
UC Berkeley
Research Reports

Title
Vehicle-based Control Computer Systems

Permalink
https://escholarship.org/uc/item/0wh7c8jv

Author
Auslander, David M

Publication Date
1995

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0wh7c8jv
https://escholarship.org
http://www.cdlib.org/

This paper has been mechanically scanned. Some
errors may have been inadvertently introduced.

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF C.iLIFORNIA, BERKELEY

Vehicle-Based Control Computer Systems

David M. Auslander

University of California, Berkeley
California PATH Research Report

UCB-ITS-PRR-95-3

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation; and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

January 1995

ISSN 1055-1425

Vehicle-Based Control Computer Systems

Final Report - September 1, 1994
PATH Project MOU-61

David M. Auslander
Mechanical Engineering Department

University of California
Berkeley, CA 94720

5 lo-642-4930(office), 5 IO-643-5599(fax)
email: dma @ euler. berkeley .edu

Abstract

This report is in two parts: the first part (starting at Section 1) describes a design and implementation
methodology for real time software suitable for control of mechanical systems such as vehicles. This
method provides for a design description of the system, a means of capturing the system structure
in such a way as to modularize the software writing job, and a portable implementation method. The
second part (starting at Section 13) is concerned with a particular problem in mechanical system
control: estimating velocity when the event rate from a digital encoder is lower than the controller’s
sample time. Methods are explored for performing this estimation that achieve best accuracy overall,
but can also avoid the problem of spurious estimates when the velocity reverses.

Table of Contents

1 Part I: Design and Implementation of Real Time Software for Mechanical Control 5

2 Mechanical System Control: Mechatronics .5

3 RealTimeSoftware .
3.1 Engineering Design / Computational Performance .6
3.2 Software Portability .7
3.3 Control System Organization .8

4 State Transition Logic .8
4.1 States and Transitions .9
4.2 Transition Logic Diagrams . 10
4.3 Block/Non-Block . 1 0
4.4 State-Related Code . 11
4.5 State Scanning: The Execution Cycle . 12
4.6 Task Concurrency: Universal Real Time Solution . 12

5 Example: Pulse-Width Modulation (PWM) , . 13

6 Transition Logic Design Tool . 13
6.1 TaskSpecification...l 4
6.2 State and Transition Specification . 15
6.3 Task and Common Code . 15
6.4 Code Generation . 15
6.5 Compile, Edit and Merge . 16
6.6 ExecutionShell ...16
6.7 Documentation . 1 6

7 TaskOrganization ..17
7.1 Task-Related Code . 17
7.2 CommonCode ...17
7.3 Task Process Configuration . 17
7.4 Intertask Communication . 18
7.5 TheMasterTask ..lS

8 Multitasking Performance: The Real World . 18
8.1 Priority-Based Scheduling - Resource Shifting . 18
8.2 Continuous/Intermittent Tasks . 19
8.3 Cooperative Multitasking Modes .20
8.4 Preemptive Multitasking Modes .21

2

8.5 TaskTypes ..2 2

8.6 Supported Environments .23

9 Inter-task Communication .25

9.1 Data Integrity .25

9.2 Communication Across Processes . 25

9.3 Communication Media .26

9.4 Communication Structures .26

10 Example: Stepping Motor Control .26

10.1 Tasks..

...
..2 6

10.2 Documentation ..2 7
10.3 Sample of Code for “Position” Task, Move State . 29

10.4 Operating Information .30

11 Real Time Performance .30
11.1 Sample Problem for Performance Evaluation .3 1
11.2 Counting Task Functions .3 1
11.3 ModelofaSimpleControlJob.. .32
11.4 Simulation Mode .33
11.5 Audit Trace File .34
11.6 Counting: Performance in Several Environments .35

12 References ...37

13 Part II: Velocity Measurement From Widely Spaced Encoder Pulses38
13.1 Problem Formulation .38

14 CurrentTechnology.. ..3 9
14.1 Lines per Period Estimator .39
14.2 Reciprocal Time Estimator .39
14.3 Taylor Series Expansion .40
14.4 Backward Difference Expansion .41
14.5 Least Squares Estimator .41
14.6 Observer Based Estimator .42

15 NewResearchAreas ..4 3
15.1 Slowly Moving Systems .43
15.2 Transition Logic based Switching Algorithm .44
15.3 Experimental Results: Motor-Mass System .46
15.4 Time delayed averaging method .48
15.5 Asynchronous Multirate Observer Based Estimator .49
15.6 Modified Luenberger Observer with Output Estimator . 50
15.7 Experimental Results: Motor-Mass System . 5 1

3

16 Conclusions and Future Work .54

17 References . 54

4

1 Part I: Design and Implementation of Real Time Software for Mechanical Control
Use of an explicit, formalized design layer is critical to the development of reliable real time
software. This section describes such a method, which is a candidate design method for systems of
modest complexity. The context for the use of the method is described first, then its structure is
described, the associated software, and examples.

2 Mechanical System Control: Mechatronics
Mechanical system control is undergoing a revolution in which the primary determinant of system
function is becoming the control software. This revolution is enabled by developments occurring in
electronic and computer technology. The developments in electronics have made it possible to
energetically isolate the four components making up a controlled mechanical system:

l The target system
l Measurement
l Computation
l Actuation

Once isolated from the instruments on one side and the actuators on the other, computation could
be implemented using the most effective computing medium, independent of any needs to pass
power through the computational element. That medium has been the digital computer, and the
medium of expression for digital computers is software.

This ability to isolate is recent. Watt’s famous speed governor, for example, combined the
instrument, computation and actuation into the flyball element. Its computational capability was
severely limited by the necessity that it pass power from the power shaft back to the steam valve.
Other such examples, where computation is tied to measurement and/or actuation, include
automotive carburetors, mastered cam grinders, tracer lathes, DC motor commutation, timing belts
used in a variety of machines to coordinate motions, rapid transit car couplings (which are only
present to maintain distance; cars are individually powered), and myriads of machines that use
linkages, gears, cams, etc., to produce desired motions. Many such systems are being redesigned with
software based controllers to maintain these relationships, with associated improvements in
performance, productivity (due to much shorter times needed to change products), and reliability.

The term mechatronics, attributed to Yasakawa Electric in the early 197Os, was coined to describe
the new kind of mechanical system that could be created when electronics took on the decision-
making function formerly performed by mechanical components. The phenomenal improvement in
cost/performance of computers since that time has led to a shift from electronics to software as the
primary decision-making medium. With that in mind, and with the understanding that decision-
making media are likely to change again, the following definition broadens the concept of
mechatronics while keeping the original spirit of the term:

The application of complex decision-making to the operation of physical systems.

With this context, the compucentric nature of modern mechanical system design becomes clearer.
Computational capbilities and limitations must be considered at all stages of the design and
implementation process. In particular, the effectiveness of the final production system will depend
very heavily on the quality of the real time software that controls the machine.

3 Real Time Software
Real time software differs from conventional software in that its results must not only be numerically
and logically correct, they must also be delivered at the correct time. A design corollary following
from this definition, is that real time software must embody the concept of duration, which, again,
is not part of conventional software. The real time software used in most mechanical system control
is also safety-critical. Software malfunction can result in serious injury and/or significant property
damage, In discussing software-related accidents which resulted in deaths and serious injuries from
clinical use of a radiation therapy machine (Therac-25), Leveson and Turner (1993) established a set
of software design principles, ‘I... that apparently were violated with the Therac-25....” Those are:

- Documentation should not be an afterthought.
- Software quality assurance practices and standards should be established.
- Designs should be kept simple.
- Ways to get information about errors -- for example, software audit trails -- should
be designed into the software from the beginning.
- The software should be subjected to extensive testing and formal analysis at the
module and software level; system testing alone is not adequate.

In particular, it was determined that a number of these problems were associated with asynchronous
operations, which while uncommon in conventional software, are the heart and soul of real time
software. Asynchronous operations arise from preemptive, prioritized execution of software
modules, and from the interaction of the software with the physical system under control.

Because of preemptive execution, it becomes impossible to predict when groups of program
statements will execute relative to other groups, as it is in synchronous software. Errors that depend
on particular execution order will only show up on a statistical basis, not predictably. Thus, the
technique of repeating execution until the source of an error is found, which is so effective for
synchronous (conventional) software, will not work with for this class of real time error.

In a like manner, there are errors that depend on the coincidence of certain sections of program code
and events taking place in the physical system. Again, because these systems are not strictly
synchronized, they can only have statistical characterization.

3.1 Engineering Design / Computational Performance
Too often, the only detailed documentation of real time software is the program itself. Furthermore,
the program is usually designed and written for a specific real time target environment. The
unfortunate consequence of this is that the engineering aspects of the design problem become
inextricably intertwined with the computation aspects. This situation relates directly to the first
design principle listed above, “documentation should not be an afterthought.” If the system

6

engineering is separated from the computational technology, then the documentation will have to
exist independent of the program; otherwise, documentation can be viewed as an additional burden.

The following definitions will be used to separate these roles as they appear in the proposed
methodology:

System engineering: Detailed specification of the relationship between the control
software and the mechanical system.

Computational technology: A combination of computational hardware and system
software that enables application software based on the engineering specification to
meet its operational specifications.

Using these definitions, the engineering specification describes how the system works; the
computational specification determines its per$ormunce. As a result of this separation, if a suitable
paradigm is adopted to describe the engineering specification, a much broader discussion and
examination can be brought to bear because, the details of the engineering can be discussed by
project participants familiar with the problem, not just those familiar with computing languages and
real time programming conventions. This provides for meaningful design review of projects that are
software intensive.

3.2 Software Portability
In mechanical system control, portability has consequences both for product lifetime and for the
design/development cycle. The mechanical part of the system can have a commercial lifetime of
anywhere from 5 to 20 years. On the other hand, the computational technology used for its control
only has a lifetime of 3 to 5 years. To remain competitive, new versions of the product need to use
new computers to take advantage of the ever-increasing computational capability. Doing this cost
effectively requires software that will “port“ easily from the original target processor to new ones.

Software portability seriously affects the design/implementation cycle as well. Early stages of the
software tend to be simulations, done to test hypotheses and to substitute for hardware not yet built.
Later stages use laboratory prototypes, then pilot prototypes, then, finally, the actual production
system. If software can’t migrate from step-to-step in this process, the whole process can become
greatly elongated as new software must be created for each step, and there are significant possibilities
for introducing new bugs at each stage.

Portability is complicated by the real time constraints. If real time software environments are used
as aids in meeting those constraints (kernels, schedulers, real time operating systems), software
written for one environment can require substantial rewriting to run in another. Crossing the full
spectrum from simulation to production traverses environments in which program structure itself is
incompatible. The proposed methodology provides a layer of abstraction one higher than the real
time environments, so offers a means of bypassing these incompatibility problems.

Further portability challenges arise from the operator interface section of the program, and the inter-
program communication for those solutions implemented with multiple processors. These subjects
will be discussed briefly here, but remain in need of substantial further work.

3.3 Control System Organization
A two-level organization is used on both the engineering and computational sides of the control
software design. On the engineering side, a job is organized into tusks and states, and, on the
computational side, into processes and threads.

The breakdown of the engineering specification into tasks and then states is a subjective process,
requiring considerable engineering judgement. This stage is the primary creative design step. Tasks
represent units of work, and, roughly speaking, can be viewed as cells in a matrix that breaks the
control system down along a time-scale dimension and a physical component dimension. For
example, along a column representing a motor-driven axis, there could be separate tasks to handle
a high speed input (such as an incremental encoder), an actuation output, a servo control, and,
perhaps, a motion profiler. Still higher in that column, there could be a coalescence as tasks handled
coordinated motion of several axes.

Tasks, in general, are active simultaneously. They are used to describe the parallelism inherent in
the physical system. Internally, however, tasks are organized in a strictly sequential manner into
states. States describe specific activities within the task; only one state can be active at a time. The
primary reason for this distinction between the nature of tasks and states is that sequential activity
is a part of many mechanical systems. Even for systems that do not seem to be fundamentally
sequential, such as process or web systems, the sequential breakdown within tasks seems to work
quite well. During normal operation, tasks tend to stay in only one or two states. However, during
startup and shutdown, the task/state structure describes the operation very well. The sequential state
structure also serves as one test for appropriate task definition. If tasks are aggregated to much, they
will end up with parallel operations which cannot be described effectively by states. Breaking the
task into several smaller tasks solves the problem.

On the computational side, processes describe computational entities that do not share an address
space (this includes independent processors). Threads, are computational entities that share an
address space but can execute asynchronously. A thread can contain one or more tasks; a process can
contain one or more threads.

