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Abstract

Human performance approaches that of an ideal observer and optimal actor in some perceptual

and motor tasks. These optimal abilities depend on the capacity of the cerebral cortex to store an

immense amount of information and to flexibly make rapid decisions. However, behavior only

approaches these limits after a long period of learning while the cerebral cortex interacts with the

basal ganglia, an ancient part of the vertebrate brain that is responsible for learning sequences of

actions directed toward achieving goals. Progress has been made in understanding the algorithms

used by the brain during reinforcement learning, which is an online approximation of dynamic

programming. Humans also make plans that depend on past experience by simulating different

scenarios, which is called prospective optimization. The same brain structures in the cortex and

basal ganglia that are active online during optimal behavior are also active offline during

prospective optimization. The emergence of general principles and algorithms for goal-directed

behavior has consequences for the development of autonomous devices in engineering

applications.

© 2014 IEEE.

This paper describes the idea that brains form cognitive strategies by prospective optimization, which is the planning of future actions
to optimize rewards.
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I. INTRODUCTION

Bellman’s approach to optimizing a sequence of actions to reach a goal is based on known

state transitions and payoffs [1]. Dynamic programming is an effective strategy for

moderately sized problems, but the complexity increases rapidly with the size of the

problem, leading to the “curse of dimensionality.” For an animal that is exploring an

unknown environment with many choices for actions and limited knowledge this is not a

feasible strategy, although the goal of optimizing future rewards is the same.

Reinforcement learning is an online approach to dynamic programming that proceeds

incrementally to build a value function that can be used to choose optimal actions. In

classical conditioning, found in many species, associations are learned between sensory

stimuli and rewards depending on the order and timing of the pairings, as described by the

Rescorla–Wagner model of classical conditioning [2]. The temporal-differences algorithm in

reinforcement learning is closely related to the Rescorla– Wagner model [3], [4], and

approximates dynamic programming [5]. This approach constructs a consistent value

function for states and actions based on feedback from the environment. Classical

conditioning, which might seem like a weak way to learn about the world, could thus lead to

near-optimal strategies for finding food, shelter, and mates over many trials [6].

An impressive demonstration that reinforcement learning can solve difficult problems is TD-

Gammon, a program that started as a beginner and improved by playing itself, eventually

achieving world champion level in backgammon [7]. Solely on the basis of the reward at the

end of each game, TD-Gammon discovered new strategies that had eluded experts. This

illustrates the ability of reinforcement learning to solve the temporal credit assignment

problem and learn complex strategies that lead to winning ways. Reinforcement learning has

also been used to learn complex control laws. For example, flying a helicopter is much more

difficult than flying an airplane, but a control system was trained with reinforcement

learning to perform helicopter aerobatics [8]. However, despite these notable successes,

reinforcement learning does not always converge to good solutions for control problems.

Nature has integrated reinforcement learning with other brains systems to handle the

complexity of the world and the limited number of choices that an animal can make in its

lifetime: Early brain development creates the basic patterns of wiring in the brain and

experience during life modifies these connections [9]; the declarative memory system

involving the hippocampus and structures in the medial temporal lobes of the cortex allows

memories of specific events and objects to be accessed to guide behavior [10]; the

complexity of a problem is reduced by limiting the number of sensory stimuli that are

attended at any given time [11]; finally, cognitive systems evolved to plan future strategies.
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In this review, we first consider conditions under which performances on sensory and motor

tasks achieve near optimality. Successful behavior depends on the ability to link expected

outcomes of action with relevant models of the world, to derive expectations of reward. In

the next part, this will be illustrated by the problem of learning where to look, which

depends on gathering information from the world over time to achieve an optimal search

strategy. These first two sections are focused on behavior and how performance is shaped by

experience. In the third section, the areas of the brain involved in reinforcement learning are

introduced, which are responsible for organizing sequences of actions to reach goals. The

anatomical organization of these areas, and in particular the loops between the cerebral

cortex and the basal ganglia, reveal levels of control that make us more flexible and

adaptable. Finally, we examine how brains form cognitive strategies by prospective

optimization—planning future actions to optimize rewards. These more advanced aspects of

reinforcement learning have the potential to greatly enhance the performance of autonomous

control systems.

