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The Rossiter equation: Improving the fractional vortex speed
and defining an effective length to depth ratio for cavity flows

Matthew Gabel and Nesrin Sarigul-Klijna)

DynaaTECC Research Lab, Mechanical and Aerospace Engineering, University of California, Davis, Davis, California 95616-5294, USA

ABSTRACT:
This paper first reviews well known analytical techniques for predicting the Rossiter modes of a cavity in

compressible flow. We combine existing methods to improve the performance in compressible flow. Second, we

introduce a method based on an effective length to depth ratio of the cavity from experimental results for predicting

frequencies across Mach numbers. Finally, the fractional vortex speed used in the Rossiter equation and its

derivatives is calculated from high subsonic (M 0.55) to supersonic (M 2.3) for use in future cavity mode prediction.
VC 2024 Acoustical Society of America. https://doi.org/10.1121/10.0024722

(Received 6 March 2023; revised 15 January 2024; accepted 17 January 2024; published online 5 February 2024)

[Editor: James F. Lynch] Pages: 952–961

NOMENCLATURE

L Length of the cavity

U Freestream velocity

Uc Phase velocity

T Static temperature

T0 Stagnation temperature

D Depth of the cavity

a Phase velocity or speed of sound

ka Acoustic wavelength

kv Vortex wavelength

fn Resonant frequency corresponding to mode n

x Angular frequency

n Mode

h Boundary layer thickness

V Velocity

p Pressure

c Ratio of specific heats, 1.4 for air

r Thermal recovery factor, 0.9

R Gas constant for air, equal to 287ðJ=kg� KÞ
M Mach number

TE Trailing edge

LE Leading edge

j Fractional vortex convectional speed, 0.57 classically

n Phase lag correction factor for edge effects

þ Used as subscript for downstream

� Used as subscript for upstream

St Strouhal number: St ¼ fnL=U, non-dimensional

frequency

I. INTRODUCTION

Cavity flows are ubiquitous features in many aerospace

systems and have been a topic of study since the early jet

age.1 Cavity flows are typically defined by their length to

depth (L/D) ratio, called the cavity aspect ratio, and the

Mach number or freestream velocity of the external flow.

The fluid medium in question is most commonly air and will

be treated as such in this work. Cavity flows display stable

or unstable behavior, depending on the conditions. Stable

cavity behavior is typically characterized by a stable vortex

inside the cavity and is referred to as the shear mode.2 The

shear mode covers all cases detailed in this paper.

A Kelvin–Helmholtz-like instability occurs in the shear

layer between the cavity and the freestream fluid, while

upstream feedback occurs from acoustic waves.3 The cavity is

dominated by particular acoustic frequencies, commonly

called the Rossiter modes, that arise from this feedback under

certain flow conditions. Modes can be present simultaneously

in the cavity,4 and models predict multiple separate modes for

this reason. However, one mode will typically dominate the

cavity acoustic response and will affect experimental correla-

tion.5 Experiments have verified that the wavelengths of these

acoustic modes correspond to the Strouhal number and the

cavity geometry, as predicted by Rossiter.6 The precise condi-

tions these modes occur in will be detailed in Sec. II of the

paper, but typically they occur in compressible flows for

medium to high aspect ratio cavities.

Recent analysis of high-speed particle image velocime-

try by Singh and Ukeiley6 suggests that acoustic mode

shapes present in the flow can exist independent of Mach

number and depend mainly on the Strouhal number of the

flow. Sun et al.7 observed that the shear layer structures of

these modes can grow in the cavity and lead to unwanted

flow instabilities when they overflow and alter the modes’

behavior in unexpected ways. Sun et al. also noticed

increasing Mach number can have a stabilizing effect on

these shear structures in supersonic flows but a destabilizing

one in subsonic flows.7

The acoustic response of cavity flows can be poor for

several reasons. The structural response to these oscillations

can lead to fatigue or flutter failure,4 and many of the firsta)Email: nsarigulklijn@ucdavis.edu
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cavity investigations in aerospace science were in response

to this. Noise is a large factor as well. Noise from the land-

ing gear assemblies during takeoff and landing is typically a

large contributor to the aircraft’s total aerodynamic noise.

The landing gear bay itself primarily contributes a portion

of the lower frequency noise, which is of greater concern.8

Drag can also be highly unfavorable from cavities.

