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Abstract

Quantum Simulation: Upper and Lower Bounds

by

Bryan O’Gorman

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor K. Birgitta Whaley, Co-chair

Professor Umesh Vazirani, Co-chair

Quantum computers now exist, and will likely continue to get bigger and better. But will they
ever be useful? That is, are there real-world problems that future quantum computers will be
able to solve well enough in a reasonable amount of time, but for which classical computers
cannot do the same? This thesis presents a collection of results that together address this
question from different directions. The first part limits the utility of quantum computers. We
show how to characterize and minimize the cost (in time and memory) of simulating quantum
computations on a classical computer in terms of the congestion (a graph property) of a
graphical representation of the quantum computation. Therefore, for a quantum computation
to have an advantage over classical computation, it must have large congestion. Even when
that is the case, better classical simulations, costly though they may be, can help validate
and develop quantum computers. We also prove that the fundamental problem of quantum
chemistry, the electronic structure problem, is QMA-complete. Therefore, under standard
complexity-theoretic assumptions, the solution must be represented using a quantum state,
and yet still even quantum computers cannot efficiently find it. The second part includes
methods for applying and compiling quantum algorithms in order to maximize the utility
of the hardware we have, now and in the future. We introduce the strategy of generalized
swap networks and show how to use them to compile quantum algorithms for quantum
chemistry and classical optimization. We combine quantum computation with constraint
programming in two ways: we show how to combine existing quantum algorithms to speed
up the solution of constraint programming problems, which capture a wide range of realistic
application domains, and also discuss the application of constraint programming to compiling
quantum algorithms. We also present a framework for generalizing the Quantum Approximate
Optimization Algorithm to what we call the Quantum Alternating Operator Ansatz. Many
of the algorithms are heuristic, but by improving the efficiency of their implementation on
actual devices, we improve our chances of successfully trying them out and seeing if they
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work or not.
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Chapter 1

Introduction

The theories of computation and quantum mechanics, midwifed early in the last century, are
foundational to our modern understanding and manipulation of the world. The computational
lens now pervades modern science, natural and social, and computers themselves now mediate
much of our social and economic lives. Quantum mechanics is arguably the most precisely
validated physical theory we have. Its use is necessary to explain important phenomena
and allowed the engineering of amazing technologies, from displays and solar panels to
computers themselves. At the intersection of computation and quantum mechanics is
quantum computation: the theory and engineering of computational devices whose operation
is quantum mechanical at the logical level (as opposed to computers whose implementation
is quantum mechanical).

Just years after quantum computing was first proposed, independently by Manin [110] and
Feynman [65], Deutsch [53] showed that in theory quantum computation can be better than
classical, at least for some contrived problem. In the following decade, Shor invented their
titular algorithm for factoring numbers[144], thereby showing that quantum computation
can be advantageous for a problem of practical interest, at least compared to the best
known classical algorithm. Subsequently, there has been significant progress in theoretical,
algorithmic, and experimental quantum computing. Just two years ago, Google demonstrated
a programmable quantum device [8] for simulating which there is no known efficient classical
algorithm, achieving what is known as “quantum supremacy”.

This thesis explores several ways of understanding the power of quantum computation in
theory and improving the power of quantum computers in practice.

Classical simulation of quantum computations The only way currently known to
verify that a putative quantum device has successfully performed random circuit sampling
(the task performed in Google’s “quantum supremacy” experiment) is to classically simulate
the same experiment and compare the results. Architecture design choices and experimental
noise can be exploited to make the classical simulations more efficient, but it is expected
that all classical simulations have inherently exponential scaling. Nevertheless, classical
simulation of quantum circuits is a useful tool, both for validating quantum devices and
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for designing quantum algorithms. Most state-of-the-art large-scale classical simulations
of quantum circuits employ the formalism of tensor networks, a way of expressing certain
quantities as sums of products that has found widespread use both as a tool for understanding
and for simulating quantum systems (and classical counting problems). Chapter 2 of this
thesis describes one way of parameterizing a tensor network that tightly characterizes both
the time and space resources necessary to calculate its value via matrix multiplication (as all
such calculations are done in practice). In contemporary simulations, memory is often the
limiting factor; indeed, this work grew out of conversations with Benjamin Villalonga, who,
as a leading contributor to efforts to simulate Google’s experiments, was seeking ways of
understanding and minimizing the bottlenecking memory requirements. The characterization
of the time resources quantitatively matches the dominant term of earlier work [111], but
is also more precise and conceptually much cleaner, which hopefully increases its potential
utility. That the characterization is tight within a realistic computational model and also
yields the memory requirements exemplifies its utility.

Computational complexity Random circuit sampling is of no value beyond demonstrating
“quantum supremacy”. The true goal of building quantum computers is to perform practically
useful tasks better than classical computers can. Simulating quantum systems is the seminal
task (as proposed by Feynman) and continuous to be considered one of the most promising
applications of quantum computers. In particular, there is hope that quantum computers can
be useful in solving the electronic structure problem (approximating the ground state energy
of electrons subject to external potentials), the fundamental problem of quantum chemistry.
Chapter 3 of this thesis limits what we can hope for in this regard, by proving that a
reasonable formalization of the problem is QMA-complete. This implies that, under standard
assumptions (QMA ̸= BQP and QMA ̸= QCMA, respectively), not even quantum computers
can efficiently solve the problem in general, even though the answer has no concise classical
description. In other words, the significant structure imposed by physics on the electronic
structure Hamiltonian is not enough to make the problem easy for quantum computers. But
practically important instances of the electronic structure problem may have some additional,
yet-unknown structure that can be exploited.

Quantum algorithms Classical algorithms and hardness results upper bound the relative
and absolute power of quantum computers. Quantum algorithms lower bound it, by showing
what quantum computers can do. As with classical algorithms, quantum algorithms can be
both rigorous (with proven success probabilities) and heuristic (with intuitive justification
but not proven to work). Section 5.2 of this thesis describes rigorous quantum algorithms for
constraint programming, with a practical focus on early fault-tolerant devices. Many of the
most successful classical algorithms are heuristic, and there is no reason to expect that the same
will be true of quantum algorithms. We consider two of the most popular heuristic quantum
algorithms: the Quantum Approximate Optimization algorithm for classical constraint
satisfaction problems and the Variational Quantum Eigensolver for quantum Hamiltonians.



3

Both take the form of a parameterized quantum state (known as an ansatz ), whose parameters
are then optimized.

Outline This thesis is organized as follows. Part I describes two results that upper bound
the possible advantage of quantum computation. Chapter 2 describes the parameterization
of tensor network contraction, a general method for computing quantities in quantum compu-
tation. Chapter 3 proves that the fundamental problem of quantum chemistry, the electronic
structure problem, is QMA-complete. Part II presents methods for applying and compiling
quantum algorithms in order to maximize the utility of the hardware we have, now and in
the future. Chapter 4 introduces the strategy of generalized swap networks and shows how to
use them to compile quantum algorithms for quantum chemistry and classical optimization.
Chapter 5 describes work at the intersection of quantum computation and classical optimiza-
tion: the generalized Quantum Alternating Operator Ansatz in Section 5.1, the application
of quantum computation to Constraint Programming and vice versa in Section 5.2, and
the construction of phase transitions in instance families of the Single-Machine Scheduling
problem in Section 5.3.
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Part I

Upper bounding quantum advantage
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Chapter 2

Parameterization of tensor network
contraction

This chapter reproduces Ref. 123 with minor modification. In this chapter, we present a
conceptually clear and algorithmically useful framework for parameterizing the costs of tensor
network contraction. Our framework is completely general, applying to tensor networks
with arbitrary bond dimensions, open legs, and hyperedges. The fundamental objects of our
framework are rooted and unrooted contraction trees, which represent classes of contraction
orders. Properties of a contraction tree correspond directly and precisely to the time and
space costs of tensor network contraction. The properties of rooted contraction trees give
the costs of parallelized contraction algorithms. We show how contraction trees relate to
existing tree-like objects in the graph theory literature, bringing to bear a wide range of
graph algorithms and tools to tensor network contraction. Independent of tensor networks,
we show that the edge congestion of a graph is almost equal to the branchwidth of its line
graph.

2.1 Introduction
Tensor networks are widely used in chemistry and physics. Their graphical structure provides
an effective way for expressing and reasoning about quantum states and circuits. As a model
for quantum states, they have been very successful in expressing ansatzes in variational
algorithms (e.g., PEPS, MPS, and MERA). As a model for quantum circuits, they have been
used in state-of-the-art simulations [56, 57, 68, 129, 153]. In the other direction, quantum
circuits can also simulate tensor networks, in the sense that (additively approximate) tensor
network contraction is complete for quantum computation [6].

The fundamental computation in the application of tensor networks is tensor network
contraction, i.e., computing the single tensor represented by a tensor network. Tensor network
contraction is #P-hard in general [17] but fixed-parameter tractable. Markov and Shi [111]
defined the contraction complexity of a tensor network and showed that contraction can be
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done in time that scales exponentially only in the treewidth of the line graph of the tensor
network. Given a tree decomposition of the line graph of a tensor network, a contraction
order can be found such that the contraction takes time exponential in the width of the
decomposition, and vice versa. However, the translation between contraction orders and tree
decompositions does not account for polynomial prefactors. This is acceptable in theory,
where running times of O(n2n) and of O(2n) are both “exponential”; in practice, the difference
between Θ(n2n) and Θ(2n) can be the difference between feasible and infeasible.

We give an alternative characterization of known results in terms of tree embeddings
of the tensor network rather than tree decompositions of the line graph thereof. In this
context, we call such tree embeddings contraction trees. While one can efficiently interconvert
between a contraction tree of a tensor network and a tree decomposition of the line graph,
contraction trees exactly model the matrix multiplications done by a contraction algorithm in
an abstract way. That is, the time complexity of contraction is exactly and directly expressed
as a property of contraction trees, in contrast to tree decompositions of line graphs, which
only capture the exponent. Our approach is thus more intuitive and precise, and easily
applies to tensor networks with arbitrary bond dimensions and open legs.

We show that contraction trees also capture the space needed by a matrix-multiplication-
based contraction algorithm. In practice, space often competes with time as the limiting
constraint. Even further, we can express the time used by parallel algorithms as a property of
rooted contraction trees, which are to contraction orders as partial orders are to total orders.

In a contraction tree, tensors are assigned to the leaves and each wire is “routed” through
the tree from one leaf to another. The congestion of a vertex of the contraction tree is the
number of such routings that pass through it, and similarly for the congestion of an edge.
The vertex congestion of a graph G, denoted vc(G), is the minimum over contraction trees of
the maximum congestion of a vertex, and similarly for the edge congestion, denoted ec(G).
Formally, our main results are the following two theorems.

Theorem 1. A tensor network (G,M) can be contracted in time n2vc(G)+1 and space
n2vc(G)+1, or in time 21.5ec(G)+1 and space 2ec(G)+1. More precisely, the tensor network can be
contracted in time min(T,b)

∑
t∈T 2

vc(t), where the minimization is over contraction trees (T, b).
The contraction can be done using space equal to the minimum weighted, directed modified
cutwidth of a rooted contraction tree using edge weights w(f) = 2ec(f). If the contraction
is done as a series of matrix multiplications, these precise space and time bounds are tight
(though not necessarily simultaneously achievable).

Theorem 2. A parallel algorithm can contract a tensor network (G,M) in time
min(T,b) maxl

∑
t 2

vc(t), where the minimization is over rooted contraction trees (T, b), the
maximization is over leaves l of T , and the summation is over vertices of t on the unique path
from the leaf l to the root r. In other words, the time is the minimum vertex-weighted height
of a rooted contraction tree, where the weight of a vertex is w(t) = 2vc(t). If the contraction
is done as matrix multiplications in parallel, this is tight.
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Figure 2.1: Two unrooted contraction trees for a tensor network with 6 tensors. Each color
corresponds to a wire of the tensor network. The inclusion of a color in the representation of
a vertex or edge of the contraction tree indicates the contribution of the corresponding wire’s
weight to the congestion of the vertex or edge, respectively.

Given a tree decomposition of a line graph with width k − 1, we can efficiently construct
a contraction tree of the original graph with vertex congestion k. Thus one immediate
application of our framework is as a way of precisely assessing the costs of contraction
implied by different tree decompositions (even of the same width) computed using existing
methods. This is especially useful in distinguishing between contraction orders that have the
same time requirements but different space requirements; prior to this work, there was no
comprehensive way of quantifying the space requirements, which in practice can be the limiting
factor. Alternatively, one can start with existing algorithms for computing good branch
decompositions, which can be converted into contraction trees of small edge congestion. More
broadly, identifying the right abstraction (i.e., contraction trees) and precise quantification of
the space and time costs is a foundation for minimizing those costs as much as possible.

In Section 2.2, we go over the graph-theoretic concepts that are the foundation of this work.
In Section 2.3, we present seemingly unrelated graph properties in a unified framework that
may be of independent interest. Section 2.3, while strictly unnecessary for understanding the
main results, helps explain the relationship between our work and prior work. In Section 2.4,
we introduce the cost model on which our results are based. In Section 2.5, we give our
main results. In Section 2.6, we discuss extensions and generalizations of the main ideas. In
Section 2.7, we prove that the edge congestion of a graph is almost equal to the branchwidth
of its line graph.

There are several possible directions for future work:

• Proving the hardness of exactly or approximately computing the vertex or edge conges-
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tion of a graph, including of special cases like planar graphs.

• Inventing algorithms (that aren’t simply disguised treewidth or branchwidth algorithms)
for finding small-congestion contraction trees.

• Exploring the space-time trade-off of vertex and edge congestions. They are always
within a small multiplicative constant of each other, but can they be exactly minimized
simultaneously? If not, what does the trade-off look like, particularly for graphs of
practical interest like 2D and 3D grids.

• Parallelizing at larger scale. In our discussion of parallelized algorithms, we neglected
communication costs. While this is probably reasonable at a relatively small number of
parallel processes (i.e., that can be on a single multi-processor node of a cluster), at
larger scales it may become material and worth trying to minimize.

• Adapting our methods to approximate tensor network contraction.

• Finding analogous methods for optimizing tensor-network ansatzes. For example, it is
known that optimizing (bounded-bond dimension) tree tensor networks is easy. Can
this be generalized in a parameterizable way as we did for tensor network contraction?

2.2 Background
Let [i, n] = {j ∈ Z|i ≤ j ≤ n}, [n] = [1, n], and [n] = [n1] × [n2] × · · · × [nr] for n =
(n1, . . . , nr) ∈ (Z+)

r. Let G[S] =
(
V,E ∩

(
S
2

))
be the subgraph of G induced by a subset

of the vertices S ⊂ V (G). For two disjoint sets of vertices of an edge-weighted graph,
w(S, S ′) =

∑
{u,v}∈E|u∈S,v∈S′ w({u, v}) is the sum of the weights of the edges between S ⊂ V

and S ′ ⊂ V . More generally, for r disjoint sets of vertices, w(S1, . . . , Sr) =
∑

{i,j}∈([r]2 )
w(Si, Sj)

is the sum of the weights of the edges with endpoints in distinct sets. In this context, we
will denote singleton sets by their sole elements, e.g., w(u, v) = w({u}, {v}) = w({u, v}). Let
N(v) be the neighbors of a vertex v.

2.2.1 Tensor networks and contraction

A tensor can be defined in several equivalent ways. Most concretely, it is a multidimensional
array. Specifically, a rank-r tensor is an r-dimensional array of size d = (d1, . . . , dr). More
abstractly, a tensor is a collection of numbers indexed by the Cartesian product of some set
of indices, e.g., [Ti1,i2...,ir ](i1,i2,...,ir)∈[d1]×[d2]×···×[dr]

indexed by i ∈ [n]. Alternatively, a tensor
can be thought of as a multilinear map T : [d] → C. (Our focus will be on complex-valued
tensors.)

Definition 1 (Tensor network). A tensor network (G,M) is an undirected graph G with
edge weights w and a set of tensors M = {Mv|v ∈ V (G)} such that Mv is a |N(v)|-rank
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×

Figure 2.2: Three ways of viewing the contraction of two tensors. Left: multiplication of a
dL × dM-rank tensor with a dM × dR-rank tensor, resulting in a dL × dR-rank tensor. Middle:
contraction of a degree wL + wM vertex with a degree wM + wR vertex, resulting in a degree
wL + wR vertex. Right: removing a close pair of leaves (with congestions wL + wM and
wM + wR) of a contraction tree, leaving a new leaf with congestion wL + wR.

tensor with 2deg(v) entries, where deg(v) =
∑

u∈N(v)w({u, v}) is the weighted degree of v.
Each edge e corresponds to an index i ∈

[
2w(e)

]
along which the adjacent tensors are to be

contracted.

The contraction of two tensors is the summation over the values of their shared indices.
Graphically, this is like an edge contraction of the edge adjacent to the two tensors. The result
is a new tensor that takes the place of the two original ones. 1 See Figure 2.2. Let v1 and v2
be the vertices contracted into the new vertex v{1,2}. The weight of an edge between the new
vertex and any other vertex v′ is w

(
v{1,2}, v

′) = w ({v1, v2}, v′) = w (v1, v
′) + w (v2, v

′).
Except in Section 2.6, we assume that all tensor networks have no “open legs”, i.e., every

edge connects two vertices (tensors). In this case, the value of a tensor network is the single
number that results from contracting all of its edges. Each contraction reduces the number
of vertices (tensors) by one, so the network is fully contracted by n − 1 contractions. We
call a sequence of such contractions a contraction order. The value of the tensor network is
independent of the contraction order, but the cost of doing the contraction can vary widely
depending on the contraction order. Each contraction is identified by an edge, but that edge
may not be in the original graph, i.e., its adjacent vertices may have been formed by earlier
contractions. One way of specifying a contraction order is by a sequence of edges of the
original graph that constitute a spanning tree thereof. In Section 2.5, we introduce the notion

1 Note that this is a “parallel” model of contraction, whereas Markov and Shi use “one-edge-at-a-time”
contraction of multigraphs. They are equivalent in the sense that an edge with integer weight can be
considered as that number of (unweighted) parallel edges. The parallel model more closely matches how
contraction is done in practice. It also allows for arbitrary bond dimension, whereas the multigraph model
requires that all bond dimensions be powers of the same base.
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of contraction trees, which allow for a conceptually clear way of expressing contraction orders
that makes manifest the associated temporal and spatial costs.

Exactly computing the value of a tensor network is #P-hard [16], as a tensor network can
be constructed that counts the number of satisfying assignments to a satisfiability instance or
the number of proper colorings of a graph. Even multiplicative and additive approximation is
NP-hard [6]. Interestingly, approximating the value of a tensor network with bounded degree
and bounded bond dimension is BQP-complete [6]. That is, not only can tensor networks
simulate quantum circuits, but quantum circuits can simulate tensor networks as well. In
this sense, tensor networks and quantum circuits are computationally equivalent.

2.2.2 Treewidth and branchwidth

This section is intended primarily to establish notation and recapitulate the standard defini-
tions of the graph properties used in the present work. For a more thorough and pedagogical
treatment, see Diestel’s excellent textbook [54]. Many instances of graph problems that
are hard in general are actually easy when instance graphs are restricted to trees. In many
such cases, this generalizes in the sense that it is possible to characterize the hardness of an
instance by how “tree-like” it is, as captured by the treewidth of the graph. The treewidth of a
graph is defined in terms of an optimal tree decomposition. Treewidth has several alternative
characterizations; one of these, elimination width, is the basis of Markov and Shi’s result
equating treewidth and contraction complexity.

Definition 2 (Tree decomposition). A tree decomposition of a graph G = (V,E) is a tuple
(T,X ) of a tree T and a tuple X = (Xt)t∈V (T ) of subsets (called bags) of the vertices of G
with the following properties.

1. For every edge {u, v} ∈ E(G), there is some bag X ∈ X that contains both endpoints:
u, v ∈ X.

2. For every vertex v ∈ V (G) of G, the subtree Sv of T induced by the bags Sv =
{X ∈ X |v ∈ X} containing v is non-empty and connected.

Definition 3 (Width and treewidth). The width of a tree decomposition (T,X ) of a graph
G is one less than the size of the largest bag: width(G, T,X ) = width(X ) = maxX∈X |X| − 1.
The treewidth of a graph is the minimum width of a tree decomposition of the graph.

A related concept is that of path decompositions and pathwidth, defined analogously to tree
decompositions and treewidth, except restricted to paths rather than trees.

Definition 4 (Path decomposition and pathwidth). A path decomposition of a graph G is a
tree decomposition (T,X ) of G such that T is a path. The pathwidth pathwidth(G) of G is
the minimum width of a path decomposition of G.
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Definition 5 (Branch decomposition). A branch decomposition of a graph G = (V,E) is a
tuple (T, b) of a binary tree T and a bijective function b : E(G) → V (T ) between the edges
E of G and the leaves of T .

For each vertex v ∈ V (G) of G, let Sv ⊂ V (T ) be the minimal spanning tree of T that
contains all the leaves corresponding to edges adjacent to v.

Definition 6 (Branchwidth). The width, denoted widthG(T, b, {s, t}), of an edge {s, t} ∈ E(T )
of a branch decomposition (T, b) of a graph G is |{v ∈ V (G)|{s, t} ⊂ Sv}|, i.e., the number
of vertices of G such that the subtree T [Sv] contains {s, t}. The width of the branch
decomposition is the largest width of an edge, widthG(T, b) = maxf∈E(T ) widthG(T, b, f). The
branchwidth branchwidth(G) = min(T,b) widthG(T, b) of a graph is the minimum width of a
branch decomposition thereof.

2.2.3 Congestion

There is an alternative but less explored way of quantifying how “tree-like” a graph is: the
minimum congestion of a tree embedding, introduced by Bienstock [18].2

Definition 7 (Tree embedding). A tree embedding of a graph G is a tuple (T, b) of a binary
tree T and a bijection b : V (G) → V (T ) between the vertices of G and the leaves of T .

Let Sv,w be the unique path between the leaves b(v) and b(w) of T .

Definition 8 (Congestion). The congestion of a vertex v ∈ V (T ) (resp., edge f ∈ E(T )) is
the total weight of the edges e ∈ E(G) whose subtrees Se include v (resp., f).

2.2.4 Cutwidth

Definition 9 (Cutwidth). Let f : V → [n] be a linear ordering of the vertices of a graph
G = (V,E). The cutwidth of f is the maximum number of edges that cross a gap:

max
i∈[n−1]

|{{u, v} ∈ E|f(u) ≤ i < f(v)}| .

The modified cutwidth of f is the maximum number of edges that cross a vertex:

max
i∈[n]

|{{u, v} ∈ E|f(u) < i < f(v)}| .

The cutwidth (resp., modified cutwidth) of a graph is the minimum cutwidth (resp., modified
cutwidth) of a linear ordering. For edge weighted graphs, the weighted cutwidth and modified
cutwidth count the total weights of the relevant edge sets rather than their cardinalities. For
a directed acyclic graph, the directed cutwidth (resp., modified cutwidth) is the minimum
cutwidth (resp., modified cutwidth) of a linear ordering that is topologically sorted according
to the graph.

2 Note that this is entirely distinct from a different type of congestion problem in which the goal is find
routings for some specified set of pairs of terminals.
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Target family
Leaves Subtrees Minimization over Trees Caterpillars
Edges Vertices Vertices Treewidth Pathwidth
Edges Vertices Edges Branchwidth

Vertices Edges Vertices Vertex congestion Modified cutwidth
Vertices Edges Edges Edge congestion

Figure 2.3: Table of graph properties. Each row corresponds to an instantiation of Equa-
tion 2.1.

2.2.5 Parameterized complexity

Approximating both treewidth and pathwidth to within a constant factor is NP-hard, though
there exist efficient algorithms for logarithmic and polylogarithmic approximations, respec-
tively [24, 25]. However, deciding whether or not the treewidth is at most some constant can
be done in linear time (albeit it with an enormous prefactor) [22]. For many graph problems,
e.g., Maximum Independent Set, there exist algorithms whose run time is exponential only in
the treewidth or pathwidth, i.e., given the instance graph and a tree decomposition thereof
of width k, the algorithm runs in time 2knO(1) [7]. The Exponential Time Hypothesis (ETH)
implies that several such parameterized complexity results are optimal, in the sense that
there exists no 2o(k)nO(1) algorithm [52].

The situation is similar for branchwidth. Computing the branchwidth of a graph is in
general NP-hard, but can be done efficiently for planar graphs [142]. (Whether computing
the treewidth of a planar graph is NP-hard is an open question.) As is the case for treewidth,
there is a constructive linear time algorithm for deciding whether or not the branchwidth
is at most some constant (and in this case with better constant factors) [23]. Good branch
decompositions can be used to implement dynamic programming algorithms for problems
such as the traveling salesman problem [46].

Computing the vertex congestion of a graph is claimed to be NP-hard [18], but no proof
appears in the literature.

Computing the (edge) cutwidth is NP-hard, but for any constant k, a linear ordering of
cutwidth k (for all variants) can be found in linear time if one exists [21].

2.3 Unified framework of graph properties
In this section, we present a unified framework of various graph properties, as captured in
the following combined definition:
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A
{ tree decomposition

branch decomposition
tree embedding
tree embedding

}
of a

{vertex
vertex
edge
edge

}
-weighted graph G is a tuple (T, b) of a binary tree T

and a bijection b between the leaves of T and the
{

edges
edges

vertices
vertices

}
of G. The bijection b implies a

subtree for every
{vertices

vertices
edges
edges

}
of the graph. The

{ treewidth
branchwidth

vertex congestion
edge congestion

}
of the graph is the minimum

over all
{ tree decompositions

branch decompositions
tree embeddings
tree embeddings

}
of the maximum total weight of all subtrees containing any{vertex

edge
vertex
edge

}
. The

{
pathwidth

—
modified cutwidth

—

}
is defined in the same way as

{
treewidth

—
vertex congestion

—

}
except that T

is restricted to be a caterpillar.
(2.1)

Let’s unpack this. For branchwidth and congestions, (2.1) is the standard definition. For
the others, (2.1) is non-standard but equivalent to the standard definitions. Writing them
all in this way helps elucidate the relationships between them, which are obscured by the
standard definitions.

Note that both the vertex and edge congestions of a graph G are defined as optimal
properties of the same type of object, namely a tree embedding (T, b). For every edge
e ∈ E(G), the mapping b : V (G) → V (T ) of the vertices to leaves of the tree implies a
minimal subtree Se connecting the leaves of T corresponding to its endpoints in G. (For an
edge of size 2, this subtree Se is a path, but the definition allows for hyperedges as well.) The
vertex and edge congestions are then the maximum total weight of subtrees that contain any
vertex or edge, respectively, of the tree T .

There is a similar relationship between treewidth and branchwidth. Usually, we think of
a tree decomposition of a graph G = (V,E) as a tree T and a subtree Sv for every vertex in
V (G) such that the subtrees for every pair of adjacent (in G) vertices overlap. In (2.1), Sv is
specified implicitly as the (unique) minimal spanning subtree of T that connects the leaves of
T corresponding to the edges of G that are incident to v. By design, this tree T and set of
subtrees is the same as that for a branch decomposition. The treewidth and branchwidth are
the maximum total weight of subtrees (now corresponding to vertices of G) that contain any
vertex or edge, respectively, of the tree T .

So we see that the congestions are defined by the overlap of subtrees of T corresponding
to edges of G and that the tree- and branchwidths are defined by the overlap of subtrees of T
corresponding to vertices of G, the former implied by a mapping from vertices of G to leaves
of T and the latter by a mapping from edges of G to leaves of T . The vertex congestion
and treewidth are concerned with the overlap at vertices of T , and the edge congestion
and branchwidth with the overlap on edges of T . Thus we have made the analogy that
treewidth : branchwidth :: (vertex congestion) : (edge congestion). For example, that [138]
bw(G) ≤ tw(G) ≤ 3

2
bw(G) and [18] ec(G) ≤ vc(G) ≤ 3

2
ec(G) is no coincidence.
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Now consider the line graph L(G) = (E, {{e, e′} ⊂ E|e ∩ e′ ̸= ∅}) of a graph G = (V,E).
Suppose we have a tree embedding (T, b) of the original graph G, with an implied subtree Te
for every edge e ∈ E(G). Because the vertices of the line graph L(G) correspond to the edges
of G, this can be considered as a branch decomposition of the line graph L(G). For every
pair of edges e, e′ ∈ E(G) = V (L(G)) that are adjacent in the line graph, the corresponding
subtrees Se, Se′ intersect at the leaf b(v) ∈ V (T ), where v ∈ e, e′ is the vertex of G adjacent to
e and e′. The vertex congestion of the tree embedding (T, b) is the width of (T, b) interpreted
as a tree decomposition, and the edge congestion of the tree embedding is the width of
(T, b) interpreted as a branch decomposition. This implies that tw(L(G)) ≤ vc(G) and
bw(L(G)) ≤ ec(G). Actually, these inequalities are tight or almost so: tw(L(G)) = vc(G) and
bw(L(G)) ≤ ec(G) ≤ bw(L(G))+

⌊
G)
3

⌋
. The other direction, going from a tree decomposition

to a tree embedding, requires seeing that a tree decomposition of a line graph can be made
to have a particular structure, specifically that the edges of L(G) corresponding to each
vertex of G can be mapped to disjoint subtrees of T . The equality was shown by Harvey and
Wood [80] and captures how our characterization of the temporal costs of tensor network
contraction relates to earlier characterizations. However, our characterization in terms of
tree embeddings, while mathematically equivalent to that in terms of tree decompositions of
line graphs, allows for a conceptually cleaner and more fine-grained perspective. We prove
the inequalities in Section 2.7.

Theorem 3. The edge congestion of graph G is at least the branchwidth of its line graph
and at most the same plus a third of its maximum degree. Furthermore, a tree embedding
with edge congestion k + ⌊G)/3⌋ can be efficiently computed from a branch decomposition
of width k and a branch decomposition of width k can be efficiently computed from a tree
embedding with edge congestion k.

For vertex congestion and treewidth (which concern the overlap of subtrees at vertices),
the requirement that the mapping be a bijection with the leaves of the tree can be dropped,
as can the requirement that the tree be binary. Yet these requirements are without loss of
generality, as any tree embedding or tree decomposition can be modified to satisfy these
without increasing its vertex congestion or treewidth, respectively. For edge congestion and
branchwidth, which concern overlap over edges, the bijection and degree requirements are
essential.

The usual definitions for pathwidth and modified cutwidth are in terms of paths (or,
equivalently, linear orderings), whereas in (2.1) we allowed them to be caterpillars. This is
equivalent, and allows us to relate the properties just discussed with their linear variants.
In particular, the relationship between the bubblewidth of a tensor network (G,M) and its
“contraction complexity” is almost the same as that between the modified cutwidth of the
graph and its vertex congestion, in the sense that the bubblewidth is exactly equal to the
cutwidth and cw(G) ≤ mcw(G) ≤ cw(G) +G).

We can make another analogy, that treewidth : (vertex congestion) :: pathwidth :
(modified cutwidth) . For example, [21, 80] 1

2
(tw(G) + 1) ≤ vc(G) + 1 ≤ G) (tw(G) + 1) and
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pw(G) ≤ mcw(G) + 1 ≤ G) (pw(G) + 1).
The (unmodified) cutwidth is a linear analog to what Ostrovskii called the “tree congestion”

of a graph [127]; the tree congestion is the same as the edge congestion except that there is a
bijection between all the vertices of the binary tree, rather than just the leaves.

2.4 Contraction costs
Our primary motivation is minimizing the time and space costs of tensor network contraction.
Ideally, for instances of interest we would like to provably minimize the cost, which entails
tight lower bounds and the corresponding constructions that meet them. Given the formal
hardness of tensor network contraction and the informal hardness of proving lower bounds,
we restrict our attention to minimizing the cost of tensor network contraction as it is most
commonly done: as a series of matrix multiplications.

First, how much space is required to store a tensor network (G,M)? Each tensor Mv

consists of 2v numbers; this is the main component of the space requirements. Technically,
we must also keep track of the graph G and the weights of its edges E(G) as well as a dope
vector for each tensor indicating how the tensor is laid out in memory; these will be negligible.
Our memory accounting will be in units of whatever is used to store a single entry of a
tensor. While in general, the bit depth of an entry may scale non-trivially with instance size,
practical implementations will use a fixed-width data type.

Then, what do we need to do a contraction of two tensors? Suppose we want to contract
a (dL, dM) tensor with a (dM, dR) tensor along their shared dimension dM. The input tensors
require a total of dM(dL + dR) space and the output tensor dLdR. In theory, it should be
possible to do the contraction using no more space than that required by the larger of the
input tensors and output tensor. In practice, new memory is allocated for the new tensor,
it is populated with the appropriate data from the input tensors, and then the memory for
the latter is freed. We assume the second cost model, in which memory is simultaneously
allocated both for the tensors to be contracted and for the tensor that results from their
contraction, but our ideas are straightforwardly modifiable for plausible variants.

The contraction itself is essentially matrix multiplication, and a straightforward im-
plementation will take time dL · dM · dR. There exist Strassen-like algorithms for matrix
multiplication with better asymptotic runtime, but the constant pre-factors are so large and
the straightforward algorithm so heavily optimized that they are of little practical value given
the size of currently available machines.

Lastly, in order to implement a tensor contraction as a matrix multiplication, the tensors
must be laid out commensurately in memory. If they are not, then the data of one tensor or
both must be permuted to make them so. This permutation can effectively be done in place
and in linear time. In practice, the permutation time is negligible compared to the matrix
multiplication time.
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T5
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Figure 2.4: Two series of contraction trees (unrooted and rooted on left and right, respectively)
for a tensor network with 5 tensors. From top to bottom, the contraction trees for the initial,
intermediate, and final tensor networks. The pair of leaves corresponding to the next pair of
tensors to be contracted are highlighted in green.

2.5 Contraction orders and trees
In this section, we present our main contribution: a graph-theoretic characterization of the
temporal and spatial costs of families of contraction orders.

2.5.1 Linear contraction orders

We start with a special case of contraction orders. Let a linear contraction order be one
specified by an ordering of the vertices (v1, v2, . . . , vn). That is, the first contraction is of
vertices v1 and v2 to form a new vertex v1,2. The second contraction is of v1,2 and v3 to form
v1,2,3, and so on. We represent such a contraction order by what we call a rooted contraction
tree. The contraction tree of a linear contraction order is a binary caterpillar tree with n+ 1
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↓ ↓ ↓ ↓ ↓

Figure 2.5: The intermediate states of a contraction procedure. The tree pictured is a rooted
contraction tree, with the root at the left. The dashed line crosses edges of the contraction
tree adjacent to tensors held in memory.

leaves, one for each vertex of the original graph and a special leaf called the root, as shown in
Figure 2.4. The root leaf is at one of the “ends” of the tree. Each vertex vi for i ∈ [2, n] is at
distance n+ 2− i from the root, and vertex v1 is at distance n therefrom. We denote such a
contraction tree by (T, b), where T is the tree and b : V (G) → V (T ) ∪ {r} is the bijection
between the vertices of G and the leaves of T together with the root r.

Recall that for a tensor network (G,M), we are using the convention that the weight
w(u, v) of an edge {u, v} is the logarithm of the bond dimension of wire connecting tensors
Mu and Mv. For each edge {u, v} of G there is a unique path in T between b(u) and b(v),
which we call a routing. Assign the weight w(u, v) to every vertex and edge on this path,
including the endpoints b(u) and b(v). We say that the congestion of a vertex or edge of T ,
denoted con(v) or con(e), is the sum of the weights of all the routings that include it. Label
the non-root leaves of T by li = b(vi) and the internal vertices by ti for i ∈ [n − 1], where
tn−1 is closest to the root and t1 is farthest. For concision, identify t0 with t1.

We now show that these congestions capture the costs of the contraction order. First, note
that for each vertex v ∈ G, the congestion con(e) of the edge e ∈ E(T ) adjacent to b(v) gives
the size of the tensor Mv, in the sense that con(e) =

∑
u∈V (G)w(v, u) = v, so that 2con(e) is

the product of the bond dimensions of the tensor Mv. Now, consider the first contraction, of
vertices v1 and v2, i.e., tensors Mv1 and Mv2 . The bond dimension of the wire between them
is 2w(v1,v2). The product of the bond dimensions of Mv1 with tensors besides v2 is 2degv1 −w(u,v),
and similarly for Mv2 . As discussed in Section 2.4, the contraction can be done in time
2degv1 −w(u,v) · 2w(u,v) · 2degv2 −w(v1,v2) = 2w(v1,v2,V (G)\{v1,v2}), where w(v1, v2, V (G) \ {v1, v2}) is
the total weight of edges across the tripartite cut. This is exactly the congestion of the vertex
t ∈ V (T ) adjacent to both b(v1) and b(v2). Suppose that we have done the contraction,
yielding a new tensor network containing the contracted vertex v1,2. The size of this new
tensor Mv1,2 is 2w({v1,v2},V \{v1,v2}) = 2con({t1,t2}). If we continue with the contractions, we
notice an exciting pattern. We can identify each contraction with an internal vertex of T .
The congestion of that vertex gives the time to do the contraction, and the congestion of
the adjacent edge nearest the root gives the space of the resulting contracted tensor. The
congestion of the leaves, which is equal to the congestions of the adjacent edges and gives the
size of the corresponding tensors, can be interpreted as giving the time required to simply
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read in the tensors of the initial network to be contracted. Overall, the total time of all
the contractions is

∑
t∈V (T ) 2

con(t) ≤ 2n · 2vertconT,b(G), where vertconT,b(G) = maxt∈V (T ) con(t).
Furthermore, each edge e ∈ E(T ) corresponds to a tensor Me that appears at some point
in the series of contractions; those adjacent to leaves correspond to the initial tensors and
internal edges to tensors resulting from contractions. The congestion of each edge gives the
size of the corresponding tensor, in the sense that the size of Mf is 2con(f). At any point
point in the contraction order, there are at most n tensors, so the required memory is at
most n2edgeconT,b(G), where edgeconT,b(G) = maxf∈E(T ) con(f). As shown in Section 2.3, the
minimum vertex congestion over all linear contraction orders is exactly equal the vertex
cutwidth of G. It is closely related to the bubblewidth of earlier work [6], which is exactly
equal to the edge cutwidth. The minimum edge congestion over all linear contraction orders
is exactly equal to the edge cutwidth of G.

2.5.2 General contraction orders

We now turn our attention to general (i.e., not necessarily linear) contraction orders. The
first generalization we make is to remove the root. In other words, for each linear contraction
order we form an unrooted contraction tree exactly as before except that leaves of T are in
unqualified bijection with the vertices of G. This unrooted contraction tree can be interpreted
as corresponding to 2n−2 different contraction orders in the following way. Define a pair of
leaves in a binary tree to be close if they are at distance 2. In the caterpillar binary trees
we have considered thus far, there are two pairs of close leaves, at each “end” of the tree.
Before, we used a rooted caterpillar contraction tree to represent the unique contraction
order given by contracting the two non-root close leaves until we got to the root. Now, the
unrooted caterpillar contraction tree represents the family of contraction orders that can be
specified by contracting either pair of a close leaves of the contraction tree until a single
vertex remains. Importantly, it remains true that every one of these contraction orders takes
time exactly

∑
t∈V (T ) 2

con(t) = Õ
(
2vertconT,b(G)

)
and space Õ

(
2edgeconT,b(G)

)
.

The second generalization we make is to remove the restriction to caterpillar trees.

Definition 10. A rooted contraction tree (T, b) of a tensor network (G,M) is a rooted
binary tree T and a bijection b : V (G) → V (T ) between the vertices (tensors) of G and the
(non-root) leaves of T . An unrooted contraction tree (T, b) is an unrooted binary tree T and
a bijection b : V (G) → V (T ) between the vertices of G and the leaves of T .

An unrooted contraction tree represents a set of contraction orders in the following way.
Suppose we have a contraction order e1, . . . , en−1; Each edge can be written as ei = {vS, vS′}
for some disjoint S, S ′ ⊂ V (G), where vS is the vertex formed by contracting the vertices in
S. We start with an empty forest T1 = (V (G), ∅). For each contraction ei = {vS, vS′}, we
add a new vertex vS∪S′ to the forest, as well as edges from the new vertex to vS and vS′ . That
is, Ti = (V (Ti−1) ∪ {vS∪S′}, E(Ti−1) ∪ {{vS, vS∪S′}, {vS′ , vS∪S′}}). For the last contraction,
instead of adding a new vertex, we only add an edge between vS and vS′ . Doing this yields
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an unrooted contraction tree for the given contraction order. We say that an unrooted
contraction tree represents the set of contraction orders from which it can be constructed in
this way. If for the last contraction, we added not only a new vertex vV connected to vS and
vS′ but a second vertex r connected vV , we would have a rooted contraction tree.

We can easily go the other way as well. Suppose we have a rooted contraction tree. Then
we can iteratively build a contraction order. We select an arbitrary close pair of non-root
leaves, and add to the contraction order the contraction corresponding to the adjacent internal
vertex (of the tree). We then remove the two leaves and their adjacent edges. The internal
vertex now becomes a leaf, and corresponds to the vertex resulting from contracting the two
vertices (of the tensor network) in the new contraction tree. We repeat until only a single
edge of the tree remains, corresponding to the completely contracted tensor network and the
root. This is the same procedure visualized in Figure 2.4, except that, when the contraction
tree is not restricted to be a caterpillar, there may be many more than two pairs of close
leaves to choose from at each step.

Given an unrooted contraction tree, we can turn it into a rooted contraction tree by
splitting any edge (i.e., removing an edge, adding a new vertex and adding edges between
the new vertex and the vertices adjacent to the removed one), and then adding a root vertex
and connecting it to the first newly inserted vertex.

Proof of Theorem 1. In a contraction tree, either rooted or unrooted, each internal vertex
corresponds to a contraction. In rooted contraction trees, there is a clear directionality; two
of the neighbors are “inputs” and the third is “output”. However, the congestion of the vertex,
the exponential of which gives the time to do the matrix multiplication, is independent of
this directionality. Similarly, each edge of a contraction tree corresponds to a tensor that
exists at some point in the contraction (specifically, when the edge is adjacent to a leaf).
Again the congestion of this edge is independent of its direction, and the size of the tensor is
the exponential of the congestion. Without loss of generality, we prove the theorem using
rooted contraction trees.

Suppose we have a rooted contraction tree (T, b) of a tensor network (G,M). Each
internal vertex i ∈ V (T ) corresponds to a matrix multiplication, which takes time 2vc(i). Each
leaf l ∈ V (T ) corresponds to an initial tensor of size 2vc(l), where vc(l) = G (b−1(l)). Overall,
the total time then is

∑
t∈V (T ) 2

vc(t) ≤ 2n2vc(T ).
The rooted contraction tree gives a partial ordering of its vertices, which represent

contractions (or initial tensors). Any topologically sorted linear ordering (t1, t2, . . . , t2n−2)
of the vertices of the contraction tree can be considered uniquely as a contraction order
consistent with the contraction tree, and vice versa. For a given contraction order, consider
the intermediate state at some point in the overall contraction procedure. Let ti be the last
tensor contracted and ti+1 the next one to contract. Each edge f ∈ E(T ) from {t1, . . . , ti}
to {ti+1, . . . , t2n−2} corresponds to a tensor that needs to be stored at this point. The size
of the tensor is exactly 2ec(f). The size of the next tensor (resulting from the contraction
corresponding to ti+1) is 2ec(f

′), where f ′ is the edge from ti+1 towards the root of T . Using
the convention that the weight of an edge f ∈ E(T ) of T is w(f) = 2ec(f), then the directed,
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weighted modified cutwidth of a vertex ti+1 in a linear ordering (t1, . . . , t2n−2) of the vertices
of T is exactly equal to the space needed to store the remaining tensors to be contracted and
make room for the tensor resulting from the next contraction. Once the contraction is done,
the memory allocated for the two tensors that were contracted can be freed. For the coarser
space bound, we can just pre-allocate memory for every tensor that will arise during the
procedure, in total space

∑
f∈E(T ) 2

ec(f) ≤ 2n2ec(T ).
Overall, if we choose a contraction tree T with minimum vertex congestion, i.e., vc(G) =

vc(T ) ≥ ec(T ), we get time at most n2vc(G) and space at most n2vc(G). If instead we choose a
contraction tree T with minimum edge congestion, i.e., ec(G) = ec(T ) ≥ (2/3)vc(T ), we get
time at most n21.5ec(G)+1 and space at most n2ec(G). Tightness follows from the fact that for
any contraction order, we can construct a rooted contraction tree whose properties give the
stated bounds.

