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The geometric, mechanical, material and loading parameters used to define the

mechanics-based finite element (FE) models of structural systems as well as their seismic

input are characterized by significant uncertainties. The rational treatment of uncertainties

in computational mechanics has been the object of increasing attention in recent years.

Modern design codes indirectly account for parameter and model uncertainties in order to
xliv



ensure satisfactory designs. Thus, in addition to accurate deterministic models, methods

are needed to propagate uncertainties from the parameters defining the FE model of a

structure to the engineering demand parameters.

FE response sensitivities (RSs) to both model and loading parameters represent an

essential ingredient in studying this complex uncertainty propagation. New RS algorithms

based on the Direct Differentiation Method (DDM) are derived and implemented in

general-purpose nonlinear structural analysis frameworks. The use of the DDM is

extended to (1) force-based frame elements, (2) steel-concrete composite structures, and

(3) three-field mixed FEs. In addition, the effects on RS continuity of using smooth versus

non-smooth material constitutive models are thoroughly examined.

An efficient simulation technique for an existing fully non-stationary stochastic

earthquake ground motion model is developed. The definition of non-geometric spectral

characteristics is extended to general complex-valued non-stationary stochastic processes.

Closed-form approximate solutions of the first-passage problem are developed for single-

and multi-degree-of-freedom linear elastic systems. 

First-order second-moment approximations of the first- and second-order statistics

of the response of linear/nonlinear structural systems with random/uncertain parameters

and subjected to quasi-static and/or dynamic load(s) are computed efficiently using DDM-

based FE RSs. The probability of a structural response quantity exceeding a specified

threshold level is obtained by using the First-Order Reliability Method in conjunction with

the DDM-based FE RSs in the search for the Design Point(s) (DP). A new method,

referred to as Multidimensional Visualization in the Principal Planes, is developed to
xlv



explore the geometry of limit-state surfaces near the DP(s) in reduced-spaces defined by

planes of major principal curvatures at the DP. A new hybrid reliability analysis method

(DP search - Response Surface - Importance Sampling) is developed and tested. Based on

pushover and time history analyses, examples of both time-invariant and time-variant

reliability analysis of structural systems are presented to illustrate the probabilistic

methods developed.
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 CHAPTER 1

INTRODUCTION

1.1   Background and Motivation

1.1.1   Uncertainties, risk and vulnerability in civil infrastructure systems

Risk is implicit in every engineered system. Natural and man-made hazards are

always armed and cannot be deterministically known a-priori. Economic constraints, in

general, oblige one to accept in the design process some vulnerability (damage tolerance),

which must be carefully evaluated in terms of expected (i.e., uncertain) costs/benefits for

single entities and the entire collectivity affected by the engineering system considered.

Uncertainties are connatural not only to the hazards which threaten a system, but the sys-

tems themselves are known only up to a certain degree of confidence. The higher the com-

plexity of a system, the higher is its uncertainty. Additional uncertainties and unknown

errors are introduced when engineering systems are modeled in order to evaluate and sim-

ulate their behavior, response and performance. The design of any engineering system

clearly needs to address consistently, accurately and efficiently the problem of uncertain-

ties in order to be “satisfactory” in some predefined sense.
1



2

1.1.2   Civil structures subjected to seismic hazard

Accounting for uncertainties in the design of an engineered system is particularly

crucial for civil structural systems subjected to seismic hazard, which constitute the main

focus of the present work. Damage to society from earthquakes can be extremely severe.

In the last decade of the 20th century, earthquakes around the world killed almost 100,000

people, affected 14 million people and produced losses estimated at more than $215 bil-

lion. In 1999 alone, two strong earthquakes in western Turkey caused the deaths of over

16,000 people, the destruction of more than 60,000 homes and economic losses of about

$40 billion (over one quarter of the country’s gross domestic product) (National Research

Council 2003). In 2001, a magnitude 7.7 earthquake centered near Bhuj in Gujarat, India,

killed almost 17,000 people, destroyed 350,000 homes, affected almost 16 million people

and caused economic losses estimated at over $4.5 billion with production losses accumu-

lating at a rate of $110 million per day (National Research Council 2003). On December

26, 2004, a massive earthquake of moment magnitude larger than 9.0, the second largest

earthquake ever recorded on a seismograph, triggered the deadliest tsunami in the history

of the world (Wikipedia 2007). The tsunami was observed worldwide and lasted several

days. The death toll was greater than 200,000 people, with Sumatra, Sri Lanka, Thailand

and India suffering the highest losses in terms of human lives and damage to construc-

tions. The destructive effects of the waves reached Kenya. This catastrophe is the ninth

deadliest natural disaster in modern history (Wikipedia 2007).

The largest part of the death toll in recent earthquakes derives from the collapse of

structural systems which were not correctly engineered to survive the seismic event. Nev-
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ertheless, most of the economic and life losses suffered subsequently to the earthquakes

were experienced or at least aggravated by the failure of engineered civil systems which

were designed to withstand seismic events with limited damage. 

Although fewer than 150 lives have been lost to earthquakes in the United States

since 1975, the cost of damage from just a few moderate events (e.g., 1989 Loma Prieta,

1994 Northridge California earthquakes and 2001 Nisqually Washington earthquake) dur-

ing that time exceeds $30 billion (Cutter 2001). Today, we are aware that even larger

events are likely, and a single catastrophic earthquake could exceed those totals for casual-

ties and economic loss by an order of magnitude. Fortunately, over the past 40 years con-

siderable progress has been made in understanding the nature of earthquakes and how they

inflict damage to structures, and in improving the seismic performance of the built envi-

ronment. Unfortunately, while much has been accomplished, much remains unknown or

unproven and much remains to be done to reach the ultimate objective of preventing earth-

quake disasters in the United States and in the World. 

1.1.3   Uncertainties in structural systems and their loading environment

Loading conditions, material and geometric properties and other structural param-

eters describing the models of structural systems exhibit significant variability, since they

are stochastic quantities in nature. Therefore, the complex and still poorly understood

interactions between subsurface materials, foundations, and the structure during the pas-

sage of seismic waves is further significantly complicated by clouds of uncertainties asso-

ciated with the various components of a structural system as well as the seismic excitation.
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Uncertainties can be formally grouped into inherent or aleatory and epistemic uncertain-

ties. Inherent/aleatory uncertainty is defined as the intrinsic variability (or natural random-

ness) of engineering/physical quantities such as material properties (e.g., shear modulus of

soil material, peak strength of concrete, yield strength of steel), geometric properties (e.g.,

member cross-section properties, member lengths), seismological variables (earthquake

magnitude M and site-to-source distance S), ground motion time history at a specific

point, and spatial variation of ground motion. Inherent uncertainties can be viewed as a

property of nature. They are irreducible and can be estimated from observations using the

frequentist interpretation of probability. In contrast, epistemic uncertainty results from a

lack of knowledge and or information and shortcomings in measurement and/or calcula-

tion. It arises due to (1) the use of structural, load, and probabilistic models that are ideal-

ized, simplified, incorrectly calibrated, and/or of questionable applicability (i.e., modeling

uncertainty), and (2) imperfect model parameter estimation due to limited data (i.e., small

sampling uncertainty), measurement errors, etc. The predictions made on the basis of

these models are inaccurate to some unknown degree. Epistemic uncertainty can usually

be reduced by using more accurate/sophisticated models, acquiring additional data, and

improving measurement procedures. Thus, inherent and epistemic uncertainties are very

different in nature. This difference should be recognized and accounted for by the next

generation of seismic design methodologies. 

Uncertainties in seismic loading are very large. No methods are currently available

(nor does their availability seem feasible in the near future) to determine where and when

a seismic event will occur and at what intensity. Seismological variables such as earth-
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quake magnitude, M, and site-to-source distance, S, can be modeled only in a probabilistic

sense, making use of available statistical data and geological information regarding seis-

mic activity of known faults. The complex combination of reflection, refraction and dif-

fraction phenomena in the wave transmission through the geological medium is not

known deterministically. Thus, the ground motion time history at a specific point and its

spatial variation can be represented only stochastically. 

The intrinsic variability of structural material properties (e.g., Young’s modulus of

steel/concrete, yield strength of steel, compressive/tensile strength of concrete) has been

documented and characterized extensively in the literature (Mirza and MacGregor 1979b;

Mirza et al. 1979). Uncertainty in reinforced concrete member geometry has also been

studied and documented in the literature (Mirza and MacGregor 1979a).

1.1.4   Current seismic design codes and advent of Performance-Based Earthquake 

Engineering

Since the late 19th century and until relatively recently, structural safety assurance

in civil engineering have relied mainly on Allowable Stress Design (ASD). In ASD,

stresses computed through elastic structural analysis from specified nominal loads are

checked against some limiting stress divided by a factor of safety. During the past thirty

years, both research and practice have stressed out several deficiencies of ASD (Elling-

wood 1994). Motivated by these deficiencies, committees on standards and specifications

worldwide (AISC 1993; AASHTO 1994; AF&PA/ASCE 1996; AIJ 2000; ASCE 2002;
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CEN 1994, 2002) have started to adopt probability-based limit state design procedures,

often referred to as Load and Resistance Factor Design (LRFD). 

Nevertheless, modern design codes based on LRFD account only indirectly, using

probabilistically calibrated design procedures, for parameter and model uncertainties try-

ing to reach implicitly predetermined performance requirements considered satisfactory

for society. From this background, Performance-Based Earthquake Engineering (PBEE)

has emerged as a new analysis and design philosophy in earthquake engineering (Cornell

and Krawinkler 2000; Porter 2003; Moehle and Deierlein 2004) and is leading the way to

the new generation of seismic design guidelines (SEAOC 1995; AASHTO 1998; ICC

2003; BSSC 2004; ATC 2005a, 2005b). The PBEE design approach prescribes perfor-

mance objectives to be achieved by a structure during earthquakes for various hazard lev-

els. PBEE requires a comprehensive understanding of the earthquake response of a

structure when damage occurs in the structural system over the course of an earthquake

(cracking, yielding, crashing, fracture, and so forth); it requires analysis of progressive

damage (collapse) in structures. In the long term, using PBEE, structures will be rated for

a given performance level at a given hazard level. However, due to the inherent and

epistemic uncertainties characterizing material, mechanical and geometric properties of

the structure, the earthquake excitation and the models thereof, the satisfaction of struc-

tural performance objectives can only be defined in probabilistic terms (e.g., acceptable

annual probability of limit-state exceedance). 
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1.2   Review of probabilistic methods as applied to Structural 

Earthquake Engineering

1.2.1   Parameter sensitivities in nonlinear mechanics

Recent years have seen great advances in non-linear FE modeling and analysis of

large and complex structural systems. The state-of-the-art in computational simulation of

the static and dynamic response of structural systems lies in the non-linear domain to

account for material and geometric non-linearities governing the complex behavior of

structural systems, especially near their failure range (i.e., collapse analysis). 

Maybe even more important than the simulated nonlinear response of a frame

structure is its sensitivity to loading parameters and to various geometric, mechanical, and

material properties defining the structure. FE response sensitivities represent an essential

ingredient for gradient-based optimization methods needed in structural reliability analy-

sis, structural optimization, structural identification, and finite element model updating

(Ditlevsen and Madsen 1996; Kleiber et al. 1997). Many researchers have dedicated their

attention to the general problem of design sensitivity analysis, among others, Choi and

Santos (1987), Arora and Cardoso (1989), Tsay and Arora (1990), Tsai et al. (1990). 

Several methods are available for computing FE response sensitivities, such as the

Forward/Backward/Central Finite Difference Method (FDM) (Kleiber et al. 1997; Conte

et al. 2003, 2004), the Adjoint Method (AM) (Kleiber et al. 1997), the Perturbation

Method (Kleiber and Hien 1992) and the Direct Differentiation Method (DDM) (Zhang
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and Der Kiureghian 1993, Kleiber et al. 1997; Conte 2001; Conte et al. 2003, 2004; Bar-

bato and Conte 2005, 2006; Zona et al. 2005; Barbato et al. 2006). Among all these meth-

ods, the DDM appears to be the more promising in terms of robustness, efficiency and

accuracy for application in structural reliability analysis involving nonlinear static and

dynamic analyses of real-world structural systems using advanced FE models. Algorithms

for consistent FE response sensitivity analysis based on the DDM are already well-docu-

mented in the literature for displacement-based finite elements (Zhang and Der

Kiureghian 1993; Kleiber et al. 1997; Conte 2001; Conte et al. 2003; Haukaas and Der

Kiureghian 2004; Franchin 2004).

1.2.2   Stochastic earthquake ground motion models

The importance of using stochastic processes to model dynamic loads such as

earthquake ground motions, wind effects on civil and aerospace structures, and ocean

wave induced forces on offshore structures, has been widely recognized in many engineer-

ing fields. Extensive research has been devoted to the development of analytical methods

and numerical simulation techniques related to modeling of stochastic loads and analysis

of their effects on structures (Lin 1967; Priestley 1987; Lutes and Sarkani 1997). 

In particular, in earthquake engineering, the non-stationarity in both amplitude and

frequency content of earthquake ground motions has been recognized as an essential

ingredient to capture realistically the seismic response of structures (Saragoni and Hart

1972; Yeh and Wen 1990; Papadimitriou 1990; Conte 1992). Therefore, significant atten-

tion has been given to nonstationary earthquake ground motion models, with particular
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emphasis on their accurate but compact representation (Grigoriou et al. 1988; Der

Kiureghian and Crempien 1989; Fan and Ahmadi 1990; Conte et al. 1992; Conte and Peng

1997). These models account for the inherent variability of ground motion time histories

at a specific point and can be extended to model the random spatial variation of ground

motions. There is also the need of incorporating into earthquake ground motion models

the uncertainties of seismological variables such as the earthquake magnitude, M, and

site-to-source distance, S. A stochastic model able to represent all these sources of uncer-

tainties will enable an end-to-end probabilistic seismic performance analysis of structural

systems, integrating seamlessly seismic hazard analysis, probabilistic demand analysis,

damage analysis, and reliability analysis. 

1.2.3   State-of-the-art in finite element structural reliability methods

The field of structural reliability analysis has seen significant advances in the last

two decades (Ditlevsen and Madsen 1996, Der Kiureghian 1996). Analytical and numeri-

cal methodologies have been developed and improved for the probabilistic analysis of real

structures characterized in general by nonlinear behavior, material and geometric uncer-

tainties and subjected to stochastic loads (Schueller et al. 2004). Reliability analysis meth-

ods have been successfully applied to such problems, as the ones encountered in civil

engineering and typically analyzed deterministically through the finite element (FE)

method (Der Kiureghian and Ke 1988).

Several reliability analysis methods, such as asymptotic methods (First- and Sec-

ond-Order Reliability Methods) (Breitung 1984; Der Kiureghian and Liu 1986; Der
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Kiureghian et al. 1987; Der Kiureghian 1996; Ditlevsen and Madsen 1996) and impor-

tance sampling with sampling distribution centered at the design point(s) (Schueller and

Stix 1987; Melchers 1989; Au et al. 1999; Au and Beck 2001a) are characterized by the

crucial step of finding the design point(s) (DPs), defined as the most likely failure point(s)

in the standard normal space. In particular, asymptotic methods can provide reliability

analysis results with a relatively small number of simulations (often on the order of 10-

100 simulations for FORM analysis) and with a computational effort practically indepen-

dent of the magnitude of the failure probability. Furthermore, these methods provide

important information such as reliability sensitivity measures, as a by-product of the DP

search (Hohenbichler and Rackwitz 1986). Other reliability analysis methods, e.g., subset

simulation (Au and Beck 2001b; Au and Beck 2003) and importance sampling with sam-

pling distribution not centered at the DP(s) (Bucher 1988; Ang et al. 1992; Au and Beck

1999), do not use the concept of DP. In general, the computational cost of these methods

increases for decreasing magnitude of the failure probability. Thus, for very low failure

probabilities, these methods could require a very large number of simulations and be com-

putationally prohibitive.

1.3   Research needs, objectives and scope

The future of earthquake engineering is closely tied to high-fidelity model-based

simulation and probabilistic/reliability analysis. With future progress in predictive model-

ing and simulation capabilities, inherent/aleatory uncertainties will still be present and will

have to be dealt with. Therefore, basic research needs in earthquake engineering and struc-

tural reliability analysis include: (1) consistent modeling of all significant sources of
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uncertainty affecting analytical seismic response predictions of structural systems, and (2)

accurate and efficient analytical tools to propagate these uncertainties through advanced

large-scale nonlinear seismic response analyses of structural systems to obtain probabilis-

tic estimates of the predicted seismic response performance. Sensitivity analysis of the

simulated response with respect to both system and loading parameters is a key compo-

nent in studying this complex propagation of uncertainties and thus requires particular

attention from the research community.

The objective of the research work presented in this thesis is to develop a compre-

hensive and efficient analytical methodology for studying the complex propagation of

inherent uncertainties in nonlinear static and dynamic analysis of structural systems in the

context of performance-based earthquake engineering. This aim is sought through merg-

ing state-of-the-art FE formulations for modeling and seismic response analysis of large-

scale structural systems with modern advanced reliability analysis methods. This innova-

tive integration requires (1) the advancement of accurate and efficient algorithms for FE

response sensitivity analysis, (2) the enhancement of simulation capabilities for stochastic

earthquake ground motion models, (3) the development of benchmark solutions for reli-

ability problems involving random stochastic input, (4) the adaptation of state-of-the-art

computational optimization methods to exploit the physics and geometry of the problem

to be solved, (5) the development of visualization tools to gain physical and geometrical

insight into structural reliability problems involving large numbers of random parameters,

and (6) the development of new robust and efficient reliability methods specifically

designed for FE reliability analysis. 
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The research work presented in this dissertation addresses how input uncertainties

propagate and how they translate into the variability of the predicted structural response.

Nonlinear dynamic analysis of structural systems is the only realistic means of predicting

performance with respect to an ensemble of design earthquakes. These analyses are gener-

ally complex and computationally demanding. Thus, only the availability of efficient and

robust computational tools and of clear guidelines on how to use them will eventually

open the way to widespread use of model-based simulations in performance-based engi-

neering. The research presented here represents a fundamental step in this direction. 

This research makes use and extends the capabilities of two computational simula-

tion components of the NEESgrid software, in order to increase the visibility and to

encourage widespread use of the products of this research. The physical modeling, numer-

ical simulation, and networking tools developed through NEES can be utilized to study

and solve problems in an entire spectrum of geotechnical and structural engineering appli-

cations, such as the effect of construction and traffic vibrations on structures, the preserva-

tion and repair of historic structures, the impact forces of large debris such as cars and

trees transported by floods, and the effect of intense heat and explosions on structural per-

formance.

1.4   Computational platforms

The research developed and presented herein has a strong computational compo-

nent. Therefore, the choice of the computational platforms in which the research results

are implemented assumes a particular importance in determining its availability and visi-
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bility to the structural engineering community. Two complementary computational plat-

forms, both components of the NEESgrid software, are used and extended in this work.

1.4.1   First computational platform: FEDEASLab-FERUM

The first platform consists of the tandem FEDEASLab-FERUM. FEDEASLab

(Finite Elements in Design, Evaluation and Analysis of Structures using Matlab) was orig-

inally developed by Prof. Filippou at the University of California, Berkeley (Filippou and

Constantinides 2004). It is a Matlab (The Mathworks 1997) toolbox suitable for linear and

nonlinear, static and dynamic structural analysis, which has the advantage to provide a

general framework for physical parameterization of FE models and response sensitivity

computation using the DDM (Franchin 2004). One of the key features of FEDEASLab is

its strict modularity, that keeps separate the different hierarchical levels encountered in

structural analysis (i.e., structure, element, section and fiber or material levels). It is an

integral simulation component of NEESgrid that is particularly suitable for concept/algo-

rithm development, for educational purposes, and for analysis of small structural systems. 

FERUM (Finite Element Reliability Using Matlab) is a Matlab toolbox to perform

FE reliability analysis, which was originally developed by Prof. Der Kiureghian and his

students at the University of California, Berkeley (Haukaas 2001). The coupling between

FEDEASLab and FERUM was first established by Franchin (2004). FEDEASLab-

FERUM has proven to be an excellent and versatile research tool for concept/algorithm

developments in nonlinear FE reliability analysis. However, due to the intrinsic limitations

of Matlab as an interpretive language, it is limited to small-scale problems. 
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1.4.2   Second computational platform: OpenSees

The second computational platform consists of OpenSees (Open System for Earth-

quake Engineering Simulation) (Mazzoni et al. 2005), an open source software framework

to model structural and/or geotechnical systems and simulate their response to earth-

quakes. OpenSees has been under development by the Pacific Earthquake Engineering

Research Center since 1997 through the National Science Foundation engineering and

education centers program. OpenSees supports a wide range of simulation models, solu-

tion procedures, and distributed computing models. It also has very attractive capabilities

for physical parameterization of structural and geotechnical FE models, probabilistic mod-

eling, response sensitivity analysis and reliability analysis (Haukaas and Der Kiureghian

2004). OpenSees has been adopted as a NEESgrid simulation component since 2004. 

The combination of FEDEASLab-FERUM as research prototyping as well as edu-

cational tool and OpenSees as framework for large-scale seismic response simulation and

reliability analysis provides an ideal research platform. 

1.5   Organization of the thesis

The research presented in this thesis can be partitioned into three topics. A variable

number of chapters is devoted to each of these topics.

The first research topic is FE response sensitivity analysis of structural systems

and is covered in Chapters 2 through 6. Chapter 2 introduces FE response sensitivity anal-

ysis, its application fields and the existing methodologies for FE response sensitivity com-

putation. Then, the Direct Differentiation Method (DDM) is presented in details for the
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classical displacement-based finite element formulation. Chapter 3 presents the algorithm

extending DDM to force-based frame elements. Chapter 4 extends the DDM for response

sensitivity analysis of steel-concrete composite frame structures. In Chapter 5, a DDM-

based FE response sensitivity algorithm is developed for three-field mixed-formulation

elements based on the Hu-Washizu functional. Chapter 6 studies the conditions to be

imposed on smoothness of material constitutive models to assure continuity of FE

response sensitivities.

The second research topic, covered in Chapters 7 through 9, consists of the sto-

chastic modeling of earthquake ground motions and random vibration analysis of struc-

tural systems subjected to stochastic ground motion excitation. Chapter 7 describes an

existing fully non-stationary stochastic ground motion model and presents a new efficient

simulation technique for this model. Chapters 8 and 9 extend the definition of spectral

characteristics to general complex-valued non-stationary stochastic processes and employ

these newly defined spectral characteristics for time-variant reliability analysis based on

linear elastic structural models. 

The third research topic, which is the subject of Chapters 10 through 13, is the

study of probabilistic and reliability methods applied to structural systems. Chapter 10

presents the DDM-based First-Order Second-Moment method for approximate probabilis-

tic response analysis. Chapter 11 presents a review of structural reliability methods based

on the design point concept together with new improvements made as part of this work to

existing FE structural reliability analysis methods. Chapter 12 presents a new methodol-

ogy for visualization of hyper-surfaces defined in high-dimensional spaces, such as the
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limit-state surfaces that are commonly considered in FE structural reliability analysis.

Chapter 13 focuses on the development of a new hybrid FE reliability method which

improves significantly the accuracy of classical reliability methods at a reasonable addi-

tional computational cost. Finally, Chapter 14 summarizes the work done, highlights

important research findings and provides some suggestions for future research. 
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CHAPTER 2

COMPUTATIONAL FRAMEWORK FOR 
FINITE ELEMENT RESPONSE 

SENSITIVITY ANALYSIS: 
THE DIRECT DIFFERENTIATION 

METHOD

2.1   INTRODUCTION

Recent years have seen great advances in the nonlinear finite element (FE) analy-

sis of structural models. The state-of-the-art in computational simulation of the static and

dynamic response of structural models lies in the nonlinear domain to account for material

and geometric nonlinearities governing the complex behavior of structural systems, espe-

cially near their failure range (i.e., collapse analysis). 

Maybe even more important than the simulated nonlinear response of a structural

system is its sensitivity to loading parameters and to various geometric, mechanical, and

material properties defining the structure. FE response sensitivities represent an essential

ingredient for gradient-based optimization methods needed in structural reliability analy-

sis, structural optimization, structural identification, and FE model updating (Ditlevsen

and Madsen 1996; Kleiber et al. 1997). Many researchers have dedicated their attention to

the general problem of design sensitivity analysis, among others, Choi and Santos (1987),
24
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Arora and Cardoso (1989), Tsay and Arora (1990), Tsai et al. (1990). Consistent FE

response sensitivity analysis methods have already been formulated for displacement-

based FEs (Zhang and Der Kiureghian 1993; Kleiber et al. 1997; Conte et al. 2001, 2002). 

2.2   METHODS AVAILABLE FOR FINITE ELEMENT RESPONSE 

SENSITIVITY COMPUTATION 

Several methods are available for computing FE response sensitivities, such as the

Forward/Backward/Central Finite Difference Method (FDM) (Zhang and Der Kiureghian

1993; Kleiber et al. 1997; Conte et al. 2003, 2004), the Adjoint Method (AM) (Kleiber et

al. 1997), the Perturbation Method (Kleiber and Hien 1992) and the Direct Differentiation

Method (DDM) (Kleiber et al. 1997; Conte 2001; Conte et al. 2003, 2004; Barbato and

Conte 2005, 2006; Zona et al. 2005; Barbato et al. 2006). 

The FDM is the simplest method for response sensitivity computation and consist

of performing, in addition to the FE analysis with all sensitivity parameters  set at their

nominal values, a FE response analysis for each parameter  (i = 1, ..., n) in which its

nominal value is perturbed by a small but finite amount. Each response sensitivity is then

obtained as the ratio of the variation of the response quantity of interest over the parameter

perturbation. This method is computationally expensive and approximate in nature and

can suffer from numerical inaccuracies (Haftka and Gurdal 1993; Conte et al. 2003, 2004;

Zona et al. 2005). 

The AM consists in adding as many variables as the number of response sensitivi-

ties to be computed (i.e., the number of parameters considered) and solving this adjoint

�

θi
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problem at the same time of the response computation. The AD is extremely efficient for

linear and nonlinear elastic systems, but is not competitive with other methods for path-

dependent problems (i.e., analysis models involving nonlinear inelastic material constitu-

tive models) (Kleiber et al. 1997). 

The PM consists in computing the response sensitivities as a first order perturba-

tion of the response of the model considered. This method is very efficient but, in general,

not very accurate. 

On the other hand, the DDM is an accurate and efficient way to perform response

sensitivity analysis of FE models with nonlinear hysteretic behavior. This method consists

of differentiating analytically the space- and time-discretized equations of motion/equilib-

rium of the FE model of the structural system considered. The response sensitivity compu-

tation algorithm affects the various hierarchical layers of FE response calculation, namely

the structure, element, integration point (section for frame elements), and material levels.

The advantage of the DDM over the FDM is that, at the one-time cost of implementing in

a FE code the algorithms for analytical differentiation of the numerical response, the

response sensitivities to any of the modeling parameters considered can be computed

exactly (up to a numerical tolerance defined by the user) at a relatively small fraction

(depending on the number of iterations required in the nonlinear FE analysis of the model

considered and on the specific implementation, see Lupoi et al. 2006) of the cost of an

additional FE analysis, which is required for computing response sensitivities to each of

the parameters considered when the Forward/Backward FDM is employed. In the case of

Central FDM, computing the response sensitivities to modeling parameters requires two
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additional nonlinear FE analyses for each parameter considered, which makes this method

very expensive computationally.

2.3   FINITE ELEMENT RESPONSE SENSITIVITY ANALYSIS AT 

THE STRUCTURE LEVEL: THE DIRECT DIFFERENTIATION 

METHOD (DDM)

The computation of FE response sensitivities to material and loading parameters

requires extension of the FE algorithms for response computation only. Let r(t) denote a

generic scalar response quantity (displacement, acceleration, local or resultant stress, etc.).

By definition, the sensitivity of r(t) with respect to the material or loading parameter θ is

expressed mathematically as the (absolute) partial derivative of r(t) with respect to the

variable θ evaluated at , i.e.,  where  denotes the nominal value

taken by the sensitivity parameter θ for the FE response analysis. 

In the sequel, following the notation proposed by Kleiber, the scalar response

quantity  depends on the parameter vector  (defined by n time-inde-

pendent sensitivity parameters, i.e., ), both explicitly and implicitly

through the vector function . It is assumed that  denotes the sensitivity gradient

or total derivative of r with respect to ,  is the absolute partial derivative of the argu-

ment r with respect to the scalar variable , i = 1, ..., n, (i.e., the derivative of the quantity

r with respect to the parameter  considering explicit and implicit dependencies), while

θ θ0= r t( )∂ θ θ θ0=∂⁄ θ0

r �( ) r f �( ) �,( )= �

� θ1 ... θn, ,[ ]T=

f �( ) dr
d�
-------

�
dr
dθi
-------

θi

θi
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 is the partial derivative of r with respect to parameter  when the vector of vari-

ables  is kept constant/fixed. In the particular, but important case in which ,

the expression  reduces to the partial derivative of r considering only the explicit

dependency of r on parameter . For  (single sensitivity parameter case),

the adopted notation reduces to the usual elementary calculus notation. The derivations in

the sequel consider the case of a single (scalar) sensitivity parameter  without loss of

generality, due to the uncoupled nature of the sensitivity equations with respect to multiple

sensitivity parameters.

It is assumed herein that the response of a structural/geotechnical system is com-

puted using a general-purpose nonlinear FE analysis program based on the direct stiffness

method, employing suitable numerical integration schemes at both the structure and the

element level. At each time step, after convergence of the incremental-iterative response

computation, the consistent response sensitivities are calculated. According to the DDM

(see Conte 2001; Conte et al. 2002), this requires the exact differentiation of the FE

numerical scheme for the response computation (including the numerical integration

scheme for the material constitutive laws) with respect to the sensitivity parameter θ in

order to obtain the “exact” sensitivities of the computationally simulated system response.

Notice that the computationally simulated system response is itself an approximation of

the exact but unknown system response. Indeed, the exact system response would require

the exact solution of the (time continuous - space continuous) governing nonlinear partial

r∂
θi∂

-------
z

θi

z z f �( )=

r∂
θi∂

-------
z

θi � θ1 θ= =

θ
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differential equations for the physical model of the structure under consideration. The

DDM consists in computing first the conditional derivatives of the element and material

history/state variables, forming the right-hand-side (RHS) of the response sensitivity

equation at the structure level, solving it for the nodal displacement response sensitivities

and updating the unconditional derivatives of all the history/state variables. The response

sensitivity computation algorithm affects the various hierarchical layers of FE response

calculation, namely: (1) the structure level, (2) the element level, (3) the section level, and

(4) the material level.

After spatial discretization using the FE method, the equations of motion of a

materially-nonlinear-only structural system take the form of the following nonlinear

matrix differential equation:

(2.1)

where t = time, θ = scalar sensitivity parameter (material or loading variable), u(t) = vec-

tor of nodal displacements, M = mass matrix, C = damping matrix, R(u, t) = history

dependent internal (inelastic) resisting force vector, F(t) = applied dynamic load vector,

and a superposed dot denotes one differentiation with respect to time. In the formulation

presented herein, the possible dependency of the internal inelastic resisting force vector R

on the vector of nodal displacement is neglected. This dependency exists when the mate-

rial constitutive models employed account for viscous (strain rate dependent) effects. The

formulation taking in account the viscous effects can be found in Haukaas and Der

Kiureghian (2004).

M θ( )u·· t θ,( ) C θ( )u· t θ,( ) R u t θ,( ) θ,( )+ + F t θ,( )=
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We assume without loss of generality that the time continuous - spatially discrete

equation of motion (2.1) is integrated numerically in time using the well-known New-

mark-β time-stepping method of structural dynamics (Chopra 2001), yielding the follow-

ing nonlinear matrix algebraic equation in the unknowns un+1 = u(tn+1):

(2.2)

where

(2.3)

 and  are parameters controlling the accuracy and stability of the numerical integration

algorithm and  is the time increment. Eq. (2.2) represents the set of nonlinear algebraic

equations for the unknown response quantities  that has to be solved at each time

step . In general, the subscript  indicates that the quantity to which it is

attached is evaluated at discrete time tn+1. 

We assume that  is the converged solution (up to some iteration residuals sat-

isfying a specified tolerance usually taken in the vicinity of the machine precision) for the

current time step . Then, we differentiate Eq. (2.2) with respect to θ using the

chain rule, recognizing that  (i.e., the structure inelastic

� un 1+( ) F̃n 1+
1

β Δt( )2
----------------Mun 1+

α
β Δt( )
--------------Cun 1+ R un 1+( )+ +– 0= =

F̃n 1+ Fn 1+ M 1
β Δt( )2
----------------un

1
β Δt( )
--------------u· n 1 1

2β
------–⎝ ⎠

⎛ ⎞ u··n–++ +=

C α
β Δt( )
--------------un 1 α

β
---–⎝ ⎠

⎛ ⎞ u· n– Δt( ) 1 α
2β
------–⎝ ⎠

⎛ ⎞ u··n–

α β

Δt

un 1+

tn tn 1+,[ ] …( )n 1+

un 1+

tn tn 1+,[ ]

R un 1+( ) R un 1+ θ( ) θ,( )=
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resisting force vector depends on θ both implicitly, through , and explicitly), which

yields the following response sensitivity equation at the structure level:

(2.4)

where

(2.5)

The term  in Eq. (2.4) denotes the static consistent tangent stiffness

matrix of the structure at time tn+1. The second term on the RHS of Eq. (2.4) represents the

partial derivative of the internal resisting force vector, R(un+1), with respect to sensitivity

parameter θ under the condition that the displacement vector un+1 remains fixed, and is

computed through direct stiffness assembly of the element resisting force derivatives as

(2.6)

un 1+

1
β Δt( )2
----------------M α

β Δt( )
--------------C KT

stat( )n 1++ +
dun 1+

dθ
---------------- 1

β Δt( )2
----------------dM

dθ
--------- α

β Δt( )
--------------dC

dθ
-------+⎝ ⎠

⎛ ⎞ un 1+– –=

R un 1+ θ( ) θ,( )∂
θ∂

---------------------------------------
un 1+

dF̃n 1+
dθ

----------------+

dF̃n 1+
dθ
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dFn 1+

dθ
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dθ
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β Δt( )2
----------------un

1
β Δt( )
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------–⎝ ⎠

⎛ ⎞ u··n–++ +=

M 1
β Δt( )2
----------------

dun
dθ
--------- 1

β Δt( )
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du· n
dθ
--------- 1 1
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⎛ ⎞ du··n
dθ
---------–+ +

dC
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------- α
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dθ
---------– Δt( ) 1 α
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KT
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In the above equation,  is the Boolean localization matrix for element “e”;

, , and  are kinematic transformation matrices to account for rigid end

zones (REZ), rotation from global to local reference system (ROT), and rigid body modes

(RBM), respectively;  and  denote the vectors of basic element deformations

and forces, respectively; and Nel denotes the number of frame elements in the structural

model. 

The above formulation, derived explicitly for dynamic response sensitivity analy-

sis, contains the quasi-static case as a particular case, obtained by simply equating to zero

in Eqs. (2.2) through (2.5) all terms containing the mass and damping matrices as well as

their derivatives with respect to the sensitivity parameter .

2.4   DDM-BASED RESPONSE SENSITIVITY ANALYSIS AT THE 

ELEMENT LEVEL: DISPLACEMENT-BASED FORMULA-

TION

The basic formulation for FEs is the displacement-based formulation, in which the

displacement fields are interpolated on each FE of the meshed domain by using proper

shape functions. In the displacement-based formulation, compatibility is enforced in

strong form, while equilibrium is expressed in weak form for each FE. The corresponding

relations, for a single FE and for the case of linear geometry (small strains and small gen-

eralized displacements) are

: FE interpolation (2.7)

Ab
e( )

�REZ
e( )

�ROT
e( )

�RBM
e( )

qn 1+ Qn 1+

θ

u X( ) N X( )q=
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: compatibility (strong form) (2.8)

: constitutive model (2.9)

: equilibrium (weak form) (2.10)

in which  = spatial coordinates,  = displacement, strain and stress

fields, respectively,  = nodal displacement and force vectors, respectively,  = shape

functions,  = differential operator matrix defined as

(2.11)

,  = FE domain, and the superscript T denotes the matrix transpose

operator.

The response sensitivities equations at the element level are obtained differentiat-

ing Eqs. (2.7) through (2.10) with respect to the sensitivity parameter  as follows

(2.12)

(2.13)

(2.14)
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(2.15)

in which  denotes the consistent tangent stiffness matrix at the material level.

2.5   DDM-BASED RESPONSE SENSITIVITY ANALYSIS FOR DIS-

PLACEMENT-BASED FRAME ELEMENTS

A frame element is a FE commonly used to model frame structures, such as most

of the civil buildings. Frame elements are commonly based on the Euler-Bernoulli beam

theory and are used to model structural elements having one dimension (length) dominant

with respect to the other two (describing the cross-section). Due to the large use of frame

elements in the work presented in this dissertation, the specialization of the response sen-

sitivity algorithm for a general displacement-based FE is presented here in detail. 

In a displacement-based frame element, the relationships between element and

section deformations on one hand, and between element and section forces on the other

hand are given by

 (compatibility in strong form) (2.16)

 (equilibrium in weak form) (2.17)

where  is a transformation matrix between element deformations and section defor-

mations, which is independent of the sensitivity parameter . 

dQ
dθ
-------- B X( )( )Td� X( )

dθ
----------------- Ωd

Ω
∫=

E

d x θ,( ) B x( ) q θ( )⋅=

Q θ( ) BT x( ) D x θ,( )⋅ xd⋅

0

L

∫=

B x( )

θ
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After introducing the normalized coordinate  (with ) and performing

numerical integration, Eqs. (2.16) and (2.17) become

 (i = 1, ..., nIP) (2.18)

 (2.19)

where  and wi denote the sampling points and their integration weights, respectively,

while nIP represents the number of integration points along the beam axis. 

Differentiation of the above relations is straightforward and yields

 (i = 1, ..., nIP) (2.20)

 (2.21)

Therefore, the element response sensitivity computation is easily accomplished

using the following procedure (where the dependence of the various quantities on  is not

shown explicitly for the sake of brevity).

2.5.1   Conditional derivatives (for qn+1 fixed)

(1) Set derivatives of the basic element deformations  to zero as

(2.22)

ξ 1  ξ 1≤ ≤–

d ξi θ,( ) B ξi( ) q θ( )⋅=

Q θ( ) L
2
---  BT ξi( ) D ξi θ,( ) wi⋅⋅{ }

i 1=
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∑⋅=

ξi

d ξi θ,( )d
θd
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dθ

---------------⋅=

Q θ( )d
θd
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2
---  BT ξi( )

D ξi θ,( )d
θd

----------------------- w⋅ i⋅
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⎨ ⎬
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i 1=

nIP

∑⋅=

θ

qn 1+

qn 1+∂
θ∂

---------------
qn 1+
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It follows that

 (i = 1, ..., nIP) (2.23)

(2) From the constitutive law integration scheme (during loop over the element integra-

tion points for pre-response sensitivity calculations), compute 

.

(3) Integrate the conditional derivatives of the sections forces over the element as

 (2.24)

(4) Form the RHS of the response sensitivity equation at the structure level, Eq. (2.4),

through direct stiffness assembly. 

(5) Solve Eq. (2.4) for the nodal response sensitivities, . 

2.5.2   Unconditional derivatives

(1) Compute unconditional derivatives  from the solution of the response sensitiv-

ity equation at the structure level, Eq. (2.4), as

 (e = 1, ..., Nel) (2.25)
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The section deformation sensitivities are given by

 (i = 1, ..., nIP) (2.26)

(2) From the constitutive law integration scheme, compute and save the unconditional

derivatives of the material and section history/state variables  and compute

.

(3) Integrate the derivatives of the section forces over the element to obtain

 (2.27)

2.6   DDM-BASED RESPONSE SENSITIVITY AT THE INTEGRA-

TION POINT (SECTION) AND MATERIAL LEVELS

As already seen for response sensitivity computation at the element level, response

sensitivity algorithms at the integration point and material levels are dependent on the spe-

cific integration point and material constitutive models implemented and employed.

Some specific implementations and their corresponding sensitivity algorithms will

be presented and used in the following chapters of this dissertation and many other exam-

ples can be found in the literature (see Choi and Santos 1987; Arora and Cardoso 1989;

Tsay and Arora 1990; Tsai et al. 1990; Zhang and Der Kiureghian 1993; Conte 2001;

Conte et al. 2003, 2004; Barbato and Conte 2005, 2006; Zona et al. 2005; Barbato et al.

2006).
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2.7   CONCLUSIONS

In this Chapter, finite element response sensitivity analysis is introduced and avail-

able methods for computing FE response sensitivities with respect to modeling and load-

ing parameters are illustrated. Then, the Direct Differentiation Method is described in

detail at the structural level and at the element level for the classical displacement-based

formulation. The material presented here is the state-of-the-art in FE response sensitivity

analysis and forms the basis for the developments presented in Chapters 3 through 6 of

this dissertation.
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CHAPTER 3

DDM-BASED FINITE ELEMENT 
RESPONSE SENSITIVITY ANALYSIS 

USING FORCE-BASED FRAME 
ELEMENTS

3.1   INTRODUCTION

In the last decade, great advances have taken place in the nonlinear analysis of

frame structures. Advances were led by the development and implementation of force-

based elements, which are superior to classical displacement-based elements in tracing

material nonlinearities such as those encountered in reinforced concrete beams and col-

umns (Spacone et al. 1996a, 1996b, 1996c; Neuenhofer and Filippou 1997). Force-based

elements are the state-of-the-art tool in computational simulation of the static and dynamic

response of frame structures in the presence of material and geometric nonlinearities. 

As seen in Chapter 2, maybe even more important than the simulated nonlinear

response of a frame structure is its sensitivity to loading parameters and to various geo-

metric, mechanical, and material properties defining the structure. In this chapter, algo-

rithms for FE response sensitivity computation are developed for frame structures

modeled using force-based finite elements, also called flexibility-based finite elements in
41
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the literature. The objective of this work is to extend the benefits of force-based frame ele-

ments for nonlinear structural analysis to FE response sensitivity analysis. 

The formulation presented here is based on the DDM and it assumes the use of a

general-purpose nonlinear FE analysis program based on the direct stiffness method. In

this work, the focus is on materially-nonlinear-only static and dynamic structural response

sensitivity analysis.

3.2   NONLINEAR STATIC AND DYNAMIC RESPONSE ANALYSIS 

OF STRUCTURES USING FORCE-BASED FRAME ELEMENTS

The last few years have seen the rapid development of force-based elements for

the nonlinear analysis of frame structures. In a classical displacement-based element, the

cubic and linear Hermitian polynomials used to interpolate the transverse and axial frame

element displacements, respectively, are only approximations of the actual displacement

fields in the presence of non-uniform beam cross-section and/or nonlinear material behav-

ior. On the other hand, force-based frame element formulations stem from equilibrium

between section and nodal forces, which can be enforced exactly in the case of a frame

element. The exact flexibility matrix can be computed for an arbitrary variation of the

cross-section and for any section constitutive law. The main issue with force-based frame

elements is their implementation in a general-purpose nonlinear FE program, typically

based on the stiffness method. Spacone et al. (1996b, 1996c) presented a consistent solu-
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tion to this problem. They propose a state determination based on an iterative procedure

that is basically a Newton-Raphson scheme under constant nodal displacements. During

the iterations, the deformation fields inside the element (mainly curvature and axial

strains) are adjusted until they become compatible (in an integral sense) with the imposed

nodal deformations. Neuenhofer and Filippou (1997) showed that the iterations are not

necessary at the element level at each global (structure level) iteration step, since the ele-

ment eventually converges as the structure iteration scheme converges. The first (full iter-

ation) procedure is more robust near limit points and computationally more demanding at

the element level, but may save iterations at the global level. The second procedure is gen-

erally faster.

The force-based element formulation proposed by Spacone et al. (1996b, 1996c) is

totally independent of the section constitutive law. The section state determination is iden-

tical to that required for a displacement-based element. The section module must return

the section stiffness and the section resisting forces corresponding to the current section

deformations. Different section models have been implemented, notably layer and fiber

sections and section with nonlinear resultant force-deformation laws. Appendix 3.A pre-

sents the features of the force-based frame element formulation, which are needed in

deriving the analytical sensitivities of force-based FE models of structural frame systems. 

Geometric nonlinearities are not included in this study, whose focus is on material

nonlinearities. Two frameworks for including geometric nonlinearities in a force-based
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beam formulation have been proposed, one by de Souza (2000) with earlier work by Neu-

enhofer and Filippou (1998), who uses a corotational formulation to include large dis-

placements, the other by Sivaselvan and Reinhorn (2002), who modify the shape of the

force interpolation functions to include the geometric effects. 

3.3   RESPONSE SENSITIVITY ANALYSIS AT THE ELEMENT 

LEVEL

3.3.1   Formulation

This section presents the algorithm developed for response sensitivity analysis of

force-based frame elements. Within the direct stiffness assembly formulation at the global

level, at every time (or load) step, the element receives as input from the structure level the

element nodal displacements , which are transformed into the basic element deforma-

tions  (see Appendix 3.A.1), and returns as output the nodal resisting force vector

 (see Appendix 3.A.1) and the element consistent tangent

stiffness matrix. The element interacts with the section level (or integration point level)

transforming the element nodal deformations  into section deformations  and comput-

ing the basic element resisting forces  from the section forces , themselves obtained

through the material constitutive integration scheme. In a displacement-based formula-

p

q

P �REZ
T

�ROT
T

�RBM
T Q⋅ ⋅ ⋅=

q d

Q D
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tion, the relationship between element deformations and forces and section deformations

and forces is straightforward, namely:

(3.1)

(3.2)

where  is a transformation matrix between element deformations and section defor-

mations, which is independent of the sensitivity parameter . In contrast, in the force-

based formulation, there is no simple direct relation between the section deformations 

and the basic element deformations , and an iterative procedure (although a non-iterative

one can also be used) is used to perform the element state determination as described in

Appendix A.2 (Spacone et al. 1996b). This fact complicates the derivation of the sensitiv-

ities of force-based element response quantities as compared to the case of displacement-

based elements (Conte et al. 2002). While for displacement-based elements, the derivative

of the section deformations-element deformations relation given in Equation (3.1) is

straightforward, since  is independent of the sensitivity parameter , i.e.,

, for force-based elements, the section deformations are function of 

both explicitly and implicitly (through the element deformations ), i.e.,

. 

d x( ) B x( ) q⋅=

Q BT x( ) D x( )⋅ xd⋅
0

L

∫=

B x( )

θ

d

q

B x( ) θ

d x( ) d x q θ( ),( )= θ

q θ( )

d x( ) d x q θ( ) θ, ,( )=
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In general, the dependence of section deformations, , and section forces, , on

the element deformations, , and sensitivity parameter, , can be expressed as

(3.3)

(3.4)

By the chain rule of differentiation, we determine the sensitivity of these quantities

to parameter  as

(3.5)

where

(3.6)

The expression for  is obtained from

(3.7)

(3.8)

(3.9)

(3.10)

and substituting (3.8) through (3.10) in Equation (3.7). 

From (3.3) through (3.5), again by the chain rule of differentiation, we have

d D

q θ

d d q θ( ) θ,( )=

D D d q θ( ) θ,( ) θ,( )=

θ

dd
θd

------ d∂
q∂

------
θ

dq
dθ
------ d∂

θ∂
------

q
+⋅ B θ( ) dq

dθ
------ d∂

θ∂
------

q
+⋅= =

B x θ,( ) d∂
q∂

------
θ

fs x θ,( ) b x( ) kT
e( ) θ( )⋅⋅= =

B x θ,( )

d∂
q∂

------
θ

d∂
D∂

-------
θ

D∂
Q∂

-------
θ

Q∂
q∂

-------
θ

⋅ ⋅=

d∂
D∂

-------
θ

fs x θ,( )=

dD x θ,( ) b x( ) dQ θ( )⋅=

Q∂
q∂

-------
θ

kT
e( ) θ( )=
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(3.11)

where

(3.12)

is the section consistent tangent stiffness matrix. 

Differentiating the (strong form) equilibrium equations, 

(see Equation (3.59) in Appendix 3.A), at the section level with respect to parameter , in

the hypothesis of zero element distributed loads (i.e., ), yields

(3.13)

Compatibility between basic element deformations  and section deformations  is

expressed in weak form through the principle of virtual forces as

(3.14)

which, after introducing the normalized coordinate  (with ) and performing

numerical integration becomes

(3.15)

Differentiating the above relation with respect to parameter , we obtain

Dd
θd

------- ks x θ,( ) dd
dθ
------ D∂

θ∂
-------

d
+⋅ ks B x θ,( ) dq

dθ
------ d∂

θ∂
------

q
+⋅ D∂

θ∂
-------

d
+⋅= =

ks x θ,( ) D∂
d∂

-------
θ

=

D x θ,( ) b x( ) Q θ( )⋅=

θ

Dp x( ) 0=

Dd
θd

------- b x( ) Qd
θd

-------⋅=

q d

q bT x( ) x( )d xd⋅ ⋅
0

L

∫=

ξ 1   ξ   1≤ ≤–

q L
2
---  bT ξi( ) d ξi( ) wi⋅⋅{ }

i 1=

nIP

∑⋅=

θ
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(3.16)

Contrary to the displacement-based formulation (in which ),

 in the case of the present force-based formulation for which  as

shown in Equation (3.6). 

It is necessary to derive the conditional (with  fixed) derivatives of the basic ele-

ment forces, , and section deformations, , (needed to assemble the RHS of the

response sensitivity equation) and the unconditional derivatives of all the history/state

variables at the element, section, and material levels, respectively (needed in the computa-

tion of the conditional derivatives of the history/state variables at the next time step). For

this purpose, we merge Equations (3.11) and (3.13) to obtain

(3.17)

For the conditional derivatives (with  fixed, i.e., with ), Equation (3.17) reduces

to

 , i = 1, ..., nIP (3.18)

while differentiation of the weak form of compatibility expressed by Equation (3.15)

yields

dq
dθ
------ L

2
---= bT ξi( )

d ξi( )d
θd

--------------- wi⋅ ⋅
⎩ ⎭
⎨ ⎬
⎧ ⎫

i 1=
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d x θ,( ) B x( ) q θ( )⋅=

d∂
θ∂

------
q

0≠ B B x θ,( )=

q

Q d x( )

ks B θ( ) dq
dθ
------ d∂

θ∂
------

q
+⋅⋅ b dQ

dθ
--------⋅– D∂

θ∂
-------

d
–=

q dq
dθ
------ 0=

ks ξi( )
d ξi( )∂
θ∂

---------------
q

b ξi( ) Q∂
θ∂

-------
q

⋅–⋅
D ξi( )∂
θ∂

----------------
d

–=
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(3.19)

Thus, in (3.18) and (3.19), we have obtained a set of ( ) equations with ( )

scalar unknowns where  denotes the number of integration points per element. These

scalar unknowns are  (2 unknowns for each integration point), and  (3

unknowns for each element). Equation (3.18) provides 2 scalar equations per integration

point, while Equation (3.19) gives 3 scalar equations for each element. The conditional

derivatives  on the RHS of Equation (3.18) can be obtained through conditional

differentiation (with  fixed) of the constitutive law integration scheme at the numeri-

cal integration point level (i.e., section level), requiring the computation of the conditional

(with  fixed) derivatives of all the history/state variables at the section and material

levels, as will be shown in Section 6. 

