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ABSTRACT: There currently exist no quantitative methods to
determine the appropriate conditions for solid-state synthesis. This
not only hinders the experimental realization of novel materials but also
complicates the interpretation and understanding of solid-state reaction
mechanisms. Here, we demonstrate a machine-learning approach that
predicts synthesis conditions using large solid-state synthesis data sets
text-mined from scientific journal articles. Using feature importance
ranking analysis, we discovered that optimal heating temperatures have
strong correlations with the stability of precursor materials quantified
using melting points and formation energies (ΔGf, ΔHf). In contrast,
features derived from the thermodynamics of synthesis-related
reactions did not directly correlate to the chosen heating temperatures.
This correlation between optimal solid-state heating temperature and
precursor stability extends Tamman’s rule from intermetallics to oxide systems, suggesting the importance of reaction kinetics in
determining synthesis conditions. Heating times are shown to be strongly correlated with the chosen experimental procedures and
instrument setups, which may be indicative of human bias in the data set. Using these predictive features, we constructed machine-
learning models with good performance and general applicability to predict the conditions required to synthesize diverse chemical
systems.

■ INTRODUCTION
While solid-state synthesis is the prevailing approach for
making inorganic solids, the determination of synthesis
conditions for new solids is mostly based on heuristics and
human-acquired experiences, with no analytical predictive
approaches.1,2 Recent work has focused on rationalizing solid-
state reaction pathways observed in in situ experiments3−7 by
decomposing them into a sequence of phase evolution steps1

that can be modeled using thermodynamic calculations.8−11

To design synthesis routes for new materials, it is essential to
understand why certain conditions are preferred and develop
models for predicting these conditions for synthesis (e.g.,
temperature, time). While thermodynamic calculations have
been used to rationalize synthesis conditions in specific
chemical systems,8,12 a synthesis condition predictor with
broad applicability for general inorganic compounds is still
elusive.
Here, we use statistical machine-learning (ML) methods to

systematically learn and quantitatively evaluate synthesis
condition predictors from a large set of experimental data.
Such ML approaches require large, high-quality synthesis data
sets covering many chemistries, which have only recently
become available through the application of natural language
processing (NLP) and information retrieval techniques on the

large body of scientific literature.13−19 In this work, using the
data set of over 30 000 text-mined solid-state synthesis
reactions (denoted as the text-mined “recipes” or the TMR
data set in this paper),16 we demonstrate an inductive ML
approach that learns synthesis conditions from the knowledge
parsed from the past literature.
The overall pipeline of our ML approach is shown in Figure

1. Data sets of synthesis conditions compiled from NLP/text-
mined data sets are used to train ML models. Each synthesis
reaction was represented using a set of human-designed
features, which will be discussed in more detail in subsequent
sections. Interpretable ML models were trained on this basis of
features to predict two key solid-state synthesis conditions that
must be specified for any reaction: heating temperature and
heating time.
Throughout this paper, the prediction of solid-state

synthesis conditions is defined as regression (point estima-
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tions) of the two experimental condition variables�temper-
ature and time. Several important assumptions have been
made: (a) Good synthesizability is assumed;20−23 i.e., when a
publication reports the synthesis of some material at a specified
set of conditions, we assume that this reaction was successful.
(b) Synthesis experiments are performed in a one-shot fashion;
i.e., reactants react and form the target compound in a single
heating step, such that a simple synthesis route of “mix and
heat” would be sufficient. (c) The ML models predict the
“optimal” synthesis conditions as implicitly defined by the
consensus of training data.
Note that the above assumptions oversimplify the synthesis

condition prediction problem. These assumptions are often
violated in many cases of practical solid-state syntheses. For
example, a simple one-shot reaction route can thermodynami-
cally favor an impurity phase which can only be avoided by
using a multistep synthesis with specific intermediate
compounds;11,24 solid-state syntheses are often performed
with many more degrees of freedom, such as special heating
schedules,8,24 special mixing devices,25 different sintering
aids,26 etc. Moreover, the heating atmosphere strongly affects
target material formation by changing the chemical potentials
of gas species.27 ML models require sufficient and consistent
data to draw statistically significant conclusions,28,29 while the
data set used in this work has too imbalanced distributions for
these additional labels. For example, only <5% of the reactions
in the TMR data set have nonair synthesis atmospheres.
Therefore, the aforementioned conditions, although present in
the TMR data set, are not predicted by the ML models in this
work. Modeling of these factors may become possible as text-
mined data sets become abundant in the future.30

In this work, we considered 133 synthesis features describing
four aspects of solid-state syntheses: (1) precursor properties,
(2) composition of the target material, (3) reaction
thermodynamics, and (4) experimental procedure setup. We
ranked these features according to their predictive power using
dominance importance (DI) analysis.31 The features were used
to train linear and nonlinear (tree-based) regressors for
synthesis heating temperature and time. For all models, we
split the data set into reactions with carbonate precursors and
reactions without carbonate reactions. This splitting is
necessary because the release of CO2 gas in carbonate
precursor materials systematically shifts the reaction driving

forces for this subset and, consequently, the coefficients of the
related features in linear models. Grouping the data set into
carbonate and noncarbonate reactions thus fits two sets of
coefficients that account for this shift and improves the overall
performance. We performed leave-one-out cross-validation
(LOOCV) to diagnose model performance. We also used out-
of-sample (OOS) evaluation on Pearson’s Crystal Data32

(another synthesis data set independently extracted from the
literature, denoted as the PCD data set in this paper) to test
model generalizability on unseen data sets. The detailed data
preprocessing and model construction can be found in the
Methods section.
Our ML results achieve a goodness-of-fit measured by R2 ∼

0.5−0.6 and mean absolute error (MAE) ∼ 140 °C for heating
temperature prediction. To compare with, typical heating
temperatures used in solid-state synthesis range from ∼500 °C
to ∼1500 °C. For heating time prediction, the time variable is
transformed into a new prediction variable representing
reaction speed: t → log10(1/t) . The goodness-of-fit for this
new time variable is R2 ∼ 0.3, and MAE is ∼0.3 log10(h−1)
(e.g., if the predicted time is t, the MAE estimates a range of
[10−0.3·t, 100.3·t], or [0.5t, 2t]). Analysis of the model
predictive power reveals that heating temperature prediction
is dominated by precursor properties, which we hypothesize to
be linked to reaction kinetics. Heating time prediction is
dominated by experimental operations, which may be
indicative of human selection bias. The ML methods
developed and applied in this work provide a statistically
rigorous approach toward learning robust synthesis predictors
from large data sets mined from the scientific literature.

