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Abstract Microcoded customized IPs offer superior performance and direct programma-
bility of micro-architectural structures compared to instruction-based processors, yet at the
cost of drastically enlarged code sizes. Code compression can deliver size reductions but
necessitates attention to performance issues, so that the performance benefits of microcoded
IPs are not squandered in the process. To attain this goal, we propose in this paper a fast
code compression technique through exploiting the fact that the microcodes contain a siz-
able amount of unspecified bits. Although the values and the positions of the specified bits
are highly irregular, the proposed technique can still flexibly and precisely fill in these fully
specified bits through utilizing a linear network. The linear property inherent in the compres-
sion strategy in turn enables the development of an extremely low-overhead decompression
engine. At runtime, the decompressed code can be generated in such a way that all the spec-
ified bits can be filled as required by a fixed-bandwidth XOR network. The combination
of the proposed flexible XOR-based network with a minimum two-level storage for highly
specified fields, such as immediate values, offers utmost code compression, attained within
a negligible amount of performance and hardware overhead.
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1 Introduction

Shrinking time-to-market and high demand for productivity has driven the use of mi-
crocoded customized IPs in embedded system design. In such design platforms, such as
PICO [1], ARM OptimoDE [2], TIPI [3], NISC [4], and FlexCore [5], the complex and
time-consuming task of instruction set development is completely eliminated. Instead, these
microcoded IPs directly expose the entire control of microarchitectural components to the
compiler. Applications thus can be directly compiled to microcodes, and the compiler can di-
rectly exploit parallelism across functional units. Such architectures, typically referred to as
Horizontal Microcoded Architectures, can be designed without costly decoders, controllers
and hardware schedulers, thus offering superior performance, lower power, and lower area
than conventional RISC processors.

Despite the aforementioned benefits, the problematic issue of the enlargement of the code
size of microcoded IPs remains. Storing microcodes directly on-chip requires large mem-
ory blocks that impose significant area and power overhead. As on-chip memory is one of
the most limiting resources in cost-sensitive embedded systems, microcoded IPs necessi-
tate aggressive code compression techniques. Meanwhile, to ensure that the performance
benefits of microcoded IPs are not squandered as a result of code compression, the on-line
decompression engine should provide high throughput instruction flow within highly con-
strained latency. Compression techniques based on variable-length encoding [6, 7] thus are
not suitable for such systems, as these approaches require more complex decoders, incur-
ring costs in performance, area and power in addition to long design and verification times.
Dictionary-based compression techniques fail to meet the bar as well, as these techniques
incur significant overhead either in storing or in constantly reloading the large dictionary.

An important property of horizontal microcodes is that each microcode typically con-
tains a sizable number of don’t care bits (denoted as ‘X’). These X bits correspond to the
control signals of the functional units that are idle at a given cycle. For example, if at a given
cycle there is no write operation to the register file, the corresponding write address signals
become don’t cares. Clearly, these bits can be mapped to either 0’s or 1’s in the final exe-
cutable binary without affecting program behavior. This flexibility can be exploited to attain
a dictionary-free fixed-length encoding technique. Specifically, in this paper we propose an
XOR network-based compression technique that sets the unspecified bits in such a way that
the values form a linear relationship with the specified bits. This linear relationship ensures
that the fully specified bits, although their values and positions may be highly irregular,
can be precisely filled. Meanwhile, this linear relationship also enables the development of
an extremely low-cost decompression engine, composed of only a fixed-bandwidth XOR
network, thus minimizing the associated performance and power overhead.

The efficacy of the proposed compression technique is determined by the quality of the
linear network as well as the amount of unspecified bits in microcodes. To improve the
compression ratio, we furthermore propose a set of optimization techniques to maximally
diminish the correlation of the linear network and to balance the number of unspecified bits
across various microinstructions. The combination of the proposed flexible XOR network
with a minimum on-chip storage for highly specified fields, such as immediate values, offers
utmost code compression, attained within a negligible level of performance and hardware
overhead.

A preliminary version of the proposed linear network-based compression framework was
published in [8]. The work herein incorporates these technical ideas, evaluates them more
thoroughly and most importantly, extends the work by theoretically analyzing its efficacy in
two aspects. First of all, to illustrate the advantage of using a linear network for microcode
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compression, we perform a finer-grained comparison of this technique against traditional
compression schemes, particularly the dictionary-based microcode compression schemes.
Moreover, to illustrate the advantage of the proposed network construction approach, we
perform a mathematical analysis to illustrate the benefit of imposing a 1-degree overlap
constraint during network construction.

The rest of the paper is organized as follows. Section 2 briefly reviews code-size reduc-
tion techniques for embedded processors and microcoded IPs. Section 3 outlines the tech-
nical motivation for this work. The proposed linear network-based compression technique
and the techniques for improving the compression ratio are discussed in Sects. 4 and 5, re-
spectively. The efficacy of the proposed compression technique is experimentally verified in
Sect. 6, and Sect. 7 offers a brief set of conclusions.

2 Technical background

As embedded systems typically impose a strict cost and power budget, a number of code-
size-reduction techniques have been proposed for embedded processors. These techniques
can be categorized into three groups.

– Compiler optimizations: Techniques such as register renaming, interprocedural opti-
mization, and procedural abstraction of repeated code fragments [9, 10] can be embedded
in a compiler to reduce code size. These techniques impose neither runtime decompres-
sion overhead nor hardware cost, yet necessitate significant amount of modifications of
compilers and/or linkers.

– ISA modification: This approach modifies or customizes the instruction set architecture
to reduce code size. For example, the Thumb instruction set [11] consists of 16-bit ver-
sions of the 36 most frequently used 32-bit ARM instructions, while MIPS16 [12] con-
tains a subset of 32-bit MIPS-III instructions. Clearly, the redesign of the instruction set,
together with a new hardware decoder and a new set of software development tools, such
as specialized compilers, assemblers, and linkers, constitutes the cost of this approach.