The proposed scheme to compute the conditional derivatives ,

, and , which are needed to form the RHS of the response sen-

sitivity equation at the structure level, at time step , is described in the sections

below.

bT ξi( )
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-------
q
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θ∂
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d

d x( )

d x( )

Dn 1+ ξi( )∂
θ∂

--------------------------
dn 1+

dn 1+ ξi( )∂
θ∂

-------------------------
qn 1+

Qn 1+∂
θ∂

-----------------
qn 1+

tn 1+
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3.3.1.1   Conditional derivatives (for qn+1 fixed):

(1) Set derivatives of the basic element deformations  and section deformations

 to zero (i.e., consider  and , respectively, as fixed quanti-

ties):

(3.20)

(3.21)

(2) From the constitutive law integration scheme (during loop over the element integra-

tion points for pre- response sensitivity calculations), compute  and then

set up the following linear system of ( ) equations (after looping over the inte-

gration points):

 

i = 1, ..., nIP (3.22)

(3) Solve (3.22) for  and , i = 1,..., nIP.
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(4) Form the RHS of the response sensitivity equation at the structure level through direct

stiffness assembly. For example, the term  is computed as, using

Equation (3.75), 

(3.23)

(5) Solve the response sensitivity equation at the structural level for the nodal response

sensitivities, . 

3.3.1.2   Unconditional derivatives:

(1) Compute unconditional derivative  from the solution of the response sensitivity

equation at the structure level as 

, 

e = 1, ..., Nel (3.24)

(2) Using the conditional derivatives  computed during the pre- response sen-

sitivity calculation phase, set up the following linear system of ( ) equations: 
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  , i = 1, ..., nIP (3.25)

(3) Solve Equation (3.25) for the unconditional derivatives , i = 1, ... , nIP, and

. 

(4) Perform a loop over the frame element integration points, entering with  in

the differentiated constitutive law integration scheme, compute and save the uncondi-

tional derivatives of the material and section history variables . These

unconditional derivatives are needed to compute the conditional derivatives required

for response sensitivity computations at the next time step, tn+2, namely

, , and 

3.3.2   Response sensitivities with respect to discrete loading parameters

Three types of discrete loading parameters are of interest here, namely (1) nodal

forces, (2) effective earthquake forces due to ground acceleration, and (3) distributed ele-

ment loads. The nodal forces and effective earthquake forces at time  affect only the
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term  on the RHS of the response sensitivity equation at the structure level through

the part . Obviously, at all subsequent time steps, , the last two terms on

the RHS of the sensitivity equation at the structural level are indirectly influenced by

, through the temporal propagation of the unconditional response sensitivities at

time .

Element distributed loads affect the formation and solution of the response sensi-

tivity equation at two different levels: (1) at the structure level through the term  in

which  depends on the element distributed load (i.e., fixed end forces as equivalent

nodal forces), and (2) at the section level of each element affected by the distributed load

in question through differentiation of the equilibrium equations, see Equation (3.59), 

(3.26)

with respect to the distributed load parameter, i.e.,

(3.27)
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---------------- tk tn 1+>
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3.4   IMPLEMENTATION IN A GENERAL-PURPOSE NONLINEAR 

FINITE ELEMENT STRUCTURAL ANALYSIS PROGRAM

For validation purposes, the above formulation for response sensitivity analysis

using force-based frame elements was implemented in a general-purpose FE structural

analysis program, namely FEDEASLab Release 2.2 (Filippou 2002). FEDEASLab is a

Matlab (The MathWorks 1997) toolbox suitable for linear and nonlinear, static and

dynamic structural analysis, which already provides a general framework for physical

parameterization of finite element models and response sensitivity computation (Franchin

2003). One of the most important features of FEDEASLab is its strict modularity, that

keeps separate the different hierarchical levels encountered in structural analysis (i.e.,

structure, element, section and material levels). Therefore, the implementation of the

response sensitivity computation scheme presented in this paper for force-based elements

can be used with any section model and/or material constitutive law (properly imple-

mented with provisions for sensitivity analysis) without any change in the code. 

Flow-charts of the computer implementation of the present algorithm for response

sensitivity analysis are presented in Figs. 3.1 and 3.2, which also highlight the modularity

of the general framework. It is worth noting two main differences between displacement-

based (Conte et al. 2002) and force-based frame elements: (1) in the displacement-based

formulation, there is no need to solve a linear system of equations at the element level in
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order to obtain the conditional and unconditional derivatives of the nodal element forces

 and ; and (2) while for displacement-based elements, requiring 

fixed is equivalent to requiring  (i = 1, 2, ..., nIP) fixed, for force-based elements,

it is necessary to compute the conditional derivatives of the history/state variables impos-

ing  fixed in order to obtain the conditional (for  fixed) and unconditional

derivatives of the nodal elements forces. 

Qn 1+∂
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-----------------
qn 1+
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dθ

----------------- qn 1+

dn 1+ ξi( )

dn 1+ ξi( ) qn 1+
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(1) Conditional derivatives:
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Figure 3.1 Flow chart for the numerical computation of the response sensitivity
with a force-based frame element: conditional derivatives. 
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(2) Unconditional derivatives:
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Figure 3.2 Flow chart for the numerical computation of the response sensitivity with
a force-based frame element: unconditional derivatives. 
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3.5   VALIDATION EXAMPLES

3.5.1   Response sensitivity analysis at the section level: homogeneous section with 

uncoupled axial and flexural response

In the following validation examples, the sectional behavior of the force-based

frame element is modeled using a very simple 2-D homogeneous section with uncoupled

axial and flexural response. In this case, we have

(3.28)

(3.29)

(3.30)

where  = axial strain at the reference axis,  = curvature,  =

axial force,  = bending moment,  = cross-section area,  = cross-sec-

tion moment of inertia,  = section consistent tangent stiffness matrix,

 and  = consistent tangent stiffnesses of the 1-D axial and flexural

constitutive laws, respectively. 

The numerical section response at time  is given by

dn 1+ x( ) εn 1+
G x( )

χn 1+ x( )
=

Dn 1+ x( )
Nn 1+ x( )

Mn 1+ x( )
=

ks n 1+, x( )
ET n, 1+

1( ) x( ) A x( )⋅ 0

0 ET n, 1+
2( ) x( ) Iz x( )⋅

=

εn 1+
G x( ) χn 1+ x( ) Nn 1+ x( )

Mn 1+ x( ) A x( ) Iz x( )

ks n 1+, x( )

ET n, 1+
1( ) x( ) ET n, 1+

2( ) x( )

tn 1+
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(3.31)

(3.32)

where  and  are defined as the axial force and bending moment normal-

ized by the cross-section area and moment of inertia, respectively. 

The section response sensitivities are

(3.33)

(3.34)

In the present study, the flexural constitutive law is defined as the 1-D J2 plasticity model,

while the axial behavior is taken as linear elastic. 

3.5.2   Response sensitivity analysis at the material level: 

linear elastic constitutive law

The relations describing both the response and response sensitivities for a 1-D lin-

ear elastic material model are

(3.35)

(3.36)

Note that the terms ,  and  in the above equations correspond to the terms

,  and  in (3.28), (3.30), (3.31) and (3.33). 
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3.5.3   Response sensitivity analysis at the material level: 1-D J2 plasticity model

In the validation examples presented below, the simple 1-D J2 (or von Mises) plas-

ticity model is used to describe the nonlinear material flexural behavior. This rate-inde-

pendent analytical constitutive model can be found in the literature (Simo and Hughes

1998). The discrete constitutive integration algorithm is provided in Appendix 3.B and its

consistent differentiation with respect to the sensitivity parameter  is presented below.

The computation of sensitivities of material history/state variables remains

unchanged for both displacement-based (Conte et al. 2002) and force-based frame ele-

ments, because the unconditional derivatives of the history/state variables are obtained

from the exact differentiation of the same constitutive law integration scheme and the con-

ditional derivatives are computed for the strain  fixed. Therefore, the conditional

derivatives of the history/state variables, , are simply obtained by substituting

with zero all the occurrences of the derivative  in the expressions for the uncondi-

tional derivatives of the history/state variables, . 

The only difference between the displacement-based and force-based formulations

at the material level is that a force-based frame element requires the computation of the

derivatives of the history/state variables under the condition that the section deformations

θ

εn 1+

…( )∂
θ∂

-------------
εn 1+

dεn 1+
θd

---------------

d …( )
dθ

--------------
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 remain fixed in order to obtain the term  in (3.22) and (3.25). For a dis-

placement-based element, fixing the element nodal displacements, , or

the element deformations in the basic system, , is equivalent to fixing

the section deformations  and therefore the strain  at the material level, which

is not the case for a force-based element (see remark below Equation (3.16)). 

If no plastic deformation takes place during the current time/load step [tn, tn+1], the

trial solutions for the state variables given by the elastic predictor step are also the correct

solutions, i.e., the elastic predictor step is not followed by a plastic corrector step. Hence,

dropping the superscript ‘Trial’ from (3.83) and differentiating them with respect to the

sensitivity parameter θ, we obtain

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

dn 1+
Dn 1+∂
θ∂

----------------
dn 1+

p tn 1+( ) pn 1+=

q tn 1+( ) qn 1+=

dn 1+ εn 1+

d Δλ( )n 1+
θd

------------------------- 0=

dεn 1+
p

dθ
---------------

dεn
p

dθ
--------=

αn 1+d
θd

----------------
αnd
θd

---------=

εn 1+
pd
θd

--------------- εn
pd
θd

--------=

σn 1+d
θd

---------------- E
dεn 1+

dθ
---------------

dεn
p

dθ
--------–

⎝ ⎠
⎜ ⎟
⎛ ⎞
⋅ dE

dθ
------- εn 1+ εn

p–( )⋅+=



62
(3.42)

If plastic deformation takes place during the current time/load step [tn, tn+1], the

discrete elasto-plastic constitutive equations in Appendix 3.A are differentiated exactly

with respect to the sensitivity parameter θ in order to compute the derivatives of the his-

tory/state variables at time tn+1. The final results are (Conte et al. 2002):

(3.43)

(3.44)

(3.45)

(3.46)

The derivatives of the remaining history/state variables, , , and

, with respect to the sensitivity parameter θ are obtained by differentiating (3.81) as 

(3.47)
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(3.48)

(3.49)

3.5.4   Application example: cantilever beam with distributed plasticity

The first test structure considered in this study consists of a cantilever 

steel I-beam 8 meters in length. The cross-sectional properties of the beam are:

 and , while its initial yield moment is

. A 20 percent post-yield to initial flexural stiffness ratio is

assumed.

The axial behavior is assumed linear elastic, while the flexural behavior is

described by a 1-D J2 plasticity section constitutive law with the following material

parameters: Young’s modulus , and isotropic and kinematic hardening

moduli , , respectively. A material mass density of

four times the mass density of steel (i.e., ) is used to account for typ-

ical additional masses (i.e., permanent loads). The beam is modeled with a single 2-D

Euler-Bernoulli frame element, see Figure 3.3, with lumped masses at the end nodes (mi =

m/2 = 1200 [kg], i = 1, 2). Five Gauss-Lobatto integration points are used along the beam.

No damping is included in the model. 

σy n 1+,d
θd

--------------------
σy n,d
θd

-------------
dHiso

dθ
------------- Δλ( )n 1+⋅ Hiso

d Δλ( )n 1+
θd

-------------------------⋅+ +=

αn 1+d
θd

----------------
αnd
θd

---------
dHkin

dθ
-------------- Δλ( )n 1+ n⋅ n 1+⋅ H+
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W21 50×
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After application of gravity loads (modeled as distributed load q) due to self-

weight and permanent loads, the beam is subjected to (1) a nonlinear quasi-static analysis

for a cyclic point load applied at the free end, as shown in Figure 3.4, and (2) a nonlinear

dynamic analysis for a ground acceleration history taken as the balanced 1940 El Centro

earthquake record scaled by a factor 3 (Figure 3.10). The equation of motion and the

response sensitivity equation were integrated using the constant average acceleration

method with a constant time step of Δt = 0.02 sec. 

L = 8.00 m

Figure 3.3 Cantilever beam model: geometry, static and quasi-static loads, and global
response quantities.

q
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The system response is highly nonlinear as shown in Figs. 3.5, 3.11 and 3.12. Figs.

3.6 and 3.7 and Figs. 3.13 and 3.14 plot sensitivities to different material parameters (Hkin

and My0) of a global response quantity taken as the tip vertical displacement, for static and

dynamic analysis, respectively. Sensitivities of a local response quantity, namely the

cumulative plastic curvature ( ) at the fixed end section, to material parameters, are dis-

played in Figs. 3.8 and 3.9 for static analysis and in Figs. 3.15 and 3.16 for dynamic anal-

ysis. Note that all these response sensitivity results are scaled by the sensitivity parameter

itself and can therefore be interpreted as 100 times the change in the response quantity per

percent change in the sensitivity parameter. To improve the readability of the quasi-static

cyclic analysis results in Figs. 3.4 through 3.9, lower-case roman letters were added corre-

sponding to key loading points. Furthermore, global and local response sensitivities to a

discrete loading parameter (namely the ground motion acceleration at time )

are computed and plotted in Figs. 3.17 and 3.18. In all these figures, the response sensitiv-

ity results obtained using the consistent Direct Differentiation Method (DDM) are com-

pared directly with their counterparts obtained through Forward Finite Difference (FFD)

analysis for three different values of perturbation of the sensitivity parameter, carefully

selected to clearly show the asymptotic convergence of the FFD results towards the ana-

lytical DDM results. This convergence is further evidenced by the zoom views shown in

the insets of Figs. 3.6 through 3.9 and 3.13 through 3.18. For this example, it can be con-

χ
p

t 6.00  sec=
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cluded that the FFD results validate both the response sensitivity analysis procedure pre-

sented in this paper and its implementation in FEDEASLab. 

For quasi-static analysis, it is worth noting the presence of discontinuities in the

response sensitivities to the initial yield moment  for both global and local response

quantities. These discontinuities occur in time/load steps during which elastic-to-plastic

material state transitions take place at some integration points (Figs. 3.7 and 3.9). The

response sensitivity algorithm developed propagates consistently the discontinuities in

response sensitivities from the material, to the section, to the element, and to the structure

level, as confirmed by the FFD computations in this example. The sensitivity results

obtained for this example also show that, among the sensitivity parameters considered,

both the global and local response quantities selected are most sensitive to the initial yield

moment My0

My0
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Figure 3.6 Global response sensitivities to material parameters: tip vertical dis-
placement sensitivity to kinematic hardening modulus, Hkin. 
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ment sensitivity to initial yield moment, My0. 
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Figure 3.8 Local response sensitivities to material parameters: cumulative plastic
curvature sensitivity to kinematic hardening modulus, Hkin. 

χp
∂ H

ki
n

∂----
----

-----
H

ki
n

⋅

R  [N]

a

bc

d e

−1 −0.5 0 0.5 1 1.5

x 10
5

−0.1

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

P (kN)

DDM
ΔM

y0
/M

y0
 = 0.1

ΔM
y0

/M
y0

 = 0.05
ΔM

y0
/M

y0
 = 0.001
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curvature sensitivity to initial yield moment, My0.

χp
∂ M

y0
∂----

----
-----

M
y0

⋅

R  [N]

a

b

cd

e



70
0 5 10 15 20 25 30 35
0

1000

2000

3000

4000

5000

Time (sec)

q 
(k

N
/m

)

0 5 10 15 20 25 30 35
−10

−5

0

5

10

Time (sec)

0 5 10 15 20 25 30 35
0

1000

2000

3000

4000

5000

Time (sec)

q 
(k

N
/m

)

0 5 10 15 20 25 30 35
−10

−5

0

5

10

Time (sec)

Figure 3.10 Loading histories for the dynamic analysis.
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Figure 3.12 Local response of the cantilever beam model for dynamic analy-
sis: (a) moment-curvature and (b) cumulative plastic curvature
history, at the fixed end.
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Figure 3.14 Global response sensitivities to material parameters: tip vertical displace-
ment sensitivity to initial yield moment, My0.
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Figure 3.16 Local response sensitivities to material parameters: cumulative plas-
tic curvature sensitivity to initial yield moment, My0.
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Figure 3.17 Global response sensitivities to loading parameters: tip vertical displace-
ment sensitivity to earthquake ground acceleration at time t = 6.00sec.
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3.5.5   Application example: 2-D frame with distributed plasticity

The second structure used as validation example is a five-story single-bay steel

moment-resisting frame, a FE model of which is shown in Figure 3.19. All columns and

beams are  steel I-beams with an initial yield moment of

. The material behavior is modeled as in the previous example (i.e.,

1-D J2 plasticity model for bending and linear elastic model for axial behavior). The

mechanical properties and effective mass density of the material are the same as in the pre-

vious model. It is worth mentioning that, even though it is assumed here that a single set of

material parameters characterizes all beams and columns of the frame, the DDM presented
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Figure 3.18 Local response sensitivities to loading parameters: cumulative
plastic curvature sensitivity to earthquake ground acceleration at
time t = 6.00sec.
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in this study is capable to account for multiple sets of material parameters for each mate-

rial model used. 

Each of the physical structural elements is modeled by a simplified Euler-Ber-

noulli force-based, distributed plasticity, 2-D frame element. The inertia properties of the

system are modeled through (translational) lumped masses applied at the nodes, each ele-

ment contributing half of its effective mass to each of its two nodes. The frame has an ini-

tial fundamental period of 0.52 sec. 

After application of gravity loads, this frame is subjected to (1) a nonlinear static

pushover analysis under an inverted triangular pattern of horizontal lateral loads applied at

floor levels as shown in Figure 3.19, with the time history described in Figure 3.20, and

(2) a nonlinear response history analysis for earthquake base excitation, with the same

seismic input, see Figure 3.10, as for the previous cantilever beam model. In the dynamic

analysis, the unconditionally stable constant average acceleration integration method is

used with a constant time step of Δt = 0.02 sec. 

Global response quantities (floor horizontal displacements) in the quasi-static

pushover analysis are given in Figs. 3.21. Figs. 3.22 through 3.27 show response sensitiv-

ity analysis results for the pushover analysis of the present frame structure. In Figs. 3.22

through 3.24, sensitivities to different material parameters (E, Hkin, and My0) of the roof

horizontal displacement (global response quantity) obtained through application of the
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DDM developed in this paper are compared with the corresponding FFD results. Figs.

3.25 through 3.27 show the sensitivities of the cumulative plastic curvature (local

response quantity) at the fixed section of the left base column (section A) to the same

material parameters as above, again with their FFD counterparts. 

For the dynamic analysis, the response histories of the same global and local

response quantities considered previously are shown in Figs. 3.28 and 3.29. Figs. 3.30

through 3.32 display the roof horizontal displacement sensitivities to Young’s modulus, E,

the kinematic hardening modulus, Hkin, and the initial yield moment, My0, respectively;

while the sensitivities of the cumulative plastic curvature at section A to the material sen-

sitivity parameters E, Hkin and My0 are plotted in Figs. 3.33 through 3.35. Finally, global

and local response sensitivities to the ground motion acceleration value at time

 are given in Figs. 3.36 and 3.37, respectively. Notice that the global

response sensitivity becomes non-zero directly at the time of perturbation of the ground

acceleration history, while the specific local response sensitivity considered here becomes

non-zero only after the first yielding subsequent to the time at which the ground accelera-

tion perturbation is applied. 

As in the first application example, the asymptotic convergence of the FFD results

(for decreasing perturbation Δθ of the sensitivity parameter) towards the response sensi-

tivities evaluated analytically through the DDM is highlighted by zoom views inserted in

t 6.00  sec=
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Figs. 3.22 through 3.27 and Figs. 3.30 through 3.37. All the response sensitivity results are

scaled by the sensitivity parameter itself according as in Section 5.4. The discontinuities in

the response sensitivities for both global and local quantities can be appreciated easily in

the quasi-static analysis results and with more careful inspection in the dynamic analysis

results. The discontinuities in the dynamic local response sensitivities often appear as

spikes. In this second more general application example, it can also be concluded that the

asymptotic convergence of the FFD results towards the DDM results validates both the

response sensitivity analysis procedure developed in this paper and its computer imple-

mentation in FEDEASLab. 

The response sensitivity results obtained for this specific application example also

show that: (1) in the quasi-static pushover analysis, the roof displacement is most sensitive

to changes in the initial yield moment, My0, while the cumulative plastic curvature at sec-

tion A is most affected by perturbations in the value of the kinematic hardening modulus,

Hkin, and (2) in the dynamic analysis, the Young’s modulus, E, is the sensitivity parameter

that affects most, among the sensitivity parameters considered, both the global and local

response sensitivities considered. 
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Figure 3.19 Five story building model: geometry, self-weight and permanent loads,
quasi-static horizontal lateral load and floor displacements.
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Figure 3.21 Global response of the five story building model for pushover analysis:
force at the roof level versus floor horizontal displacements.
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Figure 3.22 Global response sensitivities to material parameters: roof displacement
sensitivity to Young’s modulus, E.
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Figure 3.23 Global response sensitivities to material parameters: roof displacement
sensitivity to kinematic hardening modulus, Hkin.
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Figure 3.24 Global response sensitivities to material parameters: roof displacement
sensitivity to initial yield moment, My0.
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Figure 3.25 Local response sensitivities to material parameters: sensitivity of cumu-
lative plastic curvature at section A to Young’s modulus, E.
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Figure 3.26 Local response sensitivities to material parameters: sensitivity of cumula-
tive plastic curvature at section A to kinematic hardening modulus, Hkin.
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Figure 3.27 Local response sensitivities to material parameters: sensitivity of cumula-
tive plastic curvature at section A to initial yield moment, My0.
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Figure 3.28 Global response of the five story building model for dynamic analysis:
floor displacement histories.
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Figure 3.29 Local response of the five story building model for dynamic anal-
ysis: (a) moment-curvature and (b) cumulative plastic curvature
history, at section A.
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Figure 3.30 Global response sensitivities to material parameters: roof displacement
sensitivity to Young’s modulus, E.
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Figure 3.31 Global response sensitivities to material parameters: roof displacement
sensitivity to kinematic hardening modulus, Hkin.
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Figure 3.32 Global response sensitivities to material parameters: roof displacement
sensitivity to initial yield moment, My0.
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Figure 3.33 Local response sensitivities to material parameters: sensitivity of cumu-
lative plastic curvature at section A to Young’s modulus, E. 
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Figure 3.34 Local response sensitivities to material parameters: sensitivity of cumula-
tive plastic curvature at section A to kinematic hardening modulus, Hkin.
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Figure 3.35 Local response sensitivities to material parameters: sensitivity of cumu-
lative plastic curvature at section A to initial yield moment, My0.
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Figure 3.36 Global response sensitivities to loading parameters: roof displacement sen-
sitivity to earthquake ground acceleration at time t = 6.00sec. 
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3.6   CONCLUSIONS

The formulation of a new procedure to compute response sensitivities to material

constitutive parameters and discrete loading parameters for force-based materially-nonlin-

ear-only FE models of structural frame systems is presented. This formulation is based on

the consistent differentiation of the discrete equilibrium, compatibility, and constitutive

equations at the element and section (or integration point) levels. Key comparisons are

made between the existing displacement-based and the newly developed force-based FE

response sensitivity analysis procedures. Ample details about the implementation of the

formulated approach in a general-purpose nonlinear FE analysis program (FEDEASLab)
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Figure 3.37 Local response sensitivities to loading parameters: sensitivity of cumula-
tive plastic curvature at section A to earthquake ground acceleration at
time t = 6.00sec.
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based on the direct stiffness method are provided. The formulation is general and applies

to linear and nonlinear, static and dynamic structural analysis. 

Two application examples are presented, including a cantilever steel beam and a

five-story one bay steel frame, both subjected to static and dynamic loading. Without loss

of generality, the nonlinear inelastic material model used in the examples consists of the 1-

D J2 plasticity model, which describes the section moment-curvature constitutive law. The

method developed applies to any material model that can be formulated analytically. Glo-

bal and local response sensitivity results obtained analytically using the method developed

are compared to their counterparts computed using forward finite difference analysis. It is

found that the finite difference results approach asymptotically (for decreasing perturba-

tion Δθ of the sensitivity parameter) the analytical response sensitivity results, which vali-

dates both the new formulation for force-based structural response sensitivity analysis as

well as its implementation in a general-purpose nonlinear structural analysis program

(FEDEASLab). 

The superior force-based structural analysis methodology with the addition of the

method presented here for analytical sensitivity computation offers a powerful tool for any

kind of applications in which finite element response sensitivity analysis results are

needed. These applications include structural reliability, structural optimization, structural

identification, and finite element model updating. The extension of the work presented



89
here to include geometric nonlinearities will be the subject of future research by the

authors. 
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APPENDIX A:  FORCE-BASED FRAME ELEMENT 
FORMULATION

A.1   Notation

The algorithmic developments in this paper are based on the following notation for

a 2-D frame element also shown in Figure 3.38  

u: structure nodal displacement vector in global coordinates;

R: structure resisting force vector in global coordinates;

p1, P1

p2, P2

p3, P3

p4, P4

p5, P5

p6, P6

q 4, 
Q 4

q 5, 
Q 5

q 6, 
Q 6

q 1, 
Q 1

q 2, 
Q 2

q 3, 
Q 3

X

Y
x

y q y
q x

L

q 1, 
Q 1

q 3, 
Q 3

q 2, 
Q 2

y

x

Figure 3.38 Notation used for element end forces and degrees of freedom in (a) glo-
bal coordinates, (b) local element coordinates including rigid body
modes, and (c) local element coordinates without rigid body modes
(basic system coordinates). 
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(b)

(c)

I

J

I

J
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J
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Element nodal displacements in global coordinates:

Element nodal forces in global coordinates:

;  

 : “Boolean displacement address” matrix (displacement extracting operator). 

: “Boolean force address” matrix (force assembling operator).

Element nodal displacements in local coordinates (with rigid body modes):

Element nodal forces in local coordinates: 

; ;

; ;

 : rigid-end-zone transformation matrix;

 : global-local rotation matrix; 

p e( ) p1 p2 p3 p4 p5 p6
T

=

P e( ) P1 P2 P3 P4 P5 P6
T

=

p e( ) Ab
e( ) u⋅= R Ab

e( )( )
T

P e( )⋅
⎩ ⎭
⎨ ⎬
⎧ ⎫

e 1=

Nel

∑=

Ab
e( )

Ab
e( )( )

T

q e( ) q1 q2 q3 q4 q5 q6
T

=

Q e( ) Q1 Q2 Q3 Q4 Q5 Q6
T

=

q e( )
�ROT

e( )
�REZ

e( ) p e( )⋅⋅= P e( )
�REZ

e( )T
�ROT

e( )T Q e( )
⋅ ⋅=

�ROT
e( ) R e( ) 0

0 R e( )
= R e( )

αcos αsin 0
αsin– αcos 0

0 0 1
=

�REZ
e( )

�ROT
e( )
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Element deformations in basic system:

where  represents the overall axial deformation of the member, while  and 

denote the element end rotations relative to the chord. 

Element end forces in basic system:

where  represents the element axial force (constant in the absence of element distrib-

uted axial loads), and  and  denote the element end moments. 

; ;

 : transformation matrix that removes the rigid body modes

A.2   Newton-Raphson incremental-iterative procedure

This section summarizes the structure state determination procedure performed at

the end of the (i+1)-th global Newton-Raphson iteration (at the structure level) for the

(n+1)-th load step, according to the force-based frame element methodology (Spacone et

al. 1996a; Neuenhofer and Filippou 1997). This procedure is needed in formulating the

response sensitivity algorithm, since the latter is developed through exact differentiation

of the space and the time discrete equations for the finite element response. The structure

q e( ) q1 q2 q3
T

δ θ1 θ2=
T

=

δ θ1 θ2

Q e( ) Q1 Q2 Q3
T

N M1 M2=
T

=

N

M1 M2

q e( )
�RBM

e( ) q e( )⋅= Q e( )
�RBM

e( )T Q e( )⋅= �RBM
e( )

1– 0 0 1 0 0

0 1
L
--- 1 0 1

L
---– 0

0 1
L
--- 0 0 1

L
---– 1

=

�RBM
e( )
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state determination procedure is obtained through direct stiffness assembly of the results

of the element state determination procedure which is summarized below. The element

state determination procedure is iterative in nature and the superscript j is used to denote

the iteration number for the element state determination. The superscript i is used to

denote the iteration number of the global Newton-Raphson procedure at the structure

level. 

A.2.1   Element state determination:

(1) Initialization:

 : element consistent tangent stiffness matrix; (3.50)

 : element end forces in the basic system; (3.51)

 : section forces; (3.52)

 : section deformations; (3.53)

 : residual section deformation vector; (3.54)

 : section (consistent) tangent flexibility matrix. (3.55)

(2) Iterations (j = 1, 2, 3, ...):

Given the last incremental structure nodal displacement vector for the (n+1)-th load

step, , we obtain the last incremental basic element deformation vector,

, as1

kT
j 0= kT

i=

Qj 0= Qi=

Dj 0= x( ) Di x( )=

dj 0= x( ) di x( )=

rj 0= x( ) 0=

fs
j 0= x( ) fs

i x( )=

δun 1+
i 1+

δqn 1+
i 1+
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(3.56)

We then compute:

 : increment of element end forces in the basic system;(3.57)

 : updated element end forces in the basic system; (3.58)

 : updated section forces at section x (3.59)

in which  is the matrix of internal force interpolation functions (satisfying equi-

librium locally) and  is the vector of the section forces due to external forces

applied along the statically determined basic system;

 : section force increments; (3.60)

 : section deformation increments; (3.61)

 : updated total section deformations; (3.62)

(2.1) Section state determination:

 : section resisting forces; (3.63)

 : updated section tangent flexibility matrix; (3.64)

 : updated residual section deformations; (3.65)

1. To simplify the notation in this section, we drop both the subscript  representing the time/load step

and the superscript  representing the iteration number of the global (structure level) Newton-Raph-

son iteration cycle. 

…( )n 1+

…( )i 1+

δqj 1=
�RBM

e( )
�ROT

e( )
�REZ

e( )⋅ ⋅( ) Ab
e( ) δui 1+⋅ ⋅ �

e( ) Ab
e( ) δui 1+⋅ ⋅= =

δQj kT
j 1– δqj=

Qj Qj 1– δQj+=

Dj x( ) b x( )Qj Dp x( )+=

b x( )

Dp x( )

δDj x( ) Dj x( ) Dj 1– x( )–=

δdj x( ) fs
j 1– x( ) δD⋅

j
x( ) rj 1– x( )+=

dj x( ) dj 1– x( ) δd+
j

x( )=

DR
j x( ) DR dj x( )[ ]=

fs
j x( ) fs dj x( )[ ]=

rj x( ) fs
j x( ) Dj x( ) DR

j x( )–[ ]⋅=
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 : updated element tangent flexibility matrix; (3.66)

 : updated element tangent stiffness matrix; (3.67)

 : element residual deformations. (3.68)

where the section resisting forces  and section tangent flexibility matrix 

are evaluated through the section force-deformation relation.

(2.2) Checking convergence:

If , the element iterative state determination

procedure is converged: update section and element variables and build the consistent

tangent stiffness matrix and the internal resisting force vector of the structure through

direct stiffness assembly. Otherwise (if not converged), perform another iteration (j+1)

of element state determination using:

(3.69)

go to (3.57) with  and repeat (3.57) through (3.69) until convergence is

achieved. 

(3) Updating:

 : updated element consistent tangent stiffness 

matrix; (3.70)

 : updated element end forces in the basic system; (3.71)

fT
j bT x( ) fs

j⋅
0

L

∫ x( ) b x( ) dx⋅ ⋅=

kT
j fT

j[ ]
1–

=

sj bT x( ) rj x( )⋅
0

L

∫ dx⋅=

DR
j x( ) fs

j x( )

sj( )
T

k⋅ T
j

sj⋅

δqj 1=( )
T

kT
j 0= δqj 1=⋅ ⋅

-------------------------------------------------------------   tolerance ≤

δqj 1+ sj–=

j j 1+=

kT
i 1+ kT conv,

j=

Qi 1+ Qconv
j=
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 : updated section forces; (3.72)

 : updated section deformations; (3.73)

 : updated section consistent tangent flexibility 

matrix (3.74)

(4) Direct stiffness assembly:

 : (3.75)

current structure resisting force vector;

 : (3.76)

current structure consistent tangent stiffness matrix, where

(3.77)

As already mentioned before, a non-iterative alternative of the above (iterative)

element state determination procedure has been proposed by Neuenhofer and Filippou

(1997), which reduces the computational cost of nonlinear finite element analyses using

force-based frame elements. The algorithm developed below for finite element response

sensitivity analysis using force-based frame models applies to both the iterative and non-

iterative element state determination procedures.

Di 1+ x( ) Dconv
j x( )=

di 1+ x( ) dconv
j x( )=

fs
i 1+ x( ) fs conv,

j x( )=

R un 1+
i 1+( ) Ab

e( )( )
T

�REZ
e( )T

�ROT
e( )T

�RBM
e( )T Qn 1+

i 1+⋅ ⋅ ⋅ ⋅( )
e 1=

Nel

∑=

KT
stat( )n 1+

i 1+
Ab

e( )( )
T

�
e( )T fT n, 1+

i 1+[ ]
1–

�
e( ) Ab

e( )⋅ ⋅ ⋅ ⋅( )
e 1=

Nel

∑=

�
e( )

�RBM
e( )

�ROT
e( )

�REZ
e( )⋅ ⋅=
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APPENDIX B:  MATERIAL RESPONSE INTEGRATION SCHEME 

FOR 1-D J2 PLASTICITY MODEL

The 1-D J2 rate constitutive equations must be integrated numerically to obtain the

stress history for a given strain history. Using the implicit backward Euler scheme to time-

discretize the rate equations over the time step [tn, tn+1], with step size , we

obtain the following discretized material constitutive equations:

(1) Additive split of the total strain:

(3.78)

(2) Elastic stress-strain relation:

(3.79)

(3) Flow rule:

(3.80)

where  is the discrete consistency parameter.

(4) Hardening laws (linear kinematic and linear isotropic hardening):

(3.81)

(5) Kuhn-Tucker loading/unloading and plastic consistency conditions:

Δt tn 1+ tn–=

εn 1+ εn 1+
e εn 1+

p+=

σn 1+ E εn 1+
e⋅=

εn 1+
p εn

p Δλ( )n 1+ σn 1+ αn 1+–( )sgn⋅+=

Δλ( )n 1+ λ· td⋅
tn

tn 1+

∫ λ· n 1+ Δt⋅≅=

αn 1+ αn Hkin Δλ( )n 1+ σn 1+ αn 1+–( )sgn⋅ ⋅+=

εn 1+
p

εn
p

Δλ( )n 1++=

σy n 1+, σy n, Hiso Δλ( )n 1+⋅+=
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,  and 

(3.82)

As a particular 1-D application of the very effective elastic-plastic operator split

method with a concept of return map which is based on the notion of closest-point-projec-

tion in the stress space (Simo and Hughes 1998), the above discretized constitutive equa-

tions are solved for stress component  in two steps, namely (1) a trial elastic step and

(2) a plastic corrector step. In the trial elastic step, the plastic response is frozen and, con-

sequently, all of the current total strain increment ( ) is assumed to be

elastic. If the stress computed under this assumption satisfies the yield condition, then the

current step is elastic and the integration of the material constitutive law over time step [tn,

tn+1] is complete. Otherwise, the above discrete constitutive equations are solved for the

discrete consistency parameter  and finally for  (by the return map algo-

rithm). The procedure is summarized below. 

Δλ( )n 1+ 0≥ f σn 1+ αn 1+ εn 1+
p

, ,( )  0≤

Δλ( )n 1+ f σn 1+ αn 1+ εn 1+
p

, ,( )⋅ 0=

σn 1+

Δεn 1+ εn 1+ εn–=

Δλ( )n 1+ σn 1+
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Trial Elastic State:

(3.83)

IF  { } THEN

Update all the history/state variables at time tn+1 by assigning the corresponding trial

values to them, i.e., . 

Compute the consistent material tangent stiffness: 

(3.84)

and EXIT. 

ELSE 

Plastic Corrector Step Using the Return Map Algorithm:

The plastic corrector step is based upon satisfying the consistency condition in discrete

form:

(3.85)

where 

Δλ( )n 1+
Trial 0=

εn 1+
p( )

Trial
εn

p=

αn 1+
Trial αn=

εn 1+
p

( )
Trial

εn
p=

σn 1+
Trial E εn 1+ εn

p–( )=

σy n 1+,
Trial σy n,=

f σn 1+
Trial αn 1+

Trial εn 1+
p

( )
Trial

, ,( )  0≤

…( )n 1+ …( )n 1+
Trial=

ET n, 1+ E=

fn 1+ σn 1+ αn 1+– σy n 1+,– 0= =
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(3.86)

(3.87)

(3.88)

From (3.86) and (3.87), it can be shown that

(3.89)

and

(3.90)

Substituting (3.88) and (3.90) in Equation (3.85), the discrete consistency condition

can be rewritten as

(3.91)

The discrete consistency parameter  can be obtained from the above equation

as

(3.92)

It can be shown that the consistent tangent material stiffness is given by

(3.93)

σn 1+ E εn 1+ εn 1+
p–( )⋅=

E  εn 1+ εn
p Δλ( )n 1+ σn 1+ αn 1+–( )sgn⋅[ ]––{ }⋅=

σn 1+
Trial E Δλ( )n 1+ σn 1+ αn 1+–( )sgn⋅ ⋅–=

αn 1+ αn Hkin Δλ( )n 1+ σn 1+ αn 1+–( )sgn⋅⋅+=

αn 1+
Trial Hkin Δλ( )n 1+ σn 1+ αn 1+–( )sgn⋅ ⋅+=

σy n 1+, σy n, Hiso Δλ( )n 1+⋅+=

σn 1+ αn 1+–( )sgn σn 1+
Trial αn 1+

Trial–( )sgn nn 1+≡=

σn 1+ αn 1+– σn 1+
Trial αn 1+

Trial– E Hkin+( ) Δλ( )⋅ n 1+–=

σn 1+
Trial αn 1+

Trial– E Hkin+( ) Δλ( )n 1+⋅– σy n,– Hiso Δλ( )n 1+⋅– 0=

Δλ( )n 1+

Δλ( )n 1+
σn 1+

Trial αn 1+
Trial– σy n,–

E Hiso Hkin+ +
-----------------------------------------------------=

ET n, 1+ E
Hiso Hkin+

E Hiso Hkin+ +
-------------------------------------⋅=
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Given  and once  is known, the material history/state variables at time

tn+1 (i.e., , , , , ) are obtained from (3.80), (3.81), and

(3.86). The above discrete constitutive integration scheme for 1-D J2 plasticity is rep-

resented graphically in Figure 3.39 for an elasto-plastic step. 

Note that the terms  and  in the above equations correspond to the terms

 and  in (3.28), (3.32) and (3.34), while the term  in

Equation (3.30) corresponds to , given by Equation (3.84) or Equation (3.93)

depending on the material state (i.e., elastic or plastic, respectively).

εn 1+ Δλ( )n 1+

εn 1+
p σn 1+ αn 1+ εn 1+

p
σy n 1+,

σn 1+ εn 1+

σn 1+
2( ) x( ) χn 1+ x( ) ET n, 1+

2( ) x( )

ET n, 1+
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Figure 3.39 Return map algorithm for 1-D J2 (von Mises) plasticity model with pure
kinematic hardening (Hiso = 0). 
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CHAPTER 4

DDM-BASED FINITE ELEMENT 
RESPONSE SENSITIVITY ANALYSIS FOR 
STEEL-CONCRETE COMPOSITE FRAME 

STRUCTURES

4.1   INTRODUCTION

The last decade has seen a growing interest in finite element modeling and analysis

of steel-concrete composite structures, with applications to seismic resistant frames and

bridges (Spacone and El-Tawil 2004). The behavior of composite beams, made of two

components connected through shear connectors to form an interacting unit, is signifi-

cantly influenced by the type of connection between the steel beam and the concrete slab.

Flexible shear connectors allow development of partial composite action (Oehlers and

Bradford 2000) and, for accurate analytical response predictions, structural models of

composite structures must account for the interlayer slip between the steel and concrete

components. Thus, a composite beam finite element able to capture the interface slip is an

essential tool for model-based response simulation of steel-concrete composite structures.

The three-dimensional model for composite beams with deformable shear connection

under general state of stress developed by Dall'Asta (2001) simplifies to the model intro-

duced by Newmark et al. (1951) if only the in-plane bending behavior is considered. In the

Newmark’s model, the geometrically linear Euler-Bernoulli beam theory (i.e., small dis-
105
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placements, rotations and strains) is used to model the two parts of the composite beam;

the effects of the deformable shear connection are accounted for by using an interface

model with distributed bond, while the contact between the steel and concrete components

is enforced (Fig. 4.1). The interface slip is small since it is given by the difference in lon-

gitudinal displacements of the steel and concrete fibers at the steel-concrete interface.

Figure 4.1 Kinematics of 2-D composite beam model

Compared to common monolithic beams, composite beams with deformable shear

connection present additional difficulties. Even in very simple structural systems (e.g.,

simply supported beams), complex distributions of the interface slip and force can

develop; furthermore these distributions can be very sensitive to the shear connection

properties. Different finite elements representing composite beams with deformable shear

connection have been proposed in the literature (Dall'Asta and Zona 2004a, Spacone and

El-Tawil 2004). Despite the difficulties encountered in the nonlinear range of structural

behavior, locking-free displacement-based elements (such as the one used in this study)
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produce accurate global and local results provided that the structure is properly discretized

(Dall'Asta and Zona 2002, 2003, 2004a, 2004b, 2004c). Locking-free displacement-based

elements were used successfully for accurate analysis of steel-concrete composite beam

structures even in the case of very high gradients of the interface slip due for example to

horizontal concentrated forces produced by external prestressing cables (Dall’Asta and

Zona 2005). 

Beyond research activities in model-based simulation of structures, recent years

have seen a growing interest in the analysis of structural response sensitivity to various

geometric, mechanical, and material properties defining the structure, and to loading

parameters. Indeed, finite element response sensitivities represent an essential ingredient

for gradient-based optimization methods needed in various sub-fields of structural engi-

neering such as structural optimization, structural reliability analysis, structural identifica-

tion, and finite element model updating (Ditlevsen 1996; Kleiber et al. 1997). In addition,

finite element response sensitivities are invaluable for gaining deeper insight into the

effect and relative importance of system and loading parameters in regards to structural

response behavior.

This study focuses on materially-nonlinear-only static response sensitivity analysis

using displacement-based, locking-free finite elements for composite beams with deform-

able shear connection (Dall'Asta and Zona 2002). Realistic uniaxial cyclic constitutive

laws are adopted for the steel and concrete materials of the beam and for the shear connec-

tion. The monotonic and cyclic responses of these material and resulting finite element

models are validated through comparison with experimental test results available in the
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literature (Ansourian 1981, Bursi and Gramola 2000). The finite element response sensi-

tivity analysis is performed following the Direct Differentiation Method (DDM) and vali-

dated by means of Forward Finite Difference (FFD) analysis (Conte 2001, Conte et al.

2003) in the context of two realistic steel-concrete testbed structures considered in this

study. The first benchmark structure consists of a non-symmetric two-span continuous

beam subjected to a monotonically increasing concentrated force, while the second bench-

mark structure is a frame sub-assemblage under cyclic loading. Results of sensitivity anal-

ysis are used to investigate and quantify the effect and relative importance of the various

material parameters in regards to the monotonic and cyclic nonlinear response of the two

testbed structures considered. 

4.2   RESPONSE SENSITIVITY ANALYSIS AT THE ELEMENT 
LEVEL

The calculation of the conditional derivative of the element resisting force vector

on the RHS of the sensitivity equation is performed at the element level. Since displace-

ment-based locking-free frame elements for composite beams with deformable shear con-

nection have internal nodes (Dall’Asta and Zona 2004b), the element internal resisting

force vector needed to assemble the structure resisting force vector is obtained after static

condensation of the internal degrees of freedom (DOFs). The static condensation of the

internal DOFs is an algebraic procedure (Bathe 1995), corresponding to a partial Gauss

elimination, commonly used in finite elements with internal nodes (or DOFs) in order to

reduce the size of the system of equilibrium equations to be solved at the structure level.



109
The element nodal displacement vector q and element nodal resisting force vector

Q can be partitioned according to the external (subscript e) and internal (subscript i) DOFs

as

 and  (4.1)

The linearized incremental equilibrium equations at the element level can be writ-

ten in partitioned form as

(4.2)

where  and  represent linearized increments of  and , respectively,  and 

denote the quasi-static load vectors corresponding to the external and internal DOFs,

respectively, and the sub-matrices of the element tangent stiffness matrix are defined as

, , , (4.3)

where the conditioning on θ expresses the fact that these vector function derivatives are

evaluated for the unperturbed sensitivity parameter θ. In Eq. (4.2), it should be noted that

 also includes the effects of external distributed loads and internal resisting forces act-

ing over and within adjacent finite elements. After condensation of the internal DOFs, Eq.

(4.2) reduces to

(4.4)

where  , and
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(4.5)

In the above equations,  is the condensed element tangent stiffness matrix,  is the

condensed quasi-static load vector, and  is the condensed internal resisting force vec-

tor. At convergence of the response calculation at time tn+1, the incremental quantities

, , and  in Eqs. (4.2) and (4.4) reduce to zero (within a small finite precision

dependent on the prescribed tolerance) and the quantities appearing in Eq. (4.5) must be

considered as computed at time tn+1. In particular, this implies that the matrices , ,

, , and  are the consistent tangent stiffness matrices obtained through consistent

linearization of the equilibrium equations at time tn+1. Thus, they must be considered as

constant quantities with respect to , ,  (since they are linearizing constants) and 

(since evaluated at ). 

After static condensation, the conditional sensitivities of the nonlinear inelastic

resisting forces reduces to

(4.6)

where  denotes the condensed vector of structure resisting forces. In the following, the

subscript “n+1” is omitted for the sake of brevity. 

Differentiating Eq. (4.5)3 with respect to qi for θ fixed and using Eq. (4.3) yields
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(4.7)

The above equation indicates that Qc is independent of qi for θ fixed. Thus, 

(4.8)

Differentiating Eq. (4.5)3 with respect to θ gives

(4.9)

Differentiating Eq. (4.8) with respect to θ using the implicit function theorem of differen-

tiation results in

(4.10)

which can be rewritten as, using Eqs. (4.5)1 and (4.5)3, 

(4.11)

In Eq. (4.11), the only term that remains to be derived is . This term is

extremely important, since it is needed to assemble the conditional derivative/sensitivity

of the condensed internal resisting force vector at the structure level as expressed in Eq.

(4.6). It is computed through substituting Eq. (4.9) into Eq. (4.11) after solving for 

and  as follows.
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In general, we have the following functional dependence of vectors Qe and Qi on

the sensitivity parameter θ:

(4.12)

Applying the implicit function theorem of differentiation to Eq. (4.12) yields

(4.13)

After solving the matrix sensitivity equation at the structure level, only the uncon-

ditional derivatives, , of the element external DOFs in local coordinates are known.

Thus, it is necessary to compute at the element level the unconditioned derivatives, ,

of the element internal DOFs in local coordinates. In fact, the unconditioned sensitivities

of the history/state variables at the section level can be updated only if the unconditional

derivatives of all the element DOFs (external and internal) are known.

The equilibrium equation written at the element level implies that the following

relations are verified at convergence, up to a small numerical tolerance:

(4.14)
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where the zero equalities are satisfied up to some iteration residuals. Differentiating Eq.

(4.14)2 with respect to θ yields

(4.15)

The term  depends only on the distributed and/or concentrated external forces

applied on the internal nodes. Therefore,  and consequently  can be considered as

known and if the parameter θ is not related to the element distributed loads, we have

(4.16)

Substituting Eq. (4.16) into Eq. (4.13)2 and solving for  yields

(4.17)

Substituting Eq. (4.17) into Eq. (4.13)1 and performing some algebraic manipulations

yield

(4.18)

By comparing Eq. (4.18) with Eq. (4.11), using Eq. (4.9), we deduce that

(4.19)
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The conditional derivatives  and  are obtained as

(4.20)

where D denotes the vector of active stress resultants at the section level and B is the

transformation matrix between the vector of element nodal displacements q and the vector

of generalized section deformations d (i.e., compatibility equation

). The calculation of the conditional derivative on the RHS of Eq.

(4.20) is carried out at the section level. 

4.3   RESPONSE SENSITIVITY ANALYSIS AT THE SECTION 
LEVEL

In the case of a composite beam with deformable shear connection, the vector of

generalized section deformations is defined as (Dall’Asta and Zona 2004a)

(4.21)

where ε1 and ε2 are the axial strains at the reference points G1 (concrete slab) and G2 (steel

beam), respectively (Fig. 4.1), χ is the curvature (same for concrete slab and steel beam)

and δ is the slip at the interface between the concrete slab and the steel beam. The vector

of section stress resultants is defined as (Dall’Asta and Zona 2004a)

(4.22)
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where N1 is the axial force in the concrete slab, N2 is the axial force in the steel beam, M12

is the summation of the bending moments in the concrete slab and steel beam, and fs is the

interface shear force per unit length. The stress resultants N1, N2 and M12 are calculated

through numerical integration over the concrete and steel parts of the beam cross-section,

which are discretized using a fiber model. 

The calculation of the conditional derivative (for q fixed and therefore for d fixed)

of the vector of section stress resultants in Eq. (4.20) is carried out as

, (4.23)

(4.24)

where σ is the normal stress; y1 and y2 are the reference points of the two components of

the composite beam (Fig. 4.1); and A1 and A2 are the cross-section areas of the concrete

slab and steel beam, respectively. The conditional derivative on the RHS of Eqs. (4.23)

and (4.24) and the conditional derivative of fs (given d) are calculated at the material level,

hence the (discretized) material constitutive equations must be defined and differentiated

analytically with respect to the sensitivity parameter θ.

After solving the sensitivity equations at the structure level in condensed form for

 and calculating the unconditional derivatives of the displacements at the

(external and internal) nodes,  and , the unconditioned sensitivities of the

generalized section deformations and section stress resultants are updated. The sensitivi-
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ties of the section deformations are obtained using the compatibility relations, while the

sensitivities of the section stress resultants are evaluated using the unconditional deriva-

tives (with respect to the sensitivity parameter θ) of the material constitutive relations, i.e., 

, (4.25)

(4.26)

4.4   RESPONSE SENSITIVITY ANALYSIS AT THE MATERIAL 
LEVEL

For every (discretized) material constitutive model, the conditional and uncondi-

tional derivatives of the material state/history variables must be evaluated analytically

with respect to the relevant material (sensitivity) parameters. This can be a challenging

task when complex cyclic constitutive models are adopted, as is the case in this study.

The constitutive law used for the steel of the beam and for the reinforcements in

the concrete slab is a uniaxial cyclic plasticity model with the von Mises yield criterion in

conjunction with linear kinematic and isotropic hardening laws. This is the well-known

bilinear inelastic material constitutive model. Detailed formulation and differentiation of

this model can be found in Conte et al. (2003). The parameters of this material model con-

sist of (1) Young’s modulus of elasticity E, (2) the initial yield stress fy, (3) the linear kine-

matic hardening modulus Hk, and (4) the linear isotropic hardening modulus Hi. 
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The selected constitutive law for the concrete material is a uniaxial cyclic law with

monotonic envelope given by the Popovics-Saenz law (Balan et al. 1997, 2001, Kwon and

Spacone 2002). A typical cyclic response of the concrete material model adopted herein is

given in Fig. 4.2. Detailed formulation and differentiation of this model can be found in

Zona et al. (2004). The parameters of this material model consists of (1) the initial modu-

lus of elasticity Ec, (2) the compressive strength fc and (3) the corresponding strain ε0, (4)

the stress ff and (5) the corresponding strain εf of the control point (inflection point) of the

softening branch. 

Figure 4.2 Hysteretic concrete material model

The constitutive law used for the shear connectors is a slip-force cyclic law with

monotonic envelope given by the Ollgaard et al. (1971) law. The cyclic response of the

shear connectors is a modified version of the model proposed by Eligehausen et al. (1983)

and is similar to the model used by Salari and Spacone (2001). A typical cyclic response

of the constitutive model for the shear connectors used in this study is shown in Fig. 4.3.
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Detailed formulation and differentiation of this model can be found in Zona et al. (2004).

The parameters of the connection “material” model consist of (1) the connection strength

fsmax, (2) the ultimate slip δult, and (3) the friction parameter τfr, see Fig. 4.3. 