Figure 1 shows a typical shear mode cavity flow with

vocabulary and important quantities listed. Rossiter9 ini-

tially classified the cavity behavior and empirically derived

an equation for predicting the acoustic frequencies present

in the cavity. Heller et al.4 compared the acoustic response

of cavities across Mach numbers and found they consis-

tently produced the modes Rossiter predicted. Heller et al.4

later modified Rossiter’s equation by more accurately

accounting for the acoustics inside the cavity. Dechant10 has

derived a similar novel equation using classical fluid

mechanics and acoustics. Most recently, Casalino et al.11

ran many computational simulations to classify the upstream

flow present inside the cavity and improve the behavior of

Rossiter’s equation across all conditions. Despite the advent

of many powerful computational methods, these analytical

and empirical methods make relatively accurate predictions

of the frequency for cavity flow pressure oscillations in the

shear mode. Their main limitation is the equations are only

valid for the particular flow conditions where the Rossiter

modes occur.

In particular, the Rossiter equation suffers at higher

Mach numbers outside of where it was semi-empirically

derived. DeChant’s and Casalino’s methods are more robust.

We will implement Heller’s4 and Casalino’s11 work into

DeChant10 to better handle compressibility effects. We will

also add an additional term to modify the (L/D) ratio used in

the DeChant10 equation based on the vortical structures

inside the cavity to help the method handle a wider range of

conditions. We review the Rossiter9 equation, the newer

analytical method from DeChant,10 Casalino,11 the Block12

equation, as well as our own modified forms of the

DeChant10 equation that account for compressibility and the

vortex within the cavity. We attempt to classify the size of

the vortex within mid-size cavities across Mach number

using a collection of experimental results from other work.

Additionally, we more precisely quantify the fractional vor-

tex speed that Rossiter9 defined in the Rossiter equation to

make the method more accurate outside the range it was

originally created for.

We compare these methods with three different test

cases at Mach 0.55, 0.8, and 2.0 with aspect ratios of

approximately 5 for all three cavities. The subsonic cases

are from wind tunnel tests from Wagner et al.13 where they

studied how the width of cavities affects acoustic behavior.

Wagner et al. noticed that the modal frequencies were con-

sistent for different widths, but the sound pressure level

could vary significantly. For the supersonic case, Zhuang

et al.14 looked at the use of microjets to divert supersonic

flow away from a cavity to improve its behavior. They

found use of the jets reduced cavity tones by up to 20 dB as

well as significantly reduced flow unsteadiness inside of the

cavity.

II. BACKGROUND AND METHODS

In 1964, Rossiter9 developed what is probably the most

well-known of the analytical equations to predict cavity

flow oscillations. Rossiter noticed periodic density oscilla-

tions occur at the cavity mouth, which he attributed to

FIG. 1. Cavity flow diagram shown in the Rossiter mode. A feedback loop occurs between the shear layer moving downstream from the leading edge and

acoustic waves traveling upstream from the trailing edge, generating stable vortices in the cavity. The cavity is primarily characterized by the freestream

velocity, local speed of sound (in the Mach number), and the length to depth (L/D) ratio of the cavity. The cavity model is two dimensional; depth is

neglected. h is the boundary layer thickness; the boundary layer preceding the cavity also affects cavity behavior, but this is neglected in the analytical meth-

ods covered here.
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vortices. Rossiter posited acoustic waves in the shear mode

emanate from the trailing edge of the cavity. Rossiter devel-

oped an equation based on these observations and two main

assumptions. The first assumption was the vortex shedding

occurred at the same frequency as the acoustic waves. This

made for a negligible recirculating velocity in the cavity,

allowing the acoustic speed to only be the speed of sound

upstream. Rossiter found this to be true if the L/D ratio was

>1 for the cavity in transonic flows. Other work has proven

this continues to be true for L/D ratios larger than 4 with

higher Mach numbers, although accuracy is inferior to the

originally specified domain.15

If the frequency of the vortex shedding and acoustics

are the same, the ratio of the vortex speed to the vortex fre-

quency must equal the ratio between the speed of sound and

the wavelength of the sound propagated upstream. The vor-

tex speed was taken as some fraction of the freestream

velocity, as shown in Eq. (1):

f ¼ jUþ
kv
¼ a�

ka�
: (1)