– VLIW no-op elimination: In VLIW processors, due to the limited parallelism in appli-
cations, instruction slots are frequently filled with no-ops. To reduce code sizes, modern
VLIW architectures (such as TMS320C6x) utilize the idea of Various Length Execution
Set (VLES), wherein no-ops are removed as much as possible and a few shortened instruc-
tions are packed into one wide fetch packet.

– Code compression: In these techniques, the executable program is compressed offline
and decompressed on-the-fly during execution [6]. As the compression and decompres-
sion are typically performed in a manner transparent to the processor and the compiler,
these techniques are more desirable for embedded cores and microcoded IPs as compared
to the compiler optimization and ISA modification approaches. The efficiency of a code
compression scheme can be measured by the compression ratio, defined as follows:

Compression Ratio = Compressed code size

Original code size
(1)

Compared to general purpose data compression approaches, code compression exhibits
extra challenges in improving the speed of decompression, as it is to be performed at
runtime. As some instructions (such as branch, jump, and return, for example) may alter
the control flow, it is essential to ensure that each instruction can be decompressed in-
dividually with no reliance on any preceding instructions. Moreover, it is also necessary
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to establish a mapping between the original address space and the compressed address
space so that upon a control altering instruction, the address of the target instruction can
be easily recalculated. This requirement is more challenging for variable-length encoding
techniques, wherein the mapping between the two address spaces is irregular.

2.1 Variable-length encoding

Compression techniques based on variable-length encoding exploit the uneven occurrence
ratio of instructions to attain code size reduction. For example, in [6], the Compressed Code
RISC Processor (CCRP) based on Huffman encoding, is proposed. Unique instructions in
the program are stored in a dictionary, wherein the indices of the instructions are deter-
mined by Huffman coding. In IBM Codepack [7], each 32-bit instruction is evenly split into
two parts, while two dictionaries are used to record the unique patterns of each part. This
two-dictionary architecture is furthermore extended in [13], wherein the instruction bits are
rearranged so as to balance the dictionary sizes. This concept of dictionary-based compres-
sion has been extended to sequence of instructions [14, 15], wherein repetitive sequences of
instructions, instead of individual instructions, are identified and stored in a dictionary.

While the aforementioned techniques deliver low compression ratio, the decompression
speed is typically quite slow due to the variable sizes of compressed instructions. To min-
imize the decompression overhead, these variable-length encoding techniques usually rely
on the existence of a cache, so that decompression can be performed only upon a cache
miss. These architectures are denoted as pre-cache decompression. Compression thus does
not improve the utilization of the cache. Moreover, as missed instructions do not reside at the
same address in the cache as in memory, a line address table (LAT) [6] is needed to record
the mapping between the compressed and the original address spaces. This extra overhead,
together with the necessity of caches, makes these variable-length compression techniques
less desirable for cost-sensitive embedded systems, especially microcoded IPs.

2.2 Fixed-length encoding

To attain high-speed decompression in a cache-free embedded system, fixed-length encod-
ing approaches are usually employed.

Essentially, a program can be viewed as an array of W words (microinstructions) of B

bits each. One set of compression techniques, typically denoted as ROM encoding [16],
exploit the bit-wise compatibility in microcoded programs. The bit dimension is partitioned
into groups so that each group of signals can be driven by the same decoder. The distinct
bits contained in each group should be compatible such that their values are never set to 1 at
the same cycle. Clearly, this bit-wise compatibility decreases as the number of microcoded
instructions increases, implying that the technique is only effective for small programs.

Another set of fixed-length encoding techniques exploit the word-wise compatibility in
microcoded programs. The basic idea is to store all the unique microinstructions in a lookup
table (LUT). Each microinstruction is then replaced with an index to the dictionary which
contains the original instruction sequence. The compression ratio thus is determined by
the number of entries in the LUT, which is in turn determined by the number of unique
codewords within a program. Obviously, the attainment of a low compression ratio hinges
on the existence of high repetition of codewords in the program.

As two distinct codewords may partially share a sequence of values in common, re-
searchers have also proposed to vertically partition each codeword of a program into multi-
ple groups [17, 18] to maximally exploit the potential repetition. Although the compression
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Fig. 1 Inability of LUT-based compression to fully utilize the flexibility offered by ‘X’ bits

ratio is improved, the required LUT size is enlarged as a result, which in turn increases the
LUT index size. It has been reported in [19] that for the EEMBC benchmarks, the technique
proposed in [17] requires a LUT with 300–400 entries. Such a large LUT thus imposes
significant hardware overhead and access latency onto the target embedded processor or mi-
crocoded IP. To reduce the LUT size, researchers have also proposed to dynamically reload
the content of the LUT using dedicated table manipulating instructions [19]. However, such
instructions will not only increase the static code size but also incur performance overhead
during program execution.

3 Technical motivation

An important property of microcoded IPs is that compared to instruction-based processors,
they display an extra degree of freedom in specifying the microcoded instructions. Each mi-
crocode typically exhibits a sizable number of unspecified bits, corresponding to the control
signals of the functional units that are idle at a given cycle. Examples include register-file
read and write addresses, MUX selection, and ALU operation signals.

Although the unspecified bits in microinstructions can be flexibly filled as either 0’s or
1’s in the final executable binary, this flexibility has not been fully exploited by the tra-
ditional LUT-based code compression approaches. Although the program may contain a
significant number of unspecified bits, the attainable compression ratio is still constrained
by the number of vertical bit conflicts, particularly the conflicts in fully specified columns of
instructions. To concretely illustrate this constraint, Fig. 1 presents three microinstructions,
compressed using three LUT-based compression schemes that respectively deliver compres-
sion ratios of 1.25, 0.92, and 1. Although each microinstruction contains 4 ‘X’ bits, Fig. 1a
shows that the conflicts in the two fully specified columns, namely the 0th and the 4th bits,
fully distinguish the three instructions. As a result, if a single dictionary is used to capture
entire microinstructions, such as the one in Fig. 1b, all three instructions need to be stored
in the dictionary. This scheme therefore delivers no benefit in terms of code size reduction.
To enhance word-wise compatibility, each microinstruction can be vertically divided into
two partitions that are mapped to distinct dictionaries, as shown in Fig. 1c. However, this
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scheme falls short of exploiting the compatibility among distinct partitions, resulting in re-
dundant entries (highlighted in Fig. 1c) in each dictionary. To eliminate such redundancy,
the two dictionaries can be merged, as shown in Fig. 1d. However, as the merged dictionary
contains more entries, the corresponding index size needs to be enlarged as well, thereby
hurting the compression ratio.