■ RESULTS
Synthesis Feature Selection Using Dominance Anal-

ysis. In total, we created 133 features in four categories: (1)
precursor properties�12 features calculated from melting
points, standard enthalpy of formation ΔHf300K, and standard
Gibbs free energy of formation ΔGf300K of precursors; (2)
composition of the target material�74 indicator variables
representing the presence (1) or absence (0) of different
chemical elements in the target compound; (3) reaction
thermodynamics�33 descriptive features of the driving forces
for synthesis-relevant reactions constructed by decomposing
synthesis into multistep phase evolution paths using previously

Figure 1. Schematic of the ML methods developed in this work for predicting solid-state synthesis conditions.
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developed principles;7,8 and (4) experiment-adjacent fea-
tures�14 indicator variables representing whether certain
devices, procedures, and/or additives were used in the
synthesis procedure. See Methods for a more detailed
description of how each of these classes of features was
computed.
We first use DI analysis31 to rank the predictive power of

these features. In DI analysis, one constructs many linear
models that predict outcomes using subsets of features, called
submodels. DI analysis then calculates the incremental effect of
a feature f i on submodels that do not use f i in three different
ways. The average partial dominance importance (APDI) value
for f i is computed as the average increase of model
performance, measured by R2, when f i is added to any
submodel that does not include f i. In other words, APDI
measures the averaged gain of predictive power by including a
feature. Individual dominance importance (IDI) values are the
R2 of models trained using only one feature and quantify the
predictive power of the features by themselves. Interactional
dominance importance (IADI) values are the decrease of
model R2 when a feature is removed from the whole model
that uses all features, therefore measuring the gain of predictive
power by a feature over all other features. All three DI values
are computed for both heating temperature and time
prediction models and are shown in Figure 2. We split the
data set into carbonate reactions (reactions with at least one
carbonate precursor) and noncarbonate reactions (reactions

with no carbonate precursors). This is necessary because these
two subsets have dissimilar distributions of reaction
thermodynamic driving forces, which must be separated to
be modeled in linear regression.33,34

We first evaluate the predictive powers of the features by
themselves, as demonstrated by the IDI values in Figure 2. For
heating temperature prediction, Figure 2a,b shows that the IDI
values of the average precursor melting points are significantly
higher than those of other features. Average precursor melting
points alone achieve R2 ∼ 0.2−0.3 for heating temperature
prediction. Other features, such as experimental Gibbs free
energy of formation at standard conditions ΔGf300K and
experimental enthalpy of formation at standard conditions
ΔHf300K of precursors, are also highly predictive features as
measured by IDI. Note that precursor melting points, ΔGf300K,
and ΔHf300K are likely to be good proxy variables for precursor
reactivity. The next set of predictive features as ranked by IDI
are compositional indicator variables (e.g., indicating the
presence/absence of Li, Mo, Bi, etc.). These features can be
understood as chemistry-specific corrections to heating
temperatures. Note that ML models aim to reduce prediction
errors for the whole training data set, which is dominated by
the elements that are characteristic of large application fields,
such as Li (Li-ion batteries) and Ba (perovskite oxides). It is
thus not surprising that these most frequently synthesized
chemical systems appear at the top of the list in Figure 2a,b.

Figure 2. DI values and rankings of the top 15 synthesis features for heating temperature models (a and b) and heating time models (c and d). The
data set is split into carbonate reactions (reactions with at least one carbonate precursor) (a and c) and noncarbonate reactions (reactions with no
carbonate precursors) (b and d). Interactional DI (IADI): decrease of model R2 when a feature is removed from the whole model that uses all
features. Individual DI (IDI): R2 of models trained using only one feature. Average partial DI (APDI): average R2 increase when a feature is added
to a submodel. Features are ordered according to the sum of all three DI values.
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For heating time prediction, Figure 2c,d shows that the IDI
of experiment-adjacent features (e.g., indicators of polycrystal
synthesis, phosphors, and usage of ball-milling devices)
completely outweigh precursor property features. This suggests
that heating time is largely controlled by the desired
applications (e.g., the need for dense pellets, small particles,
single crystals, etc.) and experimental setups rather than
reaction mechanisms. Meanwhile, compositional indicator
variables still rank second after the experiment-adjacent
features, again acting as chemistry-specific corrections.
The blue bars in Figure 2 are IADI values. IADI values

measure the gain of predictive power by a feature over all other
features. For heating temperature prediction, Figure 2a,b shows
that IADI values are very small for most features. A low IADI
value is usually due to high correlation among features, e.g.,
average precursor melting points and maximal precursor
melting points. These high correlations suggest it is necessary
to use feature selection to choose the strongest feature among
highly correlated features, as will be discussed in the next
section. Nevertheless, a few features have relatively higher
IADI values, a sign that they bring unique extra information
over all other features. For example, describing syntheses using
the word “sintering” may suggest the experimenters actively
chose higher heating temperatures. As a consequence, the
experiment-adjacent feature of “sintering” has the highest IADI
value for temperature prediction models.
The green bars in Figure 2 are APDI values. APDI values are

the average R2 increase of a feature to all submodels. Thus,
APDI estimates the general usefulness of a feature. APDI and
IDI values are therefore two important factors in ranking
feature importance. For example, in Figure 2a, even though
average precursor melting point and ΔGf300K both have high
IDI values, ΔGf300K has smaller APDI values and is less
important because of correlation with alternative features. By
ranking all features according to the summation of DI values,
we are able to consistently select the most uniquely predictive
features.
While, in general, synthesis temperature and time together

