting inventory level In with the
constraint that B ≥ 0. Because (8.9) is convex in (In, B), B ≥ 0 is a convex non-empty set,
and (8.9) is bounded below, we know that:

Cn(B
∗
n(In), zn = 1|In, αn = 0, βn = 1) = min

B≥0
Cn(B, zn = 1|In, αn = 0, βn = 1) (8.20)

is also convex in In. This allows us to represent the choice in period n between offering
the buy-back or not in the current period as the minimum of two functions. Therefore the
decision problem expressed in (8.12) can be written as:

C∗
n(In, αn = 0, βn = 1) = min

{
Cn(B

∗
n(In), zn = 1|In, αn = 0, βn = 1),

Cn(zn = 0|In, αn = 0, βn = 1)

}
(8.21)

We now turn to some properties of the buy-back value function that enable us to characterize
the optimal number of buy-back units to acquire in terms of the starting inventory In.

Lemma 8.2. Given that the firm chooses to offer the buy-back in an arbitrary period n, the
minimum of the buy-back value function (8.9) occurs at a starting inventory level for which
the corresponding optimal buy-back quantity is zero.

We present a formal proof of Lemma 8.2 in Appendix A but provide an informal outline
of the proof here. If the minimum of the function in (8.9) occurs at some starting inventory
level with a positive buy-back quantity, that implies the expected cost-to-go is improved
with more inventory. Therefore, if that inventory level could be achieved for free (without
the buy-back cost), the cost-to-go can only be smaller, which contradicts the assumption of
the starting inventory level being the minimizer.

Theorem 8.3. Given that the firm chooses to offer the buy-back in an arbitrary period n,
there is a unique starting inventory threshold În above which the optimal buy-back quantity
is zero, i.e., B∗

n(I) = 0 for all I such that I ≥ În.

We prove this by using the convexity of the cost-to-go function. For any starting inventory
level with an optimal buy-back quantity of zero, the marginal buy-back cost must be larger
than the marginal savings of having an additional unit of inventory. By the convexity of
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the cost-to-go, any larger inventory value must have an even smaller marginal savings from
having an additional unit, and therefore the buy-back is not beneficial for that higher starting
inventory level either.

Proof. Consider some starting inventory level Î with the corresponding optimal buy-back
quantity B∗

n(Î) = 0. An optimal buy-back quantity of zero implies that d
dB

r(B)|B=0 ≥
− d

dB
C∗

n(Î + B,αn = 0, βn = 0)|B=0 (the cost of adding an incremental unit via buy-back is
greater than the savings from having that incremental unit available). Now consider another
starting inventory level Ĩ > Î with the corresponding optimal buy-back quantity B∗

n(Ĩ) =
B̃ > 0. An optimal positive buy-back quantity implies that d

dB
r(B)|B=0 < − d

dB
C∗

n(Ĩ +

B,αn = 0, βn = 0)|B=0. This, in turn, implies that d
dB

C∗
n(Î + B,αn = 0, βn = 0)|B=0 >

d
dB

C∗
n(Ĩ +B,αn = 0, βn = 0)|B=0, which contradicts the convexity of C∗

n(I +B,αn = 0, βn =

0). Therefore, for any Î such that B∗
n(Î) = 0, all In ≥ Î also have B∗

n(In) = 0. This means
that there is at most a single starting inventory threshold above which the optimal buy-back
quantity is zero units.

Theorem 8.3 enables us to characterize the intersection between the value functions asso-
ciated with buying back now and not buying back now, as outlined in (8.21). For any starting
inventory level and period combination, the expected cost of offering a buy-back with an op-
timal buy-back quantity of zero will never be less than the expected cost of not buying back
now. Therefore, we know that, for any arbitrary period n, any starting inventory level for
which it is more expensive to not buy back now must occur at a point where the optimal
buy-back quantity is strictly positive. This knowledge enables us to more quickly find the
intersection point through numerical methods, and therefore also the inventory threshold
below which it is optimal to offer the buy-back in the current period.

Once again, the non-convexity of the general DP value functions makes it necessary
to find the optimal strategy numerically. However, before we present the results of our
numerical study, we will first introduce an extension of our heuristic for the dynamic model
with a one-time buy-back option. Such a heuristic could be used if solutions need to be
found quickly.

8.3 Extension of the Heuristic for the Dynamic

Model with Buy-Back

The heuristic presented in Chapter 6 can be adapted easily to the dynamic model with
a one-time buy-back option. In our heuristic, we find two near-optimal, inventory-state-
independent order-up-to levels for each period by assuming that the firm either will or will not
extend the capacity reservation in the next period. We called these two values the continuing-
buy and last-time-buy order-up-to levels, respectively. We use the same assumptions and
nomenclature as we did in the heuristic for the problem variant without a buy-back.
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First, let us assume that the firm knows (with certainty) that it will extend the capacity
reservation in the next period. Because the buy-back offer cannot be made in the same
period in which the capacity reservation is extended, the firm also knows that the next
period will not be the buy-back offer period. Therefore, the choice of order-up-to level in the
current period is not affected by the buy-back decision, as there will be at least one more
opportunity to order from the contract manufacturer before having to consider the buy-back
offer. For this reason, we can use the same newsvendor-style analysis as detailed in Section
6.1 for estimating the continuing-buy order-up-to level, Sc

n.
However, if we assume the firm knows (with certainty) that it will not extend the capacity

reservation in the next period, then the optimal policies for the dynamic model with a one-
time buy-back option and the dynamic model without a buy-back option may differ because
the former must take into account the opportunity to make a buy-back offer in future periods.
In Section 6.2 we presented a method for finding the last-time-buy order-up-to level based on
the properties of the expected cost-to-go function after the capacity reservation has ended. In
the dynamic model without a buy-back option, this expected cost-to-go function was convex,
as there were no further decisions and therefore the expected cost-to-go was composed only
of inventory holding and shortage costs. However, in the dynamic model with a buy-back
option, the firm still has a decision to make after the capacity reservation has ended: the
choice of when (if at all) to offer the buy-back and how many units to buy back at that time.
As we are not able to characterize the optimal buy-back policy analytically, in this version
of the heuristic we will determine the last-time-buy order-up-to level, Sℓ

n, numerically.
As in our other heuristic, we assume that the firm will not extend the capacity reservation

after ordering up to the last-time-buy order-up-to level, Sℓ
n. In order to find a starting-

inventory-independent order-up-to level, we also assume that the starting inventory level
is less than the to-be-selected last-time-buy order-up-to level. Because we are using the
marginal cost of ordering when determining Sℓ

n, it is sufficient to restrict our attention to
a starting inventory level of zero, as the same Sℓ

n will be optimal for all starting inventory
levels between zero and Sℓ

n. With both of these assumptions in place, the last-time-buy value
function in an arbitrary period n is:

Cn(Sn|0, αn = 1, βn = 1) = cf + cp(Sn − 0) + C∗
n(Sn, αn = 0, βn = 1) (8.22)

and we define Sℓ
n as the value of Sn that minimizes (8.22) in period n.