The examination of traditional LUT-based compression indicates that techniques rely-
ing on the exploitation of inter-codeword compatibility can not fully utilize the flexibility
provided by the unspecified bits in codewords. To attain low compression ratio while min-
imizing the associated on-chip storage, it is essential to directly exploit the flexibility in
filling these unspecified bits. The challenge, however, is to compactly capture the specified
bits regardless of their irregularity.

In a microcoded program, not only the values, but the positions of the specified bits are
also irregular. To compactly capture these bits, a set of linear transformations need to be
applied, thus motivating the development of a linear network-based compression technique.
Specifically, we propose to directly utilize the flexibility offered by the unspecified bits, by
setting them in such a way that their values form a linear relationship with the specified bits.
Such a linear relationship enables not only the values but furthermore the bit positions of
the specified bits to be captured in a compact form. In this way, these specified bits can be
precisely filled, even though the distribution of them throughout the codeword may display
high levels of irregularity.

4 LUT-free fixed-length microcode compression

This section presents in detail the proposed linear-network based microcode compression
scheme. Given a set of linear equations that define the relationship among the various bit po-
sitions, each microinstruction can be compressed into a seed. The seed is selected in such a
way that the specified bits can be precisely generated, while the unspecified bits can be flex-
ibly filled in. At runtime, a decompressor, composed of a number of XOR gates, takes these
seeds as inputs and generates microinstructions. This compression/decompression process is
concretely shown in Fig. 2. In Fig. 2a, the three microinstructions shown in Fig. 1 are com-
pressed into 4-bit seeds. The corresponding linear equations and the decompression network
are shown in Figs. 2b and 2c.

Clearly, the attainable compression ratio of this proposed scheme is determined by the
structure of the linear network. More formally, an N -to-M XOR network receives as inputs
an N -bit seed, and generates an M-bit fully specified code through performing M groups of
XOR operations on the seed bits. Such a network delivers a compression ratio of N/M .

To develop a high-quality linear network-based compression technique, two questions
need to be resolved: (1) Given a linear network, how do the seeds get generated? (2) How
is the quality of the linear network to be improved so as to attain lower compression ratios?
These questions are addressed in detail in the remaining parts of this section.

4.1 XOR network-based code compression

As each individual XOR operation performed in the network is a linear operation, the trans-
formation from the N -bit seed to the M-bit codeword constitutes a linear transform, with
each of the M-bit codewords being a linear combination of the multiple bits in the seed.
Moreover, such a linear transformation can be characterized by the structure of the network,
which can be furthermore represented by an M × N coefficient matrix, wherein a ‘1’ in
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Fig. 2 Linear network-based compression/decompression

the matrix represents the existence of a connection between the output and input bits of the
XOR network. As an example, the matrix representation of the XOR network in Fig. 2c is
shown in (2).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
1 0 1 0
1 1 1 0
0 0 1 1
1 1 0 1
0 1 0 1
0 1 1 1
1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

X0

X1

X2

X3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C0

C1

C2

C3

C4

C5

C6

C7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

To generate the original microinstruction, the set of linear equations, which describe the
linear combination relationship among these bits, needs to be solved. Clearly, the unspecified
bits, as they can be flexibly filled in, impose no constraint on seed generation. Only the linear
equations corresponding to specified bits need to be satisfied. Therefore, depending on the
positions of the specified bits, a subset of the rows of (2) is selected. For example, in the first
microinstruction in Fig. 2a, only C0, C1, C4 and C6 are specified, with the corresponding
values being [0 1 1 0]. The linear equation system for this code thus can be specified as
follows:

⎡
⎢⎢⎣

1 1 0 0
1 0 1 0
1 1 0 1
0 1 1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

X0

X1

X2

X3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

C0

C1

C4

C6

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
1
1
0

⎤
⎥⎥⎦ (3)

These equations can be solved through the utilization of any Gauss-Jordan elimination
[20] methodology. If such a linear equation system has at least one solution, the correspond-
ing microinstruction thus can be successfully compressed.
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The compression approach outlined above clearly confirms that the proposed technique
is able to compactly capture the specified bits regardless of their irregularity. Given two
codewords with distinct distribution of the specified bits, different sets of linear equations
are selected. The likelihood of finding a seed, which determines the attainable compression
ratio, is independent of the particularity of the specified bits. Instead, this likelihood is deter-
mined by the number of unspecified bits. Clearly, the more unspecified bits in a codeword,
the fewer equations need to be satisfied, and hence the higher the likelihood that a valid
seed can be found. In fact, a detailed examination indicates that compression is guaranteed
to be successful if the number of specified bits in a codeword does not exceed the rank of
the coefficient matrix, since in this case there exists at least one solution in such a linear
equation system. On the other hand, if the number of specified bits exceeds the rank of the
matrix, the existence of a solution is determined by the values of the specified bits.

To maximally preclude the generation of an unsolvable linear system, the root cause of
linear equation unsolvability needs to be identified. If we incorporate the column vector of
the specified bits into the coefficient matrix, an augmented matrix with a size of M ×(N +1)

can be constructed. A comparison between the augmented matrix and the coefficient matrix
indicates that no solution exists for this linear system if and only if the rank of the augmented
matrix exceeds the one of the coefficient matrix. An illustrative example is shown in Fig. 3,
wherein the three rows in the coefficient matrix are linearly dependent such that any row can
be generated through XORing the other two rows. In contrast, in the augmented matrix this
linear dependency disappears, thus forcing the augmented matrix to display a larger rank
than the coefficient matrix.

