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a b s t r a c t 

An Energy Performance Contracting (EPC) is a financing agreement offered by general contractors that 

enables cost savings from reduced energy consumption to building owners. To create such an offer, the 

contractor has to provide an energy consumption threshold and a measurement plan. 

This article aims to draw some recommendations to choose an appropriate approach to provide the 

information necessary to create the contract, regarding computation time budget, expected accuracy and 

type of information provided. 

To get these results, we couple thermal simulations to various uncertainty and sensitivity methods. 

We first compare screening and differential sensitivity to reduce the number of inputs of the statistical 

study. Then, we analyze various uncertainty analysis methods to set an appropriate energy consumption 

threshold, considering the input uncertainties and the study context (Quadratic combination, directional 

and importance sampling and reliability methods). 

Sensitivity analyses in various input spaces are then carried out to identify the most critical contrib- 

utors to energy levels to create the measurement plan. Finally, two metamodeling approaches are tested 

to reduce the overall computational time: Kriging and sparse polynomial chaos. 

These methods are tested and compared on a 40 0 0 m ² office building in Nantes, France. The resulting 

recommendations can be applied to any building, depending on the model regularity, the number of 

uncertain parameters and the objective of the study. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Since buildings are responsible for around 40% of total energy

1] , many initiatives have been developed to build more sustain-

ble buildings. For instance, in the European Union, all new build-

ngs have to be “nearly zero energy” by 31 December 2020 [2] .

ith this in mind, Energy Performance Contracting (EPC) is be-

oming a key priority for decision makers. 

EPC is an innovative financing arrangement that enables cost

avings from reduced energy consumption. Usually offered by gen-

ral contractors, it allows building users to be ensured of the

nergetic performance of their building. Indeed, building users

re paid by the contractor if the measured energy consump-

ion of the building does not meet the contract requirements.

n the contrary, if the building is more efficient than expected,

he contractor can earn a financial reward. In some cases, the
∗ Corresponding author at: ENGIE Axima, 11 rue Nina Simone 440 0 0 Nantes, 

rance. 
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ontractors offer to repay the cost of installing energy conser-

ation measures. The terms of the contracts are defined at the

ery beginning of a building project, before the construction starts.

wo crucial information has to appear in this type of contracts:

n energy consumption threshold and a measurement plan to

onitor critical parameter and identify the reason of a possible

verconsumption. 

Before building construction starts, thermal simulation tools are

ften used to predict the required energy levels [3] . User behav-

or and climate play a significant part in the levels needed by the

uilding [4] . Thus, energy consumption should be adjusted based

n some variables reflecting the actual occupancy and climate dur-

ng the guarantee period. Due to lack of certainty with regard to

nknown parameter levels at the design stage, or manufacturing

efects at construction stage, building and HVAC systems need to

e measured by uncertainty analysis. This article focuses on the

pecific parameters that the contracting companies are responsible

or measuring as part of the performance guarantee. 

As thermal simulations are carried out during the design phase,

 significant amount of input data is still hypothetical and sub-

ect to change. Therefore, coupling a simulation with uncertainty

https://doi.org/10.1016/j.enbuild.2018.02.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enbuild
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2018.02.021&domain=pdf
mailto:lisa.rivalin@engie.com
https://doi.org/10.1016/j.enbuild.2018.02.021
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and sensitivity analyses allows taking into account the inputs

uncertainty to get the necessary information for an EPC. Defining

a performance guarantee requires two steps: 

- State a consumption threshold for the performance guarantee

taking into account the uncertainties. 

- Identify the critical parameters (quality procedure) during the

design phase in order to reduce the risks of non-compliance of

the contract. 

This study aims to analyze the suitability of various uncertainty

and sensitivity analysis methods for building the EPC and propose

a method for practical use. Part 1.1 and 1.2 define the concepts

of uncertainty and sensitivity analysis and how and why they are

currently applied in the building field. 

1.1. Sensitivity analysis 

Sensitivity analysis methods are applied to study a model re-

sponse to the variation of input data in order to identify the im-

pact on the output. It provides valuable information on the model,

such as understanding what is influencing the levels of the key pa-

rameters and their interactions. Sensitivity analysis methods aim

to identify the most influential parameters in order to reduce their

uncertainty, to simplify the statistical model by eliminating non-

influential inputs or grouping correlated inputs. Sensitivity analysis

methods can also be used to check whether the physical model

correctly describes the phenomenon and to refine the input space

by removing absurd realizations. 

Saltelli classified different approaches of sensitivity analysis [5] :

• Local methods: where one parameter varies at a time, the

other being set. 
• Global methods: quantifying the influence of the parameters

on their whole variation range to determine their impact on the

output, ordering them by their level of importance. 
• Screening methods: covering all the input space to determine

the most influential inputs qualitatively with a few simulations.

Local and global methods provide a quantitative result deter-

mining the weight of each input variable on the outputs, whereas

screening methods give qualitative results highlighting parameters

with important or negligible effects relative to each other without

knowing their global impact. 

Local differential sensitivity analysis methods are widely used

in building simulation. Macdonald implemented a local sensitivity

analysis method (differential sensitivity) in ESP-r [6] , a modeling

tool for building performance simulation. Westphal and Lamberts

[7] applied the influence coefficient suggested by Lam and Hui

[8] to select and sort by importance the parameters that should be

calibrated during the dynamic thermal simulation. Merheb [9] rec-

ommends using local sensitivity analysis to reduce the number of

parameters to 20 in order to build a metamodel to study the un-

certainty and sensitivity of the building model. Other local meth-

ods based on approximation models (FORM/SORM) exist in statisti-

cal literature but are not yet applied in building performance case

studies. 

Unlike local methods, global methods are employed to study

the impact of parameters throughout the input space. A large num-

ber of simulations are run to collect sufficient samples. There are

two principal types of global methods: linear regression (Pear-

son, Spearman, and derivatives as SRC – Standard Regression

Coefficient- and PRCC - Partial Rank Correlation Coefficient) and

variance decomposition indices (Sobol). 

SRC and PRCC are commonly used in building simulation sen-

sitivity analysis. Domínguez-Muñoz undertook an SRC sensitivity

analysis on peak cooling loads calculations to identify the inputs

for uncertainty analysis [9] . Breesch and Janssens [10] performed a
lobal sensitivity analysis by calculating SRC coefficients after per-

orming a Monte Carlo experiment. 

Sobol indices can be calculated when the physical model com-

uting time is low, after having eliminated the less influential pa-

ameters with local or screening methods. Faure [11] used the FAST

ethod to compute those indices in a hybrid model of building en-

elope to measure the impact of input parameters on the internal

olume temperature of a solar collector. Spitz [12] compared FAST

nd Monte Carlo sampling methods to get Sobol indices to identify

he impact of the inputs: FAST is faster and more accurate than the

ampling method but harder to implement. Goffart [13] calculated

obol indices using the Mara sampling method [14] to determine

he most influential inputs of a dynamic thermal simulation model.

erthou [15] computed those indices using a Latin Hypercube sam-

ling method, in the validation step of its gray-box model of the

uilding to check the validity of input parameters. 

When a complex model requires a large number of input pa-

ameters, screening methods are intended to analyze the build-

ng model quickly, in order to eliminate non-influential inputs.

creening methods do not require entering inputs as distributions,

ut discrete levels. The most well-known screening procedure is

he Morris method. De Wit [16] and Heo [17] applied Morris

ethod as a preliminary stage to remove the least influential in-

uts. Bertagnolio [18] and Robillart [19] also employed this method

s an upstream study to retain influential inputs to calibrate a

uilding model. 