Figure 4.3 Hysteretic model of shear connection

4.5   COMPUTER IMPLEMENTATION

The above formulation for finite element response sensitivity analysis using com-

posite beam elements with deformable shear connection was implemented in FEDEA-

SLab (Filippou 2002), a general-purpose nonlinear finite element structural analysis

program. FEDEASLab is a Matlab (MathWorks 1997) toolbox suitable for linear and non-

linear, static and dynamic structural analysis, which provides a general framework for

physical parameterization of finite element models and response sensitivity computation

(Franchin 2004). 
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4.6   VALIDATION EXAMPLES

4.6.1   Nonlinear monotonic quasi-static test

The first benchmark problem considered is a non-symmetric two-span continuous

beam (Figure 4.4), tested by Ansourian (1981) under monotonic quasi-static loading. The

beam, denoted CTB1 in (Ansourian 1981), has two spans 4.00 m and 5.00 m long and is

subjected to a vertical concentrated load P applied at the mid-point of the shorter span.

The joist section is an European IPE200; the reinforced concrete slab section is

. Due to the relatively narrow width of the concrete slab, shear lag effects

are neglected in its modeling. The reader is referred to (Ansourian 1981) for all details

regarding the geometry and material properties. This problem presents all the main diffi-

culties typically encountered in the analysis of steel-concrete composite structures, such as

concrete softening in compression, concrete cracking in tension, and high gradients of slip

and shear force along the connection (Dall’Asta and Zona 2002, 2004c). The structure is

discretized uniformly into 18 10-DOF elements, see Fig. 4.4, with 5 Gauss-Lobatto points

each (Dall’Asta and Zona 2003, 2004c). 

100 800 mm2×
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Figure 4.4 (a) Configuration of the Ansourian CTB1 continuous beam, 

(b) degrees of freedom of the 10-DOF composite beam element used

A quasi-static, monotonic, materially-nonlinear-only analysis of the beam struc-

ture is performed using the incremental-iterative procedure defined above in displace-

ment-control mode with the vertical displacement at the point of application of the load

taken as the controlled DOF, thus mimicking the physical experiment. The computed load-

deflection curves for the two spans are shown in Fig. 4.5, where they are compared with

the experimental results. It is observed that the analytical predictions are in very good

agreement with the experimental results. It is worth mentioning that in spite of the fact that

the loading is monotonic, small unloading and reloading events are experienced at a few

Gauss-Lobatto points due to internal stress redistribution. However, these events do not

significantly affect the overall response, i.e., practically the same results are obtained with

nonlinear elastic constitutive laws with the same monotonic envelope neglecting the

cyclic behavior (Dall’Asta and Zona 2003, 2004c).
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Figure 4.5 Beam CTB1: load-deflection curves

Sensitivities of various global and local response quantities to all material parame-

ters were computed using DDM and FFD. Due to space limitation, only the sensitivities to

the most important material parameters (i.e., the parameters to which the response in ques-

tion is most sensitive) are shown below. The reader is referred to Zona et al. (2004) for an

exhaustive presentation of the response sensitivity analysis. The sensitivity results are pre-

sented in normalized form, i.e., multiplied by the value of the sensitivity parameter and

divided by the value of the response quantity itself. Thus, the normalized sensitivities rep-

resent the percent variation of the subject response quantity for a unitary percent variation

of the sensitivity parameter. In this way, the normalized response sensitivities reveal

directly the relative importance of all the material parameters considered in regards to a

given response quantity at various loading stages of the structure.

Sensitivities of three global response quantities (i.e., rotation ϕ1 at the left support,

rotation ϕ2 at the intermediate support and deflection v3 at mid-point of the non-loaded
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span, see Figure 4.4) to the four most important parameters (i.e., modulus of elasticity E0

and yield stress fy of the steel beam material, compressive strength fc of the concrete, and

strength fsmax of the shear connection) are shown in Figs. 4.6 through 4.9. The sensitivities

are plotted as functions of the ratio of the deflection v at mid-point of the loaded span to its

value at collapse vult predicted analytically (collapse being defined as the point at which

the ultimate strain or the ultimate slip is reached for the first time along any of the material

fibers or along the shear connection, respectively). It can be observed that the response

sensitivities to fy are null before yielding occurs for the first time (Fig. 4.6) as expected

since prior to first yield, fy does not affect the response. Some of the response sensitivities

are characterized by strong discontinuities, due to material state transitions from the elas-

tic to the plastic regime at Gauss-Lobatto point (Conte 2001, Conte et al. 2001, 2003).

These discontinuities appear to be strongly dependent on the load level. The jagged

response sensitivities obtained are the manifestation of a complex structural behavior in

which important redistributions of deformation and stress occur between the steel beam

and the reinforced concrete slab through the shear connection, which behaves nonlinearly

from very small slip values. Among the three degrees of freedom considered, the vertical

deflection v3 at mid-point of the non-loaded span is the most sensitive response quantity

for every parameter considered. This can be explained in part by the fact that v3 is more

distant from the controlled degree of freedom than the other two degrees of freedom con-

sidered. The sensitivities of the displacement along the controlled degree of freedom (i.e.,

vertical displacement at the point of application of the load) are always zero.
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Figure 4.6 Beam CTB1: global response sensitivities to fy 

Figure 4.7 Beam CTB1: global response sensitivities to E0 
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Figure 4.8 Beam CTB1: global response sensitivities to fc 

Figure 4.9 Beam CTB1: global response sensitivities to fsmax 

The normalized sensitivities of v3 to the four material parameters considered are

compared in Fig. 4.10. In this way, it is possible to clearly highlight and quantify the rela-

tive importance of the various material parameters at different load levels. For example, it

can be observed that the sensitivities to E0 and fsmax are the most important at the early
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stage of the loading history, while as yielding spreads along the steel beam, material

parameter fy becomes increasingly important relative to the other parameters. Similar con-

siderations apply to material parameter fc, to which the sensitivity of v3 increases signifi-

cantly with increasing load level, even though the strength parameter fc remains less

important than the strength parameter fy at high load levels. 

Figure 4.10 Beam CTB1: Sensitivity of global response v3 to fy, E0, fc and fsmax
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plastic) are more pronounced than at the global response level. It is also observed that at

high load level (ν/νult > 0.7), the sensitivities of the local response fs increase more

strongly with the load level than the global response sensitivities previously considered

(see Figs. 4.6 to 4.10). 

Figure 4.11 Beam CTB1: sensitivity of shear force fs (at different locations) to fc

Figure 4.12 Beam CTB1: sensitivity of shear force fs (at different locations) to fy
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Figure 4.13 Beam CTB1: sensitivity of shear force fs (at different locations) to fsmax

Figure 4.14 Beam CTB1: sensitivity of shear force fs (at z = 6.50 m) to fc, fy and fsmax.
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loaded span to the shear connection strength fsmax (Fig. 4.15 and close-up in Fig. 4.16);

four levels of perturbation of parameter fsmax were considered, namely Δθ/θ = 10−1, 10−2,

10−3, 10−6. The second case considered is the sensitivity of the interface shear force fs at

mid-span of the non-loaded span (z = 6.50 m) to the concrete compressive strength fc (Fig.

4.17 with close-up in Fig. 4.18). The same four levels of perturbation were considered for

parameter fc (Δθ/θ = 10−1, 10−2, 10−3, 10−6). In both cases, it is shown that the FFD results

converge asymptotically to the DDM results as Δθ/θ becomes increasingly small, and that

the FFD results for Δθ/θ = 10−3 are close to the DDM results. 

Figure 4.15 Beam CTB1: sensitivity of mid-span deflection v3 to fsmax using DDM and

FFD
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Figure 4.16 Beam CTB1: sensitivity of mid-span deflection v3 to fsmax using DDM and

FFD (close-up)

Figure 4.17 Beam CTB1: sensitivity of shear force fs to fc using DDM and FFD
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Figure 4.18 Beam CTB1: sensitivity of shear force fs to fc using DDM and FFD (close-

up)
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values of the tolerance δ (i.e., δ = 10−8 and δ = 10−16). Fig. 4.21 shows the same sensitiv-

ity results, but using a perturbation Δfsmax/fsmax = 10−3 for the FFD analysis. In this case,

it is noticed that the FFD results are not in good agreement with the DDM results when an

insufficiently small tolerance (δ = 10−8) is adopted for the iterative response calculation.

This example and other examples in Zona et al. (2004) show that the choice of a strict

enough convergence tolerance for the iterative response calculation is important for

response sensitivity analysis, since the equilibrium equation (or the equation of motion for

the dynamic case) is the starting point of the DDM. Use of an inadequate convergence tol-

erance for response calculation may lead to loss of agreement between response sensitiv-

ity results obtained using the DDM and FFD analysis (e.g., an insufficiently small

convergence tolerance δ can lead to erroneous DDM results and very inaccurate FFD

results if the perturbation of the sensitivity parameter is “too small” in relation to δ). 

Figure 4.19 Beam CTB1: effect of convergence tolerance for response calculation on

DDM results
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Figure 4.20 Beam CTB1: effect of convergence tolerance for response calculation on

agreement between response sensitivity results obtained using DDM and

FFD (case in which FFD results converge to DDM)

Figure 4.21 Beam CTB1: effect of convergence tolerance for response calculation on

agreement between response sensitivity results obtained using DDM and

FFD (case in which FFD results do not converge to DDM)
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4.6.2   Nonlinear cyclic quasi-static test

The second benchmark problem considered is a frame sub-assemblage tested by

Bursi and Gramola (2000) subjected to quasi-static cyclic loading (Fig. 4.22). The frame

sub-assemblage, denoted as IPC (intermediate partial connection) in Bursi and Gramola

(2000), has a steel-concrete composite beam 4.00 m long made of a European IPE300

steel section and a reinforced concrete slab 1200 mm wide. The shear-lag effects are con-

sidered in a simplified way by reducing the slab width to 820 mm over the entire length of

the beam (Bursi and Gramola 2000). The steel column is a European HE360B section.

The reader is referred to Bursi and Gramola (2000) for all details regarding the geometry,

material properties, and the loading history. This sub-assemblage is representative of the

behavior of steel-concrete composite frames adopted for seismic-resistant buildings. In

addition to the difficulties encountered in the previous example, this case includes prob-

lems related to the more complex loading history which is cyclic. 

Figure 4.22 Frame IPC: configuration of test specimen

 

4.00 m 

1.
40

 m
 

P 

composite beam 

steel column 

no slip 



134
The frame sub-assemblage is uniformly discretized into 5 10-DOF composite

frame elements for the beam and one frame element for the column. A materially-nonlin-

ear-only cyclic, quasi-static analysis of the frame sub-assemblage is performed using the

incremental-iterative procedure defined above in displacement control mode with the hor-

izontal displacement of the steel beam centroid at the left end of the beam selected as the

controlled DOF (as in the experimental tests). The computed load-deflection curve is dis-

played in Fig. 4.23, where it is compared with the experimental results. It is observed that

analytical and experimental results are in good agreement, despite the fact that the finite

element model does not include the effects of local buckling (nonlinear geometry) in the

steel beam during the push phase of the cyclic loading in the last set of cycles. The extra

“fatness” of the computed hysteresis loops is due to the bilinear shape and lack of smooth-

ness of the 1-D J2 plasticity model used for the steel beam and the steel reinforcements in

the concrete slab. 

Figure 4.23 Frame IPC: load-deflection curves 
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Sensitivities of various global and local response quantities to all material parame-

ters were computed using DDM and FFD. Here, for the sake of brevity, only selected sen-

sitivity results are presented. The response sensitivities are only multiplied by the value of

the sensitivity parameter (and not divided by the value of the response which can be very

small due to its cyclic nature). The normalized sensitivities can thus be interpreted as hun-

dred times the change in the subject response quantity for a unitary percent variation of the

sensitivity parameter. 

The global response quantities considered in this example are the horizontal dis-

placement w of the steel beam centroid at the right-end of the beam and the vertical deflec-

tion v of the beam at mid-span; their analytical predictions are plotted in Fig. 4.24 as

functions of the load step number. The sensitivities of v are shown in Fig. 4.25 for the steel

beam material parameters (i.e., θ = yield stress fy, modulus of elasticity E0, and kinematic

hardening modulus Hk) and in Fig. 4.26 for material parameters related to the concrete

slab and the shear connection (θ = shear connection strength fsmax, concrete compressive

strength fc, and modulus of elasticity E0r of the steel reinforcements). Similarly, the sensi-

tivities of w are shown in Fig. 4.27 (θ = fy, E0, Hk) and in Fig. 4.28 (θ = fsmax, fc, E0r). It

was found (Zona et al. 2004) that the two DOFs v and w are most sensitive to the steel

beam parameters (fy, E0, Hk) and the shear connection strength fsmax. 
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Figure 4.24 Frame IPC: vertical displacement v at mid-span and horizontal displacement

w at the right end of the beam as functions of the load step number

Figure 4.25 Frame IPC: sensitivities of the beam mid-span vertical deflection v to steel

beam material parameters
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Figure 4.26 Frame IPC: sensitivities of the beam mid-span deflection v to parameters

related to concrete slab and shear connection

Figure 4.27 Frame IPC: sensitivities of the beam horizontal displacement w to steel beam

material parameters
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Figure 4.28 Frame IPC: sensitivities of the beam horizontal displacement w to parame-

ters related to concrete slab and shear connection
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Figure 4.29 Frame IPC: axial force N2 in the steel beam at mid-span as a function of the

load step number

Figure 4.30 Frame IPC: sensitivities of axial force N2 in the steel beam at mid-span to fy,

fsmax, fc
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results on simpler benchmark problems (Conte et al. 2003). It thus appears that disconti-

nuities in finite element response sensitivities are due to material state transitions from

elastic to plastic and not vice versa. 

All the sensitivity results presented were computed using the DDM and validated

by FFD using increasingly small perturbations of the sensitivity parameters. Due to space

limitation, the comparison between DDM and FFD results is shown here only for two

cases. The first case consists of the sensitivity of the vertical deflection v at mid-span to

the concrete strength fc (Fig. 4.31). For the FFD analysis, three levels of perturbation of

parameter fc were considered, namely Δθ/θ = 10−2, 10−3, 10−5. The second case consists

of the sensitivity of the axial force N2 in the steel beam at mid-span to the shear connec-

tion strength fsmax (Fig. 4.32). The same three levels of perturbation (i.e., Δθ/θ = 10−2,

, 10−5) were considered for parameter fsmax. From these two figures and their close-

ups, the FFD results are shown to converge asymptotically to their DDM counterparts as

the perturbation of the sensitivity parameter becomes increasingly small. In these two

cases, the FFD results are converged to the DDM results for Δθ/θ = 10−5.

10 3–
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Figure 4.31 Frame IPC: sensitivities of vertical deflection v to fc using DDM and FFD

Figure 4.32 Frame IPC: sensitivities of the axial force N2 to fsmax using DDM and FFD
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quasi-static monotonic and cyclic loading conditions. Realistic uniaxial constitutive mod-

els are used for the steel and concrete materials as well as for the shear connection. The

concrete and shear connection material models as well as the static condensation proce-

dure at the element level are extended for response sensitivity computations using the

DDM. Two benchmark problems that have been the object of experimental testing are

used to illustrate the proposed methodology for response sensitivity analysis. The first

benchmark problem consists of a two-span asymmetric continuous beam subjected to

monotonic loading with a concentrated force. The second benchmark problem consists of

a frame sub-assemblage subjected to quasi-static cyclic loading. The finite element

response prediction is validated using experimental results available in the literature for

the two benchmark problems. The response sensitivity analysis results obtained according

to the Direct Differentiation Method (DDM) are validated by means of Forward Finite

Difference (FFD) analysis. Selected results of response sensitivity analysis are presented

in an effort to quantify the effect and relative importance of various material constitutive

model parameters in regards to the nonlinear quasi-static monotonic and cyclic response

of a tested steel-concrete composite beam. Using the benchmark problem considered, it is

also shown that use of an inadequate convergence tolerance in the nonlinear finite element

response calculation may introduce numerical errors in response sensitivity analysis

results obtained using both the DDM and FFD analysis.

The algorithms developed in this study for nonlinear finite element response sensi-

tivity analysis of steel-concrete composite structures have direct applications in structural
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optimization, structural reliability analysis, and nonlinear finite element model updating

for this type of structures.
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CHAPTER 5

DDM-BASED RESPONSE SENSITIVITY 
ANALYSIS FOR THREE-FIELD MIXED 

FINITE ELEMENT FORMULATION

5.1   INTRODUCTION

As seen in previous chapters, sensitivity analysis is a very active research field in

nonlinear structural analysis. FE response sensitivity formulations have been developed

for displacement-based finite element models (Zhang and Der Kiureghian 1993; Conte

2001; Conte et al. 2003) and, recently, for force-based frame elements (Conte et al. 2004;

Scott et al. 2004). The advantages gained in response analysis by using finite element for-

mulations more advanced than the classical displacement-based formulation can be fur-

ther extended to the realm of response sensitivity analysis (Barbato and Conte 2005).

A large body of research has been devoted to mixed finite element formulations

since they were first introduced in the pioneering work of Pian (1964). Several finite ele-

ments based on different variational principles have been developed (Chien 1983; Wash-

izu 1975; Malkus and Hughes 1978; Noor 1983; Belytschko et al. 2000) and relationships

among them have been established (De Veubeke 1965; Stolarski and Belytschko 1987).

Accuracy and performance have been thoroughly analyzed and improved and important

properties have been recognized and explained, such as equivalence between various

stress recovery techniques (Mota and Abel 2000) and ability to eliminate shear-locking
147
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effects for specific applications (Belytschko et al. 2000). After more than three decades of

research in the field, mixed finite elements are well established and largely adopted tools

in a wide range of structural mechanics applications. However, to the authors knowledge,

attempts of extending mixed finite element formulations to response sensitivity analysis

by using the Direct Differentiation Method (DDM) are limited to linear elastic and quasi-

static analysis (Pandey and Bakshi 1999).

Multi-field mixed finite element formulations were proposed, among others, for

finite elements widely used in the structural engineering community such as frame ele-

ments. Mixed frame elements are more accurate in nonlinear analysis than displacement-

based elements and are a possible alternative to the recently established force-based ele-

ments (Spacone et al. 1995). Examples are available in the recent literature for monolithic

beams (Spacone et al. 1995, 1996; Taylor et al. 2003) and for composite beams with

deformable shear connection (Ayoub and Filippou 2000; Dall’Asta and Zona 2004a).

This study focuses on the formulation of finite element response sensitivity analy-

sis in the case of a nonlinear three-field mixed approach derived from the Hu-Washizu

variational principle, considering both quasi-static and dynamic loadings. The formulation

presented here is based on the general Direct Differentiation Method (DDM), which con-

sists of differentiating consistently the space (finite element) and time (finite difference)

discrete equations governing the structural response (Conte et al. 2003, 2004). The general

formulation for finite element response sensitivity analysis using the three-field mixed

formulation is then specialized and applied to frame finite element models. The results of

the DDM are validated through Forward Finite Difference (FFD) analysis using as appli-
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cation example a realistic steel-concrete composite frame structure subjected to quasi-

static and dynamic loading, respectively. Both monolithic frame elements (Taylor et al.

2003) and composite frame elements with deformable shear connection (Dall’Asta and

Zona 2004a) based on the three-field mixed formulation are included in this application

example.

5.2   RESPONSE SENSITIVITY ANALYSIS AT THE ELEMENT 
LEVEL

5.2.1   General geometric and material nonlinear theory including shape sensitivity

The general formulation is presented for a structural model including geometric

and material nonlinearities and considering material, shape, and loading sensitivities. An

isoparametric finite element in Total Lagrangian formulation is considered.

Following Belytschko et al. (2000), three different domains need to be introduced:

(1) the parent domain, denoted by the symbol , with element coordinates

;

(2) the reference (or initial configuration) domain, , with coordinates

;

(3) the current configuration domain, , with coordinates

, where t denotes time (or pseudo-time in quasi-static

analysis).

Correspondingly, the following one-to-one mappings are defined:

� ξ1 ξ2 ξ3, ,[ ]T=

Ω0

X X1 X2 X3, ,[ ]T=

Ω t( )

x t( ) x1 t( ) x2 t( ) x3 t( ), ,[ ]T=
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(1) from parent domain to current configuration: ;

(2) from parent domain to reference configuration: ;

(3) from reference configuration to current configuration: .

It is supposed that the above mappings satisfy certain conditions of regularity such that the

inverse mappings exist and the motion is well defined and sufficiently smooth. 

As measure of strain, the Green-Lagrange strain is adopted, defined in tensorial

form using the index notation as

, i, j = 1, 2, 3 (5.1)

Using Voigt notation, the vector form of the Green-Lagrange strain tensor is defined as

(5.2)

The work conjugate stress measure of the Green-Lagrange strain tensor is the second

Piola-Kirchhoff stress tensor, , that can be expressed in vector form using Voigt nota-

tion as

, (5.3)

The Hu-Washizu functional in Total Lagrangian formulation is (Belytschko et al.

2000)

(5.4)

x x � t,( )=

X X �( )=

x x X t,( )=

Eij
G 1

2
---

ui∂
Xj∂

--------
uj∂
Xi∂

--------
uk∂
Xi∂

--------
uk∂
Xj∂

--------+ +⎝ ⎠
⎛ ⎞=

EG E11
G E22

G E33
G 2E23

G 2E13
G 2E12

G, ,, , ,[ ]
T

=

Sij
PK2

SPK2 S11
PK2 S22

PK2 S33
PK2 S23

PK2 S13
PK2 S12

PK2, ,, , ,[ ]
T

=

ΠHW u SPK2 EG, ,( ) ϕ EG( ) Ω0 SPK2
T H u EG–( ) Ω0 Πext u( )–d

Ω0

∫+d
Ω0

∫=
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in which ,  and  are the assumed displacement, stress and strain fields, respec-

tively,  is the internal strain energy and  is a differential matrix operator defined

as

(5.5)

(5.6)

(5.7)

where  and  denote the linear and nonlinear parts, respectively, and the super-

posed T indicates the transpose operator. The term  denotes the potential energy

of the external forces and is defined as

u SPK2 EG

ϕ EG( ) H

H Hl
1
2
---H

nl
+=

Hl

∂
X1∂

--------- 0 0 0 ∂
X3∂

--------- ∂
X2∂

---------

0 ∂
X2∂

--------- 0 ∂
X3∂

--------- 0 ∂
X1∂

---------

0 0 ∂
X3∂

--------- ∂
X2∂

--------- ∂
X1∂

--------- 0

T

=

Hnl

u1∂
X1∂

--------- ∂
X1∂

---------
u2∂
X1∂

--------- ∂
X1∂

---------
u3∂
X1∂

--------- ∂
X1∂

---------

u1∂
X2∂
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X2∂
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u2∂
X2∂
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u3∂
X2∂
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u1∂
X3∂
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X3∂
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(5.8)

where  denotes the mass density per unit volume, b are the body forces per unit mass, t

are the surface tractions,  denotes the part of the boundary  of Ω where the surface

tractions are prescribed,  and  denote an infinitesimal volume and surface element,

respectively, and the subscript “0” indicates that the quantities to which it is attached are

computed in the reference configuration. For the sake of brevity, the term representing the

kinetic energy is not included in the Hu-Washizu functional Eq. (5.4). Notice that the

kinetic energy term depends only on the displacement field and thus has the same form as

in the case of the single-field (displacement-based) principle of virtual work (Belytschko

et al. 2000). 

Imposing the stationarity of the functional  with respect to the

three fields ,  and , we obtain

(5.9)

(5.10)

(5.11)

The classical Hu-Washizu formulation is limited to the case in which the internal energy

 is a potential, as for elastic materials. Eqs. (5.9) through (5.11) assume the mean-

Πext u( ) ρ0bTu Ω0 t0
Tu Γ0d

∂Ω0t

∫+d
Ω0

∫=

ρ

∂Ωt Ω∂

dΩ Γd

ΠHW u SPK2 EG, ,( )

u SPK2 EG

δuΠHW 0    H TSPK2 ρ0b–( )
T

δu Ω0 t0
Tδu Γ0d

∂Ω0t

∫–d
Ω0

∫⇒ 0= =

δSPK2
ΠHW 0    H u EG–( )TδSPK2 Ω0d

Ω0

∫⇒ 0= =

δEG
ΠHW 0    

ϕ∂ EG( )
EG∂

------------------- SPK2–⎝ ⎠
⎛ ⎞ T

δEG Ω0d
Ω0

∫⇒ 0= =

ϕ EG( )
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ing of weak forms of equilibrium, compatibility and constitutive law, respectively. In

order to generalize the Hu-Washizu functional to the case of nonlinear inelastic materials,

it is necessary to substitute the term  of the variation  in Eq. (5.11) with

an expression for the second Piola-Kirchhoff stresses as a function of the Green-Lagrange

strain history, i.e.,  obtained through any material

constitutive law. In the sequel, superposed hats, i.e. , are placed on stress and stress-

derived fields evaluated in terms of other independently interpolated variables through the

constitutive relations, while symbols without a superposed hat denote the assumed dis-

placement, stress and strain fields. Thus, Eq. (5.11) becomes

(5.12)

Introducing the finite element discretization and considering explicitly the depen-

dencies on the sensitivity parameter , the mapping from the parent domain to the current

configuration is given by 

(5.13)

and the mapping from the parent domain to the reference configuration is given by

(5.14)

where  and  denote the coordinates of node I of element “e” in the current

configuration and reference configuration, respectively. In Eqs. (5.13) and (5.14), the

ϕ∂ EG( )
EG∂

------------------- δEG
ΠHW

ŜPK2 EG( ) ŜPK2 EG τ( ) τ 0 t,[ ]∈,( )=

•̂

δEG
ΠHW 0    ŜPK2 EG( ) SPK2–( )

T
δEG Ω0d

Ω0

∫⇒ 0= =

θ

x � θ t, ,( ) Ne
�( )xI

e θ t,( )=

X � θ,( ) Ne
�( )XI

e θ( )=

xI
e θ t,( ) XI

e θ( )
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parameter  could represent a nodal coordinate in the reference configuration (shape

parameter), for example. In the sequel, the dependency on time is not expressed explicitly

in order to avoid a heavy notation and because it can be easily understood from the con-

text. From the finite element discretization, the displacement, stress and strain fields are

expressed as

 e = 1, ..., Nel (5.15)

where , , and  denote the nodal displacement, stress and strain parame-

ters, respectively; , , and  are the shape (interpolation) functions for the

displacement, stress and strain fields, respectively, all quantities being referred to element

“e”; and Nel denotes the number of finite elements used discretizing the structure. 

Substituting Eqs. (5.15) in Eqs. (5.9), (5.10) and (5.12), and recognizing that

(5.16)

where  denotes the union operator and  is the volume of the element “e” in the ref-

erence configuration, we obtain the following weak forms of equilibrium, compatibility

and constitutive law, respectively:

θ

     ue
� θ,( ) Ne

�( )qe θ( )=

SPK2
e

� θ,( ) Se
�( )se θ( )=

    EG
e

� θ,( ) Ee
�( )ee θ( )=

qe θ( ) se θ( ) ee θ( )

Ne
�( ) Se

�( ) Ee
�( )

Ω0 Ω0
e

e 1=

Nel

∪=

∪ Ω0
e
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(5.17)

(5.18)

(5.19)

Let us refer to a single element and drop the suffix “e” in the sequel. Considering

the arbitrary (virtual) nature of , , and  in the above three equations, we obtain

the following governing equations for each of the finite elements used in the discretization

of the structural system:

(5.20)

(5.21)

(5.22)

in which

(5.23)

H  TSe X( )se θ( ) ρ0 X θ,( )b X θ,( )–( )
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(5.24)

(5.25)

(5.26)

(5.27)

where the symbol  is used to highlight the dependency of the operator  on

 and  and  denotes the Jacobian of the transformation between the parent

domain  and the reference domain  such that , . Eqs.

(5.20) through (5.22) constitute a system of nq+ns+ne coupled equations in nq+ns+ne

unknowns, where nq, ns and ne denotes the number of displacement, stress and strain

parameters, respectively. Eq. (5.22) is nonlinear if any of the used material models is non-

linear, Eqs. (5.20) and (5.21) are nonlinear since  depends on  through the non-

linear part of the operator  and  depends implicitly on  when  is

displacement-dependent. Notice that the surface tractions  at the element boundaries

also contain the reactions of adjacent elements and thus are generally functions of the

nodal displacements, i.e., . The nonlinear problem is solved using an

incremental-iterative procedure, such as the Newton-Raphson method. 

B θ( ) ST X( )B X θ,( ) Ω0d
Ω0 θ( )
∫ ST

�( )B � θ,( )J � θ,( )d∫= =
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ET
�( )ŜPK2 E �( )e θ( ) θ,( )J � θ,( )d∫=

H � θ,( ) H
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B θ( ) q θ( )

H � θ,( ) Q θ( ) q θ( ) t0
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Differentiating Eq. (5.21) exactly with respect to  and performing some algebraic

manipulations (see Appendix A), we obtain

 (5.28)

in which the following matrices are introduced:

 (5.29)

(5.30)

where  denotes the material consistent (or algorithmic) tangent moduli at the inte-

gration point. Matrices  and  are required in the element state determination

for the response and in the response sensitivity computation. The reader is referred to Sto-

larski and Belytschko (1987) for the conditions under which these two matrices are invert-

ible assuming that  is not singular.

Differentiating Eq. (5.15)3 and the material constitutive relation with respect to 

yields, respectively

(5.31)

(5.32)
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Differentiating Eq. (5.27) with respect to  gives

(5.33)

Eq. (5.33) is obtained noting that, if  is a function defined in  and 

denotes the integral of this function over the reference domain, then

(5.34)

from which 

(5.35)

Finally, by differentiating Eqs. (5.22) and (5.20) with respect to  and performing some

algebraic manipulations (see Appendix A), we obtain, respectively,

(5.36)

(5.37)
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In order to compute the conditional response sensitivities (for q fixed, thus with

), Eqs. (5.28), (5.31) through (5.33), (5.36) and (5.37) are modified as

 (5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

where the quantity  in Eq. (5.40) is computed through conditional differ-

entiation (at the material level) of the material constitutive law. Note that  depends

on  only through , and thus . Furthermore,  depends on 
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both explicitly and implicitly through , i.e., , as shown in Eq.

(5.28). The quantities  and  also depend on  both explicitly and implicitly

through , since they are functions of  as shown in Eqs. (5.36) and (5.37).

5.2.2   Specialization to geometric linear formulation

If linear geometry (i.e., small displacements and small strains) is assumed, the

three-field mixed finite element formulation can be obtained from the stationarity condi-

tions of the Hu-Washizu functional, that can be written as (Washizu 1975)

(5.44)

where u, � and � are the assumed displacement, stress and (small) strain fields, respec-

tively,  is the internal strain energy,  is a linear differential operator matrix defined

as

(5.45)

As in the previous section, matrix notation and Voigt notation are used (Belytschko et al.

2000) here. The term  denotes the potential energy of the external forces and is

defined as
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(5.46)

As in the general formulation presented in previous section, the term representing the

kinetic energy is not included in the Hu-Washizu functional in Eq. (5.44). 

Imposing stationarity of the Hu-Washizu functional in Eq. (5.44) with respect to

the three fields u, � and �, yields

(5.47)

(5.48)

(5.49)

The classical Hu-Washizu formulation is limited to the case in which the internal

energy  is a potential, as for elastic materials. Eqs. (5.47) through (5.49) assume the

meaning of weak forms of equilibrium, compatibility and constitutive law, respectively. In

order to generalize the Hu-Washizu functional to the case of nonlinear inelastic materials,

it is necessary to substitute the term  of the variation  in Eq. (5.49) with an

expression for the stresses as a function of the strain history, i.e.,

, obtained through any material constitutive law. 

The finite element approximations of the three independently interpolated fields u,

� and � take the form, respectively,

Πext u( ) bTu Ω tTu Γd
∂Ωt

∫+d
Ω
∫=

δuΠHW 0    DT
� b–( )

T
δu Ω tTδu Γd

∂Ωt

∫–d
Ω
∫⇒ 0= =

δ�ΠHW 0    D u �–( )Tδ� Ωd
Ω
∫⇒ 0= =

δ�ΠHW 0    ϕ �( )∂
�∂

-------------- �–⎝ ⎠
⎛ ⎞ T

δ� Ωd
Ω
∫⇒ 0= =

ϕ �( )

ϕ �( )∂
�∂

-------------- δ�ΠHW

�̂ �( ) �̂ � τ( ) τ 0 t,[ ]∈,( )=
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 e = 1, ..., Nel (5.50)

Henceforth, the dependencies of the different quantities on the sensitivity parame-

ter  and on the position vector  are shown explicitly because of their

important role in the derivation of the response sensitivity equations. Unlike in the previ-

ous section, relations for shape sensitivity computations are not derived; they would

require considering the dependencies of shape functions and integration domains on the

sensitivity parameter . 

Substituting Eqs. (5.50) in Eqs. (5.47) through (5.49), we obtain the following

weak forms of equilibrium, compatibility and constitutive law, respectively,

(5.51)

(5.52)

(5.53)

Let us define  and drop the suffix “e” in the sequel. Consider-

ing the arbitrary (virtual) nature of , , and  in Eqs. (5.51) through (5.53), we

 
 ue X θ,( ) Ne X( )qe θ( )=

�
e X θ,( ) Se X( )se θ( )=

 �e X θ,( ) Ee X( )ee θ( )=

θ X X1 X2 X3, ,[ ]T=

θ
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T
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e
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e
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e 1=

Nel
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e 1=

Nel

∑ δee 0=

Be X( ) D Ne X( )=

δqe δse δee
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obtain the following governing equations for each of the finite elements used in the dis-

cretization of the structural system:

(5.54)

(5.55)

(5.56)

where

(5.57)

(5.58)

(5.59)

(5.60)

Eqs. (5.54) through (5.56) represent a system of nq+ns+ne (generally) coupled equations in

nq+ns+ne unknowns, where nq, ns and ne denote the number of displacement, stress and

strain parameters, respectively. Eqs. (5.54) and (5.55) are linear, while Eq. (5.56) is non-

linear if any of the used material models is nonlinear. The nonlinear problem is solved

using an incremental-iterative scheme, such as the Newton-Raphson method. In some spe-

cial cases the matrix  is invertible (e.g., when the stress shape functions  and strain

shape functions  are identical) and Eqs. (5.54) through (5.56) can be uncoupled and

BTs θ( ) Q θ( )– 0=

Ee θ( ) Bq θ( )– 0=

a e θ( ) θ,( )  ETs θ( )– 0=

Q θ( ) bT X θ,( )N X( ) Ω tT X θ,( )N X( ) Γd
∂Ωt

∫+d
Ω
∫=

B ST X( )B X( ) Ωd
Ω
∫=

E ST X( )E X( ) Ωd
Ω
∫=

a e θ( ) θ,( ) ET X( )�̂ E X( )e θ( ) θ,( ) Ωd
Ω
∫=

E S X( )

E X( )
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solved sequentially. However, the general case is considered hereunder, while a special

case for which the matrix  is invertible will be presented later for a specific finite ele-

ment implementation.

Differentiating Eq. (5.55) with respect to  and pre-multiplying by 

yields the following relation, after some algebraic manipulations (see Appendix A):

 (5.61)

where, similarly as in the previous section, matrices  and  are defined as

 (5.62)

(5.63)

These matrices are required in the element state determination for the response and in the

response sensitivity computation. The reader is referred to Stolarski and Belytschko

(1987) for the conditions under which these two matrices are invertible assuming that

 is not singular.

Differentiating Eq. (5.50)3 and the material constitutive relation with respect to 

yields, respectively,

(5.64)

E

θ Dt
1– ETDt

1–

de θ( )
dθ

-------------- Dt
1– ETDt

1–
Bdq θ( )

dθ
---------------=

Dt Dt

Dt ET X( )kIP X( )E X( ) Ωd
Ω
∫=

Dt EDt
1– ET=

kIP X( )

θ

d� X θ,( )
dθ

---------------------- E X( )de θ( )
dθ

--------------=
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(5.65)

Differentiating Eq. (5.60) with respect to  and substituting Eqs. (5.65) and (5.62) in the

resulting equation gives

(5.66)

Finally, by differentiating Eqs. (5.56) and (5.54) with respect to  and performing some

algebraic manipulations (see Appendix A), we obtain, respectively,

(5.67)

(5.68)

In order to compute the conditional response sensitivities (for q fixed, thus with

), Eqs. (5.61) and (5.64) through (5.68) are modified as

 (5.69)

(5.70)

(5.71)
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=
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(5.72)

(5.73)

(5.74)

where the quantity  in Eq. (5.71) is computed by conditional differentiation (at

the material level) of the material constitutive law. It is noteworthy that, in the case of lin-

ear geometry, assuming q fixed is equivalent to assuming e fixed (e and q are linearly

related as shown by Eqs. (5.55) and (5.61)), while this equivalence does not apply in the

case of nonlinear geometry (see Eqs. (5.21) and (5.28)).

5.2.3   Specialization to 2-D frame structures

As already discussed in the introduction, the frame element is an important class of

finite elements for which the beneficial effects of a multi-field mixed formulation have

been studied, proved and employed. The specialization of the above three-field mixed for-

mulation to 2-D frame elements requires the definition of the section deformation vector,

d, and section stress resultant vector, D. The explicit definition of the above vectors

depends on the specific frame element considered. In general, a matrix  can be

defined such that

(5.75)

a e θ( ) θ,( )∂
θ∂

----------------------------
q
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EDt
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θ∂
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q
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Q e θ( ) θ,( )∂
θ∂

-----------------------------
q

BT s e θ( ) θ,( )∂
θ∂

---------------------------
q

=

�̂ X θ,( )∂
θ∂

----------------------
e

As X( )

� X θ,( ) As X( )d x θ,( )=
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(5.76)

where x denotes the abscissa along the frame axis ( , L = length of the frame ele-

ment) and A(x) denotes the cross-section at abscissa x. Explicit expressions for d, D, and

 corresponding to common frame models presented in the literature are given in

Appendix B. In this section and in Appendix B, the notation

 is employed for consistency with the majority of the lit-

erature on frame elements.

For frame finite elements, it is common to use shape functions directly for the pre-

viously defined quantities d and D and to obtain the complete displacement fields from the

displacements  of the reference axis of the frame. Thus, Eq. (5.50) can be rewritten

as

(5.77)

Accounting for Eqs. (5.75) through (5.77), all the theoretical developments pre-

sented in the previous sections for both response and response sensitivity analysis can be

directly applied to any frame element treated in the context of a three-field mixed formula-

tion. In particular, the governing equations for a frame element are formally identical to

Eqs. (5.54)-(5.56), when the following specialized definitions are used

D x θ,( ) As X( )T
� X θ,( ) Ad

A x( )
∫=

x 0 L,[ ]∈

As X( )

X X1 X2 X3, ,[ ]T x y z, ,[ ]T= =

u x θ,( )

u x θ,( ) N x( )q θ( )=
D x θ,( ) S x( )s θ( )=
d x θ,( ) E x( )e θ( )=
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(5.78)

(5.79)

(5.80)

(5.81)

 (5.82)

where  denotes the consistent tangent stiffness matrix of the section at the abscissa

x.

The sensitivity Eqs. (5.61) and (5.64) through (5.68) specialize to

 (5.83)

(5.84)

(5.85)

(5.86)
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(5.87)

(5.88)

The equations for conditional response sensitivity computation are readily obtained from

Eqs. (5.83) through (5.88) imposing  and computing all the derivatives for q

fixed, as seen in Section 5.2.2 (Eqs. (5.69) through (5.74)).

5.3   VALIDATION EXAMPLES

5.3.1   Finite element modeling of steel-concrete composite frame structures

Composite frames made of steel-concrete beams and steel columns are nowadays

common solutions in the design of seismic resistant frames. As a consequence, in the last

ten years, a growing attention has been given to finite element modeling and analysis of

steel-concrete composite structures (Spacone and El-Tawil 2004). The behavior of com-

posite beams, consisting of two components connected through shear connectors to form

an interacting unit, is significantly influenced by the type of connection between the steel

beam and the concrete slab. Partial composite action develops when using flexible shear

connectors (Oehlers and Bradford 2000). Thus, for accurate analytical predictions, struc-

tural models of composite structures must account for the interlayer slip between the steel

and concrete components. For this reason, a composite beam finite element able to model

the effects of the interface slip is required. The three-dimensional model for composite

beams with deformable shear connection under general state of stress (Dall’Asta 2001)

ds e θ( ) θ,( )
dθ

---------------------------- Dt
1–
EDt

1– da e θ( ) θ,( )
dθ

----------------------------=

dQ e θ( ) θ,( )
dθ

------------------------------ BT ds e θ( ) θ,( )
dθ

----------------------------=

q θ( )∂
θ∂

--------------
q

0=
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simplifies to the model introduced by Newmark et al. (1951) if only the in-plane bending

behavior is considered. In the Newmark’s model, the geometrically linear Euler-Bernoulli

beam theory (i.e., small displacements, rotations and strains) is used to model each of the

two parts of the composite beam; the effects of the deformable shear connection are

accounted for by using an interface model with distributed bond, and the contact between

the steel and concrete components is enforced (Fig. 5.1). The interface slip is small, since

it corresponds to the difference in longitudinal displacements of the steel and composite

fibers at the steel-concrete interface.

Figure 5.1 Kinematics of 2D composite beam model (Newmark’s model).

Compared to common monolithic beams, composite beams with deformable shear

connection raise more challenging modeling and numerical difficulties, e.g., complex dis-

tributions of the interface slip and force can develop (Dall’Asta and Zona 2002) and spe-

cial measures are necessary to avoid shear-locking phenomena (Dall’Asta and Zona

2004b). Despite some difficulties, three-field mixed elements (Dall’Asta and Zona 2004a)
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can be successfully adopted for numerical simulation of the behavior of steel-concrete

composite beams, producing accurate global and local results when a proper discretization

of the structure is used (Dall’Asta and Zona 2004c).

In the present study, a 2-D steel-concrete composite frame element with deform-

able shear connection, previously developed in (Dall’Asta and Zona 2004a), is used for

response simulation and is augmented with the response sensitivity computation proce-

dure presented above. The finite element used is based on the three-field mixed formula-

tion and assumes Newmark’s kinematics (Fig. 5.1). It has 10 nodal degrees-of-freedom

(DOFs) in total: 8 DOFs are external, while 2 DOFs are internal and are condensed out

before assembly at the structure level (Fig. 5.2). The procedure for response sensitivity

calculation in presence of static condensation has been previously derived by the authors

and can be found elsewhere (Zona et al. 2005). 

Figure 5.2 Degrees of freedom of the 2D composite beam finite element.

This finite element was proven to provide accurate response simulations and to be

superior in the evaluation of local quantities (e.g., section deformations, section stress

resultants, shear force distribution at the steel-concrete interface, etc.) to equivalent dis-

placement-based finite elements when meshes requiring similar computational effort are
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used. Furthermore, this element presents a useful feature: it is able to model a standard

monolithic steel-only or reinforced concrete-only frame element without any modification

in the code. This is achieved simply by considering at the section level a concrete slab or a

steel beam of null cross-section area, obtaining a monolithic steel frame or a reinforced

concrete frame, respectively. The only precaution is to apply constraints to the eliminated

DOFs. The obtained three-field mixed monolithic frame element is characterized by exact

distributions of section stress resultants (as for force-based frame elements, see Spacone et

al. 1995), while the assumed displacement fields have the same form as for standard dis-

placement-based frame elements. The above useful feature allows to assemble easily

monolithic and composite frame elements in frame models, representing correctly the con-

nections between steel columns and steel beams or reinforced concrete columns and con-

crete slabs (Zona et al. 2005).

Regarding the development of the sensitivity analysis, this element presents also a

favorable feature: the response sensitivity computation procedure, developed for a general

three-field mixed finite element and particularized to a frame element, can be further sim-

plified significantly by taking advantage of the properties of the employed shape functions

for the section deformation and section stress resultant fields. This condition derives from

the fact that the shape functions used for approximating the section deformations and the

section stress resultants are the same (i.e., ). This choice for the shape func-

tions produces a matrix  that is positive definite and, therefore, invertible (Stolarski and

Belytschko 1987). Using this property, Eqs. (5.83) and (5.87) simplify to

E x( ) S x( )=

E



173
(5.89)

(5.90)

In this way, inversion of the two matrices  and  (required in Eqs. (5.83) and (5.87)) is

avoided and only matrix  has to be inverted. It is noteworthy that, in this special case for

which ns = ne, the three matrices , , and  have the same dimension  =

.

5.3.2   Implementation of composite frame element and response sensitivity analysis 

scheme in a general-purpose nonlinear finite element structural analysis 

program

For validation purposes, the steel-concrete composite frame element and the

response sensitivity computation scheme for three-field mixed formulation were imple-

mented in a general-purpose nonlinear finite element structural analysis program,

FEDEASLab (Filippou and Constantinides 2004). FEDEASLab is a Matlab toolbox (The

MathWorks 1997) for linear and nonlinear, static and dynamic structural analysis, which

also provides a general framework for parameterization of finite element models and

response sensitivity computation (Franchin 2003). 

Taking advantage of the modularity of FEDEASLab, a variety of suitable cross-

sections (e.g., composite cross-section with symmetric and unsymmetric steel I-beams)

and material constitutive models (e.g., Kent-Scott-Park concrete model, Popovics-Saenz

de θ( )
dθ

-------------- E 1– B dq θ( )
dθ

---------------=

ds e θ( ) θ,( )
dθ

---------------------------- E T–  da e θ( ) θ,( )
dθ

----------------------------=

Dt Dt

E

Dt Dt E ns ns×

ne ne×



174
concrete model with nonlinear tension stiffening) were also implemented for response and

response sensitivity computation. Thus, a library of material and element models was

implemented in FEDEASLab, which allows accurate response and response sensitivity

analyses of steel-concrete composite frame structures. This library can be easily updated

and/or extended to follow the state-of-the-art in modeling such structures. 

5.3.3   Benchmark example: one-story one-bay steel-concrete composite frame

The benchmark problem considered is a one-story one-bay frame, made of two

steel columns and a steel-concrete composite beam (Fig. 5.3). The column steel section is

a European HE360A; the composite beam consists of a European IPE300 steel section

coupled to a reinforced concrete slab 1000 mm wide and 120 mm thick through two rows

of Nelson stud connectors (Fig. 5.4). Two identical layers of steel reinforcement with a

total area As = 1000 mm2 are present in the slab. Two loading conditions are considered:

(1) pushover analysis (after static application of a uniform distributed vertical load of 46

kN/m on the beam, representing self-weight, permanent loads and live loads, a horizontal

load of increasing magnitude is applied quasi-statically at the beam-column nodes at the

roof level, see Fig. 5.3), and (2) earthquake base excitation (after static application of a

uniform distributed vertical load of 46 kN/m on the beam, the frame is subjected to a hori-

zontal ground motion corresponding to the N90W (W-E) component of the Loma Prieta

earthquake of October 17, 1989, recorded at the Capitola site, scaled by a factor 4).
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Figure 5.3 Steel-concrete composite frame structure.

Figure 5.4 Cross-section properties of the steel-concrete frame structure: (a) composite

beam cross-section, and (b) steel column cross-section.

The structure is discretized into 6 finite elements, i.e., 4 elements for the steel-con-

crete composite beam and 1 element for each steel column. The constitutive law used for

the steel material of the beam and of the two columns as well as for the reinforcement steel

is a uniaxial cyclic J2 plasticity model with the von Mises yield criterion in conjunction

with linear kinematic and isotropic hardening laws (Conte et al. 2003). The selected con-
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stitutive law for the concrete material is a uniaxial cyclic law with monotonic envelope

given by the Popovics-Saenz law (Balan et al 1997, 2001). The constitutive law used for

the shear connectors is a slip-force cyclic law with monotonic envelope given by the Oll-

gaard et al. (1971) law and a cyclic response following a modified version of the model

proposed by Eligenhausen et al. (1983). Detailed formulation and differentiation of the

concrete and connection constitutive laws can be found in Zona et al. (2004). The values

of the material constitutive parameters are given in Table 5.1. Zona et al. (2004) and Zona

et al. (2005) also provide comparisons between analytical predictions and experimental

results of structural response. 
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In the following, numerical simulations of important global and local response

quantities as well as of their consistent sensitivities to various material parameters are pre-

Table 5.1 Material Constitutive Parameters

Material Parameter Value SI unit Description

Concrete

fc 33.0 MPa Peak compressive strength

Ec 32000 MPa Initial tangent stiffness

εc 0.0022 - Strain at peak strength

ff 15 MPa Strength at inflection point

εf 0.039 - Strain at inflection point

Beam-and-col-
umn steel

fys 275 MPa Yield strength

Es 210000 MPa Young’s modulus

Hkin,s 2100 MPa Kinematic hardening modulus

Hiso,s 0 MPa Isotropic hardening modulus

α0s 0 MPa Initial back-stress

bs 0.01 - Strain hardening ratio

Reinforcement 
steel

fyr 430 MPa Yield strength

Er 210000 MPa Young’s modulus

Hkin,r 2100 MPa Kinematic hardening modulus

Hiso,r 0 MPa Isotropic hardening modulus

α0r 0 MPa Initial back-stress

br 0.01 - Strain hardening ratio

Shear 
connectors

fsmax 423 kN/m Shear strength

τfr 42.3 kN/m Residual frictional stress

δult 6.0 mm Slip at rupture
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sented for each of the two loading conditions defined above. In this paper, the response

sensitivity results are presented in normalized form, i.e., they are multiplied by the nomi-

nal value of the sensitivity parameter and divided by a factor 100. In this way, the normal-

ized response sensitivities represent the variation of the response quantity considered due

to 1 percent change in the sensitivity parameter. These normalized sensitivities can thus be

used to compare (in the deterministic sense, or considering that 1 percent change in the

various sensitivity parameters are equally likely) the relative effects/importance of the

sensitivity parameters on the response quantities considered.

5.3.3.1   Response and response sensitivity analysis for quasi-static load case

The quasi-static pushover analysis of the testbed structure defined above is per-

formed using the force control method. First, a vertical distributed load q = 46 kN/m along

the beam is applied statically to the structural model. Subsequently, a horizontal load P

(Fig. 5.3) of increasing magnitude is applied quasi-statically to the two horizontal degrees

of freedom (DOFs) of the left-end node of the composite beam, until the ultimate horizon-

tal resisting force of the structure is reached (collapse state). The load P is equally distrib-

uted between the two DOFs (i.e., P/2 to each DOF), in order to simulate an equivalent

earthquake loading for assumed equal tributary masses of the concrete slab and steel

beam.

In Fig. 5.5, the applied horizontal load P (representing also the total shear force at

the base of the columns) is plotted versus the horizontal displacement u1 (concrete slab

DOF) of the left-end of the composite beam. Fig. 5.6 shows the relation between the load
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P and the vertical displacement v at midspan of the composite beam. Figs. 5.7 and 5.8 plot

the bending moment - curvature and shear force - slip response curves, respectively, at the

left-end section of the composite beam. Fig. 5.5 clearly shows the ductile behavior of the

considered structure that reaches a horizontal displacement u1 of about 30 mm

( ) without a sensible stiffness degradation (almost linear behavior at the glo-

bal level, even though the local behavior is strongly nonlinear from the beginning of the

analysis, see Fig. 5.8), while the horizontal displacement at collapse is slightly below 150

mm ( ). The change of stiffness around u1 = 45 mm is mostly due to stiffness

degradation of the composite beam, while the change of stiffness around u1 = 100 mm

( ) is caused primarily by yielding of the columns. This is consistent with the

fact that this frame structure has been designed for a “strong column - weak beam” behav-

ior. In Fig. 5.6, the changes in stiffness mentioned above can be observed even more

clearly: the vertical displacement v is almost unchanged from the one produced by the ver-

tical loads for an applied horizontal load , then the same stiffness changes as

in Fig. 5.5 are visible. It is noteworthy that the concrete never reaches its peak compres-

sive strength and the shear connectors do not fail before the entire structure reaches the

collapse state (structure tangent stiffness matrix nearly singular).