The occurrence frequency of the unsolvable cases strongly depends on the linear depen-
dencies among the various XOR equations. A high correlation would greatly reduce the
rank of the coefficient matrix, thus increasing the likelihood of the unsolvability condition
outlined above. Therefore, the construction of a low correlation XOR network is essential
for improving the effectiveness of the proposed compression scheme.

4.2 XOR network construction

In general, the construction of an XOR network for compression/decompression purposes
should take into consideration three factors, namely, the latency, the cost, and the linear
dependencies among outputs. Clearly, latency reduction and cost reduction can be easily
attained through reducing the levels of XOR gates and the total number of XOR gates in the
network, respectively. In comparison, the reduction of linear dependencies among outputs
is more crucial, as this factor directly constrains the attainable compression ratio.

In the proposed linear compression network, input bit-overlap is the root cause of the lin-
ear dependencies among outputs, since in this case one input bit can concurrently impact the
results of multiple XOR functions. However, as the network, used as a decompressor, should
produce more outputs than the number of inputs, the sharing of common inputs among dis-
tinct outputs cannot be fully eliminated. Therefore, our aim in network construction is not

Fig. 3 No solution case
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the full elimination of linear dependencies among XOR functions, but rather the enlargement
of the minimum size of linearly dependent output groups. In the proposed linear compres-
sion network, a linear dependency can be eliminated if there exists one unspecified bit in the
corresponding set of dependent bit positions. Accordingly, by enlarging the minimum size
of the dependent groups, the occurrence frequency of the aforementioned unsolvable cases
can be minimized even given a relatively low density of unspecified bits, thus enhancing the
compression ratio.

4.2.1 Output correlation minimization

In this subsection, we first introduce the conditions for a set of output equations to be lin-
early dependent, and then analyze the impact of input bit-overlap on the difficulty in forming
dependent output groups. We show that by constraining the amount of input bit-overlap, the
signal correlation intensity within the linear network can be largely reduced, thus signifi-
cantly increasing the difficulty of forming dependent output groups.

Essentially, a set of output equations are linearly dependent, if and only if all the related
inputs are covered an even number of times. In the example shown in Fig. 3, the three
equations captured in rows are linearly dependent, as each column corresponding to an input
is covered exactly twice.

The condition outlined above confirms that to form a dependent group, all the input
bits that are covered for an odd number of times (denoted as odd-cover inputs) need to be
eliminated. The size of a dependent group is therefore determined by how fast the odd-cover
inputs are eliminated, which is in turn determined by the maximum number of common input
bits between any two XOR functions (denoted as overlap degree). The higher the overlap
degree is, the faster the odd-cover inputs can be eliminated, and hence the smaller the size
of dependent output group is.

To illustrate the impact of overlap degree on the difficulty of forming dependent groups,
let us examine the change in the number of odd-cover inputs bits during the construction of
a dependent group. To simplify the analysis, we assume without loss of generality, that all
the XOR functions are generated by a fixed number of inputs, denoted as S.

Initially, the first XOR function in the group introduces S odd-cover bits that are only
covered once by itself. Subsequently, whenever a function Ci is added into the group, it can
overlap with each of the (i − 1) functions already existing in the group at p input positions,
with p being the overlap degree. If all the overlaps happen to be at the position of odd-cover
bits, Ci can end up eliminating a total number of (i − 1)p odd-cover bits. Meanwhile, as Ci

needs to cover S inputs, it also needs to introduce S − (i − 1)p new inputs that obviously
constitute odd-cover bits in the group. The combination of these two aspects implies that the
incorporation of the function Ci introduces a minimum number of S − 2(i − 1)p odd-cover
bits into the group. As a concrete example, Fig. 4 shows a dependent group composed of
four 6-input XOR functions with an overlap degree of 2 (i.e., S = 6 and p = 2). Clearly,
the first function C1 introduces 6 new inputs, the second function C2 eliminates 2 odd-cover

Fig. 4 Minimum dependent
group with an overlap degree of 2
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bits while introducing 4 new inputs, and the third function C3 eliminates 4 odd-cover bits
while introducing 2 new inputs.

In sum, the number of odd-cover bits after incorporating the nth function can be com-
puted by summing up the number of odd-cover bits introduced by each of these n functions,
as shown below:

n∑
i=1

(S − 2(i − 1)p) = n ∗ S −
n∑

i=1

2(i − 1) ∗ p (4a)

= n ∗ S − (n − 1)n ∗ p (4b)

Equation (4b) indicates that the total number of odd-cover bits might increase when the
group size, n, is small, but will eventually drop rapidly when more functions are added to the
group. When the asymptotic curve specified by (4b) drops to the value of 0, all the odd-cover
bits will have been eliminated and hence the functions (C1, C2, . . . , Cn) form a dependent
group. Therefore, the size of the minimum dependent group, denoted as DGsizemin, satisfies
the following relationship:

DGsizemin(S,p) ≥ �S/p� + 1 (5)

Equation (5) clearly shows that the minimum size of dependent output groups is in-
versely proportional to the overlap degree p. A high overlapping level tends to accelerate
the elimination of odd-cover inputs, thus engendering dependent groups of small sizes. In
an extreme case, if no constraint is imposed on the overlap degree (i.e., p = S), a dependent
group can be composed of two identical XOR functions. On the other extreme, by impos-
ing a 1-degree overlap constraint (i.e., p = 1) during network construction, the size of the
minimum dependent group can be enlarged to S + 1.