The organization into processes and threads is purely for performance purposes. As is noted below,
there is no theoretical necessity for such organization at all. The organization serves only to meet
performance specifications when the chosen processor is not sufficiently fast to meet the specs with
a single-thread structure. It does this by shifting processor resources from low priority to high
priority tasks. As a further note, the portability requirements enumerated above imply that several
different computational organizations will be used in the course of a development project.

4 State Transition Logic

8

The task organizational structured described in this paper is an adaptation of state transition logic
(Auslander, 1993a). This adaptation provides for implementation of the structural principles
enumerated above. Documentation development is integrated with the software specification
procedure, the software produced is inherently modular, and audit trail information can be produced
automatically. By extending the transition logic paradigm to cover the entire realm of real time
requirements (Auslander, 1993b), two important results are achieved:

1) The discipline associated with following a formal design paradigm is extended to
the “low level” as well as high level software tasks.

2) It becomes possible to produce portable code, that is, code which can be generated
and compiled to run in a number of different real time environments without
changing the user-written portion of the code.

State transition logic is formally defined within finite automata theory (Kohavi, 1970). As used in
the design of synchronous sequential circuits, it becomes a formal, mathematical statement of system
operation from which direct design of circuits can be done (Sandige, 1990, or any basic text on logic
design). When used as a software specification tool, state transition logic takes on a more subjective
cast; the transition logic specifies overall structure, but specific code must be written by the user
(Domfeld et al, 1980, Bastieans and Van Campenhout, 1993).

The state transition logic concept has been further specialized to mechanical system control through
the specification of a functional structure for each state. This structure specifies the organization of
code at the state level so that it corresponds closely with the needs of control systems.

The use of transition logic has also been based on the very successful applications of programmable
logic controllers (PLCs). These devices, in their simplest form, implement Boolean logic equations,
which are scanned continuously. The programming is done using ladder logic, a form of writing
Boolean equations that mimics relay implementation of logic. In basing real time software design
on transition logic, each state takes on the role of a PLC, greatly extending the scope of problems
that can be tackled with the PLC paradigm.

Depending on the nature of the problem being solved, other formulations have been proposed. For
example, the language SIGNAL (Le Guemic et al, 1986) was invented for problems which have
signal processing as a core activity. Benveniste and Le Guemic (1990) generalize the usage to hybrid
dynamical systems.

4.1 States and Transitions
State specifies the particular aspect of its activity that a task is engaged in at any moment. It is the
aspect of the design formalism that expresses duration. States are strictly sequential; each task is in
one state at a time. Typical activities associated with states are:

0 Moving - a cutting tool moving to position to start a cut, a carriage bringing
a part into place, a vehicle holding a velocity.

9

0 Waiting - for a switch closure, for a process variable to cross a threshold, for
an operator action, for a specified time.

0 Processing - thermal or chemical processes, material coating in webs.

0 Computing - where to go, how long to wait, results of a complex
measurement.

0 Measuring - size of a part, location of a registration mark, object features
from vision input, proximity.

Each state must be associated with a well-defined activity. When that activity ends, a transition to
a new activity takes place. There can be any number of transitions to or from a state. Each transition
is associated with a specific condition. For example, the condition for leaving a moving state could
be that the end of the motion was reached, that a measurement indicated that further motion was not
necessary, that an exception condition such as stall or excessively large motion error occurred, etc.

4.2 Transition Logic Diagrams
State transition logic can be represented in diagrammatic form. Conventionally, states have been
shown with circles, and transitions with curved arrows from one state to another. Each transition is
labelled with the conditions that specify that transition. This format is inconvenient for computer-
based graphics, so a modified form, shown in Figure 1, is used.

II
This diagram shows a fragment of the transition
logic for a task that controls the movement of a
materials handling vehicle. The vehicle moves from
one position to another, picking up parts in one
position and dropping them off at another. The
states are shown with rectangles; a description of
the state is given inside the rectangle. The
transitions are shown with arrows and the transition
conditions are shown inside rounded rectangles.
The dashed lines provide an unambiguous
indication of which transition the condition is
attached to. The first “move-to” state shows a
typical normal transition as well as an error Figure 1. Fragment of a Transition Logic
transition, in this case based on a time-out Diagram
condition,

Although these diagrams are not essential in using transition logic, they are an excellent visualization
tool. If a task is compact enough to fit a logic diagram on a single page, the graphical description
makes its function much easier to grasp.

4.3 Block/Non-Block

10

A major feature of PLCs contributing to their success as control components has been that the logic
function is continually scanned. The programmer does not deal with program flow control, as must
be done when using conventional programming languages. As long as the ladder is active, it is
scanned repeatedly, so the user only has to be concerned with the fundamental performance issue
of whether the scan rate is adequate for the particular control application.

Transition logic design is based on this same scanning principle for execution of state-related code.
In order to achieve greater functional flexibility than is possible with ladder diagrams, however,
standard sequential languages are used for coding. To implement a scanning structure with
algorithmic languages requires the restriction that only non-blocking code can be used. Non-blocking
code is a section of program that has predictable execution time; execution time for blocking code
cannot be predicted. Examples of blocking code in the C language include, for example, the scunf()
function call used to get keyboard input from the user. Scanf only returns when the requested input
values have been typed; if the user goes out for coffee, the function simply waits. Likewise, the
commonly used construction to wait for an external event such as a switch closure,

while(inbit(bitno) == 0) ;

is also blocking. If the event never happens, the while loop remains hung.

The restriction to non-blocking code, however, does not cause any loss of generality. Quite the
contrary, the transition logic structure is capable of encoding any kind of desired waiting situations,
as shown in the example given above. By encoding the “wait” at the transition logic level rather than
at the code level, system operations are documented in a medium that any engineeer involved in the
project can understand without having to understand the intricacies of the program.

4.4 State-Related Code
The transition logic metaphor encourages the use of modular software by associating most of the
user-written code with states. In addition, a formal structure of functions is established for this state-
related code. Two goals of modular code writing are thus fulfilled:

a) Sections of code are directly connected to identifiable mechanical system operations,
b) Individual functions are kept short and easily understood.

For each state, the following functions are defined:

Entry function: Executed once on entry to the state.
Action function: Executed on every scan of the state.

For each transition from the state, the following pair of functions is defined:

Testfunction: Test the condition for transition; returns TRUE or FALSE.
Exitfunction: Executed if the associated transition is taken.

11

This structure enforces programming discipline down to the lowest programming level. All of these
functions must be non-blocking, so, test functions, for example, never wait for transition conditions.
They make the test, then return a logic value. Relating code to design-level documentation is also
enforced with this structure. Transition logic documentation for each task identifies states in terms
of what the mechanical system is doing. Not only is the code relevant to that state immediately
identified as well, the code is further broken into its constituent parts.

4.5 State Scanning: The Execution Cycle
The state scan is shown in Figure 2. In addition to establishing the execution order for the state-
related functions, it also provides the basis for parallel operation ,f tasks.

Start
Each pass through the cycle executes one scan for one task. If
this is the first time the scan has been executed for the current
state, the entry function is executed. The action function is
always executed. Then, the first transition test function is
executed. If it returns TRUE to indicate that the transition
should be taken, the associated exit function is executed and a
new state is established for the next scan. Otherwise,
subsequent test functions are executed in a similar manner. The
first test function returning TRUE terminates the sequence.
Thus, if more than one transition became TRUE at the same
time, the one associated with the earliest test function would be
recognized.

Yes

V
No ____ Execute entry

function

V

Execute action
function

L
Execute first
test function

Behind the execution details, there must be a data base of task
information. Each task must have a data table specifying its
structural information, that is, all of the states and transitions,
task parameters such as priority, sample time, etc., and the
transient information such as present state and status.

Yes Execute exit
’ function

&
Set new state
and set state

. . . (other transition
tests)

entry flag
4.6 Task Concurrency: Universal Real Time Solution
Tasks, as noted above, must operate concurrently. This structure
provides for parallel operation of tasks, even in the absence of
any specific multitasking operating system or scheduler. r

<

’ Done

Because all of the state functions are non-blocking, the scan &Pre 2* State scan Cyc1e
cycle itself is non-blocking. It can, therefore, be used to scan
each active task in succession. After finishing with all of the tasks, the first task is scanned again.
This guarantees fully parallel operation of all tasks. This method of scheduling, cooperative
multitasking, will be an adequate solution if the total scan time for all tasks is short enough to meet
the system timing constraints. If not, a faster computer must be used, or other scheduling solutions
must be found. These will be discussed below.

The methodology discussed thus far therefore presents a universal real time solution. It is capable
of solving all real time problems, without any special real time constructs or operating systems, if

12

a fast enough computer is available. All of the usual real time facilities, semaphores, task
synchronization, event-based scheduling, etc., can all be implemented using the formalism of
transition logic, with all code non-blocking. If a fast enough computer is not practical, use of
preemptive scheduling based on interrupts can be implemented. To do this, the transition logic
paradigm must be extended to include designation of task-type, and library code must be included
to allow integration of transition logic based code with a variety of real time and/or multiprocessor
environments.

5 Example: Pulse-Width Modulation (PWM)
Pulse-width modulation is widely used as an actuation function where there is need for a digital
output to the actuating device, but continuous variation in the actuator output is desired. Anytime
the actuator plus arget system constitute a low-pass filter, PWM can perform the function of a
digital-to-analog converter by exploiting the termporal properties of the low-pass filtering. The
PWM signal is usually a retangular-wave of fixed frequency, with variable duty-cycle (i.e., ratio of
on-time to cycle time). The logic diagram in Figure 3 shows a task to implement PWM.

The task has four states, as shown, and will
produce an effective low frequency PWM from
software. The maximum frequency depends on
the means of measuring time that is utilized, and
the timing latencies encountered in running the
task. It would be suitable for actuation of a
heater or, perhaps, a large motor, but would be
too slow for a modest sized motor.

T h e t w o m a i n t a s k s , PWM-ON a n d
PWM-OFF, turn the output on (or off) on entry,
and then just wait for the end of the specified
time interval. COMPUTE-TIMES is active once

COMPUTE-TIMES
ccmpute on/oft times based
on current dutyqcle

I I

(duty-cycle = O>

per Cycle t0 find the appropriate on and Off times

in the event that the duty cycle has been
Figure 3. PWM Task

changed. The transition conditions take account
of the two special cases -- duty cycles of 0 (never on) and 1 (always on) in addition to normal
operation.

This example shows the use of transition logic for a task that is quite low level computationally.
Unlike a conventional implementation of such a task, however, the details are readily apparent from
the transition logic and reference to the code (not shown here) need only be made to confirm that it
accurately translates the transition logic.

6 Transition Logic Design Tool
Manual programming of systems based on transition logic is possible, that is, programming from a
transition iogic diagram or tabular description with no software development tools other than a
compiler, editor and linker. There are two major disadvantages to this, however. First, it can be very

13

tedious because of the large numbers of functions that must be created (and named) and the data
tables that must be made to do the bookkeeping the scan execution cycle needs. Second, there is
always the temptation, particularly when one is in a hurry, to make changes directly in the program
without updating the transition logic. This latter is especially pernicious because it leads to
documentation that misrepresents system operation.

The design tool described here aids in the full program production by keeping track of tasks and
transition logic, organizing the writing of state-related code, and generating C files that can be
compiled to operate in a variety of environments, including multi-processor systems. It also produces
system documentation, with the transition logic listed in tabular rather than graphical format. A
schematic of the design and implementation cycle using this software tool is shown in Figure 4. It
currently runs in MS Windows, but is written using the XVT portable library, so, potentially, can be
recompiled for most common operating systems.

6.1 Task Specification
The software design tool (referred to as TRANLOG) keeps track of a single project consisting of any
number of tasks. Each task is defined by:

Name
Description (one line)
Task type
Priority
Initial status
Initial state
Data items (if any)
Transition logic structure
Task-related code

The tusk type and priority are not necessary for all execution environments, but are included so
portability will be maintained. The types of tasks will be defined in the Multitasking section, below.
As the program executes, a task can be active, inactive, waiting, or executing. The initial status
determines whether the task will be active or inactive when the program first starts. Similarly, the
initial state determines which state will be entered first each time the task is activated (if a task is
de-activated, re-activating it is the same as starting it for the first time). The data items are related
to task type and can specify such infomation as input ports, sample time, etc.

The details of the transition logic structure are described below. The tusk-refuted code consists of
code items that support the states. These include functions used by several states, variables that are
common across the task, defined constants, etc.

There is no formal structure describing the relationships of the tasks. It is programming convention,
however, to designate one task as the muster tusk to make sure the system is properly (and safely)
initialized. In defining the tasks, only the master task has its initial status set to active; all other tasks
are initially inactive. The master task can then activate other tasks in an order the guarantees proper

14

system start-up. The master task is usually responsible for de-activating and re-activating tasks when
necessary as the system proceeds through various operating modes.