P 300 kN=

P 575 kN=

P 545 kN=

P 95 kN=
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Figure 5.5 Pushover analysis: applied horizontal load P (total base shear) versus hori-

zontal displacement u1 at the left-end of the concrete slab.

Figure 5.6 Pushover analysis: applied horizontal load P (total base shear) versus verti-

cal displacement v at midspan of the composite beam.

Figs. 5.9-5.28 present sensitivity results for the pushover analysis of the frame
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to material parameters of the steel material of the beam and columns, the reinforcement

steel, the concrete and the shear connection, respectively. Fig. 5.13 shows a direct compar-

ison of the sensitivities of the horizontal displacement u1 to the strength parameters of the

steel of the beam and columns (fys), the concrete (fc) and the shear connection (fsmax).

From these figures, it is observed that the response quantity u1 is more sensitive to mate-

rial stiffness parameters (Es, Er, Ec) in the first phase of the analysis (in which the global

behavior of the structure is almost linear), but becomes dominantly sensitive to strength

parameters (fys, fyr, fc, fsmax) when the structure approaches its collapse state. It can be

seen that fys is the material parameter affecting the most the response quantity u1, espe-

cially near the collapse load. Similarly, the response sensitivities to material parameters of

the beam-and-column steel material, the reinforcement steel, the concrete and the shear

connection are displayed in Figs. 5.14-5.17 for the vertical displacement v, in Figs. 5.19-

5.22 for the bending moment M acting at the left-end composite beam section and in Figs.

5.24-5.27 for the shear force fs acting at the left-end composite beam section, respectively.

Figs. 5.18, 5.23 and 5.28 compare the sensitivities to material strength parameters fys, fc

and fsmax of the vertical displacement v, the bending moment M and the shear force fs,

respectively. Among the material parameters considered, the parameter that affects the

most the vertical displacement v and the bending moment M is the yield strength fys of the

beam-and-column steel material, while the shear force fs is most affected by the shear

strength fsmax of the shear connection. 
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Figure 5.7 Pushover analysis: moment - curvature response at the left-end section of the

composite beam.

Figure 5.8 Pushover analysis: shear force - slip response at the left-end section of the

composite beam.
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Figure 5.9 Pushover analysis: sensitivities of horizontal displacement u1 to beam-and-

column steel material parameters.

Figure 5.10 Pushover analysis: sensitivities of horizontal displacement u1 to reinforce-

ment steel material parameters.
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Figure 5.11 Pushover analysis: sensitivities of horizontal displacement u1 to concrete

material parameters.

Figure 5.12 Pushover analysis: sensitivities of horizontal displacement u1 to shear con-

nection material parameters.
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Figure 5.13 Pushover analysis: sensitivities of horizontal displacement u1 to strength

parameters of beam-and-column steel, concrete and shear connection.

Figure 5.14 Pushover analysis: sensitivities of vertical displacement v at midspan of the

composite beam to beam-and-column steel material parameters.
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Figure 5.15 Pushover analysis: sensitivities of vertical displacement v at midspan of the

composite beam to reinforcement steel material parameters.

Figure 5.16 Pushover analysis: sensitivities of vertical displacement v at midspan of the

composite beam to concrete material parameters.
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Figure 5.17 Pushover analysis: sensitivities of vertical displacement v at midspan of the

composite beam to shear connection material parameters.

Figure 5.18 Pushover analysis: sensitivities of vertical displacement v at midspan of the

composite beam to strength parameters of beam-and-column steel, concrete

and shear connection materials.
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Figure 5.19 Pushover analysis: sensitivities of bending moment M acting at the left-end

composite beam section to beam-and-column steel material parameters.

Figure 5.20 Pushover analysis: sensitivities of bending moment M acting at the left-end

composite beam section to reinforcement steel material parameters.
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Figure 5.21 Pushover analysis: sensitivities of bending moment M acting at the left-end

composite beam section to concrete material parameters.

Figure 5.22 Pushover analysis: sensitivities of bending moment M acting at the left-end

composite beam section to shear connection material parameters.
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Figure 5.23 Pushover analysis: sensitivities of bending moment M acting at the left-end

composite beam section to strength parameters of beam-and-column steel,

concrete and shear connection materials.

Figure 5.24 Pushover analysis: sensitivities of connection shear force fs acting at the left-

end composite beam section to beam-and-column steel material parameters.
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Figure 5.25 Pushover analysis: sensitivities of connection shear force fs acting at the left-

end composite beam section to reinforcement steel material parameters.

Figure 5.26 Pushover analysis: sensitivities of connection shear force fs acting at the left-

end composite beam section to concrete material parameters.
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Figure 5.27 Pushover analysis: sensitivities of connection shear force fs acting at the left-

end composite beam section to shear connection material parameters.

Figure 5.28 Pushover analysis: sensitivities of connection shear force fs acting at the left-

end composite beam section to strength parameters of beam-and column

steel, concrete and shear connection materials.
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(1) Parameters εf and ff, describing the degrading branch of the concrete constitutive law,

do not affect the response behavior of the considered frame. In fact, the concrete never

reaches its peak strength and therefore the response sensitivities with respect to εf and

ff are equal to zero for the entire pushover analysis. For this reason, these sensitivities

are not plotted in Figs. 5.11, 5.16, 5.21 and 5.26.

(2) Parameter τfr (residual frictional stress per unit length of the shear connection) does

not affect sensibly the response quantities considered (see Figs. 5.12, 5.17, 5.22 and

5.27), consistently with the fact that the shear connection does not reach failure (resid-

ual frictional state).

(3) Stiffness related material parameters significantly affect the response at low loading

levels, while strength related material parameters become predominant at high loading

levels, particularly near failure (see in particular Figs. 5.14-5.16). Sensitivity analysis

not only confirms this intuitive result, but also allows to precisely quantify the effects

and relative importance of the different material parameters at different loading stages.

Figs. 5.29-5.31 present the results of a convergence study of the sensitivities of the

horizontal displacement u1 computed through Forward Finite Difference (FFD) analysis

(using increasingly small  ratio) to the sensitivity results obtained using the DDM,

for material parameters fys, fc and fsmax, respectively. Results of the same convergence

study are shown in Figs. 5.32-5.34 for sensitivities of the connection shear force fs acting

at the left-end composite beam section to the same material parameters fys, fc and fsmax.

The insets in Figs. 5.29-5.34 show zoom views that allow to better appreciate the conver-

gence trends. In these figures, the results corresponding to three different values of param-

Δθ θ⁄
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eter perturbation (i.e., 10-1, 10-2 and 10-5 of the nominal value of the considered

parameter) are plotted together with the exact DDM sensitivities. These values of the

 ratio have been carefully selected in order to obtain a clear visual display of the

convergence trends, and particular attention has been given in choosing the lower value of

parameter perturbation so as to avoid numerical problems related to round-off errors

(“step-size dilemma”, see Haftka and Gurdal 1993; Conte et al. 2003, 2004; Barbato and

Conte 2005; Zona et al. 2005).

Figure 5.29 Convergence study of FFD to DDM sensitivity results for pushover analysis:

sensitivities of horizontal displacement u1 to yielding strength fys of beam-

and-column steel material.
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Figure 5.30 Convergence study of FFD to DDM sensitivity results for pushover analysis:

sensitivities of horizontal displacement u1 to peak strength fc of concrete

material.

Figure 5.31 Convergence study of FFD to DDM sensitivity results for pushover analysis:

sensitivities of horizontal displacement u1 to shear strength fsmax of shear

connection material.
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Figure 5.32 Convergence study of FFD to DDM sensitivity results for pushover analysis:

sensitivities of connection shear force fs acting at the left-end composite

beam section to yield strength fys of beam-and-column steel material.

Figure 5.33 Convergence study of FFD to DDM sensitivity results for pushover analysis:

sensitivities of connection shear force fs acting at the left-end composite

beam section to peak strength fc of concrete material.
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Figure 5.34 Convergence study of FFD to DDM sensitivity results for pushover analysis:

sensitivities of connection shear force fs acting at the left-end composite

beam section to shear strength fsmax of shear connection material.
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beam element. The mass corresponding to the permanent and live loads (i.e., total vertical

distributed load of 40 kN/m) was distributed evenly between the slab and steel beam and

added to the self-weight (5 kN/m for the slab and 1 kN/m for the beam). Half of the mass

corresponding to the self-weight of the columns was added to the DOFs at the nodes

where steel beam and column are connected. With this assumed distribution of masses, an

eigenanalysis was performed using the initial stiffness properties of the structure. The first

vibration mode of period T1 = 0.30s corresponds to a horizontal translation of the entire

composite beam, while the second and third modes of vibration of period T2 = 0.18s and

T3 = 0.13s, respectively, correspond to vertical motions. The other modes of vibration cor-

respond to axial compression-tension modes in the composite beams and vertical modes

of the frame; they are all characterized by short periods and small modal participating

masses. From the modal analysis results, a Rayleigh-type damping matrix (Chopra 2001)

was computed based on an assumed damping ratio  for the first and third modes.

After static application of a vertical distributed load of 46 kN/m along the beam,

the frame is subjected to a horizontal seismic motion corresponding to the first 30s of the

N90W (W-E) component of the Loma Prieta earthquake of October 17, 1989, recorded at

the Capitola site, scaled by a factor of four to yield a peak ground acceleration of 6160

mm/s2 or 0.62g (see Fig. 5.35), and with two seconds of zero ground motion acceleration

added at the end of the record in order to capture the free-vibration properties of the struc-

ture with yielded/degraded material properties at the end of the earthquake. The equation

of motion and response sensitivity equation are integrated using the constant-average-

ξ 0.05=
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acceleration method (Chopra 2001) with a constant time step of . The fol-

lowing figures present results of the response history analysis performed.

Figure 5.35 N90W (W-E) component of the Loma Prieta earthquake of October 17,

1989, recorded at the Capitola site, scaled by a factor of four.

Figs. 5.36 and 5.37 show the time histories of the horizontal displacement u1 and

vertical displacement v, respectively. The moment - curvature response at the left-end

composite beam section is plotted in Fig. 5.38, while the shear force - slip response at the

same section is given in Fig. 5.39. During the earthquake ground motion, extensive plastic

behavior is developed by the structure. In particular, the vertical displacement v exhibits a

large increase due to inelastic deformation at around t = 7s (Fig. 5.37) and the hysteretic

behavior of the shear force - slip response is pronounced (Fig. 5.39). 
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Figure 5.36 Dynamic analysis: horizontal displacement u1 response history.

Figure 5.37 Dynamic analysis: vertical displacement v response history.
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Figure 5.38 Dynamic analysis: moment - curvature response at the left-end section of the

composite beam.

Figure 5.39 Dynamic analysis: shear force - slip response at the left-end section of the

composite beam.
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shear connection, respectively. The choice of plotting these sensitivities is driven by the

fact that, for the dynamic case, material stiffness related parameters affect the horizontal

displacement u1 more than strength related parameters. This is shown in Fig. 5.44, which

compares the sensitivities of the horizontal displacement u1 to the material parameters

affecting the most this response quantity. The response sensitivity histories are observed to

have similar waveforms (frequency content) to that of the time history of u1 and exhibit a

small shift in their mean value. This feature is linked to the material constitutive laws

employed: all these constitutive laws (except for the concrete constitutive model beyond

the peak strength, which was not reached in the dynamic load case presented here) use the

initial tangent stiffness for unloading from plastic branches, and thus the effective first

period of vibration of the structure remains close to the initial fundamental period even

after large plastic deformations are experienced by the structure (waveform similarity).

The small shift in mean value of the response sensitivities is due to the hysteretic nature of

the material constitutive laws. 

Fig. 5.45 shows the sensitivity of the vertical displacement v at midspan of the

composite beam to Young’s modulus Es of the beam-and-column steel material, while Fig.

5.46 compares the sensitivities of v to the material parameters to which this response

quantity is most sensitive. Similarly, Fig. 5.47 shows the sensitivity of the bending

moment M acting at the left-end composite beam section to Young’s modulus Es of the

beam-and-column steel material and Fig. 5.48 compares the sensitivities of M to material

parameters to which M is most sensitive. Fig. 5.49 shows the sensitivity of the shear force

fs acting at the left-end composite beam section to Young’s modulus Es of the beam-and-
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column steel material, while Fig. 5.50 compares the sensitivities of fs to material parame-

ters to which fs is most sensitive. The material parameter affecting the most the bending

moment M and the shear force fs is Young’s modulus Es of the beam-and-column steel

material, while the material parameter to which the vertical displacement v is most sensi-

tive is the yield strength fys of the beam-and-column steel material. The dynamic response

sensitivity analysis shows that the global and local responses of the considered structure

are most sensitive to the material parameters describing the constitutive law of the beam-

and-column steel material, as was already the case for the pushover loading and as

expected from design considerations.

Fig. 5.51 shows the sensitivities of the vertical displacement v to the yield strength

fys of the beam-and-column steel material computed using both DDM and FFD analysis

for decreasing values of the parameter perturbation. Fig. 5.52 shows a closer view of the

convergence of the FFD results to the DDM results. Similarly, the sensitivities of the

bending moment M to the yield strength fys, computed via the FFD method for decreasing

values of the parameter perturbation are plotted in Fig. 5.53 together with the correspond-

ing response sensitivity computed using the DDM. Fig. 5.54 offers a zoom view of the

previous figure, showing again convergence of the FFD results to the DDM results. These

results, together with the results of other convergence studies (not shown here) performed

by the authors for the sensitivities of other response quantities to all the material parame-

ters considered in this paper, validate the DDM-based algorithms for response sensitivity

computation presented in this paper and their computer implementation for finite elements
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based on the three-field mixed formulation in the cases of quasi-static and dynamic struc-

tural analysis.

Figure 5.40 Dynamic analysis: sensitivity of horizontal displacement u1 to Young’s mod-

ulus Es of the beam-and-column steel material.

Figure 5.41 Dynamic analysis: sensitivity of horizontal displacement u1 to Young’s mod-

ulus Er of reinforcement steel material.
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Figure 5.42 Dynamic analysis: sensitivity of horizontal displacement u1 to initial tangent

stiffness Ec of concrete material.

Figure 5.43 Dynamic analysis: sensitivity of horizontal displacement u1 to shear strength

fsmax of shear connection material.
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Figure 5.44 Dynamic analysis: comparison of sensitivities of horizontal displacement u1

to material parameters to which u1 is most sensitive.

Figure 5.45 Dynamic analysis: sensitivity of vertical displacement v at midspan of com-

posite beam to Young’s modulus Es of the beam-and-column steel material.
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Figure 5.46 Dynamic analysis: comparison of sensitivities of vertical displacement v to

material parameters to which v is most sensitive.

Figure 5.47 Dynamic analysis: sensitivity of bending moment M acting at the left-end

section of the composite beam to Young’s modulus Es of the beam-and-col-

umn steel material.
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Figure 5.48 Dynamic analysis: comparison of sensitivities of bending moment M acting

at the left-end composite beam section to material parameters to which M is

most sensitive.

Figure 5.49 Dynamic analysis: sensitivity of connection shear force fs acting at the left-

end section of the composite beam to Young’s modulus Es of the beam-and-

column steel material.
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Figure 5.50 Dynamic analysis: comparison of response sensitivities of connection shear

force fs acting at the left-end composite beam section to material parameters

to which fs is most sensitive.

Figure 5.51 Convergence study of FFD to DDM sensitivity results for dynamic analysis:

sensitivity of vertical displacement v at midspan of composite beam to yield

strength fys of the beam-and-column steel material.
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Figure 5.52 Convergence study of FFD to DDM sensitivity results for dynamic analysis:

zoom view of sensitivity of vertical displacement v at midspan of composite

beam to yield strength fys of the beam-and-column steel material (see Fig.

5.51).

Figure 5.53 Convergence study of FFD to DDM sensitivity results for dynamic analysis:

sensitivity of bending moment M acting at the left-end composite beam sec-

tion to yield strength fys of beam-and-column steel material.
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Figure 5.54 Convergence study of FFD to DDM sensitivity computations for dynamic

analysis: zoom view sensitivity of bending moment M acting at the left-end

composite beam section to yield strength fys of beam-and-column steel

material (see Fig. 5.53).

5.4   CONCLUSIONS

This paper presents a newly developed response sensitivity computation method-

ology for nonlinear finite element based on a three-field mixed formulation derived from

the Hu-Washizu functional. The formulation developed is based on the general Direct Dif-
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(finite element) and time (finite difference) discrete equations of the structural response.

The response sensitivity computation algorithm for three-field mixed finite element for-
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is given to steel-concrete composite frame finite elements, for which the three-field mixed

formulation has been found beneficial in terms of accuracy in the numerical results. The

DDM sensitivity computations are validated by comparisons with the Forward Finite Dif-

ference (FFD) analysis using as application example a realistic steel-concrete composite

frame under quasi-static and dynamic loading. The finite element model of the proposed

benchmark structure includes both monolithic beam elements and composite beam ele-

ments with deformable shear connection based on the three-field mixed formulation.

Insight is gained into the effects and relative importance of the various material parame-

ters upon the response behavior of the benchmark structure.

The addition of the method presented here for analytical sensitivity computation to

finite elements based on a three-field mixed formulation offers a powerful tool for any

kind of applications in which finite element response sensitivity analysis results are

needed. These applications include structural reliability, structural optimization, structural

identification, and finite element model updating. Furthermore, finite element response

sensitivity analysis offers insight into structural response behavior and its sensitivity to

modeling parameters.
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APPENDIX A:  DERIVATION OF SENSITIVITY EQUATIONS FOR 

NODAL DISPLACEMENT AND STRESS PARAMETERS

Eq. (5.61) is obtained by differentiating Eq. (5.55) with respect to  as

(5.91)

Pre-multiplying both sides of the second of Eqs. (5.91) by , we obtain

(5.92)

Using the definition of  in Eq. (5.63), we have

(5.93)

where  denotes the unit matrix of dimension ns x ns.

Post-multiplying the first and last terms of Eq. (5.93) by , we have

(5.94)

from which it can be deduced that

(5.95)

where  denotes the unit matrix of dimension ne x ne. Thus, Eq. (5.92) reduces to Eq.

(5.61).
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Eq. (5.67) can be derived following a reasoning similar to the one above. Differen-

tiating Eq. (5.56) with respect to  yields 

(5.96)

Pre-multiplying both sides of Eq. (5.96) by , we obtain

(5.97)

Using again Eq. (5.63), we can write

(5.98)

from which Eq. (5.97) reduces to Eq. (5.67).

Eqs. (5.28) and (5.36) can be derived following the same reasoning used above for

Eqs. (5.61) and (5.67), respectively.
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APPENDIX B:  EXPLICIT EXPRESSIONS FOR SECTION RESULT-

ANT QUANTITIES

In this appendix, explicit expressions for the quantities d, D, and  intro-

duced in Section 5.2.3 are given for three important 2-D frame models: (1) Euler-Ber-

noulli monolithic beam; (2) Timoshenko monolithic beam; and (3) composite beam with

distributed shear connection and Newmark’s kinematic assumptions. The extension to 3-D

frames is straightforward for the monolithic beams but more complicated for the compos-

ite beam with deformable shear connection (Dall’Asta 2001).

(1) Euler-Bernoulli monolithic beam (Fig. 5.55):

(5.99)

(5.100)

(5.101)

(5.102)

(2) Timoshenko monolithic beam (Fig. 5.56):

(5.103)

(5.104)

As X( )

As x y θ, ,( ) 1   y–[ ]=

� X θ,( ) εx x y θ, ,( )     � X θ,( ) σx x y θ, ,( )≡;≡

d x θ,( ) εG x θ,( )

χ x θ,( )
=

D x θ,( ) N x θ,( )
M x θ,( )

=

As x y θ, ,( ) 1 y– 0
0 0 1

=

� X θ,( )
εx x y θ, ,( )

γxy x y θ, ,( )
    � X θ,( )

σx x y θ, ,( )

τxy x y θ, ,( )
≡;≡
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(5.105)

(5.106)

(3) Newmark composite beam (Fig. 5.1):

(5.107)

(5.108)

(5.109)

(5.110)

d x θ,( )
εG x θ,( )

χ x θ,( )
γ x θ,( )

=

D x θ,( )
N x θ,( )
M x θ,( )
V x θ,( )
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As x y θ, ,( )
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� X θ,( )
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εx2 x y θ, ,( )

δs x θ,( )

    � X θ,( )
σx1 x y θ, ,( )

σx2 x y θ, ,( )

fs x θ,( ) A⁄ x( )

≡;≡

d x θ,( )

εx1 x θ,( )

εx2 x θ,( )

χ x θ,( )
δs x θ,( )

=

D x θ,( )

N1 x θ,( )

N2 x θ,( )

M12 x θ,( )

fs x θ,( )
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Figure 5.55 Kinematics of 2D monolithic Euler-Bernoulli beam model.

Figure 5.56 Kinematics of 2D monolithic Timoshenko beam model.
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CHAPTER 6

SMOOTHNESS PROPERTIES OF FINITE 
ELEMENT RESPONSE SENSITIVITIES

6.1   INTRODUCTION

The field of structural reliability analysis has seen significant advances in the last

two decades (Ditlevsen and Madsen 1996). Analytical and numerical methodologies have

been developed and improved for the probabilistic analysis of real structures characterized

in general by nonlinear behavior, material and geometric uncertainties and subjected to

stochastic loads (Schueller et al. 2004). Reliability analysis methods have been success-

fully applied to problems such as the ones encountered in civil engineering and typically

analyzed deterministically through the finite element method (Der Kiureghian and Ke

1988).

Several reliability analysis methods, such as asymptotic methods (First- and Sec-

ond-Order Reliability Methods) (Breitung 1984; Der Kiureghian and Liu 1986; Der

Kiureghian et al. 1987; Der Kiureghian 1996; Ditlevsen and Madsen 1996) and impor-

tance sampling with sampling distribution centered on the design point(s) (Schueller and

Stix 1987; Melchers 1989; Au et al. 1999; Au and Beck 2001a) are characterized by the

crucial step of finding the design point(s). In particular, asymptotic methods can provide

reliability analysis results with a relatively small number of simulations (often of the order

of 10-100 simulations for FORM analysis) and with a computational effort practically
223
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independent of the magnitude of the failure probability. Furthermore, these methods pro-

vide important information such as reliability sensitivity measures, as a by-product of the

design point search (Hohenbichler and Rackwitz 1986). Other reliability analysis meth-

ods, e.g., subset simulation (Au and Beck 2001b; Au and Beck 2003) and importance sam-

pling with sampling distribution not centered at the design point(s) (Bucher 1988; Ang et

al. 1992; Au and Beck 1999), do not use the concept of design point, do not require com-

putation of response sensitivities, and therefore are not affected by smoothness or non-

smoothness of the material constitutive models used. In general, the computational cost of

these methods increases for decreasing magnitude of the failure probability. Thus, for very

low failure probabilities, these methods could require a very large number of simulations.

In general, the design point(s) is(are) found as the solution(s) of a constrained opti-

mization problem, in which the number of variables corresponds to the number of mate-

rial, geometric and loading parameters modeled as random variables (Ditlevsen and

Madsen 1996). The most effective optimization algorithms for high-dimensional problems

are gradient-based methods coupled with algorithms for efficient and precise computation

of response sensitivities to material, geometric and loading parameters (Liu and Der

Kiureghian 1991). Moreover, these methods assume some smoothness properties of the

objective and constraint functions, on which the convergence properties are dependent.

Constraint function(s) that arise in structural engineering problems often do not possess

second-order differentiability, as required by gradient-based optimization methods in

order to achieve quadratic convergence rates (Gill et al. 1981). In general, they present

discontinuities in the first derivatives (e.g., J2 plasticity model, contact problems) or even
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in the response (e.g., crack propagation), and further discontinuities are introduced by

numerical solution methodologies (e.g., finite element, finite difference, numerical inte-

gration).

Significant research efforts have been devoted to the development of smooth non-

linear material constitutive models, in order to better describe actual material behavior.

Important characteristics such as Baushinger’s effect for steel and hysteresis loops for

concrete are most accurately described by smooth material models. Other smooth versus

non-smooth material behavioral properties (e.g., shape of relation for concrete in tension)

may have a negligible effect on simulated structural response, but a significant effect on

response sensitivities to material parameters.

This chapter describes some features of response sensitivity analysis using smooth

and non-smooth material constitutive laws. The response sensitivity computation algo-

rithm is presented for the Menegotto-Pinto smooth constitutive model typically used for

structural steel (Menegotto and Pinto 1973). Continuity of finite element response sensi-

tivities is analyzed and a sufficient condition on the smoothness properties of material

constitutive models to obtain such continuity is stated and proved for the quasi-static case.

Based on application examples, remarks are made on the continuity (or lack thereof) of

response sensitivities for the dynamic case, which is more difficult to study mathemati-

cally. The Direct Differentiation Method (DDM) (Zhang and Der Kiureghian 1993;

Kleiber et al. 1997; Conte 2001; Conte et al. 2003) is used for finite element response sen-

sitivity analysis.
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The implications of using smooth versus non-smooth material constitutive models

on finite element response and response sensitivity analyses are discussed. Based on the

results obtained, conclusions are drawn on the need to use existing or develop new inelas-

tic material constitutive models with specified smoothness properties both in the mono-

tonic as well as cyclic hysteretic behavior for applications requiring continuous response

sensitivities such as gradient-based optimization.

It is worth mentioning that response sensitivity analysis finds application not only

in reliability analysis, which is the focus of this study, but also in structural optimization,

structural identification, finite element model updating and any other field in which gradi-

ent-based optimization techniques are used. The results presented in this chapter are gen-

eral and apply to any situation for which response sensitivity analysis is required.

6.2   MATERIAL CONSTITUTIVE MODELS

In this work, two different material constitutive models typically used to describe

the behavior of structural steel are considered: the one-dimensional J2 plasticity model

(also more commonly known as bilinear inelastic model), for which the sensitivity compu-

tation algorithm is presented elsewhere (Conte et al. 2003), and the Menegotto-Pinto

model (1973) in the version extended by Filippou et al. (1983) to account for isotropic

strain hardening, for which the response sensitivity computation algorithm is developed

and presented in the following sections.

The J2 plasticity model with Von Mises yield surface is a well-known non-smooth

plasticity model for metallic materials. Its one-dimensional version presents a kink at the
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yielding point of the  relation, leading to discontinuities in response sensitivities at

elastic-to-plastic state transition events (Conte 2001).

The Menegotto-Pinto (M-P) one-dimensional plasticity model is a computation-

ally efficient smooth inelastic model typically used for structural steel, showing very good

agreement with experimental results, particularly from cyclic tests on reinforcing steel

bars. A typical cyclic stress-strain response behavior of steel modeled using the Mene-

gotto-Pinto model is presented in Figure 6.1. It presents two favorable features for finite

element response, response sensitivity and reliability analyses: (a) the model expresses

explicitly the current stress as a function of the current strain, so that it is computationally

more efficient than competing models such as the Ramberg-Osgood model (Ramberg and

Osgood 1943); (b) the constitutive law is smooth and continuously differentiable (with

respect to strain and constitutive material parameters), therefore producing response sensi-

tivities continuous everywhere. Furthermore, the M-P model can accommodate modifica-

tions in order to account for local buckling of steel bars in reinforced concrete members

(Monti and Nuti 1992), and can be used for macroscopic modeling of hysteretic behavior

of structures or substructures with an appropriate choice of the modeling parameters. It is

also noteworthy that the Menegotto-Pinto model is a physically motivated model of struc-

tural material hysteresis, and its performance in representing structural physical behavior

is not undermined by mathematical features that can lead to non-physical analysis results.

Such non-physical results have been documented for widely used models such as the

Bouc-Wen hysteretic model based on nonlinear differential equations (Thyagarajan and

Iwan 1990). Caution is needed in the use of such mathematically-based models in order to

σ ε–
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avoid non-physical analysis results, and preference should be granted to physically-based

models such as the Menegotto-Pinto model used in this work.

6.2.1   Response computation for the Menegotto-Pinto smooth constitutive model

The M-P model is described by the following equations

(6.1)

(6.2)

(6.3)

Eq. (6.1) represents a smooth curved transition from an asymptotic straight line with slope

E0 to another asymptotic straight line with slope E1, where b is the ratio between E1 and

E0;  and  are the normalized strain and stress, respectively;  and  are the
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Figure 6.1 Cyclic stress-strain response behavior of structural steel modeled using the

Menegotto-Pinto model.
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coordinates in the strain-stress plane of the intersection of the two asymptotes;  and 

are the coordinates in the strain-stress plane of the point where the last strain reversal took

place;  and  are the current strain and stress, respectively; R is a parameter describing

the curvature of the transition curve between the two asymptotes. This model is completed

by updating rules for , , , , and R at each strain reversal event. For example,

parameter R is obtained as

(6.4)

in which R0 is the value of the parameter R during the first loading; a1 and a2 are experi-

mentally determined parameters;  is the ratio between the maximum plastic strain,

, and the initial yielding strain, .

To account for isotropic hardening, Filippou et al. (1983) proposed a stress shift

 in the linear yield asymptote depending on the maximum plastic strain as

(6.5)

in which a3 and a4 are experimentally determined parameters and  is the absolute

maximum total strain at the instant of strain reversal. For this model, the updating rules at

the instant of strain reversal (detected in the time step ) are

; (6.6)

εr σr

ε σ

εr σr εy σy

R R0
a1 ξ⋅
a2 ξ+
--------------–=

ξ

εmax
p max εmax εy–= εy0

σsh

σsh
σy0
-------- a3

εmax
εy0

----------- 1–⎝ ⎠
⎛ ⎞⋅=

εmax

tn tn 1+,[ ]

εr n 1+, εn= σr n 1+, σn=
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(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

In Eqs. (19) and (20), the “+” sign has to be used for strain inversion from positive

strain increment (tensile increment) to negative strain increment (compressive increment),

while the “ ” sign is required for strain inversion from negative strain increment to pos-

itive strain increment.

6.2.2   Response sensitivity computation for the Menegotto-Pinto smooth constitutive 

model

Following the Direct Differentiation Method (DDM), the exact response sensitivi-

ties of the discretized material constitutive laws are required in finite element response

sensitivity analysis. As already seen in previous Chapters, the DDM consists of differenti-

ating analytically the space- and time-discretized equations of motion/equilibrium of the

εmax n 1+,
p εmax n,

p   if  εmax n,
p εn εy n,–>;

εn εy n,–                 otherwise;
⎩
⎪
⎨
⎪
⎧

=

ξn 1+
εmax n 1+,

p

εy0
----------------------=

εmax n 1+,
εmax n,   if  εmax n, εn>;
εn                 otherwise;

⎩
⎪
⎨
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⎧

=

σsh n 1+, max a3 εmax n 1+, a4 εy0⋅–( ) E  0;⋅ ⋅[ ]=

εy n 1+,
σr n 1+, E εr n 1+, 1 b–( ) σy0 σsh n 1+,+⋅[ ]±⋅–

b 1–( ) E⋅
------------------------------------------------------------------------------------------------------------------=

σy n 1+, b E εy n 1+, 1 b–( ) σy0 σsh n 1+,+⋅[ ]±⋅ ⋅=
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finite element model of the structural system considered. It involves (1) computing the

derivatives (with respect to the sensitivity parameters) of the element and material history/

state variables conditional on fixed nodal displacements at the structure level (conditional

sensitivities), (2) forming the right-hand-side of the response sensitivity equation at the

structure level, (3) solving the resulting equation for the nodal displacement response sen-

sitivities, and (4) updating the unconditional derivatives of all history/state variables

(unconditional sensitivities). The response sensitivity computation algorithm affects the

various hierarchical layers of finite element response calculation, namely the structure,

element, section, and material levels. This section presents the algorithm for computing

the response sensitivities of the M-P material constitutive model over a single time step.

(1) Sensitivity parameters 

The material constitutive parameters selected as sensitivity parameters are: elastic

Young’s modulus (E); initial yield stress ( ); plastic-to-elastic material stiffness ratio

(b).

(2) Input at time t = tn+1

The input information for response sensitivity computation at time t = tn+1 consists

of: 

• Current strain ( ) and stress ( ) and history variables h ( , ,

, , , , , ) after convergence for the

response computation at time tn+1.

σy0

εn 1+ σn 1+ εr n, 1+ σr n, 1+

εmax n 1+,
p ξn 1+ εmax n 1+, σsh n 1+, εy n, 1+ σy n, 1+
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• Unconditional sensitivities at time tn: , , ,

, , , , , ,

.

(3) Algorithm

IF strain reversal took place in time step [tn, tn+1],

THEN compute the sensitivities of all history variables, , consistently with

the constitutive law integration scheme, i.e.,

; (6.13)

(6.14)

(6.15)

(6.16)
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(6.17)

(6.18)

(6.19)

In Eqs. (26) and (27), the “+” sign has to be used for strain inversion from positive strain

increment (tensile increment) to negative strain increment (compressive increment), while

the “ ” sign is required for strain inversion from negative strain increment to positive

strain increment.

ELSE (dh/dθ)n+1 = (dh/dθ)n (since all the above history variables h remain fixed between

two consecutive strain reversal events).

END IF
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COMPUTE

(6.20)

(6.21)

(6.22)

(6.23)

END

The DDM requires computing at each analysis step, after convergence is achieved

for the response calculation, the structure resisting force sensitivities for nodal displace-

ments kept fixed (i.e., conditional sensitivities). At the material level, the required condi-
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tional sensitivities (for  fixed) can be obtained from Eqs. (28) through (31) after

setting .

6.3   APPLICATION EXAMPLE

6.3.1   Description of the benchmark structure

A three-story one-bay steel shear-frame is considered as application example in

this study (Figure 6.2). The structure has been chosen simple enough to allow for closed-

form computation of the design point (for pushover analysis and in the case of J2 plastic-

ity), yet realistic and complex enough to illustrate the main features and difficulties

encountered in the general class of problems under study. In fact, the same structure exam-

ple has been also used to illustrate the detrimental effects that discontinuities in finite ele-

ment response sensitivities could have on the search for the design point(s). More complex

examples or more complete and advanced reliability analyses would not achieve this

objective as simply and as clearly. In fact, problems of dimension higher than two in the

parameter space do not allow simple visualization of the limit-state function and limit-

state surface (visualization is still possible for limit-state surfaces of three parameter prob-

lems). Moreover, other not easily recognizable difficulties for the design point search

could be superimposed to the detrimental effects of response sensitivity discontinuities

(e.g., multiple design points, saddle points).

εn 1+

dε dθ⁄( )n 1+ 0=
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The shear-frame has three stories of height H = 3.20m each, and one bay of length

L = 6.00m. The columns are European HE340A steel columns with moment of inertia

along the strong axis . The steel material has a Young’s modulus

 and an initial yield stress . The initial yield

moment of the columns is . The beams are considered rigid to

enforce a typical shear building behavior. Under this assumption, the initial yield shear

force for each story is . 

The frame described above is assumed to be part of a building structure with a dis-

tance between frames L’ = 6.00m. The tributary mass per story, M, is obtained assuming a

distributed gravity load of , accounting for the structure own weight, as

 
P, u3 

2P/3, u2 

P/3, u1 

H = 3.20 m  

H = 3.20 m  

H = 3.20 m 

L = 6.00 m Columns: HE340A 
Beams:     rigid 

Figure 6.2 Shear-frame structure: geometry, floor displacements and quasi-static hor-

izontal loads.

I 27690.0cm4=

E 2 105× N mm2⁄= fy0 350N mm2⁄=

My0 587.3kN m–=

Fy0 734kN=

q 8kN m2⁄=
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well as for permanent and live loads, and is equal to . The fundamen-

tal period of the linear elastic undamped shear-frame is T1 = 0.38s. Natural frequencies,

natural periods and effective modal mass ratios for the undamped structure are given in

Table 6.1. Viscous damping in the form of Rayleigh damping is assumed with a damping

ratio  for the first and third modes of vibration.

The story shear force - interstory drift relation is modeled using three different hys-

teretic models, which have in common the initial stiffness K = 40.56kN/mm, the initial

yield force Fy0 = 734kN and the post-yield stiffness to initial stiffness ratio b = 0.10. The

three models are: (a) Menegotto-Pinto model with parameters R0 = 20, a1 = 18.5, a2 =

0.15, a3 = a4 = 0, denoted as ‘M-P (R0 = 20)’ in the sequel; (b) Menegotto-Pinto model

with parameters R0 = 80, a1 = 18.5, a2 = 0.15, a3 = a4 = 0, denoted as ‘M-P (R0 = 80)’ here-

after; (c) uni-axial J2 plasticity model with  (kinematic

hardening modulus),  (isotropic hardening modulus), and

 (initial back-stress), denoted as ‘J2 plasticity’ hereafter. The M-P (R0 =

Table 6.1 Modal analysis results for the linear elastic undamped three-story one-
bay shear-frame

Mode # Natural circular 
frequencyω (rad/s)

Natural period
T (s)

Effective 
modal mass ratio (%)

1 16.70 0.38 91.41

2 46.80 0.13 7.49

3 67.62 0.09 1.10

M 28.8 103kg×=

ξ 0.05=

Hkin K 9⁄ 4.057kN mm2⁄= =

Hiso 0kN mm2⁄=

α0 0kN mm2⁄=
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20) model is characterized by typical values of the parameters used for common structural

steel, while the M-P (R0 = 80) model is used only for the purpose of reproducing as closely

as possible with a smooth inelastic model the behavior of the non-smooth J2 plasticity

model.

In the following examples, finite element response and response sensitivity analy-

ses are performed using the general-purpose nonlinear finite element structural analysis

program FEDEASLab (Filippou and Constantinides 2004). FEDEASLab is a Matlab (The

Mathworks 1997) toolbox suitable for linear and non-linear, static and dynamic structural

analysis, which also incorporates a general framework for parameterization of finite ele-

ment models and for response sensitivity computation using the DDM (Franchin 2004).

6.3.2   Finite element response and response sensitivity analysis results

Response sensitivity analysis can be used to gain insight into the effects and rela-

tive importance of the loading and material parameters  on the response behavior of a

structural system. The example structure presented above is subjected to a response and

response sensitivity analysis for quasi-static cyclic loading and dynamic loading in the

form of seismic base excitation, respectively. Some response quantities and their sensitivi-

ties to various material and loading parameters are presented and carefully examined

below.

In the quasi-static analysis, horizontal loads are applied at floor levels with an

upper triangular distribution, with a maximum load  at roof level and a total

θ

P Pmax=
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horizontal load (= total base shear)  (see Figure 6.2). The loading history is pre-

sented in Figure 6.3.

In Figure 6.4, the relation between the total base shear Ptot and the roof horizontal

displacement u3 is plotted for the three constitutive models considered. After the first

unloading (point B), the response of the M-P (R0 = 20) model deviates significantly from

the responses corresponding to the J2 plasticity and M-P (R0 = 80) models.

Ptot 2P=

0 50 150 250
−1e3

0    

1e3 

Figure 6.3 Quasi-static cyclic loading.
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Figs. 6.5 and  6.6 display the normalized sensitivities of the roof displacement u3 to

the initial yield force Fy0 and the load parameter Pmax, respectively. The normalized sensi-

tivities are obtained by multiplying the response sensitivities with the nominal value of the

corresponding sensitivity parameters and dividing the results by one hundred. Thus, these

normalized sensitivities represent the total change in the response quantity of interest due

to one percent change in the sensitivity parameter value and can be used for assessing

quantitatively the relative importance of the sensitivity parameters in the deterministic

sense. Similar to the response results, the response sensitivities obtained from the J2 plas-

ticity model are very close to the ones produced by the M-P (R0 = 80) model and quite dif-

ferent from the ones given by the M-P (R0 = 20) model. It is important to note that, while

the response sensitivities for the J2 plasticity model are discontinuous at elastic-to-plastic

 

Figure 6.4 Total base shear, Ptot, versus roof displacement, u3, for quasi-static cyclic

loading and different constitutive models.

A B
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material state transition events, the response sensitivities produced by the M-P models are

continuous everywhere (see for example the inset in Figure 6.5, corresponding to point A

in Figure 6.4). These conclusions are consistent with previous findings of other research-

ers (Haukaas and Der Kiureghian 2004).

Figure 6.5 Normalized sensitivity of roof displacement u3 to initial yield force Fy0

(quasi-static cyclic loading).
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The absence of discontinuities in the response sensitivities for all three constitutive

models at unloading events is noteworthy (see for example the inset in Figure 6.6, corre-

sponding to point B in Figure 6.4). It has been proven (Haukaas and Der Kiureghian 2004)

that no discontinuities arise from elastic unloading events. This proof assumes explicitly a

linear elastic unloading branch in the material constitutive law (as for the uniaxial J2 plas-

ticity model considered herein) and implicitly that the entire structure (i.e., all yielded

integration points) undergoes elastic unloading at the same load/time step. The M-P model

presented herein does not have a linear elastic unloading branch; nevertheless, it does not

exhibit discontinuities at unloading events as well. It can be proven (see Appendix) that, if

only one-dimensional constitutive models are employed, unloading events in quasi-static

finite element analysis do not produce response sensitivity discontinuities provided that

Figure 6.6 Normalized sensitivity of roof displacement u3 to loading parameter

Pmax (quasi-static cyclic loading).
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the unloading branches of the material constitutive laws can be expanded in Taylor series

about the unloading points. A physical explanation of this statement is that any material

unloading event can be seen as connecting two stress-strain points on the same (unload-

ing) branch of the constitutive model, as opposed to a material yielding event which con-

nects two stress-strain points belonging to two different branches in the case of a non-

smooth constitutive model (see Figure 6.7).

The same example structure is subjected to finite element response and response

sensitivity analyses for dynamic seismic loading. The balanced 1940 El Centro earthquake

record scaled by a factor 3 is taken as input ground motion with a resulting peak ground

acceleration . The structure is modeled with the J2 plas-

ticity, the M-P (R0 = 20), and the M-P (R0 = 80) constitutive law, respectively. Time inte-

gration is performed using the constant average acceleration method (special case of the

Newmark-beta family of time stepping algorithms that is unconditionally stable, see

Figure 6.7 Examples of branches of material constitutive models: (a) loading branch

with elastic-to-plastic material state transition (discontinuous response

sensitivities), and (b) smooth loading and unloading branches at unload-

ing event (continuous response sensitivities).
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Appendix for more details). The computed time histories of the roof displacement u3 are

plotted in Figure 6.8. The results corresponding to the M-P (R0 = 80) model are not shown,

being very close to the ones obtained from the J2 plasticity model. For all three constitu-

tive models, the structure undergoes large plastic deformations as shown in Figure 6.8 by

the non-zero centered oscillations of the response.

Figures 6.9 and  6.10 display the time histories of the normalized sensitivities of

the roof displacement u3 to the initial yield force Fy0 and the peak ground acceleration

, respectively. Again, the results for the M-P (R0 = 80) model are very similar to

those for the J2 plasticity model and are not shown in Figs. 6.9 and  6.10. Even a close

inspection of these time histories does not reveal any discontinuities in the response sensi-

Figure 6.8 Response histories of roof displacement u3 for different constitutive mod-

els (dynamic analysis).

 

ag max,
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tivities along the time axis. In fact, both the smoothing effect of the inertia terms in the

sensitivity equation of the structure (Haukaas and Der Kiureghian, 2004) and the oscilla-

tory behavior of the sensitivities contribute to hide discontinuities of small magnitude. 

Figure 6.9 Normalized sensitivity of roof displacement u3 to initial yield force Fy0

(dynamic analysis).
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However, examining response sensitivity results along the sensitivity parameter

axis (for a fixed time step  sufficiently small, herein ) reveals a very dif-

ferent behavior: discontinuities arise clearly in the response sensitivities obtained from the

non-smooth J2 plasticity model, while the M-P models response sensitivities are smooth

along the parameter axis, as shown in Figure 6.10. Figs. 6.11 and  6.12 plot the time histo-

ries (for ) of the displacement u3 for fixed peak ground acceleration  and

variable initial yield force Fy0 obtained using the M-P (R0 = 20) model and the J2 plasticity

model, respectively, and the integration time step . It is observed that the

response surfaces are continuous in both time and parameter Fy0 and present small differ-

ences overall between the two different constitutive models. Figs. 6.14 and  6.15 show the

time histories (for ) of the normalized sensitivities of the displacement u3 to the

Figure 6.10 Normalized sensitivity of roof displacement u3 to peak ground accelera-

tion ag,max (dynamic analysis).

Δt Δt 0.001s=

0 t 5s≤ ≤ ag max,

Δt 0.001s=

0 t 5s≤ ≤
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initial yield force Fy0 for fixed peak ground acceleration  and variable initial yield

force Fy0 obtained using the M-P (R0 = 20) model and the J2 plasticity model, respectively,

and the integration time step . The response sensitivity surface obtained for

the M-P (R0 = 20) constitutive model is continuous in both time and parameter Fy0, while

the response sensitivity surface obtained using the J2 plasticity model exhibits clear dis-

continuities along the parameter axis. It is important to notice that continuity along the

parameter axis is obtained only for a sufficiently small integration time step . (see

Appendix). If the time step used to integrate the equations of motion of the system is not

small enough, spurious discontinuities can be introduced by the time stepping scheme

employed, as illustrated in Figure 6.16, which shows the surface of the normalized sensi-

tivities of the displacement u3 to the initial yield force Fy0 for fixed peak ground accelera-

tion  and variable initial yield force Fy0 obtained using the M-P (R0 = 20) model

and the integration time step .

In finite element reliability analysis, response sensitivity discontinuities in the

parameter space can be detrimental to the convergence of the computational optimization

procedure to find the design point(s). Therefore, the use of smooth constitutive laws is

also beneficial in the dynamic case for avoiding discontinuities in the response sensitivi-

ties along the parameter axes, provided that the integration time step is small enough.

ag max,

Δt 0.001s=

Δt

ag max,

Δt 0.02s=
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Figure 6.11 Normalized sensitivity of roof displacement u3 to initial yield force Fy0 at

time t = 1.66s with fixed peak ground acceleration ag,max.
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Figure 6.12 Time histories (for ) of displacement u3 for fixed peak ground

acceleration ag,max and variable initial yield force Fy0: dynamic analysis

using the M-P (R0 = 20) model and 

0 t 5s≤ ≤

Δt 0.001s=
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Figure 6.13 Time histories (for ) of displacement u3 for fixed peak ground

acceleration ag,max and variable initial yield force Fy0: dynamic analysis

using the J2 plasticity model and 

0 t 5s≤ ≤

Δt 0.001s=

 

Figure 6.14 Time histories (for ) of normalized sensitivities of the displace-

ment u3 to initial yield force Fy0 for fixed peak ground acceleration ag,max

and variable initial yield force Fy0: dynamic analysis using the M-P (R0 =

20) model and 

0 t 5s≤ ≤

Δt 0.001s=

3
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Figure 6.15 Time histories (for ) of normalized sensitivities of the displace-

ment u3 to initial yield force Fy0 for fixed peak ground acceleration ag,max

and variable initial yield force Fy0: dynamic analysis using the J2 model

and 

0 t 5s≤ ≤

Δt 0.001s=

Figure 6.16 Time histories (for ) of normalized sensitivities of the displace-

ment u3 to initial yield force Fy0 for fixed peak ground acceleration

ag,max and variable initial yield force Fy0: dynamic analysis using the M-

P (R0 = 20) model and 

0 t 5s≤ ≤

Δt 0.02s=
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6.4   CONCLUSIONS

Insight is gained into the analytical behavior of finite element response sensitivi-

ties obtained from smooth (Menegotto-Pinto) and non-smooth (J2 plasticity) material con-

stitutive models. The response sensitivity computation algorithm for the Menegotto-Pinto

uni-axial material constitutive model is developed and presented. Focus is on continuity

(or discontinuity) of finite element response sensitivities. In particular, important response

sensitivity discontinuities are observed along the axes of both pseudotime and sensitivity

parameters when using non-smooth material models in quasi-static finite element analysis.

A sufficient condition is stated and proved on the smoothness properties of material con-

stitutive laws for obtaining continuous response sensitivities in the quasi-static analysis

case. These results about response sensitivity continuity are illustrated using the Mene-

gotto-Pinto material constitutive law to model a simple inelastic steel shear-frame. Com-

parisons are made between response and response sensitivities obtained using the smooth

Menegotto-Pinto and the non-smooth uni-axial J2 plasticity material constitutive law to

model the same example structure. Response and response sensitivity computations are

also examined in the dynamic analysis case using both the Menegotto-Pinto and J2 plastic-

ity models. It is found that the linear inertia and damping terms in the equations of motion

have significant smoothing effects on the response sensitivity results along the time axis.

Nevertheless, discontinuities along the parameter axes are observed for both non-smooth

and smooth constitutive models, if the time discretization of the equations of motion is not

sufficiently refined. Important remarks and observations are made about the dynamic

analysis case, which suggest that response sensitivity discontinuities can be eliminated by
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using smooth material constitutive models and refining the time discretization of the equa-

tions of motion. Some of the discontinuities in dynamic response sensitivities obtained

using non-smooth material constitutive models are inherent to the constitutive models

themselves and cannot be eliminated by reducing the integration time step. Response sen-

sitivity results are presented in support of these conclusions.

Continuity of response sensitivities is extremely important for the design point

search using gradient based optimization algorithms. In fact, when discontinuities are

present in the response sensitivities, convergence to a (local) design point cannot be

ensured by gradient based optimization techniques.
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APPENDIX: SMOOTHNESS CONDITIONS FOR RESPONSE SENSI-

TIVITY CONTINUITY

Continuity is a very desirable property of finite element response sensitivities for

applications involving the use of gradient-based optimization algorithms. Herein, a theo-

rem giving a sufficient condition for continuity to hold is stated and proved for the case of

quasi-static finite element analysis. Remarks and observations are made for the more com-

plicated dynamic analysis case. In the sequel, the symbol  indicates that the quantity

“a” has been computed considering the quantity “b” as a constant (i.e., b fixed), and the

symbol  indicates that the quantity “a” is evaluated for variable “b” equal to the

value “b”.

Theorem:

Given a finite element model of a structural system, the sensitivities  of the

response quantities r to sensitivity parameter θ, , are continuous

everywhere as functions of both the ordering parameter t (pseudo-time) of a quasi-static

analysis and the sensitivity parameter θ, if the following conditions are satisfied:

(a) All the material constitutive models used for representing the structural behavior are

uni-axial constitutive laws, i.e., , in which  and  denote a scalar stress

or stress resultant quantity and a scalar strain or strain resultant quantity, respec-

a b

a
b b=

�

� t θ,( ) dr t θ,( )
dθ

-------------------=

σ σ ε( )= σ ε
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tively.

(b)  All the branches of the material constitutive models can be expanded in Taylor

series about any of their points, i.e.,  exists and is finite for any  and

.

(c)  The material constitutive models are continuously differentiable with respect to the

sensitivity parameter θ, i.e.,  exists and is a continuous function of θ.

(d)  The components of the external nodal loading vector, , are continuous in

terms of the ordering parameter t and continuously differentiable with respect to the

sensitivity parameter θ.

Proof:

Without lack of generality, the proof will be presented for r = u, where u denotes

the nodal displacement vector, and will refer to a single analysis step (i.e., load or dis-

placement increment) after convergence (within a small specified tolerance) is achieved

for response calculation.

For quasi-static analysis, the equilibrium equation for the space-discretized system

at  is expressed as

(6.24)

djσ

dεj
--------

ε ε=

ε

j 1 2 …, ,=

σ ε θ,( )∂
θ∂

--------------------
ε

F t θ,( )

t tn 1+=

Rn 1+ un 1+ θ( ) θ,( ) Fn 1+ θ( )=
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in which  and  denote the internal and external nodal force vectors,

respectively, and where their dependence on the sensitivity parameter θ is shown explic-

itly; the subscript n+1 indicates the load/time step number (i.e., the quantity to which it is

attached is computed at ).