Screening methods provide qualitative analysis of the inputs in-

uencing one output and are often used before uncertainty or sen-

itivity analysis to exclude negligible inputs. Local sensitivity anal-

sis focuses on the impact of the inputs on a target area of the

nput space. Global methods give more accurate results but require

 larger number of simulations. It is therefore advisable to couple

creening methods with uncertainty propagation analysis or to use

hem for sub-parts of a global building model. 

.2. Uncertainty analysis 

Uncertainty propagation in numerical models assesses the con-

equences of a lack of knowledge about the input parameters on

odel outputs. There are two principal types of uncertainty anal-

sis methods: local approximations (Taylor decomposition) and

ampling methods (for instance: Monte Carlo, Latin Hypercube

ampling). The latter alone provides a full distribution of the quan-

ity of interest. 

Taylor decomposition is a simple method that cannot be used in

he case of a very non-smooth model because of the risk of having

naccurate approximations and incorrect results. Brohus [20] ap-

lied Taylor decomposition to determine the uncertainty of heat

osses through natural ventilation by coupling the local sensitiv-

ty method with a CFD model. These results are compared with a

onte Carlo approach, and there is no significant difference. 

The Monte Carlo method is broadly used in the building field

o achieve the propagation of uncertainty by analyzing distribu-

ion or dispersion. Macdonald [21] compared standard Monte Carlo

ethods stratified and Latin Hypercube applied to dynamic ther-

al simulation models. He concluded that Latin Hypercube Sam-

ling is more robust than the Monte Carlo method and does not

resent any bias of sampling. Merheb [22] , Eisenhower [23] and

offart [13] performed building and weather uncertainty propaga-

ion studies using Energy Plus software. Parys [24] used the Monte

arlo method to model occupant behavior. 

This overview shows that numerous methods are used to study

he uncertainties of building envelope, weather, and occupant be-

avior and, to a lesser extent, to HVAC systems. 
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Fig. 1. Uncertainty methods. 
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. Selection of methods 

This section shows what the information provided by the iden-

ified methods is and how to classify them. The aim is to select

hich statistical methods can be used for an EPC. 

Then, the selected methods are tested (part 3) on an office

uilding to compare the computation time and the provided re-

ults. 

.1. Identified methods 

The three different objectives of applying uncertainty methods

o physical or statistical models are identified below ( Fig. 1 ): dis-

ribution, dispersion and reliability analysis. 

• Distribution analysis gives the full distribution of the variable

of interest. 
• Dispersion analysis provides mean, variance and moments of

superior orders (kurtosis, skewness). 
• Reliability analysis sets the probability of exceeding a thresh-

old (a failure probability); these methods are not frequently

used in thermal building studies. 

These three objectives are relevant to establishing an EPC. Fig. 2

hows how the identified methods can be applied to reach these

bjectives and how to perform a sensitivity analysis. The meth-

ds reported in Fig. 2 are applied in the next part of this paper.

nce the parameters of the study are selected by a screening or a

ocal sensitivity method, a path will be chosen depending on the

bjectives. If a global distribution of the output is required, only

ampling methods will be appropriate. If a quick assessment of the

ean and standard deviation of the model is required, local sensi-

ivity analysis will be selected. 

.1.1. Screening methods 

If a hypothetical building model contains more than 50 inputs,

he first step of the process is to reduce the number of these in-

uts by applying a screening method that scans the input area to

emove the ones that are least influential. Two methods, the Mor-

is and the Cotter, have been identified. 

Morris method consists of randomly repeating r times an OAT-

tyle (One at a time) experiment. Each input is discretized into

ome levels depending on the number of repetitions. This method

equires r × ( p + 1 ) simulations, with r being the number of itera-

ions of the OAT experiment and p , the number of parameters [25] .

orris is a robust method that requires few assumptions about the

nputs. The number of iterations is generally between 10 and 40

26] . Thus, the number of required simulations is low compared to

ther global sensitivity analysis methods such as Sobol indices. 

Cotter’s method requires 2 p + 2 experiments (p being the num-

er of parameters) and consists of testing the model by setting

ach parameter to maximum or minimum levels [27] . This method

rovides a quick estimate of the parameters’ effect on the model
ut can undervalue some effects and can lead to misinterpretations

f the results. For instance, two factors with opposite sign effects

ay cancel themselves out, regardless of their importance [28] .

ince this method can miss significant parameters, this method is

iscarded. 

Only the Morris method will be tested and compared to

uadratic Combination (part of the approximation methods that

ead to importance factors - see Fig. 2 ) to understand how these

ethods complement each other and to suggest when to use it

uring the development of the EPC. 

.1.2. Approximation methods 

There are three families of Approximation methods: 

• Quadratic Combination that gives both sensitivity (importance

factors around the mean) and moments 
• The First Order Reliability Model and the Second Order Reliabil-

ity Model (FORM and SORM) that set failure probability (proba-

bility to exceed a predefined threshold) and sensitivity analysis

around the threshold 

• Regression methods that provide sensitivity and input correla-

tion information 

Quadratic combination: Quadratic Combination is based on the

aw of total variance which states that the variance of a random

ariable can be expressed as a function of its depending variances.

o do that, the model is locally linearized by a Taylor expansion

o first or second order, and then the total variance law is applied.

his method is suggested in the Guide to the Expression of Un-

ertainties Measurements [29] to conduct uncertainty analysis. To

ompute sensitivity indices, it is necessary to assign to each input

arameter a nominal value around which it will vary. The difficulty

f this method lies in the determination of partial derivatives and

ay require considerable time to calculate. The model must not

ave any significant non-regularity, or the variation tolerance must

ot be too high [30] to justify the Taylor approximation. Neverthe-

ess, Quadratic Combination can quickly produce a dispersion anal-

sis only requiring the mean and the covariance matrix of the in-

uts. Quadratic Combination also provides importance factors with

nly 2 p simulations ( p being the number of parameters). 

FORM and SORM methods: FORM and SORM methods assess the

ailure probability and the sensitivity analysis of the parameters

ear the failure point. The failure plan is considered as a half-

lane (FORM) or quadratic surface (SORM). The approximation is

heoretically verified if the failure plan is linear (or quadratic) in

hysical space and if the input variables are normal. The further

he study is from these assumptions, the worse the approximation

31] . The advantage of FORM and SORM is that calculation time is

educed compared to other simulation methods. Computing time

s the same regardless of the desired precision of failure probabil-

ty. Nevertheless, the approximation is not always accurate, and the

hysical model has to be differentiable. FORM and SORM methods

re the only ones that provide the failure probability without hav-

ng to study all the input space. 

Regression methods: Regression methods require the model to

e linearizable in order to get an acceptable approximation. The

odel needs at least n + 1 simulations, with n being the num-

er of inputs. Before using regression methods, it is necessary to

heck if the model is linear. If so, Pearson’s Correlation Coefficient

CC), PCC (Partial Correlation Coefficient) and SRC (Standardized

egression Coefficients) are usable. If the model is not linear but

onotonous, Spearman’s Correlation (SC), SRCC (Spearman Rank

orrelation Coefficient), PRCC (Partial Rank Correlation Coefficient)

nd SRRC (Standardized Rank Regression Coefficients) are adapted

32] . If the model has non-linear and non-monotonous trends, re-

ression methods cannot be employed. 