Finding Sℓ
n requires knowing the expected cost-to-go function when the buy-back option

is available, C∗
n(In, αn = 0, βn = 1), and therefore our heuristic requires solving the dynamic

program for all (In, αn = 0, βn = 1) and (In, αn = 0, βn = 0) states. However, because the
buy-back is a one-time option, this requires only a fraction of the computing time required
to solve the dynamic program for the entire state space.

After finding the candidate order-up-to levels Sc
n and Sℓ

n, we can use the heuristic to find
an approximate solution. We do so by recursively solving the simplified dynamic program
using the following heuristic expected cost-to-go function defined for all periods 1 ≤ n ≤ N
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and starting inventory levels In, in much the same way as in the heuristic presented earlier:

C∗
n(In,αn = 1, βn = 1) = min

yn∈{0,1},In≤Sn≤In+Myn,Sn∈{In,Sc
n,S

ℓ
n}
Cn(Sn, yn|In, αn = 1, βn = 1)

(8.23)

where Cn(Sn, yn|In, αn = 1, βn = 1) is defined as in equation (8.18). Once again, it is
necessary to discretize the demand and inventory levels to a consistent level of granularity
in order to make the problem tractable.

8.4 Numerical Study

In this section, we present the results of a numerical study for the dynamic model with a
one-time, deterministic buy-back option. Our goals for the study are: (1) to explore how the
introduction of the buy-back option changes the optimal strategy, and (2) to evaluate the
performance of the heuristic relative to that of the optimal strategy. We utilized the same
100 problem instances as in Chapter 7 and discretized the demand distribution and the set
of options for inventory levels and order-up-to levels in the same way as in Chapter 7. We
direct the reader to Section 7.2 for a detailed overview of the problem instances as well as
our implementation process.

For this numerical study, we assume that the total buy-back cost as a function of the
number of buy-back units B is as follows:

r(B) =
B2

20
+ cpB (8.24)

This function meets our requirements that r(·) is convex, r(0) = 0, and r′(·) ≥ cp. Dividing
both sides by B yields the per-unit buy-back cost as a function of the buy-back quantity:

r(B)

B
=

B

20
+ cp (8.25)

This function is linear, meaning that the number of customers who respond to the buy-back
(in this deterministic model) is a linearly increasing function of the per-unit buy-back offer
value. In this case, for every additional unit acquired via the buy-back, the per-unit buy-back
cost increases by 0.05. This interpretation will be relevant when we introduce the stochastic
version of the buy-back in Section 8.5.

In Figure 8.1 we plot the cost to acquire various quantities of units via the buy-back
or paying a capacity reservation cost (in this case 8000) and ordering from the contract
manufacturer. Note that, due to the capacity reservation cost, for order quantities of a few
hundred units or less, it is less expensive to acquire the units via the buy-back. However,
as the buy-back is a one-time option and the capacity reservation can be extended in future
periods if necessary, the optimal strategy hinges on more than the variable costs alone.



CHAPTER 8. DYNAMIC MODEL WITH ONE-TIME BUY-BACK OPTION 72

Figure 8.1: Comparison of the Buy-Back Cost and the Cost to Extend the Capacity Reser-
vation and Order when cf = 8000

We chose this particular buy-back cost function so that the intersection point plotted in
Figure 8.1 would occur at a value of a few hundred units (the exact point depends on the
choice of cf ). A few hundred units are equivalent to a few periods of expected demand, and
therefore the buy-back is complementary to, but not a full replacement for, ordering a last
time buy from the contract manufacturer.

In this numerical study, we implemented both the optimal and heuristic algorithms. CPU
times are approximately 28 minutes to find the optimal dynamic solution and approximately
3 minutes to find the heuristic solution. The increase in the computing times for the heuristic
relative to those in Chapter 7 is due to the need to partially solve the dynamic program in
order to find the heuristic order-up-to levels. For the full results of the numerical study for
all 100 problem instances, see Tables B.6 through B.10 in Appendix B.

Characteristics of the Optimal Strategy

In this numerical study, we observed that the optimal strategy for the vast majority of
problem instances has the same structure as the common optimal strategy first described in
Section 7.3, with up to three threshold values that demarcate intervals of starting inventory
in each period, each corresponding to exactly one of the continuing buy, extend only, last
time buy, or end capacity reservation strategies. Of the 1200 problem-instance-period com-
binations, only one has an optimal strategy that deviates from this basic structure. As such,
in this subsection, we will primarily focus on how the optimal strategies for the dynamic
model with the buy-back option differ from the optimal strategies for the dynamic model
without the buy-back option for the same base problem instances.
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We now consider an example from the numerical study. This problem instance was
selected because of clear differences between the optimal strategies with and without the
buy-back option, but it is representative of the results of our numerical study overall. In
Figure 8.2, we plot the optimal order-up-to levels in the first period for the dynamic model
with the one-time buy-back option and the dynamic model without the buy-back option
for the problem instance with the Double Peak demand pattern, a capacity reservation cost
of 8000, and a shortage cost of 600. The most prominent differences between the optimal
strategies for the buy-back and non-buy-back models are the optimal last-time-buy order-
up-to levels. As expected, the presence of the buy-back option leads the firm to acquire
fewer units from the contract manufacturer with the last time buy. On the other hand,
the continuing-buy order-up-to levels are unchanged at 70. Another major difference in the
optimal strategies is the significantly smaller end-capacity-reservation threshold (shown by
the vertical dotted line) for the model with the buy-back option, as the firm can now more
easily take the risk of ending the capacity reservation with less inventory on hand due to the
option to acquire units via the buy-back in the future.

