
Lawrence Berkeley National Laboratory
Recent Work

Title
INFLUENCE OF EXOTHERMICITY ON THE SHAPE OF A DIFFUSION FLAME

Permalink
https://escholarship.org/uc/item/0wg581v1

Authors
Klajn, M.
Oppenheim, A.K.

Publication Date
1981-12-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0wg581v1
https://escholarship.org
http://www.cdlib.org/


-40  

4ff 

LBL-l3673 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

ENERGY & ENVIRONMENT 
DIVISION 

Submitted for presentation at the 19th International 
Symposium on Combustion, Haifa, Israel, August 8-13, 
1982 

RECEiVED 
LAViEr'jCE 

5pwi 
INFLUENCE OF EXOTHERMICITY ON THE SHAPE 	

FN 

OF A DIFFUSION FLAME 	 Jjj -i , 

M. Klajn, and A.K. Oppenheim 	 DCC11ErTScTIO 

December 1981 	 TWO-WEEK LOAN COPY 

/ 

	 This is a Library CIrculating Copy 

which may be borrowed for two weeks. 

For a personal retention copy, call 

Tech. Info. Diuision, Ext. 6782 

Tj 
'1 

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



Submitted for presentation at the 19th International Symposium on Combustion 

August 8-13, 1982 

Haifa, Israel 

INFLUENCE OF EXOTHERMICITY 

ONTHE SHAPE OF A DIFFUSION FLAME 

M. Klajn, IIT-Technion, Haifa, Israel 

and 

A. K. Oppenheim, Lawrence Berkeley Laboratory, 
University of California 

Mechanical Engineering Department 
Berkeley, CA 94720 

This work was supported by the Office of Energy Research, Office 
of Basic Energy Sciences, Division of Basic Engineering Research 
of the Department of Energy under Contract W-7405-ENG-48, 
National Science Foundation under Grant ENG 78-12372, and the 
NASA Lewis Research Center under Grant NAG 3-131. 



ABSTRACT 

The effects of exothermicity of combustion on the contours 

of gaseous, unconfined, planar and axi-symmetric, jet diffusion 

flames, as well as on the structures of their flow fields, are 

analyzed. For the sake of clarity, the problem is formulated in 

the simplest possible way. The flame is treated as essentially 

laminar, the reaction rates are considered infinite, the medium 

is assumed to behave as a perfect gas with constant specific heats, 

its Schmidt and Prandtl numbers being unity and viscosity propor-

tional to the temperature, while the buoyancy effects are neglected. 

Under such circumstances.the problem lends itself to treatment by 

the Shvab-Zeldovich technique. The results, derived as an inverse 

to self-similar solutions in the incompressible domain obtained by a 

Dorodnitsyn-Howarth transformation of the governing equations for 

compressible flow, are expressed in terms of algebraic formulae. In 

applications to hydrogen-air and a number of hydrocarbon-air mixtures, 

they turn out to be in an amazing agreement with experimental data 

under zero gravity conditions. 



INTRODUCTION 

The explicit purpose of our study was to determine specifically 

the effect of exothermicity due to combustion on the shape of a gaseous 

jet diffusion flame. 

The subject of our interest has a rich scientific background, 

having been basedon the classical papers of Burke and Schumann (1), 

Hottel and Hawthorne (2), 
 Wohl, Gazléy and Knapp (3), 

 Shvab 
 (4), 

and Zeldovich 	while currently it is of particular interest in 

connection with fire research, as reviewed recently in a comprehensive 

manner by Pagni (6) 	
Of special relevance to the theory we developed 

(7) (8) 	(9) are the publications of Abramovich 	, Vulis 	, Fay 	, and 

Goldburg and Cheng (10), 
 while, with respect to its subject matter, 

are the NASA reports of Edelman, Fortune and Weilrstrein 

Cochran (12), and Haggard and Cochran (13) 
 concerned with the effects 

of gravity on laminar diffusion flames. 