Proof of Theorem 2. Suppose we have a rooted contraction tree (T, b) and that l∗ ∈ V (T ) is
a leaf on a longest path from a leaf to the root using the vertex weight w(t) = 2vc(t). Call
this path from l∗ to the root the critical path P∗. The vertices on P∗, ordered from the leaf
to the root, represent a series of contractions. This series of contractions can be done in time∑

t∈V (P ∗) 2
vc(t), the vertex-weighted length of the P ∗, which by definition is the longest such

path. We prove the claim for general contraction trees by induction. The base case is a tensor
network of just two tensors, so that there is just a single contraction and the critical path has
3 vertices. The inductive step is that if the claim is true for a contraction tree whose critical
path has k vertices, it is true for a contraction tree whose critical path has k + 1 vertices.
Consider the last vertex t on P ∗ nearest the root. It corresponds to a contraction of a tensor
from an earlier contraction P∗ and a tensor from the remaining subtree of T , i.e., the part
of tree not containing P ∗. By definition, the length of the critical path of this subtree is no
more than the length of the subpath from l∗ to t; otherwise P ∗ would not be the longest path.
Therefore, this subtree can be contracted in less time than the earlier parts of P ∗. These can
be done in parallel, so the overall time is simply that for P ∗.

As shown in Section 2.7, a branch decomposition of L(G) with width k can be efficiently
converted into a contraction tree of G with edge congestion k + ⌊G)/3⌋. Similarly, a tree
decomposition of L(G) with width k − 1 can be efficiently converted into a contraction tree
of G with vertex congestion k [80]. Thus one way of utilizing these results is to use an
existing algorithm for finding tree decompositions or branch decompositions as a starting
point. Theorems 1 and 2 can then be used to construct minimum-cost contraction orders in a
more precise way than previous results allow. Developing empirically good implementations
of algorithms for finding tree decompositions is a particularly active area research [149]. These
are already exploited in much recent work on tensor network contraction [27, 38, 153]. The
framework presented here can significantly augment the effectiveness of such techniques. For
instances with a lot of structure, as typical ones do, the intuitiveness of contraction trees also
empowers manual construction of contraction trees.
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|x〉
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|y〉⋯ ⋯
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li li

Figure 2.6: Contraction tree representation of the Schrödinger algorithm for computing
⟨x|G1G2 · · ·Gm|y⟩.

There are also techniques for certifying the optimality of tree decompositions and branch
decompositions (namely, brambles and tangles) that can be ported to certify the optimality of
contraction trees with respect to vertex and edge congestion, respectively. For planar graphs,
the exact edge congestion can be computed (non-constructively) in polynomial time [142]. In
addition to serving as a lower bound for calculations, the structure of such obstructions may
help with understanding the complexity of quantum states as represented by tensor networks.

2.6 Extensions and generalizations
Heretofore, we have assumed that all tensor networks under consideration had no open legs,
i.e., that they contract to a single number (0-rank tensor). More generally, we can consider
tensor networks with open legs that contract to non-trivial tensors. For such tensors, we
treat any open legs as wires to a single “environment” tensor, which we then identify with the
root of a rooted contraction tree. For the purposes of minimizing the congestion, the graph
will simply have one more vertex. All previous results regarding the costs of contraction then
follow exactly as before without modification.

We can also allow tensor networks (G,M) in which G is a hypergraph. Recall how we
defined the congestions of a contraction tree (T, b). Each vertex v ∈ V (G) was identified
with a leaf of T through the bijection b. Then each edge {u, v} ∈ E(G) contributed its
weight to the congestions of the vertices and edges on the routing (unique path) between b(u)
and b(v) in T . For a hyperedge {v1, . . . , vk}, there is a unique subtree of T connecting the
adjacent vertices (which is equal to the union of the paths connecting each pair of edges).
Then the hyperedge contributes its weight to the congestions of the vertices and edges on
this subtree. The hyperedge corresponds to a so-called “copy” tensor with k legs of the same
bond dimension b [16]. The copy tensor is one when all indices have the same value and is
zero otherwise. Such a tensor arises, e.g., in a decomposition of a controlled quantum gate.

Decompositions of tensors highlight the main limitation of the present work. While our
upper bounds are unconditional, our lower bounds hold only within what we call the matrix
multiplication model, in which the only operations allowed are matrix multiplications. This
takes advantage only of the topological properties of G and, importantly, not of the properties
of the tensor M. However, in many cases of practical interest, the tensors have structure
that can be exploited. For example, a tensor corresponding to a quantum gate can be split
into two tensors connected by a wire with bond dimension equal to the Schmidt rank across



22

some bipartition of the qubits on which it acts. For gates with less-than-full Schmidt rank,
this can help with contraction significantly. Once such a decomposition is made, the sparser
graph structure can be exploited by the methods presented here.

Tree-based methods for tensor network contraction are used in state-of-the-art simulations
of quantum circuits, where “simulation” here means calculation a single matrix element
⟨x|C|y⟩ for a pair of basis states (|x⟩ , |y⟩) and the circuit C. In addition to providing a
precise analysis of such methods, we can also analyze algorithms not usually expressed in such
terms. For example, consider the “Schrödinger” algorithm: a state vector of size 2n is kept in
memory and for each of m gates in sequence. Suppose each gate acts on at most l qubits.
Let the circuit be represented as a tensor network with m+ 2 tensors: one for each gate, one
for the output |x⟩, and one for the input |y⟩. In the corresponding graph G, the vertex |x⟩ is
adjacent to each of the gate vertices that first act on a qubit, with weight equal to the number
of qubits that are first acted on by the gate. Similarly for |y⟩. The Schrödinger algorithm is
then a linear contraction order using the vertex ordering (|x⟩ , G1, . . . , Gm, |y⟩). Each internal
vertex of the contraction tree adjacent to the vertex corresponding to the li-local gate Gi has
congestion n+ li: n− li from the qubits not acted on by the gate, then li each from the input
and output wires. The total time for the contraction is thus

∑m
i=1 2

n+li ≤ m2n+l = O(m2n),
where l = O(1) is the maximum locality of a gate. Each internal edge has congestion n, so
the contraction can be done using space O(2n).

An alternative approach is the “Feynman”, or path integral, algorithm, which inserts
resolutions of the identity after every gate and sums. Now we consider the tensor network
corresponding to ⟨x|C|y⟩ slightly differently. For simplicity, assume all gates are 2-local.
Instead of having a single vertex |x⟩ for the input, we have n vertices |xi⟩, one for each qubit.
Similarly, we have n output vertices {|yi⟩}. First, we contract the input vertices |xi⟩ into
the adjacent gate vertices. This leaves 2m wires, 2 from each gate to the next or an output.
Suppose that instead of contracting the entire tensor network, we remove a single wire and
replace it with |b⟩ ⟨b| for b ∈ {0, 1}. The value of the original network is the sum of the values
of the reduced networks over b ∈ {0, 1}. The Feynman algorithm is then to do this for all
wires. For each value b ∈ {0, 1}2m, we have a tensor network of m tensors and no wires,
which we can “contract” in O(m) time and O(1) space. But we need to do this for every b
and sum them up, meaning overall it takes O (m4m) time. We need O(n+m) space to keep
track of x, y, and b. We can generalize this approach to arbitrary tensor networks. First, we
remove some set S ⊂ E(G) of edges, with total weight W =

∑
s∈S w(e). There are 2W values

of the corresponding wires, and for each one we contract the reduced tensor network. Let
G̃ = (V,E \ S) be the reduced network. Overall, for a sequential algorithm, this takes time
Õ
(
2W+vc(G̃)

)
and space Õ

(
W +m2ec(G̃)

)
. Moreover, we consider the cuts S as allowing

trivial parallelization, by doing the 2W contractions of the reduced network in parallel on
the same number of processors. This idea was used, for example, by Villalonga et al. to
balance time and memory usage in their simulation of grid-based random quantum circuits.
Aaronson and Chen [1] show that for carefully chosen cuts that form nested partitions, the
contributions W to the time and space from the cuts can be significantly reduced.
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Figure 2.7: From a tree embedding of G to a branch decomposition of L(G). Left: a leaf l0
and neighboring vertex t0 of a tree embedding. Middle: Replacement of the leaf l0 with a
caterpillar subtree. Right: Replacement of each leaf with a caterpillar subtree.

2.7 Branchwidth and edge congestion
Proof of Theorem 3. First, we show how to compute a branch decomposition of L(G) with
width k given a tree embedding of G with congestion k, implying bw(L(G)) ≤ ec(G). Suppose
we have a tree embedding (T, b) of G with edge congestion k. Let T ′ be a copy of T and
b′ : E(L(G)) → V (T ) be a mapping from edges of the line graph to vertices of T . In particular,
for an edge e = {{u, v}, {v, w}} of L(G) set b′ : {{u, v}, {v, w}} 7→ b(v), i.e., b′ maps adjacent
pairs of edges of G to the same leaf mapped to from their common vertex by b. Interpreted
as a branch decomposition of L(G), (T ′, b′) has width k, except that b′ is not injective. We
will now introduce a series of modifications to (T ′, b′) that will turn it into a proper branch
decomposition with width k. Note that b′(e) = b′(f) if and only if e and f correspond to the
same vertex of G. For each vertex v of G, we will replace the corresponding leaf of T with a
subtree whose leaves are one-to-one with the edges of E(L(G)) corresponding to the vertex v.
Consider a particular vertex v. Let l0 be the corresponding leaf of T and t0 its neighbor. Let
(e1, e2, . . . , eG(v)) be an arbitrary ordering of the edges adjacent to v in G. First, we replace
the leaf l0 with a subcubic caterpillar graph with internal vertices (t1, t2, . . . , tG(v)−2) and
leaves (l1, l2, . . . , lG(v)−1) such that ti is adjacent to ti−1 and li for i ∈ [G(v)− 2] and tG(v)−2

is adjacent to lG(v)−1. Then we set b′ : {ei, ej} 7→ lmin(i,j).
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Figure 2.8: From a branch decomposition of L(G) to a tree embedding of G. Left: Part of a
branch decomposition. Right: Modified part to form a tree embedding.

At this point |b′−1(li)| = |{{ei, ej}|j > i}| = G(v) − i. For each li we do the following.
Relabel its neighbor ti as ti,0. Replace li with another subcubic caterpillar graph with internal
vertices

(
ti,1, ti,2, ti,G(v)−i−2

)
and leaves

(
li,1, li,2, li,G(v)−i−1

)
such that ti,j is adjacent to li,j and

ti,j−1 for j ∈ [G(v)− 2] and ti,G(v)−2 is adjacent to li,G(v)−1. Then set

b′ : {ei, ej} 7→

{
li,j−i, i < j,

lj,i−j, i > j.
(2.2)

At this point, (T ′, b′) is a proper branch decomposition of the line graph L(G). What is
its width? Let S ′

e be the subtree connecting b′({e, f}) for all neighbors f of e in L(G). In
the part of T ′ that we didn’t change, this coincides with Se of the tree embedding (T, b).
The number of subtrees including the edge {t0, t1,0} of T ′ is the same as that including the
edge {t0, l0} of T , which is at most the edge congestion of (T, b). In particular, it is exactly
degG(v). These are the only subtrees that contain any part of the new parts of the tree T ′

that we created. The contstruction is shown for a degree 5 vertex in Figure 2.7.
Now, we show how to compute a tree embedding with congestion k from a width-k branch

decomposition the line graph, implying ec(G) ≤ bw(G). Suppose we have a width-k branch
decomposition (T, b) of L(G). Let T ′ be a tree and b′ a function from V (G) to V (T ′). Initially
we set (T ′, b′) = (T, b) and iteratively modify it into a tree embedding. For each vertex
v ∈ V (G), the neighboring edges Ev ⊂ E(G) = V (L(G)) form a clique of size G(v). Therefore,
there must be some vertex t0 of T such that Se contains t0 for all e ∈ Ev. Let t1, t2, t3 be the
three neighbors of t0 and partition Ev into four (potentially empty) parts: E0 contains those
edges e such that Se contains all of t0, t1, t2, t3 and Ei contains those edges e such that Se does
not contain ti, for i = 1, 2, 3. Without loss of generality, assume w(E1) ≤ w(E2) ≤ w(E3).
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Note that v) =
∑4

i=0w(Ei) ≥
∑4

i=1w(Ei) ≥ 3w(E1). Now, subdivide the edge between t0
and t1, introducing a new vertex t′, and add a new leaf l′ adjacent thereto. For all e ∈ Ev,
set b′(e) = l′; this leaf will correspond to vertex v in the tree embedding. Note that the
congestion of the edge between l′ and t′ is v), and that the congestion of the edge between t′
and t0 is w(E1) ≤ v)/3 more than the congestion of the edge {t0, t1} that it replaced. If we
do this for every vertex, we get a tree embedding whose congestion is at most G)/3 more than
the width of the branch decomposition we started with. This is illustrated in Figure 2.8.

It cannot be the case that for every graph G, bw(L(G)) = ec(G). Consider, for example,
the star graph Sk. Its edge congestion is at least its maximum degree k, but its line graph is
the complete graph, whose branchwidth is

⌈
2k
3

⌉
.

Consider an alternative, what we’ll call the line hypergraph, denoted L∗(G), with a vertex
for each edge of E(G) and a hyperedge for each vertex of V (G) (rather than a clique as in
the usual line graph). Then it is trivially true that bw(L∗(G)) = ec(G).
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Chapter 3

Computational complexity of electronic
structure

This chapter reproduces Ref. 124 with minor modification. Finding the ground state energy
of electrons subject to an external electric field is a fundamental problem in computational
chemistry. We prove that this electronic-structure problem, when restricted to a fixed single-
particle basis and fixed number of electrons, is QMA-complete. Schuch and Verstraete have
shown hardness for the electronic-structure problem with an additional site-specific external
magnetic field, but without the restriction to a fixed basis [141]. In their reduction, a local
Hamiltonian on qubits is encoded in the site-specific magnetic field. In our reduction, the
local Hamiltonian is encoded in the choice of spatial orbitals used to discretize the electronic-
structure Hamiltonian. As a step in their proof, Schuch and Verstraete show a reduction
from the antiferromagnetic Heisenberg Hamiltonian to the Fermi-Hubbard Hamiltonian. We
combine this reduction with the fact that the antiferromagnetic Heisenberg Hamiltonian
is QMA-hard [131] to observe that the Fermi-Hubbard Hamiltonian on generic graphs is
QMA-hard, even when all the hopping coefficients have the same sign. We then reduce from
Fermi-Hubbard by showing that an instance of Fermi-Hubbard can be closely approximated
by an instance of the Electronic-Structure Hamiltonian in a fixed basis. Finally, we show that
estimating the energy of the lowest-energy Slater-determinant state (i.e., the Hartree-Fock
state) is NP-complete for the Electronic-Structure Hamiltonian in a fixed basis.

3.1 Introduction
Simulating quantum mechanical systems is one of the most important computational challenges
in modern science. Solving this problem, broadly defined, will allow us to probe the foundations
of physics, chemistry, and materials science, and will have useful applications to a wide variety
of industries. On the other hand, the very properties that make quantum mechanical systems
so interesting – such as the exponential growth of the underlying state space and quantum
entanglement – also make quantum simulation a particularly difficult computational task.
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Finding the means to tame this daunting complexity is an objective that is nearly as
old as quantum mechanics itself. Paul Dirac, in a foundational paper from 1929, asserted
that “The fundamental laws necessary for the mathematical treatment of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty lies only in
the fact that application of these laws leads to equations that are too complex to be solved.
It therefore becomes desirable that approximate practical methods of applying quantum
mechanics should be developed, which can lead to an explanation of the main features of
complex atomic systems without too much computation” [55].

Today, nearly a century later, Dirac’s quote captures the underlying motivation for a
large body of quantum science research. For example, in the context of simulating systems
of many electrons, the complexity inherent in the simulation problem has been addressed
by approximation methods such as Hartree-Fock and Density Functional Theory [83], as
well as by considering simplified quantum models such as the Hubbard and Heisenberg
Hamiltonians [9]. Moreover, even in a new, exciting era in which noisy, intermediate-scale
quantum computers are being developed that may be well suited to solve certain quantum
simulation problems, Dirac’s wisdom prevails. Existing quantum algorithms, such as the
phase estimation algorithm and the variational quantum eigensolver all obtain approximate
solutions to special cases of the quantum simulation problem (see, e.g., [99, 130, 133]).

However, there are also fundamental limitations to these simulation algorithms that stem
from quantum computational complexity. Kitaev, building on the classical work of Cook and
Levin, proved that a very general quantum simulation problem (approximating the ground
state energy of a k-local Hamiltonian) is QMA-complete [45, 98]. QMA is a natural quantum
analogue of NP, and QMA-complete problems should not have an efficient quantum algorithm,
for essentially the same reasons that NP-complete problems (such as boolean satisfiability)
should not have efficient classical algorithms.

Nonetheless, QMA-completeness should not be interpreted as a categorical roadblock,
but rather as an important guidepost for the development of future quantum algorithms. In
the same way that many practically interesting instances of classical constraint-satisfaction
problems have special structural properties that avoid the worst-case hardness implied
by NP-completeness results, we study QMA-completeness in order to understand which
structural properties reduce the complexity of the simulation problem – and which properties
do not – enabling improved quantum simulation algorithms that could potentially exploit
this structure.

In this work our goal is understand the computational difficulty of simulating systems
of interacting elections. Our main result shows that when restricted to a fixed number of
electrons and a fixed single-particle basis, approximating the ground state energy of the
electronic structure Hamiltonian is QMA-complete. This can be interpreted as a direct
sharpening of Dirac’s quote: we conclusively demonstrate that these properties do not add
enough structure to enable the existence of an efficient quantum simulation algorithm to
approximate the ground state energy of such systems.

Section 3.2 gives an overview of our results and techniques. Section 3.3 gives the reduction
from the antiferromagnetic Heisenberg Hamiltonian to the Fermi-Hubbard Hamiltonian.
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Section 3.4 shows the reduction from Fermi-Hubbard to the Electronic Structure Hamiltonian
in a fixed basis. In Section 3.5 we show that finding the lowest energy Hartree-Fock state for
the Electronic Structure Hamiltonian in a fixed basis is NP-complete. Some of the technical
lemmas used to show the QMA-hardness of the Electronic Structure Hamiltonian in a fixed
basis are given in Section 3.6.

3.2 Overview of Results

3.2.1 Formalizing the electronic structure problem

In computational complexity, finding the ground state of a local Hamiltonian acting on qudits
is the canonical QMA-complete problem. Local Hamiltonians are interesting not only because
they are analogous to classical constraint-satisfaction problems involving a set of low-arity
functions, but because physical Hamiltonians are typically local due to the nature of physical
forces. The computational complexity of finding ground states of qubit Hamiltonians has
been studied extensively, and hardness shown even for Hamiltonians that are physically
realistic in the sense, e.g., that the terms are placed on a 2D lattice or all the same up to
a positive rescaling [131]. Much less is known about the hardness of local Hamiltonians
for indistinguishable particles. In this work, we consider the local Hamiltonian problem for
fermionic systems.

The local Hamiltonian problem for systems of indistinguishable particles has two distinctive
features. First, the Hamiltonians themselves are invariant under permutations of the particles.
Second, the goal is to estimate the lowest-energy of a symmetric (for bosons) or anti-symmetric
(for fermions) state. Generic Hamiltonians (i.e., quartic polynomials in the elementary
operators with general coefficients) for both types of indistinguishable particles have been
shown to be QMA-complete [106, 159], but, as with Hamiltonians on distinguishable particles,
we can ask how hard more physically realistic classes of Hamiltonians are. Physically realistic
Hamiltonians on indistinguishable particles have special properties that could make them
more amenable to computing ground energies. In particular, here we are focused on the
computational complexity of the electronic structure Hamiltonian

H(ES) = −1

2

∑
i

∇2
i +

∑
i

V (ri) +
1

2

∑
i ̸=j

1

|ri − rj|
, (3.1)

which acts on an anti-symmetric state ψ ∈ Rη×3 of η electrons, where ri is the position of
the i-th electron in 3-dimensional space. For η electrons and a specified electric potential
V : R3 → R, this is the Hamiltonian dictated by the laws of electromagnetism. Of particular
interest in chemistry is the molecular electronic structure Hamiltonian, in which the external
potential

V (r) = −
∑
j

Zj
|r−Rj|

(3.2)
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is that of nuclei modelled as classical point particles, each with positive charge Zj and located
at fixed position Rj. In reality, the nuclei are also quantum particles, but they are so much
more massive than the electrons that this model (the Born-Oppenheimer approximation) is
usually a sufficiently accurate approximation to the Hamiltonian of a molecule specified by
the nuclear charges and number of electrons. There is a separate optimization procedure to
find the lowest-energy configuration of nuclear positions.

Physically, the wavefunction of the electrons is over continuous real space. Computationally,
we need to discretize the space of possible wavefunctions in some way in order to have a finite
representation of a potential ground state. This leads to the fundamental computational
problem of quantum chemistry, estimating the ground state energy of the electronic structure
Hamiltonian in a fixed basis :

H(ES)(ϕ, V ) = T + V + U =
∑
i,j∈[n]
σ∈{±1}

ti,ja
†
i,σaj,σ +

∑
i,j∈[n]
σ∈{±1}

vi,ja
†
i,σaj,σ +

1

2

∑
i,j,k,l∈[n]
σ,τ∈{±1}

ui,j,k,la
†
i,τa

†
j,σak,σal,τ

(3.3)
where ϕ = (ϕ1, . . . , ϕn) is the single-particle basis with elements ϕi : R3 → C and

ti,j = −1

2

∫
drϕ∗

i (r)∇2ϕj(r), (3.4)

vi,j =

∫
drϕ∗

i (r)V (r)ϕj(r), (3.5)

ui,j,k,l =

∫
drdsϕ∗

i (r)ϕ
∗
j(s)

1

|r− s|
ϕk(s)ϕl(r). (3.6)

The indices i, j, k, l ∈ [n] index spatial orbitals, and σ, τ ∈ {±1} indicate the spin. Given the
potential V (r) and a fixed set of orbitals, the Hamiltonian shown in (3.3) is then completely
determined by the integrals for the kinetic and potential energy shown in Eqs. (3.4) to (3.6).
The Electronic Structure problem then is to determine whether the ground energy of the
resulting Hamiltonian is less than some threshold E or greater than E + 1/poly(n). This is
the version of the problem posed by Whitfield et al. ([160]), who left its hardness as an open
problem. We answer here in the affirmative by showing a family of single-particle bases (with
zero potential V (r) = 0) that encodes hard problems. In H(ES), the σ and τ indicate the
sign of the spin of the spin orbital. For each spatial orbital ϕi(r), there are two spin orbitals
ϕi,±1(r). We use ±1 as an index for simplicity, but of course physically the electron’s spin
has magnitude 1/2.

Definition 11 (Electronic structure in fixed basis set – ESFBS). An instance of electronic
structure in a fixed basis set is specified by an external electric field V : R3 → R, a number
η of electrons, a basis set ϕ = (ϕ1, . . . , ϕn), and thresholds a < b, where b− a ≥ 1/poly(η).
The external potential V and the basis set ϕ must be specified concisely (using poly(n) bits)
in a way that allows for efficient (poly(n)-time) calculation of the integrals in Eqs. (3.4)
to (3.6). The goal is to determine whether the ground state energy of HES in the subspace of
η electrons spanned by the given basis is at most a or at least b.
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Our definition of the problem allows for states with arbitrary total spin, and this freedom
will be critical in our construction. One can also consider a variant in which the total spin is
fixed, analogous to, for example, the XY problem with fixed magnetization. Our definition of
the problem also restricts the states allowed to a finite-dimensional space spanned by a set of
fixed single-electron orbitals. By necessity, this is the form of the problem solved in practice
by computational chemists. However, for practical purposes, it is desirable that the ground
state or ground energy in the chosen basis is close to that in a complete, infinite-dimensional
basis. The difference between these two is known as the basis-set error, and bases are typically
chosen in order to minimize this error. The basis we use in our construction is artificial in
this sense; in the absence of an external potential, there is nothing to to confine the electrons
to the subspace of R3 spanned by the basis. However, the orbitals that we use are still
superpositions of Gaussians, a commonly used form in computational chemistry, e.g. the
STO-3G basis set [82] with each basis function composed of a fixed superposition of three
primitive Gaussians. Indeed, we prove the following theorem that the electronic structure in
a fixed basis is QMA-hard by encoding a QMA-hard Hamiltonian in the construction of the
basis.

Theorem 4 (ESFBS is QMA-complete, informal). The electronic structure problem in a
fixed-basis set and at fixed particle number is QMA-complete.

Our results contribute to a large body of work formally establishing the computational
intractability of increasingly physically realistic Hamiltonians. There are still many important
problems in computational chemistry whose computational complexity is unknown. For
example, even in a fixed basis, does fixing the spin make the problem easier? Does the
problem become more tractable if the given orbitals are guaranteed to have small basis-set
error? Is the electronic structure problem hard in a complete (infinite-dimensional) basis? If
so, is it still hard when the external potential arises solely from a set of positively charged
nuclei at fixed positions? We pose two variants of the electronic structure problem whose
hardness is an open question. In both cases, the “size” of the problem is the number of
electrons.

Electronic structure in a fixed basis with bounded basis-set error: Given an external
electric potential V , number of electrons η, thresholds a < b, and a basis set ϕ with
basis-set error ϵ(η) = 1/poly(η) for the given potential V , determine whether the lowest
energy of a state in the space spanned by ϕ is at most a or greater than b = a+1/poly(η).
The basis-set error is defined as ⟨ψ̃|H|ψ̃⟩ −min|ψ⟩∈Rη×3 ⟨ψ|H|ψ⟩ ≤ ϵ(η).

The parameters of the problem are the promised basis-set error bound ϵ(η), the thresholds
a(η) and b(η), and the family of potentials considered (as a function of η); an instance is
specified by simply the number of electrons η, the potential V , and a specification of the basis
set ϕ. This variant entertains the possibility that, while the problem is hard for arbitrary
bases, it may always be easy for good bases (in the sense of having low basis-set error). In
practice, chemists always want to use a good basis, and often do, though in general they
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have no guarantees on the error of the bases that they use. Note that a good basis need not
necessarily be complete for the whole space; all that matters is that its span includes a state
sufficiently close to the ground state. For example, in Schuch and Verstraete’s construction for
the QMA-hardness of electronic structure with magnetic fields, the external electric potential
V implies a good basis of size n = η that captures the ground state but is far from complete.
Theoretical and numerical results suggest that for physically realistic external potentials
there is a always good basis of size poly(η) [79, 96], though the constant prefactors may be
impractically large. Furthermore, there may exist pathological external potentials for which
no polynomially large good basis exists.

To account for both the possibility of no good polynomially large basis and the desirability
of working in a small basis, we define another variant of the problem that includes finding
the basis in which the state is expressed. The formulation attempts to be as general as
possible while remaining in QMA. Ideally, we would like to consider all states that can be
efficiently represented and whose energy can be efficiently estimated by a quantum computer.
To formalize this, we specify some family of parameterized orbitals in which the putative
low-energy state can be expressed. For example, the family of bases could consist of all
weighted sums of Gaussians. In this case the prover would provide, for each basis element,
the centers, the weights, and the exponents of the constituent Gaussians.

Electronic structure in parameterized basis: Given an external electric potential
V , number of electrons η, thresholds a < b, and a family of basis functions {ϕθ}θ,
and basis size k, determine whether there exists a basis ϕ = (ϕθ1 , . . . , ϕθk) such that
the lowest energy of a state in the space spanned by ϕ is at most a or greater than
b = a+ 1/poly(η).

The problem is parameterized by the thresholds a(η) and b(η) and the family of basis functions
{ϕθ}θ allowed; an instance is specified by just the number of electrons η, basis set size k, and
potential V . A certificate consists of the classical description of orbitals ϕ and a quantum
state on 2k qubits that is supposed to represent a low-energy of state of η electrons in the
basis ϕ.

Other variants of the electronic structure problem have been considered. Schuch and
Verstraete show QMA-hardness for electronic structure with an additional site-specific
magnetic field in a good basis, which is used to encode an instance of a QMA-hard problem [141].
Their result is thus incomparable to ours; we removed the magnetic field, but also the
restriction to a good basis.

There are several related computational problems concerning various ways of representing
and working with quantum states. One is N -representability. Note that the 2-electron
reduced density matrices (2-RDMs) of the quantum state encode all the information necessary
to compute the energy of the electronic structure. The N -representability problem is to
determine whether or not for a given set of 2-RDMs there exists a consistent quantum
state on the full space. This problem has been shown, under Turing reductions, to be
QMA-complete [106]. Another related problem is Density Functional Theory (DFT), which
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is premised on the fact that the electron density (i.e. the average number of electrons at
each point in space) is also sufficient to calculate the energy of the electronic structure
Hamiltonian. That is, there exists a universal functional that takes as input the electron
density and outputs the energy. However, while such a functional exists, it may not be
computationally efficient. Indeed, computing it has been shown to be QMA-hard, also under
Turing reductions [161]. For both N -representability and DFT, it remains an open question
whether they remain hard when the inputs (2-RDMs and electron densities, respectively)
are restricted to the ground states of electronic structure Hamiltonians. Broadbent and
Grilo recently proved [35] QMA-completeness of the Consistency of Local Density Matrices
problem (i.e., the qudit analog of N -representability) under Karp reductions, but left as an
open question whether or not their techniques can be used to show QMA-hardness under
Karp reductions of N -representability and the universal functional of DFT.

3.2.2 Implications for VQE and other algorithms

In Chapter 4, we introduce and employ the Variational Quantum Eigensolver (VQE), a varia-
tional quantum algorithm for estimating the ground state energy of quantum Hamiltonians,
typically applied specifically to electronic structure Hamiltonians. The immediate implication
of our QMA-hardness result is that VQE cannot succeed in polynomial time for all instances
of the electronic structure problem. VQE is really a meta-algorithm; a particular instantiation
entails choosing an ansatz (parameterized set of states) and method for optimizing over
that ansatz. There are two potential obstacles to VQE’s success: limitations of the ansatz
and limitations of the optimization method, with a trade-off between them. If the ansatz is
universal (capable of approximating any quantum state with polynomial circuit complexity),
then VQE is essentially a model of QCMA, with a classical witness (the parameters) verified
by a quantum computer (which prepares the state using the given parameters). Assuming
QMA ̸= QCMA, then VQE cannot solve the electronic structure problem in general, even
given arbitrary time to find the parameters. Recent work [20] has shown that optimizing the
parameters of generic fermionic variational circuits is NP-hard. Our results imply that this
must be the case even for electronic structure Hamiltonians, even when the ansatz is simply
Slater determinants.

These two obstacles exemplify two aspects of Hamiltonian complexity (how “quantum”
the witness is and how hard it is to find) and thus two ways in which quantum computation
can be helpful. Importantly, our results only show worst-case hardness. Whether the above
implications hold for the more restricted Hamiltonians and ansatzes used in practice remains
an open question.

3.2.3 Hubbard Hamiltonians

The proof that Electronic Structure in a Fixed Basis Set (ESFBS) is QMA-hard proceeds in
two stages. We first reduce from the antiferromagnetic Heisenberg Hamiltonian to the Fermi-
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Hubbard Hamiltonian. Then we reduce from Fermi-Hubbard to ESFBS. This subsection
gives an overview of the first reduction.

The Bose-Hubbard and Fermi-Hubbard Hamiltonians are:

H(BH) =
∑
i∈V

Uni(ni − 1) +
∑

{i,j}∈E

ti,j

(
b†ibj + h.c.

)
, H(FH) =

∑
i∈V

Uni,+ni,− +
∑

{i,j}∈E,σ∈{±}

ti,ja
†
i,σaj,σ,

(3.7)

where G = (V,E) is the interaction graph, and aia
†
j + a†jai = bib

†
j − b†jbi = δij. When we

refer to the “Hubbard” model without qualification, we mean the Fermi -Hubbard model, in
which the particles are fermions. Hubbard Hamiltonians are of practical interest because they
approximate Hamiltonians of many more complicated condensed-matter and chemical systems.
Their solutions are taken to qualitatively describe those of the approximated systems.

Childs et al. [39, 40] show that the Bose-Hubbard Hamiltonian and XY Hamiltonian are
QMA-hard with uniform coefficients. In both cases, because the coefficients are uniform, the
instance is encoded entirely in the graph, which does not seem embeddable in, say, three
spatial dimensions, as we would want for a physically realistic Hubbard Hamiltonian. Schuch
and Verstraete [141] show as an intermediate result that the Fermi-Hubbard Hamiltonian on
a 2D lattice with a site-specific magnetic field is QMA-hard; the instance is encoded entirely
in this magnetic field. We show that the magnetic field is not necessary, at the cost of having
an arbitrary weighted interaction graph.

Theorem (FH is QMA-complete). The Fermi-Hubbard Hamiltonian with arbitrary coeffi-
cients and fixed particle number is QMA-complete, even if all of the tunneling coefficients
have the same sign and are bounded by a polynomial in the number of particles.

The proof reduces from the antiferromagnetic Heisenberg Hamiltonian:

H(Heis) =
∑

{i,j}∈E

κi,jWi,j, W = (II +XX + Y Y + ZZ)/2, (3.8)

which is known to be QMA-hard [51, 131]. As in related previous constructions, we fix the
number of particles to equal the number of spatial orbitals, i.e., half the number of spin
orbitals. The large onsite-repulsion term U penalizes two electrons occupying the same
spatial orbital, and so the ground space of the repulsion term has exactly one electron in
each spatial orbital. As was done in [106], the spin of the electron in each orbital encodes
a logical qubit. With the repulsion term dominating the Hamiltonian, we treat the rest
perturbatively. To second order, this yields an antiferromagnetic Heisenberg Hamiltonian
on the same graph as a Hubbard Hamiltonian. We go between a qubit Hamiltonian and a
fermionic Hamiltonian using the Jordan-Wigner transformation ai ↔

∏
j<i Zj(Xi + iYi)/2.

In general, this transforms local fermionic Hamiltonians into non-local qubit Hamiltonians,
but with a particular ordering of the spin orbitals, the parity strings

∏
j<i Zj cancel out. In

our case, this yields the local Heisenberg Hamiltonian.
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3.2.4 Overview of Techniques for Electronic structure

We reduce from an instance of Fermi-Hubbard. The interaction graph has an edge for every
pair of fermions with a non-zero interaction term. Given an input Hamiltonian of this form,
we create a set of orbitals corresponding to the vertices in the interaction graph. ϕi is the
orbital for vertex i. Each ϕi is a superposition of what we call primitive orbitals, which are
just Gaussians centered at various points in space. For the most part, these points are spaced
out from all the other points by a parameter Γ, which is set to be large. For every edge
{i, j} in the interaction graph of the Fermi-Hubbard Hamiltonian, there is a pair of primitive
orbitals, one in ϕi and one in ϕj , such that the two primitive orbitals are a distance γi,j apart.
The γi,j’s are small compared to Γ.

The dominant term that emerges from this construction is the kinetic energy between two
Gaussians with exponent α that are separated by a distance of γi,j (with a slight correction
due to the fact that the Gaussians are not exactly pairwise orthogonal). Each distance γi,j
can then be tuned to obtain the desired coefficient to encode the Fermi-Hubbard Hamiltonian.
Each orbital also includes a primitive orbital with exponent β > α in order to increase
the onsite-repulsion term, ensuring that the ground space for the effective Hamiltonian has
exactly one electron per spatial orbital. Thus, each of our orbitals has the form

ϕi(r) = 2−1/2ϕi,0(r) + (2d)−1/2
d∑
i=1

ϕi,l(r), (3.9)

where each ϕi,l is a Gaussian and the parameter d is an upper bound on the degree of the
graph. The functions ϕi,0 all have some large exponent β and are therefore more concentrated
than the functions ϕi,l for l > 0 which have a smaller exponent α.

We use two approximation steps which ultimately show that the electronic structure
Hamiltonian H(ES) closely approximates the Fermi-Hubbard Hamiltonian H(Hubb).

H(ES) 3.4.2→ H(round) 3.4.3→ H(main) 3.4.4∝ H(Hubb), (3.10)

Each step introduces some small error, the bounding of which constitutes the bulk of the
technical work in our proof.

The transition from H(ES) to H(round) includes two approximation steps. The first approx-
imation arises from the fact that the orbitals ϕ that we use are not perfectly orthonormal.
However, there is an orthonormal basis ϕ̃ that is very close to ϕ. We show that the difference
is sufficiently small that we can proceed with the coefficients from the nonorthonormal basis
but using the elementary operators of the orthonormal basis. There is one exception to this
approximation: the overlap of the Gaussians that are relatively close (distance γi,j apart) has
a non-negligible effect and requires a slight correction to the corresponding kinetic energy
coefficient. In the second approximation step, we drop the interactions of primitive orbitals
that are at least a distance of Γ apart, resulting in an expression with many fewer terms. The
effect of applying both approximations results in the Hamiltonian H(round). The transition
from H(round) to H(main) involves dropping the potential-energy terms that involve more than
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one primitive orbital. The difference between H(round) and H(main) is an energy offset which
is constant for a fixed number of electrons plus an error term which we bound in the proof.
We then show that the parameters can be set so that the coefficients of H(main) approximate
the Fermi-Hubbard model to within any inverse polynomial.

3.2.5 Product states

Classical algorithms for finding the ground state energy of quantum Hamiltonians are often
limited by the fact that the ground state seems to have no concise classical description. For
that reason, chemists often try to find the lowest-energy Slater determinant, known as the
Hartree-Fock state. Within a fixed basis ϕ = (ϕ1, . . . , ϕn), a Slater determinant is a state of
the form

|SD(B)⟩ = b†1b
†
2 · · · b†η |0⟩ , (3.11)

where each bi =
∑n

j=Bi,jaj is a sum of annihilation operators in the original basis and the
rows of the η × n matrix B are orthonormal.

Definition 12 (Lowest-energy Slater determinant (LESD)). Given a local fermionic Hamilto-
nian in a fixed basis of size n, number η of electrons, and bounds b > a, where b−a = 1/poly(n),
determine whether the lowest-energy Slater determinant has energy at most a or at least b.
The Slater determinant is specified the matrix η× n B with entries specified by polynomially
many bits.

Theorem 5 (informal). LESD for electronic structure Hamiltonians (H(ES) as defined in 3.3)
is NP-complete.

Schuch and Verstraete showed that the LESD problem for generic quartic number-
preserving fermionic Hamiltonians is NP-hard [141, arXiv version]. We show NP-hardness for
the restricted class of such Hamiltonians with coefficients implied by a basis and external
potential as in Eqs. (3.3) to (3.6); that is, our Theorems 4 and 5 cover the same class of
electronic structure Hamiltonians and differ only in the class of states to be optimized over.
Schuch and Verstraete’s proof for the QMA-hardness of electronic structure with magnetic
fields could likely be extended to the NP-hardness of the Slater determinant version, but
neither we nor they have done so.

3.2.6 A Note on Notation

By [n], we mean the set {1, 2, . . . , n}. We use ∥ · ∥ for the spectral norm of a matrix and the
Euclidean norm of a vector. We use | · | for the element-wise scalar norm.

3.3 Fermi-Hubbard Model
We will show that the version of the Fermi-Hubbard Hamiltonian problem described below is
QMA-complete. In order for the Fermi-Hubbard model to approximate the antiferromagnetic
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Heisenberg from which we are reducing, we need a large onsite-repulsion term u0 to penalize
orbitals with double occupancy. The Fermi-Hubbard problem remains QMA-complete for
any u0 that satisfies the lower bound in the theorem stated below. For the reduction from
Fermi-Hubbard to Electronic Structure, we require that the t(Hubb)

i,j coefficients are bounded
by a polynomial in n, the number of electrons. The hardness result that we prove establishes
that Fermi-Hubbard remains hard, even under that constraint.

Theorem 6 (QMA-completeness of Hubbard Hamiltonian with uniform onsite repulsion).
There exist constants p > q > 0 such that for all u(Hubb)

0 ≥ n14+3p+2q, determining to precision
n−q the ground state energy in the n-particle subspace of a Hubbard Hamiltonian

H(Hubb) = u
(Hubb)
0

∑
i∈[n]

ni,+1ni,−1 +
∑
i<j

t
(Hubb)
i,j

σ∈{±1}

(
a†i,σaj,σ + a†j,σai,σ

)
(3.12)

subject to
∣∣∣t(Hubb)
i,j

∣∣∣ ≤√npu
(Hubb)
0 is QMA-complete.

We will reduce from the antiferromagnetic Heisenberg Hamiltonian problem:

Definition 13 (Antiferromagnetic Heisenberg Hamiltonian). An instance of antiferromagnetic
Heisenberg Hamiltonian is defined by an edge-weighted graph G = (V,E) with κ : E 7→ R≥0

as
H(Heis)(G,w) =

∑
{i,j}∈E

κi,j (XiXj + YiYj + ZiZj) (3.13)

We will require in our reduction that the coefficients κi,j are bounded by a polynomial
in the number of qubits. Although not explicitly stated, the following theorem is proven in
[131].

Theorem 7 (QMA-completeness of antiferromagnetic Heisenberg Hamiltonian [131]). Finding
the ground state of an antiferromagnetic Heisenberg Hamiltonian is QMA-complete even when
restricted to families of Hamiltonians in which the coefficients are bounded by a polynomial
in the number of qubits.

To prove Theorem 6, we show that for sufficiently large u(Hubb)
0 , the Hubbard model

approximates an antiferromagnetic Heisenberg model up to second order in perturbation
theory.