(a) With Buy-Back Option (b) Without Buy-Back Option

Figure 8.2: Comparison of the Optimal Order-Up-To Levels in Period 1 With or Without
the Buy-Back Option for the Double Peak Demand Pattern with cf = 8000 and cs = 600

The optimal strategies for both variants differ significantly in later periods, as well. In
Figure 8.3 we present a comparison of the optimal strategies with or without the buy-
back option for the same problem instance as the one on which Figure 8.2 is based. Two
differences are readily apparent: (1) the end-capacity-reservation thresholds are much lower
for the variant with a buy-back option, and (2) the optimal strategy including the buy-back
has an anticipated last time buy in period four, rather than in period five. Combined, all of
the differences induced by the buy-back option are responsible for an 8.7% reduction in the
expected cost over the full horizon for this problem instance when the firm begins the first
period with no starting inventory.

Another notable feature of the optimal strategy with the buy-back option (as detailed in
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(a) With Buy-Back Option

(b) Without Buy-Back Option

Figure 8.3: Comparison of the Optimal Strategies With or Without the Buy-Back Option
for the Double Peak Demand Pattern with cf = 8000 and cs = 600
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Figure 8.3a) is that, late in the time horizon, it is optimal to end the capacity reservation for
any starting inventory level—even zero units. In our previous numerical study, this strategy
was optimal only when the capacity reservation costs were high, the expected remaining
demand was low, and the shortage costs were low. As Figure 8.3b shows, if the firm finds
itself in period 10 with low starting inventory and the opportunity to extend the capacity
reservation, it would do so if no buy-back were available. In the same situation in the dynamic
model with a buy-back option, purchasing from the contract manufacturer has been totally
supplanted by the buy-back offer.

We now briefly discuss the optimal buy-back strategy after the capacity reservation has
been terminated. In Figure 8.4 we plot the optimal buy-back-up-to levels in period four for
the same problem instance that provides the basis for Figures 8.2 and 8.3. The buy-back
order-up-to levels are qualitatively different than those for the last time buy : rather than
the commonly-observed constant last-time-buy order-up-to levels over an interval of starting
inventory levels, the buy-back-up-to levels increase slightly—but less than one-for-one—with
the starting inventory level. This partially mitigates the effect of the convex increasing buy-
back costs by dampening the order quantities to a greater extent as the starting inventory
level declines.

Figure 8.4: Optimal Buy-Back-Up-To Strategy in Period 4 for the Double Peak Demand
Pattern with cf = 8000 and cs = 600

As on the order-up-to level figures, we provide a vertical dotted line to show the starting
inventory threshold below which it is optimal to make a buy-back offer in the current period.
In Figure 8.4, this threshold (285) is much less than the optimal buy-back-up-to level (ap-
proximately 1000) and slightly less than the expected demand in period four for the Double
Peak demand pattern (300). Due to the one-time nature of the buy-back offer, the firm is
willing to tolerate a relatively high number of expected shortages in exchange for retaining
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the buy-back option for a future period. As a result, the firm will not make the buy-back
offer unless it is likely to need a large number of units in the current period, because it does
not have to forgo the buy-back opportunity if it does not exercise it now.

The ability to forgo the buy-back in the current period without any fixed cost contrasts
with the sequential capacity requirement, in which retaining the option to produce in future
periods requires paying the capacity reservation fee. The buy-back option thus enables the
firm to place the last time buy earlier in the horizon, as it can instead expect to satisfy
some late-stage demand via the buy-back. As a result, we expect that the buy-back option
will allow the firm to meaningfully lower its expected costs relative to the dynamic variant
without a buy-back option.

Comparison with the Dynamic Model without a Buy-Back Option

The option to make a one-time buy-back offer results in a significant improvement of
the expected cost of the optimal strategy. On average for our set of problem instances, the
expected total cost when the firm begins the first period with no starting inventory is 7%
lower for the optimal strategy for the dynamic model with a buy-back option than for the
optimal strategy for the dynamic model without a buy-back option. We did not observe
a relationship between the demand pattern or the shortage cost and the magnitude of the
benefit, but the capacity reservation cost has a strong impact on the magnitude of the benefit.
Table 8.1 presents the expected total cost benefit averaged across problem instances with the
same capacity reservation cost. The table includes the percentage benefit, absolute benefit,
as well as the ratio of the benefit to the capacity reservation cost. The average benefit is
about 1.5 to 2 times the single-period capacity reservation cost, with the cost savings arising
from a combination of fewer capacity reservation fees and reduced inventory holding costs.

Table 8.1: Expected Total Cost Benefit - by Capacity Reservation Cost

Expected Total Cost
cf % Benefit Absolute Benefit Benefit/cf

2000 1.75% 2635 1.3
4000 4.00% 6777 1.7
8000 8.67% 17077 2.1
16000 13.60% 30135 1.9

Most interestingly, the buy-back option benefit (7%) is much larger than the optimality
gap between the dynamic model and the pre-commit model (0.06%) studied in Chapter 7.
We should note that the comparison between the dynamic and pre-commit models was based
on the assumption that the per-period capacity reservation costs were identical. However, in
reality, the contract manufacturer would impose larger charges in the form of higher capacity
reservation fees, higher variable costs, or an additional fixed cost, for the flexibility of the
dynamic capacity reservation contract. The large cost improvement due to the buy-back
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and the minimal savings from the dynamic model versus the pre-commit model imply that
the firm would be better off pursuing a buy-back option as opposed to securing a period-
to-period capacity reservation contract with the contract manufacturer. The differences
in overall costs that we have observed here are consequences of the sequential capacity
reservation cost structure, and they highlight the potentially critical role of the buy-back
option or other alternative source of units that does not require a large one-time investment
or the continuation of fee payments just to maintain the option to order.

We note that the exact magnitudes of the various cost differences will depend upon the
cost parameters, but the insights from our numerical study support our expectation that the
directional effects will generalize to other sets of cost parameters.

Performance of the Heuristic

The heuristic produced near-optimal results for our set of 100 problem instances assuming
beginning-of-horizon inventory levels of zero, with an average optimality gap of 0.01%. (We
omit the adjusted optimality gap used in Chapter 7 as expected variable procurement costs
differ for the buy-back and no-buy-back options.) Demand patterns were the only factor to
have a noticeable effect on the magnitudes of optimality gaps, with gaps being effectively
zero except for the Double Peak demand pattern, for which the average optimality gap was
0.05%. These results parallel those for the dynamic model without a buy-back.