II. IDEAL OBSERVERS AND PERFORMERS

Human performance on most tasks is rarely optimal and a great deal of learning is required

to achieve good performance. However, in some tasks, ranging from sensory perception to

decision making, humans and other species can perform at or near the limit that is

determined by an “ideal observer” and “ideal performer” that has access to all the essential

information and performs perfect inference on that information [12], [13]. For example, the

detection of photons at the photoreceptor is at the noise limit set by signal detection theory

[14], [15] and imperfections of neuronal communication [14], [16]– [20]. Perceptual

grouping and contour detection in humans is also near the performance of an ideal observer

[21]. An example of a search task is given in Section III where humans perform near the

ideal limit after learning. This suggests either that nature is performing Bayesian inference

on joint probability distributions, which requires immense memory resources, or some

approximate scheme that approaches optimal performance [22], [23].

Perceptual experiments allow us to probe the mechanisms that may be responsible for

achieving near-optimal performance. Learning experiments provide evidence for how

optimal performance is acquired after extended experience with the environment. Brain

recordings during these tasks have indicated that interactions between the cerebral cortex

and the basal ganglia are involved in learning new skills and achieving near-optimal

performances, which will be discussed below.

In addition to observing and acting, humans also excel in planning future actions.

Prospectively imagining the future activates many of the same brain areas that are engaged

in remembering the past. These include regions of the medial prefrontal cortex,

hippocampus, and posterior regions of the parietal cortices. Thus, memory of past events can

be used to generate possible future events. We examine evidence for this ability from

rodents to human studies, including results from patients with Parkinson’s disease, and the

key role of the basal ganglia and the dopaminergic system in prospection. Although we have

a good theoretical understanding of reinforcement learning and the neural circuits

underlying it in the basal ganglia, the complexity of prospective optimization requires a new
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conceptual framework that includes interactions of the basal ganglia and hippocampus with

the prefrontal cortex.

Many models are concerned with uncertainty (the degree of precision) of sensorimotor

computations. For example, in studies of visual depth perception, information was shown to

combine according to its relative precision [24], [25], and likewise for vision and touch [26]

or vision and hearing [27]. In these models, information from different cues is weighted

according to the variance of corresponding sensory estimates. More precise cues, such as

cues with smaller variance, were shown to contribute to perception more than the less

precise cues so that perceptual contributions of the cues changed accordingly [27], [28].

But not all predictive theories of sensory processes are statistical: A theory of human spatio–

temporal sensitivity [29] recognizes the fact that selectivity of receptive fields in sensory

neurons limits the information they communicate [29], [30], and offers prescriptions for how

distributions of receptive fields can be optimally matched to the environment; some theories

of perception of visual shape assume that vision favors simple organization [31]–[34].

In the realm of motor behavior, the limiting uncertainty concerns precision of motor acts,

e.g., pointing, reaching, and grasping hand movements. For example, in a study of rapid

reaching movements toward small visual stimuli [35], touching of overlapping disks

(“target” and “penalty”) incurred, respectively, monetary rewards and penalties. Human

subjects tried to maximize payoffs by aiming to the side of the target region away from the

penalty. Taking into account the motor uncertainty measured separately in every subject, a

normative model (“ideal planner”) predicted that the greater the uncertainty, the larger the

expected shift of aim point away from target center. Confirmation of this expectation

supported the view that human neural systems take into account task-relevant motor

uncertainties in planning action.

Subjects showed considerable flexibility in this task. When the visual feedback was

manipulated to create an impression that the scatter of movement end points was larger than

it really was, subjects changed their aim points in agreement with quantitative predictions of

the ideal planner [36]. Similarly, when movements were directed to multiple stimuli in rapid

succession, in different parts of the visual field, such that shapes of 2-D spatial distributions

of end points (“shapes of motor uncertainty”) were different for different stimuli, subjects

were able to adjust their aim points accordingly, as also predicted by the ideal planner [29].

Thus, human neural systems are able rapidly to evoke representations of uncertainty that

match the immediate task.

How can such optimization of action be achieved? Action planning has a retrospective

aspect that builds upon previous interactions of the organism and its environment, i.e.,

“sensory adaptation” and “motor adaptation.” But learning about present sensory and motor

uncertainties could also have beneficial value in the future. Hence, it is important to model

prospective aspects of action planning, i.e., “prospective optimization.” Retrospective and

prospective aspects of action planning are tightly intertwined, rather than being separate

processes. As agents carry out extended actions, they are learning the context of action and

apply this knowledge toward making future decisions.
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The aforementioned ideal-planner models implement some features of prospective

optimization: computing gains expected from different actions and selecting actions whose

expected gains are largest. For example, in the task with two overlapping disks of reward

and penalty, the model computes the gains for every point in a large area that includes the

disks, thus yielding the “gain landscape” for this task. The spatial location where the

landscape reaches its peak constitutes the prediction of optimal aim point.