determine the overall reaction kinetics, they are not ranked as
top predictive features in Figure 2 when included as features to
predict each other (also see Table S1). This seems contrary to
the expectation that they would be strongly correlated because
elevated temperatures can lead to faster reactions by
promoting atomic diffusion. We hypothesize that the low
correlation between time and temperature may be due to a
variety of reasons: (1) As opposed to sampling many synthesis

conditions for a specific chemical system, the TMR data set
spans diverse chemistries. There are usually less than 5
reported syntheses for a majority (>60%) of the chemical
systems, which is not enough to reveal a stronger correlation,
and (2) The TMR data set is text-mined from journal articles
in which synthesis conditions, especially synthesis time, are
generally not optimized but are determined by other external
factors, such as the desired applications or the researcher’s
convenience. These external factors make the time variable
more noisy and less correlated to temperature than it might be
in a variationally constrained set of data (e.g., the collection of
shortest times for each temperature)
To summarize, the overall rankings in Figure 2 suggest each

prediction variable is dominated by two types of features. For
heating temperature prediction, precursor material properties
have the most feature importance, while compositional features
act as secondary corrections. For heating time prediction,
experiment-adjacent features dominate the prediction, while
compositional features also provide secondary corrections.
Contrary to the common application of decomposing synthesis
reactions into multistep phase evolution paths using
thermodynamic principles,8,10−12 Figure 2 shows that the
phase evolution thermodynamic driving force features,
developed using similar principles in this work, provide little
predictive power for heating temperature and time. We
hypothesize that this is due to the fact that the TMR data
set contains only positive experimental results for which
researchers actively optimize for reasonable reaction kinetics.
Therefore, reaction driving forces are less useful as these
features are more likely to indicate whether something is
synthesizable (e.g., if reactions to form a target are
thermodynamically spontaneous) rather than indicate at what
conditions reactions may occur quickly. We will revisit this
finding in more detail in the Discussion section.
Building and Interpreting Linear Regression Models.

To build regression models, we start with linear regressors as
baseline models because their good interpretability allows one
to focus on feature engineering and decipher the relations
between features and synthesis conditions. To balance between
high predictive power and possible overfitting, we add features
in the order of DI rankings and drop any feature that increases
model Bayesian information criterion (BIC) values.29 In total,
four linear models (heating temperature and time prediction
models for carbonate and noncarbonate reactions) were
trained using weighted least-squares (WLS).29 The scatter
plots of the predicted synthesis conditions versus the reported

Figure 3. Regression result of linear models. The scatter plots show reported conditions vs predicted conditions for temperature prediction (a) and
time prediction (b). Opacity of the markers indicates the weights of data points. Histograms of prediction errors are also shown.
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conditions are shown in Figure 3a,b. For heating temperature
prediction, the R2 values of the models are 0.55 on carbonate
reactions and 0.56 on noncarbonate reactions, while the MAE
values are 134 and 147 °C, respectively. For heating time
prediction, the R2 values of the models are 0.31 on carbonate
reactions and 0.33 on noncarbonate reactions, while the MAE

values are 0.30 log10(h−1) and 0.32 log10(h−1), respectively.
Because we predict the transformed time variable log10(1/t),
such MAE estimates that the time prediction is within range
[10−0.3·t, 100.3·t], or [0.5t, 2t] (e.g., for a 2 h experiment, the
expected prediction range is 0.5−4 h). Note that these metrics
are evaluated on training data. Thus, they may not reflect the

Figure 4. Average effect of each chemical element to predicted heating temperatures (a) and times (b) in trained linear models. The values are
coefficients of the corresponding features in the linear models, quantifying how much the predicted value changes relatively if a new chemical
element is added to (or removed from) the synthesis.

Figure 5.Model performance versus number of training features for both linear and nonlinear (gradient boosting tree regressor) models. The x-axis
shows the number of features used. The features are added in the order of DI value rankings. The first row shows performances of temperature
prediction models trained on carbonate reactions (a) and noncarbonate reactions (b). The second row shows performances of time prediction
models trained on reactions with (c) and without (d) carbonate precursors.
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model performance when applied on unseen data. We will
perform cross validation and discuss the results in later
sections.
In a linear regressor ŷ = ∑iβixi, the feature coefficients βi

quantify how the regression target variable responds to unit
changes of xi. As a special case, when xi ∈{0, 1} are indicator
variables (e.g., compositional and experimental-adjacent
features), βi can be interpreted as additive effects on the
prediction target variable when features xi = 1. For all
compositional features, the effects are shown in Figure 4a,b.
Note that these values are relative to the “average” according to
the training data set and must be interpreted in relative values.
For example, if Li is present in the target compound, Figure 4a
suggests the heating temperature will decrease by 360 °C on
average for noncarbonate reactions. On the other hand, the
presence of N will increase the heating temperature by 260 °C
on average. Therefore, Figure 4a,b show maps that associate
different chemistries with their effect on optimal synthesis
conditions. Such maps can be used as empirical “synthesis
rules” that are helpful for designing synthesis routes to new
materials.
The learned coefficients in Figure 4a,b are sparse because

some elements appear only a few times or are even missing in
the training data set, precluding a confident estimate of their
effect (assessed by the p-values of the coefficients with a 5%
significance level35). In Figure 4, we observe more consistent
compositional effects across similar element periods and
groups for temperature predictions than for heating time
predictions. The lack of correlation with compositional effects
for time prediction matches the DI analysis result in Figure
2c,d, which suggests compositional features are less helpful for
predicting heating time. Moreover, the compositional effects
are less consistent between carbonate reactions and non-
carbonate reactions for heating time prediction. These
observations suggests the compositional effects are generally
less reliable for heating time prediction and must be used with
more caution.
Training and Cross-Validating Nonlinear Models.