492 L. Rivalin et al. / Energy & Buildings 166 (2018) 489–504 

Fig. 2. Global uncertainty and sensitivity analysis literature review. 
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2.1.3. Sampling methods 

Sampling methods consist in carrying out a large number of

simulations using different ways to create the input samples.

Monte Carlo is the most common because the samples are gen-

erated randomly. However, the major disadvantage of this model

is the computation time needed. In order to obtain an output dis-

tribution, numerous random simulations of the model have to be

carried out, which can be very time-consuming for complex mod-

els [33] . 

Convergence acceleration sampling methods : Convergence accel-

eration sampling methods can be used. Sampling is not random

but generated according to the following rules: 

• The Stratification method consists of partitioning the sup-

port of the input distributions into disjoint sub-domains with

equiprobable intervals. Then, a random selection is performed

inside the sub-domains. 
• The Latin Hypercube method is like stratification, except that

the points are not selected in each stratum but a subset, such

that no pair of subassemblies should have the same value for

the same parameter [21] . 
• The principle of the quasi-Monte Carlo method is to replace

random sequences of Monte Carlo methods by low discrepancy

sequences, built deterministically to present a low dispersion.

There are several standard low discrepancy sequences, such as

Halton, Faure or Van der Corput sequences [28] . 

Reliability methods : Reliability methods allow us to compute the

probability of exceeding a predefined threshold. The other sam-

pling methods (Stratification, Latin Hypercube, and Monte Carlo)

offer reliability results too. Some methods have been specially de-

veloped to target the failure space. 

• Importance sampling consists of replacing the initial input

probability density by a more efficient one regarding failure and

then centering the sampling around the failure field [34] . 
• Directional Sampling provides an estimate of the failure prob-

ability by cutting input space into quadrants [35] . This method

randomly probes the input space among several radiations and

directions. 

Both methods will be tested. 

Sensitivity analysis methods (variance decomposition): Variance

ecomposition methods consist in creating numerous samples to

ompute sensitivity indices all over the input space. Sobol indices

re calculated as part of the variance. Saltelli and Chan [5] created

otal indices that allow us to compute the global impact of a pa-

ameter, including its interaction with other parameters. The FAST

ethod suggests decomposing the variance using Fourier transfor-

ation. The general concept of the method is based on the idea

hat the oscillation of the response of the model around its natural

requency will be influenced by the natural frequencies of the in-

uts. The more influential an input, the more it will impact the os-

illation of the response [35] . Computing Sobol indices using sam-

ling or FAST methods are too time-consuming to be tested in a

uilding model, but they can be used for local studies. 

.1.4. Metamodels 

Metamodels replace the physical model by running a swift code

hat performs a building simulation in less than one second. A

tandard thermal dynamic model takes more than a minute. 

Polynomial chaos expansion consists of the projection of the

odel output onto the basis of orthogonal polynomials in the in-

ut space [36] . This allows us to represent the model output vari-

bility with regard to the inputs. Sparse chaos expansion projects

he model output onto an adapted basis in which only the most

ignificant coefficients will be taken into account to reduce the cost

f the metamodel creation procedure [37] . 

The Kriging metamodel, also known as “Gaussian process” is a

odel interpolating the responses as a mapping: the model per-

orms a linear combination of the data, taking into account the
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Fig. 3. Selected methods for uncertainty and sensitivity analysis. 
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istances between data and results. Sparse polynomial chaos ex-

ansion and Kriging are compared. 

.2. Selected methods to be tested 

Given the review carried out, the selected methods, which will

e numerically tested in a study case, are shown in Fig. 3 . 

. Case study description 

.1. Building description 

The case study is a 40 0 0 m ², two-floor office building in Nantes

West of France). It has the following characteristics: 

• 2 air handling units (AHU) to ensure indoor air quality: 

◦ 1 for the ventilation of the offices (chilled beam) and the

storage zones. 

◦ 1 for the showroom areas 
• 2 reversible Heat Pumps: 

◦ North: supplies 3 networks, underfloor heating systems,

north chilled beams (ground floor) and AHUs 

◦ South: supplies ground and first-floor chilled beams. 

The thermal zoning is shown in Annex 1 . 

.2. Probabilistic model 

The study focuses on 49 uncertain parameters of the build-

ng and its systems: AHUs, heat pumps, water networks, building

alls, building glazing, infiltration, ground exchanges, set points

nd occupancy. 

Parameter selection followed 3 steps: 

• Pre-selection of physical parameters according to the follow-

ing considerations: 
◦ Replace non-physical and discrete parameters with physical

and continuous ones. 

◦ Discard time-dependent parameters (such as weather tem-

perature, occupancy scenarios) which should be preferably

used as corrective factors of energy consumption based on

real weather and occupancy data in the EPC process. 

◦ Do not consider the parameters that are unlikely to be

changed during the construction stage (building dimen-

sions). 
• Parameter gathering: this stage consists of identifying param-

eters that can be grouped. The idea is to use only one distri-

bution for the regrouped parameters by using a coefficient that

will multiply all the parameters of the group in the same way.

A component which is used several times in the building, for

instance, a pump, could be regrouped to get an overall effect

instead of a component-by-component effect. Secondly, by con-

sidering the building commissioning procedures, one can de-

fine links between the uncertainties of some parameters. For

instance, all the airflows are checked together, following a pre-

cise order. Thus, all the airflows from the same branch in a

group can be gathered. 
• Parameter aggregation based on an upstream uncertainty

study: a global building simulation model is composed of sub-

modules which can be run independently. Thus, instead of con-

sidering each parameter as an input for the global building sim-

ulation model, the user can perform several upstream local un-

certainty analyses and then use the result as an input of the

global model. To maintain the independence of the parame-

ters, the parameters used in the local models cannot be consid-

ered as inputs to the global model. Rivalin et al. [38] presented

a method to aggregate fan parameters into a single uncertain

variable. 

The selected parameters are the following (see Table 1 ): 



494 L. Rivalin et al. / Energy & Buildings 166 (2018) 489–504 

Table 1 

Uncertain Input parameters for the case study. 

Category Number of parameters 

AHUs 11 

Heat pumps 8 

Water networks 16 

Building walls 2 

Building glazing 2 

Infiltrations 1 

Ground exchanges 1 

Set points 5 

Occupancy 1 

Lighting 1 

Equipment 1 

Total 49 
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Since the heat pumps are generally modeled in building energy

simulation tools by using performance as functions of outside tem-

perature, a specific methodology has been used to define the un-

certainties. To take into account the uncertainties of the heat pump

performance variation with outside temperature, the performance

matrices (the capacity of the heat pump and Coefficient Of Per-

formance) have been linearized, and the uncertainties have been

applied to each coefficient of the two linear regressions. 

The source of the mean values is the manufacturer’s catalogs

(for energetic facilities) and architects (building geometrical and

thermal data). The occupancy data comes from the client or are

assumptions. Three types of probability density are chosen to char-

acterize the parameters, depending on the knowledge accorded to

the parameters: the amount of confidence is reflected by the dis-

tribution’s width. 