We’ll treat U (Hubb) = u
(Hubb)
0

∑
i ni,+1ni,−1 as the penalty term and T (Hubb) = H(Hubb) −

U (Hubb) as the perturbation. To convert the fermionic Hamiltonians above to qubit Hamil-
tonians, we use the Jordan-Wigner transform with the ordering (1,+1), (1,−1), (2,+1),
(2,−1), . . . . For the full Hilbert space H we’ll use a basis of one qubit per spin orbital. For
the ground space H0 of U (Hubb), we’ll use a basis of one qubit per spatial orbital, the latter
spanning the half-filled subspace of the corresponding pair of spin orbitals. We associate the
occupancy of the orbitals of spin +1 and −1 with the qubit states |0⟩ and |1⟩, respectively.
Let Π0 be the projector onto H0 and Π1 = I −Π0 the projector onto the orthogonal subspace.
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In H0, U (Hubb) is zero (U (Hubb)
0 = Π0U

(Hubb)Π0 = 0), and outside it is at least u(Hubb)
0 . In the

half-filling regime, the ground space of U (Hubb) is spanned by those basis states having exactly
one electron in each spatial orbital. In H0, T (Hubb) vanishes. In the notation below, we use
a bit to indicate whether an orbital is filled. For edge {i, j}, the first two bits correspond
to orbitals ϕi,+1 and ϕi,−1 and the last two bits correspond to ϕj,+1 and ϕj,−1. So the state
|0110⟩ has ϕi,−1 and ϕj,+1 filled. The “excitation” terms are

T
(Hubb)
1,0 = Π1T

(Hubb)Π0 =
∑

{i,j}∈E

(−1)j−i−1t
(Hubb)
i,j [(|1100⟩+ |0011⟩) (⟨1001| − ⟨0110|)]i,j.

(3.14)

With this, using Theorem 8 from the next section, we get

H(eff) = −T (Hubb)
0,1

[
U

(Hubb)
1

]−1

T
(Hubb)
1,0 =

∑
{i,j}∈E

2
(
t
(Hubb)
i,j

)2
u
(Hubb)
0

(Wi,j − 1) = ceff +
∑

{i,j}∈E

h
(eff)
i,j Wi,j,

(3.15)

where

h
(eff)
i,j = 2

(
t
(Hubb)
i,j

)2
u
(Hubb)
0

, ceff = − 1

u
(Hubb)
0

∑
{i,j}∈E

(
t
(Hubb)
i,j

)2
. (3.16)

3.3.1 Perturbation Theory

We will use the following formulation of second-order perturbation theory, adapted from a
special case of the more general formulation by Bravyi et al. [31].

Theorem 8. [Second-order perturbation theory] Consider a Hamiltonian H = H(pen)+H(pert).
Let Π0 be the projector onto the ground space of H(pen), and Π1 = 1− Π0. Define

H(eff) = +H
(pert)
0 −H

(pert)
0,1

(
H(pen)

)−1
H

(pert)
1,0 , (3.17)

where Ai = ΠiAΠi and Ai,j = ΠiAΠj. If H(pen)
0 = 0 and H(pen)

1 ≥ ∆ ≥ 2H(pert), then

∥∥Hlow −H(eff)
∥∥ ≤ O

(∥∥H(pert)
∥∥3

∆2

)
, (3.18)

where Hlow is the projection of H onto its eigenspace with eigenvalues at most ∆/2.
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3.3.2 Fermi-Hubbard is QMA-Hard

Proof of Theorem 6. There are constants p, q ≥ 0 such that it is QMA-hard to find the
ground state energy to precision n−q of

H(Heis) =
∑

{i,j}∈E

κi,jWi,j (3.19)

subject to 0 ≤ κi,j ≤ np. Consider such an instance. We want to choose u(Hubb)
0 and t

(Hubb)
i,j

such that
H(Heis) = H(eff) − ceff (3.20)

and ∥∥∥H(Hubb)
low −H(eff)

∥∥∥ = o(n−q). (3.21)

The first constraint, Eq. (3.20), is

κi,j = h
(eff)
i,j = 2

(
t
(Hubb)
i,j

)2
u
(Hubb)
0

(3.22)

or
t
(Hubb)
i,j = ±

√
u
(Hubb)
0 κi,j/2. (3.23)

Therefore, for any κi,j such that |κi,j| ≤ np we can choose t
(Hubb)
i,j such that

∣∣∣t(Hubb)
i,j

∣∣∣ ≤√
npu

(Hubb)
0 and that Eq. (3.20) is satisfied. To satisfy the second constraint, Eq. (3.21), we

use second-order perturbation theory (Theorem 8).
Furthermore, the assumption that u(Hubb)

0 ≥ n14+3p+2q implies that the condition of
Theorem 8 is met:∥∥T (Hubb)

∥∥ ≤
∑

{i,j}∈E
σ∈{±1}

∣∣∣t(Hubb)
i,j

∣∣∣ (3.24)

≤ n2︸︷︷︸
{i,j},σ

·
√
u
(Hubb)
0 np︸ ︷︷ ︸
t
(Hubb)
i,j

(3.25)

=

√
u
(Hubb)
0

√
n4+p (3.26)

≤
√
u
(Hubb)
0 · 1

2

√
n14+3p+2q n ≥ 2; p, q ≥ 0 (3.27)

≤
√
u
(Hubb)
0 · 1

2

√
u
(Hubb)
0 =

1

2
u
(Hubb)
0 . (3.28)
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Theorem 8 then yields

∥∥∥H(Hubb)
low −H(eff)

∥∥∥ ≤ O

∥∥T (Hubb)
∥∥3(

u
(Hubb)
0

)2
 ≤ O



(3.25)︷ ︸︸ ︷
n6n1.5p

(
u
(Hubb)
0

)1.5
(
u
(Hubb)
0

)2
 (3.29)

= O

 n6n1.5p√
u
(Hubb)
0

 ≤ O

(
n6n1.5p

√
n14+3p+2q

)
= O

(
n−(q+1)

)
= o

(
n−q) . (3.30)

3.4 Electronic structure
Here we prove our main result:

Theorem 4 (QMA-completeness of electronic structure in fixed basis set). Determining the
ground state energy of an electronic structure Hamiltonian in a fixed basis set and with fixed
particle number to inverse-polynomial precision is QMA-complete.

We’ll start by defining a set of n spatial orbitals. Once the orbitals are fixed, the t and u
coefficients are determined by the integrals in (3.4) and (3.6), which then yields the physical
Hamiltonian

H(ES) = T + U =
∑
i,j∈[n]
σ∈{±1}

ti,ja
†
i,σaj,σ +

1

2

∑
i,j,k,l∈[n]
σ,τ∈{±1}

ui,j,k,la
†
i,σa

†
j,τak,τal,σ (3.31)

in the absence of any external potential (V = 0). We show that, when restricted to the
subspace with exactly n electrons (with arbitrary spin), this yields an effective Hamiltonian
that is close, up to rescaling and shifting, to a Fermi-Hubbard Hamiltonian

H(Hubb) = u
(Hubb)
0

∑
i∈[n]

ni,+1ni,−1 +
∑
i<j

t
(Hubb)
i,j

(
a†i,σaj,σ + a†j,σai,σ

)
(3.32)

with where there are constants p > q > 0 such that u(Hubb)
0 ≥ n14+3p+2q and

∣∣∣t(Hubb)
i,j

∣∣∣ ≤√
npu

(Hubb)
0 for all edges {i, j}.
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3.4.1 Orbitals

Recall from Section 3.2.4 that our goal is a basis of orbitals such that the electronic structure
Hamiltonian in that basis is sufficiently close to a Hubbard Hamiltonian. We define here a
set of orbitals that effectively encodes the interaction graph of the Hubbard Hamiltonian.
Each orbital represents a vertex of the interaction graph and consists of a superposition of
Gaussians centered at various points in space. For the most part, these Gaussians are far
apart from each other. If two vertices are connected by an edge, then their corresponding
orbitals have two Gaussians that are relatively close to each other. This distance between
the Gaussians can be tuned to match the interaction coefficient in the Hubbard Hamiltonian.
Let

ξα(r) =

(
2α

π

)3/4

exp
(
−α ∥r∥2

)
(3.33)

be the Gaussian centered at 0 ∈ R3 with exponent α > 0. Each of our orbitals will be a
superposition of Gaussians. The centers of these Gaussians will be a set of points {xi,l}i,l
in R3, where i ∈ [n] and l ∈ {0} ∪ [d], and d ≤ n − 1 is an upper bound on the maximum
degree of the interaction graph G. Note that although the points are in R3, the properties
we require of them can be satisfied by placing them all along a line; we’ll use an arrangement
in the 2-dimensional plane for convenience. We require two properties of this set of points:

1. For each edge {i, j} in the interaction graph, there is exactly one pair (l, l′) ∈ [d]2 such
that ∥xi,l − xj,l′∥ = γi,j > 0. Let γmin and γmax be lower and upper bounds on γi,j over
{i, j} ∈ E.

2. Every other pair of points is at least Γ ≫ γmax apart (in Euclidean distance).

The important part is the m = |E| pairs of points such that points from different pairs are
at least a distance of Γ apart. Each pair of points is associated with an edge {i, j} in the
interaction graph. The pair of points associated with edge {i, j} will be γi,j apart, where
Γ ≫ γi,j . In addition, there is a set X of (d+ 1)n− 2m points each of which is a distance at
least Γ from any other point in the construction. The points associated with vertex i in the
interaction graph are as follows:

1. xi,0 is a point from X.

2. If p ≤ i) and j is the p-th neighbor of vertex i, then xi,p will be one of the points from
the pair associated with edge {i, j}. (The other point from the pair will belong to
vertex j.)

3. If p > i), then xi,p is a point from X. (These are just dummy neighbors to ensure that
all of the orbitals have the same form.)
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With these points, we can define the primitive orbitals

ϕi,p(r) =

{
ξβ (r− xi,0) p = 0,

ξα (r− xi,p) , otherwise,
(3.34)

where α and β are positive constants to be set later. Ultimately, we will need β ≫ α. The
composite orbitals that we’ll use in the construction will be superpositions of these primitive
orbitals:

ϕi(r) =
1√
2
ϕi,0(r) +

1√
2d

d∑
l=1

ϕi,l(r). (3.35)

It will be convenient to be able to refer to the indices of the primitive orbitals that are a
distance γi,j apart, corresponding to edge {i, j}. Define B(i, j) = {(i, p), (j, q)}, where j is
the p-th neighbor of i and i is the q-th neighbor of j.

We will eventually show that the kinetic energy terms between the primitive orbitals
that are separated by only a distance of γi,j will be the dominant terms in the Hamiltonian
(besides the onsite-repulsion). We will then tune the γi,j distances so that the coefficients
resulting from kinetic energy integrals scale with the t(Hubb)

i,j from Eq. (3.32), which are the
coefficients in the Fermi-Hubbard Hamiltonian from which we are reducing. The radius β
will be chosen to be large enough so that the potential energy coefficients ui,i,i,i effectively
result in a u0ni,+1ni,−1 with a large coefficient u0.

The construction is illustrated in Figure 3.1 with a small example. The orbitals are strictly
positive everywhere, so the overlap

∫
drϕ∗

i (r)ϕj(r) cannot be exactly zero, but we will show
that it’s very close. That is, we will show that the orbitals are not perfectly orthonormal,
but that they are sufficiently close. For now, we’ll proceed as if they are, and address the
effect of the nonorthonormality in Section 3.4.2. The purpose of including the ϕi,0 component
as part of the orbital, which is far away from every other primitive orbital center, is to
decouple the scale of the onsite-repulsion term in the Hamiltonian from that of interaction
term, which are effected by the one of the components ϕi,l for each orbital ϕi. To this end,
we will ultimately set β ≫ α. Including the other components {ϕi,l′}l′>i) is simply to ease
the analysis by making all of the orbitals {ϕi}i have integrals, over single-electron operators,
that are of approximately the same form.

3.4.1.1 Integrals of Operators over Gaussians

Since the composite orbitals are superpositions of primitive orbitals, the expressions for overlap,
kinetic energy, and potential energy for the composite orbitals will be linear combinations of
the corresponding expression for combinations of primitive orbitals. The following integrals
of operators over Gaussians will be useful in expressing these terms for the primitive orbitals.

The overlap of two Gaussians with exponents α and β with centers x apart:

sα,β(∥x∥) =
∫
drξα(r)ξβ(r− x) =

(
2
√
αβ

α + β

)3/2

exp

(
− αβ

α + β
∥x∥2

)
. (3.36)



42

Γ

γ2,1
γ3,1

γ4,1 γ3,2

1,0
1,1 1,2 1,3

2,0

2,1

2,2 2,3
3,0

3,1 3,2

3,3
4,0

4,1

4,2 4,3

Figure 3.1: The top figure is the interaction graph of a Heisenberg Hamiltonian. The bottom
figure shows a possible placement of the primitive orbitals. Larger points represent Gaussians
with radius β. Smaller points represent Gaussians with radius α. The orbitals are color
coded according to which vertex they belong to from the interaction graph, and thus which
composite orbital they contribute to.. For example, the orbital associated with the blue
vertex in the interaction graph would be a superposition of the blue Gaussians in the bottom
figure. The amplitude of the large blue Gaussian on the left is 1/

√
2. The amplitude of each

of the smaller blue Gaussians is 1/
√
2d, where here d = 3.

Due to the rotational invariance of the Gaussians, all of the functions defined in this subsection
depend only on the magnitude of their argument, and so we will write, for example, s (∥x∥).

We can define the n(d+ 1)× n(d+ 1) matrix S of overlap between the primitive orbitals,
where each row and column is indexed by a pair (i, p) corresponding to a primitive orbital:

s(i,p),(j,q) = −1

2

∫
drϕ∗

(i,p)(r)ϕ(j,q)(r) (3.37)

Note that sα,β(∥x∥) denotes the overlap of primitive orbital ϕi,0 (whose exponent is β)
and ϕj,p>0 (whose exponent is α), where ϕi,0 and ϕj,p are separated by a distance ∥x∥:
s(i,0),(j,p) = sα,β(∥x∥). The overlap of two primitive orbitals with the same exponent are
denoted by:

sα(∥x∥) = sα,α(∥x∥) = exp
(
−α ∥x∥2 /2

)
, (3.38)

sβ(∥x∥) = sβ,β(∥x∥) = exp
(
−β ∥x∥2 /2

)
. (3.39)

Therefore s(i,0),(j,0) = sβ(∥x∥), where primitive orbitals ϕ(i,0) and ϕ(j,0) are a distance ∥x∥
apart. Also, s(i,p),(j,q) = sα(∥x∥), where p, q > 0 and primitive orbitals ϕ(i,p) and ϕ(j,q) are a
distance ∥x∥ apart.

The kinetic energy between two Gaussians with exponents α and β with centers x apart
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is:

tα,β(∥x∥) = −1

2

∫
drξα(r)∇2ξβ(r− x) (3.40)

= 23/2
(αβ)7/4

(α + β)5/2
(
3− 2µ ∥x∥2

)
exp

(
−µ ∥x∥2

)
≤ 3

2
max {α, β} , (3.41)

where µ = αβ/(α + β), with

tα(∥x∥) = tα,α(∥x∥) =
α

2

(
3− α ∥x∥2

)
exp

(
−α ∥x∥2 /2

)
, (3.42)

tβ(∥x∥) = tβ,β(∥x∥) =
β

2

(
3− β ∥x∥2

)
exp

(
−β ∥x∥2 /2

)
. (3.43)

Define T to be the n(d + 1) × n(d + 1) matrix of kinetic energy terms between primitive
orbitals. An entry of matrix T is

t(i,p),(j,q) = −1

2

∫
drϕ∗

(i,p)(r)∇2ϕ(j,q)(r). (3.44)

Therefore, t(i,0),(j,0) = tβ(∥x∥), where primitive orbitals ϕ(i,0) and ϕ(j,0) are a distance ∥x∥
apart. Also, t(i,p),(j,q) = tα(∥x∥), where p, q > 0 and primitive orbitals ϕ(i,p) and ϕ(j,q) are a
distance ∥x∥ apart.

The potential integrals:

u(Coul)
α (∥x∥) =

∫
drdsξα(r)

2ξα(s− x)2 ∥r− s∥−1 =

√
4α

π
F0

(
α ∥x∥2

)
≤ 2

√
α, (3.45)

u(exch)α (∥x∥) =
∫
drdsξα(r)ξα(r− x)ξα(s)ξα(s− x) ∥r− s∥−1 = exp

(
−α ∥x∥2

)
u(Coul)
α (0),

(3.46)

u(other)α (∥x∥) =
∫
drdsξα(r)

2ξα(s)ξα(s− x) ∥r− s∥−1 = exp
(
−α ∥x∥2 /2

)
u(Coul)
α (x/2) ,

(3.47)

where

Fk(x) =

∫ 1

0

e−xt
2

t2kdt (3.48)

is the Boys function of order k. The analogous definitions for u(other)β (x), u(other)β (x), and
u
(other)
β (x) use Gaussians with exponent β. The potential energy terms on the primitive

orbitals are represented by an n2(d+ 1)2 × n2(d+ 1)2 matrix U , where each row and column
is indexed by a pair of primitive orbitals [(i, p), (j, q)]. The entry in row [(i, p), (j, q)] and
column [(k, r), (l, s)] is the potential energy term for orbitals ϕ(i,p)(r), ϕ(j,q)(r), ϕ(k,r)(r), and
ϕ(l,s)(r):

u[(i,p),(j,q)],[(k,r),(l,s)] =

∫
drds

ϕ∗
(i,p)(r)ϕ

∗
(j,q)(s)ϕ(k,r)(s)ϕ(l,s)(r)

|r− s|
. (3.49)
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The definitions of the integral functions above correspond to the situation where all four
indices (i, p), (j, q), (k, r), and (l, s) denote at most two distinct orbitals with the same
exponent. Specifically, for p, q > 0, where ∥x∥ is the distance between ϕ(i,p) and ϕ(j,q):

u[(i,p),(j,q)],[(j,q),(i,p)] = u(Coul)
α (x), (3.50)

u[(i,p),(j,q)],[(i,p),(j,q)] = u(exch)α (x), (3.51)

u[(i,p),(i,p)],[(i,p),(j,q)] = u(other)α (x). (3.52)

3.4.2 Orthonormalizing and rounding

Having constructed our orbitals, we now make two approximations to get a clean, “round”
Hamiltonian H(round). First, the orbitals we defined in Eq. (3.35) are slightly nonorthonormal,
and so we derive a related orthonormalized basis in which the electronic structure Hamiltonian
doesn’t change too much. Second, we remove contributions to the Hamiltonian from the
electron-electron interaction pairs of primitive orbitals that are far (> Γ) away from each
other. The error of these approximations is quantified by Lemma 1.

The matrix S is defined in (3.37) to be the overlap matrix of the primitive orbitals. We
can construct a set of orthonormal primitive orbitals by setting:

ϕ̃i,k(r) =
∑
j,l

[
S−1/2

]
(j,l),(i,k)

ϕj,l(r) (3.53)

and new orthonormal composite orbitals

ϕ̃i(r) =
1√
2
ϕ̃i,0(r) +

1√
2d

d∑
l=1

ϕ̃i,l(r) (3.54)

with annihilation operators ãi,σ [83]. The Hamiltonian in this orthonormal basis is

H(ES) = T (ES) + U (ES) =
∑
i,j∈[n]
σ∈{±1}

t̃i,j ã
†
i,σãj,σ +

1

2

∑
i,j,k,l∈[n]
σ,τ∈{±1}

ũi,j,k,lã
†
i,σã

†
j,τ ãk,τ ãl,σ (3.55)

where

t̃i,j =

∫
drϕ̃∗

i (r)T ϕ̃j(r), (3.56)

ũi,j,k,l =

∫
drdsϕ̃∗

i (r)ϕ̃
∗
j(s)Uϕ̃k(s)ϕ̃l(r). (3.57)

The matrices T̃ and Ũ showing the kinetic and potential energies using the orthonormalized
primitive orbitals are analogous to the definitions (3.44) and (3.49). The pair T and T̃ and
the pair U and Ũ are related by conjugation by S−1/2:

T̃ = S−1/2 T S−1/2, (3.58)

Ũ = (S−1/2 ⊗ S−1/2) U (S−1/2 ⊗ S−1/2). (3.59)
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Since S ≈ I, the coefficients t̃ and ũ for the orthonormalized orbitals are close to t and u for
the non-orthonormalized orbitals, but the difference needs to be carefully bounded. We will
approximate H(ES) by the Hamiltonian H(round) that uses creation and annihilation operators
of the orthonormal basis ϕ̃ with the original coefficients, subject to two modifications. First,
we add a first-order correction to the off-diagonal kinetic coefficients. Second, we remove
contributions from pairs of primitive orbitals that are at least Γ apart (which makes many
terms vanish completely).

The rounded Hamiltonian is

H(round) = T (round) + U (round). (3.60)

The rounded kinetic operator is

T (round) = t
(round)
i,i

∑
i∈[n]

σ∈{±1}

ñi,σ +
∑

{i,j}∈E
σ∈{±1}

t
(round)
i,j

(
ã†i,σãj,σ + ã†j,σãi,σ

)
, (3.61)

t
(round)
i,i = cT =

1

2
(tα(0) + tβ(0)) , (3.62)

t
(round)
i,j = − α

4d

√
f(ωi,j), (3.63)

where

ωi,j = αγ2i,j, f(ω) = ω2 exp(−ω). (3.64)

Before getting to the rounded potential operator, let’s consider the difference between T (round)

and the true kinetic operator T (ES) in Eq. (3.55). Let ψ0 = 1/
√
2 and ψl = 1/

√
2d for l > 0.

Since the composite orbitals are superpositions of the primitive orbitals, the kinetic energy
term for a pair of composite orbitals is just a linear combination of kinetic energy terms for
pairs of primitive orbitals:

t̃i,j =
∑
p,q

ψpψq t̃(i,p),(j,q). (3.65)

We will eventually show that the kinetic energy contribution for pairs of primitive orbitals
that are at least Γ apart will be negligible. Therefore, the only kinetic energy terms that
contribute significantly to the sum above are t̃(i,p),(i,p) and t̃(i,p),(j,q), where {i, j} is an edge
and B(i, j) = {(i, p), (j, q)}. This means that for edge {i, j}, there is only one significant term
in the sum for t̃i,j. If {i, j} is not an edge, then all of the primitive orbitals for composite
orbitals i and j are at least Γ apart, and t̃i,j ≈ 0. For the diagonal terms t̃i,i, there are d+ 1
significant terms in the sum, corresponding to t̃(i,p),(i,p) terms. Thus, we will show that

t̃i,j =
∑
p,q

ψpψq t̃(i,p),(j,q) ≈


∑

p ψ
2
p t̃(i,p),(i,p), i = j,

1
2d
t̃(i,p),(j,q) {i, j} ∈ E,

0, {i, j} /∈ E,

(3.66)
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where B(i, j) = {(i, p), (j, q)}. We would now like to approximate each t̃(i,p),(j,q) with t(i,p),(j,q),
which is the kinetic energy term for a pair of simple Gaussians. This turns out to be a
sufficiently accurate approximation for t̃(i,p),(i,p). Note that

t
(round)
i,i =

1

2
(tα(0) + tβ(0)) =

∑
p

ψ2
pt(i,p),(i,p).

However, for edge {i, j}, where B(i, j) = {(i, p), (j, q)}, primitive orbitals ϕ(i,p) and ϕ(j,q) are
only γi,j apart. In this case, there is sufficient overlap between the orbitals that the effect
of orthonormalizing the orbitals has a significant impact on the kinetic energy between the
pair. Therefore, instead of setting t(round)i,j to be (1/2d)t(i,p),(j,q), we use a slightly corrected
expression as defined by the function f . For comparison:

1

2d
t(i,p),(j,q) =

α

4d
(3− ωi,j) exp(−ωi,j/2), (3.67)

t
(round)
i,j = − α

4d

√
f(ωi,j) =

−αωi,j
4d

exp(−ωi,j/2). (3.68)

For the potential operator, the coefficients u are a sufficiently good approximation for
the ũ. We will show that we can also drop potential energy terms that involve any two
primitive orbitals that are a distance at least Γ apart. Thus, we only need to include terms
u[(i,p),(j,q)],[(k,r),(l,s)], where the indices (i, p), (j, q), (k, r), and (l, s) are all the same or all come
from the set B(i, j) for some edge {i, j}. Thus, u(round)i,j,k,l will be 0, except when i, j, k, l are
all equal or are all endpoints of the same edge. The rounded potential operator is

U (round) =
1

2

∑
(i,j,k,l)∈B
σ∈±1

u
(round)
i,j,k,l ã

†
i,σã

†
j,τ ãk,τ ãl,σ, (3.69)

where
B =

⋃
{i,j}∈E

{i, j}4 (3.70)

is the set of all 4-tuples of indices such that they are all the same or there are two distinct
indices corresponding to an edge in the graph. For example, (i, i, i, i), (i, j, j, i) ∈ B but
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(i, i, j, k), (i, k, k, i) /∈ B for {i, j} ∈ E and {i, k} /∈ E. The coefficients are defined as

c
(round)
U = u

(round)
i,i,i,i =

1

4
u(i,0),(i,0),(i,0),(i,0) +

1

4d2

∑
p∈[d]

u(i,p),(i,p),(i,p),(i,p)

(3.71)

=
1

4
u
(Coul)
β (0) +

1

4d
u(Coul)
α (0), (3.72)

u
(round)
i,j,j,i = u

(round)
j,i,i,j =

1

4d2
u(i,p),(j,q),(j,q),(i,p) =

1

4d2
u(Coul)
α (γi,j), (3.73)

u
(round)
i,i,j,j = u

(round)
j,j,i,i = u

(round)
i,j,i,j = u

(round)
j,i,j,i =

1

4d2
u(i,p),(i,p),(j,q),(j,q) =

1

4d2
u(exch)α (γi,j), (3.74)

u
(round)
i,i,i,j = u

(round)
i,i,j,i = u

(round)
i,j,i,i = u

(round)
j,i,i,i (3.75)

u
(round)
j,j,j,i = u

(round)
j,j,i,j = u

(round)
j,i,j,j = u

(round)
i,j,j,j =

1

4d2
u(i,p),(i,p),(i,p),(j,q) =

1

4d2
u(other)α (γi,j), (3.76)

with u(round)i,j,k,l = 0 for (i, j, k, l) /∈ B. The following lemma bounds the difference between H(ES)

and H(round).

Lemma 1. If β ≥ α ≥ 1, ωmin ≥ 4, Γ ≥ 640n18β3, and αΓ2 ≥ 12 log β+80 log n+4ωmin+24,
then ∥∥H(ES) −H(round)

∥∥ ≤ 3n2αf(ωmin) +
1

20n2
+ 8n4

√
α · exp(−ωmin/2), (3.77)

where ωmin = αγ2min.

The matrices T , T̃ , S, and S−1/2 are all close to block diagonal. Blocks are either single
entries on the diagonal (corresponding to primitive orbitals that are a distance at least Γ from
all other primitive orbitals) or a 2× 2 sub-matrix corresponding to an edge {i, j}. Suppose
that B(i, j) = {(i, p), (j, q)}. For any n(d+ 1)× n(d+ 1) matrix A, let Ai,j denote the 2× 2
sub-matrix of A indexed by the elements of B(i, j):

Ai,j =

(
a(i,p),(i,p) a(i,p),(j,q)
a(j,q),(i,p) a(j,q),(j,q)

)
.

We refer to all of the Ai,j blocks collectively as the edge blocks of A. The proof of Lemma 1
uses the fact that the off-diagonal terms of T outside of the Ti,j blocks are small. The same
is true for T̃ and R = S−1/2.

Ũ and U are also related by conjugation by S−1/2 ⊗ S−1/2. We will show that Ũ and U
are also close to block diagonal. We define Ui,j to be the 4× 4 sub-matrix of U corresponding
to the intersections of the four rows and four columns indexed by:

[(i, p), (i, p)], [(i, p), (j, q)], [(j, q), (i, p)], [(j, q), (j, q)]

The proof of Lemma 1 uses the fact that the off-diagonal terms of U outside of the Ui,j blocks
are small. The same is true for Ũ . We refer to all of the Ui,j blocks collectively as the edge
blocks.
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Lemma 1 is proved in Section 3.6. Outside of this subsection, all creation and annihilation
operators are those of the orthonormalized basis ϕ̃; in other words, we’ll drop the tildes.

3.4.3 Getting the main Hamiltonian

With the rounded Hamiltonian H(round) in hand, we make one final approximation to get to
the main Hamiltonian H(main) that we will later show is close to a Hubbard Hamiltonian.
Specifically, we remove the “off-diagonal” Coulomb interaction terms. The error of this
approximation is bounded by Lemma 2.

The main Hamiltonian is

H(round) = H(main) +H(approx) + n · cT , (3.78)

H(main) = c
(main)
U

∑
i

ni,+1ni,−1 +
∑

{i,j}∈E
σ∈{±1}

t
(round)
i,j

(
a†i,σaj,σ + a†j,σai,σ

)
, (3.79)

where c(main)
U = u

(Coul)
β (0)/4 . The difference H(round) −H(main) − n · cT contains two types of

terms, both of whose coefficients are O(
√
α): the smaller part of the onsite terms c(round)U ,

and the offsite terms corresponding to edges in the interaction graph. The following lemma
bounds the contribution from this difference..

Lemma 2. ∥∥H(round) −H(main) − ncT
∥∥ ≤ 30n2

√
α. (3.80)

Proof of Lemma 2. First, recall that we’re restricting to the fixed-particle number subspace,
in which the diagonal part cT

∑
i,σ ni,σ of T (round) is the constant n · cT . That is, T (round) =

T (main) + n · cT . Let
B2 = B \ {(i, i, i, i) : i ∈ [n]} (3.81)
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be the subset of B whose elements contain two distinct indices (corresponding to an edge).∥∥H(round) −H(main) − n · cT
∥∥ =

∥∥U (round) − U (main)
∥∥ (3.82)

=

∥∥∥∥∥∥∥∥
1

2

∑
(i,j,k,l)∈B
σ,τ∈{±1}

u
(round)
i,j,k,l a

†
i,σa

†
j,τak,τal,σ − c

(main)
U

∑
i∈[n]

ni,+1ni,−1

∥∥∥∥∥∥∥∥
(3.83)

≤
∑
i∈[n]

∣∣∣c(round)U − c
(main)
U

∣∣∣+ 1

2

∑
(i,j,k,l)∈B2

σ,τ∈{±1}

u
(round)
i,j,k,l (3.84)

= n · 1

4d
u(Coul)
α (0) +

1

2

∑
(i,j,k,l)∈B2

σ,τ∈{±1}

u
(round)
i,j,k,l (3.85)

≤ n · 1

4d
u(Coul)
α (0) +

1

2
· 4︸︷︷︸
σ,τ

· 14 ·
(
n

2

)
︸ ︷︷ ︸

B2

·u(Coul)
α (0) (3.86)

≤ 15n2u(Coul)
α (0) = 15n2 · 2√

π

√
α ≤ 30n2

√
α. (3.87)

3.4.4 Hardness of estimating ground state energy

Now, we’re ready to prove the main theorem.

Proof of Theorem 4. Membership in QMA is straightforward. For hardness, we reduce from
the Fermi-Hubbard model. Recall Theorem 6: for some p, q and all u(Hubb)

0 ≥ n14+3p+2q,
finding the ground state to precision n−q of

H(Hubb) = u
(Hubb)
0

∑
i∈[n]

ni,+1ni,−1 +
∑
i<j

t
(Hubb)
i,j

(
a†i,σaj,σ + a†j,σai,σ

)
(3.88)

subject to
∣∣∣t(Hubb)
i,j

∣∣∣ ≤ √npu
(Hubb)
0 is QMA-complete. In the preceding sections, we showed

that, using our choice of single-electron orbitals, the electronic structure Hamiltonian is close
to

H(ES) ≈ H(main) + n · cT = c
(main)
U ni,+1ni,−1 +

∑
i<j

t
(round)
i,j

(
a†i,σaj,σ + a†j,σai,σ

)
+ n · cT . (3.89)

To prove the theorem, it suffices to show that for any Hubbard Hamiltonian satisfying
the conditions of Theorem 6, we can set the parameters α, β, {γi,j}i,j,Γ such that

ρH(Hubb) = H(main) (3.90)
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and ∥∥H(main) −H(ES) − n · cT
∥∥ = o

(
ρn−q) (3.91)

for some ρ ∈ R. With this, finding the ground state of H(ES) to precision O(ρn−q) would
allow us to find the ground state of H(Hubb) to precision O(n−q), and so the former must be
QMA-hard. We’ll base our parameterization on four constants independent of n:

a = logn α, b = logn β, r = logn ρ, g = − logn
√
f(ω0) = −1

2
logn f(ω0), (3.92)

where ω0 is a lower bound on ωi,j to be set later. The first three immediately set α, β, and ρ,
respectively. Equating nrH(Hubb) and H(main) requires

nru
(Hubb)
0 = c

(main)
U =

1

2
√
π

√
β, (3.93)

nrt
(Hubb)
i,j = − α

4d

√
f(ωi,j). (3.94)

Coefficient ranges If we set

b = 30 + 6p+ 4q + 2r (3.95)

then

u
(Hubb)
0 =

√
β

2
√
πnr

≥ 1

4

√
β

nr
= 4−1n0.5b−r =

n

4
n14+3p+2q ≥ n14+3p+2q n ≥ 4 (3.96)

satisfies the lower bound in the statement of Theorem 6.
If we set

g = −1

2
p+ a− 1

4
b− 3

2
− 1

2
r ≥ 1 , (3.97)

then for n ≥ 9,

α

4d

√
f(ω0) ≥

α

4n

√
f(ω0) =

1

4
na−g−1 =

√
n

4
n

1
2
r+ 1

2
p+ 1

4
b (3.98)

≥ 3

4
n

1
2
r+ 1

2
p+ 1

4
b (3.99)

≥ 1√
2
√
π
n

1
2
r+ 1

2
p+ 1

4
b = nr

√
np
n−r

√
β

2
√
π

= ρ

√
npu

(Hubb)
0 , (3.100)

and thus for any t(Hubb)
i,j ≤

√
npu

(Hubb)
0 there is some ωi,j ≥ ω0 that satisfies Eq. (3.94).
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Bounding the difference between ES and Hubbard The difference between the
electronic structure Hamiltonian and the main Hamiltonian is∥∥H(main) + n · cT −H(ES)

∥∥ ≤
∥∥H(main) + n · cT −H(round)

∥∥+ ∥∥H(round) −H(ES)
∥∥ (3.101)

≤ 30n2
√
α +

1

20n2
+ 3n2αf(ωmin) + 8n4

√
α exp(−ωmin/2)

(3.102)

≤ 30n2
√
α +

1

20n2
+ 3n2αf(ω0) + 8n4

√
α
√
f(ω0) (3.103)

= O
(
n2+ 1

2
a + n−2 + n2+a−2g + n4+ 1

2
a−g
)

(3.104)

= O
(
n4+ 1

2
a + n2+a−2g

)
. (3.105)

Therefore, to satisfy Eq. (3.91), it would suffice to have

4 +
1

2
a < r − q (3.106)

and

2 + a− 2g < r − q. (3.107)

Plugging Eq. (3.97) into the latter yields

p+ q + 5 < a− 1

2
b . (3.108)

Parameter setting In summary, our constraints are

30 + 6p+ 4q = b− 2r, (3.109)
1

2
p+

5

2
< a− 1

4
b− 1

2
r, (3.110)

4 + q < −1

2
a+ r, (3.111)

p+ q + 5 < a− 1

2
b. (3.112)

The following settings satisfy all the required constraints:

a = 18p+ 12q + 90, (3.113)

b =
5

3
a, (3.114)

r =
2

3
a, (3.115)

g =
1

4
a− 1

2
p− 3

2
. (3.116)
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3.5 Hardness of finding lowest-energy Slater determinant
In this section, we show that finding the lowest-energy Slater determinant (i.e., Hartree-Fock
state) of an electronic structure Hamiltonian is NP-hard. This is a natural complement to
our QMA-hardness result, in that Slater determinants are the most natural class of fermionic
states that are efficiently representable and manipulable classically. The proof has much in
common with that of Theorem 4. We start with the same parameterized construction of
orbitals described in Section 3.4.1, and then orthonormalize and round them as in Section 3.4.2
to get the Hamiltonian H(round). We then diverge from the QMA-hardness proof by setting the
parameters in a different regime. Specifically, we set the exponents α and β large enough that
the Hamiltonian becomes essentially classical (diagonal). The proof concludes by showing
that this classical Hamiltonian can express an NP-hard problem such as independent set.

Theorem 5. Determining the lowest-energy Slater determinant of an electronic structure
Hamiltonian in a fixed basis and with fixed particle number to inverse-polynomial precision
is NP-complete.

Proof. To start, we’ll set γi,j = γ for all {i, j} ∈ E. We show that the parameters α, β, γ, Γ
can be set such that the electronic structure approximates a diagonal Hamiltonian

H(ES) − n · cT ≈ H(class) = u
(class)
1

∑
i

ni,+1ni,−1 + u
(class)
2

∑
{i,j}∈E
σ,τ∈{±1}

ni,σnj,τ , (3.117)

where

u
(class)
1 = c

(round)
U , u

(class)
2 =

1

4d2
u(Coul)
α (γ). (3.118)

For a diagonal Hamiltonian, there is always a computational basis state of lowest energy.
Because basis states are a special case of Slater-determinants, finding the lowest-energy
Slater-determinant for diagonal Hamiltonians is equivalent to finding the ground state.

For sufficiently large u(class)1 > 4n2u
(class)
2 , the ground space of H(class) in the k-electron

subspace for k ≤ n will have at most one electron in each spatial orbital, and the ground
state energy is

h(n) = u
(class)
2

∑
{i,j}∈E

ninj, (3.119)

where ni = ni,+1 + ni,−1 is the occupancy of the i-th spatial orbital.
The state space is spanned by vectors n such that

∑
i ni = k, which we can interpret as

representing a subset S ⊂ V of vertices with size |S| = k. The classical function h(n) is then
proportional to the number of edges with both endpoints in the set S. In other words, if
h(n) = 0, then the set S is an independent set of size k; otherwise h(n) ≥ u

(class)
2 . Therefore,

if u(class)1 is sufficiently larger than u(class)2 , then finding the lowest-energy Slater-determinant
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of H(class) in the k-electron subspace to precision u(class)2 is as hard as determining if a graph
has an independent set of size k.

To finish the proof, we just need to set the parameters such that

u
(class)
1 > 4n2u

(class)
2 , (3.120)∥∥H(ES) −H(class)

∥∥ < 1

2
u
(class)
2 . (3.121)

Let γ = 1, leaving α, β, and Γ to be set. The first constraint is satisfied by β ≥ 16n4:

(3.122)

u
(class)
1 = c

(round)
U ≥ 1

4
u
(Coul)
β (0) (3.123)

=
1

4

√
4β

π
>

1

4

√
β (3.124)

≥ n2 (3.125)

≥ n2

d2
erf
(√

αγ2
)

(3.126)

= 4n2u
(class)
2 . (3.127)

For the second constraint, if α ≥ 1, then

1

2
u
(class)
2 ≥ 1

2

1

4d2
erf 1 ≥ 1

8n2
· 1
2
≥ 1

16n2
. (3.128)

Lemma 3. For α ≥ 1, γi,j = γ ≥ 1,∥∥H(round) −H(class)
∥∥ ≤ 14αn2e−αγ

2/4. (3.129)

Proof of Lemma 3. The classical Hamiltonian H(class) has no kinetic component, and so we
need to bound the entirety of the non-constant kinetic component of the rounded Hamiltonian
H(round) :

∥∥T (round) − n · cT
∥∥ =

∥∥∥∥∥∥∥∥
∑

{i,j}∈E
σ∈{±1}

t
(round)
i,j

∥∥∥∥∥∥∥∥
(
a†i,σaj,σ + a†j,σai,σ

)
(3.130)

≤ 4
∑

{i,j}∈E

∣∣∣t(round)i,j

∣∣∣ (3.131)

≤ α

d
n2
√
f(ω) ≤ α2n2γ2e−αγ

2/2. (3.132)

For the potential difference, define

B3 = B2 \ {(i, j, j, i) : {i, j} ∈ E} , (3.133)
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i.e. the indices of potential terms that are not Coulomb (which are exactly those included in
H(class)). Then∥∥U (round) −H(class)

∥∥ (3.134)

=

∥∥∥∥∥∥∥∥
1

2

∑
(i,j,k,l)∈B
σ,τ∈{±1}

u
(round)
i,j,k,l a

†
i,σa

†
j,τak,τal,σ − u

(class)
1

∑
i∈[n]

ni,+1ni,−1 − u
(class)
2

∑
{i,j}∈E
σ,τ∈{±1}

ni,σnj,τ ,

∥∥∥∥∥∥∥∥
(3.135)

≤ 1

2

∑
(i,j,k,l)∈B3

σ,τ∈{±1}

u
(round)
i,j,k,l (3.136)

≤ 1

2
· 4︸︷︷︸
σ,τ

· 12 ·
(
n

2

)
︸ ︷︷ ︸

B3

· 1

4d2
2
√
α exp

(
−αγ2/2

)
(3.137)

≤ 6
√
αn2 exp

(
−αγ2/2

)
. (3.138)

Putting them together,∥∥H(round) −H(class)
∥∥ ≤

∥∥T (round) − n · cT
∥∥+ ∥∥U (round) −H(class) − n · cT

∥∥ (3.139)

≤ 7αn2(αγ2)e−αγ
2/2 ≤ 14αn2e−αγ

2/4 (3.140)

Together, Lemmas 1 and 3 imply that for γ = 1, β ≥ α > 74 + 48 log n, Γ ≥ 640n18β3,
and αΓ2 ≥ 12 log β + 80 log n+ 4α + 24,∥∥H(ES) −H(class) − n · cT

∥∥ ≤
∥∥H(ES) −H(round)

∥∥+ ∥∥H(round) −H(class) − n · cT
∥∥ (3.141)

≤ 3n2αf(ωmin) +
1

20n2
+ 8n4

√
α · exp(−ωmin/2) + 14αn2e−αγ

2/4

(3.142)

= 3n2α2e−α/2 +
1

20n2
+ 8n4

√
α · exp(−α/2) + 14αn2e−α/4

(3.143)

≤ 1

20n2
+ 100n4e−α/8 ≤ 1

20n2
+

1

80n2
=

1

16n2
(3.144)

where used the fact that for x ≥ 0, max{x2e−x/2,
√
xe−x/2, xe−x/4} ≤ 4e−x/8. For sufficiently

large n, it suffices to set β = α = n, γ = 1, and Γ = n32.
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3.6 Proof of Lemma 1
The proof of Lemma 1 uses the following technical lemmas that quantify the statement that
matrices T̃ , S, and Ũ are approximately block diagonal. It will be convenient to refer only to
the entries along the diagonal or inside the edge blocks. For an n(d+ 1)× n(d+ 1) matrix or
an n2(d+ 1)2 × n2(d+ 1)2 matrix A, let A(block) to denote the matrix obtained by replacing
all of the off-diagonal entries of A outside the edge blocks with 0. Define

S(neg) = S − S(block), (3.145)

R = S−1/2, (3.146)

R(aprx) = (S(block))−1/2, (3.147)

R(neg) = R−R(aprx). (3.148)

Note that, because S(block) is block diagonal, R(aprx) is also block diagonal. However R(block) ̸=
R(aprx). The matrix R(neg), unlike S(neg), has non-zero entries even on the diagonal and within
the blocks, though these are small.

The first lemma bounds max(|R(neg)|), where max(|A|) is defined to be the maximum of
the absolute values of the entries in matrix A.