4.2.2 1-Degree overlap network construction

The analysis outlined in the last subsection clearly confirms that the 1-degree overlap con-
straint can effectively increase the difficulty in forming dependent groups, thus in turn deliv-
ering an appreciable compression ratio. Yet this constraint also sharply reduces the number
of attainable XOR functions (output bits), thus necessitating the development of an algo-
rithm capable of maximally identifying a set of input combinations that satisfy the strict
overlap constraint.

Assuming that each output bit in the linear network is generated by an S-input XOR
function, the set of N input bits can be partitioned into �N/S� disjoint sets. These disjoint
sets constitute a partition group, denoted as PG. Clearly, if the inputs in each set are used
to generate a single output, the disjointness ensures that the overlap degree of any two sets
(i.e., two output functions) within a single PG, denoted as intra-PG overlap degree, is con-
sistently 0. The problem of forcing the overall overlap degree to be 1 thus translates to the
identification of a maximum number of PGs such that for any two sets in distinct PGs, the
inter-PG overlap degree is 1.

To ensure 1-degree overlap among partition groups, we employ the deterministic parti-
tioning strategy proposed in [21]. Specifically, the kth partition group is constructed through
a linear shuffle of elements across the multiple sets in the 0th, that is, the original partition
group, using the following shuffling strategy:

P (k, b, i) = P (0, b ⊕ (k ⊗ i), i) (6)
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Fig. 5 Partition group generation: 3 PGs, each contains 5 disjoint sets of 3 bits

with P (k, b, i) denoting a specific instance of input selection for the ith element in the bth
set of the kth partition group.

To satisfy the 1-degree overlap constraint between any two sets in any two PGs, the op-
eration b ⊕ (c ⊗ i) in (6) needs to be a bijective function, i.e., one-to-one and onto. For a
partition group with a size of B (i.e. it contains B disjoint sets), the addition and multipli-
cation operations defined in the Galois field GF(B) can be used to construct the bijective
shuffling function. If B is a prime number, a straightforward implementation can be attained
through modulo-B addition and multiplication operations.

To concretely illustrate the shuffle function defined in (6) Fig. 5 presents an example for a
15-input XOR network construction. As each output bit is generated by XORing 3 input bits,
the 15-bit inputs are evenly partitioned into 5 disjoint sets of 3 bits, yielding B = 5 and S = 3
for this particular example. In other words, each partition group contains 5 sets and each set
contains 3 inputs. As the size of the partition group, 5, is a prime number, the modulo-
5 addition and multiplication operations are utilized for constructing the various partition
groups. Accordingly, each codeword can be generated using the following equation:

Ck∗B+b = P (k, b,0) ⊕ P (k, b,1) ⊕ P (k, b,2) (7a)

P (k, b, i) = P (0, (k + i ∗ b)%B, i), i ∈ 0,1,2 (7b)

In Fig. 5, two sets of elements highlighted in P0, namely, (0,4,8) and (3,10,2), are
selected to form the first set in P1 (corresponding to Codeword C5) and the second set in
P2 (corresponding to Codeword C11), respectively. As can be seen, to generate each set, the
shuffling function selects only one and exactly one element from three distinct sets in P0.
This partition generation approach also guarantees the 1-degree overlap property between
P1 and P2. In sum, a maximum number of 5 partition groups can be generated using the
proposed approach. These groups are listed in Table 1, wherein each row corresponds to a
partition group PGi and each box represents the three inputs that are used to generate one
output bit. It can be easily verified from the table that the intra-PG overlap degree is 0, while
the inter-PG overlap degree is 1.

The aforementioned XOR network construction approach can generate a total number of
B partition groups, each of which contains B partitions. As a result, the proposed technique
can generate a maximum number of B2 outputs that satisfy the 1-degree overlap constraint.
Clearly, the values of S and B can be determined according to the values of N and M , that is,
the input and output bandwidth of the XOR network. This relationship is formally specified
in the following equation:

S = �N/B� (8a)

B2 ≥ M (8b)
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Table 1 15-input XOR network construction (S = 3, B = 5)

P0 P1 P2 P3 P4

PG0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PG1 0 4 8 3 7 11 6 10 14 9 13 2 12 1 5

PG2 0 7 14 3 10 2 6 13 5 9 1 8 12 4 11

PG3 0 10 5 3 13 8 6 1 11 9 4 14 12 7 2

PG4 0 13 11 3 1 14 6 4 2 9 7 5 12 10 8

The network shown in Table 1 can generate up to 25 output bits using 15 inputs, implying
that the best attainable compression ratio is 0.6. More formally, the ratio of (8a) over (8b)
indicates that the compression ratio of this XOR network, defined as N/M , is constrained
by the value S/B . The attainment of a lower compression ratio therefore requires a smaller
value of S.

A smaller value of S also implies that the network needs fewer number of XOR gates,
which in turn reduces the hardware and performance cost of the network. More precisely,
the entire network can be constructed using S − 1 levels of 2-input XOR gates, implying
that the total hardware cost is M ∗ (S − 1) XOR gates.

However, a reduction in the value of S degrades the randomness of the network, as the
network construction approach delivers a bit overlap ratio of 1/S. A set of experiments
indicates that generating each output by XORing 3 or 4 inputs provides sufficient random-
ness, thus resulting in the value of S being set to 3 or 4 during the network construction
process.

5 Compression ratio enhancement

The discussion in Sect. 4.1 confirms that in the XOR network-based compression technique,
each specified bit corresponds to one equation that needs to be satisfied during seed genera-
tion. Accordingly, the attainable compression ratio is determined by the ratio of the specified
bits, rather than the particularity of these bits. However, in a program, the specified bits typ-
ically display a highly unbalanced distribution across microinstructions, implying that the
overall compression ratio is constrained by the instruction with the maximum number of
specified bits. To enhance the overall compressibility, it is therefore preferable to reduce the
number of specified bits in the hard-to-compress codewords while retaining the unspecified
bits. We propose two techniques to attain this goal, namely, a column merging technique
and a hybrid compression approach.