The heuristic performs quite well in an absolute sense, but its relative performance im-
proves further with the introduction of the buy-back option. The main reason is that the
last-time-buy order-up-to level in the heuristic is determined under the assumption that the
capacity reservation will not be extended in the next period. The existence of the buy-back
option makes it even more likely that it is either not necessary, or not economical, to extend
the capacity reservation contract beyond the heuristically-determined period in which the
(anticipated) last time buy occurs.

8.5 Generalization with Stochastic Buy-Back Yield

We also generalize the model in the previous section to allow uncertainty in the number of
customers responding to a buy-back offer at any given buy-back price. In this generalization,
the firm selects a single buy-back price pb, which generates a random buy-back quantity
B(pb).

The value function associated with making a buy-back offer at a buy-back price pb in an
arbitrary period n with a starting inventory level of In is:

Cn(pb, zn = 1|In, αn = 0, βn = 1) =

∫ Bmax

0

[
pbx+ C∗

n(In + x, αn = 0, βn = 0)

]
fB(pb)(x)dx

(8.26)
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where fB(pb)(·) is the pdf of the random variable B(pb) and Bmax is the maximum possible
number of buy-back units that can be acquired (e.g., the total number of units owned by
the firm’s customers). We continue to assume that the refurbishment yield is deterministic,
so for simplicity, we define B(pb) as the quantity after refurbishment. We also have the
expected cost-to-go function:

C∗
n(In, αn = 0, βn = 1) = min

zn∈{0,1},cp≤pb≤cp+Mzn
Cn(pb, zn|In, αn = 0, βn = 1) (8.27)

where the constraints reflect the requirement that the buy-back price must be larger than
the per-unit procurement cost cp, where M is a very large positive number. This assumption
is the same as in our model with a deterministic buy-back option.

In the simplest form, the random variable B(pb) could be from a family of distributions
that depends on pb. For instance, if the firm believes that the mean customer response to
an increase in the buy-back price is roughly linear and the coefficient of variation remains
constant across a range of mean values, B(pb) could be defined as a Normal random variable
with mean (pb − cp)µ and standard deviation (pb − cp)σ, where µ and σ are constants. As
with the deterministic buy-back case, the parameters are shifted by cp to ensure that the
buy-back yield is zero if pb = cp. For many consumer electronics devices, especially higher-
end devices, some customers trade in their devices and receive trade-in value toward their
new devices when replacing them. Therefore, it is reasonable to expect the firm to be able
to construct the distribution B(pb) for a range of buy-back prices based on the firm’s own
experience with buy-back or trade-in offers, or based on knowledge of industry trends.

8.6 Numerical Study with Stochastic Buy-Back Yield

In this section, we present the results of a numerical study for the dynamic model with a
one-time buy-back option, in which the yield from the buy-back offer is a stochastic function
of the buy-back offer price. Our goal for this study is to explore how the change from a
deterministic to a stochastic response to the buy-back offer affects both the expected cost
and the optimal strategy of the firm. Once again, we utilized the same 100 problem instances
as in Chapter 7 using the same discretization process. We direct the reader to Section 7.2
for a detailed overview of the problem instances considered as well as our implementation
process.

We model the random buy-back quantity B(pb) as a (discretized) Normal random vari-
able with a mean of µ = 20(pb − cp) and a standard deviation of σ = 4(pb − cp). In the
deterministic case, for every additional unit acquired via the buy-back, the per-unit buy-
back cost increases by 0.05 (see equation (8.25)), which is reflected in the definition of µ
and facilitates a comparison between the stochastic and deterministic cases. Our choice of
σ implies a coefficient of variation equal to 0.2. This provides for a sufficiently high degree
of uncertainty that we anticipate observing some changes in optimal strategies. In practice,
the firm would estimate the buy-back response based on historical trade-in offers and market
conditions.
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We utilized values of pb that are multiples of 0.25 because this leads to random variables
B(pb) for which, after small downward adjustments of the standard deviations, our dis-
cretization results in buy-back quantities that are multiples of five units. We implemented a
discretization process that is the same as that for our discretized Normal demands, except
the discrete points were distributed from three standard deviations below the mean to three
standard deviations above the mean (rather than four) in one standard deviation increments
(rather than one-half).

For this numerical study, we only found the optimal strategy for the dynamic program,
which required approximately 45 minutes of computing time for each problem instance. Our
heuristic could be applied to the stochastic yield case as well, but in view of the near-optimal
performance of the heuristic discussed in Section 8.4 we elected to focus on a comparison of
optimal strategies for the deterministic and stochastic versions of the buy-back model.

On average, for our set of 100 problem instances assuming beginning-of-horizon inventory
levels of zero, the expected total cost increased by 1.5% in the stochastic problem relative to
that of the deterministic problem. On average, problem instances with larger cost parameter
values had larger cost increases between the stochastic problem and the corresponding deter-
ministic problem, as expected. For the full results of the numerical study for all 100 problem
instances, see Tables B.11 through B.15 in Appendix B. We next present a representative
example from the numerical study to illustrate how the optimal strategy changes with the
introduction of a stochastic buy-back.

Characteristics of the Optimal Strategy

We now consider the same problem instance that was the basis for Figure 8.4, as it is
once again representative of the results of our numerical study. In Figure 8.5a we plot the
optimal buy-back-up-to level in period four. The result is remarkably similar to that for
the deterministic version of the problem instance, which we have repeated here in Figure
8.5b for convenience. In this problem instance, the stochastic buy-back model results in
slightly lower buy-back-up-to levels and a slightly higher inventory threshold below which
the buy-back is initiated relative to those for the deterministic case. The results shown here
are representative of the relatively small changes in optimal buy-back strategy due to the
change to a stochastic yield.

The sawtooth pattern in the optimal buy-back-up-to levels in Figure 8.5a is an artifact of
our discretization process. In order to discretize to multiples of five units, we elected to adjust
the standard deviations (recall that we used a constant coefficient of variation of 0.2) down
to the nearest multiple of five. Due to this adjustment, neighboring sets of buy-back prices
correspond to random variables with the same standard deviation (but different means).
For example, in our numerical study, the set of buy-back prices 105, 105.25, 105.5, 105.75,
and 106 correspond to Normal random variables with means of 100, 105, 110, 115, and 120,
respectively. If we followed the standard deviation formula mentioned at the beginning of
Section 8.6 exactly, the corresponding standard deviations would be 20, 21, 22, 23, and
24, respectively. However, this would violate our desired discretization to multiples of five
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(a) Stochastic Yield (b) Deterministic Yield

Figure 8.5: Optimal Buy-Back-Up-To Strategy with Stochastic and Deterministic Buy-Back
Yield in Period 4 for the Double Peak Demand Pattern with cf = 8000 and cs = 600

units, so therefore the standard deviations were each rounded down to 20. Because of this
rounding, some of the buy-back prices correspond to random variables with coefficients of
variation which are slightly lower than the desired 0.2. As a result, the optimal buy-back
prices are almost always those that correspond to random variables with the largest mean
for any fixed standard deviation, as these have slightly lower coefficients of variation than
their neighbors. We believe the discretization that we have used is accurate enough to allow
for comparisons between the deterministic and stochastic versions of the buy-back models,
which is our primary interest.