Yet these models are still incomplete. They fail to capture two essential features of

biological prospective optimization: the natural environment is highly dynamic and

computational capacities of neural systems are limited: their computational “reach”

(horizon) into the future is bounded. These two features of realistic action planning interact.

In the dynamic environment, new properties of the environment are continuously revealed to

the organism as they enter the scope of computation. Accordingly, the expected gains of

action must be continuously reevaluated, and this capability needs to be incorporated into

the normative models.

III. LEARNING WHERE TO LOOK

You are approaching a road and look to your left before stepping out. This strategy is

effective in North America, but can be fatal in the United Kingdom. As you walk along a

road you know where to look for streets signs and street addresses. Knowing where to look

when searching for information in an environment is highly context sensitive and learning

where to look in a dynamic environment is a good example of prospective optimization.

Learning where to look involves the evaluation of sensory information, a form of “bottom–

up” processing, integrated with attentional processes driven by “top– down” expectation.

These two processes are intermingled in the brain and are difficult to disentangle, but

recently a novel search task was developed to tease them apart [37]. Participants were seated

in front of a blank screen and told that their task was to explore the screen to find a hidden

target location that would sound a reward tone when fixated. The hidden target position

varied from trial to trial and was drawn from a Gaussian distribution not known to the

participant but held constant throughout a session [see Fig. 1(a)].

At the start of a session, participants had no prior knowledge to inform their search. Once a

fixation was rewarded, participants could use that feedback to assist on the next trial. As the

session proceeded, participants could improve their success rate by developing an

expectation for the distribution of hidden targets and using it to guide future search [Fig.

1(a)]. After remarkably few trials, participants gathered enough information about the target

distribution to efficiently direct gaze, as illustrated by one participant’s data in Fig. 1(a) and

(b). After approximately a dozen trials, fixations narrowed to the region with high target

probability. A characterization of this effect for all participants is shown in Fig. 1(c). The

search spread was initially broad and narrowed as the session progressed, as shown in Fig.

1(d).

An ideal observer was derived for this task assuming that fixations are independent of one

another and that the target distribution is known. The dashed lines in Fig. 1(a)–(c) mark

ideal-observer performance. Optimal search performance requires a distribution of planned
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fixation “guesses” that is approximately  broader than the target distribution itself [38],

[39]. As seen in Fig. 1(b) and (c), the performance of participants hovered around this

optimal search distribution after about a dozen trials. In Fig. 1(a), the mean for the human

data from trials 31–60 is higher than the theory suggests, but the theory presumes

stationarity of the target distribution. Individuals must be responsive to nonstationarities in

natural environments and this responsivity yields an increase in uncertainty [40] consistent

with observed human performance.

In addition to the ideal-observer theory, the task was also modeled using a temporal-

difference algorithm in reinforcement learning [41], which reduces the error of predicted

future rewards and is motivated by animal learning and behavioral experiments [42]. This

model constructs a value function mapping locations in space to expected reward. The value

function is updated after each fixation based on whether the target is found, and is used for

selecting saccade destinations that are likely to be rewarded. Two additional assumptions

were made: First, each time a saccade is made to a location, the feedback obtained

generalized to nearby spatial locations; second, humans tend to make more short saccades

than long saccades, which was incorporated in the value function as a proximity bias.

Because the choice of the next fixation became dependent on the current fixation, an ideal

observer would plan sequences of fixations instead of choosing a set of independent

fixations.

The mean performance of the model closely tracked mean human performance [Fig. 1(c)].

The model also predicted an asymptotic search spread that increased with the target spread,

consistent with aggregate performance [Fig. 1(d)]. Similar to the human performance

observed in Fig. 1(c), the reinforcement-learning model approaches, but does not reach, the

theoretical asymptote. Like the human participants, reinforcement-learning model was

responsive to nonstationarity in the distribution, whereas the ideal-observer theory assumes

that the distribution is static.