Another important aspect of the proposed compression technique is that the attainable
compression ratio of a codeword is furthermore determined by the positions of the unspeci-
fied bits. A successful compression needs to ensure the existence of at least a single unspec-
ified bit within each set of linearly dependent bit positions. This goal can be accomplished
through manipulating the positions of the unspecified bits, thus motivating the proposal of a
column reordering technique.

In the following subsections, the aforementioned compression ratio enhancement tech-
niques as well as the overall code compression flow is in detail discussed.
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Fig. 6 Reducing specified bits through column compaction

5.1 Column merging

Column merging opportunities, which can be exploited to reduce the number of specified
bits in the hard-to-compress codewords, are derived from the redundancy in codewords. As
customized microcoded IPs are typically developed to hold a set of applications, a particular
program may not make full utilization of the provided control signals. For example, the IP
may provide a divider that may not be used by a particular application. Similarly, the IP
may provide 16-bit immediate values, among which only 10 bits are utilized by a particular
application. As a result of this resource underutilization, the values in certain columns of the
horizontal microcodes, such as the divider control signals and the most significant bits of the
immediate field, will be largely identical. These columns therefore do not need to be driven
by individual output bits of the decompressor. Instead, they can be concurrently driven in a
broadcasting manner by a single output bit of the decompressor.

The proposed column merging technique exploits two types of compatibility among var-
ious bit positions (i.e., columns) in a microprogram. First of all, two columns are considered
to be strictly compatible if their values in each codeword are identical. As an example.
columns C0 and C1 in Fig. 6 are strictly compatible as they display identical values in each
codeword. Clearly, this strict compatibility relationship is transitive and hence can be uti-
lized in a greedy manner.

As strict compatibility requires complete identity, the number of strictly compatible
columns is usually quite limited in programs with a large number of microinstructions. In
this situation, further merge opportunities can only be identified through exploiting the flex-
ibility of merging a specified bit with an unspecified bit. Two columns are therefore con-
sidered to be loosely compatible if they do not display specified yet distinct values in any
codeword. According to this criterion, it can be easily confirmed that in Fig. 6 there exist 7
pairs of loosely compatible columns. However, unlike the strictly compatible relationship,
this loosely compatible relationship is intransitive. A column (such as C2 in Fig. 6) may be
individually compatible with two columns (such as C3 and C7 in 6) which by themselves
are not compatible. To maximally exploit this compatibility relationship while minimizing
the consumption of unspecified bits, we first identify all the loosely compatible choices for
a column, and then select the one that consumes the minimum number of unspecified bits.

Clearly, the outlined column merging approach is able to reduce the number of specified
bits. However, the technique also consumes unspecified bits, more precisely, in the third
strictly compatible case and the two loosely compatible cases shown in the leftmost gray
boxes in Fig. 6.

As the goal of column merging is to balance the ratio of unspecified bits in each code-
word, the merging process should be prioritized so as to maximally reduce the number
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of specified bits in the hard-to-compress codewords while retaining the unspecified bits.
Specifically, a column should be precluded from being merged with other columns, if this
merge process consumes an unspecified bit in a hard-to-compress codeword. In Fig. 6,
columns C3 and C4 respectively contain ‘X’ bits in the second and the sixth codewords
that are considered to be hard-to-compress. These columns, although they are loosely com-
patible, are precluded from being merged. In contrast, columns C2 and C7 can be merged.
Although this merge process consumes ‘X’ bits in the third, the fourth, and the fifth code-
words, this consumption does not impact the overall compression ratio that is limited by the
hard-to-compress codewords. As can be expected, this compaction strategy thus results in a
much more balanced unspecified bit distribution among the codewords (e.g., the compacted
microcode shown in Fig. 6), which in turn delivers an enhanced overall compression ratio.

In the proposed work, a codeword is considered as hard-to-compress if its number of
‘X’ bits falls below a predetermined threshold. For an XOR-network with N inputs and M

outputs (thus offering a compression ratio of N/M), this threshold can be set to the value
(M − N).

5.2 Column reordering

As discussed in Sect. 4.1, if a set of linearly dependent bits are all specified in a codeword,
the codeword might be incompressible as this linear dependency reduces the rank of the
coefficient matrix and possibly leads to a rank mismatch between the coefficient matrix and
the augmented matrix. To maximally preclude such an unpalatable situation, at least one
unspecified bit needs to be inserted in each set of linearly dependent bit positions so as
to break the linear dependency. This insertion is able to match the ranks of the coefficient
and the augmented matrices by reducing the rank of the latter, thus resulting in a solvable
equation system.

In the proposed XOR-network construction technique, each partition group, composed
of B sets, covers every input of the XOR network exactly once. Accordingly, the output
functions corresponding to any two partition groups will be linearly dependent. Maximal
preclusion of the unsolvability condition necessitates the inclusion of at least one unspeci-
fied bit in each partition group. As each partition group maps to B consecutive output bits of
the XOR network, at least one unspecified bit thus needs to be included in these B consecu-
tive bit positions. To attain this goal, we exploit the flexibility in reordering the columns of
microcodes. This flexibility is provided by custom IPs that only hold a highly limited num-
ber of applications. The design can be customized in such a way that the original control
sequence is attained through rerouting the outputs of the decompressor.

The proposed column reordering process is presented in Algorithm 1. The fundamental
goal is to simultaneously fulfill the requirement of including at least one unspecified bit in
every B consecutive columns for all the codewords. This is attained through ensuring that
in each codeword, the maximum length of the specified bit sequence is less than B . Using
the variable max_length to denote the largest length of the specified bit sequence in any
codeword. the goal of the algorithm is the satisfaction of the requirement of max_length ≤
B − 1.