The second condition Rossiter made was that the phase shift

of the convected vortex coming from the leading edge plus

the phase change of the acoustic wave going the opposite

direction must be equal to the mode number multiplied by

2p and a correction factor, as shown in Eq. (2). The correc-

tion factor is experimentally determined for the phase lag

due to the edge effects. Rossiter’s results for the phase lag

are tabulated in Table I. In Eq. (2),

2pL
1

kv
þ 1

ka�

� �
¼ 2p nþ nð Þ: (2)

With substitutions, this leads to the following equation:

L

jUþ
þ L

a�
¼ n� n

fn
: (3)

The first term is the time it takes for the vortex to convect

from the leading edge to the trailing edge. The second term

is the time it takes the acoustic wave to travel in the opposite

direction. Solving for the natural frequency and assuming

the speed of sound is identical in both directions,

fn ¼
Uþ
L

n� n

Mþ þ
1

j

: (4)

This can be non-dimensionalized by dividing both sides by

freestream velocity over cavity length, yielding the Strouhal

number:

StRossiter ¼
fnL

Uþ
¼ n� n

Mþ þ
1

j

: (5)

It is worth noting that this equation assumes the upstream

speed of the acoustic wave is the same as the downstream

speed because it uses the downstream speed of sound in the

Mach number. This assumption is only truly accurate in

low-speed, incompressible cases.

Heller et al.4 found the accuracy of Eq. (5) is improved

more generally by adding an isentropic relation for the stag-

nation sound speed Eq. (6).16 This assumes the speed of

sound in the upstream direction inside the cavity is equal to

the stagnation speed of sound outside of the cavity. This

assumption is valid as long as the cavity temperature is

approximately equal to the freestream stagnation tempera-

ture, which Heller found true up to approximately Mach 3,

where the error increases marginally:

a�
aþ
¼ 1þ r

c� 1

2

� �
M2
þ

� �1=2

: (6)

This acoustic relation is attached to the Mach number to

yield the modified Rossiter equation:

fn ¼
Uþ
L

n� n

Mþ
aþ
a�
þ 1

j

: (7)

This is non-dimensionalized to the Strouhal number, and the

Mach number is simplified out:

StMR ¼
fnL

Uþ
¼ N � n

Uþ
a�
þ 1

j

: (8)

DeChant10 derived a Rossiter-like expression using an aver-

age of the acoustic and shear layer frequencies. The acoustic

frequency was derived in the same manner as a

Kelvin–Helmholtz instability, using the classical vortex

sheet expressions to get the temporal behavior of the pres-

sure field.17 They then define two incompressible, inviscid

parallel streams at an interface with a small velocity poten-

tial and solve the resulting Laplace equations using a normal

mode approximation. DeChant10 uses a Bernoulli assump-

tion at the interface like the classical Kelvin–Helmholtz

instability to calculate the phase velocity as

Uc ¼
Uþ

1þ coth np
D

L

� � : (9)

DeChant10 then solves the following acoustic problem for a

rectangular cavity:

TABLE I. Phase lag correction factor for edge effects as a function of cav-

ity aspect ratios (L/D ratios) of 4, 6, 8, and 10 (Rossiter).a

L/D ratio n

4 0.25

6 0.38

8 0.54

10 0.58

aReference 9.
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a2
þ p0yy þ p0xx

� �
¼ p0tt: (10)

This expression is solved with the standard boundary condi-

tions for a cavity and a separation of variables approach.

The approach most importantly yields an expression for the

acoustic temporal frequency, as shown below in Eq. (11).

This also assumes the upstream speed of sound is the same

as the downstream speed, which is only entirely true for a

purely incompressible flow. To show this assumption, the

speed of sound is displayed with the downstream subscript

even though it is in the upstream direction:

xa ¼ aþp
n

L
: (11)

Using Eq. (9) for the phase speed, the shear layer frequency

is

xs ¼
np
L

Uc: (12)

DeChant10 now argues that upstream and downstream veloci-

ties within the cavity are simply these angular frequencies

multiplied by the cavity length. If the characteristic velocity of

the cavity is the average velocity of an upstream and down-

stream cycle, then the characteristic velocity is simply

Vchar ¼
2L

1

xa
þ 1

xs

¼ 2L
L

Vup
þ L

Vdown

¼ 2

V�1
� þ V�1

þ
: (13)

The average frequency will thus follow in the same way:

Rearranged to

xave ¼
2

1

xa
þ 1

xs

¼ xaxs

1

2
xa þ xsð Þ

; (14)

2pf ¼ 2pn
L

aþ
þ L

Uc

: (15)