6.2 State and Transition Specification
Specification of a state requires a name for the state and a short description. Transitions are defined
between already defined states, so it is usually easiest to define all of the states in a task before
defining the transitions. Other than associated code, neither states nor transitions require any further
information.

The code for states and transitions can be entered while defining the transition logic, or can be
entered or edited using an external editor (usually the program development environment that is part
of the compiler). A merge facility is supplied so that changes made outside of the transition logic
development tool can be captured.

6.3 Task and Common Code
In addition to the entry, action, test and exit functions themselves, it is usually necessary to add some
code that is common to sections of the system. There are three places to do this. the tusk code section
is for code that is specific to a single task. It is most often used to define static variables that are used
across many state functions. Because the non-blocking code of transition logic uses functions that
return immediately, information that must be retained within or across states must be declared as
static, which is normally done in the tusk code section. Functions that are only used in a single task
can also be defined as part of tusk code.

Because the control program created is portable, the tasks can execute in many different
environments, ranging from cooperative multitasking in which all tasks execute in the same
computational thread, to each task on an independent process, connected, for example, through a
network. Thus, in general, tasks will not share the same computational address space so a separate
definition is required for any code that will be common to more than one task. The common code and
common header sections are provided for this purpose. When the code is linked, the common code
and header sections are linked with every computationally independent component. These sections
are most commonly used to define functions that are needed in more than one task. The function
definitions themselves are put in the common code section, and the function prototypes are in the
common header section.

6.4 Code Generation
Code generation produces a separate source file for each task, files for the common code and
common header, and an additional file with internal control information. The target language is C,
although it could be modified for any other language with sufficient syntax to support the task and
state descriptions. The major jobs done by the code generator are naming all of the state functions
and producing data objects that describe each of the tasks and each of the states. These data objects
are linked lists containing all of the topological and status information associated with tasks and
states. They include the transition information, pointers to relevant functions, etc.

15

The code generated at this step is still completely portable. The compile/link operation customizes
the program for the particular environment it will run in. The usual procedure is to provide make
files for whatever environments are supported.

6.5 Compile, Edit and Merge
The compile, edit, link sequence is shown in Figure 4. As noted above, it
is usually desirable to enter all of the states before entering the transitions.
The initial code entry is often done while using the transition logic tool, as
shown in the figure, although it is not mandatory. After generating code
and attempting a compile, it is possible to edit the source code directly, for
example, using the interactive development environment of the compiler.
This is practically a necessity; it is much too awkward to have to go back
to the transition logic tool each time an edit is necessary.

Once this editing is done, however, it is necessary to capture the editing
back into the transition logic source file. This is done with the merge step,
which is part of the transition logic tool. It copies all user-generated code
in the C language source files back into the transition logic source file. The
only rules for assuring that this is done successfully are that code is only
entered in marked locations in the C source files, and that the names of the
files are not changed.

The transition logic tool can be invoked at any time to change or add to the
task or state structure. New code is then generated to build a test program.

6.6 Execution Shell
The execution shell is the key to portability. It uses conditional
compilation to build programs for any real time environment that is
supported. For the simplest environments, it contains all of the necessary
scheduling algorithms, giving a completely self-contained program. To

(GZ)
Define State

b’Generate Code

Figure 4. Design and
Implementation
Sequence

interface with other environments, appropriate code structure and library calls are set up to operate
in the selected environment. By using this approach, it is possible to keep the user-written code
completely portable -- no changes at all are required to recompile for a new operating environment.

The compilation and linking procedure is normally controlled using a MAKE facility associated with
the target compiler. At present, creation of MAKE files is not automated.

6.7 Documentation
Either working or archival documentation can be produced from the transition logic tool. Working
documentation includes a list (text) description of the entire system. For each task, all of the task
parameters are listed (name, type, prioirity, initial status,etc.), as well as the task code (the code that
is placed at the top of the task file). Then, for each state in the task, all of the transitions from that
state are listed along with the description of the reason for the transition. The archival form of the

16

documentation adds all of the user-written code to the information given in the working
documentation.

The working documentation can be used while developing the program, since the code is easily
accessible from other routes, for example, using the compiler’s editor. The archival documentation
contains sufficient information to completely reconstruct the program, even if all of the source files
were to disappear. It is, however, harder to read than the working form.

7 Task Organization
The primary form of organization within tasks is the transition logic model. In addition, however,
there is need for code that is common within a task or across some or all tasks, which is handled by
task-related coded and common code. The file organization of one file per tasks is exploited in
defining this code. Inter-task organization includes issues of data exchange among tasks and the
control of how and when to activate and deactivate tasks. The former, data exchange, is handled
formally, while the latter is handled informally.

7.1 Task-Related Code
This code has been referred to in the description of the transition logic tool itself. It is code that must
be within the scope of all parts of the task. Because tasks are complete in a single file, this code can
be placed at the top of that file. The most common use of this code area is to define static variables.
The nature of transition logic coding encourages the use of static variables. If, for example, a variable
is initialized in an entry function and then acted on in an action function, it must be declared as
static. For variables that are local to a single action function, static class may still have to be used
because the function is continually scanned, although the variable need not be visible to the rest of
the file. Functions that are used only by a single task can also be defined in the task-code section.

7.2 Common Code
Code that has to be visible to more than just one task goes into common code. This is, in fact, two
sections. One section is common header and the other common code. The common header is brought
into every task file with an include statement; the common code is linked to every independent
thread.

The common code section is most commonly used to define functions of general utility, so they will
be available to all tasks. The common header is used mostly for prototypes of those functions and
defines. Note that global variables (externs) are not permitted, so this section is not used for global
definitions (see the Communication section, below).

7.3 Task Process Configuration
How tasks are distributed among processes is a design decision made by the user. The configuration
information must be entered to the transition logic design tool. Any number of configurations can
be defined, but one of them must be selected when code is generated. The code generation process
puts configuration information into the C source files so it can be used by the execution shell (or
shells for a multiprocessor configuration). The default configuration places all tasks in a single
process. No user action is required to pick this configuration.

17

7.4 Intertask Communication
Tasks in a control system exist as part of the solution to a job. As such, tasks will necessarily need
to exchange information. The design of a means of implementing that exchange is most severely
affected by the need for portability of the user-written source code. In addition, there is the
fundamental need to protect the integrity of the data, which can be at risk whenever asynchronous
computing components exist. Because of these concerns, intertask data communication is treated
formally, through the transition logic design tool. Details are given in Section 8.6.

7.5 The Master Task
A means is needed to activate and deactivate tasks. In particular, virtually all jobs have the problem
of orderly task activation during start-up so that, for example, power supplies are turned on before
the components they supply power to, and controllers are initialized before setpoints are changed.
Activation and deactivation are done with function calls and so are embedded in the code structure
rather than being treated formally.

As a convention for handling this chore, a single task is designated as the master task. In specifying
the tasks, only the master task is given an initial status of active; all other tasks are initially inactive.
The master task can then have a state structure that turns the other tasks on in a safe manner,
including suitable delays and checks to make sure that conditions are proper as each task is activated.
Likewise, the master task can orchestrate shutdown so safe conditions are maintained. In between,
it can also be responsible for deactivating tasks that are not needed, although it is not always clear
whether deactivating is significantly more efficient than giving the task an idle state that waits for
the event that triggers the task’s next activity.

In relatively simple jobs, it makes sense to have the master task control the operator interface as well,
since the context changes in the operator interface follow major changes in task activity very closely.

It should be noted that the this structure is not enforced by any system formalism. It is only a
suggested mechanism for task organization.

8 Multitasking Performance: The Real World
The “universal real time solution” as outlined above depends on adequate computational speed to
juggle all of the simultaneous activities without regard for the importance or computational
characteristics of any of the individual tasks. The real world is not often so kindly! Taking acount
of these real world concerns, however, only requires modest additions to the design structure as it
has been developed thus far. These additions allow for a stronger connection between the
engineering system design and the computational technology so that system performance
specifications can be met.

8.1 Priority-Based Scheduling - Resource Shifting
The essence of living within a finite computing budget is to make sure enough of the computational
resource budget is expended on the highest priority tasks. The first addition to the design structure,
therefore, is to associate priorities with the tasks. The job of the computational technology, then, is
to shift resources away from the low priority tasks and towards the high priority tasks.

18

How that is to be done depends on the criteria for success. There are at least two ways of measuring
performance,

0 progress towards a computational goal
0 execution within a certain window

These lead to different computational strategies and to fundamental task classifications.

8.2 Continuous/Intermittent Tasks
These two performance measures suggest a division of tasks according to performance type.
Continuous tasks measure success by progress. They will absorb as much computing resource as they
are given. Intermittent tasks respond to explicit events and have a limited computing function to
perform for each event occurrence. Their success is measured by whether the response to the event
occurs within a specified time of the event itself.

The universal solution uses only continuous tasks. The nature of a task’s response to events is
embedded in its transition structure, so no distinction needed to be made in task classification. Using
the continuous/intermittent classification, it will be necessary to specify the event to which an
intermittent task responds explicit, that is, part of the transition logic design tool, rather than implicit.
Thus, there will be a further subdivision within the intermittent tasks; no subdivision of continuous
tasks is needed.

Continuous tasks encompass that portion of a control job that is most like conventional computing
in the sense that the goal is to deliver a result as soon as possible rather than at a specified time. They
thus form the lower priority end of the real time spectrum. Priority distinctions within the continuous
tasks can be handled by, on average, giving more resource to the higher priority tasks. Within the
“universal” approach, which is still applicable to the continuous tasks, priorities of continuous-type
tasks can be recognized by giving high priority tasks more scans than lower priority tasks.

A different approach is required for the intermittent tasks. In the simplest computing environment,
that is, a single computing thread, intermittent tasks are distinguished from continuous tasks by two
properties,

1) They are only given computing resource (i.e., transition logic scans) when the triggering
event has occurred, and,

2) Once they are triggered they are given as many scans as are necessary to complete their
activity.

This change alone is sometimes enough to meet performance specifications for a job that could not
meet specifications using all continuous tasks (the universal approach). In particular, if the problem
is that once triggered, the high priority task does not gets its output produced within the specified
window, this will help meet specification because as an intermittent task it will be given all of the
computing resource until it completes the response to the event. If, on the other hand, the problem

19

is one of latency, that is, the task does not always start soon enough after the triggering event to meet
the specification, then other remedies will be required.

8.3 Cooperative Multitasking Modes
“Multitasking” is a generic term in computing referring to the ability to do more than a single
activity at a time. It is usually applied to single-processor configurations. In that context, since digital
computers are by their nature only capable of doing one thing at a time, the simultaneity comes from
rapid (with respect to the observer) switching from one activity to another, rather than truly
simultaneous operation. In the context of real time control software, this definition must be further
refined to reflect both the engineering and the computational categories defined above.

First, to map from the engineering system description to the computational implementation, the
engineering task is the indivisable computing unit. Thus, each computing thread will contain at least
one task.

Within any thread that contains more than one task, some form of scheduling must be implemented
to share the threads computational resource among its tasks. Two forms of scheduling have been
implemented for multiple tasks inside a single computing thread, sequential, and recursive. Since
they exist in one thread, these schedulers are referred to as cooperative multitasking schedulers. The
term “cooperative” is used to describe the fact that the scheduler can never preempt a running
program, but can only perform its function when tasks voluntarily return control back to the
scheduler.

The success of cooperative schedulers depends on the voluntary return of control, which in standard
programming languages is difficult to design consistently. Cooperative schedulers can be used very
effectively in the transition logic context, however, because the state functions (entry, action, test,
exit) are all specified as nonblocking. Thus, there is always return of control at the end of each state
scan which doesn’t require any special consideration on the programmer’s part.

The simplest of these has already been described in Figure 2, and in the subsequent description of
the “universal real time solution.” By successively applying the scan logic to each task in the thread,
all of the tasks are given a share of the computing resource. Following the rules descirbed above,
intermittent tasks are given as many scans as they need to complete their current activity, while
continuous tasks are given a fixed number of scans for each complete cycle of the scheduler. In the
transition logic context, this is called a sequential scheduler, since it addresses each task in sequence.

In order to know when an intermittent task should run, the scheduler must keep track of the events
to which the tasks are attached. The most common such event is the end of a specified time period.
Events are often also based on changes in external signals or on internally generated conditions.

As noted above, intermittent tasks often have a latency specification. Use of the sequential scheduler
can lead to longer latencies than can be tolerated because all other tasks must be scanned in
succession before the scheduler will return to a given task. A recursive scheduler can greatly reduce
the latency, particularly if there are a large number of tasks. Instead of scanning tasks sequentially,

2 0

the scheduler itself is called alter every scan. When called, it examines the task list to see if any tasks
that are higher priority than the currently executing task are ready to execute. If so, the highest
priority task is started, while the task that had been running waits. The latency for the highest priority
task is thus reduced to no more than the worst case scan time of any single task, rather than the sum
of scan times for all of the tasks.