Having used DI analysis and linear models to probe the
synthesis prediction features, we next aim to systematically
cross-validate ML models to understand their generalizability
or propensity for overfitting. Figure 5 shows the model
performances versus the number of features, which character-
ize training R2 and the LOOCV Pseudo-R2 (a metric

comparable to R2, see Methods) scores of the linear models
as more features are included in training. In Figure 5, features
are added into the models in the order of DI value rankings.
Figure 5 shows that both training and LOOCV scores increase
quickly when the number of features is less than 10. This result
is consistent with the DI values in Figure 2 as the first few
features have the highest feature importance. The model
performance continues to improve as we include all other
features, although the marginal improvement decreases rapidly.
The training and LOOCV curves for linear models exhibit very
similar performances, suggesting that these linear models have
little risk of overfitting.
The linear model may be incapable of capturing nonlinear

correlations among features and synthesis conditions. We next
use advanced ML models that are capable of modeling
nonlinear relations on the same set of features as for the linear
models. Among the many ML models we attempted during
preliminary experiments, gradient boosted regression trees
(GBRT), implemented in the XGBoost package,36 demon-
strated the best LOOCV scores after proper hyperparameter
tuning. XGBoost models use a large number of weak tree
learners to build a strong ensemble regressor and are able to
learn nonlinear effects. Indeed, we observe in Figure 5 that
XGBoost training Pseudo-R2 (red dashed curves) results are
significantly higher than linear model results. However, as
shown by the teal crosses in Figure 5, compared to the
LOOCV scores of linear models (green stars), the LOOCV
Pseudo-R2 scores of XGBoost models do not improve as much
when compared to the LOOCV performance of the linear
models, suggesting an increased level of overfitting by
XGBoost models. One advantage of XGBoost over linear
models is improved utilization of a small number of features, as
shown by the steeper curves when the number of features is
less than 10 in Figure 5a,b, although the advantage diminishes
once sufficiently many features are used. Finally, to help better
understand the uncertainties of the models, we visualize the
error distributions of synthesis conditions in Figure 6 using
violin plots, where we mark the interquartile range (IQR)
representing 50% of the errors, and 1.5x IQR, representing the
range of prediction errors beyond which the errors are
considered outliers.
Testing Model Generalizability Using the PCD Data

Set. When applied to unseen data sets, ML model predictions
tend to have larger errors due to data set shift; i.e., unseen data

Figure 6. LOOCV prediction error distributions of synthesis temperature and time. Plotted are prediction error median values (shown with white
dots), interquartile ranges (IQR, or the spread of errors between 25% and 75% percentiles, shown with thick lines), and 1.5× IQR (shown with thin
lines). Shaded areas are probabilistic density estimations of the errors. Our models are expected to make prediction errors within the IQR
approximately half of the time and within 1.5× IQR most of the time.
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sets have a different distribution than the training data sets.37

In particular, the relations between features and outcomes may
change for unseen data, leading to concept drif t, degrading
model generalizability and limiting model applicability.
The TMR data set mostly contains syntheses for inorganic

oxide materials and is dominated by target materials containing
Ti, Sr, Li, Ba, La, Nb, Fe, etc., reflecting popular materials in
the inorganic materials research community such as perovskite
oxides and battery materials. The TMR data set also contains a
large fraction of solid solutions or doped materials. To estimate
and understand how the ML models trained on the TMR data
set generalize to unseen data sets, we utilized the PCD data set
as an additional test. The original PCD collection contains
inorganic materials syntheses that were manually extracted
from the literature in a semistructured natural language form.32

We processed the PCD (Pearson’s Crystal Data) collection
using the same text-mining pipeline and only kept oxide
syntheses such that the final PCD data set has a similar
chemistry distribution as the TMR data set. To ensure there
are no duplicate syntheses, we removed any entry in the PCD
data set whose digital object identifier (DOI) is present in the
TMR data set (i.e., syntheses in the same papers are not
allowed, but the same compositions from different papers are
allowed). Compared to the TMR data set, the PCD data set
shares a similar distribution of chemical systems and synthesis
conditions, as indicated by similar sets of popular chemical
elements (i.e., Ti, Fe, Sr, Ba, Si, etc.) and average synthesis
temperatures around 1200 °C; see Figure S3. The PCD data
set thus represents a reasonable benchmark data set for our
ML models. However, because many reactions in the PCD
data set do not have heating times extracted, we only predicted
heating temperatures for the PCD data set.
To establish an upper bound of the model performance, we

performed the same training/validation procedure using the

PCD data set as was used on the TMR data set. Figure 7 shows
the performance of the ML models versus the number of
features. The green stars and teal crosses in Figure 7 are the
LOOCV scores of linear and XGBoost models, respectively.
XGBoost models achieve 0.5−0.6 LOOCV Pseudo-R2 values
which is considerably better than linear models (0.4−0.5).
Moreover, XGBoost shows a steeper performance increase
when few synthesis features are used. Compared to Figure 5,
the advantage of the nonlinear models is much more
substantial for the PCD data set than for the TMR data set.
This clear advantage of XGBoost models indicates they are
more robust than linear models against possible data set shift
effects.
Next, we performed tests to understand how well ML

models trained on the TMR data set are generalizable to the
PCD data set. The purple diamonds and yellow-brown
triangles in Figure 7 show the OOS performances of the
linear and XGBoost models trained using the TMR data set
but evaluated on the PCD data set. It is interesting to note that
XGBoost and linear models have very similar OOS scores for
carbonate reactions, but XGBoost clearly outperforms linear
models for noncarbonate reactions when more (>30) features
are used. Upon further investigation, the features #30 to #40
used on noncarbonate reactions are mostly related to
thermodynamic properties of the reactions. The performance
drop after feature #30 suggests that relations between
thermodynamic features and heating temperatures learned on
the TMR data set by linear models do not transfer well to the
PCD data set. On the other hand, XGBoost models seem to be
able to consistently maintain good performance regardless of
the number of features used.
In Figure 7, the difference between LOOCV scores and

OOS scores confirms the ML models have degraded prediction
performance (R2 drops by 0.1) when applied to a different data

Figure 7. Performance of the models versus the number of features evaluated on the PCD data set. X-axes show the number of features used in
each model. Features are added in the order of DI value rankings as in Figure 2. The left panels (a) and (c) show models trained on carbonate
reactions, and the right panels (b) and (d) show models trained on noncarbonate reactions. The top panels (a) and (b) show the performance of
models trained and evaluated on the PCD data set, which represent the upper bounds of OOS scores (c) and (d), which show performance of the
models trained on the TMR data set. A higher OOS score indicates better model generalizability.
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set. The performance degradation caused by the data set shift
is often inevitable and requires regularly retraining the ML
models in order to adapt to the new data sets. However, Figure
7 suggests XGBoost models are more robust against the data
set shift and have a better generalizability. We hypothesize this
is due to the strong regularization and therefore recommend
ML synthesis condition predictors to be built with XGBoost or
similarly regularized models.