The known expressions for angular frequency are plugged

in, the frequency is converted from angular to ordinary, and

the equation is non-dimensionalized to the Strouhal number:

StDeChant ¼
n

Mþ þ
Uþ
Uc

: (16)

This model is very Rossiter like in behavior but is more rig-

orously derived from classical fluid mechanics and the

known flow physics. When the phase velocity relation is

incorporated, Eq. (16) is expressed as

StDeChant ¼
fDeChantL

Uþ
¼ n

Mþ þ 1þ coth np
L

D

� ��1
" #( ) :

(17)

This method works well in the subsonic regime of the

Rossiter modes and presents an equation that is much more

robustly derived from formal fluid mechanics than previous

empirical relations.

We would like to improve this method in two ways. The

first is to include compressibility effects on the upstream

acoustics discussed previously to help improve accuracy at

higher Mach numbers. We add a new term for the L/D ratio

input as the second modification to this method. DeChant10

assumed the upstream speed of sound was identical to the

downstream in their derivation, just like Rossiter.9 This modifi-

cation is completed in the same manner as the Rossiter modifi-

cation, by multiplying the downstream Mach number by the

ratio of the downstream to upstream speed of sound found

from the isentropic relation given before in Eq. (6):

fL

Uþ
¼ n

Mþ
aþ
a�
þ 1þ coth np

L

D

� ��1
" #( ) : (18)

This simplifies to the following relation if we incorporate

the upstream speed of sound:

St ¼ fL

Uþ
¼ n

Uþ
a�
þ 1þ coth np

L

D

� ��1
" #( ) : (19)

The feedback mechanism discussed previously in Eqs.

(9)–(15) was essentially a relation between a vortex sheet

generated by a shear layer traveling downstream and acous-

tic waves traveling upstream. This mechanism was assumed

to persist from the leading to the trailing edge of the cavity

and generate the acoustic modes we are interested in.

While the Rossiter modes are present, a stable vortex

also persists inside the cavity in a shear mode. This vortex

arises from the same mechanisms that produce our Rossiter

frequencies. The stable vortex present inside the cavity only

fills a section of the length in many cavities, especially at

higher Mach numbers. We hypothesize that if the vortex

does not fill the entire cavity, it suggests that the feedback

mechanism for the acoustic modes is not based on the full

L/D ratio either. This can be corrected for by multiplying

the length by the vortex size to cavity length ratio. This cor-

rected length will be referred to as the effective length of the

cavity. This method will be referred to as the current method

from now on and is shown below:

Stcurrent ¼
n

Mþ
aþ
a�
þ 1þ coth np

L

D
� Leff

L

� ��1
" #( )

¼ n

Uþ
a�
þ 1þ coth np

Leff

D

� ��1
" #( ) : (20)

In the case of the test cases used in this paper, the vortex

length to cavity length ratio can be most easily found by
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looking at the mean streamline velocity contours presented

from wind tunnel experiments.13,14 The size of the vortex is

estimated by using the color map or by the largest stream-

line that closes around the vortex.

Recently, Casalino et al.11 revised the Rossiter formula

in two ways. A second order polynomial approximation was

introduced for the phase lag correction factor, as shown in

Eq. (21):

n2nd ¼ �0:0056
L

D

� �2

þ 0:1363
L

D

� �
� 0:2125: (21)

The second major modification was the implementation and

characterization of the recirculation velocity inside the cav-

ity. The soundwaves traveling upstream in the cavity are

carried by upstream velocity gradients from the persistent

cavity vortices. Casalino et al.11 created an expression for

an average recirculation velocity upstream using data aggre-

gation from computational simulations with a range of dif-

ferent cavity conditions. The velocity in the equation below

is non-dimensional in terms of the freestream velocity and is

a polynomial fit of their results:

~V recirc

L

D
;Mþ

� �
¼ l0 þ l1

L

D
þ l2Mþ þ l3

L

D

� �2

þ l4M2
þ þ l5Mþ

L

D
: (22)

Casalino et al.11 characterize this reversed flow velocity along

two different lines in the cavity 5 mm and 10 mm above the

cavity floor. There was no criterion for an optimal acoustic

path, which limited the authors to a spatial average approach.

Both average lines for velocity were firmly in the reverse flow

region and outside the boundary layer inside the simulated cav-

ities. The polynomial coefficients along the average lines are

classified in Table II below. In this work, we exclusively use

the coefficients from the 5 mm line because the error is less.