The success of temporal-difference learning and ideal-observer theory raises the question of

how prospective optimization is actually implemented in nervous systems. The

neuroanatomy of the brain is complex, and we only have a crude understanding of the

function of most brain areas. Progress has been made recently in understanding the role of

dopamine, a neuromodulator that is associated with reward systems, in guiding actions

through its influence on the cerebral cortex and the basal ganglia.

IV. DOPAMINE NEURONS AND REWARD-PREDICTION ERROR

The basic components of the basal ganglia, shown in Fig. 2(a), can be identified in the

lamprey, a representative of a group that emerged near the beginning of vertebrate evolution,

suggesting that this system is phylogenetically ancient [43]. The basal ganglia receive inputs

from most of the cortical mantle and in turn project back to the cortex, through the thalamus,

forming long parallel loops. The dorsal basal ganglia are regions that organize voluntary

motor control, in selecting actions and learning sequences of actions. The ventral basal

ganglia, which receive projections from the frontal cortex, have been implicated in higher

cognitive functions and emotional control. The dorsal and ventral basal ganglia are heavily
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innervated by inputs from dopamine neurons from the substantia nigra pars compacta or

ventral tegmental area, which are involved in rewards and reinforcement learning.

Stimulation of dopamine pathways mediate the rewarding effects of intracranial self-

stimulation [44].

The basal ganglia compute the predicted reward for the current state of the world

represented in the cortex and compare it with the actual reward that is received; the

difference between the expected and received reward is signaled by transient changes in the

firing rates of dopamine neurons, which is then used to update the prediction through

changes in the strengths of cortico– striatal synapses [45], [46]. The same dopamine signal

can be used to make decisions: Each possible action is considered in turn and the one that

elicits the highest level of dopamine is chosen. The discovery that transient dopamine

signals indicate reward-prediction error has given rise to new insights into how decisions

and plans are made. Here we will explore how the interactions between the cerebral cortex

and the basal ganglia contribute to efficient planning of future actions [6].

Findings over many years and in many species have led to the view that the architecture of

the basal ganglia contains multiple, closed feedback loops, linking striatal zones with

cortical regions, in which the dorsolateral stream executes sensorimotor functions, while the

ventromedial stream is more closely related to motivations and emotions (see Fig. 3) and

interact with the limbic system [Fig. 2(b)]. Dopaminergic modulation of activity within the

ventral striatum also has a potent influence on diffuse ascending systems that regulate

emotion through the hypothalamus and higher limbic structures. The habenula, a

phylogenetically ancient structure that receives inputs from many limbic structures, inhibits

dopamine neurons in the substantia nigra pars compacta and also influences

neuromodulatory nuclei of the brainstem, and is a source of negative reinforcement signals

in dopamine neurons [47].

Dopamine cells in the primate substantia nigra pars compacta predict decisions for future

actions [48], which is related to reward prediction error. Dopamine population activity is

modulated according to the future actions of the monkey rather than to the reward

probability itself. The ability to choose future actions under conditions of dopamine

depletion has been studied in patients with Parkinson’s disease (PD) who, when they are not

taking their dopaminergic therapy, showed deficits in learning to choose optimal actions,

most acutely at the point in time when the reward probabilities changed [49]. Thus, the

nigral–striatal dopaminergic system seems to be critical for optimizing our decisions for

future action in stochastic environments.

Optimization for future actions must not only take into account the magnitude of the reward,

but also the delay until the reward becomes available [50]. In animals and humans, the

subjective value of a reward decays hyperbolically, the longer the delay [51]. In rats, the

responses of dopamine neurons show a similar hyperbolic decay function to reward delay

[52]. Uniquely, humans discount smaller reward amounts more steeply than larger amounts

[51]. Discounting itself is affected by basal dopamine levels, as indicated by studies on

patients with PD. When some PD patients are given dopaminergic therapy, they develop

pathological gambling or other impulse control disorders [53], presumably due to
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“overdosing” dopamine levels in a relatively intact ventral striatum [54]. PD patients with

impulse control disorders strongly prefer immediate, small rewards over delayed larger

rewards [55], consistent with a high discount.

V. ELABORATIONS OF BASIC CIRCUITS AND PROSPECTIVE

CAPABILITIES

The basal ganglia and the cerebral cortex have many different regions corresponding to

different sensory systems, different aspects of planning and motor control, and their

corresponding working memories, which are used to maintain relevant information while

performing a task. In this section, we will explore the functional roles that each of these

regions may have in learning to control behavior. The anatomical terminology is,

unfortunately, arcane, but conceptually the overall goal of these regions is clear: keep track

of the state of the world, predict the outcomes of possible actions, and decide which actions

to take.