Lemma 4. If αΓ2 ≥ 4 log n+ 2ωmin + 2 and ωmin ≥ 4, then

r(neg)max = max
(∣∣R(neg)

∣∣) ≤ n2 exp
[
−(αΓ2 − ωmin)/2

]
. (3.149)

Corollary 1. For αΓ2 ≥ 4 log n+ 2ωmin + 2 and ωmin ≥ 2,

r(neg)max ≤ n2 exp
[
−
(
αΓ2 − ωmin

)
/2
]

≤ n2 exp [− (4 log n+ 2ωmin + 2− ωmin) /2] ≤ exp(−1) ≤ 1/2.
(3.150)

The entries of matrix S are just the overlap of normalized Gaussians, so the diagonal is
all ones. Block Si,j corresponding to edge {i, j}, where B(i, j) = {(i, p), (j, q)} is

Si,j =

(
1 ϵi,j
ϵi,j 1

)
, (3.151)

ϵi,j = s(i,p),(j,q) = sα(γi,j) = exp(−ωi,j/2), where ωi,j = αγ2i,j. (3.152)

The entry s(i,p),(i,p) is not contained in an edge block if and only if p = 0 or p > i. In this
case, the orbital ϕi,p is at least a distance Γ away from every other primitive orbital, and the
block for s(i,p),(i,p) is just the single element on the diagonal. For these primitive orbitals, we
have

s(i,p),(i,p) = r
(aprx)
(i,p),(i,p) = 1.
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The edge blocks of R(aprx) can be computed exactly as

R
(aprx)
i,j = (Si,j)

−1/2 (3.153)

=
1

2

 1√
1+ϵi,j

+ 1√
1−ϵi,j

1√
1+ϵi,j

− 1√
1−ϵi,j

1√
1+ϵi,j

− 1√
1−ϵi,j

1√
1+ϵi,j

+ 1√
1−ϵi,j

 . (3.154)

The following lemma bounds the error from just taking the leading term in ϵi,j. Note that
the 2× 2 matrix R(aprx)

i,j has identical on-diagonal entries and identical off-diagonal entries.
Let On(R(aprx)

i,j ) refer to the value of the on-diagonal entries and let Off(R(aprx)
i,j ) refer to

the value of the off-diagonal entries. The matrix R(aprx)
i,j Ti,jR

(aprx)
i,j has the same symmetries,

so we can define On and Off for those matrices as well.

Lemma 5. For ωmin ≥ 4 and {i, j} ∈ E where B(i, j) = {(i, p), (j, q)},

1 ≤ On(r(aprx)) ≤ 1 + ϵ2i,j, (3.155)

−ϵi,j
2

− ϵ3i,j ≤ Off(r(aprx)) ≤ −ϵi,j
2
, (3.156)

tα(0) ≤ On
(
R

(aprx)
i,j Ti,jR

(aprx)
i,j

)
≤ tα(0) + αωi,jϵ

2
i,j, (3.157)

−α
2

√
f(ωi,j)(1 + 4ϵ2i,j) ≤ Off

(
R

(aprx)
i,j Ti,jR

(aprx)
i,j

)
≤ −α

2

√
f(ωi,j), (3.158)

max

(∣∣∣∣(R(aprx)
i,j

)⊗2

Ui,j

(
R

(aprx)
i,j

)⊗2

− Ui,j

∣∣∣∣) ≤ 16
√
αϵi,j. (3.159)

Corollary 2. For ωmin ≥ 4,

r(aprx)max = max
(∣∣R(aprx)

∣∣) ≤ 3/2. (3.160)

Corollary 3. For αΓ2 ≥ 4 log n+ ωmin + 2 and ωmin ≥ 4,

rmax = max (|R|) ≤ r(aprx)max + r(neg)max ≤ 2. (3.161)

Define T (neg) = T − T (block). Similarly, define U (neg) = U − U (block). The following lemma
bounds these coefficients.

Lemma 6. For β ≥ α ≥ 1 and αΓ2 ≥ 64,

tmax = max (|T |) ≤ 3

2
β, (3.162)

t(neg)max = max
(∣∣T (neg)

∣∣) ≤ β exp
(
−αΓ2/4

)
, (3.163)

umax = max (|U |) ≤ 2β3, (3.164)

u(neg)max = max
(∣∣U (neg)

∣∣) ≤ 2β3/Γ. (3.165)
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Proofs of the technical lemmas follow the proof of Lemma 1. Note that the conditions of
the technical lemmas (and corollaries) are implied by the conditions of Lemma 1.

Lemma 1 (restated). If β ≥ α ≥ 1, ωmin ≥ 4, Γ ≥ 640n18β3, and αΓ2 ≥ 12 log β + 80 log n+
4ωmin + 24, then∥∥H(ES) −H(round)

∥∥ ≤ 3n2αf(ωmin) +
1

20n2
+ 8n4

√
α · exp(−ωmin/2), (3.77)

where ωmin = αγ2min.

Proof of Lemma 1. We will bound the kinetic and potential parts separately, starting with
the former.

Define T̃ (aprx) = R(aprx)T (block)R(aprx), and recall that T̃ = RTR. The first task is to bound
the error of approximating T̃ by T̃ (aprx):

max
(∣∣∣T̃ − T̃ (aprx)

∣∣∣) = max
(∣∣RTR−R(aprx)T (block)R(aprx)

∣∣) (3.166)

≤ max
(∣∣RTR−RT (block)R

∣∣) (3.167)

+max
(∣∣RT (block)R−R(aprx)T (block)R(aprx)

∣∣) .
We will bound each term from (3.168) separately. We will use the fact that if A and B are
m ×m matrices, then max(|AB|) ≤ m ·max(|A|) ·max(|B|). Since the matrices R and T
are n(d+ 1)× n(d+ 1) matrices and d+ 1 ≤ n, we will pick up a factor of at most n2 every
time this rule is applied.

max
(∣∣RTR−RT (block)R

∣∣) = max
(
|R(T − T (block))R|

)
(3.168)

≤ n4(rmax)
2max(|T − T (block)|) = n4(rmax)

2t(neg)max (3.169)
≤ 4n2β exp(−αΓ2/4). (3.170)

The last inequality uses the bound from (3.161) that rmax ≤ 2 and from (3.163) that t(neg)max ≤
β exp(−αΓ2/4). To bound the second term from (3.168), recall that R = R(aprx) +R(neg).

max
(∣∣RT (block)R−R(aprx)T (block)R(aprx)

∣∣) (3.171)

= max
(∣∣[R(aprx) +R(neg)

]
T (block)

[
R(aprx) +R(neg)

]
−R(aprx)T (block)R(aprx)

∣∣) (3.172)

= max
(∣∣R(aprx)T (block)R(neg) +R(neg)T (block)R(aprx) +R(neg)T (block)R(neg)

∣∣) (3.173)

≤ n4tmaxr
(neg)
max

(
2r(aprx)max + r(neg)max

)
(3.174)

≤ n4 3

2
β︸︷︷︸

(3.162)

exp
[
−(αΓ2 − ωmin)/2

]︸ ︷︷ ︸
(3.149)

2
3

2︸︷︷︸
(3.160)

+
1

2︸︷︷︸
(3.150)

 (3.175)

≤ 6n4β exp
[
−(αΓ2 − ωmin)/2

]
≤ 6n4β exp(−αΓ2/4) (3.176)
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The last inequality is implied by the assumptions of the lemma, specifically that αΓ2 ≥ 2ωmin.
Putting together the bounds from (3.170) and (3.176) we get that

max
(∣∣∣T̃ − T̃ (aprx)

∣∣∣) ≤ 10n4β exp(−αΓ2/4). (3.177)

The next step is to use the approximation for the kinetic-energy terms for the primitive
orbitals to get the kinetic-energy term for the composite orbitals. Recall that composite
orbital ϕi is a superposition of ϕi,p:

ϕi =
d∑
p=0

ψpϕi,p,

where ψ0 = 1/
√
2 and ψp>0 = 1/

√
2d. Therefore, the kinetic-energy terms for the composite

orbitals are just superpositions of the kinetic-energy terms for the primitive orbitals:

ti,j =
∑
p,q

ψpψqt(i,p),(j,q).

We can apply this principle to T̃ and T̃ (aprx) as well:

t̃i,j =
∑
p,q

ψpψq t̃(i,p),(j,q) and t̃
(aprx)
i,j =

∑
p,q

ψpψq t̃
(aprx)
(i,p),(j,q).

Using the bound from (3.177):

|t̃i,j − t̃
(aprx)
i,j | ≤

∑
p,q

ψpψq|t̃(i,p),(j,q) − t̃
(aprx)
(i,p),(j,q)| (3.178)

≤ 1

2
(d+ 1)2max

(∣∣∣T̃ − T̃ (aprx)
∣∣∣) ≤ 5n6β exp(−αΓ2/4). (3.179)

The next task is to bound |t̃(aprx)i,j − t
(round)
i,j |. We will consider three separate cases. In

each case, we will show that ∣∣∣t̃(aprx)i,j − t
(round)
i,j

∣∣∣ ≤ αf(ωmin). (3.180)

Recall that T̃ (aprx) = R(aprx)T (block)R(aprx), so matrix T̃ (aprx) is block diagonal. This means
that t̃(aprx)(i,p),(j,q) = 0 unless (i, p) = (j, q) or {i, j} ∈ E and B(i, j) = {(i, p), (j, q)}. This will
considerably simplify the sum

t̃
(aprx)
i,j =

∑
p,q

ψpψq t̃
(aprx)
(i,p),(j,q). (3.181)
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Case 1. Diagonal element: i = j.
First note that if p = 0 or p > i, then the block containing (i, p) is just the single entry

on the diagonal. In this case, r(aprx)(i,p),(i,p) = 1 and t̃(aprx)(i,p),(i,p) = t(i,p),(i,p).
Thus, when i = j, the sum (3.181) simplifies to

t̃
(aprx)
i,i =

1

2
t(i,0),(i,0) +

1

2d

∑
j:{i,j}∈E

On
(
R

(aprx)
i,j Ti,jR

(aprx)
i,j

)
+

1

2d

∑
p>i

t(i,p),(i,p). (3.182)

The function t is defined in (3.42) so that tβ(0) = t(i,0),(i,0) and tα(0) = t(i,p),(i,p) for p > 0.
Thus,

t̃
(aprx)
i,i =

1

2
tβ(0) +

1

2d

∑
j:{i,j}∈E

On
(
R

(aprx)
i,j Ti,jR

(aprx)
i,j

)
+

1

2d

∑
p>i

tα(0). (3.183)

Recall from (3.62) that the diagonal coefficients of T (round) are

t
(round)
i,i = cT =

1

2
(tβ(0) + tα(0)) =

1

2
tβ(0) +

1

2d

∑
p>0

tα(0). (3.184)

Therefore the difference between t̃(aprx)i,j and t(round)i,j is

∣∣∣t̃(aprx)i,i − t
(round)
i,i

∣∣∣ =
∣∣∣∣∣∣ 12d

∑
j:{i,j}∈E

On
(
R

(aprx)
i,j Ti,jR

(aprx)
i,j

)
− tα(0)

∣∣∣∣∣∣ (3.185)

≤ 1

2d

∑
j:{i,j}∈E

∣∣∣On
(
R

(aprx)
i,j Ti,jR

(aprx)
i,j

)
− tα(0)

∣∣∣ (3.186)

≤ 1

2d

∑
j:{i,j}∈E

αωi,jϵ
2
i,j by (3.157) (3.187)

≤ α

2d

∑
j:{i,j}∈E

f(ωi,j) (3.188)

≤ α

2d
· d · f(ωmin) ωmin ≥ 2 (3.189)

=
α

2
f(ωmin) ≤ αf(ωmin). (3.190)

Note that since ωmin ≥ 2 (by the assumptions of the lemma), the function f(ω) = ω2 exp(−ω)
is maximized at ωmin.

Case 2. Off-diagonal element corresponding to edge: {i, j} ∈ E.



60

In this case, there is exactly one p and exactly one q such that (i, p) and (j, q) are in the
same block, where B(i, j) = {(i, p), (j, q)}. Thus, the summation in Eq. (3.181) has only one
non-zero term:

t̃
(aprx)
i,j =

1

2d
Off

(
R

(aprx)
i,j Ti,jR

(aprx)
i,j

)
. (3.191)

Recall from (3.63) that t(round)i,j = − α
4d

√
f(ωi,j).

Therefore∣∣∣t̃(aprx)i,j − t
(round)
i,j

∣∣∣ = 1

2d

∣∣∣∣Off
(
R

(aprx)
i,j Ti,jR

(aprx)
i,j

)
−
(
−α
2

√
f(ωi,j)

)∣∣∣∣ (3.192)

≤ 1

2d
· α
2

√
f(ωi,j) · 4ϵ2i,j by (3.158) (3.193)

=
α

d
ωi,j exp(−3ωi,j/2) (3.194)

≤ αωi,j exp(−ωi,j) (3.195)
≤ αf(ωmin). (3.196)

Again, we are using the fact that since ωmin ≥ 2, the function f(ω) = ω2 exp(−ω) is maximized
at ωmin.

Case 3. Off-diagonal element corresponding to non-edge: {i, j} /∈ E.
In this case, (i, p) and (j, q) are in different blocks for all p, q, and so the summation

in Eq. (3.181) is empty. That is, t̃(aprx)i,j = 0. Recall that t(round)i,j is also zero for {i, j} /∈ E.

Finally, we can combine the bound for
∣∣∣t̃i,j − t̃

(aprx)
i,j

∣∣∣ from (3.179) and the bound for∣∣∣t̃(aprx)i,j − t
(round)
i,j

∣∣∣ from (3.180):

∥∥T (ES) − T (round)
∥∥ ≤

∥∥∥∥∥∥∥
∑
i,j
σ

(
t̃i,j − t

(round)
i,j

)
ã†i,σãj,σ

∥∥∥∥∥∥∥ (3.197)

≤
∑
i,j
σ

∣∣∣t̃i,j − t
(round)
i,j

∣∣∣ ∥∥∥ã†i,σãj,σ∥∥∥ = 2
∑
i,j

∣∣∣t̃i,j − t
(round)
i,j

∣∣∣ (3.198)

≤ 2
∑
i,j

∣∣∣t̃i,j − t̃
(aprx)
i,j

∣∣∣+ 2
∑
i,j

∣∣∣t̃(aprx)i,j − t
(round)
i,j

∣∣∣ (3.199)

≤ 10n8β exp(−αΓ2/4) + 2n2αf(ωmin). (3.200)

We can apply the conditions of the lemma to simplify this expression. The lower bound
on αΓ2 implies that exp(−αΓ2/4) ≤ (10n6β)−1 · exp(−ωmin). Using the assumptions that
α ≥ 1 and ωmin ≥ 1:

10n8β exp(−αΓ2/4) ≤ n2 exp(−ωmin) ≤ n2α(ωmin)
2 exp(−ωmin) = n2αf(ωmin).



61

Recall that f(ω) = ω2 exp(−ω). The final bound for the kinetic-energy difference is∥∥T (ES) − T (round)
∥∥ ≤ 3n2αf(ωmin). (3.201)

Next, we consider the terms for the potential energy. As with the kinetic-energy terms,
we will approximate Ũ = (R⊗R)U(R⊗R) by

Ũ (aprx) = (R(aprx) ⊗R(aprx))U (block)(R(aprx) ⊗R(aprx)). (3.202)

The matrices are now n2(d+1)2×n2(d+1)2. We will use the fact that if A and B are m×m
matrices, then max(|AB|) ≤ mmax(|A|) ·max(|B|). Since d + 1 ≤ n, we pick up a factor
of at most n4 every time this principle is applied. We will bound max(|Ũ − Ũ (aprx)|) in two
stages. First we bound

max
(∣∣∣Ũ − (R⊗R)U (block)(R⊗R)

∣∣∣) = max
(∣∣(R⊗R)U(R⊗R)− (R⊗R)U (block)(R⊗R)

∣∣)
(3.203)

= max
(∣∣(R⊗R)(U − U (block))(R⊗R)

∣∣) (3.204)

≤ n8(rmax)
4u(neg)max (3.205)

≤ n8 24︸︷︷︸
3.161

2β3/Γ︸ ︷︷ ︸
3.165

= 32n8β3/Γ. (3.206)

The next step is to bound

max
(∣∣∣(R⊗R)U (block)(R⊗R)− Ũ (aprx)

∣∣∣) (3.207)

= max
(∣∣(R⊗R)U (block)(R⊗R)− (R(aprx) ⊗R(aprx))U (block)(R(aprx) ⊗R(aprx))

∣∣) . (3.208)

If we substitute R = R(neg) +R(aprx) in to the expression (R⊗R)U (block)(R⊗R) and expand
the product, we get the sum of 24 terms:

(R⊗R)U (block)(R⊗R) =
∑

a,b,c,d∈{neg,aprx}

(R(a) ⊗R(b))U (block)(R(c) ⊗R(d)). (3.209)

In bounding the difference from (3.208), we are left with the terms in which a, b, c, d are not
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all equal to “aprx”, so every remaining term will have at least one factor of R(neg):

|(R⊗R)U (block)(R⊗R)− Ũ (aprx)| ≤ n8umax

3∑
x=0

(
4

x

)(
r(aprx)max

)x (
r(neg)max

)4−x
(3.210)

≤ n8umax · 15 · r(neg)max

[
max

{
r(aprx)max , r(neg)max

}]3
(3.211)

≤ n8 2β3︸︷︷︸
(3.164)

·15 · n2 exp
[
−(αΓ2 − ωmin)/2

]︸ ︷︷ ︸
(3.149)

·
(
3

2

)3

︸ ︷︷ ︸
(3.160,3.150)

(3.212)
≤ 102n10β3 exp

[
−(αΓ2 − ωmin)/2

]
(3.213)

≤ 102n10β3 exp(−αΓ2/4). (3.214)

The last inequality uses the assumption from the lemma that αΓ2 ≥ 2ωmin. Putting the two
bounds from (3.206) and (3.214) together, we get that:

max
(∣∣∣Ũ − Ũ (aprx)

∣∣∣) (3.215)

≤ max
(∣∣∣Ũ − (R⊗R)U (block)(R⊗R)

∣∣∣)+max
(∣∣∣(R⊗R)U (block)(R⊗R)− Ũ (aprx)

∣∣∣)
(3.216)

≤ 32n8β3/Γ + 102n10β3 exp(−αΓ2/4). (3.217)

Since the composite orbitals are superpositions of the primitive orbitals, the potential-
energy terms for the composite orbitals can be expressed as linear combinations of the
potential-energy terms for the primitive orbitals. Therefore

ui,j,k,l =
∑

p,q,r,s,∈[d+1]

ψpψqψrψsu[(i,p),(j,q)][(l,r),(l,s)], (3.218)

where the amplitudes ψ are defined to be ψ0 = 1/
√
2 and ψp>0 = 1/

√
2d. The same definition

for ũi,j,k,l and ũ(aprx)i,j,k,l can be applied using the potential-energy terms for the primitive orbitals
defined in Ũ and Ũ (aprx). We can apply the bound from (3.217) to bound the difference in
the potential-energy terms for the composite orbitals:

|ũi,j,k,l − ũ
(aprx)
i,j,k,l | =

∣∣∣∣∣∣
∑

p,q,r,s,∈[d+1]

ψpψqψrψs

(
ũ[(i,p),(j,q)][(l,r),(l,s)] − ũ

(aprx)
[(i,p),(j,q)][(l,r),(l,s)]

)∣∣∣∣∣∣ (3.219)

≤ 1

4
(d+ 1)4max

(∣∣∣Ũ − Ũ (aprx)
∣∣∣) (3.220)

≤ 1

4
n4(32n8β3/Γ + 102n10β3 exp(−αΓ2/4)) (3.221)

≤ 8n12β3/Γ + 26n14β3 exp(−αΓ2/4). (3.222)
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We can now apply the assumptions of the lemma to simplify the above expression. The
assumption that Γ ≥ 640n18β3 implies that 8n12β3/Γ ≤ 1/(80n6). The assumption that αΓ2 ≥
12 log β+80 log n+4ωmin+24 ≥ 12 log β+80 log n+40 implies that 26n14β3 exp(−αΓ2/4) ≤
1/(80n6). Therefore

8n12β3/Γ + 26n14β3 exp(−αΓ2/4) ≤ 1

40n6
. (3.223)

The next task is to bound |ũ(aprx)i,j,k,l − u
(round)
i,j,k,l |. Since

Ũ (aprx) = (R(aprx) ⊗R(aprx))U (block)(R(aprx) ⊗R(aprx))

is block diagonal, many of the terms in the sum (3.218) will be zero. We consider three cases.
In each case, we will show that

|ũ(aprx)i,j,k,l − ũ
(round)
i,j,k,l | ≤ 4

√
α · exp (−ωmin/2). (3.224)

Case 1. Onsite term i = j = k = l.
Note that the entry in row [(i, p), (i, q)] and row [(i, r), (i, s)] is outside of a block unless

p = q = r = s. If p = 0 or p > i, then the block containing [(i, p), (i, p)] is just the single
entry on the diagonal. In this case, r(aprx)(i,p),(i,p) ⊗ r

(aprx)
(i,p),(i,p) = 1 and the diagonal element at

[(i, p), (i, p)] is the same for Ũ (aprx) and U . If p = 0, then primitive orbital ϕi,0 is a Gaussian
of width β and the diagonal term of U at [(i, 0), (i, 0)] is as in Eq. (3.45) defined as u(Coul)

β (0).
For p > i, then primitive orbital ϕi,p is a Gaussian of width α and the diagonal term of U at
[(i, p), (i, p)] is as in Eq. (3.45) defined as u(Coul)

α (0).
Thus, when i = j = k = l, the sum (3.218) simplifies to

ũ
(aprx)
i,i,i,i =

1

4d2

∑
0<p≤i

((
R

(block)
i,j

)⊗2

Ui,j

(
R

(block)
i,j

)⊗2
)

(i,p),(i,p),(i,p),(i,p)

(3.225)

+
1

4
u
(Coul)
β (0) +

1

4d2

∑
p>i

u(Coul)
α (0). (3.226)

Recall that u(round)i,i,i,i is defined in (3.72) to be

c
(round)
U =

1

4
u
(Coul)
β (0) +

1

4d
u(Coul)
α (0) =

1

4
u
(Coul)
β (0) +

1

4d2

∑
p∈[d]

u(Coul)
α (0) (3.227)
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Therefore,∣∣∣ũ(aprx)i,i,i,i − u
(round)
i,i,i,i

∣∣∣ (3.228)

=
1

4d2

∣∣∣∣∣ ∑
0<p≤i

(((
R

(block)
i,j

)⊗2

Ui,j

(
R

(block)
i,j

)⊗2
)

(i,p),(i,p),(i,p),(i,p)

)
− u(Coul)

α (0)

∣∣∣∣∣ (3.229)

=
1

4d2

∣∣∣∣∣ ∑
0<p≤i

((
R

(block)
i,j

)⊗2

Ui,j

(
R

(block)
i,j

)⊗2

− Ui,j

)
(i,p),(i,p),(i,p),(i,p)

∣∣∣∣∣ (3.230)

≤ 1

4d2
· d ·max

(∣∣∣∣(R(block)
i,j

)⊗2

Ui,j

(
R

(block)
i,j

)⊗2

− Ui,j

)∣∣∣∣ (3.231)

≤ 1

4
16
√
αϵmax︸ ︷︷ ︸

(3.159)

= 4
√
α · exp(−ωi,j/2) ≤ 4

√
α · exp(−ωmin/2). (3.232)

The last inequality uses the assumption of the lemma that ωmin ≥ 2.

Case 2. All indices within block corresponding to edge {i, j} ∈ E.
Let B(i, j) = {(i, p), (j, q)}. Consider, for example, the term ũ

(aprx)
i,j,j,i . The sum in (3.218)

has only one non-zero term corresponding to row [(i, p), (j, q)] and column [(j, q), (i, p)]. So

ũ
(aprx)
i,j,j,i =

1

4d2

((
R

(block)
i,j

)⊗2

Ui,j

(
R

(block)
i,j

)⊗2
)

[(i,p),(j,q)],[(j,q),(i,p)]

(3.233)

Recall that

u
(round)
i,j,j,i =

1

4d2
u(Coul)
α (γi,j) =

1

4d2
u[(i,p),(j,q)],[(j,q),(i,p)] (3.234)

The first equality comes from the definition of u(round) in (3.73) and the second comes from
the definition of u(Coul)

α (γi,j) in (3.45). The entry in row [(i, p), (j, q)] and column [(j, q), (i, p)]
is inside the block corresponding to edge {i, j}. Therefore,∣∣∣ũ(aprx)i,j,j,i − u

(round)
i,j,j,i

∣∣∣ = 1

4d2
max

(∣∣∣∣(R(block)
i,j

)⊗2

Ui,j

(
R

(block)
i,j

)⊗2

− Ui,j

∣∣∣∣) (3.235)

≤ 1

4
16
√
αϵi,j︸ ︷︷ ︸

(3.159)

= 4
√
α · exp(−ωi,j/2) ≤ 4

√
α · exp(−ωmin/2). (3.236)

The same bound holds for
∣∣∣ũ(aprx)i,i,j,i − u

(round)
i,i,j,i

∣∣∣ ,
∣∣∣ũ(aprx)j,i,j,i − u

(round)
j,i,j,i

∣∣∣, et cetera for {i, j} ∈ E.
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Case 3. At least one pair of indices corresponding to non-edge {i, j} /∈ E.
In this case, both ũ(aprx)i,j,k,l and u(round)i,j,k,l are zero. All together,

∥∥U (ES) − U (round)
∥∥ ≤

∥∥∥∥∥∥∥
1

2

∑
i,j,k,l
σ,τ

(
ũi,j,k,l − u

(round)
i,j,k,l

)
ã†i,σã

†
j,σãk,σãl,σ

∥∥∥∥∥∥∥ (3.237)

≤ 1

2

∑
i,j,k,l
σ,τ

∣∣∣ũi,j,k,l − u
(round)
i,j,k,l

∣∣∣ ∥∥∥ã†i,σã†j,σãk,σãl,σ∥∥∥ (3.238)

=
1

2
· 4︸︷︷︸
σ,τ

∑
i,j,k,l

∣∣∣ũi,j,k,l − u
(round)
i,j,k,l

∣∣∣ (3.239)

≤ 2
∑
i,j,k,l

∣∣∣ũi,j,k,l − ũ
(aprx)
i,j,k,l

∣∣∣+ 2
∑
i,j,k,l

∣∣∣ũ(aprx)i,j,k,l − u
(round)
i,j,k,l

∣∣∣ (3.240)

≤ 2n4

(
1

40n6

)
︸ ︷︷ ︸

(3.223)

+2n4 · 4
√
α · exp(−ωmin/2)︸ ︷︷ ︸

(3.224)

(3.241)

=
1

20n2
+ 8n4

√
α · exp(−ωmin/2) (3.242)

Eqs. (3.201) and (3.242) imply the lemma:∥∥H(ES) −H(round)
∥∥ ≤

∥∥T (ES) − T (round)
∥∥+ ∥∥U (ES) − U (round)

∥∥ (3.243)

≤ 3n2αf(ωmin) +
1

20n2
+ 8n4

√
α · exp(−ωmin/2). (3.244)

3.6.1 Proof of Lemma 4

Proof of Lemma 4. Define ϵmax to be the largest off-diagonal element of S and ϵneg to be the
largest entry of S(neg), which is the largest entry of S outside of an edge block:

ϵmax = max
(i,p) ̸=(j,q)

s(i,p),(j,q) = sα(γmin) = exp(−ωmin/2), (3.245)

ϵneg = max
(
S(neg)

)
≤ sα(Γ) = exp(−αΓ2/2). (3.246)

Let S(block) = I + S(OD); S(OD) has at most one entry per row or column, and that entry is
between 0 and ϵmax. Using the Taylor expansion

M−1/2 =
∞∑
k=0

(−2)−k
(2k − 1)!!

k!
(M − I)k (3.247)
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of a matrix M around the identity I, we have

R(neg) = R−R(aprx) (3.248)

= (S)−1/2 −
(
S(block)

)−1/2
(3.249)

=
(
I + S(OD) + S(neg)

)−1/2 −
(
I + S(OD)

)−1/2
(3.250)

=
∞∑
k=0

(−2)−k
(2k − 1)!!

k!

[(
S(OD) + S(neg)

)k − (S(OD)
)k]

. (3.251)

Entrywise,[(
S(OD) + S(neg)

)k]
(i0,l0),(ik,lk)

(3.252)

=
∑

(i1,l1),...,(ik−1,lk−1)

(
S(OD) + S(neg)

)
(i0,l0),(i1,l1)

· · ·
(
S(OD) + S(neg)

)
(ik−1,lk−1),(ik,lk)

(3.253)

=
∑

0<
∥∥∥xik′ ,lk′

−xik′+1,lk′+1

∥∥∥
s(i0,l0),(i1,l1) · · · s(ik−1,lk−1),(ik,lk), (3.254)

where the summation excludes the diagonal entries. (Recall that I, S(OD), and S(neg) have
disjoint support.) Similarly,[(

S(OD)
)k]

(i0,l0),(ik,lk)
=

∑
0<

∥∥∥xik′ ,lk′
−xik′+1,lk′+1

∥∥∥<Γ

s(i0,l0),(i1,l1) · · · s(ik−1,lk−1),(ik,lk), (3.255)

where the summation excludes both the diagonal and anything outside of the blocks. The
difference between Eq. (3.254) and Eq. (3.255) is the summation in Eq. (3.254) restricted to
when at least one of the neighboring pairs is at least Γ separated. Each term with exactly
x pairs separated by at least Γ contributes at most ϵk−xmaxϵ

x
neg. There are

(
k
x

)
places in the

sequence that these pairs can occur. For each factor contributing more than ϵneg there is at
most one index value (ik′ , lk′), and for each factor contributing at most ϵneg there are at most



67

n(d+ 1)− 1 ≤ 2n2 indices. Therefore[(
S(OD) + S(neg)

)k − (S(OD)
)k]

(i0,l0),(ik,lk)
(3.256)

≤
k∑
x=1

(
k

x

)(
2n2ϵneg

)x
ϵk−xmax (3.257)

=
k−1∑
x=0

(
k

x

)(
2n2ϵneg

)k−x
ϵxmax =

(
2n2ϵneg

)k k−1∑
x=0

k

k − x

(
k − 1

x

)(
ϵmax

2n2ϵneg

)x
(3.258)

≤
(
2n2ϵneg

)k k−1∑
x=0

k

(
k − 1

x

)(
ϵmax

2n2ϵneg

)x
= k

(
2n2ϵneg

)k(
1 +

ϵmax

2n2ϵneg

)k−1

(3.259)

= k
(
2n2ϵneg

)(
2n2ϵneg + ϵmax

)k−1 (3.260)

≤ k
(
2n2ϵneg

)
(2ϵmax)

k−1 = kn2 ϵneg
ϵmax

(2ϵmax)
k, (3.261)

where we used the fact that

2n2ϵneg = 2n2e−αΓ
2/2 ≤ e · n2e−αΓ

2/2 ≤ e · n2e−(4 logn+ωmin+2)/2 = e−ωmin/2 = ϵmax (3.262)

by assumption. Returning to the expression in Eq. (3.251), the norm of each entry of R(neg)

then is∣∣∣r(neg)(i0,l0),(ik,lk)

∣∣∣ = ∣∣∣∣∣
∞∑
k=0

(−2)−k
(2k − 1)!!

k!

[(
S(OD) + S(neg)

)k − (S(OD)
)k]

(i0,l0),(ik,lk)

∣∣∣∣∣ (3.263)

≤
∞∑
k=0

(2)−k
(2k − 1)!!

k!

∣∣∣∣[(S(OD) + S(neg)
)k − (S(OD)

)k]
(i0,l0),(ik,lk)

∣∣∣∣ (3.264)

≤ n2 ϵneg
ϵmax

∞∑
k=1

(2)−k
(2k − 1)!!

k!
k(2ϵmax)

k (3.265)

= n2 ϵneg
ϵmax

∞∑
k=1

(2k − 1)!!

(k − 1)!
ϵkmax (3.266)

= n2 ϵneg
ϵmax

ϵmax

(1− 2ϵmax)
3/2

(3.267)

≤ n2 ϵneg
ϵmax

for ωmin ≥ 4

(3.268)
≤ n2 exp

[
−(αΓ2 − ωmin)/2

]
. (3.269)
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3.6.2 Proof of Lemma 5

Proof of Lemma 5. In this proof, we’ll use the following form of Taylor’s Theorem.

Theorem 9 (Taylor’s Theorem with remainder in Lagrange form [5]). Let f be a (n+1)-times
differentiable function in the region [0, 1]. Then for every x ∈ [0, 1] there is some c ∈ [0, x]
such that

f(x) =
n∑
k=0

f (k)(0)

k!
xk +

f (n+1)(c)

(n+ 1)!
xn+1. (3.270)

Note that ωmin ≥ 2 implies that ϵi,j = e−ωi,j/2 ≤ e−ωmin/2 ≤ 1/e.
We’ll start with the bounds on the entries of R(aprx). Given the derivatives

d

dϵ

(
1√
1 + ϵ

± 1√
1− ϵ

)
=

1

2

(
−(1 + ϵ)−3/2 ± (1− ϵ)−3/2

)
, (3.271)

d2

dϵ2

(
1√
1 + ϵ

± 1√
1− ϵ

)
=

3

4

(
(1 + ϵ)−5/2 ± (1− ϵ)−5/2

)
, (3.272)

d3

dϵ3

(
1√
1 + ϵ

± 1√
1− ϵ

)
=

15

8

(
−(1 + ϵ)−7/2 ± (1− ϵ)−7/2

)
, (3.273)

Theorem 9 implies that
1√
1 + ϵ

+
1√
1− ϵ

= 2 + 0 +
1

2

3

4

(
(1 + ϵ′)

−5/2
+ (1− ϵ′)

−5/2
)
ϵ2, (3.274)

1√
1 + ϵ

− 1√
1− ϵ

= 0− ϵ+ 0− 1

3!

15

8

(
(1 + ϵ′)

−7/2
+ (1− ϵ′)

−7/2
)
ϵ3 (3.275)

for some ϵ′ ∈ [0, ϵ]. For 0 ≤ ϵ ≤ 1/e, we have

2 ≤ 1√
1 + ϵ

+
1√
1− ϵ

≤ 2 + 2ϵ2, (3.276)

−ϵ− 2ϵ3 ≤ 1√
1 + ϵ

− 1√
1− ϵ

≤ −ϵ. (3.277)

Dividing by 2 and substituting ϵ = ϵi,j implies Eqs. (3.155) and (3.156).
Now, let’s turn to the entries of R(aprx)

i,j Ti,jR
(aprx)
i,j . Let B(i, j) = {(i, p), (j, q)}. To make

the notation more concise within this proof, we will refer to the diagonal elements of R(aprx)
i,j

as rON = r
(aprx)
(i,p),(i,p) = r

(aprx)
(j,q),(j,q) and the off-diagonal elements as rOFF = r

(aprx)
(i,p),(j,q) = r

(aprx)
(j,q),(i,p).

Note that

(rON)
2 + (rOFF )

2 =
1

4

( 1√
1 + ϵi,j

+
1√

1− ϵi,j

)2

+

(
1√

1 + ϵi,j
− 1√

1− ϵi,j

)2

(3.278)

=
1

2

(
1

1 + ϵi,j
+

1

1− ϵi,j

)
=

1

1− ϵ2i,j
(3.279)
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and

rON · rOFF =
1

4

(
1√

1 + ϵi,j
+

1√
1− ϵi,j

)(
1√

1 + ϵi,j
− 1√

1− ϵi,j

)
(3.280)

=
1

4

(
1

1 + ϵi,j
− 1

1− ϵi,j

)
= − ϵi,j

2(1− ϵ2i,j)
. (3.281)

The diagonal entries of Ti,j are t(i,p),(i,p) = t(j,q),(j,q) = tα(0). and the off-diagonal entries are
t(i,p),(j,q) = t(j,q),(i,p) = tα(γi,j). Then the diagonal of R(aprx)

i,j Ti,jR
(aprx)
i,j entry is

On
(
R

(aprx)
i,j Ti,jR

(aprx)
i,j

)
(3.282)

=
(
rON rOFF

)( tα(0) tα(γi,j)
tα(γi,j) tα(0)

)(
rON
rOFF

)
(3.283)

= tα(0)
(
(rON)

2 + (rOFF )
2)+ 2tα(γi,j)rONrOFF (3.284)

=
tα(0)

1− ϵ2i,j
− tα(γi,j)ϵi,j

1− ϵ2i,j
(3.285)

= (tα(0)− sα(γi,j)tα(γi,j))
1

1− ϵ2i,j
(3.286)

=

(
3

2
α− 1

2
α(3− ωi,j) exp(−ωi,j)

)
1

1− ϵ2i,j
(3.287)

=

(
3

2
α(1− ϵ2i,j) +

1

2
αωi,jϵ

2
i,j

)
1

1− ϵ2i,j
(3.288)

= tα(0) +
αωi,jϵ

2
i,j

2(1− ϵ2i,j)
(3.289)
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and the off-diagonal entry of R(aprx)
i,j Ti,jR

(aprx)
i,j is

Off
(
R

(aprx)
i,j Ti,jR

(aprx)
i,j

)
(3.290)

=
(
rON rOFF

)( tα(0) tα(γi,j)
tα(γi,j) tα(0)

)(
rOFF
rON

)
(3.291)

= 2tα(0) · rON · rOFF + tα(γi,j)
(
(rON)

2 + (rOFF )
2) (3.292)

= −tα(0)ϵi,j
1− ϵ2i,j

+
tα(γi,j)

1− ϵ2i,j
(3.293)

= (tα(γi,j)− sα(γi,j)tα(0))
1

1− ϵ2i,j
(3.294)

=

(
1

2
α(3− ωi,j) exp(−ωi,j/2)−

3

2
α exp(−ωi,j/2)

)
1

1− ϵ2i,j
(3.295)

= −1

2
αωi,j exp(−ωi,j/2)

1

1− ϵ2i,j
(3.296)

= −1

2
α
√
f(ωi,j)

1

1− ϵ2i,j
. (3.297)

Let’s look at this factor (1− ϵ2)
−1. It’s always at least 1, and its first two derivatives are

d

dϵ

(
1

1− ϵ2

)
=

2ϵ

(1− ϵ2)2
, (3.298)

d2

dϵ2

(
1

1− ϵ2

)
=

2(1 + 3ϵ2)

(1− ϵ2)3
. (3.299)

By Theorem 9,

1

1− ϵ2
= 1 +

(1 + 3ϵ′2)

(1− ϵ′2)3
ϵ2 (3.300)

for some 0 ≤ ϵ′ ≤ ϵ. For ϵ ≤ 1/e, we have

1 ≤ 1

1− ϵ2
≤ 1 + 4ϵ2 ≤ 2. (3.301)

Combining Eqs. (3.289), (3.297) and (3.301) implies Eqs. (3.157) and (3.158).
Finally, we turn to the bound for

max

∣∣∣∣(R(aprx)
i,j

)⊗2

Ui,j

(
R

(aprx)
i,j

)⊗2

− Ui,j

∣∣∣∣
Each entry of

(
R

(aprx)
i,j

)⊗2

is a product of two terms from {rON , rOFF}, and only the diagonal
terms are (rON)

2. For notational ease, we will index the four rows and columns of Ui,j by
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{0, 1, 2, 3}. For a, b ∈ {0, 1, 2, 3}, we will denote the entry in row a and column b by Ui,j [a, b].

Now consider a particular entry in row a and column b of
(
R

(aprx)
i,j

)⊗2

Ui,j

(
R

(aprx)
i,j

)⊗2

. This
entry is the sum of 16 terms, each of which is a product of one entry from Ui,j and four
factors from {rON , rOFF}. The only term that has four factors of (rON) is (rON)

4Ui,j[a, b]

because the two factors of (rON )2 must come from diagonal entries of
(
R

(aprx)
i,j

)⊗2

. The other
15 terms all have at least one factor of rOFF . Also since |rOFF | < |rON |, each of these other
terms is at most |rOFF ||rON |3 ·max (Ui,j). Therefore we have:∣∣∣∣(R(aprx)

i,j

)⊗2

Ui,j

(
R

(aprx)
i,j

)⊗2

[a, b]− Ui,j[a, b]

∣∣∣∣ (3.302)

≤
∣∣(rON)4Ui,j[a, b] + 15 · |rOFF ||rON |3max (Ui,j)− Ui,j[a, b]

∣∣ (3.303)

The maximum entry in Ui,j is u(Coul)
α (0). Therefore

max

∣∣∣∣(R(aprx)
i,j

)⊗2

Ui,j

(
R

(aprx)
i,j

)⊗2

− Ui,j

∣∣∣∣ ≤ u(Coul)
α (0)

[
(rON)

4 − 1 + 15 · |rOFF | · |rON |3
]

Using the bounds from Eqs. (3.155) and (3.156), we know that |rOFF | ≤ ϵi,j(1/2 + ϵ2i,j) and
|rON | ≤ 1 + ϵ2i,j. Also ϵi,j = exp(ωi,j/2) and since by assumption ωi,j ≥ 4, ϵ ≤ 1/4.

max

∣∣∣∣(R(aprx)
i,j

)⊗2

Ui,j

(
R

(aprx)
i,j

)⊗2

− Ui,j

∣∣∣∣ (3.304)

≤u(Coul)
α (0)

[
(rON)

4 − 1 + 15|rOFF | · |rON |3
]

(3.305)

≤u(Coul)
α (0)

[
(1 + ϵ2i,j)

4 − 1 + 15ϵi,j(1/2 + ϵ2i,j) · (1 + ϵ2i,j)
3
]

(3.306)

≤u(Coul)
α (0)

[
2ϵi,j + 15

(
9

16

)
·
(
17

16

)3

ϵi,j

]
(3.307)

≤u(Coul)
α (0)ϵi,j · 12 =

2√
π
13
√
αϵi,j ≤ 16

√
αϵi,j (3.308)

3.6.3 Proof of Lemma 6

Proof of Lemma 6. We’ll start with the kinetic coefficient bounds. Each t(i,p),(j,q) coefficient
has one of the following three forms (from Eq. (3.41)), depending on whether orbitals ϕi,p
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and ϕj,q have exponent α or β, and where x is the distance between the two orbitals:

tα,β(x) = 23/2
(αβ)7/4

(α + β)5/2
(
3− 2µx2

)
exp

(
−µx2

)
where µ = αβ/(α + β) (3.309)

tα(x) =
α

2

(
3− αx2

)
exp

(
−αx2/2

)
(3.310)

tβ(x) =
β

2

(
3− βx2

)
exp

(
−βx2/2

)
(3.311)

Consider the prefactor:

23/2
(αβ)7/4

(α + β)5/2
=

√
αβ

2

[ √
αβ(

α+β
2

)]5/2 ≤ √
αβ

2
(3.312)

The inequality follows from the fact that the geometric mean of two positive numbers is no
more than their arithmetic mean. Therefore, since β ≥ α, the maximum prefactor for tα(x),
tβ(x), or tα,β(x) is

max

{
α

2
,
β

2
,

√
αβ

2

}
=
β

2
. (3.313)

The part of the function t that depends on x is

t̄µ(x) = (3− 2µx2) exp(µx2),

where µ = αβ/(α + β) or α/2 or β/2. Note that t̄µ(x) changes sign once, from positive to
negative, at 2µx2 = 3. Its derivative,

t̄′µ(x) = 23/2µx(4µx2 − 10) exp
(
−µx2

)
, (3.314)

vanishes only at the origin and 2µx2 = 5, where it goes from negative to positive. Therefore,

max
x≥0

|t̄µ(x)| = max
{
t̄µ(0),−t̄µ(

√
5/2µ)

}
= t̄µ(0) = 3. (3.315)

Putting this together with the bound on the prefactor from (3.313), we get that tmax ≤ 3
2
β.