The response sensitivity equation at the structure level is obtained from Eq. (6.24)

using the chain rule of differentiation as

(6.25)

where K denotes the structure (consistent) tangent stiffness matrix. From Eq. (6.25), it fol-

lows that

(6.26)

Three different cases must be considered:

(i) Continuity of response sensitivity, , with respect to the ordering parameter t for a

load step  in which the strain rate does not change sign, with θ kept fixed

and equal to its nominal value θ0.

We need to prove that

R u θ( ) θ,( ) F θ( )

t tn 1+=

Kn 1+
dun 1+

dθ
----------------

dFn 1+
dθ

----------------
Rn 1+∂

θ∂
----------------

un 1+

–=

dun
dθ
--------- Kn

1– dFn
dθ
---------

Rn∂
θ∂

---------
un

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

dun 1+
dθ

---------------- Kn 1+
1– dFn 1+

dθ
----------------

Rn 1+∂
θ∂

----------------
un 1+

–
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

du
dθ
------

t tn 1+=
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(6.27)

The assumed smoothness/continuity properties of the material constitutive models and the

external loading functions (assumptions (b), (c) and (d) above) together with Eq. (6.24)

imply that

(6.28)

Thus Eq. (6.27) is proved by substituting Eqs. (6.26)1,2 in its left-hand-side and using Eqs.

(6.28)2,3,4.

(ii) Continuity of response sensitivity, , with respect to the ordering parameter t for a

load step  in which the strain rate changes sign (i.e., tn corresponds exactly

to an unloading point), with θ kept fixed and equal to its nominal value θ0.

We need to prove Eq. (6.27) again. In this sub-case, Eq. (6.28)2 is not satisfied since, in

general,  (see Figure 6.7b). The internal and

external nodal force vectors at  can be written in incremental form as

dun 1+
dθ

----------------
dun
dθ
---------–⎝ ⎠

⎛ ⎞
tn 1+ tn→

lim 0=

un 1+  un=
tn 1+ tn→

lim

Kn 1+ Kn=
tn 1+ tn→

lim

Rn 1+∂
θ∂

----------------
un 1+

Rn∂
θ∂

---------
un

=
tn 1+ tn→

lim

dFn 1+
dθ

----------------
dFn
dθ

---------=
tn 1+ tn→

lim
⎩
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎧

du
dθ
------

t tn 1+=

limtn 1+ tn→ Kn 1+ Kn unloading, Kn loading,≠=

t tn 1+=
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(6.29)

Equilibrium as expressed in Eq. (6.24) requires also that

(6.30)

Taylor series expansion of the internal nodal force vector R (considered as function of the

nodal displacement vector u) about u = un+1 is expressed at u = un as

(6.31)

in which , N denotes the number of degrees of freedom of the system,

and the superscript T represents the vector/matrix transpose operator. Considering that

 and , we can also write

(6.32)

Differentiating Eq. (6.32) with respect to parameter θ at θ = θ0, and recognizing that

, i = 1, ..., N (since  depends on θ only implicitly through

Rn 1+ Rn ΔRn 1++=
Fn 1+ Fn ΔFn 1++=

⎩
⎪
⎨
⎪
⎧

Rn Fn=
ΔRn 1+ ΔFn 1+=

⎩
⎪
⎨
⎪
⎧

R un( ) R un 1+( ) 1
p!
----- un un 1+–( )T ∇u⋅[ ]

p
R un( )

⎩ ⎭
⎨ ⎬
⎧ ⎫

u un 1+=p 1=

∞

∑+=

∇u
∂
u1∂

--------… ∂
un∂

--------
T

=

R un( ) Rn= R un 1+( ) Rn 1+=

Rn 1+ Rn
1–( )p

p!
------------- un un 1+–( )T ∇u⋅[ ]

p
R un( )

⎩ ⎭
⎨ ⎬
⎧ ⎫

u un 1+=p 1=

∞

∑–=

∂
θ∂

------ R u( )∂
ui∂

---------------
u un 1+=⎝ ⎠

⎜ ⎟
⎛ ⎞

0= R u( )∂
ui∂

---------------
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u(θ) and the operation  removes any dependence on θ since un+1 has been

computed for ), we obtain

(6.33)

From Eq. (6.33), we obtain the conditional derivative  as

(6.34)

recognizing that  (since  is independent of the response un+1 com-

puted at a subsequent analysis step) and . For un+1 sufficiently close to

un, the terms in Eq. (6.34) that are multiplied by  ( )

are negligibly small (i.e., infinitesimal quantities) due to assumption (b) which implies

that the quantities  (j = 1, 2, ... and  exist and are finite.

Thus, discarding infinitesimal quantities in Eq. (6.34), we obtain that

…( ) u un 1+=

θ θ0=

dRn 1+
dθ

-----------------
dRn
dθ

---------- +=

1–( )p 1+

p 1–( )!
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(6.35)

in which the equivalence between consistent tangent moduli and continuum tangent mod-

uli for uni-axial material constitutive models is used (assumption (a); Simo and Hughes

1998; Conte et al. 2003). Finally, substituting Eq. (6.26)2 in Eq. (6.27) and making use of

Eqs. (6.34), (6.28)1, and (6.35) (in this order), we obtain

(6.36)

in which we used the relation , obtained by differentiating

Eq. (6.30)1 and combining the result with Eq. (6.28)4.

(iii) Continuity of response sensitivity, , with respect to sensitivity parameter  (for

 fixed).

Let us consider a perturbed value  of the sensitivity parameter, i.e., , in

which  denotes the nominal value of the parameter and  is a small but finite pertur-

bation of it. Let  denote a response or response sensitivity vector quantity as

Rn 1+∂
θ∂

----------------
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dθ

----------
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---------⎝ ⎠
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⎩ ⎭
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θ0 Δθ

f f t θ,( )=
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function of both the ordering parameter t and sensitivity parameter  and let

 and , respectively. We need to prove that

(6.37)

From the continuity of the response and the loading function(s) with respect to the sensi-

tivity parameter  (assumptions (c) and (d)), it follows that

(6.38)

Making use of the static equilibrium equation (34) and assumption (d), we have

(6.39)

From the chain rule of differentiation applied to the internal force vector R expressed as

function of parameter  (i.e., ), we also have

(6.40)
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Furthermore, from assumption (c), it follows that , which when

combined with Eq. (6.38)1 gives

(6.41)

From Eq. (6.40) and using Eqs. (6.39), (6.38)2, and (6.41), it follows that

(6.42)

Remarks on the Sufficient Conditions for Response Sensitivity Continuity:

The sufficient conditions required by the above theorem are easy to satisfy. In par-

ticular, condition (b) (requiring that all branches of the material constitutive models used

be expandable in Taylor series) is in general satisfied by common smooth material models,

provided that branches with infinite stiffness are avoided.

The only condition that actually restricts the application of the above theorem is condition

(a) (all material constitutive models need to be uni-axial), which is required by Eq. (6.35),

where the identity between continuum and consistent tangent moduli for uniaxial constitu-

tive models is used. Other researchers (Haukaas and Der Kiureghian 2004) found that con-

tinuity of finite element response sensitivities can be obtained by using smooth multi-axial

constitutive models. Thus, it appears that the above theorem may be extendable to multi-

axial material constitutive models.
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lim R̃∂

θ∂
-------

u

R∂
θ∂

-------
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----------------=
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Remarks and Observations for the Dynamic Analysis Case:

The proof of the above theorem for quasi-static analysis cannot be easily extended

to the case of dynamic analysis. The space and time discretized equations of motion of a

structural system subjected to dynamic loads can be written as

(6.43)

in which

(6.44)

and the following general one-step time integration scheme is used (Conte et al. 1995;

Conte 2001; Conte et al. 2003, 2004; Haukaas and Der Kiureghian 2004; Barbato and

Conte 2005)

(6.45)

The above family of time stepping schemes includes well-known algorithms such as the

Newmark-beta family of methods (e.g, constant average acceleration method, linear accel-

eration method, Fox-Goodwin method, central difference method) and the Wilson-theta

method (Hughes, 1987).

Differentiating Eq. (6.43) with respect to the sensitivity parameter  yields the fol-

lowing sensitivity equation:

a1M θ( )un 1+ θ( ) a5C θ( )un 1+ θ( ) Rn 1+ un 1+ θ( ) θ,( ) Fn 1+ θ( )=+ +

Fn 1+ θ( ) Fn 1+ θ( ) M θ( ) a2un θ( ) a3u· n θ( ) a4u··n θ( )+ +[ ]⋅–=
 C θ( ) a6un θ( ) a7u· n θ( ) a8u··n θ( )+ +[ ]⋅–

u··n 1+ a1un 1+ a2un a3u· n a4u··n+ + +=
u·

n 1+
a5un 1+ a6un a7u· n a8u··n+ + +=

⎩
⎪
⎨
⎪
⎧

θ
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(6.46)

in which the terms  and  are defined as

(6.47)

(6.48)

Eq. (6.46) is formally identical to Eq. (6.25). Therefore, if we assume (in addition to the

hypotheses of the theorem presented above) that (1) the mass matrix, M, and the damping

matrix, C, are time-invariant, and (2) the term  is continuous as a function of ,

we could prove the continuity of the response sensitivities , , and  in a way that

is similar to the one used for the quasi-static case.

Unfortunately, while assumption (1) is generally satisfied for civil structures (i.e., inertial

properties remain usually constant within a dynamic load event, and damping properties

are typically modeled through a time-invariant viscous damping mechanism), it was found

through application examples such as the one shown in Figure 6.16 that assumption (2) is

not true in general.
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Assuming the same smoothness hypotheses (i.e., assumptions (b), (c), and (d))

used in the above theorem for quasi-static problems, intuition would suggest that response

sensitivities are also continuous in the dynamic case that further benefits from the “linear-

ization” (and smoothing) effects of the linear inertial and damping terms (Haukaas and

Der Kiureghian 2004). The fact that discontinuities are hard to detect in response sensitiv-

ity histories (i.e., along the time axis for  fixed), as illustrated by Figs. 6.9 and  6.10, fur-

ther reinforces this intuitive argument. However, finite element response sensitivities

computed from the space and time discretized equations of motion, Eq. (6.43), and the

corresponding sensitivity equations, Eq. (6.46), are not continuous in general. This state-

ment is clearly illustrated in Figure 6.16 which clearly shows, for the example structure

presented in this paper and modeled using the smooth M-P (R0 = 20) material constitutive

law, discontinuities in the response sensitivities along the parameter (Fy0) axis, even

though discontinuities cannot be visually observed along the time axis (for a given value

of Fy0). Discontinuities in the response sensitivities along the parameter axes are of high-

est interest, since they can have detrimental effects on the convergence of gradient-based

optimization algorithms such as the ones used for the design point search in structural reli-

ability analysis.

Analytical treatment of the observed discontinuities along the parameter axes for

the dynamic analysis case and for a smooth material constitutive model (such as the M-P

model) is very challenging and is outside the scope of this paper. There are some funda-

mental differences between the quasi-static case (treated in the above theorem) and the

dynamic case discussed here. By comparing the response sensitivity equations for the

θ
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quasi-static case, Eq. (6.25), and the dynamic case, Eq. (6.46), we notice the following

two significant changes. (1) In the dynamic case, the term  on the right-hand-

side of the sensitivity equation (Eq. (6.46)) depends on both the response and response

sensitivity histories up to the current time step as shown in Eq. (6.47), which is not the

case for the corresponding term  on the right-hand-side of the sensitivity equation

(Eq. (6.25)) for the quasi-static case. (2) The term  and the dynamic tangent stiff-

ness matrix, , depend explicitly on the time step length  as shown by Eqs. (6.47)

and (6.48). Indeed, the time stepping algorithm in Eq. (6.45) assumes a finite (and fixed)

 and coefficients ai (i = 1, ..., 8) are, in general, dependent on , i.e., ai = ai( ) (i = 1,

..., 8). For example, if the Newmark-beta algorithm is used, we have

, , , , ,

, in which  and  are parameters controlling the accuracy and stabil-

ity of the numerical integration scheme (for the constant average acceleration method used

in this paper,  and ). It has been found through application examples that for

some values of the sensitivity parameter , 

(6.49)
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Convergence studies of response sensitivities suggest that such discontinuities expressed

in Eq. (6.49) tend to spread (reduce in size and increase in number) for decreasing . A

comparison between the results presented in Figure 6.16 (large discontinuities) and the

results shown in Figure 6.14 (small discontinuities, not visible at the given scale) shows

clearly the effect of reducing the time step length  from 0.02s to 0.001s upon the com-

puted response sensitivities for the smooth M-P (R0 = 20) material constitutive law.

Based on the application examples performed, it can be safely concluded that the

response sensitivity discontinuities shown in Figure 6.16 are largely due to the discretiza-

tion in time of the equations of motion, Eq. (6.43). The solution of the time continuous

problem for smooth material constitutive models (satisfying the hypotheses of the theorem

presented above) appears to have continuous response sensitivities, as suggested by intu-

ition, i.e.,

(6.50)

For practical purposes and finite element applications, the result expressed by Eq. (6.50)

requires a fine time discretization in integrating the equation of motion in order to obtain

continuous (and therefore converged with respect to ) response sensitivities (see Figure

6.14 for converged results and Figure 6.16 for non-converged results). Previous studies

show that convergence requirements (with respect to ) for response sensitivity compu-

tation are stricter than those for response computation only (Gu and Conte 2003). It is

noteworthy that non-smooth material constitutive models (such as the J2 plasticity model

considered in this paper) present discontinuities along the parameter axes that are due to

the physics of the problem (material state transition from elastic to plastic at integration

point(s)), and thus cannot be eliminated through reducing  (see Figure 6.15).
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CHAPTER 7

EFFICIENT SIMULATION OF FULLY 
NONSTATIONARY STOCHASTIC 

EARTHQUAKE GROUND MOTION 
MODEL

7.1   INTRODUCTION

In many engineering fields, the importance of using stochastic processes to model

loading such as earthquake ground motion, wind turbulence, ocean wave excitation has

become clear. A large amount of research has been devoted to the development of analyti-

cal expressions and numerical simulation techniques of stochastic processes adequate to

represent those kinds of loading driven by natural variability and many books have been

written on the topic (Lin 1967; Priestley 1987; Lutes and Sarkani 1997). In particular in

earthquake engineering, the nonstationarity in time and in frequency content has been rec-

ognized as an essential ingredient to capture the loading effects on the structural response

realistically (Saragoni and Hart 1972; Yeh and Wen 1990; Papadimitriou 1990; Conte

1992). Therefore, attention has been given to nonstationary earthquake ground motion

models, with the aim of accurate but computationally inexpensive representation of such
272
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loading (Grigoriu et al. 1988; Der Kiureghian and Crempien 1989; Fan and Ahmadi 1990;

Conte et al. 1992; Conte and Peng 1997). 

At the same time, Monte Carlo simulation has been widely used for directly solv-

ing (often together with variance reduction techniques) and/or checking approximate solu-

tions of random vibration and system stochasticity problems (Shinozuka 1972; Shinozuka

and Wen 1972; Bjerager 1988; Bucher 1988; Ditelvsen and Madsen 1996). Monte Carlo

simulation is a general and robust method for solving probabilistic problems, but usually

is also computationally expensive or even unfeasible. A crucial step in Monte Carlo simu-

lation is the generation of sample functions of the stochastic processes or random fields

involved in the problem. Accurate and efficient sampling generation is of paramount

importance for a successful application of the Monte Carlo simulation technique. A gen-

eral method for sampling generation of stochastic processes and/or random fields is the

spectral representation method (Rice 1944; Shinozuka and Jan 1972; Shinozuka and Deo-

datis 1991).

In this chapter, a new simulation methodology is presented for a specific fully non-

stationary earthquake ground motion stochastic process which has found wide application

in earthquake engineering studies (Conte and Peng 1997; Peng and Conte 1997, 1998;

Takewaki 2001a, 2001b, 2001c; Michaelov et al. 2001; Chaudhuri and Chakraborty 2003;

2004; Takewaki 2004; Barbato et al. 2004). This new methodology, based on a “physical”
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interpretation of the considered stochastic process, is compared with the more general

spectral representation method in terms of accuracy and efficiency.

7.2   FULLY NONSTATIONARY STOCHASTIC EARTHQUAKE 

GROUND MOTION MODEL

In this work, the stochastic earthquake ground motion model is considered as a

sigma-oscillatory process (Conte and Peng 1997), nonstationary in both amplitude and

frequency content. This earthquake ground acceleration model, , is defined as the

sum of a finite number of pair-wise independent, uniformly modulated Gaussian pro-

cesses. Thus

(7.1)

where Np represents the number of component processes, Ak(t) is the time modulating

function of the k-th sub-process or component process, Xk(t), and Sk(t) is the k-th Gauss-

ian stationary process. The time modulating function Ak(t) is defined as

(7.2)

where αk and γk are positive constants, βk is a positive integer, and θk represents the

“arrival time” of the k-th sub-process, Xk(t); H(t) denotes the Heaviside unit step function.
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The k-th zero-mean, stationary Gaussian process, Sk(t), is characterized by its autocorrela-

tion function

(7.3)

and the corresponding power spectral density (PSD) function

(7.4)

in which νk and ηk are the two free parameters representing the frequency bandwidth and

the predominant or central frequency of the process Sk(t), respectively. 

It can be shown (Conte and Peng 1997) that the mean square function of the above

ground acceleration model can be expressed as

(7.5)

where  is the expectation operator, and the corresponding evolutionary (time-vary-

ing) power spectral density (EPSD) function is given by

(7.6)

The EPSD function gives the time-frequency distribution of the earthquake ground accel-

eration process. 
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7.3   DIGITAL SIMULATION OF STOCHASTIC GROUND MOTION 

MODEL 

7.3.1   Simulation using the spectral representation method (SRM)

The spectral representation method (SRM) (Shinozuka and Deodatis 1991) is

based on the following infinite series representation of a one-dimensional uni-variate sta-

tionary stochastic process  with mean value equal to zero, autocorrelation function

 and two-sided power spectral density function :

(7.7)

in which , with sufficiently small but finite , and  are independent

random phase angles uniformly distributed in the range . From the infinite series

representation of Eq. (7.7), it follows that the stochastic process  can be simulated by

the following series as :

(7.8)

in which  denotes the simulated process and

(7.9)

(7.10)
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(7.11)

(7.12)

and  in Eq. (7.11) represents an upper cut-off frequency beyond which the power spec-

tral density function  can be considered negligible. Under the condition of Eq.

(7.12), the simulated process  is periodic with period  and thus, if the

process needs to be simulated over the time interval , the condition 

(7.13)

must be imposed. Furthermore, the time interval  separating the generated values of a

sample function of the process  has to obey the condition:

(7.14)

The simulation formula given in Eq. (7.8) is directly applicable to each of the

Gaussian stationary stochastic process,  with k = 1,2, ..., Np, substituting the power

spectral density function  with the function  of Eq. (7.4). The simula-

tion formula for the i-th sample function  of the simulated process  becomes

(7.15)

in which  denotes the i-th realization of the random phase angle  (n = 0, 1, ..., N).

The computational cost of digital simulation of the sample function  can be dramat-
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ically reduced by using the fast Fourier transform (FFT) technique. Eq. (7.15) can be

rewritten as

(7.16)

in which

(7.17)

(7.18)

The following condition is established between N and M:

(7.19)

Furthermore, in order to take full advantage of the FFT technique, M must be an integer

power of two:

(7.20)

in which  is a positive integer.

7.3.2   New efficient simulation method

Herein, a new efficient simulation method is developed and described specifically

for the stochastic ground motion model presented in Section 7.1. This simulation tech-

nique is denoted in the sequel as physical interpretation-based method (PBM) since it is

based on a particular physical interpretation of the Gaussian stationary process used to
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describe each of the components  (k=1, 2, ..., Np) constituting the nonstationary

ground motion process considered herein. Each of the Np Gaussian stationary process

, necessary to determine the given stochastic earthquake ground motion is character-

ized by the following autocorrelation function

(7.21)

Each of the processes  (k=1, 2, ..., Np) can be viewed as a specific linear

combination of the displacement and the velocity responses of a particular linear single-

degree-of-freedom (SDOF) system (shaping filter) to two statistically independent Gauss-

ian white noises, i.e.

(7.22)

Use of Eq. (7.22) requires computing the values of the characteristics of the SDOF system,

: natural circular frequency, and : damping ratio, respectively, and the coeffi-

cients  and .

The autocorrelation functions of the displacement and velocity response of an

SDOF system subjected to white noise excitation are given by (Lutes and Sarkani 1997)

(7.23)
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(7.24)

where  is the PSD of each of the two statistically independent Gaussian white noises

and  is the damped circular frequency of the SDOF. The autocor-

relation function of each component of the process can be obtained by using the definition

as

(7.25)

where we have  because  and

 are statistically independent.

By introducing Eqs. (7.23) and (7.24) into Eq. (7.21) and comparing the resulting

expression with Eq. (7.25), we obtain:

(7.26)
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(7.27)

This interpretation of the stochastic random sub-processes is useful in developing

a fast simulation procedure, consisting in (1) generating two independent Gaussian white

noises with PSD , (2) integrating in time the SDOF defined by Eq. (7.26) subjected sep-

arately to the two independent Gaussian white noises previously generated, and (3) lin-

early combining (Eq. (7.22)) the obtained displacement and velocity responses using the

coefficients given by Eq. (7.27). 

An important aspect of this simulation procedure is the generation of the needed

discrete white noises and their numerical interpolation shape. A discrete white noise pro-

cess is realized by generating a sequence of statistically independent random variables

positioned at equidistant time instants, i.e., with constant time intervals . Any probabil-

ity distribution can be selected; in the present case, discrete Gaussian white noises are gen-

erated by selecting a Gaussian distribution with zero mean  and variance

. Different methods of numerical integration of the equation of motion assume

different schemes of interpolation shape between the discrete input values. Here the exact
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piece-wise linear integration scheme is adopted; therefore a linear interpolation shape is

assumed for the discrete white noise. 

The power spectral density of a continuous white noise is a constant:

(7.28)

On the other hand, the actual power spectral density of a linearly interpolated discrete

white noise is:

(7.29)

Taking the limit as , the PSD function of the corresponding continuous white noise

is obtained as

(7.30)

The value of  given by Eq. (7.30) is the one required to determine the coeffi-

cient for the linear combination of the responses of the shaping filters (Eq. (7.27)). Inte-

grating naively the so-defined linearly interpolated discrete Gaussian white noises, it is

evident that the result is dependent on the choices of  and on the natural frequencies of

the shaping filters . In particular, Eq. (7.29) shows a non-negligible loss of power in

the PSD function for large  and . In order to avoid this problem, it is necessary to

rescale the variance of the Gaussian random variables used to generate each of the input
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discrete white noises for each of the shaping filters. This is accomplished by computing

the reduction of the PSD corresponding to the natural frequency of the shaping filter 

and the discretization time interval  from Eq. (7.29) as

(7.31)

and using Gaussian random variables with zero mean  and corrected variance 

given as 

(7.32)

The proposed simulation method requires that the discretization time interval  is

chosen such that 

(7.33)

7.3.3   Comparison between the two simulation methods

The SRM reviewed above in this paper is a general and powerful tool for simulat-

ing one-dimensional uni-variate Gaussian stochastic processes. In the version making use

of the FFT (Eq. (7.16)), the SRM is also extremely efficient. Nevertheless the SRM is sub-

ject to some limitations and conditions deriving from the fact that the simulation formulae

employed (Eq. (7.15) or Eq. (7.16)) are exact only in the limit as  (i.e., as the trun-
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cated series in Eqs. (7.15) or (7.16)) approach the corresponding infinite series in Eq.

(7.7)).

In particular the following aspects need careful consideration.

(1) The power spectral density of the simulated process obtained through SRM is equal to

zero for frequencies greater than the cut-off frequency . This condition is not veri-

fied by any of the components of the stochastic process considered in the paper. The

effects of this artificially introduced cut-off frequency is loss in terms of total power of

the process. The power loss for each process component is equal to 

(7.34)

From Eq. (7.34), the power loss for the mean square ground acceleration can be com-

puted as

(7.35)

The integral of  over the assumed earthquake duration T is the total energy

loss from the original process to the simulated process, i.e. 

(7.36)
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This energy loss has an impact that is particularly evident on the response statistics of

elastic structures with high frequency modes subject to the earthquake ground motion

process considered in the paper. This power (and energy) loss can be reduced increas-

ing the value of the cut-off frequency , which also implies decreasing the maximum

value of the time interval  separating the generated values of a sample function, as

shown in Eq. (7.14). Given the characteristics of the earthquake ground motion pro-

cess considered, the same time interval  must be used in simulating each of the Np

component processes, leading to different accuracy in simulating the different compo-

nents and possibly to a choice of a very small  in order to achieve a required mini-

mum accuracy.

(2) The autocorrelation function of the digitally simulated process obtained by using the

SRM is an approximation of the autocorrelation function of the simulated process. In

Shinozuka and Deodatis (1991), the error due to this approximation is shown to be

inversely proportional to the number N of components used in the simulation. The

power loss for each process component and the total energy loss for the earthquake

ground motion process due to this approximation can be expressed as

(7.37)

(7.38)
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(3) The simulated process is only asymptotically Gaussian (i.e., for ). When the

interest is focused on quantities depending on the tail distribution, biasing could be

introduced if the number N of components used in the simulation is not sufficiently

large.

(4) The simulated process is periodic with period . This characteristic

imposes conditions on the number N of components to use for simulation and/or on

the time interval  and/or on the time length T of the simulation, since the condition

 must be satisfied.

(5) When using the FFT technique, the additional condition  must be enforced to

obtain the maximum computational efficiency. Furthermore, the relation 

must be satisfied. For large N, this condition could require large use of memory stor-

age and may have negative effects on the computational efficiency of the simulation

procedure.

(6) If the time length of the simulation is increased from T to , the realizations of the

process must be completely recomputed, i.e., previous realizations cannot be reused.

(7) The process of “zooming-in” (i.e., refining the simulation in a narrow time window

using a time step as small as desired) is possible only with SRM using summation of

cosines, while zooming-in over the whole period T0 is necessary when SRM with FFT

technique is employed.
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The PBS method developed in this work specifically for the earthquake ground

motion process presented in Section 7.1 overcomes the limitations of the SRM. In fact, the

following considerations hold.

(1) The PBS method does not require to define a cut-off frequency, avoiding power loss in

the PSD function of each of the process components.

(2) The autocorrelation function of the simulated process is exact, i.e., equal to the auto-

correlation function of the process to simulate.

(3) The simulated process is exactly Gaussian, provided that the random number genera-

tor used is able to generate numbers following exactly a Gaussian distribution.

(4) The simulated process is not periodic and the only condition on the time interval 

used in the simulation is that  (k = 1, 2, ..., Np). In general, this condition is

easy to satisfy.

(5) The computational efficiency of the simulation procedure is independent of the time

interval  and the simulation time is proportional to the ratio .

(6) Extending the simulation to a time length  can leverage previous realizations,

provided that the final states of the two basic filtered white noises have been previ-

ously saved for each component of the process (i.e.,  and , k = 1, 2, ...,

Np).

(7) Zooming-in is obtained very easily and requires only to change the value of  in the

time interval of interest.
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On the other hand, while the SRM is a general simulation technique, the PBS

method can be applied only to stationary Gaussian processes having an autocorrelation

function given by Eq. (7.21).

7.4   APPLICATION EXAMPLES

7.4.1   Calibrated stochastic earthquake models 

In this study, the stochastic process for the earthquake excitation has been cali-

brated to model the characteristics of three actual ground motion records: (1) the S00E (N-

S) component of the Imperial Valley earthquake of May 18, 1940, recorded at the El Cen-

tro site (in short, El Centro earthquake); (2) the N00W (N-S) component of the San

Fernando earthquake of February 9, 1971, recorded at the Orion Blvd. site (Orion Blvd.

earthquake); and (3) the N90W (W-E) component of the Loma Prieta earthquake of Octo-

ber 17, 1989, recorded at the Capitola site (Capitola earthquake). The parameters for each

of these records are estimated using the short-time Thomson multiple-window method

described in Conte and Peng (1997), where the parameter values for the El Centro and the

Orion Blvd. earthquakes are also given. The model parameters for the Capitola earthquake

are given in Barbato et al. (2004). The agreement between the presented model and the

ground motion simulation is very good and it has been validated in previous works (Conte

and Peng 1997), in which the SRM was used for the simulation of artificial ground

motions. 
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A direct comparison in terms of computational efficiency and accuracy between

the SRM and the PBS method is presented for the three earthquakes considered using data

from 10000 simulations. Computational efficiency is evaluated comparing the CPU times

required for generating the 10000 simulations using the SRM with summation of cosines

and the SRM with FFT technique for different number N of components and the PBS

method. Accuracy is evaluated computing the energy relative error, , and the peak

relative error, , in the simulated process obtained using the SRM for different num-

ber N of components. Those errors are defined as follows:

(7.39)

(7.40)

For the three earthquake models considered, the parameters used in the PBS method are

computed for all the component processes and are shown in Table 7.1.

7.4.2   Comparison of simulation methods for the El Centro earthquake model

The earthquake ground motion model used to represent the El Centro earthquake is

constituted of 21 different time-modulated components. For this earthquake model, a first

εenergy

εpeak

εenergy
Eloss 1, Eloss 2,+

Ak t( ) 2 td
0

T

∫
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

k 1=

Np

∑

-------------------------------------------=

εpeak
max 0 t T≤ ≤( ) E U·· g t( ) 2[ ] E Ũ
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comparison is made between the statistics of the target stochastic model (equal to the one

obtained using the PBS method) and the simulated process obtained using the SRM with

different values of the number N of components selected for the simulation. The results

presented herein refers to an assumed duration of the earthquake T = 35.0s and a time

interval of the simulation , with a number of time steps . 

The time-variant mean square accelerations of the target ground acceleration pro-

cess and of the simulated processes for different values of N are shown in Fig. 7.1. It is

noteworthy that the simulated processes obtained from (1) the SRM with summation of

cosines and (2) the SRM with the FFT technique are identical when using the same num-

ber N of simulation components. Fig. 7.2 plots the energy relative error and the peak rela-

tive error, defined in Eqs. (7.39) and (7.40), respectively, in the simulated processes

obtained using the SRM for different values of N. Figs. 7.1 and 7.2 show that the simu-

lated process approximates better the target process for increasing number N of simulation

components, but for N larger than a certain number (in this case N* = 211), the improve-

ment obtained increasing N is very small and cannot completely eliminate the difference

between target and simulated processes. This difference is due to the energy loss related to

the introduced cut-off frequency , as shown in Eq. (7.36).

Fig. 7.3 shows the CPU time required for the simulation of 10000 realizations of

the ground acceleration process using (1) the SRM with summation of cosines (denoted in

Δt 0.02s= nstep 1751=

ωu
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the sequel as SRM) and (2) the SRM with the FFT technique ( ) relative to the

CPU time required by the simulation of 10000 realizations obtained using the PBS

method. In the inset, the relative CPU time for the SRM for different N values is shown

separately, due to the different higher order of magnitude. Fig. 7.3 shows clearly that:

(1) The SRM is extremely time-consuming, even for a small number N of simulation

components (tCPU/tCPU,PBM > 20 for N = 24).

(2) The  is very efficient computationally when the conditions , with 

positive integer, and M = 2N are satisfied. In the present case, simulations using the

 have been performed also for values of M not satisfying the first of the

above conditions (i.e., , α = 1, 2, 3, 4, 5). For these values of M, the

simulation algorithm is much less efficient than for 

(3) For  ( ), simulation of the ground motion stochastic model

using the  requires approximately the same amount of time required by sim-

ulation by using the PBS method. On the other hand, in order to satisfy the condition

, the condition  must also be satisfied. Thus, the minimum value of N

for which both the conditions  and M = 2N hold is N = 211 = 2048, for which

.

Due to the last of the above considerations, the statistics of the 10000 simulations

obtained using the PBS method and the SRM with FFT technique and N = 2048 (in the

SRMFFT
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following denoted as SRM2048) are directly compared with the closed form solutions of

the theoretical statistics of the process which is being simulated. Fig. 7.4 shows the com-

parison between the target mean square acceleration relative to the El Centro earthquake

model and the mean square acceleration computed from the 10000 realizations obtained

using the PBS method. The curves representing estimates of the mean value plus and

minus the standard deviation of the estimate of the mean are also plotted. The target quan-

tity is almost always contained in the interval between the latter two curves. The worst

agreement case between target and estimated mean square accelerations happens in corre-

spondence of the peak about time  and is shown in the inset of Fig. 7.4. Fig. 7.5

illustrate the comparison between the target mean square acceleration relative to the El

Centro earthquake model and the mean square acceleration computed from the 10000

realizations obtained by using the SRM2048, together with the curves representing the esti-

mates of the mean value plus and minus the standard deviation of the estimate of the

mean. The agreement between target and estimated mean square accelerations is also very

good, but in the inset of Fig. 7.5 the systematic underestimation of the mean square accel-

eration by the estimate obtained through simulation by SRM2048 is evident. This is consis-

tent with the expected power loss previously discussed in the comparison between the two

simulations techniques considered and represented in Fig. 7.1 for this application exam-

ple. 

t 2s=
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Fig. 7.6 compares the closed-form solution for the mean upcrossing rate of the

ground motion acceleration relative to a deterministic threshold

 (see Appendix) with the corresponding simulation esti-

mates obtained through PBM and SRM2048. In Fig. 7.7, the same kind of comparison is

presented for the expected value of upcrossings of the ground motion acceleration relative

to a deterministic threshold . The confidence intervals of plus and minus the

standard deviation of the estimate of the quantity of interest are also given. The results

obtained from both PBS method and SRM2048 are in very good agreement with the theo-

retical values. 

Fig. 7.8 illustrates the comparison between the target mean square displacement

for an SDOF system with natural period  and damping ratio  subjected

to the El Centro earthquake model (closed-form solutions for such a quantity can be found

in Peng and Conte 1996) and the same quantity estimate computed from the 10000 real-

izations obtained using the PBS method. Fig. 7.9 compares the same closed-form solution

quantities as in Fig. 7.8 with their estimates obtained through SRM2048. The curves repre-

senting the estimates of the mean value plus and minus the standard deviation of the esti-

mate of the mean are also plotted. A behavior similar to the one recognized in Figs. 7.4

and 7.5 is found also in this case: both the PBS method and SRM2048 results are overall in

good agreement with the theoretical results relative to the target process, but while the

ξ 3σa max, 3 max σa t( )[ ]⋅= =

ξ 3σa max,=

Tn 2s= ζ 0.10=
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results obtained through PBS method match very well the theoretical values also in corre-

spondence of the peaks in the time-history (see inset of Fig. 7.8), the SRM2048 results sys-

tematically underestimate the theoretical results at these peaks, as highlighted clearly by

the inset of Fig. 7.9. 

Figs. 7.10 and 7.11 show the comparison between the closed-form solutions for the

mean upcrossing rate and the expected number of upcrossings, respectively, of the SDOF

system considered relative to a deterministic threshold 

(see Barbato et al. 2004) and the corresponding estimates obtained through PBS method

and SRM2048. For the expected value of upcrossings, the confidence interval of plus and

minus one standard deviation of the estimates are also given. The agreement between the-

oretical values and estimates is overall very good. The theoretical values are contained for

the entire simulation interval in the confidence interval obtained through PBS method,

while they slightly exceed the confidence interval obtained through SRM2048 around t =

3.0s and t = 6.0s. From theoretical considerations (see point 3 of the section “Comparison

between the two simulation techniques”), it is believed that the quality of results obtained

from SRM2048 will deteriorate when considering quantities depending on higher thresh-

olds (i.e., with smaller probability of occurrence), while results obtained from PBS

method are not influenced by the probability of occurrence, since the simulated process is

exactly Gaussian-distributed.

ξ 3σd max, 3 max σd t( )[ ]⋅= =
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The results in terms of relative errors and relative CPU time presented in this sec-

tion are representative only of the considered choice of T = 35.0s and . Differ-

ent choices of the time length T of the simulation and/or of the time interval  of the

simulation will give results that are numerically different but qualitatively similar. In par-

ticular, since (1) the computational cost of the PBS method is proportional to the number

of time steps  and the computational cost of the  is proportional to the num-

ber of simulation components N, (2) the two simulation methods present similar computa-

tional cost for , (3) the condition  must hold, (4) the SRM

approximates the target process only asymptotically while the PBS method simulates

exactly the target process, it can be concluded that the PBS method is more efficient and

accurate than the SRM in simulating the target process representing the El Centro earth-

quake model for any choice of T and .

7.4.3   Comparison of simulation methods for the Orion Blvd. earthquake model

The earthquake ground motion model used to represent the Orion Blvd. earthquake

is constituted of 15 different time-modulated components. Also for this earthquake model,

the time length of the simulation and the time interval of the simulation are assumed as

 and , respectively, giving a number of time steps . 

Δt 0.02s=

Δt

nstep SRMFFT

nstep N 1.7≈⁄ N nstep≥

Δt

T 35.0s= Δt 0.02s= nstep 1751=
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The time-variant mean square acceleration of the target ground acceleration pro-

cess and of the simulated processes for different values of N are shown in Fig. 7.12. Fig.

7.13 plots the energy relative error and the peak relative error in the simulated processes

obtained by using the SRM for different values of N. Figs. 7.12 and 7.13 show that the

simulated process approximates better the target process for increasing number N of simu-

lation components. Similarly to the El Centro earthquake process case, for N larger N* =

211 the improvement obtained increasing N is very small and cannot completely eliminate

the difference between target and simulated processes, mainly due to the energy loss

related to the introduced cut-off frequency . For the Orion Blvd. earthquake model, the

energy and peak relative errors are roughly half of the corresponding errors found for the

El Centro earthquake model when using the same number N of simulation components.

Fig. 7.14 provides the CPU time required for the simulation of 10000 realizations

of the ground acceleration process using the  relative to the CPU time required

by the simulation of 10000 realizations obtained by using the PBS method. It is found that

also in this case for  ( ), simulation of the ground motion sto-

chastic model by using the  requires approximately the same amount of time

required by simulation by using the PBS method. The minimum value of N that satisfies

the conditions , M = 2N and  is N = 211 = 2048, for which

ωu

SRMFFT

N 1024 210= = M 211=
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. The results in terms of relative CPU time for the simulation of

the Orion Blvd. earthquake model are very similar to the ones for the El Centro earthquake

models and similar considerations apply. Thus, also in this case the PBS method is more

efficient and accurate than the SRM in simulating the target process for any choice of T

and .

7.4.4   Comparison of simulation methods for the Capitola earthquake model

The earthquake ground motion model used to represent the Capitola earthquake

consists of 11 different time-modulated components. Also for this earthquake model, the

time length of the simulation and the time interval of the simulation are assumed as T =

35.0s and , respectively, giving a number of time steps . 

Fig. 7.15 compares the time-variant mean square acceleration of the target ground

acceleration process and of the simulated processes for different values of N. Fig. 7.16

plots the energy relative error and the peak relative error in the simulated processes

obtained by using the SRM for different values of N. Similar considerations apply as for

the two earthquake model illustrated above. The energy and peak relative errors found for

the Capitola earthquake model are very close to the ones of the Orion Blvd. Earthquake

model for the same number N of simulation components.

tCPU tCPU PBM,⁄ 1.956=

Δt

Δt 0.02s= nstep 1751=
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Fig. 7.17 shows the CPU time required for the simulation of 10000 realizations of

the ground acceleration process by using the  relative to the CPU time required

by the simulation of 10000 realizations obtained by using the PBS method. As in two pre-

vious cases, simulation of the ground motion stochastic model using the  with

 ( ) requires approximately the same amount of time required

by simulation by using the PBS method. For N = 211 = 2048, the relative CPU time is

. The results in terms of relative CPU time are very similar to

the ones obtained in the previous two cases and also in this case the PBS method is more

efficient and accurate than the SRM in simulating the target process for any choice of T

and .

7.4.5   Comparison results based on the three earthquake models considered

The following common observations can be made based on the results obtained

from the three earthquake models considered. 

(1) The energy relative error and the peak relative error in the simulated processes

obtained using the SRM are strongly dependent on the characteristics of the process

itself (number Np of process components, parameters representing the components,

etc.) and only slightly on the number N of components used in the simulation for

. These errors tend to a constant value for  depending on the cut-off

SRMFFT

SRMFFT

N 1024 210= = M 211=

tCPU tCPU PBM,⁄ 2.010=

Δt

N nstep≥ N ∞→
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frequency  and thus on the time interval  used to discretize the simulation. In

general, these errors are small for reasonable choices of time length T of the simula-

tion and time interval  discretizing the simulation. The PBS method is able to simu-

late the given stochastic process without introducing any energy and peak relative

errors.

(2) The PBS method is more efficient and accurate than the SRM in simulating the target

process for any choice of T and . For all the three earthquake models considered, it

is found that for  the relative CPU time is . Con-

sidering that , the minimum number N* satisfying also the conditions

 and M = 2N (i.e., ) is such that . Thus, the rel-

ative CPU time is such that , independently of the

choice of T and  and of the earthquake model to be simulated.

7.5   CONCLUSIONS 

A new efficient simulation technique for a specific fully nonstationary earthquake

ground motion stochastic model is developed and presented in this work. This new

method, based on a physical interpretation of the considered stochastic process, is com-

pared with the more general spectral representation method in terms of both computa-

tional efficiency and accuracy. This comparison is performed by using three earthquake

ground motion models for which the parameters characterizing the stochastic processes

ωu Δt
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Δt
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have been calibrated to represent three different actual recorded earthquakes. The relative

CPU time required for generating 10000 samples of the earthquake ground motion is used

as measure of computational efficiency. The statistics, estimated from the simulations, of

the earthquake ground motion itself and of the response of a linear elastic single-degree-

of-freedom system subjected to the earthquake ground motion are compared with the cor-

responding available closed-form solutions.

It is found that the new proposed simulation method is: (1) at least as accurate as

the spectral representation method, (2) more efficient than the spectral representation

method in terms of computational time required for simulating samples of the specific sto-

chastic process considered in this work, and (3) more flexible and easy to use, since the

time length and the time interval used to discretize the simulation are independent and do

not need to satisfy restrictive additional conditions.
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Table 7.1   Parameters defining the sub-processes for the stochastic models of three 
considered earthquakes

El Centro earthquake Orion Blvd. earthquake Capitola earthquake

1 6.915 0.2104 1.0032 3.349 0.3768 1.0007 9.346 0.0260 1.0058

2 11.361 0.2190 1.0086 5.147 0.3081 1.0018 7.770 0.1039 1.0040

3 8.075 0.4090 1.0044 4.592 0.4177 1.0014 5.829 0.2284 1.0023

4 13.768 0.1596 1.0127 3.363 0.5679 1.0008 15.672 0.1633 1.0165

5 14.718 0.2123 1.0146 3.661 0.3278 1.0009 18.484 0.1125 1.0231

6 26.039 0.2586 1.0463 11.150 0.1076 1.0083 29.806 0.0706 1.0612

7 48.137 0.0559 1.1685 14.289 0.1463 1.0137 21.771 0.0105 1.0322

8 38.301 0.1882 1.1033 16.671 0.1775 1.0187 39.706 0.0572 1.1114

9 20.398 0.2995 1.0282 9.509 0.1428 1.0060 46.140 0.0338 1.1537

10 9.256 0.2146 1.0057 19.419 0.1277 1.0255 51.372 0.0382 1.1942

11 9.647 0.2509 1.0062 20.249 0.0638 1.0278 60.218 0.1363 1.2773

12 14.189 0.1074 1.0135 31.594 0.0868 1.0690 - - -

13 24.105 0.0711 1.0396 28.824 0.0463 1.0571 - - -

14 28.426 0.2095 1.0555 43.123 0.0419 1.1329 - - -

15 13.064 0.1482 1.0114 37.764 0.1149 1.1002 - - -

16 12.153 0.1473 1.0099 - - - - - -

17 98.752 0.0500 1.9595 - - - - - -

18 61.863 0.0319 1.2949 - - - - - -

19 44.028 0.0738 1.1389 - - - - - -

20 26.592 0.1382 1.0484 - - - - - -

21 37.153 0.0460 1.0969 - - - - - -

ω0
k( )

ζ k( ) 1 γk⁄ ω0
k( )

ζ k( ) 1 γk⁄ ω0
k( )

ζ k( ) 1 γk⁄
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Figure 7.1 Comparison of time-variant mean square acceleration for the El Centro
earthquake of target earthquake ground motion process (PBS) with simu-
lated process obtained by using SRM with different N.

Figure 7.2 Energy relative error and peak relative error in the simulated processes for
the El Centro earthquake obtained by using the SRM and various N.
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Figure 7.3 Relative CPU time required for simulating 10000 realizations of the El Cen-
tro earthquake ground motion stochastic model.

Figure 7.4 Comparison of target mean square acceleration for the El Centro earthquake
with mean square acceleration from 10000 realizations obtained by using the
PBS method.
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Figure 7.5 Comparison of target mean square acceleration for the El Centro earthquake
with mean square acceleration from 10000 realizations obtained by using the
SRM with the FFT technique and N = 2048 (SRM2048).

Figure 7.6 Mean upcrossing rate of acceleration for the El Centro earthquake relative to
a deterministic threshold .
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Figure 7.7 Expected values of upcrossings of acceleration for the El Centro earthquake
relative to a deterministic threshold .

Figure 7.8 Comparison of target mean square displacement for a SDOF oscillator with
natural period Tn = 2s and damping ratio  subjected to the El Cen-
tro earthquake with mean square displacement from 10000 realizations
obtained by using the PBS method.
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Figure 7.9 Comparison of target mean square displacement for a SDOF oscillator with
natural period Tn = 2s and damping ratio  subjected to the El Cen-
tro earthquake with mean square displacement from 10000 realizations
obtained by using the SRM with the FFT technique and N = 2048
(SRM2048).

Figure 7.10 Mean upcrossing rate of displacement for a SDOF oscillator with natural
period Tn = 2s and damping ratio  subjected to the El Centro earth-
quake relative to a deterministic threshold .
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Figure 7.11 Expected values of upcrossings of displacement for a SDOF oscillator with
natural period Tn = 2s and damping ratio  subjected to the El Cen-
tro earthquake relative to a deterministic threshold .

Figure 7.12 Comparison of time-variant mean square acceleration for the Orion Blvd.
earthquake of target earthquake ground motion process (PBS) with simu-
lated process obtained by using SRM with different N.
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Figure 7.13 Energy relative error and peak relative error in the simulated processes for
the Orion Blvd. earthquake obtained by using the SRM and various N.

Figure 7.14 Relative CPU time required for simulating 10000 realizations of the Orion
Blvd. earthquake ground motion stochastic model.
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Figure 7.15 Comparison of time-variant mean square acceleration for the Capitola earth-
quake of target earthquake ground motion process (PBS) with simulated pro-
cess obtained by using SRM with different N.

Figure 7.16 Energy relative error and peak relative error in the simulated processes for
the Capitola earthquake obtained by using the SRM and various N.
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Figure 7.17 Relative CPU time required for simulating 10000 realizations of the Capitola
earthquake ground motion stochastic model.

9 10 11 12 13 14 15 16
0

10

20

30

40

PBS
SRM

FFT

log2 N( )

t C
PU

/t C
PU

,P
B

S



311
APPENDIX: MEAN UPCROSSING RATE FOR GROUND ACCEL-

ERATION PROCESS

The quantities shown in Figs. 7.6 and 7.7 can be expressed in closed form as fol-

lows:

(7.41)

(7.42)

where
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CHAPTER 8

SPECTRAL CHARACTERISTICS OF 
STOCHASTIC PROCESSES

8.1   INTRODUCTION

The probabilistic study of the dynamic behavior of structural and mechanical sys-

tems requires the characterization of the random processes describing the input excitation

and the structural response. This characterization is usually very complex for realistic

input processes and structural systems, when non-stationary and non-Gaussian processes

are involved. 

A very common and powerful methodology for characterizing and describing a

random process is spectral analysis, which studies random processes in the frequency

domain. In particular, the use of power spectral density (PSD) functions (Priestley 1987) is

customary in describing stationary random processes. Definition of functions describing

the spectral properties of non-stationary random processes is less simple and not unique.

In fact, several non-stationary spectra have been defined in the literature (Bendat and Pier-

sol 1986, Priestley 1988), with different application fields. In addition, direct extension of

the definition of spectral characteristics, such as the spectral moments, from stationary to

non-stationary processes leads to difficulties in the interpretation and application of these

spectral characteristics (Corotis et al. 1972).
315
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Among existing definitions of non-stationary spectra, the most widely used is

probably Priestley’s evolutionary power spectral density (EPSD) (Priestley 1987). Based

on this EPSD, the so-called “non-geometric” spectral characteristics (NGSCs) have been

defined for real-valued non-stationary processes (Di Paola 1985; Michaelov et al. 1999a).

The NGSCs have been proved appropriate for describing non-stationary processes

(Michaelov et al. 1999b) and can be effectively employed in structural reliability applica-

tions, such as the computation of the time-variant probability that a random process out-

crosses a given limit-state threshold.

In this chapter, the definition of NGSCs is extended to general complex-valued

non-stationary random processes. These newly defined quantities provide information

consistent with that provided by their counterparts for real-valued stationary and non-sta-

tionary processes. These NGSCs are used in this study to solve exactly and in closed-form

the classical problem of computing the time-variant central frequency and bandwidth

parameter of the response processes of single-degree-of-freedom (SDOF) and both classi-

cally and non-classically damped multi-degree-of-freedom (MDOF) linear elastic systems

subjected to white noise excitation from at rest initial conditions. In addition, the NGSCs

of complex-valued processes are useful in problems which require the use of complex

modal analysis, such as random vibrations of non-classically damped MDOF linear struc-

tures, and in structural reliability applications (Crandall 1970), for which the existing def-

initions of spectral characteristics were specifically developed. 

For the sake of simplicity and without loss of generality, all random processes con-

sidered in this study are zero-mean processes. An important implication is that the auto-
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and cross-covariance functions of these random processes coincide with their auto- and

cross-correlation functions, respectively.

8.2   STATIONARY STOCHASTIC PROCESSES AND SPECTRAL 

MOMENTS

A real-valued stationary process  is represented by the following spectral

decomposition:

(8.1)

where t = time, ω = frequency parameter, , and dZ(ω) = zero-mean orthogonal-

increment process having the properties

(8.2)

in which Φ(ω) = PSD function of the stationary process ,  = Dirac delta and

the superscript  denotes the complex-conjugate operator. For the stationary process

considered, , the geometric spectral moments  of order n with , are

defined as (Corotis et al. 1972)

(8.3)

where  = absolute value of a real-valued variable (or modulus of a complex-valued

variable). The last equality in Eq. (8.3) is obtained noticing that the PSD of a real-valued
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stationary process is an even function of the frequency parameter . The geometric spec-

tral moments are utilized in random vibration problems to compute several meaningful

quantities, such as 

(1) The variance of the i-th time-derivative of the process :

, i = 0, 1, 2, ... (8.4)

where , provided that this i-th time-derivative process exists in the

mean-square sense. 

(2) The central frequency parameter  of the process :

(8.5)

For a narrowband process,  indicates the frequency where most of the power is con-

centrated (i.e., predominant frequency). 

(3) The bandwidth parameter q of the process : 

(8.6)

The bandwidth parameter q is a dimensionless parameter with values 

defined so that it assumes low values (i.e., near zero) for narrowband processes and

high values (i.e., near unity) for broadband processes.
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8.3   NONSTATIONARY STOCHASTIC PROCESSES

A real-valued non-stationary (RVNS) process X(t) can be expressed in the general

form of a Fourier-Stieltjes integral as (Priestley 1987)

(8.7)

where  = complex-valued deterministic time-frequency modulating function

defined such that 

(8.8)

An embedded stationary process , with PSD function Φ(ω) defined through

the zero-mean orthogonal-increment process dZ(ω) (see Eqs. (8.1) and (8.2)), is associ-

ated to the RVNS process X(t). The process X(t) has the following EPSD function

:

(8.9)

From Eq. (8.8) and the fact that Φ(ω) is an even function of the frequency parame-

ter ω, it can be deduced that the EPSD of a RVNS process is a symmetric function of the

frequency parameter ω.