The reversed flow velocity was converted into a local

Mach number for implementation into the Rossiter equation,

as shown in Eq. (23) below:

Mrecirc

L

D
;Mþ

� �
¼ Mþ

1þ c� 1

2

� �
M2
þ

� �1
2

~V circ

L

D
;Mþ

� �
:

(23)

This along with the modified phase lag correction factor was

implemented into the modified Rossiter equation, Eq. (8), to

yield the following equation:

StCasalino ¼
fnL

Uþ
¼ n� n2ndð Þ 1þMrecircð Þ

Uþ
a�
þ 1þMrecirc

j

: (24)

It is worth nothing that Casalino et al.11 do not implement

the thermal recovery factor into their isentropic relationship

equation, Eq. (6), to calculate the local speed of sound inside

the cavity in Eqs. (23) and (24). Withholding the thermal

recovery factor slightly increases the error compared to the

experiment.

A second novel method modification is created by

implementing the recirculation velocity expression Eq. (22)

from Casalino et al.11 into the modified DeChant equation,

Eq. (19). This provides a full accounting of upstream contri-

butions to the cavity’s characteristic velocity in Eq. (13).

This method will be referred to as upstream DeChant for the

remainder of this report:

St�DeChant¼
fL

Uþ

¼ n

Uþ

a�þUþ ~V recirc

þ 1þ coth np
L

D

� ��1
" #( ) :

(25)

Another method we compare to is the work of Block

et al.12 from NASA Langley. Block et al. most noticeably

included the L/D ratio explicitly in an equation they

derived by comparing directly to experimental results.

Block et al. looked at how the lengthwise vortical-acoustic

modes interacted with depthwise standing-wave modes

inside the cavity. The following expression was found

based on those relations:

fBlock ¼
n

1

j
þM 1þ 0:513

L

D

0
@

1
A
: (26)

Block was specifically designed for L/D ratios greater than

1 and for the transonic regime, but DeChant10 found good

agreement for supersonic cases. This method is not particu-

larly accurate but was included for completeness because it

has been used for comparison by other works.

The papers used as test cases typically provide stagna-

tion temperature and Mach number from their experimental

setup. Those quantities are used in the following isentropic

flow equations, Eqs. (27) and (28), to find the static tempera-

ture and freestream speed of sound:

TABLE II. Polynomial expansion coefficients in Eq. (22) from Casalino et al.a

Line l0 l1 l2 l3 l4 l5 Error

5 mm 0.286 526 �0.008 972 �0.108 192 0.0009 0.105 768 �0.009 661 9.8 � 10�4

10 mm 0.274 566 �0.009 870 �0.092 915 0.0014 0.105 714 �0.013 085 1.1 � 10�3

aReference 11.
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T0

T
¼ 1þ c� 1

2
M2; (27)

a ¼
ffiffiffiffiffiffiffiffi
cRT

p
: (28)

III. RESULTS AND DISCUSSION

Specific parameters were adjusted in the equations to

visualize how the methods compare and how the solutions

differ for separate conditions. The Mach number of the flow

was adjusted to visualize the effects on the Rossiter equa-

tion, the alternative methods, and our current approach.

Figure 2 shows the frequency response of the first mode in a

cavity with varying L/D ratios for 3 different Mach numbers

corresponding to the test cases examined later in this report.

It is worth noting that the effective length of the cavity

is assumed constant across the L/D ratio here so the methods

can be compared, but the effective length is probably at least

somewhat dependent on L/D ratio, especially outside of the

range that Rossiter specifies. “Modified” refers to the imple-

mentation of the isentropic speed of sound ratio.

The difference between the Rossiter equation in Eq. (5)

and modified Rossiter equation in Eq. (8) is most noticeable

at higher Mach numbers, where there is a larger discrepancy

between the speed of sound upstream in the cavity and

downstream in the freestream. The Casalino equation [Eq.

(24)] agrees most closely with other Rossiter derived meth-

ods for lower Mach numbers but diverges significantly as

the Mach number increases the internal recirculation veloc-

ity The modified equations in Eqs. (8), (19), (20), (24), and

(25) yield higher frequencies because the speed of sound in

the upstream direction in the cavity is higher than the free-

stream, resulting in a shorter period and higher resulting fre-

quency. At higher Mach numbers, the smaller vortex size in

the cavity increasingly comes into play, resulting in peak

frequency for our current method, Eq. (20), the Casalino

equation, Eq. (24), and the upstream DeChant equation, Eq.