(a) Stochastic Yield (b) Deterministic Yield

Figure 8.6: Optimal Order-Up-To Strategy with Stochastic and Deterministic Buy-Back
Yield in Period 3 for the Double Peak Demand Pattern with cf = 8000 and cs = 600

We are also interested in how the stochastic buy-back yield may change the optimal
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strategy for the last time buy decision(s). In Figure 8.6 we plot the optimal order-up-to
levels for the cases of stochastic and deterministic buy-back yields, respectively, for the
previous period (period three) of the same problem instance. It is evident that the relatively
small changes in the optimal buy-back-up-to strategy lead to moderately larger changes in
the optimal order-up-to strategy. In the stochastic yield case, the optimal strategy calls
for ordering up to a slightly higher last-time-buy order-up-to level (930 vs 890) as well
as a considerably higher end-capacity-reservation threshold (695 vs 565). However, the
continuing-buy order-up-to level is not affected by the change to a stochastic buy-back yield,
as expected.

In this problem instance, the change to a stochastic buy-back did not result in very
large changes to the structure of the optimal strategy. However, the changes to the values
of the decision variables and thresholds in the optimal strategy impact the expected cost.
The uncertainty of the stochastic buy-back causes the firm to act conservatively and select
smaller buy-back quantities, as evidenced by the slightly lower buy-back-up-to levels in
Figure 8.5a. As a result, the firm instead chooses to order more units from the contract
manufacturer (as shown by the larger last-time-buy order-up-to level in Figure 8.6a) and
to extend the capacity reservation for larger levels of starting inventory (as shown by the
larger end-capacity-reservation threshold in Figure 8.6a) in order to compensate for the lower
buy-back quantity. As a result, in this problem instance, the stochastic buy-back model has
1.7% higher expected costs, which is slightly above the average across all problem instances.

Overall, for our problem instances, the buy-back option lowers the expected cost of the
optimal solution considerably, especially in problem instances with large capacity reserva-
tion costs. This result holds for both the deterministic and stochastic buy-back models.
Therefore, our results suggest that consumer electronics firms should consider pursuing a
buy-back option as a part of their last time buy strategy when they are subject to a contract
manufacturer’s sequential capacity reservation requirement.

The strong performance of the buy-back option raises the question of why they are not
more common in practice. The answer may be partly that selling refurbished or “refreshed”
devices, especially for higher-end products like smartphones, is a large market in and of
itself, and therefore using these devices to satisfy warranty claims may not be the most
profitable use of them. Additionally, the firm may find it is competing with other companies
to acquire used items. For instance, in the case of smartphones, it is common for carriers
(such as AT&T) to make their own trade-in offers, especially to entice customers to switch
away from other carriers. The carriers’ offers may be more appealing than those of the
original manufacturer, as the revenue from the accompanying long-term service contract can
offset the higher cost of a more generous trade-in offer. A more realistic model would require
taking into account the other competing trade-in or buy-back offers available to customers.

Aside from competing offers, the effectiveness of the buy-back option depends heavily
on a number of other factors that are not included in our model. Customers may respond
to past buy-back offers by not upgrading to the next-generation product at launch and
instead waiting for a buy-back offer. This behavioral response from customers would need
to be accounted for in the cost of the buy-back offer. Additionally, with large buy-back
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volumes, operational efficiencies in the collection process or the capacity of the refurbishing
facility may become relevant factors. Fully modeling the buy-back option would require
incorporating more detail and nuances to capture these effects and is a potential direction
for future research.
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Chapter 9

Conclusion

Our research was motivated by a problem facing modern consumer electronics firms,
which increasingly design their own products but outsource production to contract manufac-
turers. These firms’ products are often multi-generational, with short product life cycles that
necessitate an eventual end-of-production decision for each product generation. To answer
the questions of when to end the production of a particular product and how much to order
from the contract manufacturer at that time, we developed a new variant of the last time
buy problem.

To capture the economics of capacity reservations at major contract manufacturers, we
introduced the notion of a sequential capacity reservation fee into a firm’s procurement
planning problem. In this realistic cost structure, which, to the best of our knowledge, has
not been studied in the literature, the contract manufacturer requires the firm to pay a per-
period capacity reservation fee if the firm would like to retain the option to order again in
the subsequent period. In contrast to the more standard setup cost often included in other
inventory models, this fee must be paid even if the firm does not order any units in the
current period. However, if the firm does not pay the capacity reservation fee, the contract
manufacturer will terminate the production of the product and shift the associated resources
to a different product, potentially one sold by a competitor. This cost structure reflects the
relatively high opportunity cost of capacity at the contract manufacturer.

As noted above, we address the firm’s problem of determining whether to extend the
capacity reservation in each period (if the choice has not already been made) and how
much to order in each period. The goal is to minimize the expected total cost of capacity
reservation fees, variable production costs, inventory holding costs, and shortage costs. We
analyzed the resulting dynamic programming problem and found that the structure of the
optimal policy is quite different than if the more standard fixed cost per period without the
sequential requirement were imposed. The dynamic programming value functions are not
guaranteed to be convex, but we have found them to be sufficiently well-behaved (e.g., a
small number of local minima) that the optimal strategy can be computed numerically for
any problem instance. We show that, if the firm extends the capacity reservation in the
current period, the optimal order-up-to policy is characterized by a set of starting inventory



CHAPTER 9. CONCLUSION 84

intervals, each corresponding to a different order-up-to level. There may be uncountably
many of these intervals and therefore the optimal strategy can be quite complex. However,
in our numerical study, we find that in most cases the optimal strategy in any given period
consists of continuing buy, extend only, last time buy, and end capacity reservation policy
regions.