The definition in Eq. (8.7) can be mathematically extended to complex-valued

non-stationary (CVNS) processes with a general complex-valued deterministic time-fre-

quency modulating function . In this case, Eq. (8.8) does not hold in general and

the EPSD is not a symmetric function of the frequency parameter ω.
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8.4   SPECTRAL CHARACTERISTICS OF REAL-VALUED NON-

STATIONARY STOCHASTIC PROCESSES

The definition of the geometric spectral moments (Eq. (8.3)) can be mathemati-

cally extended to the non-stationary case as

(8.10)

where  = EPSD of the RVNS process . Using these spectral moments,

Corotis et al. (1972) extended consistently the definitions of the central frequency, ,

and bandwidth parameter, , in Eqs. (8.5) and (8.6), respectively, to RVNS processes

as

(8.11)

(8.12)

The geometric spectral moments defined in Eq. (8.10) suffer two severe drawbacks

in characterizing non-stationary stochastic processes (Michaelov et al. 1999a), namely

(1) The variance of the i-th time-derivative of the process  for  is not equal to the

2i-th spectral moment.

(2) Even when the variance of the i-th time-derivative of the process is finite, the 2i-th

non-stationary geometric spectral moment can be divergent, in which case the central

frequency and bandwidth parameter defined in Eqs. (8.11) and (8.12) cannot be com-
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puted.

More recently, Di Paola (1985) and Michaelov et al. (1999a, 1999b) introduced a

proper definition of spectral characteristics to be used in computing the central frequency

and bandwidth parameter for a RVNS process  defined by Eqs. (8.7) through (8.9).

For such a process, the so-called “non-geometric” spectral characteristics (NGSCs) 

are defined as

, i, k = 0, 1, ... (8.13)

where  is the evolutionary cross-PSD function of the time-derivatives of

order i and k of the process , i.e., 

, i, k = 0, 1, ... (8.14)

in which  (m = i, k), provided that  exists in the mean-square

sense, and the modulating function  is obtained recursively as

(8.15)

where a superposed dot denotes one differentiation with respect to time. This definition of

NGSCs is equivalent to the one derived by Di Paola (1985) from the Rice envelope pro-

cess. 
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Using the NGSCs in Eq. (8.13), the time-variant central frequency  and

bandwidth parameter  are defined as (Michaelov et al. 1999a)

(8.16)

(8.17)

where  = real part of the quantity in the square brackets and the NGSC  is

expressed as

(8.18)

At this point, it is convenient to define the process  as the modulation (with

modulating function ) of the stationary process  defined as the Hilbert

transform of the embedded stationary process , i.e.,

(8.19)

in which

(8.20)
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(8.21)

(8.22)

(8.23)

where  = cross-covariance of  and , and  = cross-covariance of

 and . 

Eqs. (8.16) and (8.17) apply only to RVNS stochastic processes, since they make

use of the symmetry with respect to  of the evolutionary cross-PSD function

. Notice that, in the case of a stationary process, Eqs. (8.16) and (8.17)

reduce to Eqs. (8.5) and (8.6), respectively.

The time-variant central frequency and bandwidth parameter are useful in describ-

ing the time-variant spectral properties of a RVNS process . The central frequency

 provides the predominant frequency of the process at each instant of time. The

bandwidth parameter  provides information on the spectral bandwidth of the process

at each instant of time. Notice that a non-stationary process can behave as a narrowband

and a broadband process at different instants of time. In addition, the bandwidth parameter

 plays an important role in time-variant reliability analysis, since it is an essential

ingredient of analytical approximations (Crandall 1970; Vanmarcke 1975) to the time-
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variant failure probability for the first-passage reliability problem (Rice 1944, 1945; Lin

1967).

8.5   SPECTRAL CHARACTERISTICS OF COMPLEX-VALUED 

NONSTATIONARY STOCHASTIC PROCESSES

In this paper, an extension of the definition of NGSCs to CVNS random processes

is proposed and presented. For CVNS processes, the real and imaginary parts of the evolu-

tionary cross-PSD function  are not symmetric and anti-symmetric func-

tions, respectively, of the frequency parameter . Our interest is limited to CVNS

processes with a real-valued embedded stationary process  as defined by Eqs. (8.1)

and (8.2).

For each CVNS process , two sets of NGSCs are defined as follows

 i, k = 0, 1, ... (8.24)

where  = cross-covariance of random processes  and , and

 = cross-covariance of random processes  and , i.e.,
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(8.25)

The process  is defined by Eq. (8.19), and the evolutionary cross-PSD func-

tions,  (W = X, Y, and ), are given by

; W = X, Y; i, k = 0, 1, ... (8.26)

where (Peng and Conte 1998)

; W = X, Y; i = 0, 1, ... (8.27)

Again, it is assumed that the time-derivative processes in Eqs. (8.24) and (8.25) exist in

the mean-square sense. 

In the particular case when , the cross-covariance in Eq. (8.25)1

reduces to the variance of the n-th time-derivative of the process , or in more com-

mon notation,

(8.28)

The four NGSCs , ,  and  are particularly

relevant to random vibration theory and time-variant reliability applications. In fact,

 and  represent the variance of the process and its first time-derivative

(i.e.,  and ), respectively,  denotes the cross-covariance of the pro-
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cess and its first time derivative (i.e., ), and  represents the cross-covari-

ance of the process  and the first time-derivative of the process  (i.e., ). 

Notice that for RVNS processes, the definitions in Eq. (8.24) for ,

,  and  are equivalent to the definitions in Eq. (8.13) for i, k

= 0, 1, since

(8.29)

(8.30)

(8.31)

Eqs. (8.20)1 and (8.26) are used in deriving the last equality in Eq. (8.31). The

NGSCs ,  and  are used in the definition of the time-variant

central frequency, , and bandwidth parameter, , of the CVNS process  as

(8.32)
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(8.33)

In the case of RVNS processes, the two definitions in Eqs. (8.32) and (8.33) reduce

to the ones given in Eqs. (8.16) and (8.17), respectively. However, for CVNS processes,

the complex-valued central frequency and bandwidth parameter defined in Eqs. (8.32) and

(8.33) loose the simple physical interpretation available for RVNS processes.

8.6   SPECTRAL CHARACTERISTICS OF THE RESPONSE OF 

SDOF AND MDOF LINEAR SYSTEMS SUBJECTED TO NON-

STATIONARY STOCHASTIC INPUT PROCESSES 

8.6.1   Complex modal analysis

A state-space formulation of the equations of motion for a linear MDOF system is

useful to describe the response of both classically and non-classically damped systems

(Reid 1983). The general (second-order) equations of motion for an n-degree-of-freedom

linear system are, in matrix form, 

 (8.34)

where M, C, and K =  time-invariant mass, damping and stiffness matrices, respec-

tively; , , and  = length-n vectors of nodal displacements, velocities and

accelerations, respectively; P = length-n load distribution vector, and F(t) = scalar function
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describing the time-history of the external loading which, in the case of random excitation,

is modeled as a random process. Defining the following length-2n state vector

, (8.35)

the matrix equation of motion (8.34) can be recast into the following first-order matrix

equation

(8.36)

where

(8.37)

(8.38)

The subscripts in Eqs. (8.35), (8.37) and (8.38) indicate the dimensions of the vec-

tors and matrices to which they are attached. The complex modal matrix, T, is formed

from the complex eigenmodes of matrix G and can be used as an appropriate transforma-

tion matrix to decouple the first-order matrix equation (8.36) and introduce the trans-

formed state vector V(t) of complex modal coordinates as

(8.39)

Substituting Eq. (8.39) into Eq. (8.36), considering that  (Reid 1983),

where D is the diagonal matrix containing the 2n complex eigenvalues, λ1, λ2, ..., λ2n, of

Z t( ) U t( )

U· t( ) 2n 1×( )

=
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=
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the system matrix G, and , where  is the i-th modal participation

factor (complex-valued), the normalized complex modal equations are obtained as

, i = 1, 2, ..., 2n (8.40)

where the normalized complex modal responses Si(t) (i = 1, 2, ..., 2n) are defined as

, i = 1, 2, ..., 2n (8.41)

The impulse response function for the i-th mode, hi(t), defined as the solution of

Eq. (8.40) when F(t) = δ(t) and for at rest initial conditions at time  (i.e.,

), is simply given by

, t > 0 (8.42)

Assuming that the system is initially at rest, the solution of Eq. (8.40) can be

expressed by the following Duhamel integral

, i = 1, 2, ..., 2n (8.43)

It is worth mentioning that the normalized complex modal responses Si(t), i = 1, 2,

..., 2n, are complex conjugate by pairs and in this study are ordered so that

. 

In the case of a non-stationary loading process, the loading function  can be expressed

in general as (see Eq. (8.7))
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(8.44)

It can be shown that the normalized complex modal responses are given by

, i = 1, 2, ..., 2n (8.45)

where 

, i = 1, 2, ..., 2n (8.46)

Combining Eqs. (8.39) and (8.41) yields

(8.47)

in which � = diagonal matrix containing the 2n modal participation factors ,  =

effective modal participation matrix and  = normalized

complex modal response vector.

8.6.2   Spectral characteristics of the response processes of linear MDOF systems 

using complex modal analysis

The state-space formulation of the equations of motion is also advantageous for

the computation of the NGSCs of response processes of both classically and non-classi-

cally damped linear MDOF systems. If only Gaussian input processes are considered, only

a few spectral characteristics are needed to describe fully the response processes of linear

elastic MDOF systems, since these processes are also Gaussian. In particular, if 
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denotes the i-th DOF displacement response process of a linear elastic MDOF system sub-

jected to Gaussian excitation, the only spectral characteristics required, e.g., for reliability

applications, are

, i = 1, 2, ..., n (8.48)

where  denotes the first time-derivative of the process  defined as

, i = 1, 2, ..., n (8.49)

and  denotes the time-frequency modulating function of process . The pro-

cess  is the modulation (with the same modulating function  as process

) of the Hilbert transform of the stationary process embedded in the process 

(see Eq. (8.19)).

Similarly to the response processes (see Eq. (8.35)), the following auxiliary state

vector process can be defined

(8.50)

Using complex modal decomposition, the cross-covariance matrices of the

response processes and the auxiliary processes can be computed as follows
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(8.51)

(8.52)

where the components of the vector process  are defined

as

, i = 1, 2, ..., 2n (8.53)

(8.51) and (8.52) show that all quantities in Eq. (8.48) can be computed from the

following spectral characteristics of complex-valued non-stationary processes

, i, m = 1, 2, ..., 2n (8.54)

Notice also that knowledge of the spectral characteristics in Eq. (8.54) allows com-

putation of the zeroth to second-order spectral characteristics of the components of any

vector response quantity Q(t) linearly related to the displacement response vector ,

i.e., , where B = constant matrix.
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8.6.3   Response statistics of MDOF linear systems subjected to modulated Gaussian 

white noise 

Time-modulated Gaussian white noises constitute an important class of non-sta-

tionary loading processes. The expression given in Eq. (8.44) describing a general non-

stationary loading process reduces to

(8.55)

where the time-modulating function  is frequency-independent and the white noise

process  can be represented as

(8.56)

with  where  = constant value of PSD.

Therefore, in this special case, Eq. (8.46) becomes

, i = 1, 2, ..., 2n (8.57)

In the sequel, closed-form solutions are derived for the case of the modulating

function equal to the unit step function, i.e., . Notice that even for this very

simple modulating function and for a SDOF linear oscillator, to date and to the best of the

authors’ knowledge, no closed-form solution is available for the first order NGSC

 (  with the notation adopted by Michaelov et al. (1999a, b) required

for computing the time-variant central frequency and bandwidth parameter of the dis-
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placement response process U(t). In Subsection 8.7.1, it will be shown that the presented

extension of NGSCs to complex-valued non-stationary stochastic processes enables to

derive the closed-form solution for  in an elegant way.

In the case of the unit step modulating function, Eq. (8.57) becomes

, i = 1, 2, ..., 2n (8.58)

The spectral characteristics in Eq. (8.54)1 can be computed using Cauchy’s residue

theorem as (see Appendix A)

, i, m = 1, 2, ..., 2n (8.59)

After extensive algebraic manipulation (see Appendix B), the spectral characteris-

tics in Eq. (8.54)2 are obtained as

, 

i, m = 1, 2, ..., 2n (8.60)

in which E1(x) denotes the integral exponential function defined as (Abramowitz and Ste-

gun 1972)

, (8.61)

where  = complex argument function.
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The introduction of the spectral characteristics of the complex modal response pro-

cesses has the following important advantages:

(1) Closed-form integration for variances and cross-covariances of displacement and

velocity response processes for linear elastic MDOF systems can be performed using

Cauchy’s residue theorem provided that the time-frequency modulating functions (see

Eq. (8.57)) of these response quantities have at least one pole in the complex plane,

which is not a severe restriction. 

(2) The time-frequency modulating functions of response processes are obtained by inte-

grating (in closed-form or numerically) Eq. (8.57), in which the time modulating func-

tion of the loading process, , is multiplied by the impulse response function of a

first-order differential equation (i.e., , λ = complex constant). In gen-

eral, this integration is much simpler than its counterpart for real modal response pro-

cesses, in which the time modulating function of the loading process is multiplied by

the impulse response function of a second-order differential equation (i.e.,

, where  = imaginary part of the quantity

in the square brackets).

(3) The use of complex modal decomposition allows computation of the spectral charac-

teristics of response quantities of linear MDOF systems that are non-classically

damped. 

(4) The presented extension of NGSCs to complex-valued non-stationary stochastic pro-

cesses enables the derivation of the exact solution in closed-form for the first-order

AF t( )

h t( ) eλt t, 0>=

h t( ) e Re λ[ ] t⋅–

Im λ[ ]
--------------------- Im λ[ ] t⋅( ) t 0>,sin= Im …[ ]
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NGSC,  (see Eq. (8.48)4), of response processes of linear SDOF and

MDOF systems subjected to white noise excitation modulated by the unit-step func-

tion. This closed-form solution cannot be obtained using real-valued responses of sec-

ond-order modes.

8.7   APPLICATION EXAMPLES

8.7.1   Linear elastic SDOF systems 

The first application example consists of a set of linear elastic SDOF systems sub-

jected to a Gaussian white noise time-modulated by the unit-step function (i.e., with at rest

initial conditions). In this case, the complex modal matrix T is given by

(8.62)

in which

(8.63)

where  = viscous damping ratio,  = natural circular frequency, and 

= damped circular frequency of the system. It is assumed that , which is usually

the case for structural systems.

From Eqs. (8.47), (8.59) and (8.62), the well-known closed form solutions for the

variances of the displacement and velocity response processes and the cross-covariance
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between the displacement and the velocity response processes (Lutes and Sarkani 2004)

are readily obtained as

(8.64)

(8.65)

(8.66)

After some algebraic manipulations (see Appendix C), the first-order NGSC

 is found as

(8.67)

It is noteworthy that Eq. (8.67) can be directly employed for computing the corre-

sponding first-order NGSCs of the response processes of linear MDOF systems that are

classically damped, by using real mode superposition and thus avoiding complex modal

analysis, which is computationally more expensive and less commonly used. From Eq.

(8.67), the stationary value of the spectral characteristic  is readily obtained as
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(8.68)

The result provided in Eq. (8.67) is the exact closed-form solution for the NGSC

. To date and to the best of the authors’ knowledge,  could only be obtained

by evaluating numerically the following exact expression in integral form 

(8.69)

Fig. 8.1 plots the variances of the displacement and velocity responses (normalized

by their corresponding stationary values) and the square of the correlation coefficient

between the displacement and velocity responses for SDOF systems with damping ratio

. Fig. 8.2 shows the first-order NGSC  (Eq. (8.67)) normal-

ized by its corresponding stationary value  (Eq. (8.68)) for SDOF systems with

three different damping ratios (i.e., ). For comparison purposes, Fig.

8.2 also provides the normalized first-order NGSC  with the numerator

evaluated numerically through Eq. (8.69). The two integrals in Eq. (8.69) are evaluated

using the trapezoidal rule of integration and a constant integration step ,

which was found sufficiently small to provide a relative accuracy of  for an

integration interval  with . The normalized first-order NGSC
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 is a function of the damping ratio and the time normalized by the natural

period T0 of the SDOF system considered. As expected, stationarity is reached after a

larger number of periods for decreasing values of the damping ratio .

Fig. 8.3 plots the bandwidth parameter q(t) of the displacement response of SDOF

systems with , obtained by substituting Eqs. (8.64), (8.65), and

(8.67) into Eqs. (8.21) and (8.22). From the results in Fig. 8.3, it is observed that:

(1) The value of q(t) for t = 0s is always equal to 0.961. This result implies that, at the

beginning of the motion of the system, the SDOF system response is very close to a

white noise (for which q(t) = 1), i.e., broadband.

(2) The value of q(t) decreases with time until it reaches its stationary value. This fact

implies that the SDOF system response changes from a broadband to a narrowband

process.

(3) The bandwidth parameter q(t) is a function only of the damping ratio and the time nor-

malized by the natural period T0 of the SDOF system. In particular, the stationary

value of q(t) depends only on the damping ratio of the SDOF system. In fact, it can be

shown from Eqs. (8.33) and (8.67) that

(8.70)

This stationary value decreases with decreasing value of  with  indi-

cating that the response process after reaching stationarity approaches a single har-

σ
Uϒ

· t( ) σ
Uϒ

·
∞,

⁄

ξ

ξ 0.01 0.05 0.10, ,=

q∞ limt ∞→ q t( )= 1
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------------------------------------------------------–
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---
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monic component (with random phase and amplitude) as the damping ratio

approaches zero. 

Fig. 8.4 shows the ratio of the central frequency of the displacement response pro-

cess over the natural circular frequency, referred to as the normalized central frequency, of

SDOF systems with varying damping ratio (ξ = 0.01, 0.05 and 0.10). It is observed that:

(1) The normalized central frequency has a very high value for small (t/T0), then as (t/T0)

increases it reaches a minimum and finally oscillates until it reaches stationarity. These

oscillations remain always below the stationary value.

(2) The normalized central frequency is a function only of the damping ratio and the time

normalized by the natural period T0 of the SDOF system. In particular, the stationary

value of the normalized central frequency depends only on the damping ratio. This sta-

tionary value is given by

(8.71)

(see also Lutes and Sarkani 2004). In particular, , which

implies that the single harmonic component (with random phase and amplitude)

approached for large (t/T0) by the displacement response process of a lightly damped

SDOF system has a frequency equal to the natural frequency of the system.

ωc∞ ω0⁄ limt ∞→ ωc t( ) ω0⁄[ ]=
2 arctg 1 ξ2– ξ⁄( )⋅

π 1 ξ2–
---------------------------------------------------=

1

1 ξ2–
------------------ 1 2

π
---arctg ξ 1 ξ2–⁄( )–=

limξ 0→ ωc∞ ω0⁄( ) 1=
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Fig. 8.5 shows the dependency of the stationary values of the bandwidth parameter

and normalized central frequency, respectively, on the damping ratio for a SDOF system,

summarizing in graphical form some of the above observations. Fig. 8.6 provides a single

realization of a white noise excitation with PSD  and the corresponding

displacement response histories of linear SDOF systems with natural period 

and damping ratio ξ = 0.01, 0.05 and 0.10. The displacement time-histories corresponding

to ξ = 0.01, after a few seconds of transient behavior, clearly approach a single harmonic

component with a mean frequency close to the natural frequency of the system, as indi-

cated by the results shown in Fig. 8.3 for the bandwidth parameter and Fig. 8.4 for the nor-

malized central frequency. For the higher damping ratios of ξ = 0.05 and 0.10, after the

initial transient behavior, a predominant harmonic component can also be observed in the

displacement response histories. However, for these two higher damping cases and partic-

ularly for ξ = 0.10, contributions to the displacement response histories from other fre-

quency components are non-negligible (broadening the frequency bandwidth of the

response).

8.7.2   Three-story shear-type building (linear MDOF system) 

The three-story one-bay steel shear-frame shown in Fig. 8.7 is considered as appli-

cation example. This building structure has a uniform story height H = 3.20m and a bay

width . The steel columns are made of European HE340A wide flange beams

with moment of inertia along the strong axis . The steel material is mod-

φ0 0.01m2 s3⁄=

T0 1.0s=

L 6.00m=

I 27690.0cm4=



342
eled as linear elastic with Young’s modulus . The beams are considered

rigid to enforce a typical shear building behavior. Under this assumptions, the shear-frame

is modeled as a 3-DOF linear system. 

The frame described above is assumed to be part of a building structure with a dis-

tance between frames . The tributary mass per story, M, is obtained assuming

a distributed gravity load of , accounting for the structure own weight, as

well as for permanent and live loads, and is equal to . The fundamental

period of the linear elastic undamped shear-frame is . The modal properties of

the shear-frame are given in Table 8.1. Viscous damping in the form of Rayleigh damping

is assumed with a damping ratio  for the first and third modes of vibration. The

same shear-frame is also considered with the addition of a viscous damper of coefficient

 across the first story as shown in Fig. 8.7. The structure with viscous

damper is a non-classically damped system. In both cases (with and without viscous

damper), the shear-frame is subjected to base excitation modeled as a Gaussian white

noise with PSD  time-modulated by the unit-step function (i.e., with at

rest initial conditions). 

Figs. 8.8 and 8.9 show the bandwidth parameter and normalized central frequen-

cies (central frequency divided by the natural circular frequency of the first mode of vibra-

tion), respectively, for each of the three modes of vibration of the shear-frame. The

stationary values of the bandwidth parameters for the first and third modes are identical,

since these two modes have the same damping ratio, see Eq. (8.70). The second mode has

E 200GPa=

L' 6.00m=

q 8kN m2⁄=

M 28800kg=

T1 0.38s=

ξ 0.02=

c 200kN-s/m=

φ0 0.1m2 s3⁄=
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a lower damping ratio ( ) and therefore a smaller stationary value for the band-

width parameter.

Figs. 8.10 through 8.13 show time histories of the variances of the floor displace-

ments and velocities (relative to the ground), and of the bandwidth parameters and central

frequencies (normalized by the first mode natural frequency) of the floor relative displace-

ment responses for the classically damped case. These figures show that the floor relative

displacement response processes are dominated by the first mode contribution. In particu-

lar, the time histories of the bandwidth parameters and normalized central frequencies of

the floor (especially the second and third floors) relative displacement responses are very

similar to their counterparts for the first mode as shown by comparing Figs. 8.8 and 8.12

and Figs. 8.9 and 8.13, respectively. This comparison also indicates that the first floor rel-

ative displacement response has some small higher mode contributions. 

Figs. 8.14 through 8.17 provide the same information as Figs. 8.10 through 8.13,

but for the shear-frame with viscous damper (i.e., non-classically damped case). The floor

relative displacement response processes remain dominated by the first mode contribu-

tion. The higher damping (ξ1 = 0.037, ξ2 = 0.048, ξ3 = 0.034) reduces significantly the

variances of floor relative displacements and velocities as shown by comparing Figs. 8.10

and 8.14 and Figs. 8.11 and 8.15, respectively. The higher damping has also the effect of

raising slightly the stationary value of the bandwidth parameters of the floor relative hori-

zontal displacements. 

This second application example shows the capability of the presented extension

of spectral characteristics to complex-valued stochastic processes to capture the time-vari-

ξ2 0.017=
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ant spectral properties in terms of the bandwidth parameter and central frequency of the

response of linear MDOF classically and non-classically damped systems.

8.8   CONCLUSIONS 

In this chapter, the definition of the non-geometric spectral characteristics

(NGSCs) is extended to general complex-valued non-stationary random processes. These

newly defined NGSCs are essential for computing the time-variant bandwidth parameter

and central frequency of non-stationary response processes of linear systems. The band-

width parameter is also used in structural reliability applications, e.g., for obtaining ana-

lytical approximations of the probability that a structural response process out-crosses a

specified limit-state threshold.

Using the non-geometric spectral characteristics of complex-valued non-stationary

processes and employing complex modal analysis, closed-form exact solutions are found

for the classical problem of deriving the time-variant central frequency and bandwidth

parameter of the response of linear SDOF and MDOF systems, both classically and non-

classically damped, when subjected to white noise excitation from at rest initial condi-

tions. 

The exact closed-form solutions derived for the linear SDOF oscillator are used to

investigate the dependency of the stationary and time-variant central frequency and band-

width parameter on the SDOF system parameters, i.e., natural circular frequency, , and

damping ratio, . A three-story shear-type steel frame building without and with viscous

dampers (i.e., classically and non-classically damped, respectively) is used to illustrate the

ω0

ξ
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application of the presented closed-form solutions for linear MDOF systems to the floor

response processes of a base excited building structure.

The exact closed-form solutions developed and presented in this paper have their

own mathematical merit, since to the best of the authors’ knowledge, they are new. These

solutions have a direct and important application, since the response of many structures

can be approximated by using linear SDOF and MDOF models, and provide valuable

benchmark solutions for validating (at the linear structural response level) numerical

methods developed to estimate the probabilistic response of non-linear systems subjected

to non-stationary excitations.
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Table 8.1  Modal properties of the three-story one-bay shear-frame

Mode # ωi [rad/sec] T [s] Effective modal 
mass ratio [%]

1 16.70 0.38 91.41

2 46.80 0.13 7.49

3 67.62 0.09 1.10
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Figure 8.1 Normalized variances and square of correlation coefficient of displacement
and velocity responses of linear SDOF systems with damping ratio ξ = 0.10.

Figure 8.2 Comparison of analytical (Eq. (8.67)) and numerical (Eq. (8.69)) solutions
for the normalized first NGSC  of the displacement response of
linear SDOF systems with damping ratios ξ = 0.01, 0.05 and 0.10.
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Figure 8.3 Time-variant bandwidth parameter, q(t), of the displacement response of lin-
ear SDOF systems with damping ratios ξ = 0.01, 0.05 and 0.10.

Figure 8.4 Time-variant normalized central frequency of the displacement response of
linear SDOF systems with damping ratios ξ = 0.01, 0.05 and 0.10.
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Figure 8.5 Dependency on damping ratio of the stationary values of the bandwidth
parameter and normalized central frequency, respectively, of the displace-
ment response of linear SDOF systems.

Figure 8.6 Realization of white noise excitation (φ0 = 0.01m2/s3, Δt = 0.005s) and cor-
responding response displacement histories of linear SDOF systems with
natural period T0 = 1.0s and damping ratio ξ = 0.01, 0.05 and 0.10.
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Figure 8.7 Geometric configuration of benchmark three-story one-bay shear-type steel
frame.

Figure 8.8 Time-variant bandwidth parameters for each of the three vibration mode dis-
placement responses of the (classically damped) three-story shear-frame.
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Figure 8.9 Time-variant central frequency (normalized by the circular frequency of the
first vibration mode) for each of the three mode displacement responses of
the (classically damped) three-story shear-frame.

Figure 8.10 Time-variant variances of floor relative displacement responses of three-
story shear-frame without damper (i.e., classically damped).
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Figure 8.11 Time-variant variances of floor relative velocity responses of three-story
shear-frame without damper (i.e., classically damped structure).

Figure 8.12 Time-variant bandwidth parameters of floor relative displacement responses
of three-story shear-frame without damper (i.e., classically damped).
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Figure 8.13 Time-variant central frequencies (normalized by first mode natural fre-
quency) of floor relative displacement responses of three-story shear-frame
without damper (i.e., classically damped).

Figure 8.14 Time-variant variances of floor relative displacement responses of three-
story shear-frame with damper (i.e., non-classically damped).
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Figure 8.15 Time-variant variances of floor relative velocity responses of three-story
shear-frame with damper (i.e., non-classically damped).

Figure 8.16 Time-variant bandwidth parameters of floor relative displacement responses
of three-story shear-frame with damper (i.e., non-classically damped).
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Figure 8.17 Time-variant central frequencies (normalized by first-mode natural fre-
quency) of floor relative displacement responses of three-story shear-frame
with damper (i.e., non-classically damped).

APPENDIX A:  COMPUTATION OF THE CROSS-COVARIANCES 

OF NORMALIZED COMPLEX MODAL RESPONSES OF LIN-

EAR SYSTEMS SUBJECTED TO WHITE NOISE EXCITATION 

FROM AT REST INITIAL CONDITIONS

The spectral characteristics  (i, m = 1, 2, ..., 2n) in Eq. (8.54)1 can be com-

puted as, using Cauchy’s residue theorem, 
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,  i, m = 1, 2, ..., 2n (8.72)

in which

,  i, m = 1, 2, ..., 2n (8.73)

, i, m = 1, 2, ..., 2n (8.74)

, i, m = 1, 2, ..., 2n (8.75)

, (8.76)

,  (8.77)

Substituting Eqs. (8.73) through (8.75) into Eq. (8.72) yields

,    

 i, m = 1, 2, ..., 2n (8.78)

where the equalities  follow from Eqs. (8.76) and (8.77).
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APPENDIX B:  COMPUTATION OF THE FIRST-ORDER NGSCS OF 

NORMALIZED COMPLEX MODAL RESPONSES OF LINEAR 

SYSTEMS SUBJECTED TO WHITE NOISE EXCITATION 

FROM AT REST INITIAL CONDITIONS

The spectral characteristics  (i, m = 1, 2, ..., 2n) in Eq. (8.54)2 can be com-

puted as

, 

i, m = 1, 2, ..., 2n (8.79)

where

,

i, m = 1, 2, ..., 2n (8.80)

, i, m = 1, 2, ..., 2n (8.81)
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, i, m = 1, 2, ..., 2n (8.82)

in which the poles  and  in the complex plane are given by

 and (8.83)

In Eq. (8.80), the successive equalities (each identified by a number in parentheses

superposed to the equal sign) are obtained by performing the following operations: 

(1) The denominator of the integrand is expressed in terms of poles. The integral is subdi-

vided in contributions from positive and negative , respectively. The integrands are

decomposed into partial fractions.

(2) Indefinite integration is performed and contributions from lower ( ) and upper

( ) integration limits are collected separately. 

(3) The contribution from the upper integration limit is obtained solving the corresponding

limit for .

The term  appearing in Eq. (8.79) can be developed as follows:
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(8.84)

In Eq. (8.84), the successive equalities (each identified by a number in parentheses

superposed to the equal sign) are obtained by performing the following operations:
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(1) The integral is subdivided in contributions from positive and negative , respectively.

The sign of the integration variable is changed in the integral representing the contri-

bution from negative . 

(2) The integrands are decomposed into partial fractions. 

(3) The integrals obtained are manipulated so to express the integrand as , with c =

constant and x = integration variable. 

(4) The numerators of the integrands are expanded in Taylor’s series about x = 0 (i.e.,

). Indefinite integration is performed and similar terms are collected. 

(5) The contributions from the lower and upper limits of integration are collected sepa-

rately.

The term  appearing in Eq. (8.79) can be developed as follows

ω
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(8.85)

In Eq. (8.85), the same five operations as in Eq. (8.84) are performed.

Summing the results of (8.84) and (8.85) and simplifying, the following relation is

obtained
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(8.86)

Notice that the contributions of the upper limit of integration in Eqs. (8.85) and

(8.86) (which are divergent if taken separately) cancel each other out.

Substituting the results of Eqs. (8.80) and (8.86) into Eq. (8.79), the following result is

obtained

, 

i, m = 1, 2, ..., 2n (8.87)
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The infinite series in Eq. (8.87) can be expressed in terms of the integral exponential func-

tion  noticing that (Abramowitz and Stegun 1972)

, (8.88)

where  = Euler’s constant. 

Manipulating Eq. (8.87) by using Eq. (8.88), the closed-form solution for the spectral

characteristics  is finally obtained as

,

i, m = 1, 2, ..., 2n (8.89)
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APPENDIX C:  COMPUTATION OF THE FIRST-ORDER NGSCS OF 

THE DISPLACEMENT RESPONSE PROCESS OF A LINEAR 

SDOF SYSTEM SUBJECTED TO WHITE NOISE EXCITATION 

FROM AT REST INITIAL CONDITIONS

For a linear SDOF system, Eq. (8.52) reduces to

(8.90)

From Eqs. (8.60) and (8.63), it is found that 

(8.91)

and

(8.92)

Therefore,  can be obtained from Eq. (8.90) as

(8.93)

Eq. (8.60) for  reduces to

(8.94)
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(8.95)

where the equality  is used, and

(8.96)

where the principal value of the natural logarithm function of complex variable x is con-

sidered (with branch cut on ) so that .

Finally, substituting (8.95) and (8.96) into Eq. (8.94), the closed-form solution for

 is obtained as

(8.97)
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CHAPTER 9

USE OF SPECTRAL CHARACTERISTICS 
FOR RELIABILITY ANALYSIS OF 

LINEAR ELASTIC MDOF SYSTEMS

9.1   INTRODUCTION

In many engineering fields, the importance of using stochastic processes to model

dynamic loads such as earthquake ground motions, wind effects on civil and aerospace

structures, and ocean wave induced forces on offshore structures, has been widely recog-

nized. Extensive research has been devoted to the development of analytical methods and

numerical simulation techniques related to modeling of stochastic loads and analysis of

their effects on structures (Lin 1976; Priestley 1987; Lutes and Sarkani 1997). These

effects are stochastic in nature and, in general, are represented by random processes which

are nonstationary in both amplitude and frequency content (Yeh and Wen 1990; Papadimi-

triou 1990; Conte 1992). Modern design codes consider carefully loading uncertainties (as

well as parameter and modeling uncertainties) and account for their stochastic nature to

ensure satisfactory designs. The Performance-Based Earthquake Engineering (PBEE) is

emerging as new design philosophy (Cornell and Krawinkler 2000; Porter 2003; Moehle

and Deierlein 2004) and is leading the way to the new generation of seismic design codes

(AASHTO 1998; ICC 2003; BSSC 2004; ATC-55 2005; ATC-58 2005). The PBEE para-

digm explicitly abandons the sole use of empirical conventions and prescription formulas
368
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for designing the components of a structure, in favor of the satisfaction of prescribed per-

formance criteria by the complete structure in its particular environment. In this view, par-

amount importance is gained by time-variant reliability analysis methodologies, which

provide a sound analytical basis for evaluating probabilistically the satisfaction of the

above mentioned performance criteria.

The probability of failure over a given interval of time (i.e., probability of a

response vector process outcrossing a general limit-state surface during an exposure time)

is the fundamental result required in a time-variant reliability analysis. For a large class of

structural applications, the failure condition can be identified as the exceedance of a deter-

ministic threshold by a linear combination of scalar response quantities. To date, no exact

closed-form solution of this problem (also called the first-passage problem in the litera-

ture) is available, even for the simplest case of structural model (deterministic linear elas-

tic SDOF system) subjected to the simplest stochastic load model (stationary Gaussian

white noise). The Monte Carlo simulation technique is the only general method accommo-

dating for nonstationarity and non-Gaussianess of the excitation as well as nonlinearity in

the structural behavior and uncertainty/randomness in the structural parameters. However,

it is computationally extremely expensive. Nevertheless, an analytical upper bound of the

time-variant probability of failure can be obtained readily when response mean out-cross-

ing rates are available (Lin 1976) and several direct approximations of this failure proba-

bility have been developed making use of different statistics of the response quantities of

interest (Crandall 1970; Wen 1987). In particular, Poisson and Vanmarcke approximations

have been shown to offer a good compromise between accuracy and computational effort



370
(Rice 1944, 1945; Corotis et al. 1972). Vanmarcke suggested two different approximations

(Vanmarcke 1975), called classical and modified Vanmarcke approximation, respectively,

which both require the computation of the bandwidth parameter of the stochastic process

considered, in addition to the other stochastic moments required for computing the mean

out-crossing rate and Poisson approximation. The two Vanmarcke approximations were

first derived for stationary problems, and then extended to nonstationary problems (Coro-

tis et al. 1972; Vanmarcke 1975). More recent work by Di Paola (1985) and Michaelov et

al. (1999a, 1999b) provided new insight into the nonstationary quantities required by the

Vanmarcke approximations, suggesting a more appropriate definition of the bandwidth

parameter for real-valued nonstationary random processes. 

This work focuses on analytical approximations to the first passage problem in

structural reliability. After defining the problem, existing analytical approximations are

reviewed and the exact closed-forms of the spectral characteristics of nonstationary ran-

dom processes are used to define integral representations of such approximations, namely

Poisson, classical Vanmarcke and modified Vanmarcke approximations. Finally, two sets

of benchmark models, consisting of linear elastic SDOF systems with different natural

periods and damping ratios and of a realistic three dimensional unsymmetric three storey

building, respectively, are used to compare these analytical approximations with simula-

tion results obtained using the Importance Sampling using Elementary Events (ISEE)

method (Au and Beck 2001). 
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9.2   FIRST-PASSAGE PROBLEM IN STRUCTURAL RELIABILITY 

ANALYSIS

An extremely important quantity in the reliability analysis of a structure is the

probability of failure in a given interval of time. In the present study, the probability of

failure is identified as the probability of exceeding a given (deterministic and invariant

with time) threshold by a quantity (linearly) related to the response displacements and

velocities (as absolute displacement, relative displacement, elastic force, etc.) of a given

structural system. The problem of evaluating this time-variant probability of failure is also

known as first-passage problem and has been presented in the literature as single-barrier

problem (random process up-crossing or down-crossing a given threshold) or as double-

barrier problem (absolute value of the random process exceeding a given threshold).

It is known that an analytic upper-bound of the probability of failure  is

obtained by integrating in time the up-crossing rate  of the considered process

 corresponding to the fixed threshold  (single-barrier problem), as

(9.1)
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where  represents the expectation operator and  is the probability of event A

conditioned to the event B. Moreover, it is common to express the probability of failure

 in the following functional form 

(9.2)

where  denotes the probability that, at time t = 0, the realization  of

the process  is below the failure threshold  (in particular, for at rest initial condi-

tions, ), and  is the so-called hazard function, i.e., it is the

up-crossing rate of threshold  conditioned to zero up-crossing before time t. Up to date,

no exact closed-form solution is available for the hazard function even for the simplest

structure possible (linear elastic SDOF oscillator), even if many approximations have been

developed and described in literature (Crandall 1970). Extension of the problem expressed

by Eq. (9.2) to double-barrier problems is straightforward and can be formally expressed

as

(9.3)
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lowing, the case of single-barrier problem will be considered explicitly for derivation of

E[ ] P A B⁄( )

Pf X, ζ+ t,( )

Pf X, ζ+ t,( ) 1 P– x t 0=( ) ζ<[ ] hX ζ+ τ,( ) τd
0

t

∫–

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

exp⋅=

P x t 0=( ) ζ<[ ] x t( )

X t( ) ζ

P x t 0=( ) ζ<[ ] 1= hX ζ+ t,( )

ζ

Pf X, ζ t,( ) 1 P– x t 0=( ) ζ<[ ] h X ζ τ,( ) τd
0

t

∫–

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

exp⋅=

Pf X, ζ t,( ) h X ζ t,( )

X t( ) ζ



373
the failure probability approximations and extensions to the double-barrier will be pro-

vided as well.

The most famous and simple approximation for the hazard function is the Poisson

hazard function, , obtained considering the out-crossings as statistically inde-

pendent events with Poisson distribution (process without memory). This hypothesis leads

to

(9.4)

For low thresholds and/or narrow-band processes, the Poisson hazard function

tends to give very conservative values of the probability of failure, while for high barrier

levels and broad-band processes it is asymptotically correct. The mean up-crossing rate

 is given by the well-known Rice formula

(9.5)

in which  denotes the joint probability density distribution of the process X(t)

and its time-derivative  for . 

A closed-form solution for Eq. (9.5) in the case of nonstationary random process is

available only for Gaussian processes. In general, a numerical estimate of the mean up-

crossing rate  is obtained through the limiting formula (Hagen and Tvedt 1991)

(9.6)
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If the considered process  is Gaussian, the closed-form solution for the mean

upcrossing rate is 

(9.7)

where

(9.8)

a superposed dot denotes derivative with respect to time, ,  and 

denote the standard deviation of the process, the standard deviation of the time-derivative

of the process and the correlation coefficient between the process and its time-derivative

process, respectively, and  denotes the error function. If the process  is non-

stationary, all the quantities previously defined are time-dependent, while in the case of

stationary process, these quantities are constant in time and Eq. (9.7) reduces to

(9.9)

An improved estimate of the probability of failure for the stationary case has been

developed by Vanmarcke (1975), considering the envelope process as defined by Cramer

and Leadbetter (1967). It is based on the two-state Markov process assumption and it takes
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in account the fraction of time that the envelope spends above the threshold  and the fact

that out-crossings of the envelope process are not always associated with an out-crossing

of actual process. The first fact is important for low threshold levels, while the second can

be relevant for high threshold levels. The obtained relation for the stationary case is

(9.10)

where  is the up-crossing rate of the threshold  for the stationary process 

and  is the process bandwidth parameter. An important feature of the Vanmarcke approx-

imation is that, for high thresholds and/or broad-band processes, at the limit it reduces to

the Poisson approximation.

The relation for the nonstationary case is obtained substituting in Eq. (9.10) the

stationary quantities with their nonstationary counterparts,

(9.11)

Vanmarcke also suggested an empirical modification of Eqs. (9.10) and (9.11), in

which the bandwidth parameters q and q(t) are substituted with q1.2 and [q(t)]1.2, respec-

tively, to account for super-clamping effects, leading to the modified Vanmarcke approxi-

mation
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(9.12)

The relations for the double-barrier problem corresponding to Eqs. (9.4), (9.11)

and (9.12) are

(9.13)

(9.14)

(9.15)

9.3   USE OF SPECTRAL CHARACTERISTICS IN TIME-VARIANT 

RELIABILITY ANALYSIS

The spectral characteristics of the process  are necessary in order to compute

the quantities in Eqs. (9.7) through (9.11). In fact, the non-geometric spectral characteris-

tics of the two random processes  and  are defined as (Barbato and Conte

2007)
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(9.16)

For the particular case of , we have

(9.17)

(9.18)

(9.19)

For the case of  and , with  and  defined as

(9.20)

(9.21)

respectively, we have

(9.22)

from which the bandwidth parameter, q(t), can be computed as

(9.23)
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9.4   APPLICATION EXAMPLES

9.4.1   Linear elastic SDOF systems 

The first application example consists of the analysis of linear elastic SDOF sys-

tems subjected to a Gaussian white noise time-modulated by a unit-step function, i.e., with

at rest initial conditions. For this type of structural system subjected to the given excita-

tion, exact solutions for the time-variant spectral characteristics up to the second order are

available in closed-form and have been presented in Chapter 8. Fig. 9.1 plots the normal-

ized second-order statistical moments of the response of a linear elastic SDOF system

with natural period  and damping ratio . These closed-form solutions

are here applied to obtain exact time-variant mean up-crossing rates and Poisson and Van-

marcke approximations to the time-variant probability of failure, as defined previously for

the double-barrier problem. In this case, the response of the system is a zero-mean Gauss-

ian process (obtained by filtering a zero-mean Gaussian process with a linear filter) for

which the closed-form of the time-variant mean up-crossing rate for a given deterministic

threshold is given by Eq. (9.13). The effects on the failure probability of different values

in the parameters describing the system (namely, natural circular frequency, , and

damping ratio, ) and of different threshold levels (normalized with the stationary values

of the standard deviation of the response process as ) will be considered and ana-

lyzed. The effect of different magnitude levels in the excitation is implicitly considered

through the different threshold levels, since higher or lower excitation magnitudes will

only scale up or down the response, due to the linearity of the system considered.

T0 0.5s= ξ 0.05=

ω0

ξ

ζ σX∞⁄
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Figs. 9.2 through 9.9 show some selected analysis results for the out-crossing of

given deterministic thresholds by the response of a linear elastic SDOF system with natu-

ral period  and damping ratio  subjected to a white noise excitation

with at rest initial conditions. Figs. 9.2, 9.4, 9.6 and 9.8 plot the time-variant mean out-

crossing rate, , the Vanmarcke hazard function, , and the modified Vanmarcke haz-

ard function, , for the linear elastic SDOF system described above and threshold

levels , ,  and , respectively. 

Figs. 9.3, 9.5, 9.7 and 9.9 show, for the same linear SDOF system considered

above, the time-variant expected number of out-crossings, E[N], and the failure probabil-

ity estimates given by the Poisson approximation, , the Vanmarcke approximation,

, and the modified Vanmarcke approximation, , respectively. The same

Figs. 9.3, 9.5, 9.7 and 9.9 also provide the failure probability at different instants of time

obtained by Importance Sampling using Elementary Events (ISEE) (Au and Beck 2001)

with a coefficient of variation c.o.v. = 0.01. 

For the case analysis corresponding to the threshold level , the haz-

ard functions obtained using the Vanmarcke and the modified Vanmarcke approximations

give much lower values than the corresponding mean out-crossing rate, as shown in Fig.

9.2. In particular, the values at time T = 5.0s, at which the considered functions have prac-

tically reached their stationary values, are ,

 and , respec-

T0 0.5s= ξ 0.05=

ν hVM

hmVM

ζ 2.0 σX∞⋅= ζ 2.5 σX∞⋅= ζ 3.0 σX∞⋅= ζ 4.0 σX∞⋅=

Pf P,

Pf VM, Pf mVM,

ζ 2.0 σX∞⋅=

ν T( ) 0.2707s 1–=

hVM T( ) 0.1439s 1– 0.53ν T( )= = hmVM T( ) 0.1164s 1– 0.43ν T( )= =
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tively. For the very high values of failure probability found in this analysis case, the ana-

lytical upper bound provided by E[N] is useless, since the expected number of out-

crossings is more than one after less than three seconds of analysis, and the Poisson esti-

mate is largely overestimating the probability of failure (see Fig. 9.3). On the other hand,

the two Vanmarcke approximations are both in good agreement with the simulation

results, with better agreement of the Vanmarcke approximation for the earlier phase of the

analysis ( ) and of the modified Vanmarcke approximation for analysis time larger

than three seconds. In this specific case, the failure probability at different instants of time

is computed also by using crude Monte Carlo Simulation (MCS), the use of which is pos-

sible due to the large values assumed by the time-variant probability of failure. The results

obtained by crude MCS are in very good agreement with the ones computed by ISEE. 

The results presented in Figs. 9.4 and 9.5, related to a threshold ,

are qualitatively very similar to the corresponding ones of Figs. 9.2 and 9.3. In fact, we

can notice that: (1) the Vanmarcke and the modified Vanmarcke hazard functions assume

values much lower than the corresponding mean out-crossing rate values (see Fig. 9.4);

(2) the expected number of out-crossings and the Poisson approximation grossly overesti-

mate the probability of failure of the system obtained using ISEE, even though the

improvement obtained using the Poisson approximation is significant; (3) the two Van-

marcke approximations are both in good agreement with the simulation results, with better

agreement of the Vanmarcke approximation for the earlier phase of the analysis ( )

and of the modified Vanmarcke approximation for .

t 2.5s≤

ζ 2.5 σX∞⋅=

t 2.0s≤

t 2.5s≥
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The mean out-crossing rate values relative to the threshold  are

larger than the Vanmarcke and the modified Vanmarcke hazard function values (see Fig.

9.6), but the differences are smaller than for lower thresholds. In fact, in this case, we have

for : ,  and

. It is also noteworthy that the mean out-crossing

rate and hazard functions at time  are not as close to their stationary values as

they are for thresholds lower than . The comparison of the analytical

approximations of the time-variant failure probability with its estimate obtained through

ISEE (see Fig. 9.7) shows: (1) the expected number of out-crossings is almost double the

failure probability computed by ISEE and the Poisson approximation improves only

slightly this estimate; (2) the two Vanmarcke approximations provides good failure proba-

bility estimates, but in this case the Vanmarcke approximation has a better agreement with

the ISEE results for the entire time interval considered in the analysis. Nevertheless, it is

evident that the ISEE results get closer to the modified Vanmarcke approximation results

for larger values of the time.

For the case of a threshold , the differences between the mean out-

crossing rate and the Vanmarcke approximations are smaller than for lower thresholds, as

shown in Fig. 9.8, and their values at the time instant  are equal to

,  and

, respectively. Fig. 9.9 compares the expected

ζ 3.0 σX∞⋅=

T 5.0s= ν T( ) 0.0220s 1–= hVM T( ) 0.0135s 1– 0.61ν T( )= =

hmVM T( ) 0.0112s 1– 0.51ν T( )= =

T 5.0s=

ζ 3.0 σX∞⋅=

ζ 4.0 σX∞⋅=

T 5.0s=

ν T( ) 6.61 10 4– s 1–⋅= hVM T( ) 4.69 10 4– s 1–⋅ 0.71ν T( )= =

hmVM T( ) 4.01 10 4– s 1–⋅ 0.61ν T( )= =
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value of out-crossings, the Poisson, the Vanmarcke and the modified Vanmarcke approxi-

mations of the failure probability with the ISEE simulation results. In this case, the

expected number of out-crossings and the Poisson approximation are practically coinci-

dent and their difference with the ISEE simulation results are small than in the previous

cases. The Vanmarcke approximation provides values almost coincident to the ISEE

results, while the modified Vanmarcke approximation slightly underestimates the failure

probability.

Table 9.1 provides the values of the time-variant failure probability estimated

using the Poisson, Vanmarcke and modified Vanmarcke approximations and the ISEE

simulation relative to a linear elastic SDOF system with natural period , sub-

jected to a white noise excitation and with at rest initial conditions. Results are given for

different normalized thresholds ( ), different damping ratios (

= 1%, 5%, 10%) and different instants of time (normalized in terms of the natural period,

i.e., ). From the results given in Table 9.1, the following observations can

be made: (1) the two Vanmarcke approximations provide failure probability estimates

which are consistently closer to the ISEE simulation results; (2) the modified Vanmarcke

approximation performance in estimating the probability of failure is better for increasing

time intervals of analysis; (3) the relative performance of the two Vanmarcke approxima-

tions in estimating the probability of failure depends on both the order of magnitude of the

failure probability (for small failure probability values, i.e., , the Vanmarcke

approximation performs better than the modified Vanmarcke approximation) and the

T0 0.5s=

ζ σX∞⁄ 2.0 2.5 3.0 4.0, , ,= ξ

T T0⁄ 5 10,=

Pf 10 4–≤
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value of the damping ratio  (for %, the modified Vanmarcke approximation per-

forms better than the Vanmarcke approximation, for %, the Vanmarcke approxi-

mation performs better than the modified Vanmarcke approximation, for % the

relative performance changes for different time instants of analysis and magnitude of the

failure probability).

9.4.2   Three-dimensional unsymmetrical building (linear elastic MDOF system) 

An idealized three-dimensional unsymmetrical building is considered as linear

MDOF system and is shown in Fig. 9.10. This building consists of three floor diaphragms,

assumed infinitely rigid in their own plane, supported by wide flange steel columns of size

W14x145. Each floor diaphragm is assumed to be made of reinforced concrete with a

weight density of 36kN/m3 and a depth of 18cm. The axial deformations of the columns

are neglected. The modulus of elasticity of steel is 200GPa. The motion of each floor dia-

phragm is completely defined by three DOFs defined at its center of mass, namely the rel-

ative displacements with respect to the ground in the x-direction, , in the y-

direction, , and the rotation about the vertical z-axis, . The earthquake

ground motion excitation is assumed to act at 45 degrees with respect to the x-axis and is

modeled as a white noise with spectral power density . Both classically

and non-classically damped structural models are considered. For the case of classical

damping, each modal damping ratio is taken as 2%. To physically realize the non-classical

damping case, diagonal viscous damping elements (fluid viscous braces) are added as

shown in Fig. 9.10. The damping coefficient of each viscous damping element is taken as

ξ ξ 5=

ξ 10=

ξ 1=

UXi
t( )

UYi
t( ) θZi

t( )

φ0 1.0m2 s3⁄=
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. The undamped natural circular frequencies of this building are shown in

Table 9.2.

Figs. 9.11 through 9.25 show some selected results for the time-variant reliability

of the considered structure before and after the application of the viscous dampers. Three

quantities are considered: the horizontal displacement, , at the third floor in the x-

direction (Figs. 9.11 through 9.15), which is the weak direction of the building along

which the dampers are active, the horizontal displacement, , at the third floor in the y-

direction (Figs. 9.16 through 9.20), which is the strong direction of the building, and the

horizontal drift, , between the third and second floor in the x-direction

(Figs. 9.21 through 9.25). 