In all these publications, however, the problems subjected to 

analysis were formulated in such a way that the exothermic effects 

of combustion were either of negligible significance or they were 

buried amongOthers, obliterating their actual influence. It is then 

for this reason that our study was undertaken. 
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FORMULATI ON 

For the sake of clarity and simplicity, our theory is cast 

within a formidable set of idealizations, namely: 

the flame is laminar, being established in an essentially 

viscous flow field. 

the reaction rates are infinite so that the flame front 

is infinitely thin 

the flowing substance behaves as a perfect gas with 

constant specific heats 

the Schmidt.and Prandtl numbers, and hence the Lewis number, 

are all equal to one 

the coefficient of viscosity is directly proportional to 

absolute temperature 

the effects of buoyancy are neglected, so that the analysis 

applies to an effectively gravitationless environment 

the fuel jet has initially a plug flow velocity profile 

Under such. circumstances, the flow field of a diffusion flame at 

an essentially uniform pressure can be described in terms of the 

continuity equation 

Yar (1) 

3 

and the equation of motion 

L1r 	 (2) 
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In the above Z and / are the axial and radial space coordinates 

respectively, W and V are the corresponding components of the flow 

velocity vector, ) is the specific volume, and /LI is the coefficient 

of viscosity, all normalized with respect to their initial values, 

is the initial Reynolds number based on the radius, while the indexj 

is equal to 0 for planar and 1 for ax'i.-symmetrfc flow. 

As a consequence of our idealizations, all the transport equations, 

that is the equations of the conservation of species and energy, can 

be expressed in a form identical to (2) by the introduction of the Shvab-

Zeldovich (5) 
 transport variable 

subscript i denoting the initial values, 	while ( k= 1, 2, 3), 

or 612,  orb13 , or 623 where  612 = 	 etc. Here 

6 = A: 

while 	 92 is the specific heat at  constant 

pressure, _is the adiabatic flame temperature, / is the mass ratio 

of fuel initially in the jet and the corresponding stoichiometric amont 

of oxygen, and 	is the specific exothermic energy or the heat of 

combustion per unit mass, 	 , and 

or =j/ —y 	, or = -y/(,c.,JJ 	, depending on whether 4 = 1 

(for fuel), '= 2 (for oxygen), or k= 3 (for oxygenated products). 

One has therefore six equations of the form identical to (2) where 

the velocity gradient is replaced by the gradient of the appropriate 

transport variable. The Shvab-Zeldovich technique we employed for 

this purpose is described in Appendix A, while its consequences, 

associated with the fact that at the flame front y or y 0, 

and j/ = 0, while 2= 1, are presented in Table 1, where subscript.b 

denotes conditions at the flame front. The normalized specific volume 

a 



at the flame front, 	, and the normalized flow velocity at the ig 
flame front, 	are constants for a given fuel. Their values 

for hydrogen and for a number of hydrocarbons are listed, together 

with their other relevant properties ) in Table 2. 

Our problem involves thus the solution of Eqs. (1)and (2), 

subject to the following initial and boundary conditions: 

W:=P =Y  = I 

yy 
2 .2o 

@z>O 

 

I-v 	 0 

Lo er 	~ r 
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SOLUTION 

Dorodni ts vn-Howarth Transformation 

The awkward 	effects of density variation are first eliminated 

by the use of the Dorodnitsyn_(14) Howarth (15) 
 transformation. This 

is executed by the introduction of the following variables: 

I..  

and 	
I, 

where  
0 

Equations (1) and (2) become then, respectively, 

and 

Q 	 (3) 

J i  - 	 + 	L 	 (4) 
2'P 	 Vr' 

while the initial and boundary conditions are 

1! 