The putamen of the striatum receives inputs from sensory and motor regions of the cortex

and is involved with habit formation [blue loop in Fig. 3(b)]. This loop maps sensory states

to responses (S–R), reinforced by rewards. In reinforcement-learning theory, this is called

model-free learning, in which the basal ganglia serves as a lookup table that associates brain

states values and actions [57]. This strategy is closely tied to the effector (such as a hand)

and can make decisions rapidly. However, a habit is an inflexible strategy that does not

allow for contingencies. In particular, reward contingencies can change more rapidly than

can be accommodated by habit formation.

The loop through the caudate of the striatum, which receives inputs from the dorsolateral

prefrontal cortex and other associative areas of the cortex [yellow–green in Fig. 3(b)], is

linked to outcomes rather than responses; that is, learning is directed toward associating a

particular action to a particular reward (A–O), as shown in Fig. 4. In reinforcement-learning

theory, the A–O system is a model-based approach, in which the action is linked to

outcomes by constructing a model of the environment. The dorsolateral prefrontal cortex

also supports working memory, which is a much faster memory system that can rapidly

adapt to task contingencies. There is a hierarchy in learning in which a novel task initially

under the control of the more flexible associational loop is transferred to the sensorimotor

loop (Fig. 4).

A third cortico–striatal loop through the ventral striatum receives inputs from the

orbitofrontal and ventromedial regions of the cortex [red loop of Fig. 3(b)]. The most

striking change to the basic dopamine–striatal networks across the vertebrates is the increase

of connections that link ventral striatum to prefrontal cortex, as a dense projection from the

ventral pallidum to the mediodorsal thalamus, which then innervates much of the prefrontal

cortex. Reward prediction becomes elaborated in this loop to deal with complex

environments that change in response to goal-directed behavior, an essential feature of fully

realized prospective optimization. The habenula, which carries negative reinforcement

signals, inhibits dopamine neurons in the ventral tegmental area, which in turn project to the

ventral striatum.
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The orbitofrontal and related medial prefrontal areas projecting to the ventral striatum are

critical for the evaluation of delayed rewards [58] and orbitofrontal disturbances in rats and

primates interfere with evaluation of the relationship between delay and reward value, and

produce an exaggerated preference for immediate versus delayed rewards. Thus, the

prefrontal areas enhance fundamental, dopamine-related ingredients of temporal

discounting. Two well-established prefrontal cortical operations—working memory and

sequencing of behaviors—are also likely to extend the reach of prospective computations. A

high capacity working memory system would allow an increase in the number of cue

elements that can be used in calculating the relative advantages of immediate versus delayed

rewards, as well as presumably extending the time frame over which such calculations can

be made. Enhanced ability to plan action sequences could, when coupled with expanded

working memory, allow a brain to compare multiple, potential trajectories to a distant goal

[6], [59].

The essential components of these three loops appear to be present in all mammals [39].

However, while the elements of the loop are conserved, the balance between them changes

drastically with increases in brain size. The relative size of the cortex in primate species also

expands more rapidly than the basal ganglia; moreover, some prefrontal areas expand

disproportionately with increases in cortical size [60].

VI. A CONCEPTUAL FRAMEWORK FOR PROSPECTIVE OPTIMIZATION

There is a cost to pay for evaluating possible actions as they increase in number and

complexity. It is relatively easy to make a decision when there are only two possible

choices, but when there are many choices to make, time and computational resources

become limited. One approach is to add the cost of having a complex policy into the value

of future reward. This leads to a modification of temporal-difference learning in which the

decisions are based on an experience-modulated version of the behavior policy [61].

However, this approach becomes problematic when imagined scenarios are included in the

set of possible choices, which could lead to an unending sequence of comparisons. Sutton

has nonetheless shown that including some imagined scenarios can improve performance of

reinforcement learning [62].