This strong pattern that we observed in the optimal strategies in our numerical study
inspired our heuristic, which entails finding inventory-state-independent continuing-buy and
last-time-buy order-up-to levels by assuming that the firm either extends or ends the capacity
reservation in the next period, respectively. Our heuristic found near-optimal solutions for
the dynamic model in a fraction of the time required to optimally solve the dynamic program.

We also found that the expected cost of the optimal dynamic strategy was almost identical
to that of the optimal strategy for the pre-commit variant of our problem, in which the firm
must commit at the start of the problem horizon to a specific last-time-buy period. This
suggests that the flexibility afforded to the firm in the dynamic model is not very valuable
even when the capacity reservation fees are assumed to be the same for the dynamic and
pre-commit settings. Furthermore, in practice, it is reasonable to expect that the contract
manufacturer would impose larger charges (either fixed or variable) in exchange for the
period-to-period flexibility of our dynamic model. The findings from our numerical study
indicate that a firm should not be willing to pay much—if anything at all—for a high degree
of contract flexibility if the supplier enforces a sequential requirement on capacity reservation
fees.

We also introduced an extension of our model, in which the firm has the one-time option
to buy back units from its customers after ending the capacity reservation. This model
is applicable when the late-stage demand is for units to satisfy warranty claims. In this
setting, the firm would buy back units with the intent of refurbishing them to serve as
warranty replacement units. We initially assumed that the number of buy-back units is a
deterministic function of the buy-back price offered to the firm’s customers. In contrast
to the negligible cost savings from the flexibility provided by the dynamic model versus
the pre-commit model, we found that the optimal strategy with the buy-back option led
to considerably lower costs, especially in problem instances with large capacity reservation
costs. This result also held for a generalization of the model in which the number of buy-
back units was a stochastic function of the buy-back price offered. To summarize, the results
of our numerical study suggest that, in a sequential capacity reservation setting, the buy-
back option is more valuable than the flexibility afforded by a period-to-period capacity
reservation contract whether the buy-back yields are deterministic or stochastic.

There are several avenues for future research. First, we have assumed that demand fore-
casts in the form of statistical distributions are available at the beginning of the planning
horizon and are not updated. More research is needed to account for commonly-used fore-
cast updating methods and possibly to devise specially-designed forecasting and forecast
updating methods for settings in which sequential capacity reservation requirements exist.
Second, with the growth of contract manufacturing, it has become increasingly more com-
mon for explicit or implicit fixed-charge capacity reservations to be imposed, and due to
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the economics and/or logistics involved in changing production lines from producing one
product to another, capacity reservations are often required to be sequential. More research
is needed to develop optimal and near-optimal procurement algorithms for such settings.
Finally, we have considered only fixed-charge sequential capacity reservations, but a supplier
may charge both a reservation fee for the option to use the capacity and a separate setup
cost for a positive order quantity. This would lead to a much more complex procurement
optimization problem, but our work provides a first step toward solving it.
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Appendix A

Extended Proofs

In this appendix, we present proofs that were omitted from the main body of the disser-
tation.

A.1 Extended Proof for Chapter 4

Proof of Proposition 4.1

Proposition 4.1. An optimal constrained order-up-to S∗
n(In) exists that minimizes the value

function Cn(Sn|In,y) for arbitrary n and In.

Proof. A global minimum (and minimizer) exists if the value function is continuous, is
bounded below by zero, and increases to infinity as the order-up-to level increases to in-
finity. We next prove that the value function satisfies all three conditions. Recall that the
function Cn(Sn|In,y) as defined in (4.5) is defined on the left-bounded and right-unbounded
interval [In,∞). It is obvious that this function is continuous and that it is bounded below
by zero because each term is non-negative. Because the function is left-bounded, it only
remains for us to prove that the function goes to ∞ as Sn goes to ∞. Note that the term
cp(Sn − In) goes to ∞ as Sn goes to ∞ and all other terms are non-negative. Therefore, the
function must attain a minimum value somewhere on its domain.

A.2 Extended Proof for Chapter 5

Proof of Proposition 5.2

Proposition 5.2. For an arbitrary period n and starting inventory level In, there exists
at least one optimal constrained order-up-to level S∗

n(In) that minimizes the value function
Cn(Sn, yn = 1|In, αn = 1).
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Proof. A global minimum (and minimizer) exists if the value function is continuous, is
bounded below by zero, and increases to infinity as the order-up-to level increases to in-
finity. We next prove that the value function satisfies all three conditions. Recall that the
value function Cn(Sn, yn = 1|In, αn = 1) is defined on the left-bounded and right-unbounded
interval [In,∞). It is obvious that this function is continuous and that it is bounded below
by zero because each term is non-negative. Because the function is left-bounded, it only
remains for us to prove that the function goes to ∞ as Sn goes to ∞. Note that the term
cp(Sn − In) goes to ∞ as Sn goes to ∞ and all other terms are non-negative. Therefore, the
function must attain a minimum value somewhere on its domain.

A.3 Extended Proof for Chapter 8

Proof of Lemma 8.2

Lemma 8.2. Given that the firm chooses to offer the buy-back in an arbitrary period n, the
minimum of the buy-back value function (8.9) occurs at a starting inventory level for which
the corresponding optimal buy-back quantity is zero.

Proof. Consider the buy-back value function expressed in (8.9) and repeated below:

Cn(B, zn = 1|In, αn = 0, βn = 1) = r(B) + C∗
n(In +B,αn = 0, βn = 0) (A.1)

In this value function, In is the starting inventory level in period n, while B is a quantity of
inventory that must be acquired via the buy-back. Let Î = In +B and consider

Cn(0, zn = 1|Î , αn = 0, βn = 1) = r(0) + C∗
n(Î , αn = 0, βn = 0) (A.2)

The right-hand side of (A.2) is less than the right-hand side of (A.1) because the second
terms on the right-hand sides of both expressions are equal and r(B) > r(0) for any B > 0.
Therefore (8.9) achieves its minimum at B = 0 for some In.
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Appendix B

Complete Results of the Numerical
Studies

This appendix contains additional details on the implementation and results of our nu-
merical studies. Section B.1 covers the numerical study presented in Chapter 7, beginning
with an explanation of the back-of-the-envelope calculations we performed to inform our
choice of parameters and concluding with a summary of results for all 100 problem instances.
Section B.2 contains a summary of the results for the numerical study of the dynamic variant
with the deterministic buy-back option included in Section 8.4. Finally, Section B.3 contains
a summary of the results for the numerical study of the dynamic variant with stochastic
buy-back option included in Section 8.6.