b4'O 

i-o , r_—O: V77D 

It should be noted that the specific volume is completely elim-

inated if, as specified at the outset, one has 	. Since for 

the planar case j = 0, Eq. (4) is independent of 93
and  the situation 

is straightforward. This is not so, however, in the axi-symmetric 

case, a circumstance that led to the belief that there is no solution 

in this case, as succinctly stated by Goldburg and Cheng (10) 
 when 

they wrote: "a complete analytical solution of the cylindrical 

1.1 
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laminar jet of varying density does not exist. h'*  Although we are not 

denying the absolute truth of this statement, we wish to show that 

there exists not only a possibility of obtaining a set of particular 

solutions, but also they lend themselves to a most satisfactory 

approximation which can be expressed in a closed algebraic form, 

demonstrating with great clarity the role played by exothermicity 

-- the prime objective of our study. It is, in fact, this aspect 

of our work that may be regarded as one of its most interesting 

features. 

* viz. ref (10), p. 268 



Momentum Integral Equation 

If (3), multiplied by I'V , is added to (4), the resulting 

expression can be integrated immediately, yielding the momentum 

integral equation: 

tpVCiP -/- tVJ4' 

0 

where the variables at the upper 

byan asterisk subscript, while, 
ell 

V = 0 a n d OI4'/Ot = 0, as a consequence of the last idealization 

on our list. Moreover, since by virtue of the initial conditions 

at 2 = 0 one has there also, for 	, 	, while, for 

,=Q, Eq. (5) for 	yields the momentum integral 

constant in the following form: 

Co 	 • / 

/ j#L  

NO 

. Ic 
	I-  I- 	 (5) 

limit of integration are denoted 

it should be recalled, atr= 0, 



Self-Similar Solution 

In the spirit of the boundary layer theory, let 

where 
eNd 
	 . 

I 

The momentum integral equation yields then for 	co 

iv 	14' a 
F7 

where 	 j+ 

0 

In view of(6) this yields immediately a direct relationship 

between the center line velocity, Y( , and the half-width of the 
jet, 	, namely 

	

2 	 J 	-J 
5 .=_p 

and, as demonstrated in App ?ndix B, the momentum integral equation 

is reduced to the following relatively simple form, an equation 

governing the decay of the center line velocity, 

4 

where 
	

(9) 

 

 



10 

As one should expect, a significant simplification is obtained 

by adopting for,') the Schlichting solution for a laminar jet (16), 

namely 

for jO 

(10) 

for j=i 

In both cases the functions J7 and 6 are reduced to constants 
which can be expressed comprehensively as follows: 

11.1 

5 	 32J 
	 (11) 

The governing equations (9) and (8) yield then, respectively, 

the following •straightforward expressions: 

I-v 	I,'-' 
	

2_J' 	
(12) 

and 

3 
0 
	

(13) 



Planar Flame (J = 0) 
.2J 

In this case 	= 1, so that Eq. (12) can be integrated 

immediately. Noting that, according to the Dorodnitsyn-Howarth 

transformation,' 2  and I=/'V, one obtains thus 

AVt (j+ 	 (14) 

where . 	.2 —2' denotes the coordinate of the jet corresponding 

to self-similar solution in the transformed plane. 

Since at the flame tip 	 flame height is hence given 

by 

(15) 

a constant for a given fuel independent of ) , i.e. unaffected by 

the exothermicity of the combustion process. 

In order to evaluate the radial coordinate of the flame front, 

the Dorodnitsyn-Howarth transformation has to be inversed: 

This involves the quadrature 

where, as a consequence of the Shvab-Zeldovich technique (viz. Table 1), 

/A 

In terms of the Schlichting solution for J = 0 

11 

?4) 
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while 	 , where, according to (13), 

remains constant in the process of quadrature. Noting finally 

that, as a particular consequence of the above Schlichting solution, 

,c7  

while )'V-= /V , the inverse transform yields 

(16) 

completing the solution. The shape of the flame front is obtained 

by evaluating 	from (14) and then 	from (16). 

Typical results are depicted in Fig. 1. Shown on the right is 

a typical case of a hydrocarbon for which, as indicated in Table 2, 

0.06. On the left are corresponding results obtained for a 

diluted fuel , for which the fuel/oxygen ratio, -f , is larger 

(viz. Eq. (A .9)). 	The corresponding values of 	are modified 
in order to satisfy the fuel dilution invariant, Eq. (A .10). 