A system capable of a priori comparisons of multiple decisions and of using past credit

assignments to choose between them, however, would not necessarily be capable of

switching strategies once the action sequence was underway—a key element of prospective

optimization. Damage to prefrontal areas outside the orbital cortex disrupts the ability of

rodents and primates to switch between classes of discriminative cues (e.g., tactile to visual)

while performing complex tasks [63]–[66]. The attentional “set shifting” analyzed in these

studies is a logical early step in changing strategies when unexpected consequences arise

during the execution of a planned trajectory. This leads naturally to including areas of the

prefrontal cortex in the loop with the basal ganglia evaluating actions online. Set shifting

engages multiple regions of the prefrontal cortex, which when damaged lead to

perseveration. Thus, the interactions between regions of the prefrontal cortex are central for

prospective optimization, but are not sufficiently well studied in humans to develop a model.
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Recent work on the hippocampus and allied temporal lobe structures suggests that these

areas play critical roles in episodic memory, very likely including the replay of already

learned material. There are now reasons to suspect that the hippocampus has a similar role in

prospectively organizing learned material pertinent to actions yet to be committed. A

striking example of this was obtained with multielectrode recordings from the hippocampus

of rats dealing with a multichoice problem; the spatio–temporal firing patterns at choice

points provided a representation of first one and then the other of the potential response

trajectories [67]. Brain imaging studies indicate that the anterior hippocampus is activated to

different degrees while subjects are asked to imagine future events of varying likelihoods of

occurrence [68]. Another recent fMRI study showed that medial prefrontal activation

predictive of the valuation assigned to future rewards was associated with enhanced

coupling of prefrontal– hippocampal activity, thus providing evidence that prefrontal cortex

uses information from hippocampus for temporal discounting [69].

The prefrontal cortex also is bidirectionally coupled with the basal ganglia in ways that

change with movement and dopaminergic input [70]. Moreover, during active navigation

and decision making in rats, the striatum and the hippocampus likewise are functionally

coupled [71]. Cross-frequency-band coupling changes dynamically both within and across

striatum and hippocampus, particularly during decision-making epochs, when simultaneous

activation of synchronized striatal and hippocampal memory circuits occurs [71]. The

ventral striatum is strongly implicated in delay discounting [72], [73], and, importantly,

neuron firing in the ventral striatum is directly modulated by the hippocampus [74], [75].

Episodic future thinking reduces temporal delay discounting, in part by modulating

networks involving the hippocampus [76]. Indeed, patients with hippocampal amnesia lose

the ability to imagine novel experiences [77], reducing their ability to make optimal

decisions [78]. Healthy humans have particularly long time lines for planning into the future

and waiting long periods in order to achieve goals.

Our ability to imagine the future may put a brake on temporal discounting and impulsive

behavior, promoting cooperation and constraint, operations that are particularly

advantageous in highly interdependent human societies [79]. Indeed, the emergence of

prospective thinking may have coincided with the emergence of a rapid expansion of

behavioral repertoires that culminated in homo ergaster/erectus and homo sapiens [80]. Less

complex brains can easily accomplish retrospective optimization, but the longer into the

future that actions must be planned, the greater the brain complexity may be required. The

ability for prospective optimization may have thus been an important driver in the evolution

of increasing brain complexity.

These observations suggest modifications to working model that incorporate prospection.

Access to the unique anatomical machinery and prospective operations of hippocampus

would allow prefrontal cortex to substitute imagined episodes for simpler inputs and thereby

incorporate a “likely energy to be spent” component into temporal discount calculations.

The apparent ability of hippocampus to serially generate representations of response

sequences yet to be performed would permit the sequencing functions of prefrontal cortex to

deal with much more complex possibilities (e.g., trajectory A followed by trajectory B) than
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would otherwise be possible. Forward and backward replays of place cells have been

observed in the rat hippocampus [81], [82].

We expect that prospective operations will be found at multiple levels of the cortical mantle,

with types of information and depth of extension into the future depending on local anatomy

coupled with extrinsic connections. Final decisions, we further argue, depend on a prefrontal

cortex that utilizes its close relationship with phylogenetically older systems to execute the

time demanding calculations needed for prospective optimization. The extraordinary

expansion of these prefrontal areas in humans would therefore allow for the remarkable

efficiency of humans dealing with uncertain outcomes.

In humans it is possible explicitly to ask subjects about the past and the future. When asked

to imagine future scenarios, the regions of the cerebral cortex that are activated are the same

ones that are activated when asked to remember past episodes [83], [84]. These areas

include the medial and lateral temporal lobes, the lateral parietal cortex, the medial

prefrontal cortex and the precuneus/retrosplenial cortex, as well as the hippocampus and the

parahippocampal gyrus, which collectively form a core set of brain regions that are engaged

in both verbally guided remembering and planning.