B.1 Complete Results of the Dynamic Variant

Numerical Study

Back-of-the-Envelope Calculation for Estimating the Timing of
the Last Time Buy

When designing the numerical study, we wanted to ensure that we chose a range of
parameter values that leads to interesting and varied optimal solutions. To that end, we
made use of a simple back-of-the-envelope calculation to estimate the timing of the last time
buy to help us ensure that the solutions for our problem set would have a range of last-time-
buy periods. To do so, we assume monthly demand is deterministic and constant at the
mean over the horizon. This allows us to ignore shortage costs and ignore the variable costs
of procurement. We can then express the total capacity reservation and inventory holding
costs if we place the last time buy in period n as:

C(n) = ncf +
(N − n)(N − n+ 1)

2
chD (B.1)
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where the first term represents the capacity reservation costs and the second term is the
total inventory holding cost incurred to satisfy all demand in the final N − n periods. This
expression is convex in n, so we can easily find the optimal timing of the last time buy in this
deterministic case for the values for cf , cs, and D that we selected for our numerical study.
Although the optimal timing of the last time buy in the stochastic case will likely differ,
the deterministic approximation allows us to predict the optimal timing of the last time buy
with sufficient accuracy to ensure that our cost parameters lead to a range of values for the
timing of the last time buy. This prediction is confirmed by our numerical study. When
we consider the deterministic approximation with a shortage cost of 200 and a per-period
demand of 100 for capacity reservation costs of 2000, 4000, 8000, and 16,000, we estimate
the last time buy will be placed in periods 11, 9, 6, and 1, respectively. This result is quite
similar to the optimal solution to the pre-commit variant for the same cost parameters and
Flat demand pattern, for which the last time buy periods are 11, 9, 5, and 1 for the same
capacity reservation costs, respectively. This similarity gives us confidence that the back-of-
the-envelope calculation accurately estimates the timing of the last time buy. Furthermore,
the fact that the back-of-the-envelope calculation finds last time buy timing estimates that
are dispersed along the time horizon provides justification for our choice of cost parameters.

Summary of Results for All 100 Problem Instances

We now provide a summary of the results for all 100 problem instances in our Chapter
7 numerical study. In Tables B.1 through B.5 we report the results separated into five
tables, one for each demand pattern. Within each table, the results are reported for all three
problem variants without the buy-back option: the dynamic variant (DP), the heuristic for
the dynamic variant (H), and the pre-commit variant (PC). We provide the expected total
cost from all three solution methods assuming the beginning-of-horizon inventory level is
zero units. We also report the computing time (in seconds) necessary for the completion
of each algorithm. We provide the optimal last-time-buy period for only the pre-commit
variant, as the last-time-buy period is determined dynamically in the other two problem
variants and thus depends upon the trajectory of demand observations. Finally, we report
two different measures of the optimality gap relative to the optimal solution of the dynamic
variant: (i) the percentage gap considering all costs; and (ii) an estimated percentage gap
considering controllable costs, where controllable costs do not include the variable costs to
cover expected demand. These are referred to as the Optimality Gap and the Adj. Optimality
Gap, respectively. To assist in interpreting the results, we have color-coded the optimality
gap columns, using red to indicate a larger optimality gap. We summarize patterns that we
observed in these results in Chapter 7.
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B.2 Complete Results of the Numerical Study for the

Dynamic Variant with Deterministic Buy-Back

This appendix provides a summary of the results for all 100 problem instances in our
Section 8.4 numerical study. In Tables B.6 through B.10 we report the results separated into
five tables, one for each demand pattern. Within each table, the results are reported for both
solution methods: the dynamic variant with buy-back (DP w/ BB) and the heuristic (H).
We provide the expected total cost from both solution methods assuming the beginning-
of-horizon inventory level is zero units. We also report the computing time (in seconds)
necessary for the completion of each algorithm. The computing time is affected by the
number of economically-sensible buy-back quantities for the given parameters. In particular,
we only need to consider buy-back quantities with marginal costs less than cs, so the viable
range of buy-back quantities is smallest for the lowest value of cs = 200. However, as this is
true for both the dynamic and heuristic algorithms, the computing time comparison between
them is fair for any given value of cs. We report the optimality gap of the heuristic solution
relative to the optimal solution of the dynamic variant. (We omit the adjusted optimality
gap used in Chapter 7 as expected variable procurement costs differ for the buy-back and no-
buy-back options.) We also report the expected total cost for the dynamic variant without a
buy-back option (DP w/o BB) from the numerical study covered in Chapter 7. This enables
us to calculate the expected benefit of the buy-back option, which we present as a percentage
benefit, an absolute benefit, and as the ratio of the benefit to the capacity reservation cost.
To assist in interpreting the results, we have color-coded the optimality gap column (using
darker shades of red to indicate a larger optimality gap) and the expected benefit columns
(using darker shades of green to indicate a larger expected benefit). We summarize patterns
that we observed in these results in Section 8.4.
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B.3 Complete Results of the Numerical Study for the

Dynamic Variant with Stochastic Buy-Back

This appendix provides a summary of the results for all 100 problem instances in our
Section 8.6 numerical study. In Tables B.11 through B.15 we report the results separated
into five tables, one for each demand pattern. We report the expected total cost from the
dynamic solution method assuming the beginning-of-horizon inventory level is zero units. We
also report the computing time (in seconds) necessary for the completion of the algorithm.
We also report the expected total cost for the deterministic buy-back variant (DP w/ Det
BB) from the numerical study in Section 8.4 to enable easy comparison with the stochastic
buy-back variant (DP w/ Stoch BB). Finally, we report the expected cost increase due to the
stochasticity of the buy-back yields as a percentage of the expected cost of the deterministic
model. To assist in interpreting the results, we have color-coded the cost increase column,
using darker shades of red to indicate a larger percentage cost increase. We summarize
patterns that we observed in these results in Section 8.6.