µ ≥ α/2, and therefore 2µΓ2 ≥ αΓ2. Since, by assumption, αΓ2 ≥ 5, we know that t̄µ(x)
is monotonic for x ≥ Γ. Therefore

max
x≥Γ

|t̄µ(x)| = |t̄µ(Γ)| (3.316)

=
∣∣3− 2µΓ2

∣∣ exp (−µΓ2
)

(3.317)
≤ 2µΓ2 exp

(
−µΓ2

)
(3.318)

≤ 2 exp
(
−µΓ2/2

)
≤ 2 exp

(
−αΓ2/4

)
, (3.319)
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where in getting to the last line we used that xe−x ≤ e−x/2. Putting this together with the
bound on the prefactor from (3.313), we get that t(neg)max ≤ β exp (−αΓ2/4).

Bounding the potential integrals will be easier because the integrand is strictly positive.
Each potential integral corresponds to four Gaussians with centers x1 through x4 and
exponents ζ1 through ζ4:∫

drdsξζ1(r− x1)ξζ2(s− x2)
1

∥r− s∥
ξζ3(s− x3)ξζ4(r− x4) (3.320)

=
4∏
i=1

(
2ζi
π

)3/4 ∫
drds exp

[
−ζ1 ∥r− x1∥2 − ζ2 ∥s− x2∥2 (3.321)

−ζ3 ∥s− x3∥2 − ζ4 ∥r− x4∥2
] 1

∥r− s∥
(3.322)

≤
(
2β

π

)3 ∫
drds exp

[
−α
(
∥r− x1∥2 + ∥s− x2∥2 (3.323)

+ ∥s− x3∥2 + ∥r− x4∥2
)] 1

∥r− s∥
(3.324)

=

(
2β

π

)3 ∫
drds exp

[
−α

(
2

∥∥∥∥r− x1 + x4

2

∥∥∥∥2 + 1

2
∥x1 − x4∥2 (3.325)

+2

∥∥∥∥s− x2 + x3

2

∥∥∥∥2 + 1

2
∥x2 − x3∥2

)]
1

∥r− s∥
(3.326)

=

(
β

α

)3

exp
[
−α
2

(
∥x1 − x4∥2 + ∥x2 − x3∥2

)](2α

π

)3

(3.327)

×
∫
drds exp

[
−α

(
2 ∥r∥2 + 2

∥∥∥∥s− x2 + x3 − x1 − x4

2

∥∥∥∥2
)]

1

∥r− s∥
(3.328)

=

(
β

α

)3

exp
[
−α
2

(
∥x1 − x4∥2 + ∥x2 − x3∥2

)]
u(Coul)
α

(
x2 + x3 − x1 − x4

2

)
(3.329)

≤ β3α−3

√
4α

π
≤ 2β3α−5/2 ≤ 2β3, (3.330)

and so umax ≤ 2β3. To bound u(neg)max , consider the above when at least one pair of the points
x1 through x4 are at least Γ apart. If ∥x1 − x4∥ ≥ Γ/2, then the integral is at most

β3α−3 exp
[
−α
2
∥x1 − x4∥2

]
u(Coul)
α (0) ≤ β3α−3 exp

(
−αΓ2/8

)
2
√
α ≤ 2β3 exp

(
−αΓ2/8

)
(3.331)

and similarly for ∥x2 − x3∥ ≤ Γ/2. If neither of these are the case then at least one of x1,x4

must be at least Γ away from at least one of x2,x3. Without loss of generality, suppose
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∥x1 − x2∥ ≥ Γ. That ∥x1 − x4∥ ≤ Γ/2 implies∥∥∥∥x1 + x4

2
− x1

∥∥∥∥ ≤ Γ

4
(3.332)

and similarly for x2 and x3. Then∥∥∥∥x2 + x3 − x1 − x4

2

∥∥∥∥ (3.333)

=

∥∥∥∥∥∥∥∥
x2 + x3

2
− x2︸ ︷︷ ︸

≤Γ/4

−

x1 + x4

2
− x1︸ ︷︷ ︸

≤Γ/4

+

x2 − x1︸ ︷︷ ︸
≥Γ


∥∥∥∥∥∥∥∥ (3.334)

≥ Γ− Γ

4
− Γ

4
=

Γ

2
(3.335)

and the potential integral is at most

β3u(Coul)
α (Γ/2) = β3

√
4α

π
F0(αΓ

2/4) ≤ β3

√
4α

π

√
π

4

1√
αΓ2/4

= 2β3 1

Γ
. (3.336)

Together with Eq. (3.330), this yields

u(neg)max ≤ max
{
2β3 exp(−αΓ2/8), 2β3Γ−1

}
= 2β3max{exp(−αΓ2/8),Γ−1} (3.337)

For αΓ2 ≥ 64 (a condition of the lemma),

1

exp(−αΓ2/8)
= exp(αΓ2/8) =

∞∑
k=0

1

k!

(α
8
Γ2
)k

(3.338)

≤ α

8
Γ2 ≤ α2

8
Γ2 =

√
αΓ2

64
· Γ ≥ Γ (3.339)

and so
u(neg)max ≤ 2β3/Γ. (3.340)
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Part II

Application of quantum algorithms
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Chapter 4

Generalized swap networks and their
application

This chapter reproduces Ref. 125 with minor modifications. Sections 4.9 and 4.10 include
a summary and excerpt of Refs. 91, 114, respectively. The practical use of many types of
near-term quantum computers requires accounting for their limited connectivity. One way of
overcoming limited connectivity is to insert swaps in the circuit so that logical operations
can be performed on physically adjacent qubits, which we refer to as solving the “routing
via matchings” problem. We address the routing problem for families of quantum circuits
defined by a hypergraph wherein each hyperedge corresponds to a potential gate. Our main
result is that any unordered set of k-qubit gates on distinct k-qubit subsets of n logical
qubits can be ordered and parallelized in O(nk−1) depth using a linear arrangement of n
physical qubits; the construction is completely general and achieves optimal scaling in the
case where gates acting on all

(
n
k

)
sets of k qubits are desired. We highlight two classes of

problems for which our method is particularly useful. First, it applies to sets of mutually
commuting gates, as in the (diagonal) phase separators of Quantum Alternating Operator
Ansatz (Quantum Approximate Optimization Algorithm) circuits. For example, a single level
of a QAOA circuit for Maximum Cut can be implemented in linear depth, and a single level
for 3-SAT in quadratic depth. Second, it applies to sets of gates that do not commute but for
which compilation efficiency is the dominant criterion in their ordering. In particular, it can
be adapted to Trotterized time-evolution of fermionic Hamiltonians under the Jordan-Wigner
transformation, and also to non-standard mixers in QAOA. Using our method, a single
Trotter step of the electronic structure Hamiltonian in an arbitrary basis of n orbitals can be
done in O(n3) depth while a Trotter step of the unitary coupled cluster singles and doubles
method can be implemented in O(n2η) depth, where η is the number of electrons.
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4.1 Introduction
The state of experimental quantum computing is rapidly advancing towards “quantum
supremacy” [26], i.e., the point at which quantum computers will be able to perform certain
specialized tasks that are infeasible for even the largest classical supercomputers. Beyond
this technical milestone, however, lies another: useful quantum supremacy, in which quantum
computers can solve problems whose answers are of interest independently of how they were
achieved. The combination of efficient quantum algorithms [74, 145] and scalable error
correction [67] makes such progress likely in the long term, barring fundamental surprises. In
the near term, we have so-called Noisy Intermediate-Scale Quantum (NISQ) devices [133],
capable perhaps of outperforming classical devices on certain problems, but with extremely
constrained resources. Many types of such devices (e.g., superconducting quantum processors)
will have limited connectivity. For the most part, existing quantum algorithms assume an
abstract device with arbitrary connectivity, i.e., the ability to do a two-qubit gate between
any pair of qubits. In theory, this suffices given that circuits can be compiled to any concrete
family of devices with polynomial overhead in qubits and gates [34]. In practice, polynomial
overheads matter and can be the crucial difference between being feasible and infeasible on
NISQ devices.

The overall goal of compilation within the quantum circuit model is to take a quantum
algorithm and implement it (maybe approximately) on a concrete piece of quantum computing
hardware. There are many approaches to this, but perhaps the most straightforward is to
transform the desired quantum circuit into an executable one in two steps: 1) decomposition
of the constituent gates into (maybe approximately) equivalent sub-circuits consisting of
“native” gates, and 2) what we call routing via matchings of the circuit [42]. Our focus here
is on the routing problem, in which the logical qubits are dynamically assigned to physical
qubits in a way that allows the desired logical gates to be implemented while respecting the
restricted connectivity of the actual hardware. In general, it may be necessary to use swap
gates to change this assignment of logical qubits to physical qubits throughout the execution
of the circuit.

In the past several years, there has been a blossoming of tools for addressing variants
of this routing problem, which are variously called “quantum circuit placement”, “qubit
mapping”, “qubit allocation”, or “quantum circuit compilation” (though the latter term
generally encompasses much more). Prior work, however, has taken one of two approaches.
First, of theoretical interest, is to show how any quantum circuit can be converted “efficiently”
(i.e., with polynomial overhead) into one in which gates act only locally in some hardware
graph [34, 87, 113]. The second is an instance-specific approach, in which the problem is
solved anew for each logical circuit [15, 28, 48, 86, 104, 105, 109, 140, 147, 151, 162, 165].
We propose and instantiate a new instance-independent approach, in which the routing
is done for a family of instances, with little-to-no compilation necessary for each instance;
the per-instance compilation time is therefore effectively amortized to nil. This approach,
which finds solutions for families of instances, interpolates between the two approaches above
and seeks to balance the time to solution and the quality of solution. The family-specific
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routing can be found either algorithmically or, as is done here, manually. Algorithms useful
in the instance-specific approach, where quality of solution is prioritized over time to solution,
may (but not necessarily) differ significantly from those useful in the instance-independent
approach, wherein the prioritization is reversed. On the other hand, for many problem
families, there is an instance with maximal structure on which instance-specific algorithms
can be run, thus obtaining compilations that can be used for the whole family. In general,
these instance-specific approaches work best on sparser cases, and on dense instances will
return inferior compilations to the ones given here.

In many quantum algorithms for quantum chemistry it is the case that all circuits of a
given size for a particular problem have the same structure with respect to a partial ordering
of the operations, and the only instance-specific aspect is the parameters (e.g. rotation
angles) of the gates. Furthermore, the implementation of these gates on hardware often
has the same properties (e.g. fidelity and duration) regardless of the parameters. In such
cases, the instance of the compilation problem is effectively independent of the instance of
the application problem. Compare this with implementing QAOA on hardware in which
gate durations are independent of their parameters, in which case the routing problem for
a given problem instance is the same regardless of the variational parameters, but differs
significantly for different problem instances. In cases in which gate durations vary, an upper
bound on (or average over) the range of durations can be used to obtain instance-independent
compilations. Thus, the distinction between instance-specific and instance-independent
approaches is somewhat subjective and contextual, but we merely aim to emphasize that
there is an under-explored regime in the trade-off between quality of solution and computation
time in approaches to the quantum circuit routing problem.

An alternative approach for variational algorithms in general is to obviate the compilation
problem by using an ansatz that is based on the connectivity of the target hardware [61, 95]
and less so on the target application. By efficiently compiling application-specific circuits to
constrained hardware, our methods combine the efficiency of this approach with respect to
physical resources with the advantages of an application-specific ansatz (e.g., fewer variational
parameters).

A method was recently proposed for implementing a Trotter step of a fermionic Hamiltonian
containing

(
n
2

)
terms, where n is the number of orbitals, using a circuit of depth n with

only linear connectivity [94, 100]. Using fermionic swap gates [47], Kivlichan et al. were
able to change the mapping between fermionic modes and physical qubits while preserving
anti-symmetry [100]. By constructing a network of these gates such that, at some point in
the circuit, each pair of orbitals is assigned to some pair of neighboring qubits, they were able
to guarantee that they could implement each of the terms in the Trotter decomposition of
the Hamiltonian by acting only locally on said pair of qubits, and that they could implement
n/2 such terms in parallel. In this work, we generalize their approach and describe a way
to construct networks of fermionic swap gates acting on n qubits such that each k-tuple
of fermionic modes is mapped to adjacent physical qubits at some point during the circuit.
The circuits that we construct have an asymptotically optimal depth of O(nk−1) while only
assuming linear connectivity.
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For fermionic Hamiltonians, Motta et al. take a different approach that exploits the fact
that many Hamiltonians of practical interest are low-rank [121]. For unitary coupled cluster
and full-rank generic chemical Hamiltonians, their methods achieve the same scaling as ours,
as summarized in Table 4.1. Our methods provide an alternative Trotter order, whose relative
value will need to be studied empirically. For a Trotter step of the Hamiltonian for real
molecular systems, empirical data indicate that their low-rank methods can achieve O(n2)
depth.

The question of how to optimally implement a collection of k-qubit operators is not confined
to the simulation of fermionic quantum systems. Another promising use is in the application of
the Quantum Alternating Operator Ansatz (Quantum Approximate Optimization Algorithm,
or QAOA) to Constraint Satisfaction Problems (CSPs) over Boolean domains. This approach
was taken for the Maximum Cut problem using existing linear swap networks [50]; our
methods can address k-CSP for any k in O(nk−1) depth.

Our main contributions are:

• Formalizing a variant of the quantum circuit routing problem in a way that abstracts
away details of particular devices and focuses on their geometry, which is shared by a
wide class of devices;

• Making explicit and general the equivalence between swap networks that change the
mapping of logical qubits to physical qubits and those that change the mapping between
fermionic modes and physical qubits;

• Explicit constructions for several important classes of problems, as summarized in
Table 4.1, using modular primitives that can be applied to new problems; and

• Providing tools for lower bounding the depth of solutions to the routing problem, in
particular by connecting it with prior work on acquaintance time and graph minors.

This chapter is organized as follows. In Section 4.2, we more formally describe the quantum
circuit routing problem and our approach thereto. In Section 4.3, we introduce generalized
swap networks that will be used in the constructions of later sections. In Section 4.4, we
introduce some specific quantum simulation tasks related to fermionic Hamiltonians, as well
as the Quantum Alternating Operator Ansatz (QAOA), which yield families of circuits that
can be routed using our methods. In Section 4.5, we present our main result, showing how
to achieve optimal scaling when routing (with an arbitrary ordering) circuits consisting of a
k-qubit gate for each possible set of k qubits. In Section 4.6 we describe families of instances
arising from the Unitary Coupled Cluster method and how to efficiently route them. A
reader familiar with either QAOA or quantum simulation of fermionic Hamiltonians and
interested in quickly learning some useful techniques may do so in sections 4.3, 4.5, and 4.6.
In Section 4.7, we discuss the instance-independent approach in the context of quantum
annealing. In Section 4.8, we show how to lower bound the depth of a solution to the
circuit routing problem. In Section 4.9, we introduce a Non-orthogonal Variational Quantum
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Instance family: k-CSP UCCGSD UCCSD UpCCGSD
Depth: Θ(nk−1) Θ(n3) Θ(ηn2) Θ(n)

Table 4.1: Main results. k-CSP indicates depth for a single round of QAOA. Remaining
columns indicate depth for a single Trotter step of the coupled cluster operator or of a
similarly structured variational ansatz. All are optimal up to constant prefactors for arbitrary
connectivity. See Section 4.5 for details regarding k-CSP and Section 4.6 regarding Unitary
Coupled Cluster.

Eigensolver; we used swap networks to compile the circuits in our numerical experiments. In
Section 4.10, we construct swap networks for block-diagonal Hamiltonians.

4.2 Model
We consider hardware consisting of a line of n qubits and suppose that we are able to
implement any k-qubit gate in time τk on any set of k qubits that are adjacent. This is an
abstraction of the more physical model in which only 1- and 2-qubit gates can be directly
implemented; τk for k > 2 is thus some linear combination of τ1 and τ2 that indicates an
upper bound on the cost of compiling any k-qubit gate. When considering a specific piece of
hardware, this model is relatively coarse; different gates on different sets of physical qubits
may require vastly different times to implement. However, this level of abstraction allows
for significant generality without too great a loss of precision. Accordingly, for a specific
piece of hardware, our constructions should be considered as a starting point, with low-level
optimizations likely to improve the constant factors significantly. For example, the line of
qubits on which the swap networks are defined can be embedded in a “castellated” manner in
a 2× (n/2) lattice, as shown in Figure 4.1. The availability of the additional qubit adjacency
can enable more efficient decomposition of higher-locality gates.

The problem we would like to solve is as follows: given a set of k-qubit gates G on n
qubits, implement them in some order on the hardware described above. In particular, we
focus on the swap-network paradigm. That is, we start with an initial assignment of logical
qubits to physical qubits and insert a sequence of 2-qubit swap gates to move the logical
qubits around so that for every gate in G the logical qubits on which it acts are physically
adjacent at some point in the process. As discussed in Sections 4.4.1 and 4.6, the routing
problem thus defined is equivalent to the problem of using fermionic swap gates to change the
ordering of a Jordan-Wigner string to enable the implementation of gates locally. Without
loss of generality, we assume that there is at most one gate in G acting on any set of qubits,
and that for any gate g ∈ G acting on a set of qubits S there is no other gate g′ ∈ G acting
on a subset of qubits S ′ ⊂ S. This is a convenient abstraction, rather than a restriction. An
instance of the routing problem is thus specified as a hypergraph, with vertices corresponding
to logical qubits and hyperedges corresponding to logical gates. We focus on k-complete
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Figure 4.1: “Castellated” mapping of the Jordan-Wigner string into a 2× (n/2) square lattice.
While all swapping is done along the Jordan-Wigner string, mapping the string to the lattice
in this way allows for potentially more efficient decomposition of the 4-qubit gates by making
available a fourth adjacency.

hypergraphs, ones in which for every subset of k vertices, there is an edge connecting them;
|G| =

(
n
k

)
. Results for complete hypergraphs give worst case bounds for the general problem.

A more general variant is the more typically considered problem in which one wants to enforce
a temporal partial ordering on the logical gates.

In general, near-term hardware will have greater connectivity than a line; nevertheless, it
will likely contain a line as a subset, so that our constructions give a baseline. Even with
greater connectivity, our scaling is optimal when the number of gates is Ω(nk). Let m = |G|
be the number of gates, ν the number of physical qubits, and n the number of logical qubits.
At most ν gates can be implemented at a time, so the circuit depth must be at least m/ν. For
m = Ω(nk) and ν = O(n), this implies a minimal depth of Ω(nk−1), which our construction
provides. Because our focus is on resource-constrained near-term hardware, we shall assume
that the number of physical qubits is equal to the number of logical qubits.

4.3 Swap networks
Henceforth, by “swap gate”, we shall mean either the standard swap gate (when considering a
mapping of logical qubits to physical qubits) or the fermionic swap gate (when considering a
mapping of fermionic modes to physical qubits); for circuit routing, everything is exactly the
same in both cases except for the “interpretation”. A swap network is a circuit consisting
entirely of swap gates. We define a 2-complete linear swap network, a notion we shall
generalize shortly, to be a swap network in which all pairs of logical qubits are linearly
adjacent at some point in the circuit and in which all swap gates act on linearly adjacent
physical qubits. Such networks ensure that, in the linear architecture described in Sec 4.2,
there is an opportunity to add, for each pair of logical qubits, a 2-qubit gate acting on those
logical qubits (or fermionic modes as the case may be) at some point in the circuit. We
call such opportunities acquaintance opportunities. They are not part of the swap network,
but we shall often draw them as empty boxes in circuit diagrams to illustrate acquaintance
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Figure 4.2: Top: Notation (left) and decomposition (right) for the canonical 2-complete
linear (2-CCL) swap network for acquainting all pairs of qubits, annotated with empty boxes
showing acquaintance opportunities. The circuit has depth n, and contains n(n− 1)/2 swap
gates. Bottom: The canonical 3-complete linear (3-CCL) swap network that acquaints all
triples of qubits. It is formed by replacing each layer i of acquaintance opportunities in the
2-CCL swap network with a Pi-swap network; the qubits to be acquainted in the former are
the parts in the partition Pi. The 3-local acquaintance opportunities are not shown. Part
of this swap network is shown in more detail in the top of Figure 4.5, with acquaintance
opportunities indicated. (Each layer of 1-swaps will be cancelled out by the final layer in the
expansion of the preceding 2-swap network; we include them here to make the recursive step
clear.)
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properties of swap networks, as in Figure 4.2. We shall say that a set of logical qubits that
has at least one such acquaintance opportunity is “acquainted” by the network, or that the
swap network “acquaints” those qubits.

Before generalizing this notion, we review the construction of Kivlichan et al. [100] for
implementing a 2-local gate on every pair of logical qubits in depth n, using

(
n
2

)
swap gates.

The swap network underlying this construction is what we shall call the canonical 2-complete
linear swap network. Let the physical qubits be labeled 1 through n, and partition the
pairs of adjacent qubits into two sets based on the parity of their larger index: even pairs
{{1, 2}, {3, 4}, . . .} and odd pairs {{2, 3}, {4, 5}, . . . , }. Note that the pairs in each partition
are mutually disjoint. We define the canonical 2-complete linear (2-CCL) swap network as n
alternating layers of swaps on the even pairs and odd pairs, as illustrated in the top half of
Figure 4.2. The overall effect of the 2-CCL swap network is to reverse the ordering of the
logical qubits. In doing so, it directly swaps every pair of logical qubits. This construction
has the attractive property that each acquaintance opportunity precedes a swap gate on the
same two qubits, so any added gate that acts on a pair of logical qubits can be combined
with the swap of those two qubits, with the result that in depth n we can execute a 2-qubit
gate between every pair of logical qubits.

One direction for generalization is to (S,A)-swap networks, where S is a subset of all
pairs of qubits and A is an architecture, such as a 2D grid. The set S captures the pairs of
qubits to which we want to apply 2-qubit gates at a given stage in a circuit. We shall not
discuss this generalization further, other than to note that our results can be used to provide
bounds for (S,A)-swap networks. Because in the present work we shall present only swap
networks acting on a line, we shall often leave that aspect implicit in the terminology and
refer simply, e.g., to a “2-complete swap network”.

Instead, we are interested in generalizing to k-complete swap networks, networks in which
the elements of every set of k logical qubits are adjacent at some point, so that a k-qubit
gate (or set of 1- and 2-qubit gates making up the k-qubit gate) could be applied thereto.
To support the construction of k-complete swap networks in Sec.4.5, here we introduce a
generalization of a 2-complete swap network that swaps elements of a partition of qubits,
rather than individual logical qubits: a complete P-swap network, where P is an ordered
partition of the physical qubits such that each part contains only contiguous qubits, contains
only swap operators that swap parts of the partition. In this way, a complete P-swap network
has the property that every part in the partition is adjacent to every other part in the
partition at some point in the network.

In constructing P-swap networks, it will be useful to swap pairs of sets of qubits using what
we call a (k1, k2)-swap gate, or, more generally, a generalized swap gate. The (k1, k2)-swap gate
swaps a set of k1 logical qubits with a set of k2 logical qubits, while preserving the ordering
within each set, i.e., it permutes a sequence of logical qubits from (i1, . . . , ik1 , ik1+1, . . . , ik1+k2)
to (ik1+1, . . . , ik1+k2 , i1, . . . , ik1). Several examples of these generalized swap gates and their
decompositions are shown in Figure 4.3. In general, a (k1, k2)-swap gate can be decomposed
using k1 · k2 standard swap gates in depth k1 + k2 − 1. We call a swap network a k-swap
network whenever it contains only (k1, k2)-swap gates for k1, k2 ≤ k.
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Figure 4.3: Generalized swap gates. From top to bottom, notation and decompositions
for (1, 2)-, (1, 3)-, (2, 2)-, and (3, 3)-swap gates. A (k1, k2)-swap gate can be implemented in
depth k1 + k2 − 1 using k1k2 standard swap gates.
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The canonical P-swap network has the same structure as the 2-CCL swap network, except
that instead of pairs of single qubits being swapped at a time, pairs of sets of qubits (i.e., the
parts of the partition) are swapped. In the canonical P-swap network, each (k1, k2)-swap
gate is preceded by a (k1 + k2)-local acquaintance opportunity. To make the overall effect
of a complete P-swap network be a complete reversal of the qubit mapping, we append
to the end a 1-swap network within each part. This is unnecessary when considering a
single swap network, but may be helpful when using the swap network as a primitive in
a larger construction. Note that this is is primarily for explanatory purposes, and in an
actual implementation would likely be optimized away. In the recursive strategy for k-local
hypergraphs (discussed in Sec. 4.5), each generalized swap gate is preceded by some number
of acquaintance opportunities and swap gates that ensure that each set of k1 or k2 qubits is
acquainted with each one of the other set.

The 2-CCL swap network has the exact same structure as the optimal sorting network on
a line [13]. A sorting network is a fixed circuit consisting of “comparators”. Given an initial
assignment of objects to the wires, each comparator compares the objects and swaps them if
they are out of order. This means that a subset of the 2-CCL swap network can be used to
effect an arbitrary permutation of logical qubits in at most linear depth.

The swap networks above acquaint all pairs of sets of qubits. Another useful primitive
is what we call a “bipartite swap network”; again, this should be more precisely called a
“bipartite linear swap network” to emphasize that it acts on a line, but we leave this implicit
for concision. Given a bipartition of sets of qubits, it acquaints all the unions of pairs of sets
of qubits which can be formed by taking one set from the first part and the other set from
the second part. While the depth of a bipartite swap network is similar to that of a complete
swap network, the gate count is approximately halved. Figure 4.4 shows an example bipartite
swap network for the sets of qubits ((1, 2), (3, 4), . . . , (11, 12)) with the first three in one part
and the latter three in the second part.

Swap networks can be useful for measurement as well. In many cases, the gates to be
executed correspond one-to-one with the terms of a Hamiltonian to be measured. Any swap
network used to implement those gates thus yields a partition of the terms of the Hamiltonian
into parts containing only gates acting on disjoint sets of qubits. This partition can then be
used to parallelize the measurements. After an application of the swap network, the swap
layers following the logical layer to be measured can be executed in reverse to return the
mapping to one in which the terms of the Hamiltonian are mapped to adjacent sets of qubits,
with appropriate optimizations made to account for the fact that many swap gates will likely
cancel out once the logical gates are removed. Alternatively, a simple sorting network can be
used to achieve the same end. For fermionic Hamiltonians, this approach can significantly
reduce the number of measurements needed by reducing the locality of all measurement
terms, in addition to the savings yielded by parallelization.
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Figure 4.4: Notation (left) and decomposition (right) for a bipartite swap network corre-
sponding to the bipartition (((1, 2) , (3, 4) , (5, 6)) , ((7, 8) , (9, 10) , (11, 12))). For each pair of
qubits in the first half and each pair of qubits in the second half, their union is acquainted;
the overall effect is the same as that of a generalized swap gate corresponding to the two
halves. Note the similarity of the notation to that for a complete swap network, except that
the dotted lines connect only each part of the bipartition.

Application QAOA Quantum chemistry
Iteration

∏
I exp

(
iγcI

∏
i∈I Zi

) ∏
p,q,r,s exp (−itHp,q,r,s)

Assignment logical qubits fermionic modes
Changed by SWAP FSWAP

Table 4.2: The two problem families we consider. The table lists the iterated operator we
compile, and the logical unit and gates used in the compilation.

4.4 Problem families
In this section, we introduce two families of quantum circuits that come from quite different
application domains but whose compilation can be addressed using essentially the same tools;
the analogy is summarized in Table 4.2. Both cases involve repeated application of a circuit
of a particular form such that for each iteration the compilation instance is the same. We
provide constructions for a single iteration; these can be repeated sequentially for the full
circuit. Solving the compilation instance for the full circuit all at once may provide a better
solution, but likely at the cost of it being much harder to find.
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4.4.1 Fermionic Hamiltonians

The general form of the electronic structure Hamiltonian in second quantization is

H =
∑
p,q

cp,qa
†
paq +

∑
p,q,r,s

cp,q,rsa
†
pa

†
qaras, (4.1)

where p, q, r, s label single-electron orbitals, cp,q and cp,q,r,s are real coefficients, and a†p is the
creation operator for the pth orbital. A common subroutine of quantum simulation algorithms
is the Trotterization of time evolution under such a fermionic Hamiltonian [10]:

e−iHt ≈
t/δt∏
l=1

( ∏
p,q,r,s

e−iHp,q,r,sδt

)
, (4.2)

where Hp,q,r,s is the part of the Hamiltonian that acts exclusively on modes p,q,r,s. (For
simplicity we absorb the terms acting on two fermionic modes into the terms acting on four.)
One approach to mapping the fermionic operators e−iHp,q,r,s into operators acting on the qubit
Hilbert space is to employ the Jordan-Wigner transformation [126],

ap = −
p−1∏
i=1

σ
(z)
i · σ(−)

p . (4.3)

After performing the Jordan-Wigner transformation on Equation 4.2, many of the resulting
operators will act non-trivially on Θ(n) qubits, resulting in a naive gate depth of Θ(n5) for
the implementation of Equation 4.2, assuming there are Θ(n4) terms in the Hamiltonian.
As we shall see, by reordering the fermionic modes (thereby changing the Jordan-Wigner
ordering), this overhead from the non-locality of the Jordan-Wigner transformation is ad-
dressed automatically in our scheme for parallelization. For this reason, our constructions
provide significant advantage even when connectivity is not a constraint, including in the
error-corrected regime. As a result, at least with respect to scaling, we avoid the need for
more sophisticated alternatives to the Jordan-Wigner transformation, such as those developed
by Bravyi and Kitaev [33] and others [32].

A related approach, employed by a variety of works proposing the study of quantum
chemistry using a near-term device, is the use of a quantum circuit to prepare and measure
the unitary coupled cluster ansatz [103, 115, 130, 139]. Under the typical choice to include
only single and double excitations in the cluster operator, this wave function is given by

|ψ⟩ = eT−T
†|ϕ0⟩, (4.4)

where the cluster operator T has a form similar to H in Equation 4.1. Usually, it contains only
excitations from the η “occupied” orbitals which contain an electron in the reference state |ϕ0⟩
to the n− η “virtual” orbitals, and the coefficients are determined variationally. We refer to
this case as UCCSD, and the case where all 2-electron excitations are included as UCCGSD.
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The exact exponential of Equation 4.4 is typically approximated by a Trotter expansion and
(assuming n ≫ η), the Θ(n) overhead from the non-locality of the Jordan-Wigner strings
discussed above would lead to a circuit depth of Θ(n3η2) for a single Trotter step.

We show how depths of O(n3) and O(n2η) can be achieved for a Trotter step of the time
evolution under a fermionic Hamiltonian (or the similarly structured UCCGSD) and the
UCCSD ansatz, respectively. These scalings match the asymptotic results of Ref. [81] while
also respecting the spatial locality of the available gates and requiring no additional ancilla
qubits.

4.4.2 QAOA

As originally proposed [62, 64], QAOA is a method for minimizing the expectation value of a
diagonal Hamiltonian

Hf =
∑
I⊂[n]

cI
∏
i∈I

Zi (4.5)

corresponding to a classical function f : {±1}n → R whose multilinear form is

f(s) =
∑
I⊂[n]

cI
∏
i∈I

si. (4.6)

The minimization is done variationally over states of the form

|β,γ⟩ = eiβpMeiγpHf · · · eiβ1Meiγ1Hf |+⟩⊗n, (4.7)

which consists of p alternating applications of the “phase separator” eiγHf and the “mixer”
M =

∑n
i=1Xi. The phase separator can be written as the product of gates corresponding to

terms in the Hamiltonian,
eiγHf =

∏
I

eiγcI
∏

i∈I Zi . (4.8)

Note that the gates are diagonal and so their order does not matter. The locality of the gates
corresponds directly to the locality of the terms in the Hamiltonian, max |I|. QAOA applied
to k-CSP, in which each term acts on at most k variables, thus requires k-qubit gates.

Hadfield et al. [77] generalized QAOA to the Quantum Alternating Operator Ansatz,
employing a wider variety of mixers, many of which involve k-qubit gates. While these gates,
in general, do not commute, it is an open question how the order of the gates affects the
efficacy of the mixing. In NISQ devices with limited depth, the depth in which different
mixers can be implemented plays a key role in their usefulness. The techniques here can be
applied to these alternative mixers, with different orderings giving different mixers within
the same family, and the resulting compilation a key step in determining the most effective
mixing strategy.
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4.5 Complete hypergraphs

4.5.1 Cubic interactions

Now, suppose we want to implement a 3-qubit gate between every triple of logical qubits. We
call a swap network that achieves this goal a 3-complete linear (3-CCL) swap network. We
can do so in the following way. First, we start with the 2-CCL swap network, as shown in the
top half of Figure 4.2. At each layer i where acquaintance opportunities appear, consider the
partition Pi whose parts are the pairs of qubits appearing in the acquaintance opportunities
together with singleton parts for any unpaired qubits at the boundary. To obtain a 3-complete
linear swap network, we add 2-swap networks corresponding to the partition Pi, as shown in
the bottom half of Figure 4.2. The 3-way acquaintance opportunities, where 3-local gates
(or compilations of them to 1-and 2-local gates) can be added, are interspersed between the
generalized swaps making up the Pi-swap network, as shown in the top half of Figure 4.5.
We make use of the property that for any two pairs of logical qubits involved in a 2-swap,
each triple consisting of one of the pairs and one qubit from the other pair is mapped to
three contiguous physical qubits either before or after the swap. This ensures that overall
every triple of logical qubits is acquainted because any triple T is the union of a pair and a
third qubit. The 2-CCL network ensures that the pair is adjacent at some point, and thus a
part S of some partition Pi. The third qubit is necessarily in some other part S ′ of the same
partition, so that at some point in the Pi-swap network there is a 2-swap network involving
S and S ′, ensuring that the triple T is acquainted. (Actually, it is acquainted thrice, because
there are three pairs S for which the preceding logic applies.) There are exactly n 2-swap
networks inserted, and each 2-swap gate can be implemented in depth 3 using standard swap
gates, for a total depth of approximately (3/2)n2(τ2 + τ3) = Θ(n2).

4.5.2 General k-qubit gates

The above ideas generalize to arbitrary k. The construction is recursive. First, construct the
network to implement all (k − 1)-qubit gates. Then replace every layer i of acquaintance
opportunities with the corresponding Pi-complete swap network, inserting 1-swaps and
acquaintance opportunities between the layers of (k − 1)-swaps in order to acquaint each set
of k− 1 qubits with each qubit in the other set of k− 1 qubits with which it will be swapped.
Specifically, when inserting a (k − 1)-swap involving two sets of (k − 1) qubits each, we want
to ensure that each set of k qubits consisting of one of the sets and one qubit from the other
set is mapped to k contiguous physical qubits either before or after the swap. For k = 2, this
is the case without additional swaps. For larger k, this can be achieved by adding swaps that
bring half each of set to the “interface” between them before the swap (the half closest to
the interface), and the other half to the interface afterwards (when it will then be the closer
half). This ensures that overall every set of k logical qubits is acquainted because any such
set T is the union of a set S of k − 1 qubits and a kth qubit t. Suppose we start with a swap
network that acquaints every set of k − 1 qubits, and in particular S, so that S is a part of
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Figure 4.5: Top: Notation and decomposition for complete 2-swap network for acquainting
each pair of qubits in the initial partition with every other third qubit. Note how the 3-qubit
acquaintance opportunities are almost perfectly parallelized; this helps significantly when
recursing further. Bottom: Swap network for acquainting every set of 4 qubits such that 2
of the 4 qubits were paired in the partition of the originating 2-swap network, formed by
replacing each layer of acquaintance opportunities in the complete 2-swap network with a
complete 3-swap network, in the same manner as in Figure 4.2. In the swap network to
acquaint every set of 4 qubits, this replacement (i.e., from top to bottom of this figure) is
done for every complete 2-swap network in the circuit for acquainting every set of 3 qubits,
i.e., for every other layer in the bottom of Figure 4.2.

some partition Pi (corresponding to acquaintance layer i in the starting swap network) in
the recursive step. The kth qubit t is necessarily in some other part S ′ of the same partition
Pi, so that at some point in the Pi-swap network there is a (k − 1)-swap involving S and S ′,
ensuring that the set T is acquainted. (Actually, it is acquainted at least k times, because
there are k sets S ⊂ T for which the preceding logic applies.)

Each (k− 1)-swap network has depth at most n in terms of (k− 1)-swap gates. A k-swap
gate has depth at most 2k − 1 in terms of standard swap gates, and the additional swaps for
bringing inner qubits to the interface add depth k − 2 at each swap. Therefore, if we have a
depth O(nk−2) construction for all (k−1)-qubit gates, we can use that to get an O(nk−1) depth
construction for all k-qubit gates. The base case is the linear-depth 2-CCL swap network
for 2-qubit gates. Figures 4.2 and 4.5 show the steps for k = 4. Lower-locality gates can be
included in one of two ways, or a combination thereof. First, they can be incorporated directly
into the highest-locality gates. Alternatively, the lower-locality acquaintance opportunities
can be kept when recursing.

Using this recursive method yields a significant amount of redundancy with respect to the
number of times that each set of k qubits can be acquainted. For applications in which the
gates do not commute, this can be exploited in two ways. First, distributing the gates over
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all possible acquaintance opportunities may lead to smaller Trotter errors. Second, for each
gate a possible acquaintance opportunity may be chosen randomly. In other words, the swap
network can be considered as a family of swap networks, each corresponding to a particular
Trotter order; prior work shows that such random Trotter orderings may be helpful [41].

4.5.3 Alternative for 3-local

Here we present an alternative construction for sets of 3-local gates. Its depth is similar to
that of the other given, but it doesn’t obviously generalize. We include it for two reasons: it
demonstrates a potentially useful property of complete linear swap networks, and it may be
better when applied to specific hardware devices.

Note that in the 2-complete swap network, every pair of logical qubits that is initially at
distance 2 from each other remains so, except near the ends of the line. Furthermore, every
other logical qubit passes through them at some point. For our purposes, this means that in
the course of the 2-complete swap network we can execute any 3-local gate such that some
pair of the three logical qubits on which it acts is at distance 2 at the start of the network.

Consider a sequence of mappings labeled by ∆ = 1, . . . , n/2. In the mapping labeled by ∆,
the logical qubits (1, 1 + ∆, 1 + 2∆, . . . , 2, 2 + ∆, 2 + 2∆, . . . ,∆, 2∆, 3∆, . . . , ) are mapped
to physical qubits (1, n, 3, n− 1, 5, . . . , ⌊n/2⌋+ 1), respectively. Any triple of logical qubits
contains at least one pair that are mapped to physical qubits at distance 2 in at least one of
the n/2 mappings. The construction is thus: alternate between 1) 2-complete swap networks
with initial assignments given by the mappings, and 2) sorting networks to get to the next
mapping. The 2-complete swap networks have depth n and the sorting networks depth at
most n, so overall the total depth is at most 2n · (n/2) = n2.

4.6 Unitary Coupled Cluster
In this section, we describe how swap networks can be used to implement Trotterized
versions of three different types of unitary coupled cluster ansatz with a depth scaling
that is optimal up to constant prefactors. We present the details for the standard unitary
coupled cluster method with single and double excitations from occupied to virtual orbitals
(UCCSD) [115, 130, 139], a unitary coupled cluster that includes additional, generalized,
excitations (UCCGSD) [122, 157], and a recently introduced ansatz that is a sparsified version
of UCCGSD (k-UpCCGSD) [103].

The standard unitary coupled cluster singles and doubles ansatz is given by

|ψ⟩ = eT−T
†|ϕ0⟩, (4.9)
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Figure 4.6: Construction of the swap network for a UCCSD operator (Equation 4.10) with two
occupied and two virtual spatial orbitals. On top is an intermediate form of the construction
useful for reasoning through the logic of its structure; on bottom is the actual network.
On the first four qubits of the top half is a complete swap network with the acquaintance
opportunity layers repeated twice. On the second four qubits are four concatenated complete
swap networks, one for each acquaintance layer (before repetition) of the complete swap
network on the first four qubits. The spins of the orbitals in the initial mapping to qubits is
indicated; with this initial mapping, the parity of the spins of the orbitals to be acquainted
in each layer of the complete swap networks is the same (either all ↑↑ or ↓↓, or all ↑↓). For
every pair of occupied spin orbitals with some parity and every pair of virtual spin orbitals
with the same parity, there is some layer of the combined swap network in which both pairs
are simultaneously (but separately) acquainted. The construction is completed by replacing
each acquaintance layer with a bipartite swap network over the occupied and virtual orbitals,
which then acquaints the union of every such pair of pairs of spin orbitals. (An example
bipartite swap network is shown in Figure 4.4.)
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where |ϕ0⟩ is the Hartree-Fock state, T = T1 + T2,

T1 =
∑
i∈occ
a∈vir

tai a
†
aai,

T2 =
∑
i,j∈occ
a,b∈vir

ta,bi,j a
†
aa

†
bajai.

(4.10)

The i and j indices range over the η “occupied” orbitals (those which are occupied in the
Hartree-Fock state |ϕ0⟩) and the a and b indices over the n− η “virtual” orbitals (those which
are unoccupied in |ϕ0⟩). A Trotter step of the corresponding unitary has

(
η
2

)(
n−η
2

)
4-local

gates.
These can be implemented in O(ηn2) depth, as shown in Figure 4.6. First, we assign the

occupied orbitals to the first η physical qubits (1, . . . , η) and the virtual orbitals to the last
n− η physical qubits (η + 1, . . . , n). We have a 2-complete swap network on the occupied
orbitals. In between every swap layer thereof, we do a 2-complete swap network on the virtual
orbitals. For every pair of occupied orbitals and every pair of virtual orbitals, there is a layer
in this composite network such that the pairs are simultaneously adjacent. Thus, if we then
insert a final 2-swap network with appropriate partitions at every layer, then every set of
2 occupied orbitals and 2 virtual orbitals will be adjacent at some point and a 4-local gate
can be implemented on them. There swap depth of just the 2-complete swap networks is
η(n− η+ 1)τ2 = Θ(ηn). Before each one, a 2-swap network is inserted with an average depth
of (n+ 2)(3τ2 + τ4) = Θ(n). Overall, this yields the claimed Θ(ηn2) depth. The coefficient of
the leading term in the depth can be halved by accounting for the fact that we are typically
interested in implementing only those excitations that are spin-preserving. If we initially
order the spin orbitals within the sets of occupied and virtual orbitals by ↑, ↓, ↓, ↑, ↑, . . ., then
the parity of the spins of the pairs of orbitals acquainted in each layer of the 1-swap networks
alternates, and we only need to do a bipartite 2-swap network when the spin parities of the
layers of the two sets coincide.

A more general version of the unitary coupled cluster ansatz is obtained by allowing exci-
tations between any pair of orbitals. Rather than the cluster operators given in Equation 4.10,
we use

T1 =
∑
p,q

tqpa
†
qap,

T2 =
∑
p,q,r,s

tr,sp,qa
†
ra

†
saqap,

(4.11)

where the indices p, q, r, and s are allowed to range over the entire set of orbitals (except that
we often disallow excitations that do not preserve spin). It has been shown that the inclusion
of these “generalized’ singles and doubles greatly increases the ability of unitary coupled
cluster to target the kind of strongly correlated states that pose the greatest challenge for
quantum chemical calculations on a classical computer [103, 157]. A Trotter step for unitary
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coupled cluster with generalized singles and doubles may be implemented by a straightforward
application of the techniques for implementing 4-local gates described in Figure 4.5. That
construction also yields the optimal scaling here, enabling the execution of all Θ(n4) gates
operations corresponding to the terms in Equation 4.11 using a circuit of depth Θ(n3). One
possibility for exploiting spin symmetry is as follows. Start with an initial mapping in which
the orbitals of one spin are mapped to the first half of the physical qubits and those of the
other spin to the second half. Then apply the quartic swap network to each half of the qubits
in parallel, thus acquainting all sets of four orbitals with the same spin. Then apply a double
bipartite swap network, of the sort used for UCCSD, to acquaint every set of four orbitals
such that there are two orbitals of each spin.