It needs to be noted that in Algorithm 1, column reordering is performed only when nec-
essary so that the partial order of the columns can be maximally preserved. At the beginning
of each iteration, the algorithm checks the value of max_length. If the value is less than
B − 1, any of the remaining columns in Col_list can be placed as the next column, and thus
no reordering is performed. On the other hand, if max_length = B − 1, all the codewords
that display a consecutive sequence of B − 1 specified bits are examined. Here, the current
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Algorithm 1 Column reordering algorithm
1: Col_list ⇐ {all columns};
2: max_length ⇐ 0;
3: while Col_list �= φ do
4: if max_length < B − 1 then
5: Select the first column k in Col_list;
6: else
7: Identify all the columns in Col_list that contains a ‘X’ in codeword j , if

length(j) = B − 1;
8: Among this set, select column k with the minimum number of X’s;
9: end if

10: Col_list ⇐ Col_list −{k};
11: for codeword j = 0 to Cmax do
12: if code(j, k) = ‘X’ then
13: length(j ) ⇐ 0;
14: else
15: length(j ) ⇐ length(j ) + 1;
16: end if
17: end for
18: max_length ⇐ maxj (length(j ));
19: end while

length of the specified bit sequence of the j th codeword is denoted as length(j). A col-
umn k is marked as suitable if it contains X’s in all the codewords with length(j) = B − 1.
Subsequently, among all the suitable columns, the one with the minimum number of X’s is
selected. This column selection process is concretely shown in lines 4–9. Finally, upon the
selection of a new column k, the length of the specified bit sequence in each codeword is
updated, as shown in lines 11–17.

5.3 Hybrid compression approach

It is clear that given a microcode program, the proposed XOR network-based compres-
sion technique can effectively compress the columns with a balanced number of unspecified
bits. In comparison, the standard LUT-based compression technique, as it exploits inter-
codeword compatibility, is more effective for columns with highly clustered values. In light
of this observation, we therefore propose a hybrid compression approach that combines the
advantages of both compression schemes to improve the overall compression ratio. Based
on a functional decomposition of the microwords, a microprogram is vertically partitioned
into two sets, one to be compressed using an XOR network and one using a LUT.

A functional level examination indicates that certain fields in a microcode exhibit an
extremely biased unspecified-bit distribution. The large immediate field, as a representative
example, is either fully specified or fully unspecified. This field creates large variations in the
number of unspecified bits within a codeword, thus limiting the attainable compression ratio
of an XOR network. On the other hand, the immediate values can be effectively captured
in a small LUT, as a program typically does not utilize all the 2k distinct immediate values
provided by a k-bit immediate field.

It is also more desirable to capture a group of control signals in a LUT when they are
always fully specified and exhibit a highly limited set of value combinations. Examples
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include control-altering signals, interrupt signals, as well as write-enable signals for register
files and the memory. Not only are these three groups of signals always fully specified, but
they are also mutually exclusive such that if any signal in one group is high, none of the
signals in the other two groups can be high. This strict constraint in value combinations
therefore enables them to be effectively captured by a small LUT.

Except for the aforementioned two cases, the remaining set of control signals in a cus-
tomized IP typically displays an appreciable amount of randomness in terms of both the
unspecified bit distributions and the possible value combinations of specified bits. Signals
such as register names, due to the small width, would not create a sizable variation in the
number of unspecified bits within a codeword. Meanwhile, as a program typically makes
maximum utilization of the available registers, a large number of value combinations of reg-
ister names will occur. Accordingly, it is more desirable to compress these signals using an
XOR network instead of through a LUT.

According to the examination outlined above, the decomposition procedure maximally
identifies the columns that are either fully specified or fully unspecified, as well as the
columns that are always fully specified yet exhibit limited value combinations. By capturing
these two sets of control signals in a LUT, the number of specified bits in the hard-to-
compress codes can be sizably reduced, yet the number of unspecified bits is retained intact.
The attainable compression ratio of the XOR network thus can be significantly improved.
Meanwhile, as the LUT only captures a small set of control signals with highly repetitive
patterns, both the bitwidth and the number of entries in the LUT are quite small. At runtime,
decompression is performed by accessing the small LUT and the XOR network in parallel
using distinct fields of the compressed codes. In this way, the hybrid compression is able to
attain utmost code compression within minimum LUT size.

5.4 Overall code compression flow

The overall code compression flow with all the three compression ratio enhancement tech-
niques integrated is presented in Fig. 7. The column merging procedure is first evoked to
maximally reduce the width of the microcodes. Both the LUT width and the number of
outputs of the XOR network can be reduced as a result. The remaining columns are subse-
quently decomposed into two sets according to the criteria outlined in Sect. 5.3. The goal of
this process is the maximal reduction of the number of specified bits in the hard-to-compress
codewords without significantly enlarging the LUT size. These two sets of columns are then
compressed individually. For the groups of signals to be compressed using the XOR net-
work, the column reordering procedure is first evoked to attain a more random distribution
of unspecified bits.

Fig. 7 Hybrid compression flow,
both an XOR network and a LUT
are used
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While the column reordering and the column merging procedures end up changing the
original bit sequence of the control signals, the original sequence can still be restored at
runtime. For embedded systems dedicated to a single application, this can be easily imple-
mented through a customized routing of the interconnects without inducing any hardware
overhead. On the other hand, for systems with more general applications, a fixed intercon-
nect routing might not deliver the optimal compression for varying programs. In this case,
a high-performance reconfigurable interconnect architecture [22, 23] can be incorporated in
the decompression hardware to provide the routing flexibility required by different applica-
tions, at the cost of slightly increased area and performance overhead.

6 Experimental evaluation

To evaluate the proposed compression framework, three techniques have been implemented
in our experimental studies: the standard LUT-based compression technique proposed in
[17], the pure XOR network-based method, and the hybrid compression method. It has been
reported in [17] that the LUT-based compression technique generally attains the best com-
pression ratio when the columns are divided into three sets with distinct dictionaries. Ac-
cordingly, this technique has been evaluated for both 1-dictionary and 3-dictionary config-
urations in our experimental studies. On the other hand, the number of dictionaries used in
the hybrid compression approach is set to 2. To attain a fair comparison, the column merging
technique proposed in Sect. 5.1 is consistently applied to all three compression techniques
to maximally reduce the width of the microcodes.