This is a recursion because the scheduler is “calling itself’ -- it is initially invoked to start task
execution, while running the task it invokes itself again to check to see if higher priority taks need
to be run. If any do, they are started, but the scheduler again invokes itself to continue performing
priority checks. As the higher priority tasks complete, they return control to the scheduler thereby
backing out of the recursion.

The recursive scheduler can achieve the resource shifting needed to help a high priority task meet
its real time performance constraints, but it takes significantly more overhead than the sequential
scheduler since it is run more often. The net effect is thus to improve the effectiveness of the high
priority tasks at the expense of the total amount of computing resource that is available for
“productive” use.

8.4 Preemptive Multitasking Modes
If the latency specifications still cannot be met, a preemptive solution will be needed. Such a
situation could arise, for example, if the action functions of one or more low priority tasks required
substantial amounts of computing time. This does not violate the “nonblocking” condition, which
states only that computing time in any of the state functions must be predictable, not that it must be
“short.” In other cases, it might be necessary to violate the nonblocking condition. Though certainly
not desirable, violations could arise due to the need to use software not under the control of the real
time programmer. Examples of these might be operator interface software or mathematical software
with nondeterministic iterations.

Preemptive scheduling makes use of the computer’s interrupt facility, which can, in response to an
external event, temporarily halt the execution of whatever code is currently running and start some
other code running. Since the interrupt facility is part of the computer’s hardware, this preemption
takes place on a much faster time scale than can be achieved by the recursive, cooperative scheduler
and so, can meet much stricter latency requirements.

Preemption is used to establish a new computing thread. When an interrupt occurs, the current thread
is suspended and a new thread is started. These threads share a common memory space, but are
otherwise independent entities. At the simplest level, the interrupt mechanism itself is a scheduler.
Each interrupt-scheduled thread would thus contain one task. However, interrupt-scheduled threads
can contain more than one task. The tasks inside the interrupt-scheduled thread must be scheduled
by a cooperative scheduler.

Interrupt-scheduled threads must only contain intermittent tasks. Because the hardware interrupt
establishes a priority level ahead of any software-based priorities, if the tasks in an interrupt thread
were to ask for “continuous” CPU resource, all other tasks would be locked out. Thus, all of the

21

continuous tasks must be left in the non-interrupt domain; that is, they get to run whenever no
interrupts are active. Threads that are scheduled directly by interrupts must normally be quite short.
Because the interrupt mechanism on most computers is constructed in such a way that all other
interrupts of the same or lower priority are locked out until the present interrupt is finished, it
becomes essential to keep this time as short as possible.

Interrupts can also be used as a mechanism for running schedulers. When this is done, the restriction
that only short threads should be run can be relaxed. This is possible because, while the scheduler
runs as interrupt-based code, it resets the interrupt mechanism before allowing any user-written code
to run. This allows access for all interrupts while the user-written task is running.

Schedulers of this sort come in two flavors:

1) Those that operate through the function-call mechanism,
2) Those that manipulate the execution context directly.

The most obvious difference between these, particularly in the transition logic environment, is that
for the first type of scheduler, the continuous tasks are operated using cooperative scheduling, while
the second type can use time-sliced scheduling. The difference is that in cooperative scheduling, the
continuous tasks are given access to CPU resource according to the number of transition logic scans
they use whereas in time-sliced scheduling, the continuous tasks get CPU resource according to the
amount of computing time they use. This can make a performance difference in those cases for
which there are significant differences in execution time of specific state functions. Only time-sliced
scheduling can handle a case where the nonblocking restriction is violated.

The scheduler that operates via the function-call mechanism is identical to the recursive scheduler
described above. The only difference is that instead of being called from the transition logic scanner,
it is called from an interrupt. It is thus the same code, but run as a reentrant rather than recursive
scheduler. However, to avoid two different names for the same scheduler, it will be called a
recursive-interrupt scheduler.

There are other differences between these scheduling mechanisms as well, particularly relating to
how and when tasks can suspend themselves, but these differences are less important in the transition
logic environment than they are in other computing environments.

8.5 Task Types
In recognition of the various scheduling methods outlined above, every task must have a designated
task type. The task types are the user’s indications of preferred task type. Depending on the
scheduling environment that is actually used, the task may be scheduled using a simpler mechanism
than was requested. The distinction between continuous and intermittent tasks, however, will be
maintained in all implemented environments.

The types of tasks that are defined are:

2 2

0 Hard timer interrupt
0 Soft timer interrupt
0 One-shot timer
0 Digital interrupt
l Sample-time
0 Logic event
0 Continuous

The first four are all interrupt-scheduled, if an interrupt environment is defined. That means that they
operate at interrupt priority and can only be preempted by other, higher priority, interrupts. The one-
shot timer differs from the other timer-types because it does not automatically reset the timer and run
again after it has run once. The timer must be explicitly reset each time. If no interrupt is present,
they will be cooperatively multitasked, using either the sequential or recursive scheduler. As
interrupt-scheduled tasks, they should be short, relinquishing the CPU quickly after activation.

The sample-time and logic-event types are generally of lower priority, and, given the appropriate
execution environment, should be controlled by an interrupt-driven scheduler, of either of the types
defined above. Because the tasks execute only after the interrupt system’s priority has been reset, they
are preemptable by any direct interrupt-driven tasks, and by the interrupt driven scheduler, which can
determine at any time if higher priority tasks should be run.

The continuous tasks always operate at lowest priority. They can be either scan or time-slice
scheduled.

8.6 Supported Environments
At present, environments of all of the types described above are supported. All of these run on PC-
type of computers (X86 architecture, MS/PCDOS operating system, Microsoft C compilers). A
version for QNX (a commercially available real time operating system) is currently being developed.

The simulation and calibrated-time modes are the least affected by the target environment. Although
these are currently targeted for PCs, it would take little or no work to target them for other general
purpose computing environments. Both sequential and recursive schedulers are implemented in the
simulation environment. The calibrated-time environment is the same as the simulation environment,
except that the simulation step size is chosen so that simulated time matches real time (at least on
average).

The single-thread, real time environment also uses the same scheduling as the simulation mode,
either sequential or recursive. It differs from calibrated-time, however, by using an external clock
to measure time instead of a calibration. It thus gives accurate time at all times, instead of just on
average. This mode is also easily ported to any target environment for which a fine enough time
granularity is available.

The direct interrupt environment is supported through a locally written package called XIGNAL.
This package sets up interrupt hardware and associates the desired interrupt function with the

23

hardware interrupt. In this mode, all timer and event related tasks are executed tasks are attached to
the interrupt. Since there is only one clock available on a PC, all of the time-type tasks are connected
to the same clock. Thus, regardless of priority, once a time-type task starts running, it will run to
completion before any other timed task can run. There is a somewhat arbitrary decision to be made
in the implementation of this mode. That is, whether the sample-time and event based tasks should
be connected to the interrupt or left in the cooperative domain. If any of them have long execution
times, they could interfere with the higher priority direct interrupt tasks. On the other hand, they have
a better chance of meeting time constraints as interrupt-driven tasks.

Since in the direct interrupt mode no reentrance is allowed to the running tasks, it is probable that
the interrupt facilities supplied with the compiler would work as well as XIGNAL, and perhaps more
efficiently. This has not yet been tested.

Adding the recursive scheduler to the interrupt mode (which then makes it a reentrant scheduler)
allows the separation of the sample-time and event tasks from the direct interrupt tasks. Because the
recursive scheduler only requires the additional ability to reset the interrupt system’s priority, it does
not pose much more difficulty for porting than the direct interrupt mode itself. This mode, does,
however, require that the interrupt package permit reentrant interrupts. Most interrupts associated
with compilers do not permit reentrance so are not suitable for this mode.

Full context-switching scheduling is implemented with another locally written package, CLOTHO.
In most control applications, the major operational distinction of this scheduler is that it provides for
time-slice scheduling of the continuous tasks. This permits the use of ill-behaved tasks (i.e.,
blocking) or tasks which, while not actually blocking, have unacceptably long execution times.

The following table summarizes the supported environments and gives the abbreviations used in
further references to them.

Name

Seq-Sim

Ret-Sim

Seq-Calib

Ret-Calib

Int

Description

Sequential scheduler, simulation environment (no real time at all)

Recursive scheduler, simulation environment

Sequential scheduler, time by calibration of step size, single thread

Recursive scheduler, time by calibration of step size, single thread

Direct interrupt scheduling for time and event tasks, number of threads
depends on hardware configuration; single thread, sequential scheduler
for continuous tasks

24

.

Name

Ret-Int

Description

Direct interrupt scheduling for timer and digital IO tasks, interrupt-driven
recursive (reentrant) scheduling for sample time and event tasks. Each
recursively scheduled task has a unique thread. Sequential scheduling for
continuous tasks.

Slice Direct interrupt and recursive-interrupt scheduling for time and event
tasks, time-sliced scheduling for continuous tasks

9 Intertask Communication
Communication among tasks is inherent to control software. The design concerns in structuring the
communication facilities are data integrity, communication efficiency, and software portability.
These must be addressed for data that is explicitly defined by the user/programmer, and data that is
integral to the task model, including task status information, state information, task parameters, etc.

9.1 Data Integrity
Even when all tasks reside in a single process, they can still be separated into asynchronously
executing (lightweight) threads. Since these tasks share teh adress space, normal C language syntax
such as function calls or external variables, could be used for data transfer across tasks, if any form
of preemptive scheduling is used, there is a risk of data corruption. To maintain data integrity,
restrictions of mutual exclusion must be observed. Mutual exclusion must be invoked whenever the
information exchange involves separate threads to prevent the data exchange from being interrupted
by a preemptive context switch, leading to the possibility of part of the data exchange being
completed before the switch, and then, in the new context, changing that data, thereby leading to
corrupted data when the data exchange completes after the preemption is complete. There are ways
to prevent this, most commonly by disabling the interrupts during a data exchange, but the user must
know when and how to apply them. Furthermore, these methods will fail any time tasks are divided
into more than one process.

9.2 Communication Across Processes
One attractive way to meet the constraints of several high priority tasks is to use independent
processors, one for each such task. This guarantees immediate attention to the highest priority task
in each processor, and, rather than the resource shifting associated with real time scheduling, this
adds additional resource to meet these requirements. The tradeoff in using multiple processors is that
data exchange must go through some external medium to get from one task to another. This has
consequences of both overhead to service the medium, and delay for the actual transfer of
information. These costs must be balanced against the savings due to less scheduling overhead and
the potential increase in total processing resource.

If an application is compiled and linked to run in an environment with independent processes
(including the case of multiprocessors) then conventional programming methods for interchange of
information among functions (through arguments, return values, global variables) will not work

25

.

because the independent processes do not share memory address spaces. Since a major goal of this
methodology is to retain code portability, standard data exchange mechanisms are not suitable.

9.3 Communication Media
Common communication media include shared external memory (for multiple processors that share
a bus, for example), networks of all sorts, and point-to-point connections, usually via serial channels,
but possibly using parallel channels. Each of these media has different software interface protocols.
Again, if portability is to be presemved, the details of these protocols must be hidden from the user.
Selection of different mechanisms will have significantly different performance and cost, as well as
different distance and environmental constraints. which must be factored into the final system
design.

At present, support is provided for point-to-point serial connections and for Ethernet connections
using TUPIP protocols.

9.4 Communication Structures
As a result of these factors, the definition of intertask communication has been placed in the
transition logic tool, at the same level as task definition. This is important for the portability to
various means of inter-process communication and to assure maintenance of data integrity. The
model chosen for inter-task communication is that of pseudo-shared memory. Variables set in one
task are accessed in other tasks as if they were local variables. The variables involved are specified
using two lists for each task -- one list for those variables that are set in the task and available for use
by other tasks, the second list for variables set in other tasks and used in this task. Each variable must
be set in one and only one task. This avoids conflicts in
usage in which the same variable could be set in two places
at nearly the same time, but one of the actions would ransition Logic Diagram of the Sequence Tad

override the other. Since this is a race condition, there is no
way to predict what value the variable would have.

An important implementation factor with this method is
that when tasks share a process, the communication
overhead must be kept to a minimum. Tasks are grouped
together specifically to minimize communication overhead,
so this must be recognized when the inter-task
communication structure is set up.

10 Example: Stepping Motor Control
An example of the application of these techniques is given
by a stepping motor control program. It is a relatively
simple example, but contains enough complexity and
hierarchy to show the basics of the methodology.