• Uniform (min, max) distribution : min and max are the mini-

mum and maximum values that an expert can suggest for this

parameter. This distribution should be used when there is an

equal probability that the “true” value is situated between the

bounds. Uniform distribution will also be used for inputs re-

lated to the behavior of the occupants. 
• Beta (mean, standard deviation, min, max) distribution: This

asymmetrical distribution will be used when the data comes

from manufacturer catalogs; it is assumed that a margin of er-

ror has already been taken into account when the data is sup-

plied. This distribution is appropriate if the data is considered

as “optimistic” or “pessimistic”. 
• Truncated Normal (mean, standard deviation, min, max):

Normal distributions are truncated to prevent outputs from tail

bounds of the distribution causing incorrect results. This distri-

bution is used when the parameters are not from catalogs but

can be measured during the commissioning process (airflows,

for example). 

The selected input distributions are detailed in Annex 2 . 

3.3. Experimental environment 

Several sensitivity and uncertainty analysis methods identified

in Part 2 are studied here. In this case study, there is only one

output studied which is the total annual electricity consumption

of the building and its systems (heat pumps, pumps, fans, light-

ing, and equipment). This model does not contain any discrete

variables. 

The thermal simulation of the building is carried out on TRN-

SYS17 [39] and runs for 11 min (1-h time step for a year simu-

lation) in a workstation equipped with an Intel Xeon chip with 8

CPU cores (16 threads) E5-2637 CPU 3.5 GHz. 

The statistical methods described part 2 are implemented in

Python libraries like OpenTURNS [40] , used to perform the anal-

yses of this paper. Commercial tools such as Optimus by Noesis
olutions [42] or PhimecaSoft [43] offer several of the suggested

ethods wrapped in a graphical user interface. 

For this study, statistical experiments have been programmed in

ython 2.7, using the OpenTURNS library in particular [40] that of-

ers many uncertainty and reliability methods as well as efficient

oupling tools for TRNSYS. The program is parallelized 16 times

chieving as many simulations as processors. To do that, the joblib

ackage is used, included in the scikit-learn library [41] . 

Screening and local sensitivity methods are first applied to re-

uce the number of parameters. Then, distribution and dispersion

nalysis are applied to get the moments. The next steps consist in

omparing several reliability methods and then applying sensitiv-

ty results. Finally, 2 metamodels (Kriging and sparse polynomial

haos expansion) are studied. 

. Results and discussion 

.1. Screening methods 

Screening methods are performed as a preliminary test to the

ensitivity and uncertainty analyses. It helps to avoid studying

on-influential parameters by reducing the dimension of the study.

Morris method implementation requires choosing the number

f repetitions of the OAT design of experiments (doe). 

r × ( p + 1 ) simulations are necessary to obtain the relative sen-

itivity of the parameters, r being the number of OAT doe and p ,

he number of inputs. Given the study of Ruano et al. [26] and the

ength of the simulations, p = 10 will be chosen. 

Morris method is compared to a simple local sensitivity anal-

sis method: The Quadratic Combination which is very quick be-

ause it requires only 2 × p building simulations. This method con-

ists of assessing the sensitivity of every parameter close to its av-

rage, close to 0.5 ×σ , σ being the standard deviation. This 49-

arameters study required the following computation times, see

able 2 : 

able 2 

ocal sensitivity method times. 

Method Number of 

simulations 

Calculation time (by 

parallelizing on 16 threads) 

Quadratic Combination 98 52 min 

Morris R = 10 500 4 h 05 min 

Morris method provides, the following values for each parame-

er: σ (standard deviation of the elementary effects, representative

f the interaction and linearity effect of parameters) and μ∗ (the

ean of the absolute value of the elementary effect: representa-

ive of the importance on the output) (see Fig. 4 ). 

The ranks obtained by the Morris method or Quadratic Com-

ination (see Fig. 5 ) are very similar, except for slight changes be-

ween groups, but Quadratic Combination requires 4 times less cal-

ulation than the Morris method. 

The Morris method provides additional information such as the

etection of non-linear effects of the parameters and the interac-

ions between factors. Yet, this information is known a priori when

he user builds its own model and the input distributions. Thus,

he extra time needed for the Morris method does not seem justi-

ed in this case. Therefore, it is preferable to use a quick method

or local sensitivity analysis to quickly identify the parameters to

etain for the uncertainty analysis. 

However, if the model contains parameters with very non-

mooth effects (for instance, threshold effects correlated with sev-

ral input parameters), the Quadratic Combination is not appro-

riate anymore, so Morris method is recommended to select the

ost influential input parameters. Table 3 summarizes the advan-

ages and limitation of using either Quadratic Combination or Mor-

is method. 
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Fig. 4. Morris results (the parameters in the legend are described in Annex). 

Fig. 5. Importance Factors obtained by Quadratic Combination . 
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Even if it is obvious that 9 parameters are really important (cir-

led on Fig. 4 .) and would be enough to pursue the study, the 24

ost influential inputs will be selected to lead a study as complete

s possible. This allows us to test the robustness and accuracy of

he probability algorithm with more than 20 parameters. Moreover,

restaux [36] showed that polynomial chaos expansion is limited

o a moderate number of inputs (less than 20). We would like to

heck if in this case, the LARS (least-angle regression) algorithm
able 3 

uadratic combination and Morris advantages and limitations. 

Method Quadratic combination 

Family Local approximation 

Quick computing method X 

Can detect non-linear effect and 

interactions between factors 

Can be applied to non-smoothed 

model 

Other comments The method focuses on the impact of the in

target area of the input space. 
sed to create a sparse polynomial chaos expansion allows us to

vercome this and study a model with more than 20 inputs. 

The parameters that are selected are the followings, ranked by

mportance: 

1) Heating set point temperature [18–22 °C] 

2) Lighting power multiplier [0.9–1.1] 

3) Equipment power multiplier [0.9–1.1] 

4) Supply fan power of AHU 1 (by introducing an aggregated pa-

rameter built from an upstream uncertainty analysis) 

5) Extract fan power of AHU1 (by introducing an aggregated pa-

rameter built from an upstream uncertainty analysis) 

6) Supply fan power of AHU2 (by introducing an aggregated pa-

rameter built from an upstream uncertainty analysis) 

7) Extract fan power of AHU2 (by introducing an aggregated pa-

rameter built from an upstream uncertainty analysis) 

8) Air tightness of the building [1.5–1.7 m 

3 /h/m ²] 
9) Cooling set point temperature [25–27 °C] 

Beyond those 9 parameters, the following represent less than

% of the effects on the output. 

10) Air leakage of AHU 1 coefficient [0–0.2] 

11) South HP matrix performance (by introducing a corrective

factor) [0.8–1.1] 

12) Airflow distribution parameter AHU 2 [ −0.2–0.2] 
Morris 

Screening 

X 

X 

puts on a The results depend on the number of iterations of the OAT design 

of experiment and can differ from one experiment to another. 
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Fig. 7. Distribution obtained with Latin Hypercube after 448 simulations. 
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13) Air leakage of AHU 2 coefficient [0–0.2] 

14) North HP matrix performance (by introducing a corrective

factor) [0.8–1.1] 

15) Nominal North Heat pump EER [ 2 –3 ] 

16) Nominal South Heat pump EER [2.7–3.6] 

17) Auxiliary electric power coefficient of South HP in cold and

hot modes [0–2] 

18) Heat recovery efficiency of AHU1 [0.65–0.8] 

19) Building heat loss multiplier [1–1.2] 

20) Nominal user number multiplier [0.8–1.2] 

21) Auxiliary electric power coefficient of North HP in cold and

hot modes [0–2] 

22) Total thermal capacitance of zones (air plus any mass except

walls) [50 0–10 0 0 kJ/K] 

23) Blowing set temperature of AHU 1 [15–17 °C] 

24) Overall South HP network losses coefficient in unheated area

[0.0 013–0.0 07 kW/K] 

Morris methods and Quadratic Combination allow us to iden-

tify, for any physical models in various domains, what the most

important parameters are. The previous ranking may be very dif-

ferent for other types of buildings, with different size, systems,

climates and in other sectors. The ranking also depends on the

“confidence” of the input data, traduced by the input distributions

width of each parameter; the larger the distribution will be, the

more it might impact the output. 

