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We present evidence for D0-D0 mixing in D0 ! K��� decays from 384 fb�1 of e�e� colliding-beam
data recorded near

���
s
p
� 10:6 GeV with the BABAR detector at the PEP-II storage rings at the Stanford

Linear Accelerator Center. We find the mixing parameters x02 � ��0:22� 0:30�stat� � 0:21�syst�� 	
10�3 and y0 � �9:7�4:4�stat��3:1�syst��	10�3 and a correlation between them of �0:95. This result is
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inconsistent with the no-mixing hypothesis with a significance of 3.9 standard deviations. We measure RD,
the ratio of doubly Cabibbo-suppressed to Cabibbo-favored decay rates, to be �0:303�0:016�stat��
0:010�syst��%. We find no evidence for CP violation.

DOI: 10.1103/PhysRevLett.98.211802 PACS numbers: 13.25.Ft, 11.30.Er, 12.15.Ff, 14.40.Lb

Quantum-mechanical mixing of neutral-meson particle-
antiparticle states has been observed in theK [1],B [2], and
Bs [3] systems but not yet in the D system. D mesons,
which contain a charm quark, are the only system where
contributions of down-type quarks in the mixing loop can
be explored. In the standard model (SM), the D0-D0 mix-
ing rate is expected to be very small (10�4 or less), due to
Glashow-Iliopoulos-Maiani suppression of the first two
quark generations and Cabibbo-Kobayashi-Maskawa sup-
pression of the third [4]. Long-distance effects from inter-
mediate states coupling to both D0 and D0 also contribute,
making precise prediction and interpretation difficult [5].
We present evidence for D mixing consistent with these
expectations and with previous experimental limits [6].

To the extent that only the first two generations are
involved, CP violation is expected to be well below the
sensitivity of this experiment, although non-SM processes
could enhance either mixing or CP violation. We compare
D0 and D0 samples separately and find no evidence for CP
violation.

We study the right-sign (RS), Cabibbo-favored (CF)
decay D0 ! K��� [7] and the wrong-sign (WS) decay
D0 ! K���. The latter can be produced via the doubly
Cabibbo-suppressed (DCS) decay D0 ! K��� or via
mixing followed by a CF decay D0 ! D0 ! K���. The
DCS decay has a small rate RD of order tan4�C 
 0:3%
relative to CF decay, with �C the Cabibbo angle. We
distinguish D0 and D0 by their production in the decay
D�� ! ��s D

0, where the ��s is referred to as the ‘‘slow
pion.’’ In RS decays, the ��s and the kaon have opposite
charges, while in WS decays the charges are the same. The
time dependence of the WS decay rate is used to separate
the contributions of DCS decays from D0-D0 mixing.

The D0 and D0 mesons are produced as flavor eigen-
states but evolve and decay as mixtures of the eigenstates
D1 andD2 of the Hamiltonian, with masses and widthsM1,
�1 andM2, �2, respectively. Mixing is characterized by the
mass and lifetime differences �M � M1 �M2 and �� �
�1 � �2. Defining the parameters x � �M=� and y �
��=2�, where � � ��1 � �2�=2, we approximate the
time dependence of the WS decay of a meson produced
as a D0 at time t � 0 in the limit of small mixing
(jxj; jyj � 1) and CP conservation as

 

TWS�t�

e��t
/ RD �

�������
RD

p
y0�t�

x02 � y02

4
��t�2; (1)

where x0 � x cos�K� � y sin�K�, y0 � �x sin�K� �
y cos�K�, and �K� is the strong phase between the DCS
and CF amplitudes.

We study both CP-conserving and CP-violating cases.
For the CP-conserving case, we fit for the parameters RD,
x02, and y0. To search for CP violation, we apply Eq. (1) to
the D0 and D0 samples separately, fitting for the parame-
ters fR�D; x

02�; y0�g for D0 (�) decays and D0 (�) decays.
We use 384 fb�1 of e�e� colliding-beam data re-

corded near
���
s
p
� 10:6 GeV with the BABAR detector [8]

at the PEP-II asymmetric-energy storage rings. We se-
lect D0 candidates by pairing oppositely charged tracks
with a K�� invariant mass mK� between 1.81 and
1:92 GeV=c2. Each pair is identified as K�� using a
likelihood-based particle identification algorithm. We re-
quire the ��s to have a momentum in the laboratory frame
greater than 0:1 GeV=c and in the e�e� center-of-mass
(c.m.) frame below 0:45 GeV=c.