As a final example of the utility of a swap network approach to circuit compilation, we
describe the implementation of a sparse version of the unitary coupled cluster operator with
generalized singles and doubles recently developed by Lee at al. [103]. Rather than the full
set of double excitations as in Equation 4.11, this variant of unitary coupled cluster uses
only those double excitations that transfer two electrons with opposite spins from one spatial
orbital to another. The resulting cluster operators,

T1 =
∑
p,q,α

tqpa
†
qαapα,

T2 =
∑
p,q

tq,qp,p, a
†
q↑a

†
q↓ap↓ap↑

(4.12)

contain only Θ(n2) terms and can be implemented in Θ(n) depth using the approach detailed
below.

Recall our prior observation that, throughout the execution of a complete 1-swap network,
every pair of logical qubits that is initially at distance 2 from each other will remain so.
Furthermore, every such pair of logical qubits will become adjacent to every other pair.
Therefore we begin by ordering the fermionic modes (1 ↑, 2 ↑, 1 ↓, 2 ↓, 3 ↑, 4 ↑, 3 ↓, 4 ↓, . . .).
Then, by executing a 2-complete swap network, we bring the fermionic modes involved in
each of the 2-local and 4-local terms in Equation 4.12 adjacent to each other at some point.
We show an example for n = 8 in Figure 4.7 below.

4.7 Instance-independent embedding for quantum
annealing

Quantum annealing is an alternative model of quantum computation for minimizing a classical
pseudo-Boolean function f : {±1}n → R, in which the Hamiltonian is slowly changed from
an initial Hamiltonian Hinit into the problem Hamiltonian Hf , whose ground state(s) we
would like to find. Often, the desired Hamiltonian Hf cannot be implemented directly on a
physical quantum annealer due to limited connectivity. To overcome this limitation, each
logical qubit in Hf can be mapped to a connected set of physical qubits which are coupled
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1 ↑

2 ↑

1 ↓

2 ↓

3 ↑

4 ↑

3 ↓

4 ↓

Figure 4.7: The swap network for a UpCCGSD operator (Equation 4.12) with four spatial
orbitals. The initial assignment of spin orbitals to qubits is indicated; the important feature
is that the two spin orbitals for each spatial orbital are assigned to qubits at distance 2
from each other. They then stay at distance 2 from each other throughout the evolution of
the swap network (except temporarily at the edges). The swaps are exactly the same as in
the standard 1-swap network, except that a layer of 4-local acquaintance opportunities is
inserted before every other swap layer, allowing the four spin orbitals corresponding to a pair
of spatial orbitals to be acquainted.

together with a ferromagnetic field that induces them to take on the same value. In the
standard case in which Hf is 2-local (i.e., f is quadratic), it can be considered as a graph,
and this mapping from logical to physical qubits as a minor embedding into the hardware
graph. For example, Choi [43] gave a family of minor embeddings of the complete graph into
a so-called Triad hardware graph (similar to the Chimera hardware graph used by D-Wave)
in which the number of physical qubits scales quadratically with the number of logical qubits,
which is optimal for bounded-degree hardware graphs. Zaribafiyan et al. [164] provide a
deterministic embedding for Cartesian product graphs.

In practice, problem graphs of interest are usually much sparser than the complete graph,
or the Cartesian product graphs, and so using an embedding for the complete graph is
likely to use more physical qubits than necessary. Specifically, most problems run on the
D-Wave quantum annealer make use of D-Wave’s heuristic embedding software [36]. Many
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practitioners thus use instance-specific embeddings to maximize the use of scarce resources.
The problem, however, is the difficulty of finding such instance-specific embeddings. An
approach similar to the one we used for quantum circuits can be taken. Instead of using
an embedding of either the complete graph (which is trivial to find but resource-inefficient)
or a single problem graph (which is harder to find but more resource-efficient), one can use
an embedding of a “supergraph” of a class of problem graphs. Such an embedding can be
found either manually or algorithmically, but in any case can be reused for any instance in
the class with negligible marginal cost. This approach thus strikes a potentially valuable
balance between the two existing ones.

4.8 Lower bounds
The optimality of the complete swap network is easy to show.

(
n
2

)
logical gates are executed

in n almost perfectly parallelized layers. In a reasonable accounting in which any 2-qubit gate
on adjacent qubits can be done in unit time, the logical qubits and swaps can be combined
into one. However, for more complicated cases the reasoning becomes more involved. This
section gives some methods for lower bounding the depth of solutions to the (unordered)
circuit embedding problem. In particular, the lower bounds are on the depth of the 2-qubit
swaps only, i.e., the “swap depth”. For a bounded-degree physical graph and bounded-locality
logical graph, the logical gates that can be executed with a single, fixed mapping of logical to
physical qubits, i.e., that after an swap layer, can be executed in O(1) depth. In such cases,
which comprise almost all of practical interest, exact lower bounds on the swap depth thus
yield scaling lower bounds on the total depth.

4.8.1 Acquaintance time

Benjamini et al. defined [14] the acquaintance time of a graph G, denoted AC(G) as follows.
Consider placing an agent at each vertex of the graph and a series of matchings 1 of the graph.
Each matching corresponds to simultaneously swapping the agents on the vertices of each
edge. Such a a sequence of matchings of G is a strategy for acquaintance in G if every pair of
agents are adjacent in the graph G at least once. The acquaintance time is the number of
rounds (matchings) in the shortest strategy for acquaintance (and is finite if and only if the
graph is connected).

This notion of strategies for acquaintance is a useful if limited abstraction for compiling
quantum circuits around geometric constraints. As is, a strategy for acquaintance corresponds
to a compilation of all 2-local gates in a hardware graph G, with agents corresponding to
logical qubits, vertices corresponding to physical qubits, and edges of matchings to swap
gates. A gate between two logical qubits can be implemented at any point that that they
can become “acquainted”. This level of abstraction has the advantage and disadvantage
that it disregards the exact nature of the gates. This makes it extremely general but also

1A matching is a set of mutually disjoint edges of a graph.
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constructions within it somewhat approximate. For example, in a strategy for acquaintance,
it is permissible for an agent to become acquainted with more than one other agent in a single
round, while the corresponding 2-local gates would need to be implemented sequentially.

Nevertheless, known results about acquaintance times [4, 14] can be interpreted in the
context of quantum circuit embedding. For example, that the acquaintance time of the path
graph Pn is n−2 provides an alternative proof of the optimality of the complete linear 1-swap
network. Interestingly, the acquaintance time of the barbell graph Bn (two fully connected
halves connected by a single edge) is also n− 2. Generally, it is known that for a graph G of
maximum degree ∆, AC(G) = min{O(n2/∆), 20∆n}, which in particular implies that for any
graph AC(G) = O(n3/2). There are also hardness results: AC(G) is NP-hard to approximate
within a multiplicative factor of 2 or within any additive constant factor.

A strategy for acquaintance as defined above requires that every pair of agents become
acquainted. However, it will often be the case that we care only about certain pairs of agents,
or larger-sized sets of agents. We now define a generalization of acquaintance time that may
be of value in finding lower bounds in such cases. Let H be the hypergraph whose vertices
correspond to the agents and whose hyperedges correspond to the sets of agents that we
would like to acquaint. We can then define a strategy for H-acquaintance in G as an initial
(injective) mapping σ of the vertices of H to the vertices of G and a sequence of matchings
as above such that, for every edge {i1, . . . , ik} of H, if agent i1 is placed on vertex σ(i1) in G,
i2 on vertex σ(i2), and so on, then the set of agents {i1, . . . , ik} can be acquainted at some
point. Whether a set of agents can be acquainted given their locations on the vertices of G
can be specified in one of two ways. In the first case, G itself is a hypergraph and the agents
can be acquainted if their positions {σt(i1), . . . , σt(i2)} are a hyperedge of G, where σt(i) is
the location of agent i after t rounds. In the alternative, G is a simple graph, and the agents
can be acquainted if their positions form a connected subgraph of G. The latter is closer
to our application of strategies for acquaintance: the physical graph G specifies on which
pairs of qubits a 2-qubit gate can be applied, and higher-locality gates are decomposed using
such 2-qubit gates. The H-acquaintance time of G, denoted ACH(G) then is the minimal
size of a strategy for H-acquaintance in G. Note that this definition does not assume that
|V (H)| = |V (G)|.

4.8.2 Circuit embeddings as minor embeddings

This section assumes that the reader is familiar with the basic ideas of graph minor embeddings
and treewidth; see Klymko et al. [101] for a brief introduction to these ideas in a related
context. All graphs in this section will be assumed to have edges of size 2.

Consider a strategy for G-acquaintance in Γ with d rounds. Let H = Γ ⊠ Pd+1 be the
strong product of Γ and the path graph on d+ 1 vertices. That is,

V (H) = {(v, t)|v ∈ V (Γ), t ∈ {0, . . . , d}} , (4.13)
E(H) = {{(v, t), (v′, t′)}|v = v′ ∨ {v, v′} ∈ E(Γ), |t− t′| ≤ 1} . (4.14)
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Figure 4.8: A 2-round strategy for K4-acquaintance in P4 as a minor embedding of K4 into
P4 ⊠ P3. Each set of solid points and lines of a given color indicates a vertex model. Each
bi-colored dashed line indicates an edge model. Solid gray lines indicate unused edges of
P4 ⊠ P3.

The strategy for G-acquaintance in Γ can be interpreted as a graph minor embedding of G
into H as follows. Figure 4.8 shows an example for G = K4 and Γ = P4. The “agents” are the
vertices of G. The vertex model of v ∈ G is the set of vertices {(σt(v), t)|t ∈ {0, . . . , d}} ⊂
V (H) corresponding to the series of assignments of v to vertices of Γ. Note that this vertex
model is connected (indeed, a simple path) and that the vertex models of distinct vertices
are disjoint, by the properties of an acquaintance strategy. The edge model of an edge
{v, w} ∈ E(G) is {(σt(v), t), (σt(w), t)} ∈ E(H) for some round t in which the vertices v and
w are assigned to adjacent vertices of Γ. For any graphs A and B, if A is a minor of B, then
pw(A) ≤ pw(B) and tw(A) ≤ tw(B), because any path or tree decomposition for B can
be converted into one for A by edge-contracting the vertex models, without increasing the
relevant width. In our case, we have shown that G is a minor of H = Γ ⊠ Pd+1 whenever
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there exists a d-round strategy for G-acquaintance in Γ. Therefore,

pw(G) ≤ pw
(
Γ⊠ PACG(Γ)+1

)
, (4.15)

and similarly for treewidth.
We show now that, for an arbitrary graph G on n vertices, the pathwidth pw(G) is at

most about one more than the G-acquaintance time in the path graph Pn,

pw(G) ≤ 2

⌈
ACG(Pn)

2

⌉
+ 1. (4.16)

We do so by explicitly constructing a path decomposition of a graph from a strategy for
G-acquaintance in Pn. Consider such a strategy and let σt(v) ∈ Pn be the assignment of
vertex v ∈ G after round t. We can construct a path decomposition with n−1 bags as follows.
Each bag corresponds to an edge of Pn and contains all the vertices of G that are assigned to
an vertex of Pn adjacent to e. The bags form the path graph Pn−1 corresponding to the line
graph of Pn. Each bag can contain at most 2 ⌈d/2⌉+ 2 vertices, where d is the number of
rounds in the strategy for G-acquaintance. Lastly, the number of rounds in the strategy is at
least the minimum number of rounds ACG(Pn) and the pathwidth of the graph is at most
the width of this decomposition, yielding the desired inequality.

One application of this inequality is yet another lower bound on the swap depth of a
complete swap network. Equation 4.16 and the fact that pw(Kn) = n− 1 imply that

pw(Kn) = n− 1 ≤ 2

⌈
AC(Pn)

2

⌉
+ 1 (4.17)

⇒ n

2
− 1 ≤

⌈
AC(Pn)

2

⌉
(4.18)

⇒ AC(Pn) ≥

{
n− 2, n odd,
n− 3, n even.

(4.19)

Note that Equation 4.16 is not necessarily tight for arbitrary graphs. For example, consider
the star graph Sk for large k. It has pathwidth 1 2, but the minimum swap circuit depth
is Ω(k). More generally, caterpillar graphs exemplify the looseness of the above bound for
the same reason; the minimum depth of a swap circuit for any graph scales linearly with the
degree of the graph.

4.9 Use case: Non-Orthogonal Variational Quantum
Eigensolver

In Ref. 91, we used the swap network for the UpCCGSD ansatz as part of an extension to
VQE that we called the Non-othogonal Variational Quantum Eigensolver (NOVQE). NOVQE

2Consider the decomposition in which there is a bag for each leaf containing that leaf and the internal
vertex.
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Np Primitive basis functions in diagonal basis
Na Functions in compact active space basis
Nb Blocks in the DG basis
nκ Functions in DG block κ
Nd Total DG functions, (

∑
κ nκ)

Figure 4.9: Compact description of the notation used throughout this chapter in counting basis
functions in different representations for the electronic structure problem. Here discontinuous
Galerkin (DG) is the block basis we construct from primitive functions to represent the active
space orbitals with a block diagonal Hamiltonian representation.

is essentially a way of increasing the expressiveness of an ansatz in a way that outweighs the
slight additional overhead in circuit size and depth. Combining the efficiency of the swap
network for UpCCGSD with some additional compilation tricks in the implementation of
NOVQE leads to a variational method that can get within chemical accuracy for (small)
strongly correlated systems with relatively short and small quantum circuits. The main idea
is take a single ansatz (such as UpCCGSD), denoted by |ϕ(θ)⟩, and extend it to an ansatz of
the form

|ψ(c,Θ)⟩ =
M∑
i=1

ci |ϕ(θi)⟩ , (4.20)

where c = (c1, . . . , cM) and Θ = (θ1, . . . ,θM), i.e., a linear combination of “primitive” ansatz
states. In general, these constituent primitive ansatz states are non-orthogonal, hence the
name. Crucially, we can evaluate the energy of the “composite” ansatz with relatively little
overhead compared to the resources needed for the primitive ansatzes. Specifically, by using
the preparation circuits for two primitive ansatz states |ϕ(θi)⟩ and |ϕ(θj)⟩ in parallel and
just two single-qubit-controlled swaps of the registers, we can estimate both the overlap
⟨ϕ(θi)|ϕ(θj)⟩ and the matrix element ⟨ϕ(θi)|H|ϕ(θj)⟩. By solving a generalized eigenvalue
problem within the space spanned by {|ϕ(θi)⟩ : 1 ≤ i ≤M}, we can then find the coefficients
c. (See Ref. 91 for details.)

4.10 Block-diagonal Hamiltonians
This section is excerpted from Ref. 114 with slight modifications. See Fig. 4.9 for an overview
of notation used throughout this section.

4.10.1 Discontinuous Galerkin discretization

At a high level, we construct the block-diagonal basis by fitting spatially connected blocks of
the primitive basis set to the active basis set, while preserving the properties of the primitive
basis set. We therewith interpolate between the primitive basis set and the active basis set.
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We will refer to the general class of basis sets that achieve both completeness in some limit
and have the diagonal property as primitive basis sets.

Our goal is to systematically compress the active basis set {φp(r)}Na
p=1 into a set of

orthonormal basis functions partitioned into elements (groups), so that basis functions
associated with different elements have mutually disjoint support. Assume that the index set
Ω = {1, . . . , Np} can be partitioned into Nb non-overlapping index sets

K = {κ1, κ2, · · · , κNb
}, (4.21)

so that ∪κ∈Kκ = Ω. Then the matrix Φ can be partitioned into Nb blocks Φκ := [Φµp]µ∈κ for
κ ∈ K. Performing the singular value decomposition for Φκ,

Φκ ≈ UκSκV
†
κ , (4.22)

where Uκ is a matrix with orthonormal columns corresponding to the leading nκ singular
values up to some truncation tolerance τ , we obtain our compressed basis

ϕκ,j(r) =
∑
µ∈κ

χµ(r)(Uκ)µ,j. (4.23)

The basis set is adaptively compressed with respect to the given set of basis functions,
and are locally supported (in a discrete sense) only on a single index set κ. In the absence of
SVD truncation, we clearly have span{φp} ⊆ span{ϕκ,j}. We refer to this basis set {ϕκ,j} as
the DG basis set. Note that each DG basis function ϕκ,j is a linear combination of primitive
basis functions which are themselves continuous, so ϕκ,j is also technically continuous in
real space. In fact, ϕκ,j might not be locally supported in real space if each primitive basis
function χp is delocalized. When the primitive basis functions are localized, ϕκ,j can be very
close to a discontinuous function. When computing the projected Hamiltonian, we do not
need to evaluate the surface terms in the DG formalism. If we form a block diagonal matrix

U = diag[U1, . . . , UNb
], (4.24)

the total number of basis functions is thus Nd :=
∑

κ∈K nκ. We remark that the number of
basis functions nκ can be different across different elements.

To facilitate the complexity count below we may, without loss of generality, assume that
nκ is a constant and that Nd = Nbnκ. Then we have defined a new set of creation and
annihilation operators

ĉ†κ,j =
∑
µ

b̂†µ(Uκ)µj, ĉκ,j =
∑
µ

b̂µ(Uκ)µj, (4.25)

with κ = 1, . . . , Nb and j = 1, . . . , nκ that correspond to the DG basis set.
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Unlike the general case, the basis set rotation in Eq. (4.25) is restricted to each element κ.
We readily obtain the projected Hamiltonian in the DG basis as

Ĥ(d) =
∑

κ,κ′;j,j′

h
(d)
κ,κ′;j,j′ ĉ

†
κ,j ĉκ′,j′

+
1

2

∑
κ,κ′;i,i′,j,j′

v
(d)
κ,κ′;i,i′,j,j′ ĉ

†
κ,iĉ

†
κ′,i′ ĉκ′,j′ ĉκ,j. (4.26)

The matrix elements are
h
(d)
κ,κ′;j,j′ =

∑
µν

(Uκ)µjh
(p)
µν (Uκ′)νj′ , (4.27)

and
v
(d)
κ,κ′;i,i′,j,j′ =

∑
µν

(Uκ)µi(Uκ′)νi′v
(p)
µν (Uκ)µj(Uκ′)νj′ . (4.28)

In general, the one-body matrix h(d) can be a full dense matrix, but the two-body tensor v(d)
always takes a “block diagonal” form in the following sense (it has a specific sparsity pattern).
In principle, the two-body interaction in the DG basis set should take the form

1

2

∑
κ,κ′,λ,λ′;i,i′,j,j′

vκ,i;κ′,i′;λ,j;λ′,j′ ĉ
†
κ,iĉ

†
κ′,i′ ĉλ′,j′ ĉλ,j. (4.29)

Compared to Eq. (4.26), we find that

vκ,i;κ′,i′;λ,j;λ′,j′ = v
(d)
κ,κ′;i,i′,j,j′δκλδκ′λ′ . (4.30)

In other words, v can be viewed as a block diagonal matrix with respect to the grouped
indices (κκ′, λλ′).

We remark that the convergence of the DG basis set is independent of the choice of
the primitive basis set so long as the primitive basis has sufficient degrees of freedom to
form a good approximation to the active space functions of interest. At the end of this
adaptive procedure, we expect the number of elements in the Hamiltonian to scale as O(N2

b n
4
κ).

However, we expect the number of basis functions required to reach a fixed accuracy within
a block (i.e., nκ) to be bounded by a constant as system size grows, and the scaling with
system size becomes O(N2

d ). We substantiate the rapid asymptotic convergence of nκ for
real systems later in this work; however, simple arguments from spatial locality and basis set
completeness lead to the same conclusion.

4.10.2 Swap networks for block diagonal Hamiltonians

In the first work using a strictly diagonal basis in quantum computing for chemistry [11], the
ability for quantum computers to perform fast Fourier transforms on quantum wavefunctions
was exploited to capitalize on the representational advantages of being in either the plane wave
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Figure 4.10: Acquaintance strategy for block-diagonal Hamiltonian with Nb = 4 and nκ = 10.
“K4

n” indicates a 4-complete swap network on n qubits, i.e., one that acquaints the
(
n
4

)
subsets

of 4 qubits with each other. The other gates are double bipartite swap networks, explained
in Figures 4.12 and 4.13.

basis or its Fourier-transformed dual. That method was originally restricted to Hamiltonians
with that particular structure in the coefficients, similar to split-operator Fourier transform
methods used in classical simulation of quantum systems. However, it was soon realized that
the structure of any diagonal Hamiltonian could be similarly exploited. This generalization
used a linear, fermionic swap network to achieve perfect parallelization of a Trotter step with
depth that scales linearly in the number of orbitals [100], even when gates are restricted to
act on nearest neighbors of a line of qubits.

Fermionic swap networks are analogous to sorting networks from traditional computer
science except built upon the primitive of the fermionic swap operation,

f̂pqswap = 1 + â†pâq + â†qâp − â†pâp − â†qaq, (4.31)

f̂pqswapâ
†
p(f̂

pq
swap)

† = â†q, (4.32)

where f̂pqswap is the fermionic swap that swaps the labeling of modes. The fermionic swap
operation was introduced in [33] and also studied in the context of tensor networks. The
difference between such a swap and a traditional swap is that by swapping fermionic modes
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instead of assignments to qubits, non-local parity strings used to enforce the fermionic
anti-commutation relations can be avoided.

The basic idea of the linear swap network is to fermionic swap all neighboring qubits,
interact them with their current neighbors, and repeat until all qubits have interacted with
each other. Since the introduction and use of these linear fermionic swap networks in
quantum algorithms, they have been generalized for use in non-diagonal Hamiltonians with
some overhead. For example, the quantum chemistry Hamiltonian can be decomposed into a
sum of diagonal Hamiltonians (each in a rotated basis) using techniques similar to Cholesky
or density fitting methods, where each diagonal Hamiltonian can then be implemented in
sequence [121].

For the general Hamiltonian in quantum chemistry, which is non-diagonal, a generalized
swap network that works directly with such Hamiltonians was developed [125]. This network
implements time steps for generic O(N4

a ) Hamiltonians in a time that scales as O(N3
a ), and we

take advantage of it here with specializations for the block diagonal structure. To implement
a Trotter step of the Hamiltonian, the swap network dynamically updates the mapping
from qubits to orbitals so that for each term in the Hamiltonian, the involved orbitals are
mapped to adjacent qubits. We say that a swap network “acquaints” a set of orbitals when
it brings them together at some point in this way, and represent that point by an empty
box in the circuit diagrams, which acts as a placeholder for the logical gate to be executed
there. Prior work utilizing swap networks has applied them to two extremal regimes with
respect to the structure of the two-electron terms in the Hamiltonian: the strictly diagonal
case, which can be implemented with O(Np) depth [100]; and the fully general case, which
can be implemented in O(N3

a ) [125]. Here we show how to interpolate between these to
achieve O(Nbn

3
κ) = O(Ndn

2
κ) depth for block-diagonal Hamiltonians. (For simplicity, in this

section we will assume that all blocks have the same size nκ, but the techniques generalize in
a straightforward way to non-uniform block sizes.)

We focus on how to implement the quartic terms in the Hamiltonian (i.e., two-electron
terms involving four distinct spin orbitals). The lower-order terms can be addressed with
negligible additional resources by incorporating them into the quartic terms. The quartic
terms in the block-diagonal Hamiltonian satisfy the following properties:

1. Two orbitals are from one block κ and two orbitals are from another block κ′ (or all
four from the same block when κ = κ′).

2. The orbital spins have even parity (i.e., all up, all down, or two and two).

We will exploit both of these properties in constructing our swap network, which uses
primitives originally designed for implementing unitary coupled cluster [125].

Figure 4.10 shows the overall swap network. Initially, the orbitals are arranged on the
line in lexicographical ordering; only the block index κ and spin are indicated for concision.
The logic of the strategy is as follows:

1. The first layer acquaints all sets of four spin orbitals within each block in which all
four orbitals have the same spin. This is achieved by a “4-complete” swap network on
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each half-block of orbitals, denoted by K4
nκ/2

because the sets of orbitals it acquaints
correspond to the edges of a complete 4-uniform hypergraph; it has depth O(n3

κ). Note
that the edges of the complete k-uniform hypergraph Kk

n on n are the
(
n
k

)
sets of k

vertices. The “uniform” qualifier indicates that all of the hyperedges have the same
number of vertices. See Ref. 125 for details.

2. The second layer acquaints all sets of four spin orbitals within each block in which two
orbitals have spin up and the other two have spin down. This is achieved by a “double
bipartite” swap network on each block in depth O(n3

κ); see Figure 4.12.

3. The third layer permutes, in O(nκ) depth, the orbitals within each block in preparation
for the inter-block acquaintances to follow.

4. The rest of the strategy consists of Nb alternating layers that acquaint pairs of parts.
In each layer, each block of qubits is paired up with an adjacent one and a “balanced
double bipartite” swap network is executed on the pair of blocks; see Figure 4.13. Each
balanced double bipartite swap network acquaints the sets of four orbitals containing
two from each block and with even (“balanced”) spin parity. This also has the effect of
swapping the blocks, so overall a balanced double bipartite swap network is applied to
every pair of blocks. Each double bipartite swap network has depth O(n3

κ).

Overall, the depth is O(Nbn
3
κ), dominated by the latter swap networks that effect the

inter-block interactions. The components of this approach are explained in more detail below.

4.10.3 Swap network sub-circuits

In this section, we give some more detail about the components of the swap network described
in Section 4.10.2. Recall the structure of the overall swap network:

1. A 4-complete swap network within each half-block. This acquaints all sets of 4 orbitals
with the same spin and within each block.

2. A double bipartite swap network on each block. This acquaints all sets of 4 orbitals with
no net spin and within each block. Details of the construction are given in Figure 4.12.

3. A permutation within each block. This changes the orbital to qubit mapping in
preparation for the next stage.

4. Alternating layers of balanced double bipartite swap networks. Each balanced double
bipartite swap network acquaints, for some pair of blocks, all sets of 4 orbitals with an
even number of each spin and with two orbitals from each block. The Nb alternating
layers ensure that every pair of blocks is involved together in some balanced double
bipartite swap network. Details of the construction of a double bipartite swap network
are given in Figure 4.13.
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=

Figure 4.11: Notation and decomposition for a P-swap network with partition sizes
(1, 2, 1, 2, 2). A P-swap network for a partition (P1, P2, . . . , P|P|) of the qubits

⋃
i Pi ac-

quaints every union of a pair of parts, i.e., {P ∪ P ′|P, P ′ ∈ P}. At a high level, the structure
is similar to that of the simple linear swap network, except that instead of single qubits being
swapped, groups are (i.e., the parts of the partition P). There are |P| layers of generalized
swap gates, each of which swaps sets of qubits. For more details, see [125].
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⇓

=

Figure 4.12: Construction of the double bipartite swap network, with parts of size 4. The
top half of the top circuit contains the same swap gates as a linear swap network but with
additional acquaintance opportunities. In the bottom half of the top circuit are 4 linear swap
networks in a row, one for each acquaintance layer of the linear swap network in the top half,
which is copied for each acquaintance layer of the bottom half. Overall, for every set of of
four orbitals consisting of two from the top part and two from the bottom part, there is a
layer in the circuit in which both pairs are simultaneously acquainted. The bottom circuit,
depicting the double bipartite swap network, is formed by replacing each such acquaintance
layer in the top circuit with a P-swap network, where a pair of qubits acquainted in the top
circuit corresponds to a part of the partition P . The P-swap network acquaints the union of
each pair of pairs; see Fig. 4.11. The final gate ensures that overall effect is to shift the parts.
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Figure 4.13: Construction of the balanced double bipartite swap network. Similar to the
double bipartite swap network, except that pairs of orbitals from each part are only acquainted
when their spins have the same parity. The spins of the orbitals in the initial mapping of
qubits to orbitals are indicated in the top left.
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Chapter 5

Classical optimization and quantum
computing

This chapter contains a brief summary of work by my collaborators and me at the intersection
of classical optimization and quantum computation. It primarily consists of quantum
algorithms (both rigorous and heuristic) for solving classical optimization problems.

5.1 Quantum Alternating Operator Ansatz
This section describes a framework my collaborators and I introduced in Refs. 78 and 77 that
generalizes the Quantum Approximate Optimization Algorithm, one of the most popular
heuristic quantum algorithms for classical optimization. The text is mostly mostly exerpted
from Ref. 77, with some modification. See Ref. 77 for detailed examples of mappings and a
compendium with brief descriptions of mappings for a diverse array of problems.

5.1.1 Introduction

Today, challenging computational problems arising in the practical world are frequently
tackled by heuristic algorithms. These algorithms are empirically shown to be effective,
but they have not been analytically proven to be the best approach, or even to outperform
the best approach of the previous year. Until recently, empirical investigation of quantum
algorithms has been limited to tiny problems, given the typically exponential overhead of
simulating quantum algorithms on classical processors. As prototype quantum hardware
emerges that enables experimentation beyond what is reachable by even the world’s largest
supercomputers, we come into a new era for quantum heuristic algorithms.

One of the most popular heuristics is Farhi et al.’s quantum approximate optimization
algorithm, a quantum gate-model meta-heuristic which alternates between applying unitaries
drawn from two families, a cost function based unitary family UP(γ) = e−iγHf and a family
of mixing unitaries UM(β) = e−iβHB , for some fixed cost function based Hamiltonian Hf
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and some fixed mixing Hamiltonian HB. Here, we formally describe a quantum alternating
operator ansatz (QAOA), extending the approach of Farhi et al. [62] to allow alternation
between more general families of operators. This ansatz supports the representation of a much
more varied, and potentially more useful, set of states than the original formulation. Our
extension is particularly useful for situations in which the feasible subspace is smaller than the
full space, such as when the optimization is over solutions that must satisfy hard constraints.
Intuitively, mixing operators that restrict the search to the feasible subspace should result in
better-performing algorithms. Our expansion includes families of mixing operators UM(β)
that cannot be expressed, as a family, as e−iβHB for a fixed mixing Hamiltonian HB. As we
shall see, expanding the design space of families of one-parameter mixing operators allowed
enables the ansatz to support more efficiently implementable mixers than was possible in the
original framework. More efficient implementation enables earlier experimental exploration
of an alternating operator approach, in the spirit of the quantum approximate optimization
algorithm, to a wide variety of approximate optimization, exact optimization, and sampling
problems.

We reworked the original acronym so that “QAOA” continues to apply to both prior
work and future work to be done in this more general framework. More generally, the
reworked acronym refers to a set of states representable in a certain form, and so can be used
without confusion in contexts other than approximate optimization, e.g., exact optimization
and sampling. (Incidentally, this reworking also removes the redundancy from the now
commonly-used phrase “QAOA algorithm”.) The class QAOAp consists of level-p QAOA
circuits, in which there are p iterations of applying a classical Hamiltonian (derived from the
cost function) and a mixing Hamiltonian. The 2p parameters of the algorithm specify the
durations for which each of these two Hamiltonians are applied.

We comment here on the relation between these mappings and those for non-gate-model
quantum computing, such as quantum annealing (QA). Because current quantum annealers
have a fixed driver (the mixing Hamiltonian in the QA setting), all problem dependence must
be captured in the cost Hamiltonian on such devices. The general strategy is to incorporate
the hard constraints as penalty terms in the cost function and then convert the cost function
to a cost Hamiltonian [19, 76, 108, 136]. However, this approach means that the algorithm
must search a much larger space than if the evolution were confined to feasible configurations,
making the search less efficient than if it were possible to constrain the evolution. This issue,
and other drawbacks, led Hen and Spedalieri [85] and Hen and Sarandy [84] to suggest a
different approach for adiabatic quantum optimization (AQO), in which the standard driver
is replaced by an alternative driver that confines the evolution to the feasible subspace. Their
approach resembles a restricted class, H-QAOA (defined below), of QAOA algorithms. While
some of our mapppings, e.g., H-QAOA mappings of graph coloring, graph partitioning, and
not-all-equal 3-SAT, are close to those in Refs. 84, 85, other mappings we describe, including
for these problems, are quite different and take advantage of the more general families of
mixers supported by this ansatz. Indeed, while QAOA mappings are different from quantum
annealing mappings, with most of the design effort going into the mixing operator rather
than the cost function based phase separator, QAOA algorithms, like QA and AQO, but
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unlike most other quantum algorithms, are relatively easy for people familiar with classical
computer science but not quantum computing to design, as we illustrate here.

Prior work suggests the power and flexibility of QAOA circuits. Farhi et al. [63] exhibited
a QAOA1 algorithm that beat the existing best approximation bound for efficient classical
algorithms for the problem E3Lin2, only to inspire a better classical algorithm [12]. Jiang et
al. [93] demonstrated that the class of QAOA circuits is powerful enough to obtain the Θ(

√
2n)

query complexity on Grover’s problem and also provided the first algorithm within the QAOA
framework to show a quantum advantage for a finite number of iterations greater than two. Farhi
and Harrow [64] proved that, under reasonable complexity assumptions, the output distribution
of even QAOA1 circuits cannot be efficiently sampled classically. Yang et al. [163] proved that for
evolution under a Hamiltonian that is the weighted sum of Hamiltonian terms, with the weights
allowed to vary in time, the optimal control is (essentially always) bang-bang, i.e., constant
magnitude, of either the maximum or minimum allowed weight, for each of the terms in the
Hamiltonian at any given time. Their work implies that QAOA circuits with the right parameters
are optimal among Hamiltonians of the form H(s) =

(
1− f(s)

)
HB + f(s)HC, where f(s) is a

real function in the range [0, 1]. It remains an open question whether QAOA provides a quantum
advantage over classical algorithms for approximate optimization, either in terms of the quality
of approximate solution returned, or the speed of achieving such an approximation.

Since the the publication of this work, the approach we proposed to deal with constrained
optimization problems has been applied to a benchmarking study on graph-coloring prob-
lems [154] and a protein-folding optimization problem [66]. QAOA also provides a viable
platform to study quantum circuit compilation to realistic architectures [61, 102, 151]. (See
also Section 5.2.) Applications and extensions of QAOA beyond optimization include state
preparation [88] and machine learning [128, 152]. A different approach in the setting of
quantum walks to QAOA for constrained problems has recently been proposed [112], and
very recently, Lloyd showed that the QAOA framework with a carefully constructed cost
Hamiltonian can be made universal for quantum computation [107].

5.1.2 The Original Quantum Approximate Optimization Algorithm

We now give an overview of the original quantum approximation optimization algorithm
proposed in Ref. 62.

Consider an unconstrained optimization problem on n-bit strings we seek to approximate.
Given a problem instance, the algorithm is specified by two Hamiltonians HP and HM, and 2p
real parameters γ1, . . . , γp, β1, . . . , βp. The main details are the following:

• The phase Hamiltonian HP encodes the cost function f to be optimized, i.e., acts
diagonally on n-qubit computational basis states as:

HP |y⟩ = f(y) |y⟩ .
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• The mixing Hamiltonian HM is the transverse field Hamiltonian:

HM =
n∑
j=1

Xj,

where Xj is the Pauli X operator acting on the jth qubit. (The Pauli X operator acts
as a bit flip, i.e., X |0⟩ = |1⟩ and X |1⟩ = |0⟩.)

• The initial state is selected to be the equal superposition state of all possible solutions:

|s⟩ = 1√
2n

∑
x

|x⟩ ,

which is also the ground-state of −HM and is used similarly in AQO [62].

• A parameterized quantum state is created by alternately applying Hamiltonians HP and
HM for p rounds, where the duration in round j is specified by the parameters γj and
βj, respectively:

|β,γ⟩ = e−iβpHMe−iγpHP . . . e−iβ2HMe−iγ2HPe−iβ1HMe−iγ1HP |s⟩ .

• A computational basis measurement is performed on the state, which returns a candidate
solution y with probability | ⟨y|β,γ⟩ |2. With many repetitions of the above state
preparation and measurement, the expected value of the cost function over the returned
solution samples is given by

⟨f⟩ = ⟨β,γ|HP |β,γ⟩ ,

which can be statistically estimated from the samples produced. (For a constraint
satisfaction problem with m constraints, fom Chebyshev’s inequality it follows that an
outcome achieving at least ⟨f⟩ − 1 will be obtained with probability at least 1− 1/m
after O(m2) repetitions.)

• The above steps may then be repeated altogether, with updated sets of time parameters,
as part of a classical optimization loop (such as gradient descent or other approaches)
used to optimize the algorithm parameters with respect to an objective such as ⟨f⟩.

• The best problem solution found overall is returned.

A key to success for the algorithm is the selection or discovery of good values for the
parameters γ1, . . . , γp, β1, . . . , βp, which result in good approximate solutions. In some cases,
where the analysis is tractable, such angles may be found analytically [93, 156]. Parameter
setting strategies for QAOA and for the general class of variational quantum algorithms
remains an active area of research [75, 116].

We now turn to our generalized QAOA framework, which is the main subject of this
section.
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5.1.3 The Quantum Alternating Operator Ansatz (QAOA)

Here, we formally describe the quantum alternating operator ansatz, extending the approach
of Farhi et al. [62]. QAOA, in our sense, encompasses a more general class of quantum states
that may be algorithmically accessible and useful. We focus here on the application of QAOA
to approximate optimization, though it may also be used in exact optimization [93, 158] and
sampling [64].

An instance of an optimization problem is a pair (F, f), where F is the domain (set of
feasible points) and f : F → R is the objective function to be optimized (minimized or
maximized). Let F be the Hilbert space of dimension |F |, whose standard basis we take
to be {|x⟩ : x ∈ F}. Generalizing Reference [62], a QAOA circuit is characterized by two
parameterized families of operators on F :

• A family of phase-separation operators UP(γ) that depends on the objective function f ,
and;

• A family of mixing operators UM(β) that depends on the domain and its structure,

where β and γ are real parameters. Specifically, a QAOAp circuit consists of p alternating
applications of operators from these two families:

Qp(β,γ) = UM(βp)UP(γp) · · ·UM(β1)UP(γ1). (5.1)

This quantum alternating operator ansatz (QAOA) consists of the states representable as
the application of such a circuit to a suitably simple initial state |s⟩:

|β,γ⟩ = Qp(β,γ) |s⟩ . (5.2)

For a given optimization problem, a QAOA mapping of a problem consists of a family of
phase-separation operators, a family of mixing operators, and a starting state. The circuits
for the original quantum approximate optimization algorithm fit within this paradigm, with
unitaries of the form e−iγHP and e−iβHM , with parameters γ and β indicating the time for
which a fixed Hamiltonian is applied.

The domain will usually be expressed as the feasible subset of a larger configuration
space, specified by a set of problem constraints. For implementation on expected near-term
quantum hardware, each configuration space will need to be encoded into a subspace of a
Hilbert space of a multiqubit system, with the domain corresponding to a feasible subspace
of the configuration space. For each domain, there are many possible mixing operators. As
we will see, using more general one-parameter families of unitaries enables more efficiently
implementable mixers that preserve the feasible subspace. Given a domain, an encoding of
its configuration space, a phase separator, and a mixer, there are a variety of compilations of
the phase separator and mixer to circuits that act on qubits.

For any function f , not just an objective (cost) function, we define Hf to be the quantum
Hamiltonian that acts as f on basis states as:

Hf |x⟩ = f(x) |x⟩ . (5.3)
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In prior work, the domain F was the set of all n-bit strings, UP(γ) = e−iγHf , and
UM(β) = e−iβHB . Furthermore, with just one exception, the mixing Hamiltonian was
HB =

∑n
j=1Xj. We used the notation Xj, Yj, Zj to indicate the Pauli matrices X, Y ,

and Z acting on the jth qubit. The corresponding parameterized unitaries are denoted by
Xj(θ) = e−iθXj and similarly for Yj and Zj. The one exception is Section VIII of Ref. 62,
which discusses a variant for the maximum independent set problem, in which F is the set of
bitstrings corresponding to the independent sets of a graph, the phase separator depends on
the cost function as above, and the mixing operator is UM(β) = e−iβHB , where HB is such
that:

⟨x|HB|y⟩ =

{
1, x,y ∈ F and Ham(x,y) = 1,

0, otherwise,
(5.4)

which connects feasible qubit computational basis states with unit Hamming distance (Ham).
Section VIII of Ref. 62 does not discuss the implementability of UM(β). A closely related
generalization of QAOA for problems with hard constraints based on quantum walks has
recently been proposed [112]. However, row-computable feasibility oracles are required to
enable mixing between feasible states, which are likely to be more expensive to implement in
practice than the approach presented here.

We extended and formalized the approach of Section VIII of Ref. 62 with an eye to
implementability, both in the short and long term. We also built on a theory developed for
adiabatic quantum optimization (AQO) by Hen and Spedalieri [85] and Hen and Sarandy [84],
though the gate-model setting of QAOA leads to different implementation considerations
than those for AQO. For example, Hen et al. identified driver Hamiltonians of the form
HM =

∑
j,kHj,k, where Hj,k = XjXk + YjYk, as useful in the AQO setting for a variety of

optimization problems with hard and soft constraints; such mixers restrict the mixing to the
feasible subspace defined by the hard constraints. Analogously, the unitary UM = e−iβHM

meets our criteria, discussed in Section 5.1.3.1, for good mixing for a variety of optimization
problems, including those considered in Refs. 84, 85. Since Hj,k and Hi,l do not commute
when |{j, k}∩{i, l}| = 1, compiling UM to two-qubit gates is nontrivial. One could Trotterize,
but it may be more efficient and just as effective to use an alternative mixing operator, such
as UM = e−iβHSr · · · e−iβHS2e−iβHS1 , where the pairs of qubits have been partitioned into r
subsets {Si}i containing only disjoint pairs, motivating in part our more general ansatz.

We define as “Hamiltonian-based QAOA” (H-QAOA) the class of QAOA circuits in which
both the phase separator family UP(γ) = e−iγHP and the mixing operator family UM(β) =
e−iβHM correspond to time evolution under some Hamiltonians HP and HM, respectively. (In
the example mappings to follow, we consider only phase separators UP(γ) =

∑
x e

−iγg(x)|x⟩⟨x|
that correspond to classical functions and thus also correspond to time evolution under some
(potentially nonlocal) Hamiltonians, though more general types of phase separators may be
considered). We further define “local Hamiltonian-based QAOA” (LH-QAOA) as the subclass
of H-QAOA in which the Hamiltonian HM is a sum of (polynomially many) local terms.

Before discussing design criteria, we briefly mention that there are obvious generalizations
in which UP and UM are taken from families parameterized by more than a single parameter.
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For example, in Ref. 61, a different parameter for every term in the Hamiltonian is considered.
We only consider the case of one-dimensional families, given that it is a sufficiently rich
area of study, with the task of finding good parameters γ1, . . . , γp, and β1, . . . , βp already
challenging enough due to the curse of dimensionality [156]. A larger parameter space may
support more effective circuits but increases the difficulty of finding such circuits by opening
up the design space and making the parameter setting more difficult.