VII. CONCLUSION

Imagining the future and modifying behavior accordingly is one of the most adaptive

capabilities of neural systems, especially the ability to use memory of past events to generate

expectations of future events. Prospective optimization has become highly elaborated as the

cortex and basal ganglia evolved to support increasingly longer time horizons and more

complex behaviors. We have presented a conceptual framework for how prospective

optimization may be integrated into the existing dopamine framework for reward prediction

in the basal ganglia. Evolution has integrated all of these brain systems in ways that we are

just beginning to appreciate.

As we continue to dissect the complexity of the circuits in the cerebral cortex and basal

ganglia, as well as other parts of the brain such as the cerebellum that bring additional

capabilities, it should be possible to elaborate on current reinforcement-learning systems to

improve their performance on many practical problems. A new field called “dynamic

cognitive systems” combines reinforcement learning with statistical signal processing and

information theory to improve the performance of radios, radar, control, and power grids

[85], [86]. In particular, these systems might benefit from including prospective

optimization as an integral part of their architecture. As these engineered systems are

developed and deployed based on these principles, they may in turn give us further insights

into the cognitive aspects of brain function.
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GLOSSARY

Navigational
terms

The cardinal directions in the brain are dorsal (front), ventral

(back), medial (closer to the midline), lateral (farther from the

midline), rostral (anterior), and caudal (posterior).

Basal ganglia Group of nuclei in the forebrain associated with voluntary motor

control, procedural learning relating to routine behaviors or

“habits, ” eye movements, cognitive, and emotional functions (see

Fig. 2). Basal ganglia are involved in action selection; that is, which

of several possible behaviors to execute at a given time

Cingulate cortex Cortical area forming a belt on the medial walls of the hemisphere;

part of the limbic system and involved with linking behavioral

outcomes to motivation and emotional response.

Classical
conditioning

After repeated pairing of a neutral conditioned stimulus (CS), such

as a tone, with an unconditioned stimulus (US) that elicits an

automatic unconditioned response (UR) to the US, the CS when

presented alone elicits the UR and is called a conditioned response

(CR) to the CS.

Dopamine Neuromodulator associated with reward-motivated behavior and

motor control. All addictive drugs increase the level of dopamine

activity, including cocaine, amphetamine, and methamphetamine.

Antipsychotic drugs cattenuate dopamine activity. The tremor and

motor impairment in Parkinson’s disease is caused by loss of

dopamine-secreting neurons in the substantia nigra of the basal

ganglia.

GABA (γ-
aminobutyric
acid)

Inhibitory neurotransmitter.

Globus pallidus
(Pallidum)

The output nucleus of the basal ganglia involved in the regulation

of voluntary movement.

Hippocampus Receives converging inputs from associational areas of the cerebral

cortex; feedback connections are essential for the consolidation of

long-term declarative memories.

Ideal observer/
planner

System that performs a perceptual/motor task in an optimal way.

Limbic system A set of brain structures involved with a variety of basic functions

linked to motivation and survival (see Fig. 2). The amygdala in

particular is involved in strong emotions such as fear and pleasure

and is a gateway between limbic structures and the basal ganglia.

Nucleus
accumbens

Part of the basal ganglia, forming the ventral striatum that receives

inputs from the prefrontal cortex. Involved in hedonic experiences
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including laughter and reward, as well as fear, aggression,

impulsivity, and addiction.

Operant
conditioning

Reinforcement learning in which the consequences of a choice may

reinforce or inhibit recurrence of that behavior.

Prefrontal cortex
(PFC)

The anterior part of the frontal lobes of the brain, lying in front of

the motor and premotor areas. The PFC is involved with planning,

decision making, and social behavior.

Prospective
optimization

Planning future actions to optimize rewards

Orbitofrontal
cortex

The part of the prefrontal cortex over the orbit of the eyes that is

engaged in evaluating rewards and emotional states in decision

making.

Parkinson’s
disease

A motor system disorder, the result of the loss of dopamine-

producing brain cells. The four primary symptoms are tremor

(trembling in hands, arms, legs, jaw, and face); rigidity (stiffness of

the limbs and trunk); bradykinesia (slowness of movement); and

postural instability (impaired balance and coordination).

Reinforcement
learning

Area of control theory concerned with how guiding to maximize

cumulative reward. Closely related to classical and operant

conditioning.