To obtain the proper decay time t and its error �t for
each D0 candidate, we refit the K and �� tracks, con-
straining them to originate from a common vertex. We also
require the D0 and ��s to originate from a common vertex,
constrained by the position and size of the e�e� interac-
tion region. The vertical rms size of each beam is typically
6 �m [8]. We require the �2 probability of the vertex-
constrained combined fit P��2� to be at least 0.1% and the
mK��s �mK� mass difference �m to satisfy 0:14<
�m< 0:16 GeV=c2.

To remove D0 candidates from B-meson decays and to
reduce combinatorial backgrounds, we require each D0 to
have a momentum in the c.m. frame greater than
2:5 GeV=c. We require �2< t < 4 ps and �t < 0:5 ps
(the most probable value of �t for signal events is
0.16 ps). For D�� candidates sharing one or more tracks
with other D�� candidates, we retain only the candidate
with the highest P��2�. After applying all criteria, we keep
approximately 1 229 000 RS and 64 000 WS D0 and D0

candidates. To avoid potential bias, we finalized the analy-
sis procedure without examining the mixing results.

The mixing parameters are determined in an unbinned,
extended maximum-likelihood fit to the RS and WS data
samples over the four observablesmK�, �m, t, and �t. The
fit is performed in several stages. First, RS and WS signal
and background shape parameters are determined from a fit
to mK� and �m and are not varied in subsequent fits. Next,
the D0 proper-time resolution function and lifetime are
determined in a fit to the RS data using mK� and �m to
separate the signal and background components. We fit to
the WS data sample using three different models. The first
model assumes both CP conservation and the absence of
mixing. The second model allows for mixing but assumes
no CP violation. The third model allows for both mixing
and CP violation.
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The RS and WS fmK�;�mg distributions are described
by four components: signal, random ��s , misreconstructed
D0, and combinatorial background. The signal component
has a characteristic peak in bothmK� and �m. The random
��s component models reconstructed D0 decays combined
with a random slow pion and has the same shape in mK� as
signal events but does not peak in �m. Misreconstructed
D0 events have one or more of theD0 decay products either
not reconstructed or reconstructed with the wrong particle
hypothesis. They peak in �m but not in mK�. For RS
events, most of these are semileptonic D0 decays. For
WS events, the main contribution is RS D0 ! K���

decays where the K� and the �� are misidentified as ��

and K�, respectively. Combinatorial background events
are those not described by the above components; they
do not exhibit any peaking structure in mK� or �m.

The functional forms of the probability density functions
(PDFs) for the signal and background components are
chosen based on studies of Monte Carlo (MC) samples.
However, all parameters are determined from two-
dimensional likelihood fits to data over the full mK� and
�m region.

We fit the RS and WS data samples simultaneously
with shape parameters describing the signal and random
��s components shared between the two data samples. We
find 1 141 500� 1200 RS signal events and 4030� 90 WS
signal events. The dominant background component is the
random ��s background. Projections of the WS data and fit
are shown in Fig. 1.

The measured proper-time distribution for the RS signal
is described by an exponential function convolved with a
resolution function whose parameters are determined by
the fit to the data. The resolution function is the sum of
three Gaussians with widths proportional to the estimated
event-by-event proper-time uncertainty �t. The random
��s background is described by the same proper-time
distribution as signal events, since the slow pion has little
weight in the vertex fit. The proper-time distribution of the
combinatorial background is described by a sum of two
Gaussians, one of which has a power-law tail to account for
a small long-lived component. The combinatorial back-
ground and real D0 decays have different �t distributions,

as determined from data using a background-subtraction
technique [9] based on the fit to mK� and �m.

The fit to the RS proper-time distribution is performed
over all events in the full mK� and �m region. The PDFs
for signal and background in mK� and �m are used in the
proper-time fit with all parameters fixed to their previously
determined values. The fitted D0 lifetime is found to be
consistent with the world-average lifetime [10].

The measured proper-time distribution for the WS signal
is modeled by Eq. (1) convolved with the resolution func-
tion determined in the RS proper-time fit. The random ��s
and misreconstructed D0 backgrounds are described by the
RS signal proper-time distribution since they are real D0

decays. The proper-time distribution for WS data is shown
in Fig. 2. The fit results with and without mixing are shown
as the overlaid curves.