(25), at a larger discrepancy from the other methods. The

results diverge more between the Dechant equation, Eq.

(17), and the current method, Eq. (20), at higher L/D ratios.

The upstream DeChant [Eq. (25)] and Casalino [Eq. (24)]

equations both diverge more from their respective base

methods at lower L/D ratios. Dechant’s model in Eq. (17)

shows good agreement with the Rossiter methods in Eqs. (5)

and (8) for all modes and across velocity regimes. Higher L/

D ratios also cause a larger difference between the Dechant

derived methods in Eqs. (17), (19), (20), and (25) and the

Rossiter derived methods in Eqs. (5), (8), and (24). Of the

existing models, the Block method, Eq. (26), has the poorest

agreement with other methods, as DeChant10 also noted.

A. Validation of method and comparison with test
cases

Three experimental cases were chosen for method com-

parison and validation from papers that included experimen-

tal streamline or velocity contours so the vortex size could

be accurately measured. The two subsonic cases were from

a paper by Wagner et al.13 that discussed aspect ratio effects

on cavity frequency response. The precise size of the vortex

had to be inferred based on the curvature of the streamlines

because their results did not show the entire cavity due to

limitations of their experimental apparatus. The cavity

length to width ratio and the L/D ratio from Wagner et al.13

were 5.0 for both cases.

The supersonic case came from a paper by Zhuang

et al.14 examining the flow behavior of supersonic cavities

and their control with leading edge microjets to minimize

unsteadiness. A velocity contour plot was used for vortex

size for the supersonic case.

The vortex size was treated as being represented by the

mean velocity contours inside the cavity corresponding to at

least 10% of the freestream velocity magnitude. The

Rossiter mode frequencies were measured for all three cases

from sound pressure level plots included in the reports. CAD

software was used to precisely measure the frequency values

and vortex sizes from the papers. Zhuang et al.14 report the

FIG. 2. (Color online) Frequency variation over length to depth (L/D) ratios

for different Mach numbers under test case conditions. The Rossiter equa-

tions in Eqs. (5) and (8) are represented at discreet points corresponding to

the phase lag correction factor values taken from Table I. The largest varia-

tion between methods generally occurs at higher Mach numbers and L/D

ratios.
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first mode as approximately 1.46 kHz, while we treat the

first mode as the earlier peak at approximately 1.18 kHz,

which is in line with theory. The cavity length to width ratio

was 5.92 and the L/D ratio was 5.17 for their test case.

Stagnation temperature was used with the Mach number to

find the static temperature [Eq. (27)]. From there, the speed

of sound [Eq. (28)] and freestream velocity of the flow could

be derived. The results are tabulated in Table III, Table IV,

and Table V for three test cases. Percent error is displayed

in parentheses.

The Rossiter methods struggle at higher Mach numbers.

Incorporating compressibility effects improves Rossiter’s

accuracy marginally in supersonic flow, but the accuracy is

still inferior to subsonic conditions. DeChant’s method is

comparable to Rossiter in subsonic flow, and both are quite

accurate in this regime overall. DeChant’s method seems

more robust for supersonic flow than Rossiter’s, especially

for the first mode. This is to be expected because DeChant’s

method was derived rigorously from flow physics, whereas

Rossiter’s method comes from empirically derived trends. At

Mach 0.55, the differences between the Rossiter and modified

Rossiter equations are also very minor, as one would expect

nearing the edge of compressibility. Rossiter’s equations tend

to be more accurate for predicting higher modes. Casalino’s

method overcomes Rossiter’s shortcomings at higher Mach

numbers and is overall a general improvement in accuracy,

but it struggles more for the first mode. The lowest Mach

number case is the strongest for Casalino. Upstream DeChant

performs comparably to marginally better versus Casalino for

all 3 cases. The current method is quite accurate for all cases,

especially for the 1st mode, compared to the others. The main

complication is that you would need to measure the vortex

size for a given cavity before you could make accurate fre-

quency calculations.