Striatum Region of the basal ganglia receiving input from the cerebral

cortex, involved with coordinating motivation and action. The

Caudate and Putamen are subdivisions.

Substantia nigra
pars compacta

Midbrain nucleus containing dopamine neurons that project to the

striatum and cerebral cortex. Depletion of dopamine leads to

Parkinson’s disease.

Temporal-
difference (TD)
learning

Online reinforcement-learning algorithm based on reward

prediction error.

Thalamus Relays sensory information to the cerebral cortex; receives

feedback from the cortex that globally coordinates coherent cortical

activity during sleep.

Ventral tegmental
area

Origin of the dopaminergic cell bodies that project to the striatum

and cerebral cortex and involved in reward cognition, motivation,

and drug addiction.
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Fig. 1.
Hidden target task. (a) Blank screen is superimposed with the hidden target distribution that

is learned over the session as well as sample eye traces from three trials for a participant.

The first fixation of each trial is marked with a black circle. The final and rewarded fixation

is marked by a shaded gray-scale circle. (b) The region of the screen sampled with fixation

shrinks from the entire screen on early trials (blue circles; 87 fixations over the first five

trials) to a region that approximates the size and position of the Gaussian-integer-distributed

target locations on later trials (red circles; 85 fixations from trials 32–39). (c) Learning

curves. The distance between the mean of the fixation cluster for each trial to the target

centroid, averaged across participants, is shown in blue and green and indicates the result of

200 simulations of the reinforcement-learning model for each participant’s parameters. The

standard error of the mean is given for both. The ideal-observer prediction is indicated by
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the black dotted line. (d) The standard deviation of the eye position distributions or “search

spread” is shown for the average of all participants (blue) and the reinforcement-learning

model (green) with standard error of the mean. The dashed line is the ideal-observer

theoretical optimum in each case, assuming perfect knowledge of the target distribution.

(Adapted from [37].)
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Fig. 2.
Brain structures comprising the (left) basal ganglia and (right) limbic system. The cerebral

cortex shown on the outside of the brain projects to the caudate and putamen of the dorsal

(top) striatum, and nucleus accumbens of the ventral (bottom) striatum of the basal ganglia.

The output of the basal ganglia from the globus pallidus projects to the thalamus, which then

project back to the cortex, forming a loop (see Fig. 3). The limbic system, which means

“ring” and circles the thalamus, regulates emotion, behavior, motivation, long-term memory,

and olfaction. The limbic system includes the cingulate cortex on the inside, or medial wall

of the cortex, the hippocampus and the amygdala. (Courtesy of Paul Wissmann.)

Sejnowski et al. Page 23

Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2014 October 17.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Fig. 3.
Schematic model of cortico–striatal loops. (Left) Model of the basal ganglia showing the

direct pathway—which involves direct striatonigral inhibitory connections (dark green

arrows) that promote behavior—and the indirect pathway—which involves relays in the

external globus pallidus (GPe) and sub thalamic nucleus (STN), with the only excitatory

projection in the basal ganglia (red arrow), and suppresses behavior. The balance between

these two projections is thought to be regulated by afferent dopaminergic signals from the

substantia nigra pars compacta (SNc)and the ventral tegmental area (VTA). (Topright)The

connections between the cerebral cortex and the basal ganglia can be viewed as a series of

parallel-projecting, largely segregated loops or channels conveying limbic (red), associative

(yellow–green) and sensorimotor (blue–white) information. Functional territories
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represented at the level of cerebral cortex are maintained throughout the basal ganglia nuclei

and thalamic relays. Black arrows indicate excitatory glutamatergic projections, gray arrows

indicate GABA-ergic projections. (Bottom right) The spatially segregated “rostral caudal

gradient” of human prefrontal cortical connectivity in the caudate, putamen, and pallidum.

The color-coded ring denotes limbic (red), associative (yellow–green) and sensorimotor

regions of the cerebral cortex in the sagittal plane. PFC: prefrontal cortex. (Adapted from

[56].)
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Fig. 4.
Organization of cortico–basal ganglia networks. Schematic illustration showing cortico–

basal ganglia networks in relation to serial adaptation. A shift from the associative to the

sensorimotor cortico–basal ganglia network is observed during habit formation. DA:

dopamine; DLS: dorsolateral striatum; DMS: dorsomedial striatum. (Adapted from [57].)
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