In both cases the flame height is not affected by the exothermic 

effects expressed in terms of >) 
F 
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a 
Axi-Symmetric Flame  

	

H e r e 	 ).. 1, and the inverse Dorodnitsyn-Howarth 

transformation is required even for the evaluation of the axial 

coordinate of the flame. This involves now the following 

integration 	..2 
1' 

2 
 p - 

	

I  	 (17) 

Since in this case the Schlichting solution is 

I 

it follows that 

	

r 	 - I 
o 

2 2 
and, noting that ° 	, Eq. (17) yields the following expression 

for the dilation factor 

–--–/- 2 	 , 	 ( 18) 
,- 

Now, in order to evaluate the axial coordinate, Eq. (12) has to 

be integrated for a set of intermediate values of 7.using (18). 

The flame height is then obtained for h/ =1-V as a function of '7 

The algebra is somewhat involved and for this reason its details 

have been delegated here to Appendix C. The results, presented 

in Fig. 2, demonstrate that, irrespectively of the value of 

expressing the extent of exothermicity, the flame height, 	, is 

quite insensitive to the particular choice of 	, remaining at a 

remarkably constant level for 0< '< 0.8, while the axial 

flow velocity, whose variation is displayed by 747k), falls down to 

as much as one third of its value at the center line. 

This suggested to us that a very good approximation can be 

obtained by assuming in (18) 	7 2 
 = 0, so that 	

2
becomes a straight- 

forward linear function of W, . Under such circumstances the situation 

is vastly simplified and Eq. (12) can be integrated without much ado, 



yielding 

Re 8 t—n. k 

whence the flame height, corresponding to V=/- , , is given by 

.7L.  

The evaluation of the flame radius is now particularly simple. 

Noting that 
-I 

while, according to the Schlichtirig solution for j = 1, 

fT1 

and, by virtue of (13), 

-.. 
C 

- 

' 	 2 
Lfr 

whereas from Eq. 	(18) 

one obtains immediately 

2 

7-7  T'  

As before, the flame shape is expressed in an algebraic form, 

now Eqs. (19) and (21), with the center line velocity, 	, as a 

parameter. 

14 

 



To complete the solution, we obtained a very simple expression 

for maximum flame width by noting that it occurs when 

9 	,c- 

corresponding to the condition dt,,"ciz 0 evaluated from 

Eqs. (19) and (21). The latter yields then the following expression 

for the maximum flame width 

while the former, combined with Eq. (20), specifies its location as 

.. 

• in excellent agreement with results of numerical computations of 

Edelman et al. (11) 

15 



RESULTS AND CONCLUSIONS 

In contrast to the case of planar flames presented in Fig. 1, 

the height of axi-symmetric flames is distinctly dependent on the 

exothermic effects expressed in terms of ~_as  depicted in Fig. 3. 

The diagram shows also the remarkable similarity between the results 

obtained for'2 = 0.8 by the method described in Appendix C, and 
(' 

those of Eqs. (19) and (21), demonstrating the excellence of the 

approximation they provide. 

Figure 4 presents the axial velocity profiles in the axi-symmetric 

case when 	)"= 7 and 	V= 0.06. For the sake of clarity they 
are here normalized with respect to the center line velocitywhile 

the corresponding radius is normalized with respect to its value at 

a section where the axial velocity is 	one quarter of its maximum 

at the center. Vertical dashes at each profile denote the position 

of the flame. The graph demonstrates clearly that the velocity profile 

of the flow field around a diffusion flame is definitely not self-

similar, as pointed out by Hottel and Hawthorne 
(2) 	

However, our 

results are based on a self-similar solution on the transformed plane. 