B. Vortex size predictions

Ideally, we could catalogue the vortex size for a range

of different conditions and define an analytical equation that

could be used to quickly estimate the vortex size for a given

cavity. Very few papers seem to include streamline visuali-

zation for their cavity flows, which makes cataloging vortex

size in the cavity difficult. We attempted to work around

this by collecting Rossiter mode data from several papers

and then used numerical optimization to find what the vortex

length should be to minimize the error across the first 4

modes. The code relies on optimization instead of least

squares, so additional variables could be added as needed

for establishing a trend in future work. The code worked by

inputting the full possible range of different length ratios [0,

1] and then finding the value that minimized the cumulative

error of the first 4 modes. We decided to prioritize the accu-

racy of lower modes in the optimization. The weighting for

the four modes was [1, 0.9, 0.8, 0.7], respectively, but using

an equal weighting did not substantially alter results. The

numerically optimized values for an effective length ratio

found for the three previous test cases are relatively in line

with our measured vortex sizes (Table VI).

We attempted to keep the L/D ratio of the cavity to be

near 5 for the data because the relationship between vortex

length and cavity L/D ratio has not been established yet.

The cavity ratios can be seen in the Fig. 3 legends. Figure 3

shows the weighted cumulative mode error and the vortex

length ratios across Mach numbers. Weighted cumulative

mode error refers to the weighted sum of the error across

modes for each case.

The results of this optimization exercise are not entirely

satisfactory. There is too much variation to establish an ade-

quate trendline or least squares regression. Kaufman et al.18

TABLE III. Mach 2 test case method comparison.a

Mode

Strouhal no.
fL

U
(% error from experiment)

Experiment Rossiter Modified Rossiter DeChant Current Casalino Upstream DeChant

1 0.2624 0.1796 (31.6) 0.2056 (21.6) 0.2065 (21.3) 0.2657 (1.2) 0.2424 (7.6) 0.2621 (0.1)

2 0.5628 0.4459 (20.8) 0.5105 (9.3) 0.4770 (15.2) 0.5637 (0.1) 0.6108 (8.5) 0.6316 (12.2)

3 0.8911 0.7123 (20.1) 0.8155 (8.5) 0.7401 (16.9) 0.8505 (4.6) 0.9793 (9.9) 0.9910 (11.2)

4 1.2307 0.9787 (20.5) 1.1204 (9.0) 0.9961 (19.1) 1.1347 (7.8) 1.3477 (9.5) 1.3381 (8.7)

aT0 ¼ 336 K, L=D ¼ 5:17, and LEFF=L � 0:54.

TABLE IV. Mach 0.8 test case method comparison.a

Mode

Strouhal no.
fL

U
(% error from experiment)

Experiment Rossiter Modified Rossiter DeChant Current Casalino Upstream DeChant

1 0.3199 0.2682 (16.2) 0.2727 (14.7) 0.2781 (13.0) 0.2999 (6.3) 0.2789 (12.8) 0.2898 (9.4)

2 0.7019 0.6596 (6.0) 0.6708 (4.4) 0.6720 (4.3) 0.6985 (0.5) 0.6945 (1.1) 0.7064 (0.6)

3 1.0765 1.0511 (2.4) 1.0689 (0.7) 1.0537 (2.1) 1.0790 (0.2) 1.1101 (3.1 1.1102 (3.1)

4 1.4474 1.4426 (0.3) 1.4670 (1.4) 1.4219 (1.8) 1.4479 (0.0) 1.5257 (5.4) 1.4991 (3.6)

a T0 ¼ 321 K, L=D ¼ 5:00, and LEFF=L � 0:84.
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and Bauer et al.19 were older sources for several of the cases

used in the optimization, and the accuracy of their results is

inferior to the modern results we had used previously for

our test cases. Kaufman et al.18 used hand drawn graphs to

show their frequency results, and the conditions in their

wind tunnel were not reported precisely. The effective

length ratio term in Eq. (20) is sensitive to error meaning the

experimental results used in the optimization must be accu-

rate to establish a proper trend. The Mach 1.5 point was

taken from a paper by Casper et al.15 for a cavity with an

aspect ratio of 7 and similar conditions to the other tests.

Future work could be done in the wind tunnel or with

numerical simulation to gather results for vortex size. As a

next step, we could run computational simulations and pull

from other computational papers to further establish a trend

for the effective length of the cavity. As it stands, for us

there is strong indication of correlation because the optimi-

zation code produced similar results to what we measured

from the contours.