The fit with mixing provides a substantially better de-
scription of the data than the fit with no mixing. The
significance of the mixing signal is evaluated based on
the change in negative log likelihood with respect to the
minimum. Figure 3 shows confidence-level (C.L.) contours
calculated from the change in log likelihood (�2� lnL) in
two dimensions (x02 and y0) with systematic uncertainties
included. The likelihood maximum is at the unphysical
value of x02 � �2:2	 10�4 and y0 � 9:7	 10�3. The
value of�2� lnL at the most likely point in the physically
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allowed region (x02 � 0 and y0 � 6:4	 10�3) is 0.7 units.
The value of �2� lnL for no mixing is 23.9 units.
Including the systematic uncertainties, this corresponds
to a significance equivalent to 3.9 standard deviations (1�
C:L: � 1	 10�4) and thus constitutes evidence for mix-
ing. The fitted values of the mixing parameters and RD are
listed in Table I. The correlation coefficient between the x02

and y0 parameters is �0:95.
Allowing for the possibility of CP violation, we calcu-

late the values of RD �
��������������
R�DR

�
D

q
and AD � �R

�
D �

R�D�=�R
�
D � R

�
D� listed in Table I, from the fitted R�D val-

ues. The best fit points (x02�, y0�) shown in Table I are
more than 3 standard deviations away from the no-mixing
hypothesis. The shapes of the (x02�, y0�) C.L. contours are
similar to those shown in Fig. 3. All cross-checks indicate
that the close agreement between the separateD0 andD0 fit
results is coincidental.

As a cross-check of the mixing signal, we perform
independent fmK�;�mg fits with no shared parameters
for intervals in proper time selected to have approximately
equal numbers of RS candidates. The fitted WS branching
fractions are shown in Fig. 4 and are seen to increase with
time. The slope is consistent with the measured mixing pa-
rameters and inconsistent with the no-mixing hypothesis.

We validated the fitting procedure on simulated data
samples using both MC samples with the full detector
simulation and large parametrized MC samples. In all
cases, we found the fit to be unbiased. As a further cross-
check, we performed a fit to the RS data proper-time
distribution allowing for mixing in the signal component;
the fitted values of the mixing parameters are consistent
with no mixing. In addition, we found the staged fitting
approach to give the same solution and confidence regions
as a simultaneous fit in which all parameters are allowed to
vary.

In evaluating systematic uncertainties in RD and the
mixing parameters, we considered variations in the fit
model and in the selection criteria. We also considered
alternative forms of the mK�, �m, proper-time, and �t
PDFs. We varied the t and �t requirements. In addition,
we considered variations that keep or reject all D�� can-
didates sharing tracks with other candidates.

For each source of systematic error, we compute the
significance s2

i � 2�lnL�x02; y0� � lnL�x02i ; y
0
i��=2:3, where

�x02; y0� are the parameters obtained from the standard fit,
�x02i ; y

0
i� the parameters from the fit including the ith sys-

tematic variation, and L the likelihood of the standard fit.
The factor 2.3 is the 68% confidence level for 2 degrees of
freedom. To estimate the significance of our results in
�x02; y0�, we reduce �2� lnL by a factor of 1��s2

i �
1:3 to account for systematic errors. The largest contribu-

TABLE I. Results from the different fits. The first uncertainty
listed is statistical and the second systematic.

Fit type Parameter Fit results (=10�3)

No CP viol. or mixing RD 3:53� 0:08� 0:04
No CP violation RD 3:03� 0:16� 0:10

x02 �0:22� 0:30� 0:21
y0 9:7� 4:4� 3:1

CP violation allowed RD 3:03� 0:16� 0:10
AD �21� 52� 15

x02� �0:24� 0:43� 0:30
y0� 9:8� 6:4� 4:5
x02� �0:20� 0:41� 0:29
y0� 9:6� 6:1� 4:3
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tion to this factor, 0.06, is due to uncertainty in modeling
the long decay time component from other D decays in the
signal region. The second largest component, 0.05, is due
to the presence of a nonzero mean in the proper-time signal
resolution PDF. The mean value is determined in the RS
proper-time fit to be 3.6 fs and is due to small misalign-
ments in the detector. The error of 15	 10�3 on AD is
primarily due to uncertainties in modeling the differences
between K� and K� absorption in the detector.

We have presented evidence for D0-D0 mixing. Our
result is inconsistent with the no-mixing hypothesis at a
significance of 3.9 standard deviations. We measure y0 �
�9:7� 4:4�stat� � 3:1�syst�� 	 10�3, while x02 is consis-
tent with zero. We find no evidence for CP violation and
measure RD to be �0:303� 0:016�stat� � 0:010�syst��%.
The result is consistent with SM estimates for mixing.
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