We remark that the quantum gate-model setting offers several advantages over Hamiltonian-
based algorithms such as AQO and quantum annealing. Higher order (k-local) interactions
may be compiled down to two-local gates, and compilations using SWAP gates [28, 151]
enable the implementation of quantum operations between qubits that are non-neighboring
in the physical hardware; indeed, locality and connectivity are both well-known bottlenecks
for physical quantum annealing devices. In the longer term, once mature quantum hardware
has been built, quantum error correction can be applied to robustly implement QAOA.

5.1.3.1 Design Criteria

Here, we briefly specify design criteria for the three components of a QAOA mapping of a
problem. We expect that as exploration of QAOA proceeds, these design criteria will be
strengthened and will depend on the context in which the ansatz is used. For example, when
the aim is a polynomial-time quantum circuit, the components should have more stringent
bounds on their complexity; without such bounds, the ansatz is not useful as a model for
a strict subset of states producible via polynomially-sized quantum circuits. On the other
hand, when the computation is expected to grow exponentially, a simple polynomial bound
on the depth of these operators might not be reasonable. One example might be for exact
optimization of the problems considered here; for these problems, the worst case algorithmic
complexity is exponential, but it is worth exploring whether QAOA might outperform classical
heuristics in expanding the tractable range for some problems.

Initial state. We require that the initial state |s⟩ be trivial to implement, by which we
mean that it can be created by a constant-depth (in the size of the problem) quantum circuit
from the |0 . . . 0⟩ state. Here, we often take as our initial state a single feasible solution,
usually implementable by a depth-1 circuit consisting of single-qubit bit-flip operations X.
Because in such a case the initial phase operator only applies a global phase, we may want to
consider the algorithm as starting with a single-mixing operator UM(β0) to the initial state
as a first step. In the quantum approximate optimization algorithm, the standard starting
state |+ · · ·+⟩ is obtained by a depth-1 circuit that applies a Hadamard H gate to each of
the qubits in the |0 . . . 0⟩ state.

This criterion could be relaxed to logarithmic depth if needed. It should not be relaxed
too much: relaxing the criterion to polynomial depth would obviate the usefulness of the
ansatz as a model for a strict subset of states producible via polynomially-sized quantum
circuits. Algorithms with more complex initial states should be considered hybrid algorithms,
with an initialization part and a QAOA part. Such algorithms are of interest in cases when
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one expects the computation to grow exponentially, such as is the case for exact optimization
for many of the problems here, but might still outperform classical heuristics in expanding
the tractable range.

Phase-separation unitaries. We require the family of phase-separation operators to be
diagonal in the computational basis. In almost all cases, we take UP(γ) = e−iγHf , where f is
the objective function.

Mixing unitaries (or “mixers”). We require the family of mixing operators UM(β) to:

• Preserve the feasible subspace: For all values of the parameter β, the resulting unitary
takes feasible states to feasible states, and;

• Provide transitions between all pairs of states corresponding to feasible points. More
concretely, for any pair of feasible computational-basis states x,y ∈ F , there is some
parameter value β∗ and some positive integer r such that the corresponding mixer
connects those two states: |⟨x |U r

M(β
∗) |y⟩| > 0.

In some cases, we may want to relax some of these criteria. For example, if a QAOA
circuit is being used as a subroutine within a hybrid quantum-classical algorithm, or in a
broader quantum algorithm, we may use starting states informed by previous runs and thus
allow mixing operators that mix less.

This framework can be used in many different contexts. Depending on the context, different
measures of success are appropriate. As indicated by the name, the original motivation for
Farhi et al.’s work was to develop a quantum approximation algorithm, one for which rigorous
bounds on the approximation ratio can be proven [62, 63]. The same style of algorithm was then
applied to exact optimization [158] and sampling [64], which have different measures of success.
In certain cases, rigorous performance guarantees can be provided in these contexts, e.g., for
the Grover problem in Ref. 93. Alternatively, it can be applied as a heuristic approach for any
of exact optimization, approximate optimization, or sampling. In these cases, the measure of
success is not in terms of rigorous analytical bounds, but rather empirical typical time-to-solution
or approximation ratio or sample quality within a given time. Our approach facilitates low-
resource constructions that support empirical evaluation of QAOA as a heuristic for a variety of
combinatorial optimization problems, and is agnostic as to which success criterion is being used
for evaluation.

5.2 Constraint programming
Constraint programming (CP) is both a model for specifying computational problems and
a particular approaching for solving them. A CP instance is specified by a set of variables
together with a domain for each of those variables and a set of constraints acting on those
variables. Importantly, there is no restriction on the arity of the constraints; in general,
CP problems include so-called global constraints such as the alldifferent constraint,
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which requires that the values assigned to the variables are all different. While this can be
equivalently expressed as

(
n
2

)
inequality constraints, doing so obscures the global structure

that a solver could exploit. CP as a problem-solving paradigm typically involves branch-and-
infer. Branch-and-infer is an extension of backtracking search where at each step inference is
performed, based on the global constrants, to filter out values from the domains of variables
that cannot be part of an eventual solution. An instantiation of branch-and-infer consists
of three ingredients: a variable-selection heuristic that chooses which variable to branch
on, a value-selection heuristic that orders the values in the selected variable’s domains, and
a propogation function that prunes the domains of all the variables based on the value
assigned to the variable selected by the heuristics. Together, these completely specify a search
tree and depth-first-search ordering of the nodes therein. The computational cost of the
branch-and-infer is determined by the number of nodes explored before reaching a satisfying
solution (if one exists) and the aggregate cost of the heuristics and filtering over all of those
nodes. In Section 5.2.1, we describe how quantum algorithms can be used to speed up this
branch-and-infer procedure. In Section 5.2.2, we describe how CP can be used as a tool for
the compilation of quantum circuits to real hardware.

5.2.1 Quantum algorithms for constraint programming

This section summarizes Ref. 29, which shows how existing quantum algorithms can be
combined to yield speedups for both the backtracking and filtering components of CP. The
initial idea to apply quantum algorithms to the filtering subproblem was due to Kyle Booth,
and the details were worked out collectively by all of the authors; I showed how quantum
algorithms can be use for the backtracking component, including the introduction of the
“chunky” search that interpolates between classical and quantum backtracking.

In general, CP is NP-complete and thus an exponential number of nodes must be searched
before finding the first satisfying solution. Nevertheless, a wealth of heuristics and propagation
functions have been developed that often allow the solution of practical instances in various
applications.

A set of domains is said to be domain consistent (with respect to given constraints) if
for every value in the domain of each variable, the other variables can be assigned values
from their domains such that all constraints are satisfied. There are also weaker forms of
consistency, such as range consistency, that in general prune less of the search tree but are
computationally easier to reach. Our work focuses on the alldifferent constraint, for
which domain consistency can be captured by the existence of a maximum matching in a
particular bipartite graph. The two vertex sets of the graph are the CP variables and the
union of those variables’ domains. For each variable and value in that variable’s domain,
there is an edge between the corresponding variable vertex and value vertex. An assignment
of values to the variables is represented by a set of edges (each connecting a variable vertex to
its corresponding value vertex) in this graph, and it satisfies the alldifferent constraint
if and only if it is a matching (set of disjoint edges) that covers all of the variable vertices.
Domain consistency for the alldifferent constraint can thus be achieved in the following
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way. First, the size of the maximum matching is determined; if it less than the number
of variables, then the constraint is unsatisfiable. Then, if there is a matching of size equal
to the number of variables, the maximally-matchable edges (those that are included in at
least one maximum-cardinality matching) are identified and retained. In Ref. 29, we show
how existing quantum algorithms [3, 92, 119] can be used to achieve domain consistency for
alldifferent (and other similar global constraints), by “quantizing” a classical algorithm
due to Régin[135].

In addition to speeding up the filtering, which happens at every node, quantum algorithms
can also be used to achieve a quadratic speedup with respect to the number of search nodes.
Specifically, given a classical algorithm that explores T nodes, there is a quantum algorithm
that performs the same backtracking in time Õ(

√
T ). Furthermore, for any χ, quantum search

can be performed over χ-sized chunks of the tree in total time Õ(T/√χ); for constant-sized
chunks (χ = O(1)), this yields the classical Õ(T ) time, and for a single chunk (χ = T ), it
recovers the quantum Õ(

√
T ). There are several subtleties involved, which are addressed in

more detail in Ref. 29.

5.2.2 Circuit routing as constraint programming

This section summarizes Ref. 151. In the previous subsection, we described the application of
quantum computing to CP. Here, we describe inverse: the application of automated reasoning
(including both CP and other approaches, including temporal planning) to the compilation of
quantum circuits. Earlier, in Chapter 4, we described an instance-independent approach to the
compilation of quantum circuits. By exploiting known structure in a family of instances, we
were able to improve the efficiency of compilation relative to more general constructions and
with essentially no per-instance overhead. However, many families of compilation instances
have instance-specific structure that can be exploited, with accompanying per-instance
optimization costs. If the per-instance cost is small enough, this can be a scalable approach.
Even when the per-instance cost is high, such optimization may be worth it in the short term
in order to maximize the efficacy of near-term devices. Ref. 151 introduces an automated
reasoning framework for performing such optimization. The quantum circuit is first translated
into a directed acyclic graph (DAG), whose nodes correspond to gates and whose (directed)
edges indicate a precedence constraint. The goal is to find a dynamic mapping of logical
to physical qubits together with a sequence of logical actions (corresponding to the logical
gates) and SWAP actions (which update the mapping one pair of qubits at a time) such that
the precedence relationships are satisfied. Such a model can be implemented in a standard
language such as the Planning Domain Definition Language (PDDL), and then input into
general-purpose automated reasoning software (e.g., CP solvers or temporal planners). This
allows quantum circuit compilation to easily benefit from the significant development that
has gone into such general-purpose solvers. Preliminary work has shown some successes of
this approach, but only for relatively small instances. Whether or not this approach can be
made to scale remains an open question.
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Table 5.1: Parameterized ensembles of SMS instances explored numerically. “CC” indicates
complexity class and “NPC” indicates NP-complete.

P W CC Fixed parameters Order parameter(s) Empirical hardness

{p} {w} P T = np, p ∈ {2, 7} w easy
{ps, pl} {w} P T = npl, P = {2, 3} w easy
{ps, pl} {w, T} P T = npl, P = {2, 3}, w = 4 |{i|wi = w}| /n easy
{ps, pl} [1, wmax] NPC P ∈ {{3, 19}, {7, 11}, {3, 11}} wmax, T typically easy

5.3 Phase transitions in single-machine scheduling
This section is a slight modification of Ref. 155.

5.3.1 Introduction

Single-machine scheduling (SMS), in which a set of jobs with release times, deadlines, and
processing times are to be scheduled on a single machine, forms the backbone of many
practical applications such as telescope scheduling, satellite scheduling, and manufacturing.
A phase transition is a sudden change in a global property of a family with respect to an
order parameter. For a number of NP-complete problems, the transition from solvable to
unsolvable problems as a function of the number and tightness of constraints is of interest.
On average, instances near this phase transition are typically observed to be exponentially
harder than those that are not, and this clustering of hard instances near the phase transition
becomes more concentrated as problem size increases.

In contrast to the many problems for which a phase transition has been found, to date the
existence of phase transitions in SMS remains unexplored. We explore solvable-unsolvable
phase transitions in the decision version of the SMS problem. We construct a general model
for parameterized families of SMS instances and identify order parameters for a variety of
specific families.

Our main findings are: 1) empirical evidence of a rapid transition in solvability (phase
transition) for SMS, where none was previously characterized; 2) evidence of this transition in
both provably tractable and provably intractable SMS ensembles; and 3) in the NP-complete
ensemble (2 processing times), a transition characterized by two parameters, which is novel
for phase transitions.

Where phase transitions have been identified in hard problems, most published results
have shown “easy-hard-easy” behavior accompanying the phase transition, with the notable
exception of Hamiltonicity. Our empirical results for the intractable SMS family show that
there are few hard instances at the phase transition. While our results don’t rule out an
easy-hard-easy pattern in the NP-complete SMS family, they invite further questions into
the relationship between hardness and phase transitions, and demonstrate the challenge of
generating hard families of instances.
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5.3.2 Related Work

In their pioneering work [60], Erdős and Rényi identified phase transitions of graph properties
in their eponymous model. Ref. 37 later exhibited a connection between phase transitions and
the location of hard instances in a handful of NP-complete problems (Hamiltonian cycle, graph
coloring, k-SAT, and TSP). Since then, phase transitions have been found in a number of other
combinatorial optimization problems such as independent set [71], number partitioning [30,
70, 117], and constraint satisfaction [134, 148]. The characterization of phase transitions in
Cheeseman et al.’s original examples has later been refined (e.g. Hamiltonian cycle [150],
graph coloring [2], k-SAT [97, 118], and travelling salesman problem [72]). Specifically, the
typical solution time of instances at the phase transition grows exponentially with the problem
size, and instances away from the transition are typically easy.

There is also evidence that in some problems the hardest instances suddenly emerge at
some critical threshold below the solvability one [89]. The concentration of hard instances
near the phase transition is of practical interest because it enables the generation of hard
instances for benchmarking algorithms and solvers [90, 137].

The occurence of phase transitions is not limited to hard problems; they occur in provably
easy problems as well, including graph properties such as connectivity [60], 2-SAT [44, 73],
XOR-SAT [49] and HornSAT [120]. For hard problems, the existence of a solvability threshold
does not necessarily imply an easy-hard-easy pattern, though counterexamples are rare. One
such counterexample is the phase transition of Hamiltonicity in the Erdős-Rényi model [150].
Our work introduces the first analysis of phase transitions in ensembles of SMS instances in
the literature.

5.3.3 Preliminaries

5.3.3.1 Single-Machine Scheduling

In this section, the most general problem we consider is the decision version of (non-preemptive)
single-machine scheduling with (integer-valued) release times, deadlines, and processing times
(i.e., 1|rjdj|Umax ), which we henceforth refer to simply as SMS. An instance of SMS consists
of a set of n jobs; each job j has a release time, deadline, and processing time (rj, dj, pj ∈ Z+

0 ,
respectively). The problem is to decide whether or not there exists a schedule σ ∈

(
Z+

0

)
on a

single machine, where σj indicates the starting time of job j, such that

• every job j starts no sooner than its release time, rj ≤ σj;

• every job j finishes by its deadline, σj + pj ≤ dj; and

• no two jobs i and j overlap, σi + pi ≤ σj or σj + pj ≤ σi.

We refer to the difference between the release time and the deadline for each job as that job’s
window wj = dj − rj. More concisely, we write an instance as a tuple (r,w,p). The horizon
T is a time no earlier than the latest deadline, often exactly so.
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In general, SMS is NP-complete [132]; this can be shown, e.g., by reduction from bin
packing. However, there are numerous complexity results on refinements of the SMS problem.
For example, with unit processing time, the greedy earliest-deadline algorithm suffices [58, 143].
More generally, a valid schedule can be found in quasi-linear time when the processing times
are identical [69, 146] and in polynomial time when the processing times are restricted to be
either one or some arbitrary but fixed constant [143]. When the processing times are restricted
to two fixed constants greater than one, SMS remains NP-complete [59]. Alternatively, we
show (in Section 5.3.6) that the greedy earliest-deadline algorithm suffices when the window
lengths are either identical or restricted to two constants that differ by one.

5.3.3.2 Parameterized Ensembles

In order to find phase transitions in SMS, we construct suitable ensembles of instances
parameterized by the horizon T and the sets of possible processing times P and window
lengths W , i.e., we define a probability distribution Pr [r,w,p|P,W, T ] over instances for
each set of parameter values (P,W, T ). In our ensembles,

• the probability distribution of every job’s properties (rj, wj, dj) is identical and inde-
pendent,

• for each job j the probability of pj is independent of rj and wj,

• the probability of rj is independent of all but wj and T , and

• the probabilities for each job property are as uniform as possible given the parameteri-
zation and independence assumptions above.

Table 5.1 summarizes the special cases of this model that we focus on in this work. The
left side shows the general parameterized ensemble and its complexity, and the right side
shows the specific numeric values that we used and the resulting empirical hardness.

5.3.4 Experimental Methods

5.3.4.1 Solution of SMS instances

We deployed a variety of solvers by mapping SMS to different canonical problems: Mixed
Integer Linear Programming (MILP), Satisfiability (SAT), and Constraint Programming
(CP). We found that IBM ILOG’s CP solver, CP Optimizer, significantly outperforms the
alternatives we tried, both mapping to MILP or SAT and using other CP solvers. This is
to be expected, given that the CP model more naturally captures the structure of SMS,
whereas this structure is lost in the mappings to both MILP (because it requires ancillary
variables to account for the disjunction in the overlap constraint) and to SAT (because integer
variables must be encoded using Boolean variables). Besides their differing running times,
all the solvers we tried gave consistent answers with respect to solvability when run on the



122

Figure 5.1: Phase transitions in problem Families 1 to 3. (a) Family 1. Exactly calculated
solvability probability Prsolv versus normalized window length α = w/n(p − 1/2) for P =
{log2 n}, W = {αn(p− 1/2)}, T = np. See Section 5.3.4.2 for details for the calculation. (b)
Family 2. Prsolv versus normalized window length w/T for P = {2, 3}, T = 3n, and various
n. (c) Family 3. Prsolv versus fraction of jobs with longer window length for P = {2, 3},
W = {4, T}, T = 3n, with the restriction that exactly half of the jobs have each processing
time. Each probability is calculated using 200 random instances.

same instances. CP optimizer is an exact solver, but we allowed a maximum running time
of twenty-four hours. Only the ensemble with two processing times and a range of window
lengths ( Section 5.3.5) contained instances not solved within this twenty-four-hour window,
and very few at that (fewer than one percent for every set of parameter values); these unsolved
instances are thus statistically negligible for our purposes.

For the presentation of the computational time, we present only the results of CP optimizer.
The computation was performed on the Ivy Bridge nodes of NASA’s Pleiades supercomputer.
To examine the computational effort across the transition, we use either the elapsed wall clock
time or the number of nodes explored in the constraint programming search as a measure of
the computational cost; because we ran all experiments on identical hardware and the time
spent at each node is approximately constant, these are roughly proportional to each other.

5.3.4.2 Calculation of solvability probability for Family 1

In the simplest case of a single processing time and single window length, P = {p} and
W = {w}, we calculate exactly the solvability probability. The calculation is recursive, adding
jobs one by one. That exact calculations by this method match estimates from sampling
confirm the correctness of both our algorithm and implementation thereof.

The solvability probabilities for various p and w when n = 100 are shown in Fig. 5.2. The
plot looks essentially the same for other values of n, with discretization effects at smaller n;
the data is well converged by n = 100. That the slope is greatest at α = 1 for a wide range of
p indicates that the choice of α appropriately scales the parameters. Because the sharpness
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Figure 5.2: Solvability probability vs. order parameter α = w/n(p− 1/2) for Family 1, with
n = 100.

of the transition is fixed for a given p but increases therewith, we chose p = logn so that the
sharpness increases with n. This logarithmic scaling was chosen to minimize computation
time, but setting p to any strictly increasing function of n suffices to sharpen the transition.

5.3.5 Phase Transitions

In this section, we present experimental results on solvable-unsolvable phase transitions for
several SMS families. The order parameter of such transitions varies the constrainedness
of the instances using the time horizon, window size, or both. When the instance is barely
constrained (e.g. large horizon, large windows), it is likely to be solvable, and when it is
heavily constrained, it is likely to be unsolvable; at both extremes, the solvability of an
instance is easy to determine.
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Family 1: Single processing time, single window length In the simplest case, we
have a single processing time and a single window size, P = {p} and W = {w}, and set the
horizon to the minimal non-trivial value T = np. Problem instances are generated so that
for each job i, ri is uniformly sampled from all possible times [0, T − w]. The solvability
probabilities for p = log2 n and w = αn(p−1/2) are shown in Fig. 5.1 (a) for various α. There
is a transition from a high probability of unsolvability to a high probability of solvability at
α = 1 that sharpens with the number of tasks n, which is strong empirical evidence of a
phase transition.

The probability of solvability decreases for the same value of w/T when p increases. One
way to understand this drop is to think of fixing the number of jobs, and scale w and T with
p. A rise in the processing time greatly increases the number of ways in which unsolvable
instances are created.

Family 2: Two processing times, single window length Next, we allow for two
processing times, P = {ps, pl}, while keeping the single window length, W = {w} and
setting the horizon to be T = npl. The solvability probabilities are shown in Fig. 5.1 (b).
Again the probability varies monotonically from zero to one with the window length. Using
the normalized window length w/T as the order parameter, the transition sharpens with
increasing n.

Family 3: Two processing times, two window lengths Next, we allow for two
processing times P = {ps, pl} and two window lengths W = {ws, wl}. The processing times
are independent parameters, and the horizon is set to be T = npl. We choose the small
window length ws = pl + 1 just big enough to have some wiggle room regardless of the
processing time and the large one wl = T equal to the horizon. Note that unlike the previous
cases when the window size change leads to tighter or looser constraints, we now need a
parameter reflecting the number of loose constraints in the problem instead. The fraction of
jobs with the larger window length, ρl ≡ |{j|wj = T}| /n, is thus used as the order parameter.

For P = {2, 3}, the solvability probabilities as a function of the order parameter are shown
in Fig. 5.1 (c). When most jobs have the shorter window length, there is little flexibility and
the probability of an instance being solvable is low; when most jobs have the window length
equal to the horizon, jobs can be assigned almost freely and an instance is very likely to be
solvable.

Family 4: Two processing times, range of window lengths This is the most general
problem we consider, with two processing times, P = {ps, pl} and a range of window times
W = [pl + 1, wmax]. We fix ps, pl, and study the sets of instances parameterized by the tuple
(T,wmax). For each value of the tuple, 100 to 1000 instances are drawn. For each job, pi and
wi are uniformly sampled from P and W , respectively. The release time ri is then uniformly
sampled from [0, T − wi].
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Figure 5.3: Numerical data for Family 4. Left panel: The first column of panels shows
the phase transition. Contour plot of solvability probability versus normalized horizon and
normalized window length. The horizon is normalized by the average total processing time np,
and the window length is normalized by the (not normalized) horizon. The dark blue region is
the phase transition frontier. The second and third columns show the contour plot of hardness
where color encodes log10(Nx), where Nx is the x-percentile of the number of nodes for each
parameter tuple (T,wmax). (a) n = 200, P = {3, 19} from left to right: Prsolv, log10(N95),
log10(N99). For each parameter tuple, 100 instances are drawn. (b) n = 200, P = {7, 11},
from left to right: Prsolv, log10(N95), log10(N99). For each parameter tuple, 100 instances
are drawn. (c) n = 40, P = {7, 11} from left to right: Prsolv, log10(N99.5), log10(N99.8). For
each parameter tuple, 1000 instances are drawn. Right panel: (d) Prsolv = 0.5 ± 0.05 for
P = {3, 19}. The transition frontier is fit as T

np
= a0

w/T
+c0 . The shaded area shows 95 percent

confidence interval. The fitted coefficients (a0, c0) are in the legend for each problem size.

We choose the problem family of parameters P = {3, 19}, {7, 11}, and {3, 11}, and
problem size n ranging from 16 to 200.

In Fig. 5.3 the first column of subplots show the probability of solvability in the two-
dimensional parameter space (T,wmax), for different parameter choices and problem sizes in
(a) to (c). On each subplot, with a normalization of the parameters as T/(np̄) and wmax/T ,
a clear transition is seen. On the bottom left of the scanning area (where the time horizon is
close to the sum of the processing times, and the jobs have very little flexibility), few solution
exists. On the top right of the area, i.e., the horizon is ample to fit all jobs loosely, and
the windows apply almost no constraint to the schedule and there are many solutions to
the problem. This transition gets steeper as the problem size increases, as reflected by the
reduction in width of the “dark (blue) band" in the middle of the plot (c) versus plot (b).
The transition between these two regimes is a simple curve that is a function of T and wmax.
The shape of the curves also suggests that the transition region is converging as n increases.

We take a closer look in Fig. 5.3 (d) where for P = {3, 19}, numerical data with
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Prsolv = 0.5± 0.05 is singled out as the transition frontier, and fit as

T

np
=

a0
w/T

+ c0 (5.5)

As n increases, the fit parameters a0 decreases, and c0 approaches 1.
A similar pattern in the phase transition is observed for the other two sets of processing

times P = {7, 11} and {3, 11}.

5.3.6 Hardness: empirical and provable

When there is a single window length, W = {w}, or two window lengths that differ by one,
W = {w,w + 1}, the greedy earliest-deadline algorithm suffices for any set of processing
times P .

When the sets of processing times and window lengths are fixed (or the set of window
lengths is some fixed set and the horizon), SMS is easy. We explored the specific case with
P = {ps, pl}, W = {pl+1, T}, and T = npl (Family 3); as expected we observe solution times
that are polynomial in n. With two non-unit processing times and arbitrary window lengths
(that may grow with n), SMS is NP-complete. The ensembles we investigate in Family 4
where P = {ps, pl}, W = [1, wmax], and T = npl should therefore contain some hard problems.
Nevertheless, we find that such instances are typically easy.

To study the hardness of this family, 50-th to 99.8-th percentiles of the number of nodes
explored in the attempt to solve the problem instances are taken as a measure.
Typical instances are easy. We first examine the median effort to solve problems. We
do not observe a clear correlation between the locations of relative hard instances and the
regions of the phase transition. Also, no evidence of an exponential increase in the median
hardness with problem size is observed. This indicates that the median case for such generated
problems are probably easy. The same phenomenon appears in higher percentiles, we observed
no hard instances up to 95-percentiles; see the results for 95-th percentiles in Figure. 5.3 (a),
and (b).
High percentiles: rare hard instances, weak correlation with the phase transition.
We then look at even higher percentiles of the number of nodes explored. As shown in
Figure. 5.3 (a), (b) and (c), relatively hard instances show up at these very high percentiles
(e.g., 99-percentile for n = 200, 99.5- and 99.8-percentiles for n = 40). High percentiles of the
nodes explored is plotted in logarithmic scale for parameters P = {3, 19} and P = {7, 11},
and the phase transitions are shown in parallel for comparison. Hard instances scatter around
the phase transition region, suggesting weak correlation. However, due to the rareness of the
hard instances and large statistical fluctuations in the high percentiles, we cannot confirm a
correlation between the phase transition and the hardness in high percentiles.

To compare hardness for different problem sizes, due to the dispersion of hard instances in
the parameter space, a reliable fitting for extracting the number of nodes of certain percentiles
is missing and the results are thus tempered by large statistical fluctuations. Furthermore,
for larger problem sizes, results of higher percentile is also limited by the 24-hour timeout of
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the solver. Therefore, we do not draw conclusions on the empirical time complexity for such
high percentiles.

SMS with identical window lengths or two window lengths that differ by one is
easy This problem can be solved in polynomial time by the following algorithm. First,
order the jobs by their release date in non-decreasing order, breaking ties with the deadlines.
Then, schedule each job in order by setting its start time to the maximum of its release time
and the completion of the previous job. We prove below that the resulting schedule is feasible
if and only if there is a feasible schedule for the instance by showing that if there is a feasible
schedule for the instance with a pair of immediately subsequent jobs in the schedule that are
out of order with respect to their release times, then there is feasible schedule in which they
are in order. Iterating this logic, it follows that if there is a feasible schedule, then there is a
feasible schedule in which all the jobs are in order.

Formally, suppose there is a schedule σ with a pair of jobs i and j such that σj < σi and
there is no job k such that σj < σk < σi, but ri ≤ rj and di ≤ dj. Consider the schedule σ′

that is the same as σ except that σ′
i = σj and σ′

j = σi + pi − pj. In both schedules, the first
job starts at σj = σ′ and the second job ends at σi + pi = σ′

j + pj, so no conflict with other
jobs can be introduced. If σ satisfies the release, deadline, and overlap constraints for jobs i
and j,

ri ≤ σi ≤ di − pi,

rj ≤ σj ≤ dj − pj,

σj + pj ≤ σi,

(5.6)

then so does σ′,

σ′
i = σj ≥ rj ≥ ri,

σ′
i = σj < σi ≤ di − pi,

σ′
j = σi + pi − pj ≥ σi − pj ≥ σj ≥ rj,

σ′
j + pj = σi + pi ≤ di ≤ dj,

σ′
i + pi = σj + pi ≤ σi − pj + pi = σ′

j.

(5.7)

SMS with a fixed set of processing times and a set of window lengths that is the
union of a fixed set and the horizon is easy Here we show that SMS is easy when the
processing times are restricted to some fixed set P and the window lengths to W = W0∪{T},
where W0 is some fixed set, by sketching an algorithm with running time O

(
|P ||W |n|P ||W |).

First, we note if there is a feasible schedule σ, then there is another feasible schedule σ′

with the same completion time such that for every pair of jobs {i, j} if pi = pj and wi = wj
then σ′

i < σ′
j implies that ri ≤ rj. Suppose that in valid schedule σ there are two jobs {i, j}

with pi = pj, wi = wj, σi < σj, and ri > rj. Because σ is a valid schedule,

rj < ri ≤ σi < σj ≤ dj − pj < di − pj, (5.8)
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so too is the schedule σ′ formed by setting σ′
i = σj, σ′

j = σi, and σ′
k = σk for k /∈ {i, j}.

Because they have identical processing times and window sizes, no new conflicts can be
introduced by this switch, either with other jobs or between the two. That is, if the instance
is solvable, then there is always a valid schedule in which all jobs with the same processing
time and the same window length start in order of the release times.

Now, consider the standard dynamic programming approach. For each subset of jobs
J ⊂ [n], let m(J) be the earliest completion time of a valid partial schedule for the jobs J ,
or infinity if there is none. Thus the instance is solvable if and only if m([n]) is finite. In
general, we can calculate m(J) recursively as

m(∅) = 0, (5.9)
m(J) = min

j∈J
{m̃j(J \ {j}) + pj} , (5.10)

m̃j(J) =


rj, m(J) ≤ rj,

m(J), rj < m(J) ≤ dj − pj,

∞, m(J) > dj − pj,

(5.11)

because any valid schedule for jobs J is the concatenation of schedules for J \ {j} and {j}
for some j ∈ J . In the present case, we know that without loss of generality we can assume
that the last job in the schedule has a release time at least that of all the other jobs with the
same processing time and window length:

m(J) = min
p∈P
w∈W

{
m̃j(J \ {j})

∣∣∣∣∣
j=

(
argmax
j′∈J

∣∣∣ pj′=pwj′=w

{rj′}

) + p

}
. (5.12)

Let ip,w,k be the kth job with processing time pj = p and wj = w when the jobs with the same
processing times and window lengths are ordered by release times. Then we can parameterize
the sets of jobs J that we encounter during recursion by a |P | × |W | matrix C whose entries
indicate how many of each type of job have been scheduled, i.e. Cp,w indicates how many
jobs with processing time p and window length w have been scheduled; within the jobs of a
given type, the ones with the earliest release times are scheduled first:

J(C) =
⋃
p∈P
w∈W

{ip,w,k|k ∈ [Cp,w]} , (5.13)

so that we can write

m (J(C)) = min
p∈P
w∈W

{
m̃ip,w,Cp,w

(
J(C)− {ip,w,Cp,w}

)
+ p
}
, (5.14)

Ultimately, we want to find m([n]). To calculate m(C), we need to consider m(C ′) for
|P ||W | other schedules C ′. But each Cp,w is bounded by n, so the maximum number of values
of m that we need to calculate is n|P ||W |. Therefore, the algorithm runs in O

(
|P ||W |n|P ||W |)

time.
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SMS with two non-unit processing times is NP-complete See Ref. 59.



130

Bibliography

[1] Scott Aaronson and Lijie Chen. “Complexity-Theoretic Foundations of Quantum
Supremacy Experiments”. In: arXiv:1612.05903 [quant-ph] (Dec. 2016). arXiv: 1612.
05903 [quant-ph].

[2] Dimitris Achlioptas and Ehud Friedgut. “A Sharp Threshold for K-Colorability”. en.
In: Random Structures & Algorithms 14.1 (1999), pp. 63–70. issn: 1098-2418. doi:
10.1002/(SICI)1098-2418(1999010)14:1<63::AID-RSA3>3.0.CO;2-7.

[3] Andris Ambainis and Martins Kokainis. “Quantum Algorithm for Tree Size Estimation,
with Applications to Backtracking and 2-Player Games”. en. In: Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing. Montreal Canada: ACM,
June 2017, pp. 989–1002. isbn: 978-1-4503-4528-6. doi: 10.1145/3055399.3055444.

[4] Omer Angel and Igor Shinkar. “A Tight Upper Bound on Acquaintance Time of
Graphs”. en. In: Graphs and Combinatorics 32.5 (Sept. 2016), pp. 1667–1673. issn:
1435-5914. doi: 10.1007/s00373-016-1700-4.

[5] Tom M. Apostol. Calculus. Second. Vol. 1. Wiley, 1991. isbn: 978-0-471-00005-1.
[6] Itai Arad and Zeph Landau. “Quantum Computation and the Evaluation of Tensor

Networks”. In: SIAM Journal on Computing 39.7 (June 2010), pp. 3089–3121. issn:
0097-5397. doi: 10.1137/080739379.

[7] Stefan Arnborg and Andrzej Proskurowski. “Linear Time Algorithms for NP-Hard
Problems Restricted to Partial k-Trees”. en. In: Discrete Applied Mathematics 23.1
(Apr. 1989), pp. 11–24. issn: 0166-218X. doi: 10.1016/0166-218X(89)90031-0.

[8] Frank Arute et al. “Quantum Supremacy Using a Programmable Superconducting
Processor”. en. In: Nature 574.7779 (Oct. 2019), pp. 505–510. issn: 1476-4687. doi:
10.1038/s41586-019-1666-5.

[9] Neil W. Ashcroft and N. David Mermin. Solid State Physics. 1976. isbn: 978-0-03-
083993-1.

[10] Alán Aspuru-Guzik et al. “Simulated Quantum Computation of Molecular Energies”.
en. In: Science 309.5741 (Sept. 2005), pp. 1704–1707. issn: 0036-8075, 1095-9203.
doi: 10.1126/science.1113479.

[11] Ryan Babbush et al. “Low-Depth Quantum Simulation of Materials”. In: Physical
Review X 8.1 (Mar. 2018), p. 011044. doi: 10.1103/PhysRevX.8.011044.

https://arxiv.org/abs/1612.05903
https://arxiv.org/abs/1612.05903
https://doi.org/10.1002/(SICI)1098-2418(1999010)14:1<63::AID-RSA3>3.0.CO;2-7
https://doi.org/10.1145/3055399.3055444
https://doi.org/10.1007/s00373-016-1700-4
https://doi.org/10.1137/080739379
https://doi.org/10.1016/0166-218X(89)90031-0
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.1113479
https://doi.org/10.1103/PhysRevX.8.011044


131

[12] Boaz Barak et al. “Beating the Random Assignment on Constraint Satisfaction Prob-
lems of Bounded Degree”. In: arXiv:1505.03424 [cs] (Aug. 2015). arXiv: 1505.03424
[cs].

[13] Robert Beals et al. “Efficient Distributed Quantum Computing”. In: Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences 469.2153 (May
2013), p. 20120686. doi: 10.1098/rspa.2012.0686.

[14] Itai Benjamini, Igor Shinkar, and Gilad Tsur. “Acquaintance Time of a Graph”. In:
SIAM Journal on Discrete Mathematics 28.2 (Jan. 2014), pp. 767–785. issn: 0895-
4801. doi: 10.1137/130930078.

[15] Debjyoti Bhattacharjee and Anupam Chattopadhyay. “Depth-Optimal Quantum
Circuit Placement for Arbitrary Topologies”. In: arXiv:1703.08540 [quant-ph] (Mar.
2017). arXiv: 1703.08540 [quant-ph].

[16] Jacob Biamonte and Ville Bergholm. “Tensor Networks in a Nutshell”. In: arXiv:1708.00006
[cond-mat, physics:gr-qc, physics:hep-th, physics:math-ph, physics:quant-ph] (July
2017). arXiv: 1708.00006 [cond-mat, physics:gr-qc, physics:hep-th, physics:math-ph,
physics:quant-ph].

[17] Jacob D. Biamonte, Jason Morton, and Jacob Turner. “Tensor Network Contractions
for #SAT”. en. In: Journal of Statistical Physics 160.5 (Sept. 2015), pp. 1389–1404.
issn: 1572-9613. doi: 10.1007/s10955-015-1276-z.

[18] Dan Bienstock. “On Embedding Graphs in Trees”. en. In: Journal of Combinatorial
Theory, Series B 49.1 (June 1990), pp. 103–136. issn: 0095-8956. doi: 10.1016/0095-
8956(90)90066-9.

[19] Rupak Biswas et al. “A NASA Perspective on Quantum Computing: Opportunities and
Challenges”. en. In: Parallel Computing 64 (May 2017), pp. 81–98. issn: 01678191.
doi: 10.1016/j.parco.2016.11.002.

[20] Lennart Bittel and Martin Kliesch. “Training Variational Quantum Algorithms Is
NP-Hard – Even for Logarithmically Many Qubits and Free Fermionic Systems”. en.
In: (Jan. 2021).

[21] Hans Bodlaender, Michael R. Fellows, and Dimitrios M. Thilikos. “Derivation of
Algorithms for Cutwidth and Related Graph Layout Parameters”. en. In: Journal of
Computer and System Sciences 75.4 (June 2009), pp. 231–244. issn: 0022-0000. doi:
10.1016/j.jcss.2008.10.003.

[22] Hans L. Bodlaender. “A Linear Time Algorithm for Finding Tree-Decompositions
of Small Treewidth”. In: Proceedings of the Twenty-Fifth Annual ACM Symposium
on Theory of Computing. STOC ’93. San Diego, California, USA: Association for
Computing Machinery, June 1993, pp. 226–234. isbn: 978-0-89791-591-5. doi:
10.1145/167088.167161.

https://arxiv.org/abs/1505.03424
https://arxiv.org/abs/1505.03424
https://doi.org/10.1098/rspa.2012.0686
https://doi.org/10.1137/130930078
https://arxiv.org/abs/1703.08540
https://arxiv.org/abs/1708.00006
https://arxiv.org/abs/1708.00006
https://doi.org/10.1007/s10955-015-1276-z
https://doi.org/10.1016/0095-8956(90)90066-9
https://doi.org/10.1016/0095-8956(90)90066-9
https://doi.org/10.1016/j.parco.2016.11.002
https://doi.org/10.1016/j.jcss.2008.10.003
https://doi.org/10.1145/167088.167161


132

[23] Hans L. Bodlaender and Dimitrios M. Thilikos. “Constructive Linear Time Algorithms
for Branchwidth”. en. In: Automata, Languages and Programming. Ed. by Pierpaolo
Degano, Roberto Gorrieri, and Alberto Marchetti-Spaccamela. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 1997, pp. 627–637. isbn: 978-3-540-
69194-5. doi: 10.1007/3-540-63165-8_217.

[24] Hans L. Bodlaender et al. “Approximating Treewidth, Pathwidth, and Minimum
Elimination Tree Height”. en. In: Graph-Theoretic Concepts in Computer Science.
Ed. by Gunther Schmidt and Rudolf Berghammer. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 1992, pp. 1–12. isbn: 978-3-540-46735-9. doi: 10.1007/
3-540-55121-2_1.

[25] Hans L. Bodlaender et al. “Approximating Treewidth, Pathwidth, Frontsize, and
Shortest Elimination Tree”. en. In: Journal of Algorithms 18.2 (Mar. 1995), pp. 238–
255. issn: 0196-6774. doi: 10.1006/jagm.1995.1009.

[26] Sergio Boixo et al. “Characterizing Quantum Supremacy in Near-Term Devices”. en.
In: Nature Physics 14.6 (June 2018), pp. 595–600. issn: 1745-2481. doi: 10.1038/
s41567-018-0124-x.

[27] Sergio Boixo et al. “Simulation of Low-Depth Quantum Circuits as Complex Undirected
Graphical Models”. In: arXiv:1712.05384 [quant-ph] (Jan. 2018). arXiv: 1712.05384
[quant-ph].

[28] Kyle E. C. Booth et al. “Comparing and Integrating Constraint Programming and Tem-
poral Planning for Quantum Circuit Compilation”. en. In: Twenty-Eighth International
Conference on Automated Planning and Scheduling. June 2018.

[29] Kyle E. C. Booth et al. “Quantum-Accelerated Constraint Programming”. In: arXiv:2103.04502
[quant-ph] (Mar. 2021). arXiv: 2103.04502 [quant-ph].

[30] Christian Borgs, Jennifer Chayes, and Boris Pittel. “Phase Transition and Finite-
Size Scaling for the Integer Partitioning Problem”. en. In: Random Structures and
Algorithms 19.3-4 (Oct. 2001), pp. 247–288. issn: 1042-9832, 1098-2418. doi: 10.
1002/rsa.10004.

[31] Sergey Bravyi, David P. DiVincenzo, and Daniel Loss. “Schrieffer–Wolff Transformation
for Quantum Many-Body Systems”. en. In: Annals of Physics 326.10 (Oct. 2011),
pp. 2793–2826. issn: 0003-4916. doi: 10.1016/j.aop.2011.06.004.

[32] Sergey Bravyi et al. “Tapering off Qubits to Simulate Fermionic Hamiltonians”. In:
arXiv:1701.08213 [quant-ph] (Jan. 2017). arXiv: 1701.08213 [quant-ph].

[33] Sergey B. Bravyi and Alexei Yu. Kitaev. “Fermionic Quantum Computation”. en. In:
Annals of Physics 298.1 (May 2002), pp. 210–226. issn: 0003-4916. doi: 10.1006/
aphy.2002.6254.

[34] Stephen Brierley. “Efficient Implementation of Quantum Circuits with Limited Qubit
Interactions”. In: Quantum Information & Computation 17.13-14 (Nov. 2017), pp. 1096–
1104. issn: 1533-7146.

https://doi.org/10.1007/3-540-63165-8_217
https://doi.org/10.1007/3-540-55121-2_1
https://doi.org/10.1007/3-540-55121-2_1
https://doi.org/10.1006/jagm.1995.1009
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1038/s41567-018-0124-x
https://arxiv.org/abs/1712.05384
https://arxiv.org/abs/1712.05384
https://arxiv.org/abs/2103.04502
https://doi.org/10.1002/rsa.10004
https://doi.org/10.1002/rsa.10004
https://doi.org/10.1016/j.aop.2011.06.004
https://arxiv.org/abs/1701.08213
https://doi.org/10.1006/aphy.2002.6254
https://doi.org/10.1006/aphy.2002.6254


133

[35] Anne Broadbent and Alex B. Grilo. “QMA-Hardness of Consistency of Local Density
Matrices with Applications to Quantum Zero-Knowledge”. In: 2020 IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS). Durham, NC, USA: IEEE,
Nov. 2020, pp. 196–205. isbn: 978-1-72819-621-3. doi: 10.1109/FOCS46700.2020.
00027.

[36] Jun Cai, William G. Macready, and Aidan Roy. “A Practical Heuristic for Find-
ing Graph Minors”. In: arXiv:1406.2741 [quant-ph] (June 2014). arXiv: 1406.2741
[quant-ph].

[37] Peter Cheeseman, Bob Kanefsky, and William M. Taylor. “Where the Really Hard
Problems Are”. In: Proceedings of the 12th International Joint Conference on Artificial
Intelligence - Volume 1. IJCAI’91. Sydney, New South Wales, Australia: Morgan
Kaufmann Publishers Inc., Aug. 1991, pp. 331–337. isbn: 978-1-55860-160-4.