We expected there to be different trends for the sub-

sonic and supersonic regimes, and there does seems to be a

difference in trends between the subsonic and supersonic

results. The general trend of the data is consistent with the

results of Sun et al.7 Sun et al. observed the vortical struc-

tures growing outside the cavity near Mach 1 but gradually

reduced again above Mach 1.2. This instability is consistent

with the highest cumulative mode error occurring in the

transonic regime. The break in the effective cavity size

method occurring where vortical structures grow past the

length of the cavity is a compelling explanation for the error

seen.

C. Fractional vortex speed predictions

The same optimization code was rewritten to optimize

the fractional vortex speed used in the Rossiter and Casalino

equations in Eqs. (5), (8), and (24). Kaufman et al.18 had

previously experimentally derived the fractional vortex

speed after Rossiter’s work, but the reported values were not

for a comprehensive range of Mach numbers. Our numerical

optimization for the fractional vortex speed uses the same

weighting for the modes as the vortex length code [1, 0.9,

0.8, 0.7]. The cumulative errors of the results for the

TABLE V. Mach 0.55 test case method comparison.a

Mode

Strouhal no.
fL

U
(% error from experiment)

Experiment Rossiter Modified Rossiter DeChant Current Casalino Upstream DeChant

1 0.3260 0.2973 (8.8) 0.2991 (8.2) 0.2989 (8.3) 0.3323 (2.0) 0.3003 (7.9) 0.3051 (6.4)

2 0.7561 0.7312 (3.3) 0.7358 (2.7) 0.7336 (3.0) 0.7658 (1.3) 0.7478 (1.1) 0.7525 (0.5)

3 1.1991 1.1652 (2.8) 1.1725 (2.2) 1.1551 (3.7) 1.1766 (1.9) 1.1953 (0.3) 1.1864 (1.1)

4 1.6348 1.5991 (2.2) 1.6092 (1.6) 1.5605 (4.5) 1.5759 (3.6) 1.6428 (0.5) 1.6034 (1.9)

aT0 ¼ 321 K, L=D ¼ 5:00, and LEFF=L � 0:76.

TABLE VI. Measured versus optimized fractional vortex size for the cur-

rent method.

LEFF

L
Mach 2 Mach 0.8 Mach 0.55

Measured 0.54 0.84 0.76

Calculated 0.58 0.89 0.84

FIG. 3. Vortex length ratio optimization results across Mach number for the

current method [Eq. (20)]. Panel (a) shows the weighted cumulative error of

the first 5 modes for each experimental case. Panel (b) shows the calculated

values of the effective length to depth (L/D) ratio and the variation in exper-

imental L/D values for each case. The effective L/D ratios calculated from

experimental results did not establish an adequate trend.
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modified Rossiter and Casalino equations are so similar that

they are both represented by the same points on the error

graph. The results shown in Fig. 4 are in comparison to the

work of Kaufman et al.18 and Rossiter.9 The Rossiter result

is graphed in the Mach number range the method was ini-

tially developed for. The fractional vortex speed results

derived using the modified Rossiter equation are in good

agreement with Kaufman et al.18 The results derived with

Casalino agree better with the value 0.57 that Rossiter9 orig-

inally derived. This is especially true for higher Mach num-

ber results. It is possible previous attempts to classify the

fractional vortex speed were influenced by not including the

recirculation velocity present inside the cavity, leading to a

higher fractional vortex speed calculated to compensate.

The trends shown here can be implemented into the Rossiter

or Casalino equations to further improve accuracy.

IV. CONCLUSION

We reviewed existing methods for frequency prediction

in cavity flows. We proposed modifications to available

methods to more accurately predict the Rossiter modes pre-

sent during cavity shear mode. During the shear mode, a sta-

ble vortex persists inside the cavity. At higher Mach

numbers in particular, the stable vortex present inside the

cavity fills only a section of the length. We derived an effec-

tive length parameter that showed good agreement with mea-

sured values from experimental work, but we were not able

to fully validate the method. We synthesized the results of

DeChant and Casalino into a modified method that behaves

well across Mach number. The optimization algorithm we

developed works favorably for the fractional vortex speed

despite low data accuracy because Rossiter derived equations

are less sensitive to numerical errors. This range of reported

values allows one to tailor the fractional vortex speed to fur-

ther improve the accuracy of any Rossiter derived method.

In future work, the effective cavity length trend could

be further characterized with computational results. We pre-

dict this will also involve breaking effective length into

three different flow regimes: subsonic, transonic, and super-

sonic. The improved fractional vortex speed can also be fur-

ther improved through synthesis with computational results.
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