The microcoded programs with unspecified bits are generated using the NISC toolset [4].
The toolset provides a custom datapath, and compiles a program described in a high-level
language to an executable binary that directly drives the control signals of components in
the datapath. In our experiments, the width of the microcodes is 86 bits.

The most significant advantage of the proposed fixed-length compression technique is
the extremely low hardware cost. The XOR compression network is implemented using ap-
proximately 200 XOR gates. As for on-chip storage, the pure XOR network-based approach
requires no LUT, while the hybrid compression scheme only requires a small LUT. Accord-
ingly, the three compression techniques are evaluated in terms of both the compression ratio
and the LUT size.

Figure 8 presents the compression ratio attained by each technique. As can be seen,
the pure XOR network-based technique delivers a compression ratio comparable to the

Fig. 8 Compression ratio of
various techniques
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Table 2 The LUT + XOR cost (Kbits) required by each technique

Benchmark Code size LUT + XOR cost

LUT-1D LUT-3D XOR Hybrid

DCTU 21.164 12.466 4.604 0.2 0.685

Mpeg 21.248 13.467 4.739 0.2 0.936

Dijkstra 34.770 13.403 4.028 0.2 1.308

Qsort 77.182 26.163 7.675 0.2 1.309

Sha 49.719 24.640 7.319 0.2 1.525

Average 40.816 18.028 5.673 0.2 1.153

LUT-based technique with the 1-dictionary configuration. The hybrid compression tech-
nique consistently delivers the lowest (the best) compression ratio among the four tech-
niques for all the benchmarks. The average compression ratio attained by the hybrid tech-
nique is 0.326, a 16% improvement as compared to the average compression ratio of the
3-dictionary LUT-based technique. These results clearly confirm the efficacy of the pro-
posed hybrid compression technique in combining the advantages of both the LUT-based
and the XOR network-based techniques.

Table 2 present the size of the original microcoded program, as well as the total hard-
ware cost (LUT and XOR) of each technique, under the assumption that one XOR gate and
one SRAM storage bit have approximately the same cost. As can be seen, the LUT-based
compression technique needs to capture 44% and 14% of the original code size in the on-
chip LUT, respectively for the 1-dictionary and 3-dictionary configurations. This significant
storage thus drastically degrades decompression speed. In contrast, the pure XOR network-
based technique requires no on-chip storage at all, while the hybrid compression technique
only needs to use 2.3% of the original code size in the on-chip LUT. This extremely low stor-
age requirement thus reduces both the hardware cost and the leakage power consumption,
while enabling the development of an extremely high speed decompressor as well.

The results in Table 2 confirm that the LUT size required by a LUT-based compression
technique is generally proportional to the original size of the program. Accordingly, for a
microcoded IP that holds a set of applications, the required LUT size is usually determined
by the application of the largest code size. In contrast, the LUT size required by the proposed
hybrid compression technique is far less sensitive to the original code size. As a result, even
if the applications held by the microcoded IP display highly unbalanced code sizes, the
on-chip LUT size can still be effectively controlled.

The decompression speed of the pure XOR network-based approach is extremely fast.
As each output of the XOR network is produced in parallel, the hardware decompression
only displays two levels of gate delay. Accordingly, the decompression speed of the hybrid
compression technique is determined by the access latency of the on-chip LUT. We have em-
ployed Cacti [24] to evaluate the LUT access latency of the LUT-based compression and the
hybrid compression techniques. The configuration of the largest LUT and the corresponding
access latency values are shown in Table 3. As can be seen, the LUT required in the hybrid
compression technique exhibits both a smaller width and fewer entries as compared to the
dictionaries used in the LUT-based compression technique. This in turn results in a 63%
reduction in the overall access latency, achieved as a result of the reduced delay in both the
address decoder and the output drivers.

Given these experimental results in compression ratio, LUT size, and access latency, it
can be clearly concluded that the proposed hybrid compression method delivers utmost com-
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Table 3 The configuration and access latency of LUTs for each technique

Benchmark LUT configuration Access latency

LUT-1D LUT-3D Hybrid LUT-1D LUT-3D Hybrid

DCTU 185 × 69 119 × 23 34 × 9 1.537 1.318 0.950

Mpeg 197 × 70 103 × 23 30 × 13 1.631 1.291 0.957

Dijkstra 183 × 75 80 × 25 47 × 16 1.545 1.242 1.021

Qsort 367 × 73 167 × 24 53 × 13 1.650 1.326 1.024

Sha 332 × 76 133 × 25 67 × 16 1.647 1.377 0.976

pression ratio as well as high speed decompression, achieved within a highly constrained
amount of extra hardware.

7 Conclusions

We have proposed in this paper an extremely fast and cost-effective code compression tech-
nique for microcoded IPs. Through utilizing a linear network, the proposed technique can
precisely fill in the fully specified bits in each microcode, despite the high irregularity of
the values and positions of these bits. The linear property inherent in the compression strat-
egy in turn enables the development of an extremely low-overhead decompression engine,
composed of only a fixed-bandwidth XOR network. A set of functional level optimization
approaches, including a column reordering and a column merging technique, have been
proposed to further improve the compression ratio. Through combining the flexible XOR
network with a minimum two-level storage for highly specified fields, such as immediate
values, a hybrid compression technique is able to deliver utmost code compression within a
negligible amount of storage overhead. Experimental results show that the proposed hybrid
compression technique is able to attain an average compression ratio of 0.326, while only
2.3% of the original microcodes need to be stored in an on-chip LUT. Such high efficiency
thus enables the incorporation of this compression technique into most microcoded IPs to
attain utmost code size reduction within a negligible amount of performance and hardware
overhead.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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