4.2. Distribution and dispersion analysis 

Now that the number of parameters has been reduced from 49

to 24, a propagation of uncertainty is performed to obtain the dis-

tribution and dispersion of the response. Sampling methods are

the only ones that can offer the entire distribution of the output.

These methods are used to determine from scratch a consumption

threshold for the contract. 

Sampling method computational time does not depend on the

number of inputs but the required output precision. To obtain dis-

tributions and dispersions, the central tendency (mean and stan-

dard deviation) is studied by the comparison of two methods: the

“standard” Monte Carlo method and Latin Hypercube. We wanted

to obtain a mean estimation with a relative error of the order of

magnitude of 10 −5 . The resulting annual consumption will be plot-

ted by kernel smoothing overlaid over the histogram. 

Monte Carlo required 1408 simulations to reach the awaited

precision, whereas Latin Hypercube required 448 simulations. The

obtained results are shown respectively in Figs. 6 and 7 . 
Fig. 6. Distribution of total electric consumption obtained with Monte Carlo after 

1408 simulations. 
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In this case, Latin Hypercube allows us to obtain a full distri-

ution of the output in less time than Monte Carlo. It should be

oted that sampling methods also allow us to obtain the results of

everal outputs simultaneously. By reading the distribution graph,

 consumption threshold can be assessed. 

The Quadratic Combination method provides first order mo-

ents, with 2 × p ( p being the number of parameters) simulations:

ean and standard deviation. However, the method cannot give

he total distribution. This method cannot take into account dis-

rete parameters. Unlike sampling methods, the experiment has to

e repeated as many times as there are outputs and discrete pa-

ameters levels to study. Nevertheless, this method offers a rea-

onable estimate of the mean and standard deviation with a few

imulations, provided the model does not have any significant non-

moothness (as this is the case here), see Table 4 . 

able 4 

ispersion analysis method comparison. 

Monte Carlo Latin hypercube Quadratic combination 

Mean 107.2 MWh 107.3 MWh 107 MWh 

Standard deviation 4.43 MWh 4.46 MWh 4.46 MWh 

Number of simulation 1408 448 48 

Simulation time 13 h 38 ′ 3 h 54 ′ 25 ′ 

To conclude, Latin Hypercube and Quadratic Combination meth-

ds are complementary and employed depending on the desired

bjective: fast and straightforward moment estimation or full dis-

ribution analysis. The Quadratic Combination provides a reason-

ble estimate of the mean and an order of magnitude of the stan-

ard deviation. This method is beneficial to identify an energy con-

umption threshold quickly. For instance, it is possible to set the

hreshold to the mean plus 3 or 4 times the estimated standard

eviation. Unlike the Quadratic Combination method, the sampling

ethods allow us to get the overall output dispersion, to study

everal outputs simultaneously and to include discrete parameters.

atin Hypercube is always preferable to standard Monte Carlo since

t can describe the entire input space and converges more quickly. 

Thus, in the case of a smooth model with a few discrete param-

ters, Quadratic Combination will be used to assess the central ten-

ency. If the probabilistic model contains several levels of discrete

arameters, and multiple outputs are to be studied, the Quadratic

ombination method will be performed as many times as there are

utputs and discrete levels. In this case, the Quadratic Combination

ethod for smooth models loses its appeal if the model presents

ver 9 levels of discrete parameters or outputs to study. 

This study has been performed on the 24 selected parameters.

ampling methods’ (Monte Carlo and Latin Hypercube) computa-
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Table 5 

Quadratic combination and sampling methods advantages and limitations. 

Method Monte Carlo Latin hypercube Quadratic combination 

Family Sampling method Sampling method Local approximation 

Simulation time 13 h 38 ′ 3 h 54 ′ 25 ′ 
Can be applied to non-smoothed model X X 

Can provide the overall output distribution X X 

Can provide the results of several outputs 

simultaneously and study discrete 

parameters 

X X 

Can be applied to non-smooth models X X 

Other comments This is a random sampling: 

some area of the input space 

may not be represented 
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ional time is not linked to the number of parameters. Thus, adding

he 15 extra variables did not impact the total computational time,

nd slightly improved the accuracy of the results. Nevertheless,

etting up the 15 extra parameters requires a few hours’ work, and

hen the minimal accuracy provided by these parameters compli-

ated the analysis unnecessarily. Moreover, as Quadratic Combina-

ion’s computational time is directly linked to the number of pa-

ameters — the result is provided after 2 × p ( p being the number

f parameters) simulations, using the 15 extra parameters will in-

rease the computational time without significantly improving the

ccuracy of the results. Thus, in a real case, only the 9 main pa-

ameters would have been used, see Table 5 . 

.3. Reliability methods 

Reliability methods compute the probability of exceeding a

iven threshold. These methods can be useful in the context of an

PC to characterize and optimize an existing threshold. This kind

f situation occurs in the case of a massive retrofit or the accor-

ance of an energy performance label. This method is also useful

hen the threshold has been set according to an approximation

ethod, to check the result. To be consistent with the overall un-

ertainty comparison, we decided to set the threshold arbitrarily to

15 MWh, regarding the previous dispersion. 

This study aims to identify reliability methods where overall

omputational time is less than 24 h. 

Sampling methods are useful to compute the probability of

xceeding a threshold by calculating the ratio between the total

umber of simulations and the number of simulations in the fail-

re space. Monte Carlo or Latin Hypercube allow us to do this.

owever, the more precise the failure probability, the longer the

omputational time. This is why reliability methods, such as di-

ectional sampling, importance sampling, and Quasi-Monte Carlo,

ased on the sampling optimization have been created. Every sam-

ling method provides a confidence interval around the obtained

esults, except Quasi-Monte Carlo which is not a random sequence.

Directional Sampling requires a preliminary isoprobabilistic

ransformation. The transformed input random variables are in-

ependent, standard Gaussian variables (mean = 0, standard devi-

tion = 1). This method consists of randomly scanning the input

pace by radius and assessing the intersection of each direction

ith the boundary of the failure space, to take into account the

ontribution of the new direction towards the probability of ex-

eeding the threshold. Therefore, each step of calculation depends

n the previous time step. Thus, it is not possible to carry out the

rocesses simultaneously. As a consequence, this method is very

ime-consuming. Still, it has been tested to check if the time gain

akes it competitive with a conventional method distributed over

6 processors. After 24 h, that is to say, more than 100 simulations,

he model did not converge. 

Importance Sampling requires replacing the initial distribution

y another one that will quickly approach the failure space. To do

hat, an importance distribution is created to generate new sam-
les. The major drawback of this method is the fact that it is not

asy to know before the experiment how to create an importance

istribution. This method will be coupled with FORM to determine

n importance distribution. 