10.1 Tasks

1 INIT HOMING]

- - Atstarthomingp

[HOMEI

I- - - @iii+

-sj MOVE FORWARD 1

iAtpos)

[W A I T I]

- - - B
”

OVE BACKWARD

(‘::, &-I-

Figure 5. Transition Logic for the
Sequence Task

26

The purpose of the control system is to make sequences of moves using a stepper motor. It is
organized into three tasks:

1. Sequence control to specify when the moves should be made and to where.
2. Step generation to resolve differences between actual and desired motor position by
generating steps at a specified rate.
3. A master task to control start-up and shutdown of the other tasks and to control the
operator interface.

The sequence task, Figure 5, begins by performing whatever system initialization is necessary, then
requests that the stepping motor find its home position. It then enters a loop in containing a forward
move, a timed wait and a backward move. This loop is intended to be typical of the kinds of motion
that might be commanded in manufacturing or assembly machinery. The actual sequence of events
is easily modified by defining a new set of states for that section of the task. The sequence terminates
when the go-forward flag is no longer on. Each of the states in this loop has transition conditions
relevant to its activity: the motion states complete when the motor reaches its target position and the
wait state completes when time is up.

The step generation task, Figure 6, operates by interpreting commands that are sent to it. The master
task, Figure 7, controls the start-up of the other tasks, and, in this case, also implements the operator
interface.

10.2 Documentation
The documentation information produced by the
transition logic processor follows:

Project: STEPSEQ

Task: Master-opint; Initial State: Initialize
Type: Continuous, Priority: 0 Chnl: 0 Data value: 0 Init status:

2
State: Initialize [Initialize I/O, variables, etc.]
to: StartTasks if [Initialization done]

State: StartTasks [Start up sequence and position tasks]
to: Operate if [Tasks successfully started]

State: Operate mormal system operation]
to: Shutdown if [Operator request for shutdown]

State: Shutdown [Home motor, turn off control]

Task: Sequence; Initial State: Initialize
Type: Continuous, Priority: 0 Cl-ml: 0 Data value: 0 Init status:

0
State: Initialize [Home motor]

to: InitHoming if [Start sequence]
State: MoveForward [Move to forward position]

to: Wait1 if [Done with forward move]
State: Wait1 [Wait specified time]

to: MoveBackward if [Done waiting]

L

athome) @GiJ-uStart

(home) clstop
control

1
&tartcontrol)

“r”i’
&i&iii)

at

not _ .
6

-cPas

t OS

bommandJ

Figure 6. Transition Logic for the Position
Task

27

State: MoveBackward [Move back to home1
to: Idle if [Completed N sequences]
to: MoveForward if [Do another sequence]

State: Idle [Waiting for next command]
State: InitHoming [First homing step]

to: Home if [Unconditional]
State: Home [Complete homing]

to: MoveForward if [Start sequencing]

Task: Position; Initial State: ResetZero
Type: Soft timer interrupt, Priority: 10 Chnl: 0 Data value: 50 Init status: 0

State: ResetZero [Establish a new ‘zero’ position]
to: Idle if [Done resetting]

State: Move [Move until motor is at setpoint]
to: Hold if [At desired position]
to: Idle if [Stop control]

State: Hold [Keep motor at setpoint]
to: Idle if [Stop control]
to: Move if [Change in desired position]

State: Idle [Wait for command]
to: ResetZero if [Set new zero]
to: Move if [Start control]
to: StartHoming if [Start homing command]

State: StartHoming [Prepare for homing]
to: Home if [Complete homing command]

State: Home [Complete homing]
to: ResetZero if [Done homing]

CONFIGURATION INFORMATION
Configuration ##O: SingleProcess
Process - All-Tasks, Task List:
Master-opint
Sequence
Position

End of Documentation==========

In addition to giving a tabular description of the transition structure,
it gives some task information that is not shown on the diagram. In
particular, it gives the task type, data associated with the task, the
initial state, and the status of the task when the program starts. For the
stepping motor system, this information is:

Master: continuous task; initial state: Initialize; initial status: active

Sequence: continuous task; intial state: Initialize; initial status:
inactive

Position: soft-timer interrupt task; initial state: ResetZero;
status: inactive; priority: 10; sample time (data value): 50 ms

initial

b
OPERATE

Update data window

.--..a

”
SHUTDOWN
End of control

Figure 7. Transition Logic
for the Master Task

28

The information at the end of the documentation, configuration information, is used to indicate
which processes the tasks are assigned to. In this case, all of the tasks are assigned to a single
process, which is the default configuration.

10.3 Sample of Code for “Position” Task, Move State
The complete code for the program is a combination of automatically generated code and user-
written code. A selection of the code from the stepping motor control code follows. The sections that
are user-written are identified by the surrounding comments indicating “Editable...” code. The state
and function type (entry, action, etc.) is also identified. All other code has been automatically
generated. The code as shown is set up for simulation -- the defined symbol STEP-SIM is used for
this. Additional defined symbols can be added to adapt the code for operation of actual stepping
motors.

void EMove-Position(void)
1
/* @tl_mark..52. Editable Entry func, state: Move */
/* @tl_mark..52. End editable Entry func, state: Move */
1
void AMove_Position(void)
1
/* @tl_mark..53. Editable Action func, state: Move */
step-desired = step-desired-next; I* Update setpoint *I
#ifdef STEP-SIM
if(step-actual c step-desired)step-actual++;
else if(step-actual > step-desired)step-actual--;
#endif
SuspendTask(THIS-TASK);
I* @tl_mark..53. End editable Action func, state: Move *I
1
int TlMove-Position(void)
1
/* @tl_mark..54. Editable Test func, state: Move -to- Hold */
if(step-actual == step-desired)retum(1);
else return(O);
/* @tl_mark..54. End editable Test func, state: Move -to- Hold */
1
void XlMove-Position(void)
1
/* @tl-mark..55. Editable Exit func, state: Move -to- Hold */
/* @tl_mark..55. End editable Exit func, state: Move -to- Hold */
I
int T2Move_Position(void)

j* @tl_mark..56. Editable Test func, state: Move -to- Idle */
if(step-command == STEPCOM-STOPCONTROL)retum(1);
else return(O);
/* @tl_mark..56. End editable Test func, state: Move -to- Idle */
I
void X2Move_Position(void)
1
/* @tl_mark..57. Editable Exit func, state: Move -to- Idle */
/* @tl_mark..57. End editable Exit func, state: Move -to- Idle */

2 9

10.4 Operating Information
The operating record of transitions in all tasks is automatically generated as an audit trail. The audit
trail is set to save the most recent transitions (up to the limit of available memory), so if anything
unusual happens, the events leading up to the problem are automatically saved. The audit trail shown
below is for a typical run of the stepping motor control program. The first column gives the time in
milliseconds, next the task name is given, then the transition that has just taken place. The audit trail
show the start-up activites, then the homing, and finally the sequence of move-forward, wait, move-
backward stepping motor motions that are the control goal.

0.OOOOOOe+OOO Master-opint Initialize-to-StartTasks
1.000000e+000 Master-opint StartTasks-to-Operate
2.OOOOOOe+OOO Sequence Initialize-to-InitHoming
5.1 OOOOOe+OO1 Position ResetZero-to-Idle
5.2OOOOOe+OO1 Position Idle-to-StartHoming
5.4OOOOOe+OO1 Sequence InitHoming-to-Home
1 .Ol OOOOe+OO2 Position StartHoming-to-Home
l.O2OOOOe+OO2 Position Home-@ResetZero
1.030000e+002 Position ResetZero-to-Idle
l.O6OOOOe+OO2 Sequence Home-@MoveForward
1.5 lOOOOe+OO2 Position Idle-to-Move
1.001510e+005 Position Move-to-Hold
l.O01530e+005 Sequence MoveForward-to-Wait1
1.301550e+OO5 Sequence Waitl-to-MoveBackward
1.302OOOe+OO5 Position Hold-to-Move
2.302OOOe+OO5 Position Move-to-Hold
2.30202Oe+OO5 Sequence MoveBackward-to-MoveForward
2.302510e+OO5 Position Hold-to-Move
3.302510e+OO5 Position Move-to-Hold
3.30253Oe+OO5 Sequence MoveForward-to-Wait1
3.60255Oe+OO5 Sequence Waitl-to-MoveBackward
3.603OOOe+OO5 Position Hold-to-Move

11 Real Time Performance
Engineering success of a control project depends on the ability of the control system to meet all of
the relevant constraints, including economic constraints, and to optimize whatever facet(s) of the
performance space is most important for the particular project. A major asset of the methodology
proposed here is that the focus on portability means that performance related decisions can be held
in abeyance until the basic control system is completely functional and can be evaluated in its
entirety in a variety of candidate configurations. The primary definition of real time performance is:

The right result at the right time

This is defined on a task-by-task basis,

For intermittent tasks:

3 0

I. Never miss a scheduled execution slot
2. Execute within specified tolerance of defined slot

For continuous tasks:

Average progress over an extended time must meet specification

Each task has its own specifications and tolerances. In general, tolerances are looser for lower
priority tasks.

11.1 Sample Problem for Performance Evaluation
A very simple job has been defined to demonstrate performance evaluation. All of the tasks do the
same thing -- count (except for master task). The results are thus easily assessed!

Although each task has the same structure, the computational
load and real time characteristics are varied by using different
task types, and varying the numerical values associated with
each task.

Each task has three variables: Figure 8. Counting Task

local count - set in entry function, counts down to zero for exit
action count - iteration limit for a counting loop in the action function
task count - starts at zero, increments by one on each scan

The transition shown is a self-transition, however, because it is an explicit transition it causes the
entry function to run. The balance between the sizes of the local count and the action count affects
the “visibility” of the task to a cooperative scheduler. As described above, cooperative schedulers
run only between transition logic scans. Thus, increasing the computing load by increasing the action
count will be invisible to a cooperative scheduler, while increasing it by increasing the local count
can be visible. The affect of local count will depend on the type of task and the type of scheduler.
For continuous tasks, which in cooperative mode get a fixed number of scans each time they are
activated, the local count will ahve no affect on performance. On the other hand, intermittent tasks
run until they self-suspend on each activation, so the local count will affect the computing time used
on each activation.

Only the local count is reset in the entry function, while the task count is initialized in the Setup
state. Thus the overall task performance is measured by the task count, which continues to count up
as long as the task remains active. For intermittent tasks, it indicates whether any scheduled
execution slots have been missed. For continuous tasks, it gives the average progress of the task.

11.2 Counting Task Functions
The state functions from Task1 are shown below. All of the others are the same, with only numeric
differences.

31

Task Code, common to the whole task:

I* Task code area -- statics, functions, etc. for this task *I
static int task-count,local-count;
int getcl(void)

(
return(task-count);

State “Setup”, entry function (all others are empty):

I* @tl_mark..4. Editable Entry func, state: Setup *I
task-count = 0;

State “Count”, entry, action, test, and exit functions:

void ECount-Taskl(void)
1
I* @tl_mark..8. Editable Entry func, state: Count *I
local-count = 4; I* Number of scans before suspension *I

I* @tl mark..8. End editable Entry func, state: Count *I-
I
void ACount-Taskl(void)
1
int i,action-count = 10;

I* @tl_mark..9. Editable Action func, state: Count *I
local-count--;
for(i = 0; i < action-count; i++)task-count++;
/* @tl-mark.9. End editable Action func, state: Count *I
1
int TlCount-Taskl(void)
I
I* W-mark.. 10. Editable Test func, state: Count -to- Count *I
if(local-count <= O)retum(1);
else return(O);

I* @tl-mark..lO. End editable Test func, state: Count -to- Count *I
I
void XlCountTaskl(void)
(
I* @M-mark..1 1. Editable Exit func, state: Count -to- Count *I
SuspendTask(THIS-TASK);

I* Task will be suspended when scan is done *I

I* @M-mark.. 11. End editable Exit func, state: Count -to- Count *I
I

11.3 Model of a Simple Control Job
A sample of what could be the task structure for a simple control job is shown in the table, below.
It has time-based intermittent tasks plus continuous tasks --

3 2

2 soft timer interrupt tasks
1 sample time task
3 continuous tasks (one of which is the master task)

Task

Master

Task1

Task2

Task3 sample time

Task 4

Task 5

continuous I -- l --

soft timer interrupt 10 2ms

soft timer interruot 8 4ms

5 10 ms

continuous -- --

continuous -- --

11.4 Simulation Mode
Simulation mode will be examined in some detail, before summary information is presented for
several real time environments. Simulated operation is easy to control, and thus generates
information more easily than other modes. It is also a critical, and often neglected step in the
development of real time software. Because time is completely artificial in simulation mode, all of
the debugging mechanisms of conventional programming can be used, inserted output statements,
rerunning to reproduce an error, etc. When this process is complete, the basic logic of the program
has been checked out and verified, thereby greatly reducing the debugging effort required in actual
real time operation, where debugging is much more difficult because of asynchronous operation of
program and physical components. To implement simulation mode, a computational model is
required of the control object. There is a significant cost to creating this model, but, overall, it is very
effective towards keeping total job cost down (and predictable), and minimizing elapsed time to
complete the job.