■ DISCUSSION
ML predictions must be statistically evaluated using large data
sets, so this work has focused heavily on reducing the expected
prediction errors and improving the coefficient of determi-
nation R2. We do not optimize models for any particular
reaction but aim at predicting the synthesis conditions over a
data set of several thousand synthesis reactions. As
demonstrated by the cross-validation and OOS evaluations in
Figure 5 and Figure 7, our models achieve R2 ∼ 0.5−0.6 (MAE
∼ 140 °C) for heating temperature predictions and R2 ∼ 0.3
(MAE ∼ 0.3 log10(h−1)) for heating time predictions. When
evaluating these R2 values, it is important to consider that
heating temperature and time do not have a single value for a
synthesis reaction, as compounds can often be synthesized over
a broad range of times and temperatures. As such, our models
may be more successful at predicting reaction conditions that
successfully created the target, as surmised from the R2 scores.
On the basis of the ranking of DI values in Figure 2, the

deciding factors for the synthesis conditions can be organized
into a two-level hierarchy. Synthesis temperature prediction is
dominated by precursor properties, which we speculate are
proxies for reactivity stemming from the mobility of ions, with
additional corrections learned for different chemistries. Syn-
thesis time prediction is dominated by experiment-adjacent
features that are linked to experimental setups/intentions, also
with corrections according to chemistry. The features used in
this work to account for reaction thermodynamics were
inspired by recent efforts to understand phase evolution during
synthesis.7−9,12,38 These features involve decomposing overall
synthesis reactions into a sequence of phase evolution
reactions between pairs of compounds and quantifying the
grand potential thermodynamic driving force for these phase
evolution reactions. This approach has proved especially useful
for understanding phase evolution pathways observed in in situ
experiments. However, in this work, they are shown to provide
little predictive power of synthesis conditions and even cause
the models to generalize poorly on OOS data sets (as
demonstrated in Figure 7). This discrepancy will be discussed
in more detail in the subsequent sections.
Synthesis Adjacent Information. We use the particular

synthesis of BaTiO3 from BaCO3 and TiO2 precursors to
demonstrate how ML models combine synthesis adjacent
information with the other regressors. BaTiO3 is a popular
compound with many applications in materials science and
appears more than 100 times as the synthesis target in the
TMR data set. A variety of synthesis temperatures have been
reported for BaTiO3 in the literature. For example, BaTiO3 has
been synthesized at 1000 °C,39 1100 °C,40 1200 °C,41 1300
°C,42 and 1400 °C.43 Here we focus on the effect of how many
heating steps are used in the synthesis of BaTiO3. Figure 8
shows the distribution of heating temperatures for all the
reactions, BaTiO3 with a single heating step, and BaTiO3 with
multiple heating steps in the training data set. It is clear that
the reported heating temperatures with a single heating step

have a lower center around 1100 °C (for example, see ref 40),
while the entries with multiple heating steps have a higher
center around 1300−1400 °C (for example, see ref 43).
As a result, adding the target composition and experiment-

adjacent features allows ML models to identify different groups
of data as in Figure 8 and optimize the predicted heating
temperature within each group. For example, if 0 means single
heating and 1 means multiple heating, then the ML model
should have a coefficient for the feature of “is multiple heating”
of about 250 °C, roughly equal to the difference between the
centers of the two temperatures distributions in Figure 8.
Connection to Tamman’s Rule. Our finding that the

average precursor melting point is the most predictive feature
for heating temperatures is reminiscent of Tamman’s rule.44,45

Tammans rule can be formulated as predicting that the
synthesis temperature of metal alloys should be more than 1/3
(for example, 1/2−2/3) of the precursor melting points. This
rule is derived from the observation that atomic diffusion
quickly ceases below 1/3 of melting temperatures.46 Tamman’s
empirical rule was never formally defined. It is also
questionable whether the rule is applicable to the synthesis
of ionic compounds (e.g., oxides) in addition to intermetallics.
Nevertheless, variants of Tamman’s rule are still used to help
determine solid-state synthesis conditions. For example, Becker
and Dronskowski47 used 2/3 of the most “volatile”
compound;47 other values, such as 1/2, have also been used.45

Our ML framework allows us to formally model and test
Tamman’s rule within a statistical approach. We start with
Tamman’s original formulation and fit a linear model without
an intercept term:

= +T T(min )Tamman melt

where TTamman is the predicted heating temperature, (minTmelt)
is the minimum of precursor melting points, α is a parameter
to be learned, and ε is an error term. Both the prediction and
the melting points are presented in degrees Kelvin. The fit
linear model finds α = 1.2 when trained on carbonate reactions
and α = 0.8 when trained on noncarbonate reactions. These α

Figure 8. Curves are the estimated distribution of heating
temperatures for each group of reactions in the training data set.
The dashed/dotted lines show temperature distributions for the
reaction TiO2 + BaCO3 → BaTiO3 + CO2 (red dashed line for single-
heating reactions and blue dotted line for multiple-heating reactions).
Green solid line shows the temperature distribution for the entire data
set.
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values are larger than the commonly used values for Tamman’s
rule, such as 1/2 and 2/3, suggesting the required temperatures
for atoms to diffuse significantly in ionic compounds are higher
than in intermetallics or that for ionic compounds Tamman’s
rule is a surrogate for a property other than diffusion.
The above linear model is not the model with the highest

predictive power (R2 values). As shown in Figure 2, using
average precursor melting points (instead of minimum
precursor melting points) yields the highest prediction
performance. Therefore, we update Tamman’s rule to give
the optimal synthesis temperature TTamman as proportional to
the average of precursor melting points (avgTmelt) plus a
constant. Mathematically, the predictor is defined as