The reliability approximation methods are FORM and SORM. As

or the Directional Sampling method, it requires converting the

nput space into a standard one. Then, the probability of failure

s approached by a half-plane (FORM) or by a quadratic surface

SORM). The distance between the origin of the standard space and

he nearest limit point of the failure space from the origin is as-

essed using an optimization algorithm and provides the threshold

xceedance probability. 

FORM’s advantage is the quick computational time, but it does

ot deliver the result of the confidence interval. As mentioned be-

ore, we suggest coupling FORM method with importance sampling

o define the importance distribution as a normal distribution cen-

ered on the standard point of failure calculated in FORM method

nd to get the interval of confidence of the output. SORM has

he same disadvantages as FORM method and moreover requires,

n this study case, 13 times more simulations than FORM to con-

erge. SORM can be very useful when the limit state function has

o be known accurately to apprehend small exceedance probability

as in nuclear safety, typically). In this case, it is not necessary to

onsider probabilities lower than 0.1%. Table 6 shows the result of

he comparison performed with the methods presented above with

 115 MWh threshold and a coefficient of variation of the desired

onfidence interval of 0.1. 

All reliability methods’ computational times are not linked to

he number of inputs. Thus, as previously, adding 15 extra param-

ters does not impact the total computational time but unneces-

arily complicates the study. 

To conclude, when only a threshold exceedance probability is

equired, FORM method is recommended. Even if FORM method

verestimates the results compared to the other methods, it pro-

ides an order of magnitude of the failure probability at least 13

imes faster than the other methods with a 30% error. Coupling

ORM method with importance sampling makes it possible to ob-

ain the confidence interval of the result still faster than other

ampling methods ( Table 7 ). 

.4. Sensitivity analysis 

Given the computational time of one simulation (11 ′ ), ap-

roximation methods cannot be compared to sampling sensitivity

nalysis methods. Indeed, computing Sobol indices would require

round 24,0 0 0 simulations to study the selected parameters, that

s to say, several weeks of computational time. 

FORM Importance factors are calculated with a threshold of

15 MWh (see Fig. 8 ): 

Importance factors help identify the uncertainty due to the pa-

ameters in the failure probability. Thus, the result of this method

s different in nature from Quadratic Combination’s importance

actors. We can see that the group of nine most influential factors
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Table 6 

Reliability methods comparison. 

Probability of exceeding the threshold Confidence interval Number of simulations Simulation time 

Monte Carlo 4.55% [3.6%; 5.3%] 2272 22 h 54 ′ 
Latin hypercube 4.7% [3.8%; 5.7%] 2048 19 h 55 ′ 
Quasi-Monte Carlo 4.2% – 2160 21 h 

Directional sampling No convergence after 24 h of simulations 

Importance sampling ( + FORM) 4.6% [3.8%; 5.4%] 1312 12 h 43 ′ 
FORM 6% – 100 58 ′ 
SORM 5.3% – 1301 12 h 32 ′ 

Table 7 

Reliability methods advantages and limitations. 

Family method 

Simulation 

time 

Delivers a 

confidence 

interval 

Monte Carlo Sampling 22 h 54 ′ X 

Latin hypercube Sampling 19 h 55 ′ X 

Quasi-Monte Carlo Sampling 21 h X 

Importance 

sampling 

( + FORM) 

Approximation, 

then Sampling 

12 h 43 ′ X 

FORM Approximation 58 ′ 
SORM Approximation 12 h 32 ′ 

Fig. 8. Importance Factors obtained by FORM in the neighborhood of the consumption 

threshold ( 115 MWh ) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. TRNSYS model and Kriging metamodel comparison. 
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is exactly the same in the neighborhood of consumption threshold

(115 MWh). As the FORM method’s cost is low, it can be applied

to different consumption thresholds to study the evolution of the

share of responsibility of the parameters in the probability of ex-

ceeding given thresholds. 

4.5. Metamodels 

The application of several sampling methods in the previous

parts showed that the total calculation time to get the output dis-

tribution (total annual consumption) or the probability of exceed-

ing a threshold is very high. Global sensitivity methods cannot be

directly used on the building model because the computational

time is more than a week. 

One solution is to approach the physical model built in TRN-

SYS with a much faster model constructed by analyzing the effect

of the random input variables on the outputs. This approximate

model can then be used to apply all the methods already studied

previously but in a reduced time. Two metamodel families can be

adapted to this study case: Kriging and Sparse Polynomial Chaos

Expansion. Kriging metamodels is a geostatistical method, used to

interpolate the response of the physical model and assess its un-

certainty, using a spatial basis. Polynomial Chaos expansion con-

sists of the projection of the model output on a basis of orthog-

onal polynomials in the input space [ 36 ]. Thus, the model output
ariability can be represented with regard to the inputs. The con-

truction of the sparse Polynomial Chaos basis is made thanks to

he LARS (Least-Angle Regression) that consists of identifying the

ost significant polynomials, and not all the terms of all the poly-

omials [37] . Both of these metamodels are unique in being able

o facilitate Sobol indices calculations. The goal here is to compare

nd select one of these metamodels for the case study. 

The accuracy of the built metamodels is characterized in two

ays: 

• Assess the leave-one-out error in the learning basis. The basis

is divided into two partitions: ( n −1) samples are used as the

training set, and the n th remaining observation is the validation

set. In this case, a 10 −5 error is acceptable. 
• Construction of a validation basis to compare the model and

metamodel results. The relative error of a metamodel is com-

puted as follows: 

E = max 
N 

∣
∣
∣
∣

M ( X i ) − ˆ M ( X i ) 

M ( X i ) 

∣
∣
∣
∣

(1)

here E is the error, N the number of simulations in the learn-

ng basis, X i the inputs of the simulation i, M ( X i ) the result of the

odel for X i , and ˆ M ( X i ) the result of the metamodel for X i . We de-

ided to select a metamodel if its relative error is less than 10 −2 .

he validation or both metamodels includes the results of 50 build-

ng simulations. 

.5.1. Kriging metamodels 

The metamodel created by Kriging requires us to know pre-

isely the covariance matrix of the original model. Fig. 9 shows

odel and Kriging metamodel results (created from 1400 learning

imulations) using 50 simulations for validation. The relative error

alculated is 3 . 14 × 10 −2 . The orange line corresponds to X = Y . It

hould be noted that the metamodel does not perfectly estimate
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Fig. 10. Evolution of the metamodel leave-one-out as a function of the chaos poly- 

nomial degree. 
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Fig. 11. Comparison of TRNSYS model and metamodel created by a sparse polyno- 

mial chaos expansion of degree 2, with 200 simulations. 

Fig. 12. Sobol indices obtained from sparse polynomial chaos. 

Fig. 13. Uncertainty propagation by Latin Hypercube obtained with the metamodel. 
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he model. In fact, the metamodel shows a systematic bias increas-

ng with the distance to the central value, although the validation

rocedure covers the same input and output space that the learn-

ng bas i s. 

This bias is probably caused by an overfitting issue. In-

eed, the leave-one-out error between the metamodel and model

eached 10 −30 . This problem occurs where there is a lack of data:

he model predicts with high accuracy the available points, but

rovides an abnormal result between the learning-basis points.

his result is due to the fact that, for a Kriging metamodel, 1400

ata for a 24-dimension input space is not enough. So, another

etamodel is tested: sparse polynomial chaos. 