Table B.11: Numerical Study Results with Stochastic Buy-Back - Flat Demand Pattern

Parameters Expected Total Cost Expected Cost
Demand cf cs DP w/ Stoch BB DP w/ Det BB Increase (%)

Flat 2000 200 147942 147706 0.16%
Flat 2000 400 150393 149957 0.29%
Flat 2000 600 151308 150803 0.34%
Flat 2000 800 152033 151427 0.40%
Flat 2000 1000 152589 152045 0.36%
Flat 4000 200 165121 164195 0.56%
Flat 4000 400 168724 167427 0.77%
Flat 4000 600 169862 168698 0.69%
Flat 4000 800 170708 169557 0.68%
Flat 4000 1000 171329 170232 0.64%
Flat 8000 200 180855 179265 0.89%
Flat 8000 400 190835 185833 2.69%
Flat 8000 600 193780 188066 3.04%
Flat 8000 800 195273 189439 3.08%
Flat 8000 1000 196346 190432 3.11%
Flat 16000 200 188855 187265 0.85%
Flat 16000 400 200361 194155 3.20%
Flat 16000 600 204492 196598 4.02%
Flat 16000 800 206876 198072 4.44%
Flat 16000 1000 208506 199143 4.70%
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Table B.12: Numerical Study Results with Stochastic Buy-Back - Linear Decline Demand
Pattern

Parameters Expected Total Cost Expected Cost
Demand cf cs DP w/ Stoch BB DP w/ Det BB Increase (%)

Linear Decline 2000 200 145424 145021 0.28%
Linear Decline 2000 400 147792 147170 0.42%
Linear Decline 2000 600 148452 147922 0.36%
Linear Decline 2000 800 149009 148486 0.35%
Linear Decline 2000 1000 149467 148988 0.32%
Linear Decline 4000 200 158879 157771 0.70%
Linear Decline 4000 400 162240 160573 1.04%
Linear Decline 4000 600 163404 161530 1.16%
Linear Decline 4000 800 164181 162160 1.25%
Linear Decline 4000 1000 164789 162689 1.29%
Linear Decline 8000 200 171752 170295 0.86%
Linear Decline 8000 400 179035 174897 2.37%
Linear Decline 8000 600 181096 176455 2.63%
Linear Decline 8000 800 182313 177394 2.77%
Linear Decline 8000 1000 183185 178051 2.88%
Linear Decline 16000 200 179752 178295 0.82%
Linear Decline 16000 400 188347 183433 2.68%
Linear Decline 16000 600 191274 185234 3.26%
Linear Decline 16000 800 192937 186298 3.56%
Linear Decline 16000 1000 194069 187027 3.77%
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Table B.13: Numerical Study Results with Stochastic Buy-Back - Exponential Decline De-
mand Pattern

Parameters Expected Total Cost Expected Cost
Demand cf cs DP w/ Stoch BB DP w/ Det BB Increase (%)

Exponential Decline 2000 200 144858 144140 0.50%
Exponential Decline 2000 400 147587 146730 0.58%
Exponential Decline 2000 600 148345 147561 0.53%
Exponential Decline 2000 800 148960 148165 0.54%
Exponential Decline 2000 1000 149455 148708 0.50%
Exponential Decline 4000 200 154315 153280 0.68%
Exponential Decline 4000 400 158570 156368 1.41%
Exponential Decline 4000 600 160094 157490 1.65%
Exponential Decline 4000 800 161081 158248 1.79%
Exponential Decline 4000 1000 161790 158828 1.86%
Exponential Decline 8000 200 163010 162001 0.62%
Exponential Decline 8000 400 169388 165886 2.11%
Exponential Decline 8000 600 171509 167274 2.53%
Exponential Decline 8000 800 172833 168105 2.81%
Exponential Decline 8000 1000 173779 168674 3.03%
Exponential Decline 16000 200 171010 170001 0.59%
Exponential Decline 16000 400 177770 173890 2.23%
Exponential Decline 16000 600 180324 175280 2.88%
Exponential Decline 16000 800 181884 176111 3.28%
Exponential Decline 16000 1000 182963 176681 3.56%
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Table B.14: Numerical Study Results with Stochastic Buy-Back - Single Peak Demand
Pattern

Parameters Expected Total Cost Expected Cost
Demand cf cs DP w/ Stoch BB DP w/ Det BB Increase (%)

Single Peak 2000 200 146264 145968 0.20%
Single Peak 2000 400 148486 148038 0.30%
Single Peak 2000 600 149256 148736 0.35%
Single Peak 2000 800 149844 149276 0.38%
Single Peak 2000 1000 150355 149788 0.38%
Single Peak 4000 200 161685 161033 0.41%
Single Peak 4000 400 164827 163682 0.70%
Single Peak 4000 600 165996 164665 0.81%
Single Peak 4000 800 166674 165336 0.81%
Single Peak 4000 1000 167220 165884 0.81%
Single Peak 8000 200 184598 183030 0.86%
Single Peak 8000 400 189777 187562 1.18%
Single Peak 8000 600 191531 188909 1.39%
Single Peak 8000 800 192620 189753 1.51%
Single Peak 8000 1000 193410 190369 1.60%
Single Peak 16000 200 192598 191030 0.82%
Single Peak 16000 400 204837 199675 2.59%
Single Peak 16000 600 208480 202331 3.04%
Single Peak 16000 800 210497 203891 3.24%
Single Peak 16000 1000 211847 204949 3.37%
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Table B.15: Numerical Study Results with Stochastic Buy-Back - Double Peak Demand
Pattern

Parameters Expected Total Cost Expected Cost
Demand cf cs DP w/ Stoch BB DP w/ Det BB Increase (%)

Double Peak 2000 200 145856 145339 0.36%
Double Peak 2000 400 148253 147599 0.44%
Double Peak 2000 600 149244 148591 0.44%
Double Peak 2000 800 149987 149275 0.48%
Double Peak 2000 1000 150419 149714 0.47%
Double Peak 4000 200 161951 161364 0.36%
Double Peak 4000 400 164758 163741 0.62%
Double Peak 4000 600 165941 164764 0.71%
Double Peak 4000 800 166738 165404 0.81%
Double Peak 4000 1000 167237 165867 0.83%
Double Peak 8000 200 178303 176554 0.99%
Double Peak 8000 400 185741 183065 1.46%
Double Peak 8000 600 187729 184624 1.68%
Double Peak 8000 800 188959 185541 1.84%
Double Peak 8000 1000 189832 186200 1.95%
Double Peak 16000 200 186303 184554 0.95%
Double Peak 16000 400 199976 193444 3.38%
Double Peak 16000 600 203725 196844 3.50%
Double Peak 16000 800 205674 198940 3.38%
Double Peak 16000 1000 206989 200439 3.27%