The corresponding flame structures at its initial section and 

atone tenth of its height are shown in Fig. 5. They are described 

in terms of the axial velocity profiles denoted by N , the 

specific volume, .2 , representing in effect the temperature 

variation, and the concentrations of fuel, oxygen and oxygenated 

products marked respectively byy' 1 ,y2 , and J 3 . 
The heights of axially symmetric flames evaluated from our 

theory are compared in Fig. 6 to experimental results measured 

under zero-gravity conditions by Cochran 
(12) 

 and Haggard and 

Cochran (13•  With the exception of propylene 1 the agreement is 

indeed amazing, taking especially into account the formidable extent 

of idealizations on which our solution is based. The corresponding 

comparison of maximum flame widths is depicted in Fig. 7. Our solution 

16 



17 

is independent of the flow rate, while the'experimentally observed 

variation seems to occur primarily at low flow rates tending towards 

assymptotes in fair agreement with our theory. In view of the 

intrinsic difficulties in experimental measurements,this agreement 

should be considered as quite satisfactory. 

To sum up, we have derived analytic solutions for planar and axi-

symmetric gaseous jet diffusion flames. Our results are expressed 

in terms of straightforward algebraic expressions, where the influence 

of exothermicity is clearly evident. They are.shown to be in good 

agreement with experimental data obtained under zero gravity 

conditions to which, for the sake of clarity and simplicity, our theory 

has been restricted. In doing this we have obviated,by means of a 

most satisfactory approximation, an essential difficulty registered 

clearly in the literature, undoubtedly the principal reason why the 

solution we present here has not been obtained before. 	, 
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APPENDIX A 

Reduction of Transport Equations by the Shvab-Zeldovich Technique 

The equations of the conservation of species and energy, are, 

in terms of our variables, respectively, as follows: 

1 
 (A 1) 

A. 
k 

 

	

? 	 pp ç) 

where 

/1/ 

and 

•  
denoting the mass rate of the generation of species h per 

	

unit volume, while 	and 	are the Schmidt and Prandtl 

numbers respectively. 

The flame is established at the stoichiometric contour where 

gms. of fuel (k = 1) react with 1 gm. of oxygen (k = 2) pro-
ducing (/ + I ) gms. of oxygenated products (4 = 3) and generat-
ing/ calories of exothermic energy ('heat'). One has therefore 

 

where  

 

the last equation expressing the overall energy balance. Thus, 

Al 



introducing the Shvab-Zeldovich variable 

4 
where 	

for k=j 

for J2 

9/f/) for 

one obtains by a linear combination of (A.1) and (A.2) specified 

by (A.5), assuming 

i ( /)z I 

A2 

 

 

where 

In the above 	4._,. ( 	= 1,2,3), or 	or 1313 , or 

where 612 = 	_ 6?2 etc, while subscript i denotes the 
respective initial values. 

Equation (A.6) is identical to Eq. (2) and in our problem 

their initial and boundary conditions with respect to the appropriate 

variables are also identical. Hence, everywhere in the field 

 



A3 

Thus, except for the a priori unknown variation of density, 
the problem is governed by the fluid mechanics fr equations (1) and (2), 
so that, once the velocity field is determined, all the other 

dependent variables of the problem can be evaluated. The algebraic 

relationships one can use for this purpose are listed in Table 1. 
They were obtained as follows. Taking 

and substituting the appropriate expressions of % as per (A.5), 
it follows that 

I-V = 	 (A.8) 
76/  

At the flame front y1 =/, as well as Y, = 0andy2  = 0. 
One has therefore 

JY2c 	 ____ 
or 	 - 	 (A.9) 

F //y 	 2c I — i-v 

In view of the fact that at constant pressure  
the above, combined with the energy balance expressed by (A.4), 
yields 

(A.lO) j—I 

-- an invariant for a given fuel at a specific initial temperature 

irrespectively of its dilution. At the same time, using (A.9) to 
eliminate -/l2;ci  from (A.8), one obtains 

(A.11) 



Since inside the flamey' 2  = 0, while outside Y, = 0, the 
above yields ,y1 = ,y'sIas well as Y2  =y('vJ as shown in 

Table 1. 