.5.2. Sparse polynomial chaos 

24 parameters have been selected to test if the polynomial

haos expansion method allows us to use more than 20 parame-

ers. 

The number of terms T of a polynomial, with p being the num-

er of parameters and d the degree of the polynomial is: 

 = 

( d + p ) ! 

d! p! 
(2) 

Thus, the number of simulations necessary to create an accu-

ate metamodel depends on the degree of the polynomials and the

umber of inputs. Nevertheless, the expansion in sparse polyno-

ial chaos circumvents this problem by interpolating with fewer

imulations than the number of terms to calculate. For example,

n this case, with 24 parameters, beyond a sixth degree, the com-

uter does not have sufficient memory capacity for calculating the

oefficients of the polynomial. 

Therefore, given the fact that we have to build a 24-parameter-

etamodel, the time budget (number of simulations) is set to 200.

hen, we search for the optimal degree of polynomial expansion

o approach the model with 200 simulations in the learning basis.

he relationship between the metamodel leave-one-out error and

he polynomial degree is plotted Fig. 10 . 

Fig. 10 shows that the optimal degree is 2 and the leave-one-

ut error is 3 . 4 × 10 −5 . To build a polynomial chaos expansion of

 higher degree with a better accuracy, more learning simulations

re needed. 

Fig. 11 compares the model results ( x -axis) to the metamodel

 y -axis) for the approximation of the total annual electricity con-

umption, using 50 simulations for validation. It can be seen that

he approximation of the physical model by the metamodel gives

atisfactory results with a budget of only 200 simulations with
4 parameters. The relative error obtained is 3 . 27 × 10 −3 , so the

etamodel can replace the model. The X = Y line is plotted in or-

nge in Fig. 11 . 

One advantage is that determining the Sobol decomposition and

ensitivity indices is immediate once the polynomial expansion of

he model is known [36] . The first-order Sobol indices identify the
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Fig. 14. Selected methods to guarantee a building’s performance. 
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most influential model parameters. The degree 2 of the metamodel

built from 200 simulations is used to compute indices Sobol and

uncertainty analysis. Sobol indices obtained from the metamodel

are given in Fig. 12 . 

Propagation of uncertainties obtained by Latin Hypercube

thanks to the metamodel is given in Fig. 13 . 

Sparse chaos polynomial expansion allows us to approach a

physical model in a very efficient way, with less than 500 simu-

lations, depending on the number of parameters. 

The approximation of a model by a sparse polynomial chaos

works if the model is smooth enough with, for example, no thresh-

old effects. The user a priori has a clue of the smoothness of the

model since he generally builds the physical and statistical parts

of the model. However, in some cases, the non-smoothness is not

apparent, and the user may need to check it. Also, some thresh-

old effects may exist in the model without making it completely

non-smooth. Thus, the chaos polynomials method can be useful

to quickly characterize the smoothness of the model, in a limited

number of simulations. 

5. Conclusion 

In this study, several methods were studied to establish a con-

sumption threshold in the framework of a building’s Energy Per-

formance Contract. 

First of all, when the number of inputs is high, it is nec-

essary to reduce it by identifying the most influential ones.

Then, Quadratic Combination method is an appropriate solution

to quickly identify sensitivities in the neighborhood of the av-

erage of the inputs. However Quadratic Combination is not ap-

propriate for non-smooth models and does not provide informa-

tion about the smoothness of the model. Thus, in the case of

an inherent non-smoothness in the model, the Morris method is

recommended. 

Quadratic Combination for a smooth model can be used to as-

sess a consumption threshold thanks to the estimation of the mean

and standard deviation. However, it does not provide the overall
istribution. If the total distribution is desired to set the thresh-

ld, then, Latin Hypercube is preferred to the standard Monte Carlo

ethod since it enables us to cover the input space and the con-

ergence is fast. 

Several methods are also compared to assess the probability of

xceeding a threshold: FORM/SORM, Monte Carlo, Latin Hypercube,

uasi-Monte Carlo, directional Sampling and importance Sampling

coupled to FORM). FORM method assesses very quickly (13 times

aster than the second fastest method in this case) the failure prob-

bility with an acceptable relative error (less than 30% for a proba-

ility less than 5%). As in a building, exceeding the threshold does

ot present a major risk to 0.1% so that margin of error can be ac-

epted. However, FORM/SORM do not calculate the confidence in-

erval for the results. In this case, Importance Sampling coupled

ith FORM provides a good compromise between computing time

nd accuracy of results. 

Lastly, two metamodel families were compared: Kriging and

parse Polynomial Chaos expansion. We failed to build a Kriging

etamodel without a high relative error caused by a problem of

verfitting. However, Sparse Polynomial Chaos led to an excellent

pproximation of the model in a few simulations (200 simulations

or 24 parameters) and obtained, in a short time, Sobol indices.

 method to build a sparse polynomial chaos has been suggested.

ig. 14 shows the selected methods. 

Finally, a process of selection of the statistics method is pro-

osed: 

• First, the number of parameters is reduced with: 

◦ The Quadratic Combination method if the model is regular

enough 

◦ The Morris method, otherwise 
• If the model is smooth enough and runs in more than a

minute the construction of a metamodel using Sparse Polyno-

mial Chaos method is recommended. 
• When a model is too bumpy (not smooth) to be expanded in

a Sparse Polynomial basis, we suggest using FORM method to

assess a threshold exceedance probability and sensitivity in the
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neighborhood of the threshold. This method is useful to check

the risk of exceeding an existing threshold and can be used

in the case of a massive retrofit or the accordance of an en-

ergy performance label. If the threshold has to be set from

scratch, this method can be used iteratively to determine the

probability of several thresholds and stop when the desired risk

is reached. 
• Finally, when a model has more than 4 discrete parameters or

outputs, sampling methods are suggested since their disadvan-

tage of high computational time is no longer comparable to the

other methods. In this case, 

◦ Latin Hypercube sampling provides the probability density

of the outputs 

◦ FORM coupled to Importance Sampling provides the prob-

ability of threshold exceedance and the confidence interval 

24 parameters have been selected, instead of the 9 main pa-

ameters, to test the robustness and accuracy of the probability al-

orithm with more than 20 parameters. Even if most of the tested

ethods’ computational times are not directly linked to the num-

er of parameters, adding 15 extra-parameters unnecessarily com-

licated the study: the time required to set the extra parameters

rovides a slight improvement in the accuracy of the result. 
Total annual electricity consumption is the only parameter be-

ng considered and tracked in this study. In other cases, other key

erformance indicators can be considered as part of the energy

erformance contracting process to ensure maximum value to cus-

omers and building owners, such as heating or cooling consump-

ion. Moreover, when the electricity consumption is subdivided

nto the various uses, these methods also allow us to study the

arious end uses of electricity within the building and identifying

pecific parameters to enhance the performance of the building. 