Time, in the simulated domain, is incremented by a specified at after each state scan. This time
increment represents how much simulated (computing) time each transition scan takes. Smaller time
increments simulate faster computers.

A sample run is shown below, for At = 0.5 ms and desired run time = 100 ms --

C:WROG>perfevl
Transition Logic Runtime System

Enter tick time (ms): 0.5
time: 116.000000, task-count1 . . . 5: 5 2 91 4 4 13 13

33

The first three tasks are timer tasks -- they must run in all scheduled time slots to meet their basic
specification. In this case, the correct values are: 200, 175,40, whereas the actual results show 52,
91,44. Therefore 0.5 ms is too large a step size (simulated tick time). Thus, the simulated computer
is “too slow.” The average computing time taken for each state scan, 0.5ms is too much to allow the
job to meet its timing specifications. Note that the final time is 116 ms instead of 100 ms as
specified. This is because the master task is a continuous task, and thus of low priority. That was the
closest time to 100 that it got to run.

11.5 Audit Trace File
The transition trace produces a record of the most recent transitions for use as an audit trail. For this
case, the a section of the audit trace is shown below; it has been annotated with I’* 1” for a relevant
set of lines relating to task 1 and “*2” for lines relating to task 2. Task 1 has a specified sample time
of 2 ms and task 2 has a specified sample time of 4 ms.

Time Task Transition
0.OOOOOOe+000 Master StartTasks-to-Run
UOOOOOe-001 Task4 Setup-to-Count
1 .OOOOOOe+OOO Task5 Setup-to-Count
3.OOOOOOe+OOO Task1 Setup-to-Count * 1
5.OOOOOOe+OOO Task1 Count-to-Count *l
5.500OOOe+OOO Task2 Setup-to-Count *2
9.OOOOOOe+OOO Task2 Count-to-Count *2
1.25OOOOe+OO1 Task1 Count-to-Count *l
1.600OOOe+001 Task2 Count-to-Count *2
1.650000e+001 Task3 Setup-to-Count
1.850000e+001 Task3 Count-to-Count
1.950000e+001 Task4 Count-to-Count

The three marked occurrence of task 1 are at times of 3,5, and 12.5 ms. The first two occurrences
are separated by the proper interval, but the last is much too late, confirming the information from
the total count output.

Making at smaller simulates a faster computer. Several runs at smaller sample times are given below:

A t =

0.2
0.1
0.05
0.02

time: 105.599533, task-count1 . . . 5: 168 182 40 44 44
time: 102.499008, task-count1 . . . 5: 204 175 4 0 200 200
time: 101.001564, task-count1 . . . 5: 200 175 4 0 533 533
time: 100.395164, task-count1 . . . 5: 200 175 40 1533 1533

While 0.2 ms is also too large, 0.1 gives satisfactory results for the intermittent tasks (1,2, and 3).
Once the basic real time constraint of the intermittent tasks has been met, the activity of the
continuous tasks can be examined. As noted above, as the sample time gets smaller, the total activity
of the intermittent tasks remains constant, but the activity of the continuous tasks (4 and 5) increases
from 200 total counts to 1533. This shows that more of the computational resource is devoted to the
lower priority continuous tasks as less is needed for the intermittent tasks.

34

For a sample time of 0.05 ms, here is a section of the audit trail:

6.864959e+OOl Task2 Count-to-Count
6.904961e+OOl Task4 Count-to-Count
6.949964e+OOl Task4 Count-to-Count
6.994967e+OOl Task4 Count-to-Count
6.999967e+OOl Task5 Count-to-Count
7.019968e+OOl Task1 Count-to-Count
7.039970e+OOl Task3 Count-to-Count
7.079972e+OOl Task4 Count-to-Count
7.124975e+OOl Task4 Count-to-Count
7.169978e+OOl Task4 Count-to-Count
7.224981e+OOl Task1 Count-to-Count
7.259983e+OOl Task2 Count-to-Count
7.269984e+OOl Task4 Count-to-Count

These show proper execution of the intermittent tasks, Task1 -- 70.2ms then 72.2ms (2 ms sample
time) and Task2 -- 68.6ms then 72.6ms (4 ms sample time).

Note that tasks 4 & 5 run at time slots not used by the time-based tasks. Task 5 does transitions less
frequently because its local count is higher than that of task 4. However, the total task count is the
same for tasks 4 and 5 because continuous tasks get the same number of scans, regardless of whether
transitions take place or not. Time-based tasks, on the other hand, get as many scans as they need on
each invocation.

11.6 Counting: Performance in Several Environments
The table below shows a typical performance experiment. In this case, the action count is changed
in the continuous tasks, and the overall system performance is measured.

The schedulers used are those described in Section 8.5. The first four are all single thread
implementations, while the last two are multithread. The numbers on the left give the local
count/action count used for each of the trials (the local count is not being varied in this experiment).
Varying the action count simulates that kind of situation that arises when a substantial computing
function that is not easily broken into states, such as an FFT, is done within a task.

The base case has a minimal computing load in all tasks. The total task counts are scaled to 1.0,
where 1.0 represents the maximum count achieved for that task. In the first (base) case, the
intermittent tasks all meet their specifications (all results are 1.0). The task counts for tasks 4 and
5, then, show the relative scheduling efficiency; most of the computing time goes to running the
scheduler because the computing within tasks is so minimal. The sample times for the calibrated
time schedulers (Seq-Calib and Ret-Calib) are the step sizes needed to match real time in an average
sense. All other step sizes are the largest that will work. In general, the recursive schedulers are less
efficient, which is reasonable since the scheduler gets run between every state scan.

As the action counts of the continuous tasks are increased, the single thread (cooperative) schedulers
show the first failures. The simpler schedulers (Seq-X) fail first because they have the longest

35

latency, that is, the longest time between finishing a task and the next time the task is checked. The
recursive schedulers (Ret-X) lower the latency, since they check every task after each transition scan
-- they do better than the sequential schedulers in that they can tolerate higher action counts in the
continuous tasks before they fail. On the other hand, they are less efficient than the sequential
schedulers as can be seen from the scaled task counts for the continuous tasks (4 and 5) for cases
where all of the intermittent tasks meet their specifications. For the base case, for example, the real
time recursive scheduler (Ret-RT) has an index of 0.216 while the real time sequential scheduler
(Seq-RT) has an index of 0.722.

No failures for either of the multithread schedulers (Int and Ret Int) are observed for this experiment.
That is because the intermittent tasks are operated from the computer’s interrupt facility, and thus
preempt the continuous tasks at the hardware level. Therefore, regardless of the action-function load
(or any other load) in the continuous tasks, they cannot interfere with any of the timed tasks.

4/l
7/l
4/I
3/l
12/l

4/l
7/l
4/l
3/800
12/1000

4/l
7/l
4/l
3/1500
lU1600

Seq Calib

Ret Calib

Seq RT

Ret RT

Int

Ret Int

Seq Calib

Ret Calib

Seq RT

Ret RT

Int

Ret Int

Seq Calib

Ret Calib

Seq RT

Ret RT

Int

Task Counts (Scaled)

Task 1 Task2 Task 3 Task 4 Task 5

1. 1. 1. 0.257 0.025

1. 1. 1. 0.065 0.065

1. 1. 1. 0.722 0.722

1. 1. 1. 0.216 0.216

1. 1. 1. 1. 1.

1. 1. 1. 0.151 0.151

36

Seq Calib

Ret Calib

Seq RT

Ret RT

Int

Ret Int

AT (ms)

0.300

0.192

2.0

2.0

2.0

2.0

Task 1

0.41

1.

0.51

1.

1.

1.

Task Counts (Scaled)

Task2 Task 3 Task 4

0.79 1. 0.813

1. 0.83 0.236

1. 1. 1.

1. 1. 0.732

1. 1. 0.927

1. 1. 0.545

Task 5

0.813

0.236

1.

0.732

.927

0.545

12 References

Auslander, D. M., M. Len&in, A-C Huang “Control of Complex Mechanical Systems,” Proceedings
of 1993 IFAC Congress, Sydney, Australia, 1993(a).

Auslander, D. M., “Unified Real Time Task Notation for Mechanical System Control,” Proceedings
of the ASME Winter Annual Meeting, New Orleans, LA, 1993(b).

Bastiaens, K. , J.M. Van Campenhout, “A Visual Real-Time Programming Language,” Control Eng.
Practice, Vol 1, No. 1, pp 59-63, Feb., 1993.

Benveniste, A, P. Le Guemic, “Hybrid Dynamical Systems Theory and the Signal Language,” IEEE
Transactions on Automatic Control, Vol. 35, No. 5, May 1990.

Domfeld, D.A., D.M. Auslander, P. Sagues, “Programming and Optimization of Multi-
Microprocessor Controlled Manufacturing Processes,” Mechanical Engineering, Vol 102, No. 13,
34-41, 1980.

Kohavi, Z., Switching and Finite Automata Theory, chap. 9, McGraw-Hill, New York, 1970.

Le Guemic, P., A. Benveniste, P. Boutnai, T. Gautier, “SIGNAL - A Data Flow-Oriented Language
for Signal Processing,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol ASSP-
34, No. 2, April 1986.

Leveson, N.G., C.S. Turner, “An Investigation of the Therac-25 Accidents,” IEEE Computer, July,
1993.

Sandige, R.S., Modern Digital Design, p. 452, McGraw-Hill, New York, 1990.

37

13 Part II: Velocity Measurement From Widely Spaced Encoder Pulses
The need for velocity measurements oftentimes arises when feedback control of a system is desired.
Velocity feedback can result in lower overshoot, better damping, and faster rise times when
implemented in a system previously having only position feedback. In some instances, such as an
inverted pendulum, systems may be even impossible to stabilize without velocity feedback. In many
of today’s systems a analog velocity measurement is not available because of cost or practicality
considerations. In this case it is necessary to infer the system’s velocity through whatever means the
control engineer has at their disposal. Because of their wide dynamic range (limited only by
computing considerations) and the reliability of using a digital signal, often the only information
available is a discretized position measurement as supplied by an incremental encoder or equivalent
device. This report reviews current technology in velocity estimation of a continuous time system
using only digital position data. Next the problem of velocity estimation of slow and reversing
systems is described and new methods to deal with these problems are proposed. Extensions of this
new method are to be explored and refined.

Encoder signals are “sparse” when the pulse period becomes greater than the sampling period of the
controller. In any system that ever stops or reverses direction, there must always be such an operating
range. Because the upper limit of encoder density is limited by processing power, even systems that
normally run a slowly varying velocity and rarely or never stop may have a valid velocity range for
which the encoder signals become sparse. A major problem, which will be addressed here, is that
whenever there is a velocity reversal, the actual point of reversal can never be known and can
introduce substantial errors into the velocity estimate.

These problems are relevant to vehicle control problems because of the prevalence of digital
feedback. The system proposed for lateral control based on magnetic markers implanted in the road
is such a system, and will, in general, have a pulse period that is long with respect to controller
sampling times. Other vehicle components in the drive train, including engine speed measurement,
anti-lock braking, and traction control also will be likely to use pulsatile signals.

13.1 Problem Formulation
The problem of velocity estimation from discrete position measurements can be formulated as
follows: Given an evenly spaced real sequence {xi}, consider a nondecreasing sequence {tJ of
positive real numbers such that x,=f(t,) for some smooth real valued function f(.). Find the first
derivative of some C’function g:R’+R’ withfltd=g(tJ for all kENandsupfg’(t)/<mfor all t&P+ (See
figure 1). In this problem statement, the function f:B-R is the position trajectory of the plant and it
is unknown in general. The only information available is the sequence {xi} which represent the
encoder pulses with 1 Xi+l-Xi (=constant. The sequence { tk} of times at which the encoder pulses come
out is not necessarily known. The problem is to find the first derivative of f(t) from the sequence
{ Xi}. Instead of estimating the velocity from the sequence {Xi} on which the time derivative is not
defined, some differentiable function g:R-lR is found to approximate the function f(.), and the time
derivative can be evaluated from g. In solving this problem, a Nyquist theorem like assumption
should be observed:

38

0 The maximum frequency off(.) should be at most PinA-l 1
i ti*,-ti

If the above condition is not satisfied then it
fl.1

becomes impossible to reconstruct the true
velocity using any velocity estimation algorithm
due to a lack of information about the trajectory. X4 _

I I I,
14 Current Technology I I I,

Current methods of velocity estimation belong to ti to
I I I,

11 12 t3 t4 t5

one of two categories - those which use a system
model to estimate velocity and those which do

Figure 1

not use a model of the dynamic system. We will
first look at estimators which don’t employ a system model. A more detailed analysis and results of
simulations for the following estimators may be found in [1,2]. References [3,4] provide additional
analysis and performance characteristics of these estimators.