Fig. 9.11 plots the time histories of the normalized variances and bandwidth

parameters of  of both the classically (subscript ‘u’) and non-classically (subscript

‘d’) damped three dimensional unsymmetrical building (3-D UB). The normalization of

the variances is obtained dividing them by the value of the variance of  at time

 for the classically damped system. The addition to the system of the viscous

dampers produces two distinct effects on the variance of : (1) the variance is strongly

reduced (at time , ), and (2) stationarity conditions are approxi-

mately reached in a shorter analysis time. The effects of the viscous dampers on the time

histories of the bandwidth parameter are the reduction of the time before stationarity is

reached and reduction of the stationary value, which are consistent with the increase of

0.1kN s mm⁄⋅
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ΔX3
UX3
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damping of the system (see Barbato and Conte 2007, for details on the effects of different

levels of damping on the time-variant bandwidth parameter). 

Fig. 9.12 shows the time-variant mean out-crossing rate, Vanmarcke and modified

Vanmarcke hazard functions for the DOF  corresponding to a deterministic threshold

 (i.e., a displacement over height ratio equal to 4%) and relative to the classi-

cally damped 3-D system. The two Vanmarcke hazard functions assume values consider-

ably lower than the mean out-crossing rate function. Fig. 9.13 compares, for the same

analysis case considered in Fig. 9.12, analytical approximations of the failure probability

(expected number of out-crossings, E[N], Poisson approximation, , Vanmarcke

approximation, , and modified Vanmarcke approximation, ) with simula-

tion results obtained using the ISEE method, . In this specific case, the simulation

results are almost in perfect agreement with the modified Vanmarcke approximation. The

failure probability after 5.0s second of analysis is of the order of 1%. This failure probabil-

ity (conditional to the given magnitude of ground motion excitation) is quite large and can

be considered unsatisfactory for the given threshold, thus suggesting the retrofitting of the

building using the viscous damping system previously described.

Figs. 9.14 and 9.15 provides the same quantities shown in Figs. 9.12 and 9.13,

respectively, for the case of non-classically damped structure. The mean out-crossing rate

and hazard functions are four orders of magnitude smaller and the failure probability esti-

mates seven orders of magnitude smaller than for the classically damped system. The Van-

marcke approximation provides the better agreement with the ISEE results, slightly

UX3

ζ 0.456m=

Pf P,

Pf VM, Pf mVM,

Pf sim,
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underestimating the time-variant failure probability. It is noteworthy the efficacy of the

use of the viscous dampers for the considered building in reducing the probability of the

DOF  out-crossing the threshold  when subjected to the given base exci-

tation.

Fig. 9.16 plots the time histories of the normalized variances and bandwidth

parameters of  of both the classically and non-classically damped three dimensional

unsymmetrical building. The normalization of the variances is again obtained dividing

them by the value of the variance of  at time  for the classically damped

system. For this degree of freedom, the effects of the application of the viscous dampers

are very small and consist in a small reduction of the response variance, while the changes

in the time history of the bandwidth parameter are not visible at the scale used in the fig-

ure. This result was expected, since the action of the viscous dampers is directed only

along the x-direction and affects the y-direction only indirectly, through the coupling with

the torsional modes of vibration.

Figs. 9.17 and 9.19 plot the time-variant mean out-crossing rate, Vanmarcke and

modified Vanmarcke hazard functions for the DOF  corresponding to a deterministic

threshold  and relative to the classically and non-classically damped 3-D sys-

tem, respectively. Figs. 9.18 and 9.20 compare the analytical approximations with the

ISEE simulation of the failure probability for the DOF  and threshold 

relative to the classically and non-classically damped 3-D system, respectively. In this

case, out-crossing rate, hazard functions and failure probability are very small already for

UX3
ζ 0.456m=
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UY3
T 5.0s=

UY3

ζ 0.456m=

UY3
ζ 0.456m=
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the classically damped system and reduce to less than half for the non-classically damped

building. The simulation results are always contained between the estimates from Van-

marcke and modified Vanmarcke approximation.

Fig. 9.21 shows the time histories of the normalized variances and bandwidth

parameters of  for both the classically and non-classically damped 3-D UB. The nor-

malization of the variances is obtained dividing them by the value of the variance of 

at time  relative to the classically damped system. Computation of variances and

bandwidth parameters for drifts and any other response linearly related to displacement

and velocity responses can be performed directly from the variances and bandwidth

parameters of the latter quantities (see Barbato and Conte, 2007). The normalized vari-

ances and bandwidth parameters of  present characteristics very similar to the corre-

sponding quantities shown in Fig. 9.11 for DOF : (1) the displacement variances for

the non-classically damped structure are much lower than for the classically damped

structure, (2) stationarity is reached faster by the non-classically damped building, and (3)

the stationary value of the bandwidth parameter is lower for the non-classically damped

building than for the classically damped one.

Figs. 9.22 and 9.24 plot the time-variant mean out-crossing rate, Vanmarcke and

modified Vanmarcke hazard functions for the  corresponding to a deterministic

threshold  (corresponding to an interstory drift equal to 3% of the storey

height) and relative to the classically and non-classically damped 3-D system, respec-

tively. Figs. 9.23 and 9.25 compare the analytical approximations with the ISEE simula-
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tion of the failure probability for the  and threshold  relative to the

classically and non-classically damped 3-D system, respectively. For the classically

damped case, all the analytical approximations overestimate the failure probability

obtained via ISEE simulation, while, for non-classically damped case, the ISEE simula-

tion results are contained between the Vanmarcke and modified Vanmarcke appoxima-

tions. Also for the response quantity , the use of viscous dampers produces a

considerable reduction of the time-variant failure probability (five orders of magnitude).

From this second application example, it can be concluded that the two Vanmarcke

approximations provide better estimates than the Poisson approximation of the time-vari-

ant failure probability of linear elastic systems subjected to white noise excitation and

with at rest initial conditions.

9.5   CONCLUSIONS

This Chapter presents the application of spectral characteristics of nonstationary

random processes to the time-variant first passage problem in structural reliability. The

first passage problem consists in computing the probability of exceeding a given deter-

ministic time-invariant threshold by a quantity (linearly) related to the response displace-

ments and velocities (as absolute displacement, relative displacement, elastic force, etc.)

of a given structural system. This quantity is generally known as failure probability.

The so-called Vanmarcke failure probability approximations (i.e., Vanmarcke and

modified Vanmarcke approximation) are computed, by numerical integration of the

closed-forms of the corresponding hazard functions, for linear elastic single- (SDOF) and

ΔX3
ζ 0.114m=

ΔX3
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multi-degree-of-freedom (MDOF) systems subjected to a white noise base excitation and

with at rest initial conditions. The closed-form of the two Vanmarcke hazard function are

obtained using the closed-form solutions, derived and presented in Chapter 8, for the time-

variant bandwidth parameter relative to nonstationary stochastic process representing the

displacement response. These approximate solutions are compared with the well-known

Poisson approximation and simulation results obtained via the Importance Sampling using

Elementary Events (ISEE) method for two application examples: (1) linear elastic SDOF

systems, for which a parametric study is performed considering different natural periods,

damping ratios and threshold levels, and (2) an idealized yet realistic three dimensional

unsymmetrical steel building subjected to a white noise base excitation, acting along a

direction inclined with respect to the principal axes of the building itself. For this second

application example, the retrofit of the given building with viscous dampers is also consid-

ered, serving a two-fold purpose: (1) to illustrate the use of the newly available closed-

form approximations of the failure probability for non-classically damped linear elastic

systems, and (2) to show an example of practical use in structural engineering of the pre-

sented analytical derivations.

From the results presented in this study, it can be concluded that the two Van-

marcke approximations provide greatly improved estimates of the failure probability for

the first passage problem when compared with the simpler Poisson approximation. On the

other hand, the relative performance of the Vanmarcke and modified Vanmarcke approxi-

mation can be evaluated only on a case by case basis and deserves further studies to be

better understood.
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Table 9.1   Time-variant failure probability for a SDOF system with natural period 
T0 = 0.5s subjected to a white noise and with at rest initial conditions

dam
ping 
ratio

ζ 2.0σ 2.5σ 3.0σ 4.0σ

Tmax 5T0 10T0 5T0 10T0 5T0 10T0 5T0 10T0

1%

P 0.0300 0.3388 2.01e-3 0.0643 8.06e-5 7.66e-3 2.88e-8 3.82e-5

VM1 0.0177 0.1659 1.30e-3 0.0315 5.66e-5 4.07e-3 2.27e-8 2.37e-5

VM2 0.0145 0.1286 1.08e-3 0.0242 4.75e-5 3.14e-3 1.95e-8 1.86e-5

ISEE 0.0162 0.1229 1.35e-3 0.0246 5.52e-5 3.26e-3 2.51e-8 2.19e-5

5%

P 0.5073 0.8684 0.1711 0.4567 0.0379 0.1337 7.65e-4 3.79e-3

VM1 0.3457 0.6779 0.1112 0.3006 0.0256 0.0866 5.80e-4 2.74e-3

VM2 0.3006 0.6065 0.0954 0.2575 0.0221 0.0735 5.08e-4 2.37e-3

ISEE 0.3233 0.6011 0.0996 0.2654 0.0250 0.0763 6.11e-4 2.72e-3

10%

P 0.6411 0.9072 0.2650 0.5261 0.0698 0.1675 1.91e-3 5.25e-3

VM1 0.5059 0.7981 0.1957 0.4044 0.0527 0.1262 1.59e-3 4.31e-3

VM2 0.4619 0.7520 0.1761 0.3671 0.0475 0.1137 1.46e-3 3.94e-3

ISEE 0.5214 0.8009 0.2030 0.4051 0.0539 0.1224 1.71e-3 4.67e-3
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Table 9.2   Undamped Natural Frequencies and Description of Mode Shapes
of the Three-Dimensional Unsymmetrical Building Example

Mode # ωi [rad/s] Period [s] Mode Shape Description 

1 15.97 0.393 x-translation

2 24.12 0.261 y-translation + torsion

3 36.56 0.172 x-translation

4 41.21 0.153 y-translation + torsion

5 56.74 0.111 y-translation + torsion

6 56.98 0.110 x-translation

7 73.88 0.085 y-translation + torsion

8 95.15 0.066 y-translation + torsion

9 127.69 0.049 y-translation + torsion
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Figure 9.1 Second-order statistical moments of the response of a linear elastic SDOF
system with natural period T0 = 0.5s and damping ratio ξ = 0.05.

Figure 9.2 Mean up-crossing rate, Vanmarcke hazard and modified Vanmarcke hazard
functions of the response of a linear elastic SDOF system with natural period
T0 = 0.5s and damping ratio ξ = 0.05 relative to a threshold level
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Figure 9.3 Approximations of probability of failure of a linear elastic SDOF system
with natural period  and damping ratio  relative to a
threshold level .

Figure 9.4 Mean up-crossing rate, Vanmarcke hazard and modified Vanmarcke hazard
functions of the response of a linear elastic SDOF system with natural period

 and damping ratio  relative to a threshold level
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Figure 9.5 Approximations of probability of failure of a linear elastic SDOF system
with natural period  and damping ratio  relative to a
threshold level .

Figure 9.6 Mean up-crossing rate, Vanmarcke hazard and modified Vanmarcke hazard
functions of the response of a linear elastic SDOF system with natural period

 and damping ratio  relative to a threshold level
.
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Figure 9.7 Approximations of probability of failure of a linear elastic SDOF system
with natural period  and damping ratio  relative to a
threshold level .

Figure 9.8 Mean up-crossing rate, Vanmarcke hazard and modified Vanmarcke hazard
functions of the response of a linear elastic SDOF system with natural period

 and damping ratio  relative to a threshold level
.
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Figure 9.9 Approximations of probability of failure of a linear elastic SDOF system
with natural period  and damping ratio  relative to a
threshold level .

Figure 9.10 Three dimensional unsymmetrical building: (a) geometry, (b) floor view.
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Figure 9.11 Normalized variances and bandwidth parameters of the horizontal displace-
ment in the x-direction at the third floor (DOF ) for the classically (sub-
script ‘u’) and non-classically (subscript ‘d’) damped three dimensional
unsymmetrical building (3-D UB).

Figure 9.12 Time-variant mean out-crossing rate, Vanmarcke and modified Vanmarcke
hazard functions for the DOF  corresponding to a deterministic thresh-
old  (classically damped 3-D UB).
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Figure 9.13 Comparison of analytical approximation with ISEE estimate of the time-
variant failure probability for DOF  and threshold  (classi-
cally damped 3-D UB).

Figure 9.14 Time-variant mean out-crossing rate, Vanmarcke and modified Vanmarcke
hazard functions for the DOF  corresponding to a deterministic thresh-
old  (non-classically damped 3-D UB).
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Figure 9.15 Comparison of analytical approximation with ISEE estimate of the time-
variant failure probability for DOF  and threshold  (non-
classically damped 3-D UB).

Figure 9.16 Normalized variances and bandwidth parameters of the horizontal displace-
ment in the y-direction at the third floor (DOF ) for the classically (sub-
script ‘u’) and non-classically (subscript ‘d’) damped 3-D UB.
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Figure 9.17 Time-variant mean out-crossing rate, Vanmarcke and modified Vanmarcke
hazard functions for the DOF  corresponding to a deterministic thresh-
old  (classically damped 3-D UB).

Figure 9.18 Comparison of analytical approximation with ISEE estimate of the time-
variant failure probability for DOF  and threshold  (classi-
cally damped 3-D UB).
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Figure 9.19 Time-variant mean out-crossing rate, Vanmarcke and modified Vanmarcke
hazard functions for the DOF  corresponding to a deterministic thresh-
old  (non-classically damped 3-D UB).

Figure 9.20 Comparison of analytical approximation with ISEE estimate of the time-
variant failure probability for DOF  and threshold  (non-
classically damped 3-D UB).
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Figure 9.21 Normalized variances and bandwidth parameters of the horizontal drift in
the x-direction between third and second floor ( ) for the
classically (subscript ‘u’) and non-classically (subscript ‘d’) damped three
dimensional unsymmetrical building.

Figure 9.22 Time-variant mean out-crossing rate, Vanmarcke and modified Vanmarcke
hazard functions for  corresponding to a deterministic threshold

 (classically damped 3-D UB).
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Figure 9.23 Comparison of analytical approximation with ISEE estimate of the time-
variant failure probability for  corresponding to a deterministic threshold

 (classically damped 3-D UB).

Figure 9.24 Time-variant mean out-crossing rate, Vanmarcke and modified Vanmarcke
hazard functions for  corresponding to a deterministic threshold

 (non-classically damped 3-D UB).
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Figure 9.25 Comparison of analytical approximation with ISEE estimate of the time-
variant failure probability for  corresponding to a deterministic threshold

 (non-classically damped 3-D UB).
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CHAPTER 10

PROBABILISTIC PUSHOVER ANALYSIS 
OF STRUCTURAL SYSTEMS

10.1   INTRODUCTION

Evaluation of the uncertainty in the computed structural response of civil struc-

tures is of paramount importance in order to improve safety and optimize the use of eco-

nomic resources. In the last two decades, significant research has been devoted to

propagating uncertainties from modeling parameters to structural response through the

finite element method (Dong et al. 1987; Der Kiureghian and Ke 1988; Bjerager 1990;

Ghanem and Spanos 1991; To 2001). Probabilistic methodologies for describing the statis-

tics of the random response of structures with uncertain properties or/and subjected to ran-

dom loading have been developed and interfaced with the widely used and accepted finite

element method. Some of these methods, used in particular for estimating the first- and

second-moment statistics, are the Stochastic Equivalent Linearization Method (Crandall

2006; Ghanem and Spanos 1991) and the Stochastic Perturbation Method (Bolotin 1968;

Grigoriou 2000). 

This paper presents a comparison of two different probabilistic response analysis

methods based on non-linear finite element response simulation. A Mean-Centered First-

Order Second-Moment (FOSM) approximation (Haukaas and Der Kiureghian 2004) is

used to estimate first- and second-moment statistics of finite element response quantities
408
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and these estimates are compared with results obtained using Monte Carlo simulation

(MCS) (Liu 2001). Finite element response sensitivities required by FOSM analysis are

computed through the Direct Differentiation Method (DDM) (Kleiber et al. 1997) and

through forward and backward finite difference analysis using relatively large perturba-

tions of the uncertain parameters. Only material non-linearities and uncertainties in mate-

rial parameters are considered in this study. 

The FOSM is applied to advanced non-linear finite element models of realistic

structures and Soil-Structure-Foundation-Interaction (SFSI) systems subjected to non-lin-

ear quasi-static pushover analysis. Non-linear quasi-static pushover analysis is a popular

procedure in the earthquake engineering community, since it allows one to gain insight

into the non-linear seismic response behavior of structures using simplified analysis tech-

niques. Even though this procedure presents several shortcomings and is based more on

intuition than on rigorous physical and mathematical modeling of the problem, it has been

recognized by international codes (ATC 1996; FEMA 1997) as a possible substitute, under

certain conditions, for non-linear dynamic analysis of structural systems.

10.2   FINITE ELEMENT RESPONSE SENSITIVITY ANALYSIS 

Finite element response sensitivity analysis is a crucial ingredient in several sub-

fields of structural engineering, such as structural optimization, structural identification,

finite element model updating, reliability analysis and probabilistic response analysis. For

real-world problems, response simulation (computation of response quantities

 for given values of a set of random/variable parametersr r1  r2 … rm[ ]T=



410
) is typically performed using advanced mechanics-based non-lin-

ear computational models developed based on the finite element method (Cook et al.

1989). Finite element sensitivity analysis requires augmenting existing (deterministic)

finite element formulations for response-only calculation, with the capability of comput-

ing the response sensitivities to parameters , defined as the gradient of the response

quantities r with respect to parameters , i.e., , with ,

 and .

Several methods are available for computing finite element response sensitivities,

such as the Forward/Backward Finite Difference Method (F-FDM/B-FDM) and the Direct

Differentiation Method (DDM) (Kleiber et al. 1997). The F-FDM/B-FDM consist of per-

forming, in addition to the finite element analysis with all sensitivity parameters  set at

their nominal values, a finite element response analysis for each parameter  (i = 1, ..., n)

in which its nominal value is perturbed by a small but finite amount. Each response sensi-

tivity is then obtained as the ratio of the variation of the response quantity of interest over

the parameter perturbation. This method is computationally expensive and approximate in

nature and can suffer from numerical inaccuracies (Haftka and Gurdal 1993; Conte et al.

2003, 2004; Zona et al. 2005). On the other hand, the DDM is an accurate and efficient

way to perform response sensitivity analysis of finite element models with non-linear hys-

teretic behavior. This method consists of differentiating analytically the space- and time-

discretized equations of motion/equilibrium of the finite element model of the structural

system considered. It involves (1) computing the derivatives (with respect to the parame-

� θ1  θ2 … θm[ ]T=

�

� r�∇ r�∇[ ]ij ri θj∂⁄∂=

i 1 2 … m, , ,= j 1 2 … n, , ,=

�

θi
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ters ) of the element and material history/state variables conditional on fixed nodal dis-

placements at the structure level (conditional sensitivities), (2) forming the right-hand-side

of the response sensitivity equation at the structure level, (3) solving the resulting equation

for the nodal displacement response sensitivities, and (4) updating the unconditional

derivatives of all history/state variables (unconditional sensitivities). For a more detailed

explanation of the DDM, the interested reader is referred elsewhere (Kleiber et al. 1997;

Conte et al. 1995; Conte 2001; Conte et al. 2003, 2004; Barbato and Conte 2005, 2006;

Barbato et al. 2006; Zona et al. 2005, 2006). The response sensitivity computation algo-

rithm affects the various hierarchical layers of finite element response calculation, namely

the structure, element, integration point (section for frame elements), and material levels.

The advantage of the DDM over the F-FDM/B-FDM is that, at the one-time cost of imple-

menting in a finite element code the algorithms for analytical differentiation of the numer-

ical response, the response sensitivities to any of the modeling parameters considered can

be computed exactly (up to a numerical tolerance defined by the user) at a relatively small

fraction (depending on the number of iterations required in the non-linear finite element

analysis of the model considered and on the specific implementation, see Lupoi et al.

2006) of the cost of an additional finite element analysis, which is required for computing

response sensitivities to each of the parameters considered when the F-FDM/B-FDM is

employed.

Both the DDM and the F-FDM/B-FDM with small perturbations are intended to

compute the “local” response sensitivities of the finite element model of the structure

under consideration (the DDM in an analytical way, and the F-FDM/B-FDM in an approx-

�
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imate way). “Global” response sensitivities can be computed through Forward/Backward

Finite Difference (FFD/BFD) analysis using a relatively large perturbation of the sensitiv-

ity parameter (e.g., perturbation equal to one standard deviation of the random parameter).

Such global sensitivities are insensitive to noise in the computed structural response and

approximately account for the effect of higher-order terms (of the Taylor series expansion

of the response quantities of interest) in the perturbation range (e.g., mean  standard

deviation). They can therefore be used as an alternative to local response sensitivities in

probabilistic response analysis. Notice that these global sensitivities do not have the prop-

erty of “multidimensional averaging” (Saltelli et al. 2000), which is required for proper

global sensitivity analysis techniques.

Stand-alone finite element response sensitivities are also invaluable for gaining

deeper insight into the effects and relative importance of system and loading parameters in

regards to structural response behavior. By scaling the response sensitivities with the nom-

inal (or mean) values or the standard deviations of the considered parameters, the relative

importance of each sensitivity parameter in regards to a given structural response quantity

can be quantified in a deterministic or probabilistic sense, respectively. This information is

of paramount importance, e.g., when design decisions are required or when an efficient

experimental program needs to be planned to reduce uncertainties in the modeling param-

eters of a structure specimen.

1±
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10.3   FIRST-ORDER SECOND-MOMENT (FOSM) PROBABILISTIC 

RESPONSE ANALYSIS 

Probabilistic response analysis consists of computing the probabilistic character-

ization of the response of a specific structure, given as input the probabilistic characteriza-

tion of material, geometric and loading parameters. An approximate method of

probabilistic response analysis is the First-Order Second-Moment (FOSM) method, in

which mean values (first-order statistical moments), variances and covariances (second-

order statistical moments) of the response quantities of interest are estimated by using a

first-order Taylor series expansion of the response quantities in terms of the random or

uncertain modeling parameters (Haukaas and Der Kiureghian 2004) about a given point in

the space in which the modeling parameters are defined. Thus, this method requires only

the knowledge of the first- and second-order statistical moments of the random parame-

ters. It is noteworthy that often statistical information about the random parameters is lim-

ited to first and second moments and therefore probabilistic response analysis methods

more advanced than FOSM analysis cannot be fully exploited. 

In the following, upper case letters , , R and R will denote random quantities

and the corresponding lower case letters , , r and r will denote specific realizations of

the random quantities. Given the vector of n random parameters , defined in a given

domain, the corresponding covariance matrix  is

(10.1)

� Θ

� θ

�

��

�� ρijσiσj[ ]      i j,; 1 2 … n, , ,= =
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where  is the correlation coefficient of random parameters  and  ( ; i = 1,

2, …, n), and  denotes the standard deviation of random parameter . FOSM analysis

is based on a linearization of the vector R of the m response quantities of interest. In fact,

the vector R is approximated by the following first-order truncation of its Taylor series

expansion in the random parameters  about a given point  

(10.2)

In general, the linearization point is chosen as the point  of the mean values of

the parameters. In fact, this is an optimal point (at least in a local sense) for estimating the

mean of a scalar function (e.g., response quantity Rk, with ) of the param-

eters by using a linear approximation, independently of the functional relation and of the

joint probability distribution of the parameters (see Appendix). Using the Mean-Centered

FOSM method, the vector R of m response quantities of interest is approximated by a

first-order truncation of its Taylor series expansion in the random parameters  about

their mean values  as

(10.3)

The first- and second-order statistical moments of the response quantities R are

approximated by the corresponding moments of the linearized response quantities, i.e.,

(10.4)

ρij Θi Θj ρii 1=

σi Θi

� �0

R �( ) Rlin �( )≈ r �0( ) r�∇
� �0=

� �0–( )+=

��

k 1 2 … m, , ,=

�

��

R �( ) Rlin �( )≈ r ��( ) r�∇
� ��=

� ��–( )+=

�R �Rlin
≈ E Rlin �( )[ ] r ��( ) r�∇

� ��=
E � ��–[ ]+ r ��( )= = =
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(10.5)

in which E[…] denotes the mathematical expectation operator. In particular, the explicit

form for the covariances between couples of response quantities and the variances of each

of the response quantities considered are found from Eq. (10.5) as

; r, s = 1, ..., m (10.6)

; 

k = 1, ..., m (10.7)

respectively.

The approximate response statistics computed through Eqs. (10.4) and (10.5) are

extremely important in evaluating the variability of the response quantities of interest due

to the intrinsic uncertainty of the modeling parameters and provide information on the sta-

tistical correlation between the different response quantities. It is noteworthy that these

approximate first- and second-order response statistics can be readily obtained when

response sensitivities evaluated at the mean values of the random parameters are available.

Only a single finite element analysis is needed in order to perform a FOSM probabilistic

response analysis, when the finite element response sensitivities are computed using the

DDM. In the following, only Mean-Centered FOSM analyses will be considered and

denoted as FOSM analyses in short, for the sake of brevity.

�R �Rlin
≈ E Rlin �( ) �Rlin

–( ) Rlin �( ) �Rlin
–( )T⋅[ ]=

r�∇
� ��=

�� r�∇
� ��=

( )T⋅ ⋅⎝ ⎠
⎛ ⎞=

cov Rr Rs,[ ] ρij
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10.4   PROBABILISTIC RESPONSE ANALYSIS USING MONTE 

CARLO SIMULATION

Probabilistic response analysis can also be performed using Monte Carlo Simula-

tion (MCS) (Liu 2001). In this study, MCS is used to assess the accuracy of the FOSM

approximations in Eqs. (3) and (4) when applied to non-linear finite element response

analysis of R/C building structures characterized with random/uncertain material parame-

ters and subjected to quasi-static pushover. The MCS procedure requires:

(1) Generation of N realizations of the n-dimensional random parameter vector  accord-

ing to a given n-dimensional joint probability density function (PDF).

(2) Computation by finite element analysis of N pushover curves (i.e., force-response

curves) for each component of the response vector R, corresponding to the N realiza-

tions of the random parameter vector .

(3) Statistical estimation of specified marginal and joint moments of the components of

response vector R at each load step of the finite element response analysis.

MCS is a general and robust methodology for probabilistic response analysis, but

it suffers two significant limitations:

(1) It requires knowledge of the joint PDF of the random parameters . In general, this

joint PDF is only partially known and appropriate models, consistent with the incom-

plete statistical information available, must be used to generate realizations of the vec-

tor .

�

�

�

�
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(2) MCS requires performing N finite element response analyses. This number N can be

very large for accurate estimates of marginal and joint moments of response quantities

R and increases rapidly with the order of the moments. For real-world structures, com-

plex non-linear finite element analyses are necessary for accurate prediction of the

structural response and repeating such analyses a large number of times could be com-

putationally prohibitive.

In this study, the Nataf model (Ditlevsen and Madsen 1996) is used to generate

realizations of the random parameters . It requires specification of the marginal PDFs of

the random parameters  and their correlation coefficients. It is therefore able to repro-

duce the given first- and second-order statistical moments of the random parameters .

10.5   TORNADO AND JAVELIN DIAGRAMS IN RESPONSE SENSI-

TIVITY ANALYSIS 

The FOSM method used in this paper allows one to consider the effects of the vari-

ability of each random parameter on the variability of the response. Herein, two simplified

procedures, based on the response and response sensitivities computed at the mean values

of the parameters, are presented to obtain information on the dependency of the response

quantities considered on each of the material random parameters.

The first procedure is used to find the relative importance of each material random

parameter on the response quantities. Such relative importance is based on a FOSM analy-

sis and is obtained using the response sensitivities computed at the mean values of the

parameters and the variances of the parameters. The relative importance using FOSM

�

�

�
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results is validated against corresponding results obtained computing the response quanti-

ties changing the value of each parameter by  standard deviation one at a time. Such

validation is graphically represented through tornado diagrams (Howard 1983; Porter et

al. 2002). Another quantity commonly used to define a relative importance ranking of the

uncertain/random parameters in influencing the variability of the response quantities con-

sidered is the so-called “swing” (Porter et al. 2002). The term swing denotes the variation

in the response quantity of interest due to the variability of only one parameter when all

the other parameters are kept fixed at their corresponding mean values. The swing is com-

puted in correspondence of the minimum and maximum values of the parameter consid-

ered when its probability distribution is defined over a finite interval (e.g., beta and

uniform distributions) or of the 10% and 90% fractiles when the probability distribution of

the parameter is defined over an infinite (e.g., normal distribution) or semi-infinite (e.g.,

lognormal or exponential distributions) interval. The swing is commonly represented by

using tornado diagrams.

The second procedure is employed to find an approximation of the cumulative

probability functions (CDFs) and probability density functions (PDFs) of the response

quantities of interest as functions of each random parameter considered one at a time.

These approximations are obtained assuming that the response quantities of interest have

the same distribution of the random parameter considered, with mean value and standard

deviation given by the Mean-Centered FOSM estimates of mean and standard deviation,

respectively. These approximate CDFs and PDFs are validated through the corresponding

quantities obtained computing repeatedly the response for several values of the material

1±
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parameter considered and keeping all the other random parameters at their mean value.

The results of this procedure are graphically represented using the so-called “javelin dia-

grams” (Felli and Hazen 2004), which are used in the fields of Economics, Management

and Decision Analysis but, to the best of authors’ knowledge, have not yet been employed

by the Structural Engineering community. 

10.6   APPLICATION EXAMPLES

10.6.1   Three-dimensional R/C frame building

The first application example considered herein consists of a three-dimensional

reinforced concrete frame building on rigid foundation with concrete slabs at each floor as

shown in Fig. 10.1. The frame consists of three stories of height  (12ft) each

and one bay of span  (20ft) in each direction. Beam and column cross-sections

are shown in Fig. 10.1.

Beams and columns are modeled using displacement-based Euler-Bernoulli frame

elements with four Gauss-Legendre integration points each. Each column and beam is dis-

cretized in two and three finite elements, respectively. Beam and column cross-sections

are discretized in fibers of confined concrete, unconfined concrete and steel reinforce-

ment. The reinforcement steel is modeled through a bilinear hysteretic model, while the

concrete is represented by the Kent-Scott-Park model with zero tension stiffening (Scott et

al. 1982), as shown in Fig. 10.1. Different material parameters are used for the confined

(core) and unconfined (cover) concrete in the columns and beams. The concrete slabs are

modeled through a diaphragm constraint at each floor to enforce rigid in-plane behavior. 

h 3.66m=

L 6.10m=
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Ten material constitutive parameters are used to characterize the various structural

materials present in the structure, namely four parameters for the confined concrete

( : peak strength, : strain at peak strength, : residual strength,

: strain at which the residual strength is reached), three parameters for the uncon-

fined concrete ( , , ) with the fourth parameter

, and three parameters for the reinforcement steel (fy: yield strength,

E0: initial stiffness, b: post-yield to initial stiffness ratio). Fig. 10.1 shows graphically the

meaning of all the material parameters considered. These material parameters are modeled

as random fields spatially fully correlated, i.e., each material parameter is modeled with a

single random variable (RV). The marginal PDFs of these material parameters are given in

Table 1 and were obtained from studies reported in the literature (Mirza and MacGregor

1979; Mirza et al. 1979). The correlation coefficients between the various material param-

eters are assumed as follows:  for (1)  and , (2)  and

, (3)  and , (4)  and , (5)  and , (6)

 and ;  for (1)  and , (2)  and ,

(3)  and ; and  for all other pairs of parameters. These correlation

coefficients are chosen based on engineering judgement, since to the authors’ knowledge,

precise values of correlation coefficients are not available in the literature.

After static application of the gravity loads (assumed as uniformly distributed load

per unit area  at each floor), the structure is subjected to a quasi-static push-

fc core, εc core, fcu core,

εcu core,

fc cover, εc cover, εcu cover,

fcu cover, 0MPa=

ρ 0.8= fc core, fcu core, εc core,

εcu core, εc cover, εcu cover, fc core, fc cover, εc core, εc cover,

εcu core, εcu cover, ρ 0.64= fcu core, fc cover, εc core, εcu cover,

εcu core, εc cover, ρ 0.0=

q 8kN m2⁄=
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over analysis, in which an upper triangular distribution of horizontal forces is applied on

the master nodes of the floor diaphragm constraints in the x-direction (see Figure 1). The

total base shear force, Ptot = 2P, is considered as deterministic and is assumed to increase

linearly during the analysis from 0kN to 600kN, using a force-control procedure with

load-increments of 6kN. In this analysis, only material non-linearities are taken into

account. A response analysis and response sensitivity analysis using the DDM are first

performed at the mean values  of the random parameters . A MCS analysis based on

1000 realizations is then carried out based on the Nataf model used as joint PDF of the

random parameters . Global sensitivities of the response quantities R are evaluated

through FFD and BFD analysis, perturbing one material parameter at a time by  stan-

dard deviation, respectively. Finally, the swing of the response quantities of interest is

computed by performing two additional fine element analyses for each random material

parameter at its upper and lower values (as defined in the previous Section). Finite ele-

ment response, response sensitivity and probabilistic response computations are per-

formed using the finite element analysis framework OpenSees (Mazzoni et al. 2005), in

which new classes were added to perform MCS probabilistic response analysis, three-

dimensional frame elements were augmented for response sensitivity analysis (Barbato et

al. 2007) and the response sensitivity algorithm for imposing multipoint constraints was

implemented (Gu et al. 2007b). 

Fig. 10.2 shows a comparison of estimates of the mean and mean  standard

deviation of the force - response curve for the roof displacement in the x-direction, ux3,

obtained through FOSM analysis using the DDM to compute the response sensitivities

�� �

�

 1±

 1±
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and MCS, respectively. Fig. 10.3 displays the standard deviation estimates of ux3 obtained

through MCS and FOSM analysis using different methods to compute the response sensi-

tivities. For the given structure subjected to quasi-static pushover, the condition of failure

is defined as non-convergence of the finite element analysis or roof displacement in the x-

direction, ux3, exceeding 0.4m (i.e., ux3,fail = 0.4m, corresponding to a drift over total

height ratio equal to 3.65%), whichever happens first. The choice of the value of the roof

displacement at failure is driven by the fact that, for the considered level of drift, a build-

ing structure is strongly damaged or already physically collapsed. It is found that, until the

load level  is reached, no failure case is observed in the MCS performed,

while nearly one third of the Monte Carlo realizations reach failure below load level

. In Figs. 10.2 and 10.3, horizontal dashed lines mark the load levels

 and , which denote the load levels below which the

response is almost linear and no failure occurs, respectively. In Figs. 10.2 and 10.3, for

load levels above , both the unconditional (denoted as “MC”) and condi-

tional to survival (“MCS cond. surv.”) MCS estimates of the mean value and standard

deviation of ux3 are plotted. The MCS mean response conditional to survival presents a

stiffening behavior at high load levels, since it represents the mean response of only the

realizations corresponding to structures with higher stiffness and/or strength. It is clear

that MCS results conditional to survival cannot be directly compared with the FOSM

approximations, because of the different meaning of the two sets of quantities. On the

other hand, the presence of simulations with failure due to singularity of the structure stiff-

ness matrix (i.e., non-convergence of the finite element pushover analysis) introduces

Ptot 450kN=

Ptot 600kN=

Ptot 300kN= Ptot 450kN=

Ptot 450kN=
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some arbitrarity in the computation and interpretation of the unconditional MCS results. In

fact, the value of the displacement ux3 at the last converged step of the pushover analysis

in these simulations is lower than the value assumed as failure threshold (ux3,fail = 0.4m)

and thus the value to be used for the unconditional MCS estimates of mean and standard

deviation is not clearly and uniquely defined for load levels higher than the one at which

failure occurred (denoted here as Ptot,fail). In this work, for ,

 is assumed, which is consistent with the failure condition for the

simulations reaching the failure threshold and provides unconditional MCS estimates

comparable with FOSM results. Notice that another possible choice would be assuming

 for . This second choice is not used,

since it would decrease significantly and artificially the computed mean and variance of

the response quantity considered.

Fig. 10.2 shows clearly that the FOSM approximation is in excellent agreement

with the MCS results when the structural response is nearly linear (for load levels below

), while the FOSM results slightly underestimate the MCS results when the

structure undergoes low-to-moderate non-linear inelastic deformations (for load levels

between  and ). When MCS realizations start to reach fail-

ure as defined above (i.e., for load levels ), FOSM results significantly

underestimate unconditional MCS results. It can be concluded that, for the first applica-

tion example considered in this paper, FOSM analysis provides, at very low computational

Ptot Ptot fail,≥

ux3 ux3 fail, 0.4m= =

ux3 Ptot( ) ux3 Ptot fail,( ) 0.4m≤= Ptot Ptot fail,≥

Ptot 300kN=

Ptot 300kN= Ptot 450kN=

Ptot 450kN≥
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cost, very good estimates of the mean of response quantities for low-to-moderate levels of

material non-linearity in the structural response. 

In Fig. 10.3, the different techniques employed for computing response sensitivi-

ties used in FOSM are: (1) DDM; (2) BFD analysis with perturbations 

; (3) FFD analysis with perturbations  ; and

(4) FD average of global sensitivities computed using BFD and FFD. It is observed that

these four methods produce similar results and in particular the standard deviation esti-

mate obtained using method (4) is very close to the one based on the DDM, except for

very high load levels. However, it is important to note that, for each sensitivity parameter,

the computational cost of response sensitivities using the DDM is only a fraction of the

cost of an additional non-linear finite element analysis, which is required for BFD and

FFD analyses. Thus, method (4) requires two additional non-linear finite element analyses

for each sensitivity parameter, and is therefore significantly more expensive computation-

ally than the DDM. In addition, the BFD analysis for parameter  does not reach the

load level  and the corresponding structural model fails at 

and . Therefore, it is not possible to compute the BFD and FD average esti-

mates of the response standard deviation for . As for the mean of the

response, FOSM analysis using DDM provides, at very low computational cost, excellent

estimates of the standard deviation of response quantities for low-to-moderate levels of

material non-linearity in the structural response.

Δθi  σi–=

i 1 2 … 10, , ,=( ) Δθi σi= i 1 2 … 10, , ,=( )

fc core,

Ptot 600kN= Ptot 582kN=

ux3 0.344m=

Ptot 582kN≥
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Fig. 10.4 plots, on a semilogarithmic scale, the coefficient of variation (C.O.V.) of

the mean of the response quantity ux3 for different load levels as a function of the number

of simulations performed. As expected, the C.O.V. is higher for higher load levels, for

which the dispersion of the results is higher. At 1000 simulations, the C.O.V. for

 are 0.59%, 1.04% and 2.85%, respectively, and thus the

MCS results are very reliable. Notice also that the number of simulations required to

obtain a C.O.V. lower than 10% are less than 10 for  and ,

but more than 100 for . Fig. 10.5 displays the cumulative density functions

(CDFs) of ux3 obtained by MCS for load levels , 450kN and 600kN. For

, the CDF conditional to survival and scaled by the probability of survival

is also shown, while the CDF conditional to failure (and scaled by the probability of fail-

ure) corresponds to the difference between the unconditional CDF and the scaled CDF

conditional to survival. 

Table 10.2 provides the sensitivities of ux3 to the random material parameters com-

puted at the nominal/mean values of the latter and normalized in a deterministic sense,

, and probabilistic sense, ,

respectively (with the mean response  computed using FOSM). The sensitivities nor-

malized in a deterministic sense can be interpreted as the percent change in the response

due to one percent change in the sensitivity parameter considered. The sensitivities nor-

malized in a probabilistic sense represent the percent change in the mean response due to a

change in the mean of the random parameter taken as one percent of the standard devia-

Ptot 300kN 450kN 600kN, ,=

Ptot 300kN= Ptot 450kN=

Ptot 600kN=

Ptot 300kN=

Ptot 600kN=

ux3∂ θi∂⁄( )
� ��=

μΘi
μux3

⁄( ) ux3∂ θi∂⁄( )
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σΘi
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tion of this parameter, assuming this change to be equally likely for all random parame-

ters. It is observed that these normalized sensitivities increase in absolute value for

increasing load level Ptot, except the normalized sensitivity to , which is first posi-

tive and relatively large for , decreases in absolute value for

 and becomes negative for . Table 10.2 gives also the spe-

cific relative contributions (or marginal contributions) to the variance  of ux3 of each

of the material random parameters, expressed as per cent of  for different load levels

and computed using FORSM analysis. These relative contributions to the variance can be

used as measures of relative importance in a probabilistic sense of the various parameters

in regards to the response quantity of interest. In this case, it is noted that the most impor-

tant parameter in the probabilistic sense is  for  and

, while  becomes predominant for . The steel mate-

rial parameters fy and E are found to be relatively less important in the probabilistic sense

than in the deterministic sense (for which the relative importance is given by the absolute

value of the sensitivities normalized in a deterministic sense), since their coefficients of

variation are relatively small compared to other parameters. Note that for equal coeffi-

cients of variation of all random parameters, the relative importance of these parameters in

the deterministic and probabilistic sense are identical. Table 10.3 provides the contribu-

tions to the variance  of ux3 due to the cross-terms (for all pairs of correlated parame-

ters) expressed as per cent of  for different load levels. In this application example,

εc cover,

Ptot 300kN=

Ptot 450kN= Ptot 600kN=

σux3

2

σux3

2

fc cover, Ptot 300kN=

Ptot 450kN= fc core, Ptot 600kN=

σux3

2

σux3

2
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these normalized (dimensionless) cross-term contributions grow for increasing load level

Ptot and are of magnitude comparable or even larger than the marginal contributions of the

random parameters to the variance of the response given in Table 10.2. In particular, the

correlation between the parameters  and  provides the highest contribution

to the variance  of ux3 for the load level  (i.e. 36.70%). This phenome-

non has a physical intuitive explanation. In fact, the value of  determines the force

level at which spalling of the cover concrete starts: the lower , the sooner spalling

initiates. Also, the sooner and the more extensively the spalling initiates, the more stress is

taken by the core concrete. Finally, the lower is the value of , the more likely is

crushing of the core concrete in compression and consequently the higher is the deforma-

tion of the structure. Similar considerations are valid for the case of higher values of

 and , leading to lower deformations of the structure. The high positive cor-

relation between the values of  and  (due to the fact that they represent the

same property of the same material in different positions in the structure) justify the

importance in terms of contribution to the variance  of their correlation term, which

takes into account the chain effect described above. Furthermore, the sum of the contribu-

tions to the variance  for the load level  due to the variability of 

and  and to their correlation accounts for 87.44% of the total variance. It can be

concluded that the concrete strength is by large the most influential factor on the strength

and the deformability at high load levels for this specific structure.

fc core, fc cover,

σux3

2 Ptot 600kN=

fc cover,

fc cover,

fc core,

fc cover, fc core,

fc cover, fc core,

σux3

2

σux3

2 Ptot 600kN= fc core,

fc cover,



428
Figs. 10.6 through 10.8 compare results for evaluating the relative importance and

effects on the structural response ux3 of the randomness of the material parameters for dif-

ferent load levels by using the tornado diagrams. In particular, the estimate of the relative

change in the response (taken as the change in the response normalized with the mean

value of the response) due to a variation of  standard deviation of each parameter con-

sidered one at the time is computed by FOSM and by FFD and BFD with changes in the

parameters equal to  standard deviation of the parameter considered, respectively. The

response change are computed as follows

; i = 1, ..., 10 (10.8)

; i = 1, ..., 10 (10.9)

where  is a Boolean vector of length equal to the number of parameters with 1 in the i-

th position and 0’s elsewhere and  is the vector collecting the standard deviation of the

random parameters. The two tornado diagrams corresponding to  (Fig.

10.6) and  (Fig. 10.7), respectively, show that, for low-to-moderate non-

linearities in the response, FOSM estimates of the response variability are in good agree-

ment with the ones obtained through finite difference (FD) calculations. Furthermore, in

the same range of non-linearities, the response variability due to the variation of  stan-

dard deviation of each parameter is moderate ( %). For large non-linearities

( , Fig. 10.8), larger differences occur between FOSM and FD results, in

particular for parameters to which the response is more sensitive, such as the core and
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cover concrete parameters. For these parameters, the FOSM estimate of the variation of

the response due to the variation of  standard deviation of each parameter is very large

(more than 50% for ), while the same estimate using FD, in general, provides lower

values for FFD and higher values for BFD. For the parameter , which is the parame-

ter to which the response is more sensitive at load level , the BFD analysis

does not converge and the corresponding finite element models reaches failure due to near

singularity of the structure stiffness matrix at the load level . This result

is denoted in Fig. 10.8 as ‘BFD NA’. In order to generate the tornado diagrams of Figs.

10.6 through 10.8 using FD analysis, two additional non-linear finite element pushover

analyses are required for each random parameter considered. On the other hand, the tor-

nado diagrams using FOSM results are obtained at modest additional computational cost

after performing the FOSM analysis. In addition, tornado diagrams using FD do not pro-

vide any information about the effects of correlation between couples of random parame-

ters. In contrast with this, FOSM analysis provides information about the dependency of

the response variance due to the correlation between parameters, as shown in Table 10.3.

The tornado diagrams given in Figs. 10.6 through 10.8 plot also the swing of the response

quantity ux3 due to the variability of each material parameter. The computed swings pro-

vide consistent information in terms of relative importance ranking of the material param-

eters to the results obtained through FOSM analysis. The only exception is at the load

level  for parameter fy, which importance is underestimate by FOSM. In

fact, for the lowest values of fy, the structural system reaches failure at load levels lower

1±
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fc core,

Ptot 600kN=

Ptot fail, 582kN=
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than  (represented in Fig. 10.8 with the note ‘swing NA’), showing that the

relation between the response quantity ux3 and the parameter fy is strongly non-linear.

FOSM analysis provides additional information about correlation between differ-

ent response quantities and between response quantities and random material parameters.

As examples, Figs. 10.9 and 10.10 compare the correlation coefficient between the

response quantity ux3 and the material parameter  and between the response quan-

tities ux3 and ux1, respectively, computed by FOSM analysis and by MCS analysis, with

MCS results acting as reference solution. The results from the two different methods show

good agreement for low-to-moderate non-linearities in the response behavior. Notice that

for load levels above , the MCS results used to compute the correlation

coefficient between the response quantities ux3 and ux1 are conditional to the survival of

the structure up to the corresponding load level and, thus, for this specific case, the com-

parison between FOSM and MCS results is not very meaningful for . On the

other hand, computing the correlation coefficient from unconditional MCS results would

give completely arbitrary results, since the value of the displacement ux1 after failure is

achieved is not uniquely defined.

Figs. 10.11 through 10.13 show some results from the simplified procedure pro-

posed to approximate the probability distributions of the response quantity considered as

function of the modeling parameters considered as random one at the time. In Figs. 10.11

and 10.12, the PDFs (scaled by a factor 100 and 50, respectively) and CDFs of the dis-

placement ux3 for  and , respectively, obtained by the pro-

Ptot 600kN=

fc cover,

Ptot 450kN=

Ptot 450kN≥

Ptot 300kN= Ptot 450kN=
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posed approximate procedure considering as variable the parameter , are

compared with the corresponding quantities obtained by simulation. In the same Figures,

the relations between ux3 and  are also plotted. Fig. 10.13 shows the PDFs (scaled

by a factor 4000) and CDFs of the displacement ux3 for  obtained by the

proposed approximate procedure considering as variable the parameter  are compared

with the corresponding quantities obtained by simulation. In addition, the relation between

ux3 and  is also plotted. The response probability distributions obtained by simulation

are generated by repeating the non-linear finite element pushover analysis for 20 different

values of the parameter considered. The functional relations between values of the param-

eter considered and response quantity are obtained interpolating with a cubic spline the

values obtained through simulation. The response probability distributions obtained by the

proposed simplified procedure are generated at a negligible additional computational cost

for the parameter , which follows a lognormal distribution completely described

by mean and standard deviation, while, for parameter , two additional non-linear finite

element analyses (corresponding to the minimum and maximum values of the parameter)

are required to determine the corresponding beta distribution. Notice that the simplified

procedure assumes a one-to-one relation between values of the parameter considered and

response quantity, hypothesis which is satisfied by the functional relations obtained by

simulation. From the results presented in Figs. 10.11 through 10.13 and from results corre-

sponding to other random material parameters not presented herein for space limitation, it

is found that the proposed simplified procedure can provide approximate probability dis-

fc cover,

fc cover,

Ptot 450kN=

fy

fy

fc cover,

fy
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tributions which are in good agreement with the ones obtained through simulation for low-

to-moderate non-linearities in the response at a very low computational cost. It is also

found that, for large non-linearities as the ones encountered at the load level

, the approximate probability distributions could compare very poorly with

the distributions obtained through direct simulation. This disagreement is principally due

to two factors: (1) estimates of mean and standard deviation of the response quantity con-

sidered are in poor agreement with the corresponding values computed through MCS, and

(2) the hypothesis of one-to-one relation between values of the parameter considered and

response quantity is no more satisfied.

10.6.2   Two-dimensional SFSI system

The second application example consists of a two-dimensional Soil-Foundation-

Structure Interaction (SFSI) system, a model of which is shown in Fig. 10.14. The struc-

ture is a two-storey two-bay reinforced concrete frame with section properties given in

Fig. 10.14. The foundations consist of reinforced concrete squat footings at the bottom of

each column. The soil is a layered clay, with stiffness properties varying along the depth.

The frame structure of this SFSI system is modeled by using displacement-based

Euler-Bernoulli frame elements with distributed plasticity, each with four Gauss-Legendre

integration points. Section stress resultants at the integration points are computed by dis-

cretizing the frame sections into layers. Foundation footings and soil layers are modeled

through isoparametric four-node quadrilateral finite elements with bilinear displacement

interpolation. The soil mesh is shown in Fig. 10.14. The constitutive behavior of the steel

reinforcement is modeled by using a one-dimensional J2 plasticity model with both kine-

Ptot 600kN=
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matic and isotropic linear hardening (Conte et al., 2003). The concrete is modeled by

using a Kent-Scott-Park model with no tension stiffening (Scott et al., 1982). Different

material parameters are used for confined (core) and unconfined (cover) concrete in the

columns. The soil is modeled by using a pressure-independent multi-yield surface material

model (Elgamal et al., 2003), specialized for plane strain analysis (Fig. 10.14). Different

material parameters are used for each of the four layers considered.

Similarly to the previous application example, ten material constitutive parameters

are used to characterize the various structural materials involved in the structure, namely

four parameters for the confined concrete ( , , , ), three

parameters for the unconfined concrete ( , , ) with the fourth

parameter , and three parameters for the reinforcement steel (fy, E0,

Hkin: kinematic hardening modulus) with the fourth parameter  (isotropic

hardening modulus). Notice that, assuming , the one-dimensional J2 plas-

ticity model reduces to the bilinear inelastic model used in the first application example.

These material parameters are assumed to follow lognormal distributions with parameters

given in Table 10.4. The correlation coefficients between the couples of parameters are the

same as in the first application example. In addition to the material parameters describing

the structural materials, eight material parameters are used to model the four soil layers,

i.e., the shear strength, τi, and the initial shear modulus, Gi, with i = 1, 2, 3, 4. These mate-

rial parameters are assumed to follow lognormal distributions with parameters given in

Table 10.4 (Phoon and Kulhawy 1996). The correlation coefficients between the parame-

fc core, εc core, fcu core, εcu core,

fc cover, εc cover, εcu cover,

fcu cover, 0MPa=

Hiso 0MPa=

Hiso 0MPa=
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ters are assumed as follows:  for (1)  and , (2)  and , (3)  and , (4)

 and , (5)  and , (6)  and , (7)  and ; and  for all other pairs

of parameters. Also in this case, these correlation coefficients are chosen based on engi-

neering judgement, since to the authors’ knowledge, precise values of correlation coeffi-

cients are not available in the literature.