Previous recommendations can be applied to any building,

epending on the model regularity, the number of parameters

nd the goal of the studies, as these methods fit thermal sim-

lation. For instance, This method has already been applied at

NGIE-Axima to several buildings (swimming pools, educational

uildings) to determine the key parameters and the consumption

hreshold to create the EPC. 
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A

Distribution Category 

] Kernel smoothed distribution obtained by carrying an 

upstream uncertainty analysis performed on the supply 

fan parameters [38] 

AHUs 

 [-] Kernel smoothed distribution obtained by carrying an 

upstream uncertainty analysis performed on the 

recovery fan parameters [38] 

AHUs 

Truncated Normal (0, 0.067, −0.27, 0.27) AHUs 

Truncated Normal (0, 0.067, −0.27, 0.27) AHUs 

Truncated Normal (0.1, 0.03, 0, 0.23) AHUs 

Beta (0.75, 0.03, 0.65, 0.8) AHUs 

] Kernel smoothed distribution obtained by carrying an 

upstream uncertainty analysis performed on the supply 

fan parameters [38] 

AHUs 

[ −] Kernel smoothed distribution obtained by carrying an 

upstream uncertainty analysis performed on the supply 

fan parameters [38] 

AHUs 

Truncated Normal (0, 0.067, −0.27, 0.27) AHUs 

Truncated Normal (0.1, 0.03, 0, 0.23) AHUs 

Truncated Normal (100, 6, 76, 124) AHUs 

Beta (2.83, 0.14, 2, 3) Heat Pumps 

hot Beta (1.25, 0.45, 0, 2) Heat Pumps 

Beta (1, 0.05, 0.8, 1.1) Heat Pumps 

Beta (1, 0.05, 0.8, 1.1) Heat Pumps 

Beta (3.46, 0.1, 2.7, 3.6) Heat Pumps 

hot Beta (1.25, 0.45, 0, 2) Heat Pumps 

Beta (1, 0.05, 0.8, 1.1) Heat Pumps 

Beta (1, 0.05, 0.8, 1.1) Heat Pumps 

Truncated Normal (0.024, 0.0 04, 0.0 08, 0.04) Water Networks 

Beta (0.44, 0.016, 0.34, 0.46) Water Networks 

Truncated Normal (0.018, 0.0 03, 0.0 06, 0.03) Water Networks 

rk Beta (0.17, 0.02, 0.1, 0.2) Water Networks 

Truncated Normal (17, 0.34, 15.67, 18.3) Water Networks 

Truncated Normal (30, 0.3, 28.7, 31.3) Water Networks 

Truncated Normal (0.0 04, 0.0 0 07, 0.0 013, 0.0 07) Water Networks 

Beta (0.51, 0.015, 0.45, 0.53) Water Networks 

Truncated Normal (0.038, 0.006, 0.013, 0.06) Water Networks 

Beta (0.43, 0.015, 0.33, 0.45) Water Networks 

 Truncated Normal (17, 0.3, 15.7, 18.3) Water Networks 

[ °C] Truncated Normal (40, 0.3, 38.7, 41.3) Water Networks 

Truncated Normal (0.024, 0.0 04, 0.0 08, 0.04) Water Networks 

ed Truncated Normal (0.029, 0.0 0483, 0.0 09, 0.048) Water Networks 

Beta (0.46, 0.016, 0.36, 0.48) Water Networks 

Truncated Normal (17, 0.3, 15.7, 18.3) Water Networks 

Truncated Normal (1.1, 0.03, 1, 1.2) Building walls 

ny Truncated Normal (50 0, 125, 0, 10 0 0) Building walls 

Truncated Normal (0.39, 0.026, 0.286, 0.494) Building glazing 

Truncated Normal (1, 0.03, 0.8, 1.13) Building glazing 

Beta (1.7, 0.13, 1.5, 2.2) Infiltrations 

Truncated Normal (1, 0.067, 0.73, 1.27) Ground exchanges 

Uniform(25, 27) Set Points 

Uniform(18, 22) Set Points 

Uniform(15, 17) Set Points 

Uniform(6, 8) Set Points 

Uniform(39, 41) Set Points 

Uniform(0.8, 1.2) Occupancy 

Uniform(0.9, 1.1) Lighting 

Uniform(0.9, 1.1) Equipment 
NNEX 2. Selected inputs 

Name Description 

AlphaAHU1Sup Aggregated parameter of the supply fan of AHU 1 [ −

AlphaAHU1Ex Aggregated parameter of the recovery fan of AHU 1

AHU1SupDistCoef AHU 1 supply airflow distribution coefficient [ −] 

AHU1ExDistCoef AHU 1 recovery airflow distribution coefficient[ −] 

AHU1Leak AHU 1 leak flow [%] 

AHU1RecupEff AHU1 recuperator efficiency [ −] 

AlphaAHU2Sup Aggregated parameter of the supply fan of AHU2 [ −

AlphaAHU2Ex Aggregated parameter of the recovery fan of AHU2 

AHU2DistCoef AHU 2 airflow distribution parameter [ −] 

AHU2Leak AHU 2 leak flow [ −] 

AHU2FreshAir AHU 2 Fresh air rate [ −] 

NomNorthHPEER Nominal North Heat pump EER [ −] 

AuxNorthHP Electric power percentage of auxiliaries in cold and 

modes North HP [ −] 

SlopesNorthHP Multiplier of the slopes of North HP matrix 

performance [ −] 

InterceptsNorthHP Multiplier of the intercepts of North HP matrix 

performance [ −] 

NomSouthHPEER Nominal South Heat Pump EER [ −] 

AuxSouthHP Electric power percentage of auxiliaries in cold and 

modes South HP [ −] 

SlopesSouthHP Multiplier of the slopes of South HP matrix 

performance [ −] 

InterceptsSouthHP Multiplier of the intercept of South HP matrix 

performance [ −] 

NorthHPkL Overall North HP network loss coefficient [kW/K] 

PumpEffNorthHP Pump efficiency of north HP network [ −] 

UnderfloorkL Overall underfloor heating system network loss 

coefficient [kW/K] 

PumpEffUnderfloor Pump efficiency of underfloor heating system netwo

[ −] 

ColdUnderfloorInTemp Cold underfloor heating system network input 

temperature [ °C] 

HotUnderfloorInTemp Hot underfloor heating system network input 

temperature [ °C] 

AHUkL Overall AHU network losses coefficient [kW/K] 

PumpEffAHU Pump efficiency of AHU network [ −] 

NorthBeamkL Overall north chilled beam network loss coefficient 

[kW/K] 

PumpEffBeam Pump efficiency of north chilled beam network [ −] 

ColdBeamInTemp Cold north chilled beam network input temperature

[ °C] 

HotBeamInTemp Hot north chilled beam network input temperature 

SouthHPkLHA Overall South HP network loss coefficient in heated 

area [kW/K] 

SouthHPkLUA Overall South HP network loss coefficient in unheat

area [kW/K] 

PumpEffSouthHP Pump efficiency of South HP network [ −] 

SouthHPInTemp South HP input temperature [ °C] 

UBuilding Building heat loss coefficient [ −] 

Capacitance Total thermal capacitance of zones air plus that of a

mass not considered as walls (e.g. furniture.) [kJ/K] 

WSolarGain Window solar gain [ −] 

UWindow Window Heat transfer coefficient(Uw) [ −] 

AirTightness Air tightness of the building [m 

3 /h/m ²] 
SoilTempCoef Soil temperature coefficient[ −] 

CoolSetTemp General cooling set point temperature [ °C] 

HotSetTemp General heating set point temperature [ °C] 

AHU1BlowTemp AHU 1 Blowing setting temperature [ °C] 

ChillNorthHPInTemp Chilling mode North HP input temperature [ °C] 

HeatNorthHPInTemp Heating mode North HP input temperature [ °C] 

NomUsersNumber Nominal user number multiplier [ −] 

LightPower Lighting power multiplier [ −] 

EquipPower Equipment power multiplier [ −] 
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