14.1 Lines per Period Estimator
The Lines per Period (LPP) estimator is the simplest possible velocity estimator. Samples of the
output from the encoder are taken periodically every T, seconds. Since the sample time remains
constant this is also known as a fixed time estimator. The estimate of the velocity is given by (1).

p = ~<t,>-xctd,
T, ’

T, a t, - t,, (1)

Note that a problem with this type of velocity estimation is that the actual position the encoder has
moved during the sample period is not known exactly but is bounded by +/- 1 encoder count.
Because of these errors velocity estimates made with this method are extremely poor at slow speeds,
i.e. when the number of counts is comparable to the loss in precision due to sampling. At higher
speeds performance improves since the change in position becomes large and roundoff errors
introduced by sampling become insignificant.

14.2 Reciprocal Time Estimator
The Reciprocal Time (RT) estimator is very similar to the LPP estimator but varies in that the RT
estimator is afzxed position estimator. Fixed position estimators use time stamped data on the arrival
of each encoder pulse. Time stamping, which may be implemented in either software or hardware,

39

is accomplished by saving the current value of a running clock the instant each pulse occurs. The
estimate of the velocity given by the RT estimator which calculates the velocity based on the current
and last pulse is:

p = x(t,Mt,) 1 Count
Ts,-T, = T,-T, (2)

where T,, and T,, are the times at which the current and previous pulses occurred at respectively.
This type of estimator works well at slower speeds since the time between pulses may be measured
quite precisely. At higher speeds precision is lost since the time between pulses becomes comparable
to the precision of the clock used for time stamping. Since encoders and other sensors have
systematic as well as random errors in position due to inaccuracies in the quadrature, the numerator
in (2) is not truly equal to one. This gives rise to periodic and random errors in the velocity estimate.

14.3 Taylor Series Expansion
If the system is assumed inertial, which makes no assumptions about the structure of the system, the
velocity must be a smooth function of time. A Taylor Series Expansion (TSE) of the velocity as a
function of time may then be formed.

If, furthermore, the following assumptions are made:

x. - xi-,
_e J

L T.
J

(3)

(4)

we may approximate the velocity at the kth sampling instant by combining (3) & (4) and truncating
high order terms to yield the following equation for a Nth order velocity estimator:

(5)

This algorithm may be implemented as either a fixed time or fixed position algorithm, fixed position
being better for slower speeds and fixed time superior for slower speeds.

40

14.4 Backward Difference Expansion
The Backward Difference Expansion (BDE) estimator, like the TSE estimator, may be implemented
as either a fixed time or a fixed position estimator. For fixed position data, velocity is estimated by
expressing time as a function of position (vice versa for fixed time) in a Taylor series expansion
around your current value of time from your latest time stamp (or latest position in fixed time data).
Explicitly, for fixed position data:

t (-m)’ d2tk
k-m = tk + (-m); + -- + . .

2! &2 (6)

In order to implement a mth order BDE estimator, the mth order Taylor series approximation for t,,
through t,, must first be calculated. Next the solution dtJdx which solves these m simultaneous
algebraic equations must be found. The velocity estimate is the reciprocal of this quantity. For
example a second order estimator gives us:

tk-l = tk + (-1); + c-l)* d2tk
2! &2

tM =

Solving these we find:

1+ -t
2 k-2

4 p= 1 count
+k - 2tk., 1+ - t2 k-l

(7)

(8)

14.5 Least Squares Estimator

Perhaps the most promising of all the estimators found in current technology is the Least Squares
(LS) velocity estimator reviewed in [l]. The LS estimator assumes that the time at which each
encoder pulse occurs may be represented by a polynomial function of position. By taking the
derivative of a polynomial fitted to time stamped position data an estimate of the velocity is
obtained. The general idea is to look at your last several data points when fitting the polynomial,
moving the data used for fitting forward as new data arrives. There are several issues which need to
be considered when choosing the order of fit and number of data points used to fit the polynomial,
including encoder rate, quadrature error, and complexity of trajectory. The Nth order LS estimator
using the past M data points assumes there is a function :

tk = co + C,Xk + yk* + ... + CfikN (9)

41

t = AC , t a

@k-m> 0 I N
k-m xk-, “’ xk-,

~xk-,,,+,)

: i

Ae ’ 1 N
k-ml xk-,,,+l “’ xk-,,,~l

0 1

t<xk) k xk
.

CO

5
Ck

C”

(10)

Equation (9), for the past M data points, may be more conveniently expressed in matrix form as
shown by equation (10). Since M > N for any estimator of interest the system is overdetermined and
the least squares estimates of the coefficients are given by (11). The time elapsing between periods
is now estimated at the current pulse by (12) from which the velocity is determined by taking the
reciprocal of this quantity. Note that this particular implementation is a fixed position

P(A ‘A)-‘A ‘t (11)

estimator so the matrix A is constant and need not be recalculated. In addition this method is only
applicable for situations in which the velocity does not change sign, otherwise t(x,J is no longer a
single valued function and the analysis no longer holds.

dt; ,.-cc
o!x ’

+ 2&x, + . . . + NQkN-’

A distinct advantage of the LS estimator is if data points are chosen to include an integral number
of periods for fitting (i.e. 4 pulses in a quadrature based system) systematic errors caused by periodic
fluctuations are filtered out. The amount of filtering is determined by how overdetermined the matrix
equation (10) is.

14.6 Observer Based Estimator
An observer based estimator for longitudinal velocity estimation has been designed and simulated
using a discrete time approximation to a continuous time model of an automobile in [5]. The
estimator attempts to find the forward velocity of an automobile using magnetic sensors which detect
passage over magnets embedded in the roadway. The magnetic sensor is sampled regularly for
detection of a new count. The discrete time model and observer are updated every time a pulse is
encountered from the sensor. Position and a simple LPP velocity estimate are used to provide the
innovations necessary for updating the observer. The observer effectively acts as a low pass filter for
the errors introduced by sampling. A better observer based algorithm is proposed and discussed
under the next section.

42

15 New Research Areas
The above algorithms looked at several different ways of estimating velocity given discrete position
and time data. There are some situations, however, for which the above algorithms prove to be
inadequate and do not appear to be addressed in the literature. Systems which change direction, move
slowly, or require estimates of velocity more frequently than new position data becomes available
are among these areas. A preliminary analysis and results of simulations and actual tests are listed
below for each of these problems which need to be addressed.

15.1 Slowly Moving Systems
In systems which are moving very slowly encoder counts occur infrequently. Because of this the
velocity between counts may fluctuate without the “knowledge” of the computer implementing the
control algorithm. If one of the current technology algorithms for estimating velocity is implemented,
a new velocity is calculated only when a new encoder pulse arrives. This estimate of velocity is then
held until the next pulse. Note that in many cases the true velocity of the system does not remain
constant between samples.

Suppose the true velocity of the system fluctuates in a manner such that it monotonically increases.
This implies a pulse will be generated before predicted from the previous velocity estimate. This
allows us to update the estimated velocity sooner than expected, however we have no information
allowing us to adjust the velocity estimate in between samples to compensate for the acceleration.

If on the other hand the true velocity is monotonically decreasing, then the velocity at the end of the
period will be less than the velocity at the beginning of the period. Note that since a new pulse will
occur only when new data has arrived the old velocity estimate will not be updated until an even
longer period of time than expected. This will wreak havoc in a controller attempting to bring the
system to rest since the velocity estimate is high. One way to reduce the problem is shown in Figure
2. We know that if the system continues at the current estimated rate we expect a pulse at time t2,
shown by the path (a). If we have reached time t2 and still haven’t received a pulse it is necessarily
true the current velocity is less than the previous velocity. An upper bound on this velocity is given
by (13), shown by path (c). As time passes the upper bound and hence best estimate of velocity
decreases according to (13). Path (b) represents a
possible trajectory which has the above velocity
characteristics.

8
I

t2 t

Time
Figure 2: Position Vs. Time

4 3

.

Time

I I

t1 t2 t3 ;4
Time

Figure 3: Degenerate
Trajectory

Figure 4: Sensitivity
of fit to previous

measurements

15.2 Transition Logic based Switching Algorithm
Algorithms in the current technology section all assume a velocity whose sign does not change. In
many cases, such as position regulation or tracking, this is an invalid assumption. Since the velocity
estimation technique which is most appropriate to use depends on the information available as well
as the current operating conditions it is necessary to incorporate
a systematic method of choosing the proper estimation algorithm.
Figure 3 shows the main problem encountered in velocity
estimation under velocity reversal. The position and direction of
velocity are supplied by the measuring device. While going from
(a) to (b) velocity may be estimated via any method desired.
However in going from (b) to (c) the only new information gained
is the knowledge that the velocity between (b) and (c) must have
become zero for at least one instant in time, since velocity is a
continuous function of time. In this case the only safe estimate of
the velocity at time t3 is zero. Figure 4 clarifies why this is so.
Both curves (a) and (b) in figure 4 have identical time and

Figure 5: Finite State Machine

position data available for measurement at tl through t3. Although it is true we could modify the LS
method for use in this situation the peak of the curve will be very sensitive to previous
measurements. If the system is chattering, singularities in velocity estimates will occur as the time
between pulses approaches zero. This results in very poor and inconsistent estimates of velocity.

A logical solution to the problem of selecting a proper velocity estimate / estimation algorithm is to
use a finite state machine to describe the system. One finite state machine which has been
implemented successfully in a test system is shown in figure 5. This finite state machine runs inside
a hardware interrupt service routine (ISR) triggered by the encoder pulse. The hardware interrupt is

44

.

also responsible for time stamping the arrival of new encoder pulses. Actual velocity estimation is
performed in a timer ISR which determines the current state of the transition logic diagram and
applies rules to generate velocity from the table of time stamped encoder pulses. One set of rules
which has been successfully implemented is listed in table 1. This set of rules is based on the least
squares method of velocity estimation.

Current State Velocity Estimation Algorithm
s o Velocity = 0
Fl Velocity = 0
F2 Velocity = LS Estimate
Bl Velocity = 0
B2 Velocity = LS Estimate

Table 1: Rules used in Velocity Estimation of reversing system

The above set of rules provides good estimates of velocity in the following manner. If we are in state
SO, which would correspond to the initial state when the system is first started we have no idea
where the true position lies between the encoder pulses (Fig. 6 position (a)) . Therefore best initial
value of velocity is zero. If we move one pulse forward the state machine moves to state Fl and a
valid timestamp of the position is collected (Fig. 6 position (b)). There is still no way of accurately
estimating velocity since the original position is not known exactly. If one more step is taken in the
forward direction we move forward to F2 and an estimate of velocity can be made using the current
and previous timestamped values (Fig. 6 position (c)). Further steps in the forward direction allow
the LS algorithm to use more data in its’ estimation of velocity. Table 2 shows the IS estimators used
as a function of how many pulses in the same direction are received. Note that the more points used
in the LS algorithm the smoother the estimate will be.

C

1 2 3

Encoder Position (Count)

4

Figure 6: Initial position of shaft and position when timestamps
occur

Suppose now a pulse in the reverse direction occurs. Since it is not known where the shaft actually
stopped rotating and reversed directions we cannot make any estimate of the velocity. This situation
corresponds to (d) in figure 7, i.e. pulses occur at (b) and (d) but (c) is where motion reverses
direction. This places us in state Bl where it is known we have one valid time-stamped position

45

measurement. If a
second pulse in the
reverse direction

>*cw

follows, corresponding 1 2 3 4
to (e) in figure 7, the
state advances to B2 and Encoder Position (Count)

a velocity estimate may
be made. Figure 7: Position in forward motion at timestamps, position of

motion reversal, position in reverse motion at timestamps

Number of Pulses in Same Direction LS Estimate
2 Linear w/ 2 Data Pts. (N=l, M=2)
3 Linear w/ 3 Data Pts. (N=l, M=3)
4+ Quadratic w/ 4 Data Pts.(N=2, M=4)

Table 2: Least Square Fit as a function of number of data points available

mass

-_-

15.3 Experimental Results:
Motor-Mass System

encoder

The above algorithms were
combined and tested on an
experimental apparatus being
designed for classroom use. The
apparatus consists of a rotational
mass driven by a DC motor and
its rotational position is measured
by an optical incremental Figure 8. The Motor-Mass System
encoder. We constructed a low
resolution “pseudo encoder” by

motor

I

dividing the real encoder readings with a constant resolution factor and then rounding the values to
the nearest integers. Therefore there are effectively two encoders of different resolutions. We
estimated the velocity from the low resolution position. A simple velocity PI controller was used
with the low resolution velocity to track a sinusoidal profile. The tracking was compared with the
high resolution encoder to check its performance.