= + +T T(avg )Tamman melt

where α and β are parameters to be learned and ε is an error
term.
As demonstrated in Figure 9, fitting a linear model reveals a

slope of ∼1/3. Because we used the average of precursor
melting points, the predicted heating temperatures should be
generally larger than 1/3 of the minimal precursor melting
point, agreeing with Tamman’s original observation.44 The
predicted versus reported heating temperatures and the
histogram of prediction errors are shown in Figure 9a. The
parameters of the fitted linear model are shown in Figure 9b.
The large F-statistic values and very small p-values show strong
statistical significance of the model, although this is contrasted
by the low coefficient of determination (R2 ∼ 0.2−0.3).
Tamman’s rule is not a perfect predictor and has larger
prediction errors at low temperatures. However, it contributes
more than 1/3 of the maximal predictive power developed in
this work.
Roles of Phase Evolution Reaction Analysis in

Synthesis Condition Prediction. Predicting heating temper-
ature is of major scientific interest. In solid-state synthesis, the
final products are more sensitive to the heating temperature
than time, because insufficiently low or high temperatures lead
to incomplete reactions, impurities, or the complete absence of
a desired target phase. Thus, heating temperatures are more
carefully optimized than heating times, which are often chosen
for convenience (e.g., to run overnight). There have been
many successful examples where solid-state synthesis pathways
are rationalized using the thermodynamics of reactions
occurring during heating. For example, thermodynamic driving
forces have been used to understand and control phase

evolution pathways in Y−Mn−O oxides,12,38 Y−Ba−Cu−O
superconductors,8 Na−Co−O layered oxides,7 and MgCr2S4
thiospinel compounds.9 Inspired by this work, we computed
features as numerical transformations of the thermodynamic
driving forces obtained by decomposing the synthesis into
multistep phase evolution paths. Contrary to the success in
reconciling experimental observations in the aforementioned
systems, these features are shown to provide no observable
predictive powers for general synthesis condition predictions in
this work (as shown in Figure 2 and Figure 7).
A low contribution of predictive power does not necessarily

negate the effectiveness of phase evolution reaction analysis for
understanding solid-state synthesis. It simply suggests that the
features developed in this work are not correlated with the
synthesis time and temperature over the diverse data sets
evaluated in this work. We hypothesize this arises for a few
reasons. First, the scale of the reaction driving force may
dictate the decision boundary of synthesizable/nonsynthesiz-
able conditions (e.g., synthesis should not occur at temper-
atures where the target phase is unstable with respect to
decomposition). However, the data set used here only contains
positive experimental results, so the thermodynamic stability of
the target under the chosen synthesis conditions is likely
already achieved for all data points. Indeed, in the ration-
alization of in situ synthesis, thermodynamic analysis has been
used more to explain the phases observed along the reaction
path rather than the specific conditions.7,8,38 Second, once we
are in the region of synthesizable conditions, the reaction
driving force might become insufficient in determining
synthesis conditions that lead to “fast” reactions. Because a
typical lab synthesis needs to be completed in a reasonable
period of time, experimenters may decide to raise heating
temperatures to facilitate better reaction rates. Indeed, if we
calculate the temperature Tequilibrium at which the reaction
driving force is zero for the overall synthesis reaction (using
the grand potential, ΔΦrxn = 0) for all the reactions, we found
that this theoretical lower bound of heating temperatures
Tequilibrium is generally much lower than the reported
experimental Texp. This suggests experimenters actively use
Texp ≫ Tequilibrium to achieve better kinetics. Unfortunately,
reaction driving force analyses do not directly provide kinetic
information, which is also chemistry-specific. On the other
hand, precursor melting points and formation energies
(ΔGf300K, ΔHf300K) may be correlated to ion transport kinetics,
as they are indicative of the relative strength of bonds in the

Figure 9. Fitting result of Tamman’s rule, i.e., synthesis temperature is proportional to the average precursor melting point. (a) Scatter plot of the
reported vs predicted synthesis temperatures and histogram of prediction error. Opacity indicates data point weights. (b) Regression parameters
and F-test for model significance. A very small p-value indicates that it is extremely unlikely the result is due to random noise.

Chemistry of Materials pubs.acs.org/cm Article

https://doi.org/10.1021/acs.chemmater.2c01293
Chem. Mater. 2022, 34, 7323−7336

7331

https://pubs.acs.org/doi/10.1021/acs.chemmater.2c01293?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.2c01293?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.2c01293?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.2c01293?fig=fig9&ref=pdf
pubs.acs.org/cm?ref=pdf
https://doi.org/10.1021/acs.chemmater.2c01293?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


solid precursors. This may explain why precursor material
properties are the top predictive features for heating temper-
atures.
Previously, we demonstrated that precursor melting points

(akin to Tamman’s rule) provide the most predictive power for
heating temperatures if only one feature is allowed (see IDI
values in Figure 2). We note here that the effectiveness of
Tamman’s rule may also be due to the aforementioned
selection bias48 toward fast solid-state syntheses (as well as
community knowledge of Tamman’s rule). This selection bias
is inherent in the synthesis data set used in this work as the
literature only reports “fast” and successful solid-state
reactions. We note that some recent investigations of solid-
state synthesis mechanisms8,49 have put more emphasis on
modeling reaction speeds. In addition, with the recent
developments of autonomous synthesis robots,50−53 data on
synthesizability and reaction speeds could be collected at the
same time with a much higher throughput. Such data will be
valuable for decorrelating selection bias and developing
broadly applicable synthesis condition predictors.
Challenges of Predicting Synthesis Conditions Using