Similarly, taking 

__________ 	/ i-v 	- 	 - V + 
•-I. 	7[7J 

one gets 

y(1V_Y) 	
(A.12) 

whereas, taking 

CL 

and noting that at the flame'front 2= 1 while Yj  = 0, so that 

AV, , it follows that 

(A.13) 

Equations (A.11) and (A.13) provide the expressions fory 3  =yi'iLJ 

and 	'i) presented in Table 1. Finally the variation of)) 

with -v is obtained from that of 2 by noting that, for a perfect 

gas with constant specific heats, one has, in a process at constant 

pressure,. 

A4 

(A.14) 



APPENDIX B 

Momentum Integral Equation for a Self-Similar Jet 

The task is to perform the integration of 

(5) 

0 	 t 

subject to the similarity transformation 

/r) 
where 

This is done term by term as follows: 

First Term 

,1 

iJr 
0 	

1z E 

Since from the total momentum integral for a self-similar jet 

where 	 (8) 

it follows that 

V;J;;:2Q/? 	4tc 	(B 1) 



Second Term 	
B2 

By virtue of the continuity equation, (1), 

In terms of.F'this becomes 

/ 
J/ f fJ(p)(7 

whence 

e-Z d z k  

where, it should be noted, the last term is identical to the first 

term and has an opposite sign, causing its cancellation 

Th4'd Tm 

where, in view of Eq. (8), 	can be eliminated yielding 

Substituting (B.1), (B.2) and (B.3) into (5), one gets thus 

00,  

(B.3) 

whence 

G 2j' 

where 

(9) 

op 



APPENDIX C 

Centerline Velocity Decay and Flame Height in Axi-Symmetric Case ( j = 1) 

One has to distinguish between here three cases: 

(a): /)n. while 1- <,r 	where the integration is performed 

inside the flame 

while 
r-.- >c.- 

 , where the integration crosses the 
p 

flame, and 

/i<Iv.  while 	, where the integration is performed 

outside the flame 

The last case is of interest only for the determination of the flow 

field above the flame; hence it is of no concern to the analysis of 

the flame shape. 

The algebraic manipulations in the execution of the inverse 

Dorodnitsyn-Howarth transformation are,in each case,as follows: 

Case (a) 
74 	2 

of  - •; 

i 

and since, according to the Schlichting solution, 

one has 
2 

2 / 

Hence 

(C.l) 

Cl 



Case (b) 

;7/i— 	 ; J 

and since as demonstrated in the section on the solution for the 

axi-symmetric flame, 

/7 

while 

HOC- 
(/p i2 

one gets now 

C2 

(C.2) 

where  

AV  i 

2 
a 

c2 I 
— 

Case (c) is in all respects similar to case (a), except for the 

use of the other expression for ?i-vj in Table 1. Since, this is 

of no concern to the flame shape, the prime objective of our study, 

the explicit algebraic solution is not given here. 

Now, the centerline velocity decay is determined by the 

substitution of (C.1) or (C.2) for 	in Eq. (12). This leads 

respectively to the following solutions 

Case (a) 

LI 



C3 

whence, since initia11yat 	= 0, % = 1, 

At r 	i 	 so that 
if 

and noting that 	, one gets in this case 

I 	
- 	

( C 3) 
-10V t 8 	wi/IT 

Case (b) 

whence, since the initial conditions here are: Iv'
t 
 =h/. at 	.=Z  * 

it follows that 

1* 	
- f) 	I 	 (C. 4) 

where 

____  
A)— - - V 	 - 

C / 	Cx 2C 	Cx 	 C .D 

while 

-- a quantity which is always positive. 
The flame height is obtained from the above for Z =Z 	

, so 
that 	(C.4) yields 

' 