[38] Jianxin Chen et al. “Classical Simulation of Intermediate-Size Quantum Circuits”. In:
arXiv:1805.01450 [quant-ph] (May 2018). arXiv: 1805.01450 [quant-ph].

[39] Andrew M. Childs, David Gosset, and Zak Webb. “Complexity of the XY Antiferro-
magnet at Fixed Magnetization”. In: Quantum Information and Computation (Jan.
2016), pp. 1–18. issn: 15337146, 15337146. doi: 10.26421/QIC16.1-2-1.

[40] Andrew M. Childs, David Gosset, and Zak Webb. “The Bose-Hubbard Model Is
QMA-Complete”. EN. In: Theory of Computing 11.1 (Dec. 2015), pp. 491–603. issn:
1557-2862. doi: 10.4086/toc.2015.v011a020.

[41] Andrew M. Childs, Aaron Ostrander, and Yuan Su. “Faster Quantum Simulation by
Randomization”. en-GB. In: Quantum 3 (Sept. 2019), p. 182. doi: 10.22331/q-2019-
09-02-182.

[42] Andrew M. Childs, Eddie Schoute, and Cem M. Unsal. “Circuit Transformations for
Quantum Architectures”. In: 14th Conference on the Theory of Quantum Compu-
tation, Communication and Cryptography (TQC 2019). Ed. by Wim van Dam and
Laura Mancinska. Vol. 135. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, 3:1–3:24.
isbn: 978-3-95977-112-2. doi: 10.4230/LIPIcs.TQC.2019.3.

[43] Vicky Choi. “Minor-Embedding in Adiabatic Quantum Computation: II. Minor-
Universal Graph Design”. en. In: Quantum Information Processing 10.3 (June 2011),
pp. 343–353. issn: 1573-1332. doi: 10.1007/s11128-010-0200-3.

[44] V. Chvatal and B. Reed. “Mick Gets Some (the Odds Are on His Side) (Satisfiabil-
ity)”. In: Proceedings., 33rd Annual Symposium on Foundations of Computer Science.
Pittsburgh, PA, USA: IEEE, 1992, pp. 620–627. isbn: 978-0-8186-2900-6. doi:
10.1109/SFCS.1992.267789.

https://doi.org/10.1109/FOCS46700.2020.00027
https://doi.org/10.1109/FOCS46700.2020.00027
https://arxiv.org/abs/1406.2741
https://arxiv.org/abs/1406.2741
https://arxiv.org/abs/1805.01450
https://doi.org/10.26421/QIC16.1-2-1
https://doi.org/10.4086/toc.2015.v011a020
https://doi.org/10.22331/q-2019-09-02-182
https://doi.org/10.22331/q-2019-09-02-182
https://doi.org/10.4230/LIPIcs.TQC.2019.3
https://doi.org/10.1007/s11128-010-0200-3
https://doi.org/10.1109/SFCS.1992.267789


134

[45] Stephen A. Cook. “The Complexity of Theorem-Proving Procedures”. In: Proceedings
of the Third Annual ACM Symposium on Theory of Computing. STOC ’71. Shaker
Heights, Ohio, USA: Association for Computing Machinery, May 1971, pp. 151–158.
isbn: 978-1-4503-7464-4. doi: 10.1145/800157.805047.

[46] William Cook and Paul Seymour. “Tour Merging via Branch-Decomposition”. In:
INFORMS Journal on Computing 15.3 (Aug. 2003), pp. 233–248. issn: 1091-9856.
doi: 10.1287/ijoc.15.3.233.16078.

[47] Philippe Corboz and Guifré Vidal. “Fermionic Multiscale Entanglement Renormal-
ization Ansatz”. In: Physical Review B 80.16 (Oct. 2009), p. 165129. doi: 10.1103/
PhysRevB.80.165129.

[48] Alexander Cowtan et al. “On the Qubit Routing Problem”. In: 14th Conference on the
Theory of Quantum Computation, Communication and Cryptography (TQC 2019). Ed.
by Wim van Dam and Laura Mancinska. Vol. 135. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2019, 5:1–5:32. isbn: 978-3-95977-112-2. doi: 10.4230/LIPIcs.TQC.
2019.5.

[49] Nadia Creignou and Hervé Daude. “Satisfiability Threshold for Random XOR-CNF
Formulas”. en. In: Discrete Applied Mathematics 96-97 (Oct. 1999), pp. 41–53. issn:
0166218X. doi: 10.1016/S0166-218X(99)00032-3.

[50] Gavin E. Crooks. “Performance of the Quantum Approximate Optimization Algorithm
on the Maximum Cut Problem”. In: arXiv:1811.08419 [quant-ph] (Nov. 2018). arXiv:
1811.08419 [quant-ph].

[51] Toby Cubitt and Ashley Montanaro. “Complexity Classification of Local Hamiltonian
Problems”. In: SIAM Journal on Computing 45.2 (Jan. 2016), pp. 268–316. issn:
0097-5397. doi: 10.1137/140998287.

[52] Marek Cygan et al. “Lower Bounds Based on the Exponential-Time Hypothesis”. en. In:
Parameterized Algorithms. Ed. by Marek Cygan et al. Cham: Springer International
Publishing, 2015, pp. 467–521. isbn: 978-3-319-21275-3. doi: 10.1007/978-3-319-
21275-3_14.

[53] David Deutsch. “Quantum Theory, the Church–Turing Principle and the Universal
Quantum Computer”. en. In: Proceedings of the Royal Society of London. A. Math-
ematical and Physical Sciences 400.1818 (July 1985), pp. 97–117. issn: 0080-4630.
doi: 10.1098/rspa.1985.0070.

[54] Reinhard Diestel. Graph Theory. en. Fifth. Graduate Texts in Mathematics. Berlin
Heidelberg: Springer-Verlag, 2017. isbn: 978-3-662-53621-6. doi: 10.1007/978-3-
662-53622-3.

https://doi.org/10.1145/800157.805047
https://doi.org/10.1287/ijoc.15.3.233.16078
https://doi.org/10.1103/PhysRevB.80.165129
https://doi.org/10.1103/PhysRevB.80.165129
https://doi.org/10.4230/LIPIcs.TQC.2019.5
https://doi.org/10.4230/LIPIcs.TQC.2019.5
https://doi.org/10.1016/S0166-218X(99)00032-3
https://arxiv.org/abs/1811.08419
https://doi.org/10.1137/140998287
https://doi.org/10.1007/978-3-319-21275-3_14
https://doi.org/10.1007/978-3-319-21275-3_14
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3


135

[55] P. A. M. Dirac. “Quantum Mechanics of Many-Electron Systems”. en. In: Proceedings
of the Royal Society of London. Series A, Containing Papers of a Mathematical and
Physical Character 123.792 (Apr. 1929), pp. 714–733. issn: 0950-1207, 2053-9150.
doi: 10.1098/rspa.1929.0094.

[56] Eugene Dumitrescu. “Tree Tensor Network Approach to Simulating Shor’s Algorithm”.
In: Physical Review A 96.6 (Dec. 2017), p. 062322. doi: 10.1103/PhysRevA.96.
062322.

[57] Eugene F. Dumitrescu et al. “Benchmarking Treewidth as a Practical Component of
Tensor Network Simulations”. en. In: PLOS ONE 13.12 (Dec. 2018). Ed. by Emanuele
G. Dalla Torre, e0207827. issn: 1932-6203. doi: 10.1371/journal.pone.0207827.

[58] Christoph Dürr and Mathilde Hurand. “Finding Total Unimodularity in Optimization
Problems Solved by Linear Programs”. en. In: Algorithmica 59.2 (Feb. 2011), pp. 256–
268. issn: 0178-4617, 1432-0541. doi: 10.1007/s00453-009-9310-7.

[59] Jan Elffers and Mathijs de Weerdt. “Scheduling with Two Non-Unit Task Lengths Is
NP-Complete”. In: arXiv:1412.3095 [cs] (Oct. 2017). arXiv: 1412.3095 [cs].

[60] Paul Erdős and A Rényi. “On the Evolution of Random Graphs”. In: Publ. Math. Inst.
Hungar. Acad. Sci 5 (1960), pp. 17–61.

[61] E. Farhi et al. “Quantum Algorithms for Fixed Qubit Architectures”. en. In: (Mar.
2017).

[62] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. “A Quantum Approximate
Optimization Algorithm”. In: arXiv:1411.4028 [quant-ph] (Nov. 2014). arXiv: 1411.
4028 [quant-ph].

[63] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. “A Quantum Approximate
Optimization Algorithm Applied to a Bounded Occurrence Constraint Problem”. In:
arXiv:1412.6062 [quant-ph] (June 2015). arXiv: 1412.6062 [quant-ph].

[64] Edward Farhi and Aram W. Harrow. “Quantum Supremacy through the Quantum
Approximate Optimization Algorithm”. In: arXiv:1602.07674 [quant-ph] (Oct. 2019).
arXiv: 1602.07674 [quant-ph].

[65] Richard P. Feynman. “Simulating Physics with Computers”. en. In: International
Journal of Theoretical Physics 21.6-7 (June 1982), pp. 467–488. issn: 0020-7748,
1572-9575. doi: 10.1007/BF02650179.

[66] Mark Fingerhuth, Tomáš Babej, and Christopher Ing. “A Quantum Alternating
Operator Ansatz with Hard and Soft Constraints for Lattice Protein Folding”. In:
arXiv:1810.13411 [quant-ph] (Oct. 2018). arXiv: 1810.13411 [quant-ph].

[67] Austin G. Fowler, Ashley M. Stephens, and Peter Groszkowski. “High-Threshold
Universal Quantum Computation on the Surface Code”. en. In: Physical Review A
80.5 (Nov. 2009), p. 052312. issn: 1050-2947, 1094-1622. doi: 10.1103/PhysRevA.
80.052312.

https://doi.org/10.1098/rspa.1929.0094
https://doi.org/10.1103/PhysRevA.96.062322
https://doi.org/10.1103/PhysRevA.96.062322
https://doi.org/10.1371/journal.pone.0207827
https://doi.org/10.1007/s00453-009-9310-7
https://arxiv.org/abs/1412.3095
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1412.6062
https://arxiv.org/abs/1602.07674
https://doi.org/10.1007/BF02650179
https://arxiv.org/abs/1810.13411
https://doi.org/10.1103/PhysRevA.80.052312
https://doi.org/10.1103/PhysRevA.80.052312


136

[68] E. Schuyler Fried et al. “qTorch: The Quantum Tensor Contraction Handler”. en. In:
PLOS ONE 13.12 (Dec. 2018). Ed. by Itay Hen, e0208510. issn: 1932-6203. doi:
10.1371/journal.pone.0208510.

[69] M. R. Garey et al. “Scheduling Unit–Time Tasks with Arbitrary Release Times and
Deadlines”. en. In: SIAM Journal on Computing 10.2 (May 1981), pp. 256–269. issn:
0097-5397, 1095-7111. doi: 10.1137/0210018.

[70] Ian Gent and Toby Walsh. “Phase Transitions and Annealed Theories: Number
Partitioning as a Case Study”. In: In Proceedings of ECAI-96. John Wiley & Sons,
1996, pp. 170–174.

[71] Ian P. Gent and Toby Walsh. “The Hardest Random SAT Problems”. en. In: KI-94:
Advances in Artificial Intelligence. Ed. by Bernhard Nebel and Leonie Dreschler-Fischer.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 1994, pp. 355–366.
isbn: 978-3-540-48979-5. doi: 10.1007/3-540-58467-6_31.

[72] Ian P. Gent and Toby Walsh. “The TSP Phase Transition”. en. In: Artificial Intelligence
88.1-2 (Dec. 1996), pp. 349–358. issn: 00043702. doi: 10.1016/S0004-3702(96)
00030-6.

[73] Andreas Goerdt. “A Threshold for Unsatisfiability”. en. In: Journal of Computer and
System Sciences 53.3 (Dec. 1996), pp. 469–486. issn: 00220000. doi: 10.1006/jcss.
1996.0081.

[74] Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search”. en. In:
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing -
STOC ’96. Philadelphia, Pennsylvania, United States: ACM Press, 1996, pp. 212–219.
isbn: 978-0-89791-785-8. doi: 10.1145/237814.237866.

[75] Gian Giacomo Guerreschi and Mikhail Smelyanskiy. “Practical Optimization for Hybrid
Quantum-Classical Algorithms”. In: arXiv:1701.01450 [quant-ph] (Jan. 2017). arXiv:
1701.01450 [quant-ph].

[76] Stuart Hadfield. “On the Representation of Boolean and Real Functions as Hamiltonians
for Quantum Computing”. In: arXiv:1804.09130 [quant-ph] (Apr. 2018). arXiv: 1804.
09130 [quant-ph].

[77] Stuart Hadfield et al. “From the Quantum Approximate Optimization Algorithm to a
Quantum Alternating Operator Ansatz”. en. In: Algorithms 12.2 (Feb. 2019), p. 34.
issn: 1999-4893. doi: 10.3390/a12020034.

[78] Stuart Hadfield et al. “Quantum Approximate Optimization with Hard and Soft
Constraints”. In: Proceedings of the Second International Workshop on Post Moores Era
Supercomputing. PMES’17. Denver, CO, USA: Association for Computing Machinery,
Nov. 2017, pp. 15–21. isbn: 978-1-4503-5126-3. doi: 10.1145/3149526.3149530.

[79] Asger Halkier et al. “Basis-Set Convergence in Correlated Calculations on Ne, N2,
and H2O”. en. In: Chemical Physics Letters 286.3-4 (Apr. 1998), pp. 243–252. issn:
00092614. doi: 10.1016/S0009-2614(98)00111-0.

https://doi.org/10.1371/journal.pone.0208510
https://doi.org/10.1137/0210018
https://doi.org/10.1007/3-540-58467-6_31
https://doi.org/10.1016/S0004-3702(96)00030-6
https://doi.org/10.1016/S0004-3702(96)00030-6
https://doi.org/10.1006/jcss.1996.0081
https://doi.org/10.1006/jcss.1996.0081
https://doi.org/10.1145/237814.237866
https://arxiv.org/abs/1701.01450
https://arxiv.org/abs/1804.09130
https://arxiv.org/abs/1804.09130
https://doi.org/10.3390/a12020034
https://doi.org/10.1145/3149526.3149530
https://doi.org/10.1016/S0009-2614(98)00111-0


137

[80] Daniel J. Harvey and David R. Wood. “The Treewidth of Line Graphs”. en. In: Journal
of Combinatorial Theory, Series B 132 (Sept. 2018), pp. 157–179. issn: 0095-8956.
doi: 10.1016/j.jctb.2018.03.007.

[81] Matthew B. Hastings et al. “Improving Quantum Algorithms for Quantum Chemistry”.
In: Quantum Information & Computation 15.1-2 (Jan. 2015), pp. 1–21. issn: 1533-
7146.

[82] W. J. Hehre, R. F. Stewart, and J. A. Pople. “Self-Consistent Molecular-Orbital
Methods. I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals”. en. In:
The Journal of Chemical Physics 51.6 (Sept. 1969), pp. 2657–2664. issn: 0021-9606,
1089-7690. doi: 10.1063/1.1672392.

[83] Trygve Helgaker, Poul Jorgensen, and Jeppe Olsen. Molecular Electronic-Structure
Theory. Wiley, 2014. isbn: 978-1-119-01955-8.

[84] Itay Hen and Marcelo S. Sarandy. “Driver Hamiltonians for Constrained Optimization
in Quantum Annealing”. In: Physical Review A 93.6 (June 2016), p. 062312. doi:
10.1103/PhysRevA.93.062312.

[85] Itay Hen and Federico M. Spedalieri. “Quantum Annealing for Constrained Opti-
mization”. In: Physical Review Applied 5.3 (Mar. 2016), p. 034007. doi: 10.1103/
PhysRevApplied.5.034007.

[86] Steven Herbert and Akash Sengupta. “Using Reinforcement Learning to Find Efficient
Qubit Routing Policies for Deployment in Near-Term Quantum Computers”. In:
arXiv:1812.11619 [quant-ph] (Jan. 2019). arXiv: 1812.11619 [quant-ph].

[87] Yuichi Hirata et al. “An Efficient Method to Convert Arbitrary Quantum Circuits
to Ones on a Linear Nearest Neighbor Architecture”. In: 2009 Third International
Conference on Quantum, Nano and Micro Technologies. Feb. 2009, pp. 26–33. doi:
10.1109/ICQNM.2009.25.

[88] Wen Wei Ho and Timothy H. Hsieh. “Efficient Variational Simulation of Non-Trivial
Quantum States”. en. In: SciPost Physics 6.3 (Mar. 2019), p. 029. issn: 2542-4653.
doi: 10.21468/SciPostPhys.6.3.029.

[89] Tad Hogg and Colin P. Williams. “The Hardest Constraint Problems: A Double Phase
Transition”. en. In: Artificial Intelligence 69.1-2 (Sept. 1994), pp. 359–377. issn:
00043702. doi: 10.1016/0004-3702(94)90088-4.

[90] Holger H. Hoos and Thomas Stützle. “SATLIB: An Online Resource for Resesarch on
SAT”. In: SAT 2000. Ed. by Ian Gent, Hans van Maaren, and Toby Walsh. IOS Press,
2000, pp. 283–292.

[91] William J Huggins et al. “A Non-Orthogonal Variational Quantum Eigensolver”.
In: New Journal of Physics 22.7 (July 2020), p. 073009. issn: 1367-2630. doi:
10.1088/1367-2630/ab867b.

https://doi.org/10.1016/j.jctb.2018.03.007
https://doi.org/10.1063/1.1672392
https://doi.org/10.1103/PhysRevA.93.062312
https://doi.org/10.1103/PhysRevApplied.5.034007
https://doi.org/10.1103/PhysRevApplied.5.034007
https://arxiv.org/abs/1812.11619
https://doi.org/10.1109/ICQNM.2009.25
https://doi.org/10.21468/SciPostPhys.6.3.029
https://doi.org/10.1016/0004-3702(94)90088-4
https://doi.org/10.1088/1367-2630/ab867b


138

[92] Michael Jarret and Kianna Wan. “Improved Quantum Backtracking Algorithms Using
Effective Resistance Estimates”. en. In: Physical Review A 97.2 (Feb. 2018), p. 022337.
issn: 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.97.022337.

[93] Zhang Jiang, Eleanor G. Rieffel, and Zhihui Wang. “Near-Optimal Quantum Circuit
for Grover’s Unstructured Search Using a Transverse Field”. In: Physical Review A
95.6 (June 2017), p. 062317. doi: 10.1103/PhysRevA.95.062317.

[94] Zhang Jiang et al. “Quantum Algorithms to Simulate Many-Body Physics of Correlated
Fermions”. In: Physical Review Applied 9.4 (Apr. 2018), p. 044036. doi: 10.1103/
PhysRevApplied.9.044036.

[95] Abhinav Kandala et al. “Hardware-Efficient Variational Quantum Eigensolver for Small
Molecules and Quantum Magnets”. en. In: Nature 549.7671 (Sept. 2017), pp. 242–246.
issn: 1476-4687. doi: 10.1038/nature23879.

[96] Tosio Kato. “On the Eigenfunctions of Many-Particle Systems in Quantum Mechanics”.
en. In: Communications on Pure and Applied Mathematics 10.2 (1957), pp. 151–177.
issn: 00103640, 10970312. doi: 10.1002/cpa.3160100201.

[97] S. Kirkpatrick and B. Selman. “Critical Behavior in the Satisfiability of Random
Boolean Expressions”. en. In: Science 264.5163 (May 1994), pp. 1297–1301. issn:
0036-8075, 1095-9203. doi: 10.1126/science.264.5163.1297.

[98] A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi. Classical and Quantum Computation.
USA: American Mathematical Society, 2002. isbn: 978-0-8218-3229-5.

[99] Alexei Y. Kitaev. “Quantum Measurements and the Abelian Stabilizer Problem”. In:
Electron. Colloquium Comput. Complex. 3.3 (1996).

[100] Ian D. Kivlichan et al. “Quantum Simulation of Electronic Structure with Linear
Depth and Connectivity”. In: Physical Review Letters 120.11 (Mar. 2018), p. 110501.
doi: 10.1103/PhysRevLett.120.110501.

[101] Christine Klymko, Blair D. Sullivan, and Travis S. Humble. “Adiabatic Quantum
Programming: Minor Embedding with Hard Faults”. en. In: Quantum Information
Processing 13.3 (Mar. 2014), pp. 709–729. issn: 1573-1332. doi: 10.1007/s11128-
013-0683-9.

[102] Wolfgang Lechner. “Quantum Approximate Optimization With Parallelizable Gates”.
In: IEEE Transactions on Quantum Engineering 1 (2020), pp. 1–6. issn: 2689-1808.
doi: 10.1109/TQE.2020.3034798.

[103] Joonho Lee et al. “Generalized Unitary Coupled Cluster Wave Functions for Quantum
Computation”. In: Journal of Chemical Theory and Computation 15.1 (Jan. 2019),
pp. 311–324. issn: 1549-9618. doi: 10.1021/acs.jctc.8b01004.

[104] Gushu Li, Yufei Ding, and Yuan Xie. “Tackling the Qubit Mapping Problem for
NISQ-Era Quantum Devices”. In: arXiv:1809.02573 [quant-ph] (May 2019). arXiv:
1809.02573 [quant-ph].

https://doi.org/10.1103/PhysRevA.97.022337
https://doi.org/10.1103/PhysRevA.95.062317
https://doi.org/10.1103/PhysRevApplied.9.044036
https://doi.org/10.1103/PhysRevApplied.9.044036
https://doi.org/10.1038/nature23879
https://doi.org/10.1002/cpa.3160100201
https://doi.org/10.1126/science.264.5163.1297
https://doi.org/10.1103/PhysRevLett.120.110501
https://doi.org/10.1007/s11128-013-0683-9
https://doi.org/10.1007/s11128-013-0683-9
https://doi.org/10.1109/TQE.2020.3034798
https://doi.org/10.1021/acs.jctc.8b01004
https://arxiv.org/abs/1809.02573


139

[105] Chia-Chun Lin, Susmita Sur-Kolay, and Niraj K. Jha. “PAQCS: Physical Design-Aware
Fault-Tolerant Quantum Circuit Synthesis”. In: IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 23.7 (July 2015), pp. 1221–1234. issn: 1557-9999.
doi: 10.1109/TVLSI.2014.2337302.

[106] Yi-Kai Liu, Matthias Christandl, and F. Verstraete. “Quantum Computational Com-
plexity of the $N$-Representability Problem: QMA Complete”. In: Physical Review
Letters 98.11 (Mar. 2007), p. 110503. doi: 10.1103/PhysRevLett.98.110503.

[107] Seth Lloyd. “Quantum Approximate Optimization Is Computationally Universal”. In:
arXiv:1812.11075 [quant-ph] (Dec. 2018). arXiv: 1812.11075 [quant-ph].

[108] Andrew Lucas. “Ising Formulations of Many NP Problems”. In: Frontiers in Physics 2
(2014). issn: 2296-424X. doi: 10.3389/fphy.2014.00005.

[109] Aaron Lye, Robert Wille, and Rolf Drechsler. “Determining the Minimal Number of
Swap Gates for Multi-Dimensional Nearest Neighbor Quantum Circuits”. In: The 20th
Asia and South Pacific Design Automation Conference. Jan. 2015, pp. 178–183. doi:
10.1109/ASPDAC.2015.7059001.

[110] Yuri Manin. Computable and Uncomputable. Russian. Moscow: Sovetskoye Radio,
1980.

[111] Igor L. Markov and Yaoyun Shi. “Simulating Quantum Computation by Contracting
Tensor Networks”. en. In: SIAM Journal on Computing 38.3 (Jan. 2008), pp. 963–981.
issn: 0097-5397, 1095-7111. doi: 10.1137/050644756.

[112] S. Marsh and J. B. Wang. “A Quantum Walk-Assisted Approximate Algorithm for
Bounded NP Optimisation Problems”. In: Quantum Information Processing 18.3 (Mar.
2019), pp. 1–18. issn: 1570-0755. doi: 10.1007/s11128-019-2171-3.

[113] Dmitri Maslov, Sean M. Falconer, and Michele Mosca. “Quantum Circuit Placement:
Optimizing Qubit-to-Qubit Interactions through Mapping Quantum Circuits into a
Physical Experiment”. In: 2007 44th ACM/IEEE Design Automation Conference. June
2007, pp. 962–965.

[114] Jarrod R McClean et al. “Discontinuous Galerkin Discretization for Quantum Simula-
tion of Chemistry”. In: New Journal of Physics 22.9 (Sept. 2020), p. 093015. issn:
1367-2630. doi: 10.1088/1367-2630/ab9d9f.

[115] Jarrod R McClean et al. “The Theory of Variational Hybrid Quantum-Classical
Algorithms”. In: New Journal of Physics 18.2 (Feb. 2016), p. 023023. issn: 1367-2630.
doi: 10.1088/1367-2630/18/2/023023.

[116] Jarrod R. McClean et al. “Barren Plateaus in Quantum Neural Network Training
Landscapes”. en. In: Nature Communications 9.1 (Nov. 2018), p. 4812. issn: 2041-1723.
doi: 10.1038/s41467-018-07090-4.

https://doi.org/10.1109/TVLSI.2014.2337302
https://doi.org/10.1103/PhysRevLett.98.110503
https://arxiv.org/abs/1812.11075
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1109/ASPDAC.2015.7059001
https://doi.org/10.1137/050644756
https://doi.org/10.1007/s11128-019-2171-3
https://doi.org/10.1088/1367-2630/ab9d9f
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1038/s41467-018-07090-4


140

[117] Stephan Mertens. “Phase Transition in the Number Partitioning Problem”. In: Physical
Review Letters 81.20 (Nov. 1998), pp. 4281–4284. doi: 10.1103/PhysRevLett.81.
4281.

[118] David Mitchell, Bart Selman, and Hector Levesque. “Hard and Easy Distributions
of SAT Problems”. In: Proceedings of the Tenth National Conference on Artificial
Intelligence. AAAI’92. San Jose, California: AAAI Press, July 1992, pp. 459–465.
isbn: 978-0-262-51063-9.

[119] Ashley Montanaro. “Quantum-Walk Speedup of Backtracking Algorithms”. In: Theory
of Computing 14.15 (2018), pp. 1–24. doi: 10.4086/toc.2018.v014a015.

[120] Cristopher Moore et al. “A Continuous-Discontinuous Second-Order Transition in the
Satisfiability of Random Horn-SAT Formulas”. In: Approximation, Randomization
and Combinatorial Optimization. Algorithms and Techniques. Ed. by David Hutchison
et al. Vol. 3624. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 414–425.
isbn: 978-3-540-28239-6. doi: 10.1007/11538462_35.

[121] Mario Motta et al. “Low Rank Representations for Quantum Simulation of Electronic
Structure”. In: arXiv:1808.02625 [physics, physics:quant-ph] (Aug. 2018). arXiv: 1808.
02625 [physics, physics:quant-ph].

[122] Marcel Nooijen. “Can the Eigenstates of a Many-Body Hamiltonian Be Represented
Exactly Using a General Two-Body Cluster Expansion?” In: Physical Review Letters
84.10 (Mar. 2000), pp. 2108–2111. doi: 10.1103/PhysRevLett.84.2108.

[123] Bryan O’Gorman. “Parameterization of Tensor Network Contraction”. en. In: (2019),
19 pages. doi: 10.4230/LIPICS.TQC.2019.10.

[124] Bryan O’Gorman et al. “Electronic Structure in a Fixed Basis Is QMA-Complete”. In:
arXiv:2103.08215 [quant-ph] (Mar. 2021). arXiv: 2103.08215 [quant-ph].

[125] Bryan O’Gorman et al. “Generalized Swap Networks for Near-Term Quantum Comput-
ing”. In: arXiv:1905.05118 [physics, physics:quant-ph] (May 2019). arXiv: 1905.05118
[physics, physics:quant-ph].

[126] G. Ortiz et al. “Quantum Algorithms for Fermionic Simulations”. In: Physical Review
A 64.2 (July 2001), p. 022319. doi: 10.1103/PhysRevA.64.022319.

[127] M. I. Ostrovskii. “Minimal Congestion Trees”. en. In: Discrete Mathematics 285.1-3
(Aug. 2004), pp. 219–226. issn: 0012-365X. doi: 10.1016/j.disc.2004.02.009.

[128] J. S. Otterbach et al. “Unsupervised Machine Learning on a Hybrid Quantum Com-
puter”. In: arXiv:1712.05771 [quant-ph] (Dec. 2017). arXiv: 1712.05771 [quant-ph].

[129] Edwin Pednault et al. “Pareto-Efficient Quantum Circuit Simulation Using Tensor
Contraction Deferral”. In: arXiv:1710.05867 [quant-ph] (Aug. 2020). arXiv: 1710.
05867 [quant-ph].

https://doi.org/10.1103/PhysRevLett.81.4281
https://doi.org/10.1103/PhysRevLett.81.4281
https://doi.org/10.4086/toc.2018.v014a015
https://doi.org/10.1007/11538462_35
https://arxiv.org/abs/1808.02625
https://arxiv.org/abs/1808.02625
https://doi.org/10.1103/PhysRevLett.84.2108
https://doi.org/10.4230/LIPICS.TQC.2019.10
https://arxiv.org/abs/2103.08215
https://arxiv.org/abs/1905.05118
https://arxiv.org/abs/1905.05118
https://doi.org/10.1103/PhysRevA.64.022319
https://doi.org/10.1016/j.disc.2004.02.009
https://arxiv.org/abs/1712.05771
https://arxiv.org/abs/1710.05867
https://arxiv.org/abs/1710.05867


141

[130] Alberto Peruzzo et al. “A Variational Eigenvalue Solver on a Photonic Quantum
Processor”. en. In: Nature Communications 5.1 (Sept. 2014), p. 4213. issn: 2041-1723.
doi: 10.1038/ncomms5213.

[131] Stephen Piddock and Ashley Montanaro. “The Complexity of Antiferromagnetic
Interactions and 2D Lattices”. In: Quantum Information & Computation 17.7-8 (June
2017), pp. 636–672. issn: 1533-7146.

[132] Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems. en. Fourth. New York:
Springer-Verlag, 2012. isbn: 978-1-4899-9043-3. doi: 10.1007/978-1-4614-2361-4.

[133] John Preskill. “Quantum Computing in the NISQ Era and Beyond”. en-GB. In:
Quantum 2 (Aug. 2018), p. 79. doi: 10.22331/q-2018-08-06-79.

[134] Patrick Prosser. “An Empirical Study of Phase Transitions in Binary Constraint
Satisfaction Problems”. In: Artificial Intelligence 81.1-2 (1996), pp. 81–109.

[135] Jean-Charles Régin. “A Filtering Algorithm for Constraints of Difference in CSPs”.
In: Proceedings of the Twelfth National Conference on Artificial Intelligence (Vol. 1).
AAAI ’94. Seattle, Washington, USA: American Association for Artificial Intelligence,
Oct. 1994, pp. 362–367. isbn: 978-0-262-61102-2.

[136] Eleanor G. Rieffel et al. “A Case Study in Programming a Quantum Annealer for Hard
Operational Planning Problems”. en. In: Quantum Information Processing 14.1 (Dec.
2014), pp. 1–36. issn: 1570-0755, 1573-1332. doi: 10.1007/s11128-014-0892-x.

[137] Eleanor G. Rieffel et al. “Parametrized Families of Hard Planning Problems from Phase
Transitions”. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence. AAAI’14. Québec City, Québec, Canada: AAAI Press, July 2014, pp. 2337–
2343.

[138] Neil Robertson and P. D. Seymour. “Graph Minors. X. Obstructions to Tree-Decomposition”.
en. In: Journal of Combinatorial Theory, Series B 52.2 (July 1991), pp. 153–190.
issn: 0095-8956. doi: 10.1016/0095-8956(91)90061-N.

[139] Jonathan Romero et al. “Strategies for Quantum Computing Molecular Energies Using
the Unitary Coupled Cluster Ansatz”. In: Quantum Science and Technology 4.1 (Oct.
2018), p. 014008. issn: 2058-9565. doi: 10.1088/2058-9565/aad3e4.

[140] Mehdi Saeedi, Robert Wille, and Rolf Drechsler. “Synthesis of Quantum Circuits for
Linear Nearest Neighbor Architectures”. en. In: Quantum Information Processing 10.3
(June 2011), pp. 355–377. issn: 1573-1332. doi: 10.1007/s11128-010-0201-2.

[141] Norbert Schuch and Frank Verstraete. “Computational Complexity of Interacting
Electrons and Fundamental Limitations of Density Functional Theory”. en. In: Nature
Physics 5.10 (Oct. 2009), pp. 732–735. issn: 1745-2473, 1745-2481. doi: 10.1038/
nphys1370. arXiv: 0712.0483.

[142] P. D. Seymour and R. Thomas. “Call Routing and the Ratcatcher”. en. In: Combina-
torica 14.2 (June 1994), pp. 217–241. issn: 1439-6912. doi: 10.1007/BF01215352.

https://doi.org/10.1038/ncomms5213
https://doi.org/10.1007/978-1-4614-2361-4
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1007/s11128-014-0892-x
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1088/2058-9565/aad3e4
https://doi.org/10.1007/s11128-010-0201-2
https://doi.org/10.1038/nphys1370
https://doi.org/10.1038/nphys1370
https://arxiv.org/abs/0712.0483
https://doi.org/10.1007/BF01215352


142

[143] Jiří Sgall. “Open Problems in Throughput Scheduling”. In: Algorithms – ESA 2012.
Ed. by David Hutchison et al. Vol. 7501. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 2–11. isbn: 978-3-642-33090-2. doi: 10.1007/978-3-642-33090-2_2.

[144] P.W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms and Factor-
ing”. In: Proceedings 35th Annual Symposium on Foundations of Computer Science.
Santa Fe, NM, USA: IEEE Comput. Soc. Press, 1994, pp. 124–134. isbn: 978-0-8186-
6580-6. doi: 10.1109/SFCS.1994.365700.

[145] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer”. en. In: SIAM Review 41.2 (Jan. 1999), pp. 303–
332. issn: 0036-1445, 1095-7200. doi: 10.1137/S0036144598347011.

[146] Barbara Simons. “A Fast Algorithm for Single Processor Scheduling”. In: 19th Annual
Symposium on Foundations of Computer Science (Sfcs 1978). Ann Arbor, MI, USA:
IEEE, Oct. 1978, pp. 246–252. doi: 10.1109/SFCS.1978.4.

[147] Marcos Yukio Siraichi et al. “Qubit Allocation”. en. In: Proceedings of the 2018
International Symposium on Code Generation and Optimization. Vienna Austria:
ACM, Feb. 2018, pp. 113–125. isbn: 978-1-4503-5617-6. doi: 10.1145/3168822.

[148] Barbara M. Smith and Martin E. Dyer. “Locating the Phase Transition in Binary
Constraint Satisfaction Problems”. In: Artificial Intelligence 81.1 (1996), pp. 155–181.
issn: 0004-3702. doi: 10.1016/0004-3702(95)00052-6.

[149] The Parameterized Algorithms and Computational Experiments Challenge. Track A:
Treewidth. https://pacechallenge.wordpress.com/pace-2017/track-a-treewidth/. 2017.

[150] Basil Vandegriend and Joseph Culberson. “The Gn,mphase Transition Is Not Hard for
the Hamiltonian Cycle Problem”. In: Journal of Artificial Intelligence Research 9.1
(Nov. 1998), pp. 219–245. issn: 1076-9757.

[151] Davide Venturelli et al. “Compiling Quantum Circuits to Realistic Hardware Archi-
tectures Using Temporal Planners”. In: Quantum Science and Technology 3.2 (Apr.
2018), p. 025004. issn: 2058-9565. doi: 10.1088/2058-9565/aaa331.

[152] Guillaume Verdon, Michael Broughton, and Jacob Biamonte. “A Quantum Algorithm
to Train Neural Networks Using Low-Depth Circuits”. In: arXiv:1712.05304 [cond-mat,
physics:quant-ph] (Aug. 2019). arXiv: 1712.05304 [cond-mat, physics:quant-ph].

[153] Benjamin Villalonga et al. “A Flexible High-Performance Simulator for Verifying and
Benchmarking Quantum Circuits Implemented on Real Hardware”. en. In: npj Quantum
Information 5.1 (Oct. 2019), pp. 1–16. issn: 2056-6387. doi: 10.1038/s41534-019-
0196-1.

[154] Zhihui Wang et al. “$XY$ Mixers: Analytical and Numerical Results for the Quantum
Alternating Operator Ansatz”. In: Physical Review A 101.1 (Jan. 2020), p. 012320.
doi: 10.1103/PhysRevA.101.012320.

https://doi.org/10.1007/978-3-642-33090-2_2
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1109/SFCS.1978.4
https://doi.org/10.1145/3168822
https://doi.org/10.1016/0004-3702(95)00052-6
https://doi.org/10.1088/2058-9565/aaa331
https://arxiv.org/abs/1712.05304
https://doi.org/10.1038/s41534-019-0196-1
https://doi.org/10.1038/s41534-019-0196-1
https://doi.org/10.1103/PhysRevA.101.012320


143

[155] Zhihui Wang et al. “An Investigation of Phase Transitions in Single-Machine Scheduling
Problems”. en. In: Twenty-Seventh International Conference on Automated Planning
and Scheduling. June 2017.

[156] Zhihui Wang et al. “Quantum Approximate Optimization Algorithm for MaxCut: A
Fermionic View”. In: Physical Review A 97.2 (Feb. 2018), p. 022304. doi: 10.1103/
PhysRevA.97.022304.

[157] Dave Wecker, Matthew B. Hastings, and Matthias Troyer. “Progress towards Practical
Quantum Variational Algorithms”. In: Physical Review A 92.4 (Oct. 2015), p. 042303.
doi: 10.1103/PhysRevA.92.042303.

[158] Dave Wecker, Matthew B. Hastings, and Matthias Troyer. “Training a Quantum
Optimizer”. In: Physical Review A 94.2 (Aug. 2016), p. 022309. doi: 10.1103/
PhysRevA.94.022309.

[159] Tzu-Chieh Wei, Michele Mosca, and Ashwin Nayak. “Interacting Boson Problems
Can Be QMA Hard”. In: Physical Review Letters 104.4 (Jan. 2010), p. 040501. doi:
10.1103/PhysRevLett.104.040501.

[160] James Daniel Whitfield, Peter John Love, and Alán Aspuru-Guzik. “Computational
Complexity in Electronic Structure”. en. In: Physical Chemistry Chemical Physics 15.2
(Dec. 2012), pp. 397–411. issn: 1463-9084. doi: 10.1039/C2CP42695A.

[161] James Daniel Whitfield, Norbert Schuch, and Frank Verstraete. “The Computational
Complexity of Density Functional Theory”. en. In: Many-Electron Approaches in
Physics, Chemistry and Mathematics: A Multidisciplinary View. Ed. by Volker Bach
and Luigi Delle Site. Mathematical Physics Studies. Cham: Springer International
Publishing, 2014, pp. 245–260. isbn: 978-3-319-06379-9. doi: 10.1007/978-3-319-
06379-9_14.

[162] Robert Wille et al. “Look-Ahead Schemes for Nearest Neighbor Optimization of 1D
and 2D Quantum Circuits”. In: 2016 21st Asia and South Pacific Design Automation
Conference (ASP-DAC). Jan. 2016, pp. 292–297. doi: 10.1109/ASPDAC.2016.
7428026.

[163] Zhi-Cheng Yang et al. “Optimizing Variational Quantum Algorithms Using Pontrya-
gin’s Minimum Principle”. In: Physical Review X 7.2 (May 2017), p. 021027. doi:
10.1103/PhysRevX.7.021027.

[164] Arman Zaribafiyan, Dominic J. Marchand, and Seyed Saeed Changiz Rezaei. “System-
atic and Deterministic Graph Minor Embedding for Cartesian Products of Graphs”.
In: Quantum Information Processing 16.5 (May 2017), pp. 1–26. issn: 1570-0755.
doi: 10.1007/s11128-017-1569-z.

[165] Alwin Zulehner, Alexandru Paler, and Robert Wille. “Efficient Mapping of Quantum
Circuits to the IBM QX Architectures”. In: 2018 Design, Automation Test in Europe
Conference Exhibition (DATE). Mar. 2018, pp. 1135–1138. doi: 10.23919/DATE.
2018.8342181.

https://doi.org/10.1103/PhysRevA.97.022304
https://doi.org/10.1103/PhysRevA.97.022304
https://doi.org/10.1103/PhysRevA.92.042303
https://doi.org/10.1103/PhysRevA.94.022309
https://doi.org/10.1103/PhysRevA.94.022309
https://doi.org/10.1103/PhysRevLett.104.040501
https://doi.org/10.1039/C2CP42695A
https://doi.org/10.1007/978-3-319-06379-9_14
https://doi.org/10.1007/978-3-319-06379-9_14
https://doi.org/10.1109/ASPDAC.2016.7428026
https://doi.org/10.1109/ASPDAC.2016.7428026
https://doi.org/10.1103/PhysRevX.7.021027
https://doi.org/10.1007/s11128-017-1569-z
https://doi.org/10.23919/DATE.2018.8342181
https://doi.org/10.23919/DATE.2018.8342181

	Contents
	Introduction
	Upper bounding quantum advantage
	Parameterization of tensor network contraction
	Introduction
	Background
	Tensor networks and contraction
	Treewidth and branchwidth
	Congestion
	Cutwidth
	Parameterized complexity

	Unified framework of graph properties
	Contraction costs
	Contraction orders and trees
	Linear contraction orders
	General contraction orders

	Extensions and generalizations
	Branchwidth and edge congestion

	Computational complexity of electronic structure
	Introduction
	Overview of Results
	Formalizing the electronic structure problem
	Implications for VQE and other algorithms
	Hubbard Hamiltonians
	Overview of Techniques for Electronic structure
	Product states
	A Note on Notation

	Fermi-Hubbard Model
	Perturbation Theory
	Fermi-Hubbard is QMA-Hard

	Electronic structure
	Orbitals
	Orthonormalizing and rounding
	Getting the main Hamiltonian
	Hardness of estimating ground state energy

	Hardness of finding lowest-energy Slater determinant
	Proof of Lemma  1
	Proof of lem:r-bound
	Proof of lem:r-approx
	Proof of lem:integral-bounds



	Application of quantum algorithms
	Generalized swap networks and their application
	Introduction
	Model
	Swap networks
	Problem families
	Fermionic Hamiltonians
	QAOA

	Complete hypergraphs
	Cubic interactions
	General k-qubit gates
	Alternative for 3-local

	Unitary Coupled Cluster
	Instance-independent embedding for quantum annealing
	Lower bounds
	Acquaintance time
	Circuit embeddings as minor embeddings

	Use case: Non-Orthogonal Variational Quantum Eigensolver
	Block-diagonal Hamiltonians
	Discontinuous Galerkin discretization
	Swap networks for block diagonal Hamiltonians
	Swap network sub-circuits


	Classical optimization and quantum computing
	Quantum Alternating Operator Ansatz
	Introduction
	The Original Quantum Approximate Optimization Algorithm
	The Quantum Alternating Operator Ansatz (QAOA)

	Constraint programming
	Quantum algorithms for constraint programming
	Circuit routing as constraint programming

	Phase transitions in single-machine scheduling
	Introduction
	Related Work
	Preliminaries
	Experimental Methods
	Phase Transitions
	Hardness: empirical and provable


	Bibliography