Text-Mined Data. The performance of the ML models in this
work is reasonable, but there is still much room for
improvements to expand their applicability in practical
synthesis design efforts. As potential improvements in the
future, we summarize a few important aspects for increasing
model performance.
Better Synthesis Features. Features are limiting factors in

creating ML models with high predictive power. This work
used 133 features spanning four categories: precursor material
properties, target material compositions, reaction thermody-
namics, and experiment-adjacent features. Besides these
features, one set of useful features may be further factors
that indicate the intention of syntheses. For example, the
application for which the target compound is created (battery
materials vs thermoelectric materials), desired microstructure
of the target material morphology (single-crystal or spin-coated
materials), etc. may all play a role in the determination of
synthesis conditions. These features are expressed in papers in
more subtle ways and could be potentially text-mined using
advanced NLP techniques in the future.54,55

Improved NLP Data Collection. As a result of the
probabilistic nature of the text-mining pipeline that extracted
the data sets in this work, errors in the training data are
inevitable.16 Manual inspection reveals that 5% of heating
temperatures and 16% of heating times were incorrectly
extracted. Improved text-mining algorithms can thus improve
data quality and increase ML model performance.
Modeling Nonuniqueness. In this work, we modeled

synthesis condition predictions as point value regression
problems. However, this may be suboptimal, as the conditions
where a given synthesis can proceed are nonunique and often
span a range of values. Consequently, there is not a unique
ground truth of optimal synthesis conditions, which brings
irreducible error to ML models. The issue of nonuniqueness is
even more problematic for heating time prediction. If the
synthesis finishes within t0, then any heating time t > t0 will
yield the desired compound, if it is thermodynamically stable at
the synthesis conditions and no selective evaporation of
elements occurs. As a result, heating time is seldom optimized
but based heavily on furnace heating schedule, lab shifts, etc.
Indeed, in Figure 5, our ML models have larger errors for

predicting heating time than for predicting heating temper-
ature.
Modeling synthesis conditions as distributions, e.g.,

generalized linear models,56 could in principle solve this
issue. Note that sufficient training samples must be collected to
get accurate condition distribution estimations (as well as
uncertainties). Ideally, there would be several conditions
sampled for each target that was synthesized in the data set.
However, in the TMR data set, even when expanding the
search to chemical systems (any targets having the same set of
elements), more than 60% contain less than 5 reported
syntheses. Furthermore, the distribution learned from the
TMR data set may be biased by external factors. For example,
for popular Li-ion cathode/anode materials in our data set, the
distribution of different synthesis conditions may be correlated
with the desired microstructure for a particular electrochemical
performance. Decorrelating these factors requires mining of
other features/properties beyond the synthesis reactions
themselves.
Negative Samples. Negative experimental results are rarely

reported in papers. Nevertheless, from an ML point of view,
negative data are extremely useful for learning the exact
decision boundaries of synthesis conditions. Besides, negative
data can be used in other classification tasks, such as predicting
the type of synthesis techniques, heating atmospheres, etc.
Finally, we note that the models in this work focused

primarily on oxides, which make up a substantial fraction of
inorganic compounds but not all.57 Transferring predictive
models trained on oxides to other chemistries is challenging
because of significant concept drift. For example, the bonding
of other types of compounds, such as nonoxide chalcogenides
and intermetallics, is fundamentally different than that of
oxides, leading to different self-diffusion and interdiffusion
rates. This difference modifies the distributions of feature
values significantly (e.g., melting points are systematically
lower for metal precursors compared to oxides). If simply
applied to other chemistries without any retraining, the
parameters fit for oxide compounds would systematically
mis-predict the synthesis conditions. However, if sufficient data
becomes available for desired nonoxide materials classes of
interest, the methods used in this work would be useful for
training and interpreting these new models.

■ CONCLUSION
In this work, we developed an interpretable ML method for
predicting solid-state synthesis heating temperatures and times
on over 6300 synthesis reactions, which are from a larger (over
30 000) synthesis data set text-mined from scientific
literature.16 The goodness-of-fit values are R2 ∼ 0.5−0.6 for
temperature prediction and R2 ∼ 0.3 for time prediction.
However, interpretation of such R2 values has to consider the
fact that there is no single exact time or temperature for a
typical synthesis. For heating temperature prediction, which is
an important parameter for solid-state synthesis, the prediction
MAE of our model is ∼140 °C, comparable to a similar study
using generative conditional variational autoencoder
(CVAE).19 Heating time prediction has an MAE of ∼0.3
log10(h−1), which translates to a prediction range [0.5t, 2t] if
the predicted time is t. The expected prediction errors can be
estimated from Figure 6.
Analysis of the ML models reveals that melting points and

formation energies of precursors are good predictors for
heating temperatures, which led us to extend Tamman’s rule
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from intermetallics to oxide compounds for predicting heating
temperatures as linearly proportional to the average precursor
melting point. One may use this extended Tamman’s rule to
set quick, yet reasonable, initial heating temperatures for new
solid-state reactions. The maps of compositional effects
(Figure 4) can be further used as guides to choose synthesis
conditions with better accuracy given the chemistries of
interest. Our model was trained and validated on a diverse set
of materials and thus has broad applicability. Moreover, the
ML methodologies developed in this work can be applied for
learning synthesis conditions on other large synthesis data sets,
such as solution-based synthesis of inorganic compounds and
nanoparticles,58,59 or even other tasks where strong model
interpretability is preferred.

■ METHODS
Curation of Synthesis Training Data. We used the data set of

text-mined synthesis recipes that consists of 30 004 solid-state
synthesis records16 to generate the TMR data set. We took the
synthesis conditions of the last heating step in the experimental
procedures as the target of prediction. The synthesis heating
temperatures were predicted in degrees Celsius. The reported heating
times were transformed to log10(1/t), which is not only a better
variable for measuring reaction speed but also shows smaller skewness
and long-tailedness, which is better predicted by statistical ML
models.29 Note that the TMR data set is extracted using ML models
and contains errors in synthesis conditions. On the basis of manual
inspection, about 5% of the heating temperatures and 16% of the
heating times were incorrectly extracted.
To preprocess the data set, we first removed all entries with no

extracted synthesis heating temperatures and times. To obtain
thermodynamic data for all targets, we utilized the Materials Project
(MP) database.57 For targets that appear as entries in MP, we simply
used the reported thermodynamic information. For targets without a
direct match to an MP entry, we performed interpolation by
representing them using linear combinations of the most similar
entries in MP as measured by the difference in composition (see
Supporting Information for calculation details). The 0 K thermody-
namic data was then transformed to finite-temperature Gibbs free
energies of formation using the previously developed method.60

Using the finite-temperature ΔGf(T) predictions and thermody-
namic properties of gases, we computed reaction driving forces, i.e.,
the grand potential change for the synthesis reactions, ΔΦrxn, by
assuming the system is open to atmospheric partial pressures of O2
and CO2.