In Figure 9 we show the case without using the transition logic algorithm. In the position part of the
figure the stairs represent the low resolution positions with resolution 2000 times less than those
coming from the real encoder. The relatively high resolution velocity was calculated from the
derivative of the high resolution positions. In the velocity part of the figure, the solid line is the
reference velocity profile, the star line is the velocity estimated from low resolution position
measurements, and the high resolution velocity, the circle line, is the real control result. Obviously

46

the velocity was poorly estimated, especially when the rotation changed directions or for a long
period of time no new position appeared. Those two situations did introduce unexpectedly huge
oscillations both to velocity and position.

position vs. time; sampling time=50msec, density ratio=2000

dashed: (ow resolutiod

2 3
set

velocity vs. time

”
)r

solid: high r+olution
dashed: Iowa resolution

-
> I

I
I I

0 1 2 3 4
set

Figure 9. Velocity Estimate and Control: Transition Logic Algorithm Not Used

When the transition logic algorithm was applied, the system performance shown in Figure 10 did
improve signiflcantly. There is still some time delay in the estimated velocity because no new
position information is available during a sampling period. The transition logic algorithm works
reasonably well especially since no system model is needed for this method.

47

position vs. time; sampling time=50msec, density ratio=2000

dashed: low resolutiorj

t 8
I ,
I I
2 3

set

velocity vs. time

2 3 4
set

Figure 10. Velocity Estimate and Control Using Transition Logic Algorithm

15.4 Time delayed averaging method
Another algorithm under development is the time delayed averaging method (TDAM). By averaging
the past m fixed time estimates of velocity we may smooth out noise due to measurement
inaccuracies and sampling artifacts. The TDAM estimator is given by:

xk-xk-I xk-l-xk2 Xk-m.1 -xk-m

&k ?- + - + “’ +T T-=
dt m

(14)

Collecting terms from equation (14) we find

48

, I’ -

Sk ‘k - ‘k-n,-=
dt mT (15)

In some sense the estimated velocity is the central derivative at time (k - (m/2))T and therefore there
exists a time delay of (m/2)T if the estimate is regarded as the velocity at time kT. One of this
method’s advantages is its’ ability to filter the impulse effects resulting from discrete position
measurement at slow speeds, thus smoothing the velocity estimate. In addition this method reduces
the impact of small oscillations about encoder pulses on the estimate, achieving an effect similar to
the transition logic algorithm. Since the position measurements are taken over a larger time,
inaccuracies due to unsymmetries in the quadrature are also filtered out to some degree. A
disadvantage to this method is the inherent time delay of (rn/2)T which in high acceleration
situations may cause problems with stability and tracking.

15.5 Asynchronous Multirate Observer Based Estimator
In the current technology section an attempt at utilizing a model of the system to improve estimates
of the velocity was undertaken. Unfortunately this method has several problems. The position sensor
is sampled periodically for the arrival of a new pulse. In order to deal with sampling errors arising
from missing the exact time when the pulse occurred, the velocity fed into the estimator was taken
as the average of the two previous velocity estimates. This is actually a special case of the TDAM
estimator. In order to get a true measurement of the velocity it becomes necessary to collect many
samples, thus introducing significant time delays. In addition and perhaps more importantly since
the previous estimator is only updated when a new pulse is sensed it becomes impossible to update
the controller more frequently than the arrival of pulse rates. This is highly undesirable in situations
when the pulse rates are relatively slow, such as longitudinal control of an automobile.

Instead of viewing the
observer / plant / controller
as having one update rate
it is more convenient to
view the system in the
multirate paradigm, where
different upda te and
sample rates are free to
take place. Multirate
controller design was
initially developed the
1950’s. A good
explanation of basic
multirate control may be
found in [6]. Since the

Controller
/ > 8.5 Continuous Time
T ZOH Plant

,
---+

Observer
Ta

Figure 11: Asynchronous Multirate Control Block Diagram

early developments a significant amount of research in multirate control has taken place in
the area of periodic multirate systems and how to design controllers to these systems [7,8]. The class
of systems for which we are interested in is indeed a multirate system, however unlike previous

49

_ I’ -

systems the output of the system is asynchronous. By choosing the update rate of the observer and
controller to occur periodically at a rate faster than the asynchronous output measurements better
performance may be expected. Note that even though new sensor data may not be present it is still
possible to update the observer based on the values of the control being sent to the plant between
output samples. A diagram of an asynchronous multirate system of the type discussed above is
shown in figure 11. The update rate of the controller and observer occurs periodically every T
seconds, while the outputs from the plant is updated to the observer asynchronously every Ta
seconds, where Ta varies from sample to sample.

15.6 Modified Luenberger Observer with Output Estimator
The previous Asynchronous Multirate Observer Based Estimator has two chief drawbacks:
implementation difficulty and inefficiency for the control purpose. Owing to a non-periodic output,
the plant has to be discretized every period with respect to its previous sampling period and, based
on the discrete time model, the observer gains must be renewed also. This consumes a lot of on line
computational power. On the other hand if the output signals are very sparse compared to controller,
then the control will remain constant for a long period until the next system output signal appears.
That seems very inaccurate and inefficient. Could there be some way that the control still be updated
every control interval? It may improve the control performance to meet a more complicated control
objective. Here we propose a kind of observer shown in Figure 12 without such weak points.

Consider a linear time invariant system with state and output equations

y = AX(t) + Bu(t)

y(t) = cY(t)

where y(t) is the position output. The velocity can be derived as

tit)v(t) = - = c dx(o
dt
- = ClLqt) + CBu(t)

dt

(16)

(17)

The discretized system with respect to the constant sampling time of controller T thus can be
described by

X(k+l) = A>(k) + B,u(k)
y(k) = CX(k) (18)

where

(19)

The velocity is thus discretized as

50

. I’ -

v(k) = CAX(k) + CBu(k) (20)

The original Luenberger state observer has the form of

$k+l) = AA(k) + B,u(k) + L@(k) - C&k))
v(k) = CX(k) (21)

Now the output is updated asynchronously every Ta seconds, where Ta varies from sample to
sample, therefore when updating the controller and observer every T seconds, we must estimate the
system output y(k) in advance. Here we assume the velocity varies very little during every sampling
period T seconds and the system output may be estimated as

j?(k) = flk-1) + $(k-1)-T zy y(k) = y(k-1)
= y(k-6) + C(k-1)-W i f y(k) + y(k-1) (22)

where y(k-6) = y((k4)T) is the position output renewed within last sampling period T and 0 I 6 I
1. That is if there is no output feedback during last sampling period T, we just guess the current
position using the first equality above, otherwise, we can update current position using the latest
system position output update value through the second choice of the estimator above. The velocity
at the moment kT is thus estimated as

\;(k) = CAii(k) + CBu(k) (23)

Therefore the modified Luenberger state observer for the asynchronous multirate system becomes

ii?(k+l) = x43(k) + B,u(k) + L(E(k)- d(k)) w

and we can follow the similar procedure of observer gain selection to the original Luenberger
observer to design our observer, i.e., choose L such that the eigenvalues of the matrix [Ad - LC] all
lie inside the unit circle. This could approximately make the observer stable. The detailed
consideration of stability and convergence of this observer would be an important issue.

15.7 Experimental Results: Motor-Mass System
Using the same setup as the previous experiment, we feed the motor with a known set of input
voltages and read the related output positions from the high resolution encoder. After fitting them
with an ARX model, the system describing difference equation is

y(k) - 1.8575y(k-1) + 0.8577y(k-2) = 46.1054u(k-1)

From it, we get the continuous transfer function

51

Y(s)-= 0.0485s + 1.9895 x 1o4
w s ‘+3.0709s+O.O748

If we select x, as position and x2 as velocity, then the system state and output equations become

Let sampling time for the controller and observer output be 50 milliseconds, i.e. T = 0.05 sec.. The

system then can be described by the following discrete time states equations,

where we can approximate the derivative of u as

C(k) = u(k) - u(k-1)
T

The state observer and output estimator are then designed as

flk) = %k-1) + x”L(k-1)-T‘ i f r(k) = y(k-1)
= y((k-6)T) + ZZ(k-l)4T zy y(k) z y(k-I)

and we can select L as [l.017,0.9791T to make the eigenvalues of [A,, - LC] lie at 0.6 + 0.1 i. The
experimental results are shown in the figure below. The reference velocity is 10000 * sin(2nNO)
counts/set and a velocity PI controller is applied.

52

position vs. time; sampling time=50msec, density ratio=2000

0 1 2 3 4
set

.I -4n4 velocitv vs. timeA IV .
-------; --------; --------

g
I I
I I

-$ 0.5

2 3 4
set

L

Figure 13. Velocity Estimate and Control Using the Modified Luenberger Observer with an
Output Estimator

In the position part of Figure 13, the stairs are the positions from the pseudo low density encoder
while the solid line comes from the real high resolution encoder with density ratio 2000: 1.
Meanwhile, the dashed line represents the estimated positions, i.e. x,-hat which are estimated from
our modified Luenberger Observer and are corrected when every new low resolution position
information comes in.

In the velocity part of Figure 13, the solid line represents the reference velocity which our system
is intended to track. The star line is for the velocity values obtained from our modified Luenberger
Observer. We feed a velocity PI controller with the difference of the estimated velocity and the
reference velocity. The result seems fairly good and is shown by the circle line which represents the
high resolution velocity, the derivative of high resolution positions.

53

Compared to the transition logic based switching algorithm, this method seems to be a better velocity
estimator due to the knowledge of a system model information. The main advantage of this method
is that the position and velocity can be estimated precisely to a confident extent during the interval
without new position information. Therefore we can update the controller every instant and obtain
a outstanding control result although just using a low resolution encoder. However, the response still
shows a “glitch” in the velocity response when going through zero. This is because the point of
turnaround can never be known to the controller. The transition logic method gives information on
how much information is available, which can be used in conjunction with this estimator to reduce
the estimation errors associated with velocity reversals.

Here we have assumed that a confident system model exists and pay no attention to the robustness
of this method. How well the model is identified may be a major factor for the observer to perform
successively. Future work for this method would put a lot of emphasis on the robustness issue and
also try to create adaptation methodologies to deal with system uncertainty.

16 Conclusions and Future Work
Previous work in velocity estimation from discrete position and time data has resulted in many
algorithms by which velocity may be estimated. However, a survey of currently available methods
of velocity estimation show they are particularly lacking in their ability to handle two classes of
systems. Specifically, previous algorithms considered in this survey do not address the problems of
velocity reversals and velocity estimation where position data is sparsely available. In addition,
estimation of velocity in between output sampling instants for use in systems where desired update
rates are higher than output sampling rates has not been encountered in this survey. Possible
solutions to both problems have been proposed: a transition logic based approach for the problem
of slow velocity estimation with velocity reversals, an asynchronous multirate observer for higher
update rates. In addition, the modified Luenberger observer with a output estimator seems very
promising for it can update the control law more efficiently to meet various control objects. Owing
to its model based feature, robustness and adaptation methodologies will be an important issue to
look at. Further work in this area will concentrate on refining and generating a more complete
understanding of these methods.

17 References

[l] R. H. Brown, S. C. Schneider, M. G. Mulligan, “Analysis of algorithms for velocity estimation
from discrete position versus time data,” IEEE Transactions on Industrial Electronics, vol. 39, no.
1, pp. 11 - 19, Feb. 1992.

[2] R. H. Brown, S. C. Schneider, “Velocity observations from discrete position encoders,” in Proc.
ZECON’87, Thirteenth Annu. IEEE Industrial Electronics Society Con$, Boston, MA, Nov. 1987,
pp. 1111- 1118.

54

[3] K. Saito, K. Kamiyama, T. Ohmae, and T. Matsuda, “A microprocessor-controlled speed
regulator with instantaneous speed estimation for motor drives,” IEEE Transactions on Industrial
Electronics, vol. 35, no. 1, pp. 95 - 99, Feb. 1988.

[4] J. Tal, “Velocity decoding in digital control systems,” in Proc. Ninth Annual Symp. Incremental
Motion Contr. Syst. Devices, June 1980, pp. 195-203.

[S] D. W. Love, PATH year end progress report, 1994

[6] R. E. Kalman, J. E. Bertram, “A unified approach to the theory of sampling systems,” Journal
Franklin Institute, pp. 405 - 436, May 1959.

[7] B. D. 0. Anderson, “Controller design: moving from theory to practice,” IEEE Control Systems,
pp. 16 - 25, Aug. 1993.

[8] P. Colaneri, R. Scattolini, N. Schiavoni, “Stabilization of multirate sampled-data linear systems,”
Automatica, vol. 26, no. 2, pp. 377 - 380, Mar. 1990.

55