[ J)7i-92,JJ *  (C.5) 



while in the particular case of p -- 0 one gets immediately 

from (C.3) 
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TABLE 1 
/ 

Consequences of the Shvab-Zeldovich Technique 

N Inside the Flame Outside the Flame 

yl  

• 	 • • I 
74- 

Y-3 

I-V 
L 

j•-- 

/ 	- /) 
loc- 

C5 



C6 

TABLE 2 

Relevant Properties of Hydrogen, Some Hydrocarbons,' and Air 

at N. T. P. 

cm   CC  

Hydrogen 2 1.53 0.71 1.059 7.81 0.028 

Methane 16 0.77 0.72 0.1648 7.25 0.055 

Ethylene 28 0.56 0.90 0.0858 7.58 0.064 

Propylene 42 0.37 0.74 0.0437 7.45 0.064 

Air 29 0.71 0.259 - - 
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FIGURE CAPTIONS 

Fig. 1 Planar Flame Shapes 	 - XBL 818-11257 

Fig. 2 Dependence of Flame Length on 	 - XBL 818-11265 

S 

Fig. 3 Axi-Symmetric Flame Shapes 	 - XBL 818-11259 

Fig.. 4 Normalized Axi-Symmetric VelocityProfile,s - XBL 818-11260 

for the case of 	)) = 7 3 	tAt = 0.06. 
F 	1= 

• 	 Fig. 5 	Flame Structure 	 - XBL 818-11261 

for the case of 	) = 7, i'"= 0.06. 
p. 	P 

Fig. 6 	Flame Lengths 	 - XBL 818-11258 

Dataof Refs. 12 and 13 

Fig. 7 	Flame Widths 	 - XBL 818-11262 

Data of Refs. 12 and 13 



r 	100 	0 

Fig. 1 

0 	1000 

XBL 818-11257 

F] 

'-I-) 

20 

Io( 

15( 

4 



F2 

MEO 

.06 

- 

5 

7 

0 
	

I 	I 	 I 	I 

Z F /Re1 

0.5 

0 	 0.4 	 0.8 	 1.2 

Fiy. 2 	 XBL 818-11265 



WF 0.06 

77 

 

0.8 * 

tj 

it 
6 

5 

4 

3 

2 

F3 

I'M MOM 

	

r - 	302010 OO 1020 30 r 

	

Fig. 3 	 ABL 818-11259 



F4 

to 
C\J 

co 
co 

.-1 

+ 

o 
U- 0 	 0 



0.5 

U 

wf  

Z :0 

w 

	

yl 	3 

	

I 	 I 	t 

50 	40 	30 	20 	10 	0 	0 	10 	20 	r 

Fig. 5 	 XBL 818-11261 

p 	 F 

F5 



F6 

I.Ii 

ZF 

100 

-o 

I 

	

I 	c/ 
I 
/ 

	

cl 	 I 4/ 
WI 	 / 

c1l 
0! 	 / 

•0/ 
>.II 	 0_al 

- 

~ 

+ 	 0 

+ 	 D •  

- + 	0 	 A Methane 
0 Ethylene 

/JO 	 0 Propylene 

+ 	 + Hydrogen 

[SI! 
0 
	

100 	 200 
	

300 
ReL 

Fig. 6 
	 XBL 818-11258 



F7 

c\'J 

C\J 

co 

-J 
co 
>< 

UE 

C.) 
a) 
U) 

E 

a) 4-
0 
cr 

0 
CJ iz 

N- 

4 

LI 

E E 
C.) C.) 
F) - 
00 U.) 

o 0 
o 0 
II H 

._I 

1T co 

 EQ 
r 	C Q 	C) 

DQ 

H 1  

	

I CD I 	1E lOO 

WI 

	

—I 	 >% 	 WWW_ 
CCC 

	

o 	Iir. 

WIOfr •J< 	j 
CD 

	

II 	I 
CD 

Ld

-  

I 'dQ 
H 

	

Ii 	I 	Iii 	I 
N 	0 	 (P 	ct 	N 

	

- - 	 0 0 0 
(WO) snipo8 awolj WflW!XDJ 



This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 



ot 

t11 

txl 

C) 

tTl 

Q 

i. 