61−63 The reactions were then decomposed into phase
evolution steps by selecting pairs of reactants with the largest grand
potential change in each step. Details of the thermodynamic quantity
calculation and phase evolution construction can be found in the
Supporting Information and reproduced using the provided codes.
We removed the reactions that cannot be handled by the above

thermodynamic calculations (e.g., missing relevant MP entries or
containing gases other than O2 and CO2), leading to 7562 remaining
reactions. As a result of the release of CO2 gases in carbonate
precursor materials, the reaction driving forces have systematically
shifted distributions for reactions with and without carbonate
precursors. Grouping the data set into carbonate and noncarbonate
reactions thus fits two sets of coefficients that account for this shift
and improves the overall performance. Therefore, in our analysis, we
split the data set into carbonate reactions and noncarbonate reactions.
The original Pearson’s Crystal Data (PCD) collection is semi-

structured containing chemical formulas of input/output materials
and a natural language description of the synthesis procedure. We
used the same approach as in the generation of the TMR data set to
balance synthesis reactions and calculate phase evolution reaction
thermodynamic driving forces. The synthesis procedure description
text is used to text-mine synthesis operations that contain synthesis
condition values. To make the PCD data set have a chemistry
distribution similar to that of the TMR data set, we only kept oxide

syntheses as the TMR data set is dominated by oxide syntheses. We
also ensured there are no duplicates by removing any entries in the
PCD data set that are also in the TMR data set by matching their
article DOIs.
Features for Synthesis Prediction. For each reaction in the

curated training data, we computed four types of synthesis features
(133 features in total).
Precursor Compound Properties. The first type of features (12 in

total) are the average/minimum/maximum/difference of melting
points, standard enthalpy of formation ΔHf300K, and standard Gibbs
free energy of formation ΔGf300K of the precursors. The melting points
were retrieved from the NIST Chemistry WebBook64 and PubChem
databases,65 while the thermodynamic properties were retrieved from
the FREED database,66 an electronic compilation of the U.S. Bureau
of Mines (USBM) thermodynamic data obtained with experiment.
Target Compound Compositional Features. The second type of

features are 74 indicator variables representing the presence (1) or
absence (0) of different chemical elements in the target compound.
We did not use more differentiating features such as the fractional
compositions of each element because more than 60% of the chemical
systems in the TMR data set have less than 5 samples, and more
differentiating features make ML models prone to overfitting. Note
that this may not be true if training data were to become relatively
abundant for each chemical system, in which case numerical encoding
of the compositions may be a better approach.
Reaction Thermodynamics Features.We used 33 thermodynamic

features, including the total reaction driving force ΔΦrxn, first and last
pairwise reaction driving forces ΔΦrxn,1 and ΔΦrxn,−1, and the ratio
between first/last pairwise reaction driving force and the total reaction
driving force, evaluated at different temperatures T = 800, 900, 1000,
1100, 1200, and 1300 °C. We also calculated the slopes of ΔΦrxn,
ΔΦrxn,1, and ΔΦrxn,−1 by assuming they are linear with respect to
temperature and used the slopes as additional features.
Experiment-Adjacent Features. The fourth type of features are 14

experiment-adjacent features, i.e., indicator variables representing
whether certain devices (zirconia balls for ball-milling), experimental
procedures (sintering, ball-milling, multiple heating steps, homoge-
nization, repeated grinding, diameter measurement, polycrystalline
preparation), and additives (binder materials, distilled water and other
liquid additives, phosphors, poly(vinyl alcohol)) were used in the
synthesis.
Because we used WLS, which is sensitive to outliers, we performed

outlier detection algorithms on the feature values and removed
around 10% of the reactions. The final training data consists of two
data sets totaling 6325 reactions. The subset of carbonate reactions
consists of 3182 reactions. The subset of noncarbonate reactions
consists of 3143 reactions.
Training and Evaluation of ML Models. We used linear and

nonlinear regressors to train the ML models. For linear models, we
used WLS, a weighted version of ordinary least-squares in Python
packages scikit-learn67 and statsmodels.35 For nonlinear models, we
used the XGBoost package36 and trained GBRT models. To evaluate
the model goodness-of-fit, we used the coefficient of determination,
R-squared (or R2). For nonlinear regressors and out-of-sample
evaluations, R2 is poorly defined, and Efron’s extended version68 of
Pseudo-R2 was used. Pseudo-R2 is calculated as 1 − (mean square
error/variance of data) and directly comparable to R2 values.
We implemented DI analysis, a model-agnostic method that

calculates the average increase of model R2 to rank features according
to their contribution of predictive powers. Three types of DI
values−APDI values, IDI values, and IADI values−were computed
according to Azen and Budescu.31 However, to compute the exact
APDI values for all 133 features, we needed to train 2133 (sub)models,
which is a computationally prohibitive task. Instead, we estimated
APDI values as Δ(R2) by randomly sampling 200 submodels for each
feature. All the features were ranked according to the sum of the
APDI, IDI, and IADI values. This ranking measures the relative
predictive powers of the features and was used to sort all features into
an ordered list, as in Figure 2.
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We next used the ranking of predictive power to perform forward
feature selection for the ML models. Specifically, we started with a
linear model with no features but the intercept term. Features were
sequentially added into the linear model according to the ranking of
predictive power. In this process, we calculated the BIC value of the
linear models and removed any feature that would increase the BIC
value (an indicator of overfitting). The final list of features were then
used in training the models in Figures 5 and 7.
We performed LOOCV to cross-validate regressors and detect

overfitting. To test model generalizability, we applied out-of-sample
prediction by evaluating model performances on another synthesis
condition data set compiled from the PCD data set.32
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