Similarly to the first application example, after static application of the gravity

loads, the structure is subjected to a quasi-static pushover analysis, in which an upper tri-

angular distribution of horizontal forces is applied at the floor levels (see Fig. 10.14). The

total base shear force, Ptot = 1.5P, is considered as deterministic and is assumed to increase

linearly during the analysis from 0kN to 750kN. In this analysis, only material non-linear-

ities are taken into account. A response analysis and response sensitivity analysis using the

DDM are first performed at the mean values  of the random parameters . A MCS

analysis based on 1000 realizations is then carried out based on the Nataf model used as

joint PDF of the random parameters . Finally, global sensitivities of the response quan-

tities R are evaluated through FFD and BFD analysis, perturbing one material parameter

at a time by plus and minus one standard deviation, respectively. Finite element response,

response sensitivity and probabilistic response computations are performed using the

finite element analysis framework OpenSees (Mazzoni et al. 2005), in which the constitu-

tive model for the soil was augmented for response sensitivity analysis (Gu et al. 2007a)

and the response sensitivity algorithm for imposing multipoint constraints (in this case

required for connecting the frame elements used to describe the structure with the quadri-

lateral elements employed to model the squat footings) was implemented (Gu et al.

ρ 0.4= τ1 τ2 τ1 G1 τ2 τ3

τ2 G2 τ3 τ4 τ3 G3 τ4 G4 ρ 0.0=

�� �

�
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2007b). The results of the analysis are presented in a similar way as for the first applica-

tion example.

Fig. 10.15 shows a comparison of estimates of the mean and mean  standard

deviation of the force - response curve for the horizontal roof displacement at the top of

the central column, u1, obtained through FOSM analysis using the DDM to compute the

response sensitivities and MCS, respectively. Fig. 10.16 displays the standard deviation

estimates of u1 obtained through MCS and FOSM analysis using different methods to

compute the response sensitivities. For the given structure subjected to quasi-static push-

over, the condition of failure is defined as (near) singularity of the structure stiffness

matrix or u1,fail = 0.28m (i.e., roof displacement over roof height ratio equal to 3.9%),

whichever happens first. It is found that, until the load level  is reached, no

failure case is observed in the MCS performed, while nearly one quarter of the Monte

Carlo realizations reach failure below load level . In Figs. 10.15 and 10.16,

horizontal dashed lines mark the load levels  and , which

denote the load levels below which the response is almost linear and no failure occurs,

respectively. In Figs. 10.15 and 10.16, for load levels above , both the

unconditional (denoted as “MC”) and conditional to survival (“MCS cond. surv.”) MCS

estimates of the mean value and standard deviation of u1 are plotted. The results obtained

using FOSM and MCS are qualitatively very similar to the ones presented for the first

application example.

1±
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Fig. 10.15 shows that the FOSM approximation is in excellent agreement with the

MCS results when the structural response is nearly linear (for load levels below

), while the FOSM results slightly underestimate the MCS results when the

structure undergoes low-to-moderate non-linear inelastic deformations (for load levels

between  and ), with differences increasing with increasing

non-linearities. In this case, the maximum level of non-linearities reached in the analysis

is less pronounced at the global level than in the previous example and the differences

between FOSM analysis and MCS analysis are relatively small also for load levels

( ) for which MCS realizations start to reach failure. It can be concluded that,

also for the second application example considered in this paper, FOSM analysis provides,

at very low computational cost, very good estimates of the mean of response quantities for

low-to-moderate levels of material non-linearity in the structural response. 

The different techniques employed for computing response sensitivities used in

FOSM and shown in Fig. 10.16 are: (1) DDM; (2) BFD analysis with perturbations

 ; (3) FFD analysis with perturbations 

; and (4) FD average of global sensitivities computed using BFD and

FFD. It is observed that these four methods produce similar results, but in this case the

estimates of the standard deviation of u1 obtained using BFD, FFD and FD average

slightly overestimate the standard deviation computed through MCS for load levels below

, while the DDM estimate is extremely close to the MCS value for load lev-

els up to . For higher load levels, all the four sensitivity-based methods

Ptot 375kN=

Ptot 375kN= Ptot 630kN=

Ptot 630kN≥

Δθi  σ– i= i 1 2 … 18, , ,=( ) Δθi σi=

i 1 2 … 18, , ,=( )

Ptot 665kN≥

Ptot 510kN≥
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underestimate the MCS results. As for the mean of the response, FOSM analysis using

DDM provides, at very low computational cost, very good estimates of the standard devi-

ation of response quantities for low-to-moderate levels of material non-linearity in the

structural response also in the case of probabilistic pushover analysis of SFSI systems.

Fig. 10.17 plots, on a semilogarithmic scale, the coefficient of variation (C.O.V.)

of the mean of the response quantity u1 for different load levels as a function of the num-

ber of simulations performed. At 1000 simulations, the C.O.V. for

 are 0.20%, 0.49% and 0.91%, respectively, and thus the

MCS results are very reliable. In this case, the number of simulations required to obtain a

C.O.V. lower than 10% are less than 10 for  and , and about

50 for , showing a faster convergence than in the previous application

example.

Table 10.5 provides the sensitivities of u1 to the random material parameters com-

puted at the nominal/mean values of the latter and normalized both in a deterministic

sense and probabilistic sense respectively, together with the relative contributions (or mar-

ginal contributions) to the variance  of u1 of each of the material random parameters,

expressed as per cent of  for different load levels. Table 10.6 shows the contributions

to the variance  of u1 due to the cross-terms (for all pairs of correlated parameters)

expressed as per cent of  for different load levels. From Tables 10.5 and 10.6, the fol-

lowing observations can be made:

Ptot 375kN 630kN 750kN, ,=

Ptot 375kN= Ptot 630kN=

Ptot 750kN=

σu1

2

σu1

2

σu1

2

σu1
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(1) The parameters  and  do not influence the response, since the core con-

crete does not reach its peak strength at any load level and in any fiber in which the

structure is discretized.

(2) The parameter  is the one with largest marginal contribution to the variance of

the response for load levels  and  and is the second most

important parameter for . The parameter  is very important at

lower load levels and its importance decreases sensibly for increasing load levels. In

fact, at lower load levels, the parameter  influences the response mainly

through its effects on the stiffness of the cover concrete (i.e., higher values of 

imply lower stiffness of the cover concrete for a fixed value of  and thus higher

displacements), while at higher load levels, when the fibers of cover concrete start to

reach their peak strength, higher values of  have the effects also of reducing

the number of fibers which reach the peak strength for a given load level, thus reduc-

ing the displacement. This shows that the structural response behavior strongly

depends on the cover concrete material parameters, in particular for low-to-moderate

load levels.

(3) The parameter  increases its importance for increasing load levels. Its effects are

almost negligible for , when very few steel reinforcement fibers have

reached yielding, while  is the second and first most important parameter for load

levels  and , respectively. In particular, for

fcu core, εcu core,

fc cover,

Ptot 375kN= Ptot 630kN=

Ptot 750kN= εc cover,

εc cover,

εc cover,

fc cover,

εc cover,
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,  contributes with about 51% of the variance of the structural

response u1.

(4) The variability of the soil properties has a small effect on the variability of the

response u1 and, in general, this effect decreases for increasing load levels. The only

parameter which effect is significant at all load levels is the parameter , which influ-

ences the sliding of the foundation over the soil layer on which they are posed.

(5) The effects due to modeling parameter correlation are small and, in general, they

decrease for increasing load levels. The only significant effects are due to the correla-

tion between  and  and between  and .

Figs. 10.18 through 10.20 provide the tornado diagrams referred to the structural

response u1 for different load levels. These tornado diagrams reproduce the information

about the relative importance of the several random material parameters and also show

that at higher load levels the amplitude range of the response increases significantly. In

fact, varying the most important parameters of  standard deviation produce a variation

in the response of less than 10%, about 10% and almost 50% for load levels

, 630kN and 750kN, respectively. Results obtained through FOSM com-

pare favorably with the one obtained by BFD and FFD for  (Fig. 10.18)

and  (Fig. 10.19), while differences are evident for  (Fig.

10.20), in particular because of the strong non-symmetry of the BFD and FFD responses

with respect to the mean response which cannot be captured by FOSM. These tornado dia-

Ptot 750kN= fy

τ3

εc core, εc cover, fc core, fc cover,
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grams plot also the swings of the response quantity u1 due to the variability of each param-

eter when all the others are kept constant at their mean values. The importance ranking of

the parameters obtained considering the swings matches very well the one obtained by

FOSM analysis at all the load levels considered.

Figs. 10.21 and 10.22 compare the approximate probability distributions of u1 as

function of  and , respectively, for load level  with the corre-

sponding distributions computed point by point based on the non-linear functional relation

between parameters and response obtained through finite element analysis. In these fig-

ures, PDFs and CDFs are plotted together with the relation between the response and the

parameter considered, when all the other parameters are kept fixed with values equal to

the mean values. It is found that the proposed procedure can provide probability distribu-

tions in reasonable agreement with the ones computed by repeated finite element analyses

at very small computational cost also for SFSI systems for low-to-moderate response non-

linearities. For increasing non-linearities, the agreement between probability distributions

obtained through the proposed approximation and direct simulations degrades rapidly.

10.7   CONCLUSIONS

This paper presents a comparison between probabilistic response analysis results

obtained through Monte Carlo simulation and Mean Centered First-Order Second-

Moment (FOSM) analysis using non-linear finite element response and response sensitiv-

ity analyses of structural and geotechnical systems subjected to quasi-static pushover. The

effects on FOSM analysis results of using different methods for computing response sensi-

fc cover, τ3 Ptot 630kN=
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tivities are also investigated. It is found that FOSM approximation using the Direct Differ-

entiation Method for computing response sensitivities provides, at very low computational

cost, very good estimates of the mean and standard deviation of the response quantity con-

sidered herein for low-to-moderate levels of material non-linearity in the response of

structural systems and SFSI systems subjected to quasi-static pushover analysis. Further-

more, the relative importance (in both the deterministic and probabilistic sense) of the

material parameters on the structural response is obtained as by-product of a FOSM analy-

sis at negligible additional computational cost. In addition, FOSM results can be used to

obtain approximate probability distributions of response quantities of interest as function

of a single random parameters which are in reasonable agreement (in the low-to-moderate

range of non-linearities in the response) with the corresponding distributions obtained

through direct simulation at a much higher computational cost. For high non-linearities in

the structural system considered, agreement between FOSM and MCS results deteriorates

but qualitative information, such as importance ranking of the material parameters in

influencing the response variability, can still be obtained. It is noteworthy that in cases

where non-convergence of the simulations occur before the failure threshold of the

response is reached, estimating of mean and variance of the response using MCS can lead

to some difficulties and is not uniquely defined.

It can be concluded that FOSM analysis provides a large amount of probabilistic

information at a very low computational cost and can provide satisfactory accuracy for

probabilistic analysis of structural and SFSI systems subjected to quasi-static pushover

analysis, provided that the level of non-linearities exhibited by the system considered are
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low-to-moderate. For large non-linearities, FOSM can be used effectively to obtain quali-

tative information on the importance ranking of modeling parameters on the system

response.
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Table 10.1   Marginal PDFs of material parameters for the three-story building 
(distribution parameters for lognormal distribution: (1) , (2) ; for 

beta distribution: (1) , (2) , (3) , (4) )

RV [unit] Distr. Par.#1 Par.#2 Par.#3 Par.#4 Mean c.o.v [%]

fc,core [MPa] lognorm. 3.5205 0.1980 - - 34.47 20

εc,core [-] lognorm. -5.3179 0.1980 - - 0.005 20

fcu,core [MPa] lognorm. 3.1638 0.1980 - - 24.13 20

εcu,core [-] lognorm. -3.9316 0.1980 - - 0.020 20

fc,cover [MPa] lognorm. 3.2975 0.1980 - - 27.58 20

εc,cover [-] lognorm. -6.2342 0.1980 - - 0.002 20

εcu,cover [-] lognorm. -5.1356 0.1980 - - 0.006 20

fy [MPa] beta 227.53 427.48 3.21 4.28 307.46 10.6

E0 [MPa] lognorm. 12.1914 0.0330 - - 201000 3.3

b [-] lognorm. -3.9316 0.1980 - - 0.02 20

λ μ X( )log= ζ σ X( )log=

xmin xmax α1 α2
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Table 10.2   Normalized sensitivities computed by DDM of ux3 to material parameters and 
their relative contribution to variance of ux3 at different load levels (three-story building) 

Deterministic sense Probabilistic sense  [%]

Ptot 
[kN]

300 450 600 300 450 600 300 450 600

fc,core -0.230 -0.313 -2.742 -0.046 -0.063 -0.548 6.01 9.22 36.21

εc,core 0.219 0.284 1.540 0.044 0.057 0.308 5.42 7.44 11.42

fcu,core 0 0 -0.006 0 0 -0.001 0 0 <0.01

εcu,core 0 0 -0.003 0 0 -0.001 0 0 <0.01

fc,cover -0.521 -0.605 -1.737 -0.104 -0.121 -0.347 30.74 33.74 14.53

εc,cover 0.413 0.305 -0.160 0.083 0.061 -0.032 19.30 8.56 0.12

εcu,cover 0 -0.006 -1.142 0 -0.001 -0.228 0 <0.01 6.28

fy 0 -0.063 -2.070 0 -0.007 -0.219 0 0.10 5.80

E -0.369 -0.417 -0.765 -0.012 -0.014 -0.025 0.42 0.44 0.08

b 0 0 -0.047 0 ~0 -0.010 0 <0.01 0.01

Δ σux3

2( ) σux3

2⁄
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Table 10.3   Contribution (%) of the cross-correlation terms to the variance of the 
response quantity ux3 (three-story building)

Ptot [kN] 300 450 600

εc,core εcu,core 0 0 -0.04

εc,core εc,cover 16.36 12.77 -1.90

εc,core εcu,cover 0 -0.21 -10.84

fc,core fcu,core 0 0 0.12

fc,core fc,cover 21.75 28.22 36.70

εcu,core εc,cover 0 0 <0.01

εcu,core εcu,cover 0 0 0.03

fcu,core fc,cover 0 0 0.06

εc,cover εcu,cover 0 -0.28 1.41



446
Table 10.4   Material parameters (with lognormal distributions) for the two-dimensional 
SFSI system

Structural material parameters Soil material parameters

RV [unit] Mean C.O.V. [%] RV [unit] Mean C.O.V. [%]

fc,core [MPa] 34.49 20 τ1 [kPa] 33 25

εc,core [-] 0.004 20 G1 [kPa] 54450 30

fcu,core [MPa] 20.69 20 τ2 [kPa] 50 25

εcu,core [-] 0.014 20 G2 [kPa] 77600 30

fc,cover [MPa] 27.59 20 τ3 [kPa] 75 25

εc,cover [-] 0.002 20 G3 [kPa] 121000 30

εcu,cover [-] 0.008 20 τ4 [kPa] 100 25

fy [MPa] 248.20 10.6 G4 [kPa] 150000 30

E0 [MPa] 200000 3.3 - - -

Hkin [MPa] 1612.9 20 - - -
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Table 10.5   Normalized sensitivities computed by DDM of u1 to material parameters and 
their relative contribution to variance of u1 at different load levels (two-dimensional SFSI 

system)

Deterministic sense Probabilistic sense  [%]

Ptot 
[kN]

375 630 750 375 630 750 375 630 750

fc,core -0.039 -0.054 -0.139 -0.008 -0.011 -0.028 0.67 0.56 0.69

εc,core 0.037 0.048 0.108 0.008 0.010 0.022 0.60 0.43 0.41

fcu,core 0 0 0 0 0 0 0 0 0

εcu,core 0 0 0 0 0 0 0 0 0

fc,cover -0.280 -0.393 -0.943 -0.056 -0.079 -0.189 33.93 29.22 31.65

εc,cover 0.240 0.249 0.215 0.048 0.050 0.043 24.93 11.76 1.64

εcu,cover 0 0 -0.027 0 0 -0.005 0 0 0.03

fy -0.043 -0.672 -2.260 -0.005 -0.712 -0.240 0.22 24.00 51.11

E0 -0.462 -0.392 -0.337 -0.015 -0.013 -0.011 2.51 0.79 0.11

Hkin 0 -0.003 -0.021 0 -0.001 -0.004 0 <0.01 0.02

τ1 -0.049 -0.077 -0.091 -0.012 -0.019 -0.023 1.61 1.73 0.46

G1 -0.017 -0.013 -0.007 -0.005 -0.004 -0.002 0.29 0.07 <0.01

τ2 -0.053 -0.085 -0.101 -0.013 -0.021 -0.025 1.90 2.11 0.56

G2 -0.024 -0.018 -0.012 -0.007 -0.006 -0.004 0.54 0.14 0.01

τ3 -0.087 -0.146 -0.179 -0.022 -0.037 -0.045 5.16 6.32 1.77

G3 -0.049 -0.048 -0.045 -0.015 -0.014 -0.014 2.34 0.97 0.16

τ4 -0.030 -0.065 -0.085 -0.007 -0.016 -0.021 0.59 1.23 0.40

G4 -0.030 -0.036 -0.034 -0.009 -0.011 -0.010 0.87 0.55 0.09

Δ σux3

2( ) σux3

2⁄
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Table 10.6   Contribution (%) of the cross-correlation terms to the variance of the 
response quantity u1 (two-dimensional SFSI system)

Ptot [kN] 375 630 750

εc,core εcu,core 0 0 -0.13

εc,core εc,cover 6.19 3.61 1.32

εc,core εcu,cover 0 0 0

fc,core fcu,core 0 0 0

fc,core fc,cover 7.63 6.45 7.46

εcu,core εc,cover 0 0 0

εcu,core εcu,cover 0 0 0

fcu,core fc,cover 0 0 0

εc,cover εcu,cover 0 0 -0.33

τ1 τ2 1.40 0.28 0.03

τ1 G1 0.55 1.53 0.41

τ2 τ3 2.51 2.92 0.80

τ2 G2 0.81 0.44 0.06

τ3 τ4 1.40 2.23 0.67

τ3 G3 2.78 1.98 0.42

τ4 G4 0.57 0.66 0.16
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Figure 10.1 Geometry, cross-sectional properties, applied horizontal loads and material
constitutive models for the three-story R/C building.
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Figure 10.2 Probabilistic response of the three-story R/C building.

Figure 10.3 Standard deviation of the three-story R/C building.
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Figure 10.4 Coefficient of variation of the mean response at different load levels com-
puted using MCS for the three-story R/C building.

Figure 10.5 CDFs of ux3 for different load levels estimated using MCS for the three-
story R/C building. 
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Figure 10.6 Tornado diagram for the three-story R/C building: .

Figure 10.7 Tornado diagram for the three-story R/C building: .
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Figure 10.8 Tornado diagram for the three-story R/C building: .

Figure 10.9 Correlation of response quantity u3x with material parameter fc,cover for the
three-story R/C building.
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Figure 10.10 Correlation of response quantities u3x and u1x for the three-story R/C build-
ing.

Figure 10.11 CDF, PDF and relation of the response u3x of the three-story R/C building
as function of fc,cover for Ptot = 300kN.
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Figure 10.12 CDF, PDF and relation of the response u3x of the three-story R/C building
as function of fc,cover for Ptot = 450kN.

Figure 10.13 CDF, PDF and relation of the response u3x of the three-story R/C building
as function of fy for .
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Figure 10.14 2-D model of SFSI system: geometry, section properties and soil model.
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Figure 10.15 Probabilistic response of the two-dimensional SFSI system.

Figure 10.16 Standard deviation of the two-dimensional SFSI system.
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Figure 10.17 Coefficient of variation of the mean response at different load levels com-
puted using MCS for the two-dimensional SFSI system.
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Figure 10.18 Tornado diagram for the two-dimensional SFSI system: .
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Figure 10.19 Tornado diagram for the two-dimensional SFSI system: .
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Figure 10.20 Tornado diagram for the two-dimensional SFSI system: .
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Figure 10.21 CDF, PDF and relation of the response u1 of the two-dimensional SFSI sys-
tem as function of fc,cover for .

Figure 10.22 CDF, PDF and relation of the response u1 of the two-dimensional SFSI sys-
tem as function of τ3 for .
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Figure 10.23 Relative error between mean of linearized response and exact mean for
lognormal distribution of the parameter and different functional relations.
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APPENDIX: OPTIMAL LINEARIZATION POINT OF RESPONSE 

FUNCTION FOR MEAN RESPONSE ESTIMATE

The problem of finding the optimal point to which linearize the (scalar) response

function r for obtaining the best estimate of the mean response can be formulated as fol-

lows

(10.10)

The objective function  can be written as follows

(10.11)

Imposing the first order optimality conditions, we obtain

(10.12)

which is always satisfied for .
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CHAPTER 11

STRUCTURAL RELIABILITY ANALYSIS 
USING THE CONCEPT OF DESIGN POINT 

11.1   INTRODUCTION

The field of structural reliability analysis has seen significant advances in the last

two decades (Ditlevsen and Madsen 1996). Analytical and numerical methodologies have

been developed and improved for the probabilistic analysis of real structures characterized

in general by nonlinear behavior, material and geometric uncertainties and subjected to

stochastic loads (Schueller et al. 2004). Reliability analysis methods have been success-

fully applied to such problems, as the ones encountered in civil engineering and typically

analyzed deterministically through the finite element (FE) method (Der Kiureghian and

Ke 1988).

Several reliability analysis methods, such as asymptotic methods (First- and Sec-

ond-Order Reliability Methods: FORM and SORM) (Breitung 1984; Der Kiureghian and

Liu 1986; Der Kiureghian et al. 1987; Der Kiureghian 1996; Ditlevsen and Madsen 1996)

and importance sampling with sampling distribution centered on the design point(s)

(Schueller and Stix 1987; Melchers 1989; Au et al. 1999; Au and Beck 2001a) are charac-

terized by the crucial step of finding the design point(s) (DPs), defined as the most likely

failure point(s) in the standard normal space. In particular, asymptotic methods can pro-
469
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vide reliability analysis results with a relatively small number of simulations (often of the

order of 10-100 simulations for FORM analysis) and with a computational effort practi-

cally independent of the magnitude of the failure probability. Furthermore, these methods

provide important information such as reliability sensitivity measures, as by-product of

the DP search (Hohenbichler and Rackwitz 1986). Other reliability analysis methods, e.g.,

subset simulation (Au and Beck 2001b; Au and Beck 2003) and importance sampling with

sampling distribution not centered at the DP(s) (Bucher 1988; Ang et al. 1992; Au and

Beck 1999), do not use the concept of DP. In general, the computational cost of these

methods increases for decreasing magnitude of the failure probability. Thus, for very low

failure probabilities, these methods could require a large number of simulations.

In this chapter, structural reliability methods based on the concept of DP are

reviewed. Recent improvements (some of which developed in the course of this research)

in terms of efficiency and robustness of the DP search process are presented and applica-

tions to nonlinear FE models of structural systems are shown in order to highlight capabil-

ities and shortcomings of these methods.

11.2   FINITE ELEMENT RELIABILITY ANALYSIS AND DESIGN 

POINT SEARCH

In general, the structural reliability problem consists of computing the probability

of failure Pf of a given structure, which is defined as the probability of exceeding some

limit-state (or damage-state) function(s) (LSFs) when the loading(s) and/or structural

properties and/or parameters in the LSFs are uncertain quantities modeled as random vari-
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ables. This work focuses on component reliability analysis, that is, we consider a single

LSF , where r denotes a vector of response quantities of interest and  is the

vector of random variables considered. The LSF g is chosen such that  defines the

failure domain/region. Thus, the time-invariant component reliability problem takes the

following mathematical form

(11.1)

where  denotes the joint Probability Density Function (PDF) of random variables

.

Moreover, it is assumed that the LSF describes a first-excursion problem in one of

the following simple forms:

(11.2)

in which  is a scalar response quantity (i.e., nodal displacement) computed at

, where t is an ordering parameter (loading factor in a quasi-static analysis or time in

a dynamic analysis),  is a specified value of t (e.g.,  in a pushover analysis)

and ulim is a deterministic threshold. In this case, the time-invariant reliability problem

reduces to computing

g g r �,( )= �

g 0≤

Pf P g r �,( ) 0≤[ ] f� �( ) �d
g r �,( ) 0≤

∫= =

f� �( )

�

g
ulim u � t̂,( );– up-crossing problem( )

u � t̂,( ) ulim;– down-crossing problem( )

ulim u � t̂,( ) ;– ulim 0>( ); double-barrier crossing problem( )
⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

u � t̂,( )

t t̂=

t̂ t̂ max t( )=
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(11.3)

For time-variant reliability problems, an upper bound of the probability of failure,

Pf(T), over the time interval [0, T], can be found as (Bolotin 1969)

(11.4)

where  denotes the mean down-crossing rate of level zero of the LSF g. In this case,

the LSF also depends on the time t and can be expressed, in general, as

. An estimate of  can be obtained numerically from

the limit form relation (Hagen and Tvedt 1991)

(11.5)

The numerical evaluation of the numerator of Eq. (11.5) reduces to a time-invari-

ant two-component parallel system reliability analysis. It is clear that the term

 in Eq. (11.3) represents the building block for the solution of both time-

invariant and time-variant reliability problems (Der Kiureghian 1996).

The problem in Eq. (11.1) is extremely challenging for real-world structures and

can be solved only in approximate ways. The conceptually simplest FE structural reliabil-

ity method is crude Monte Carlo Simulation (MCS), consisting in (1) simulating repeat-

edly a set of random modeling parameters  according to the given joint PDF, ,

Pf P g � t̂,( ) 0≤[ ]

P u � t̂,( ) ulim≥[ ]

P u � t̂,( ) ulim≤[ ]

P u � t̂,( ) ulim≥[ ]
⎩
⎪
⎪
⎨
⎪
⎪
⎧

= =

Pf T( ) νg t( ) td
0

T

∫≤

νg t( )

g g r � t,( ) � t, ,( ) g � t,( )= = νg t( )

νg t( ) P g � t,( ) 0>( ) g � t δt+,( ) 0≤( )∩[ ]
δt

------------------------------------------------------------------------------------------
δt 0→
lim=

P g � t,( ) 0≤[ ]

� f� �( )
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(2) computing the corresponding structural response or performance function through FE

analysis keeping track of the number of times that the limit-state condition is exceeded

and (3) estimating the probability of failure as

(11.6)

where  denotes the number of recorded failures and N is the total number of simula-

tions performed. A measure of the accuracy of the MCS estimate of the failure probability

is given by the coefficient-of-variation (cov) of  as

(11.7)

where Pi is an indicator defined such that 

(11.8)

Crude MCS (Liu 2001) is a very robust and general method for structural reliabil-

ity analysis but, for small probability events, becomes extremely inefficient or even com-

putationally unfeasible since it requires a very large number of computationally very

expensive simulations in order to obtain an accurate estimate of the failure probability

(e.g., for  and , the required number of samples is of the

Pf
nfail
N

----------≅ Pf MCS,=

nfail

Pf MCS,
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order ). This crucial drawback justifies and motivates the large amount of

research devoted to developing more efficient structural reliability analysis methods.

A well established methodology, alternative to simulation, consists of introducing

a one-to-one mapping/transformation between the physical space of variables  and the

standard normal space of variables y (Ditlevsen and Madsen 1996) and then computing

the probability of failure Pf as

(11.9)

where  denotes the standard normal joint PDF and  is

the LSF in the standard normal space.

Solving the integral in Eq. (11.9) remains a formidable task, but this new form of

Pf is suitable for approximate solutions taking advantage of the rotational symmetry of the

standard normal joint PDF and its exponential decay in both the radial and tangential

directions. An optimum point at which to approximate the limit-state surface (LSS)

 is the “design point”, which is defined as the most likely failure point in the

standard normal space, i.e., the point on the LSS that is closest to the origin. Finding the

DP is a crucial step for approximate semi-analytical methods to evaluate the integral in

Eq. (11.9), such as FORM, SORM and importance sampling (Au and Beck 1999; Breitung

1984; Der Kiureghian et al. 1987).

The DP, y*, is found as solution of the following constrained optimization prob-

lem:

N 106∼

�

Pf P G y( ) 0≤[ ] ϕY y( ) yd
G y( ) 0≤

∫= =

ϕY y( ) G y( ) g r � y( )( ) � y( ),( )=

G y( ) 0=
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(11.10)

The most effective techniques for solving the constrained optimization problem in

Eq. (11.10) are gradient-based optimization algorithms (Gill et al. 1981; Liu and Der

Kiureghian 1991) coupled with algorithms for accurate and efficient computation of the

gradient of the constraint function G(y), requiring computation of the sensitivities of the

response quantities r to parameters . Indeed, using the chain rule of differentiation for

multivariable functions, we have

(11.11)

where  and  are the gradients of LSF g with respect to its explicit dependency

on quantities r and , respectively, and usually can be computed analytically (e.g., for the

LSF g given in Eq. (11.2)1, we have  and ); the term 

denotes the response sensitivities of response variables r to parameters , and  is the

gradient of the physical space parameters with respect to the standard normal space

parameters (i.e., Jacobian matrix of the probability transformation from the y-space to the

-space). For probability distribution models defined analytically, the gradient  can

be derived analytically as well (Ditlevsen and Madsen 1996).

For real-world problems, the response simulation (computation of r for given )

is usually performed using advanced mechanics-based non-linear computational models

developed based on the FE method. FE reliability analysis requires augmenting existing

FE formulations for response-only calculation, to compute the response sensitivities,
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, to parameters . An accurate and efficient way to perform FE response sensitivity

analysis is through the DDM (Zhang and Der Kiureghian 1993; Kleiber et al. 1997; Conte

2001; Conte et al. 2003; Franchin 2004; Haukaas and Der Kiureghian 2004; Zona et al.

2005, 2006).

The DP search, for FE reliability analysis involving large nonlinear models of real-

world structural systems, is itself a formidable task. Some of the difficulties and the ways

in which they have been addressed in this work are presented below.

11.2.1   High computational cost

The DP search requires repeated computations of the constraint function and its

gradient (at least once at every iteration of the optimization algorithm) through FE

response and response sensitivity analyses, the computational cost of which depends on

the complexity of the FE model considered. 

The use of the DDM for response sensitivity computations allows one to reduce

significantly the computational cost of each iteration of the optimization algorithm when

compared with the use of the finite difference method (e.g., forward finite difference,

FFD). When the number of sensitivity parameters is large, the computational cost of

response sensitivity calculations can be predominant over the computational effort of

response-only calculations. In particular, response sensitivity analysis using FFD analysis

requires performing an additional nonlinear FE response analysis for each sensitivity

parameter. On the other hand, the use of the DDM can reduce the computational cost of

response sensitivity analysis to only 10%-40% of the CPU time required by FFD analysis. 

r�∇ �
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Chapters 3 through 5 describe new developments and extensions of the DDM to

address the state-of-the-art nonlinear FE technology. It is noteworthy that DDM-based

response sensitivities are more accurate than FFD sensitivities and are not affected by the

“step-size dilemma” (Haftka and Gurdal 1993). In general, these properties are beneficial

for the optimization algorithm used in terms of convergence rate and can reduce the num-

ber of iterations required to reach the DP within a predefined accuracy.

11.2.2   Complexity of the nonlinear constrained optimization problem

The constrained optimization problem in Eq. (11.10) can be very difficult to solve

for strongly nonlinear constraint functions defined in high-dimensional spaces, as is usu-

ally the case for realistic structural problems. The DP search for FE reliability analysis

requires robust and efficient nonlinear constrained optimization algorithms, as well as

their computer implementation and integration with advanced, efficient and robust deter-

ministic FE codes.

In this work, two different algorithms have been used:

(1) the improved Hasofer-Lind Rackwitz-Fiessler (HL-RF) algorithm with line-search

(Der Kiureghian and Liu 1986; Rackwitz and Fiessler 1978), available in both compu-

tational platforms FEDEASLab-FERUM (Haukaas 2001) and OpenSees (Mazzoni et

al. 2005);

(2) the non-linear programming code SNOPT (Gill et al. 2002, 2005), which has been

integrated with both FEDEASLab-FERUM and OpenSees in the course of this

research.
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While the improved HL-RF algorithm is a gradient-based iterative method special-

ized for structural reliability problems (Liu and Der Kiureghian 1991), SNOPT is a gen-

eral-purpose optimization code based on Sequential Quadratic Programming (SQP) (Gill

et al. 1981). It has been found that SNOPT, when compared to the improved HL-RF algo-

rithm, is more robust and often is able to converge to the DP with a smaller number of iter-

ations. On the other hand, for the same number of iterations, SNOPT requires more CPU

time than the improved HL-RF algorithm due to the more general and sophisticated gradi-

ent-based algorithm.

11.2.3   Numerical noise in finite element analysis

The use of FE analysis introduces numerical noise in the evaluation of the con-

straint function and its gradient. This numerical noise may pose severe limitations on the

accuracy with which the DP is obtained.

In fact, in a constrained optimization routine, convergence is obtained when the

two conditions of feasibility (violation of the constraint) and optimality (gradient of the

associated Lagrangian function equal to zero) are satisfied within a specified tolerance.

The tolerance for the feasibility condition is related to the accuracy with which the con-

straint function can be computed (thus to the convergence tolerance in the Newton-based

iterative process used in nonlinear FE analysis), while the tolerance for the optimality con-

dition depends on the accuracy in the constraint gradient computation, the order of magni-

tude of which is equal to the square root of the convergence tolerance used in the response

calculations. These relations between the numerical tolerances for the convergence of dif-

ferent iterative algorithms must be taken into account when setting such tolerances in
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order to obtain a reasonable compromise between computational effort and attainable

accuracy.

11.2.4   Discontinuities in the response sensitivities

The gradient of the constraint function (i.e., the FE response sensitivities) may

exhibit discontinuities. In general, gradient-based optimization algorithms do not ensure

convergence to a (local) optimum of the objective function in Eq. (11.10) subject to the

given constraints (expressed in terms of structural response quantities) if response sensi-

tivities are discontinuous. Typically, non-convergence to an existing optimum may occur

if discontinuities in the gradient of the LSF (i.e., response sensitivity discontinuities) exist

in a neighborhood of the optimum itself. Even in cases when convergence can be

achieved, gradient discontinuities can be detrimental to the convergence rate of the opti-

mization process. In theory, gradient-based optimization algorithms can reach (locally) a

quadratic convergence rate, when the Lagrangian function associated with the given prob-

lem is second-order differentiable and its exact Hessian is available (Gill et al. 1981).

However, this is not the case for structural reliability problems, for which at most exact

first-order response sensitivities are available. It can thus be concluded that, for practical

purposes in FE reliability analysis, requiring at least continuous FE response sensitivities

is a good compromise between convergence rate and computational cost. 

Chapter 6 investigates response sensitivity continuity (or lack thereof) and pro-

vides:

(1) insight into the analytical behavior of FE response sensitivities obtained from smooth

and non-smooth material constitutive models; 
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(2) the response sensitivity algorithm for a widely used smooth material constitutive

model (the Menegotto-Pinto model for steel material);

(3) a sufficient condition on the smoothness properties of material constitutive laws for

obtaining continuous response sensitivities in quasi-static FE analysis;

(4) important remarks and observations regarding the dynamic FE analysis case, which

suggest that response sensitivity discontinuities can be eliminated/reduced by using

smooth material constitutive models and refining the time discretization of the equa-

tions of motion.

11.2.5   Non-convergence of the finite element analysis

Nonlinear FE analyses may not converge to equilibrium. In such cases, the con-

straint function cannot be evaluated numerically and the optimization algorithm may stop

before reaching the DP.

In general, non-convergence takes place in two distinct cases: (1) when the combi-

nation of parameter values produces a non-physical configuration, and (2) when the com-

puter program stops due to lack of numerical convergence. The first case should happen

very rarely if the joint PDF of the random parameters is chosen carefully to represent

accurately the physical properties of the structural system considered. The second case is

very common in the failure domain, where grossly nonlinear behavior is expected in the

structural system response. The optimization algorithm should be enhanced with specific

methods to avoid as much as possible the domain in which the constraint function is not

defined. SNOPT provides built-in routines to move away from the parameter domain

where the constraint and objective functions are not defined.
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11.2.6   Multiple local minima

The gradient-based optimization algorithms considered in this work are designed

for local optimization. Thus, even when these algorithms converge to a solution, there is

no assurance that the obtained point is the global DP for the reliability problem of interest.

This difficulty can be tackled, at least in principle, by using global optimization

routines based on gradient-based local optimization. The problem of existence and com-

putation of multiple local minima will not be considered in the sequel since its study is

beyond the scope of this work.

11.3   FIRST-ORDER RELIABILITY METHOD (FORM)

FORM analysis provides an approximation of the failure probability Pf as defined

in Eq. (11.1) through two main operations: (1) the DP search in the transformed uncorre-

lated standard normal space, and (2) the approximation of the LSS in the standard normal

space with the hyper-plane tangent to the LSS at the DP. The probability content of the

half-space defined by this tangent hyper-plane is known in closed-form and is used as

first-order failure probability estimate.

The distance from the origin of the standard normal space to the DP is also called

“reliability index” and denoted as

(11.12)

The first-order probability estimate is then found as

(11.13)

β y∗=

Pf FORM, Φ β–( )=
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where  denotes the standard normal CDF. 

It is noteworthy that, as a by-product of a FORM analysis, the following valuable

parameter importance measures (Hohenbichler and Rackwitz 1986; Liu et al. 1989;

Ditlevsen and Madsen 1996) are obtained:

(1) The �-vector:

(11.14)

� denotes the sensitivity of the reliability index with respect to the coordinates of the

DP in the standard normal space. The �-vector is a unit vector normal to the LSS at the

DP and pointing to the failure domain. The absolute values of the elements of � are

indicative of the relative importance of the corresponding random variables in the

standard normal space.

(2) The �-vector

(11.15)

where D is the diagonal matrix of the standard deviations  (i = 1, ..., n) of the origi-

nal variables in the physical space and  is the Jacobian matrix of the

probability transformation from the -space to the y-space. The �-vector is a normal-

ized (unit dimensionless) importance measure for the vector of the original random

variables and corresponds to the sensitivity of the reliability index with respect to the

coordinates of the DP in the physical space with components scaled multiplying each

Φ …( )
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of them by their correspondent standard deviation. It can be shown that for statistically

independent random variables .

(3) The �-vector

(11.16)

which is a dimensionless importance measure of the means of the random variables.

The �-vector denotes the sensitivity of the reliability coefficient with respect to the

means of the random variables in the physical space with components scaled multiply-

ing each of them by their correspondent standard deviation. Each component of the �-

vector equals 100 times the change in β due to a change in the corresponding mean of

1 per cent of the standard deviation.

(4) The �-vector

(11.17)

which is a normalized importance measure of the standard deviations of the random

variables. The �-vector denotes the sensitivity of the reliability coefficient with

respect to the standard deviations of the random variables in the physical space with

components scaled multiplying each of them by their correspondent standard devia-

tion. Each component of the �-vector equals 100 times the change in β due to 1 per

cent change in the corresponding standard deviation.

FORM analysis can be extremely efficient and provide a failure probability esti-

mate with a small computational effort practically independent of the magnitude of Pf. On

� �=

� β D⋅�∇ � y∗ D⋅�∇⋅= =

� β D⋅	∇ �
T y∗ D⋅	∇⋅= =
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the other hand, when the LSS is highly nonlinear especially near the DP, FORM analysis

can be quite inaccurate.

11.4   SECOND-ORDER RELIABILITY METHOD (SORM)

SORM analysis has been established as an attempt to improve the accuracy of

FORM and is obtained by approximating, in the standard normal space, the LSS at the DP

by a second-order surface. The SORM estimate of the failure probability, Pf,SORM, is

given as the probability content of the failure side of the second-order surface.

The first comprehensive study on SORM was performed by Fiessler et al. (1979),

in which a parabolic surface tangent to the LSS at the DP with the axis of the parabola

along the direction of the DP was obtained through second-order Taylor expansion and

curvature-fitting. A geometrically insightful and asymptotically exact result for parabolas

was derived by Breitung (1984) as

(11.18)

where  are the main curvatures, taken positive for a concave LSS, and n denotes the

number of random variables. These main curvatures are computed as the eigenvalues of

the following Hessian matrix A:

(11.19)

Pf SORM, Pf B,≅ Φ β–( )

1 κiβ–
j 1=

n 1–

∏

-------------------------------=

κi

A
Hred

G
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----------------------=



485
in which  is the reduced Hessian computed at the DP (with

respect to the rotated coordinates in the standard normal space), with i, j = 1, 2, ..., n-1, H

is the  Hessian matrix of the LSF at the DP (with respect to the original coordinates

in the standard normal space), R is a matrix of coordinate transformation so that the new

reference system has the n-th axis oriented as the DP vector y*, and  denotes the

Euclidean norm of the gradient of the LSF at the DP.

Another simple approximation of  has been proposed by Hohenbichler

and Rackwitz (1988) as

(11.20)

where  denote the standard normal PDF.

A more accurate three-term formula has been proposed by Tvedt (1983) and exact

results for a paraboloid were derived by Tvedt (1988) and have been extended to cover all

the quadratic forms of Gaussian variables (Tvedt 1990). Other extensions of SORM

include a point-fitted parabolic algorithm developed by Der Kiureghian et al. (1987,

1991), an importance sampling improvement introduced by Hohenbichler and Rackwitz

(1988), new approximations using McLaurin and Taylor series expansions (Koyluoglu

and Nielsen 1994; Cai and Elishakoff 1994), and new empirical approximations (Zhao and

Ono 1999a, b; Hong 1999).
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11.5   IMPORTANCE SAMPLING

Crude MCS can require a large number of samples to obtain sufficiently accurate

failure probability estimates, because it employes a sampling distribution centered at the

mean point, while failure events tend to occur in the tail regions of probability distribu-

tions. A large number of evaluations of the performance function may be computationally

costly or prohibitive and this inhibits the use of crude MCS in most FE reliability applica-

tions. The importance sampling (IS) method is based on the idea of centering the sampling

distribution near the failure domain in order to increase the efficiency of the sampling

scheme.

Introducing an indicator function I(y) as

(11.21)

Eq. (11.1) can be rewritten as (Ditlevsen and Madsen 1996)

(11.22)

where  denotes the entire standard normal space of dimension n, and  is a joint

PDF, called the sampling distribution, which must be non-zero within the region where

I(y) = 1. It is observed that the last integral in Eq. (11.22) is an expectation of the random

variable  relative to the distribution , which can be easily esti-

mated by generating statistically independent realizations of the random variable 

I y( ) 1      if    G y( ) 0≤
0 otherwise⎩

⎨
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Pf I y( )φ y( ) yd
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----------- f y( ) yd
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Q y( ) I y( )φ y( )
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derived from the distribution  and taking their average. Thus, an unbiased estimator

of Pf is given by

(11.23)

where  is the i-th realization of the random variable  and N is the number of sam-

ples.

For IS analysis to be efficient and accurate, the distribution  must be (1) easy

to evaluate, (2) non-zero within the region where I(y) = 1, and (3) centered near the failure

domain. This is often accomplished using for  a standard normal PDF centered at the

DP (Melchers 1989), i.e.,  where .

A measure of accuracy of the probability estimate is the variance of , which

can be estimated as

(11.24)

The coefficient of variation (cov) of the probability estimate can be computed as

(11.25)

Sampling can be repeated a user-defined number of times, Nmax, or until  falls

below a specified target cov.
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11.6   TIME-VARIANT RELIABILITY ANALYSIS

A classical approach to solving time-variant reliability problems makes use of esti-

mates of the mean out-crossing rate  to compute (1) an analytical upper bound to the

time-variant failure probability

(11.26)

and (2) the Poisson approximation of 

(11.27)

where  denotes the probability that the system is initially (at time t = 0) in

the failure domain. Thus, the problem reduces to computing the value of the mean out-

crossing rate at a discrete number of time instants and numerically estimate the integral

.

11.6.1   Out-crossing rate as a two-component parallel system reliability analysis

The mean out-crossing rate may be computed as the zero level down-crossing rate

of the scalar process G(y, t), using Rice’s formula (Rice 1944, 1945), as

(11.28)
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where  is the joint PDF of  and its time derivative  evalu-

ated at . This joint PDF is extremely difficult or practically impossible to

determine for a general nonlinear inelastic system, inhibiting the direct application of

Rice’s formula in FE structural reliability analysis.

Alternatively, the mean out-crossing rate can be computed from the limit formula

in Eq. (11.5) (Hagen and Tvedt. 1991), which can be rewritten in the standard normal

space as

(11.29)

where  and . The numerator is the probability that the

system is in the safe domain at time  and in the unsafe domain at time . A numeri-

cal approximation of the out-crossing rate can be obtained by considering a finite  (suf-

ficiently small to assure that at most one out-crossing event is possible), computing the

numerator of Eq. (11.29) and dividing it by . The evaluation of the numerator of Eq.

(11.29) corresponds to solving a time-invariant parallel system reliability problem of two

components with LSFs  and , respectively, at a specific time. For this purpose, a

FORM analysis (Ditlevsen and Madsen 1996) can be employed.

11.6.2    FORM approximation of mean out-crossing rate

The numerator in Eq. (11.29) can be computed linearizing the two LSSs 

and  at points  and  in the standard normal space and using a first-order
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approximation of the probability . The probability content in the

failure domain defined by the intersection of the two linearized LSSs is given by (Madsen

et al. 1986):

(11.30)

where  is the bi-variate normal joint CDF with zero means, unit variances

and with correlation coefficient ,  and  are the reliability indices of the two linear-

ized failure modes,  is the correlation coefficient between the two linearized

failure modes and  denotes the bi-variate normal joint PDF with zero means,

unit variances and correlation coefficient , i.e.,

(11.31)

A complete discussion on the choice of the two linearization points  and  for

the LSSs  and  can be found in Li and Der Kiureghian (1995) and Conte

and Vijalapura (1998). In general, the requirements in terms of precision in computing the

DPs for the two distinct LSSs for small  can be very strict. In addition, solving Eq.

(11.30) requires two DP searches and the solution of a numerically challenging integral,

thus resulting in a methodology very expensive computationally. In this work, the follow-

ing approximate solution of Eq. (11.30) (Koo et al. 2005) is employed 
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(11.32)

Eq. (11.32) relies on the fact that, for small ,  and . Complete

derivation of this approximate formula can be found in Koo (2003). In addition, if the

structural system is deterministic and thus the random parameters describe only the excita-

tion, an approximation  to the DP excitation at time t + , , can be obtained

through shifting by  the DP excitation at time t,  (i.e.,

, i = 1, ..., n, ). Therefore, the

computation of  can be performed with sufficient accuracy approximating the vector

 as

(11.33)

which requires finding only one DP (for the LSS ) and obtains the DP excitation

for the second LSS by shifting the DP excitation of the first LSS by the amount  (Koo et

al. 2005).

11.7   APPLICATION EXAMPLES

11.7.1   Time-invariant problem: quasi-static pushover of a R/C frame structure

The first application example consists of a two-story two-bay reinforced concrete

frame on rigid base, a model of which is shown in Fig. 11.1. This frame structure is mod-
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eled using displacement-based Euler-Bernoulli frame elements with distributed plasticity,

each with four Gauss-Legendre integration points along its length. Section stress result-

ants at the integration points are computed by discretizing the frame sections into layers

(i.e., the 2-D equivalent of fibers for the 3-D case). The constitutive behavior of the steel

reinforcement is modeled using Menegotto-Pinto constitutive model with kinematic hard-

ening (Menegotto and Pinto 1973; Barbato and Conte 2006). The concrete is modeled

using a smoothed Popovics-Saenz model with zero tension stiffening for the envelope

curve (Balan et al. 1997, 2001; Kwon and Spacone 2002, Zona et al. 2005). This model is

obtained from the model presented in (Zona et al. 2004) smoothing the unloading/reload-

ing branches with third-order polynomials to preserve the smoothness of the monotonic

envelope also in the cyclic behavior. Different material parameters are used for confined

(core) and unconfined (cover) concrete in the columns. Typical stress-strain cyclic

responses of the three material constitutive models used in this application example are

shown in Figs. 11.2 (for the confined and unconfined concrete materials) and 11.3 (for the

reinforcement steel). 

Thirteen material constitutive parameters are used to characterize the various

structural materials present in the structure, namely five parameters each for the confined

concrete ( : peak strength, : strain at peak strength, : residual strength

at a control point, : strain at which the residual strength is reached, Ec,core: initial

tangent stiffness) and the unconfined concrete ( , , , ,

Ec,cover) and three parameters for the reinforcement steel (fy: yield strength, E0: initial

stiffness, b: post-yield to initial stiffness ratio). These material parameters are modeled as

fc core, εc core, fcu core,

εcu core,

fc cover, εc cover, fcu cover, εcu cover,
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random fields spatially fully correlated, i.e., each material parameter is modeled with a

single random variable (RV). The marginal PDFs of these material parameters are given in

Table 11.1 and were obtained from studies reported in the literature based on real data

(Mirza and MacGregor 1979; Mirza et al. 1979). 

The statistical correlation coefficients between the various material parameters are

assumed as follows:

(1)  for (a)  and , (b)  and , (c)  and

, (d)  and , (e)  and , (f)  and

, (g)  and , (h)  and , (i)  and

; 

(2)  for (a)  and , (b)  and , (c)  and

; (d)  and ;

(3)  for all other pairs of parameters. 

These correlation coefficients are chosen based on engineering judgement, since to the

authors’ knowledge, precise values of correlation coefficients are not available in the liter-

ature.

After static application of the gravity loads (assumed as uniformly distributed load

per unit length of beam  at each floor, corresponding to a uniformly dis-

tributed load per unit area  assuming an inter-frame distance of L’ =

5.0m), the structure is subjected to a quasi-static pushover analysis, in which an upper tri-

ρ 0.7= fc core, fcu core, εc core, εcu core, εc cover,

εcu cover, fc core, fc cover, εc core, εc cover, εcu core,

εcu cover, Ec core, Ec cover, fc cover, fcu cover, fcu core,

fcu cover,

ρ 0.5= fcu core, fc cover, εc core, εcu cover, εcu core,

εc cover, fc core, fcu cover,

ρ 0.0=

Q 42.5kN m⁄=

q 8.5kN m2⁄=
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angular distribution of horizontal forces is applied at the floor levels (see Fig. 11.1). The

horizontal force applied at the roof level, P, is modeled as lognormal random variable with

mean  and cov = 20% (see Table 11.1), while the horizontal force applied at

the first floor level is considered fully correlated with P and with value P1 = P/2. FE

response, response sensitivity and reliability analyses are performed using the FE analysis

framework OpenSees (Mazzoni et al. 2005), in which three-dimensional frame elements

were augmented for response sensitivity analysis (Barbato et al. 2006) and the response

sensitivity algorithm for imposing multipoint constraints was implemented (Gu et al.

2007). 

A roof displacement ulim = 0.144m (corresponding to a roof drift ratio of 3.0% and

computed from the horizontal displacement of the top of the middle column) is considered

as failure condition. Thus, the LSF is given by g = 0.144m - uroof. The DP search is per-

formed with the origin of the standard normal space as starting point using both the

improved HL-RF algorithm and SNOPT. The two algorithms yield practically identical

results in terms of DP and importance measures at the DP (with the improved HL-RF

algorithm performing better than SNOPT in terms of CPU time for this specific case

study). The improved HL-RF algorithm requires 9 performance function evaluations and 5

gradient (response sensitivity) computations to find the DP. Fig. 11.4 plots the base shear -

horizontal floor displacement (recorded at the top two nodes of the middle column)

responses of the considered structural system subjected to quasi-static pushover analysis

at the mean point and at the DP of the random modeling parameters. The DP in physical

and standard normal spaces and parameter importance measures are provided in Table

μP 350kN=
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11.2. From the parameter importance measures computed at the DP, it is observed that the

dominant parameter is the value of the horizontal force applied at the roof level, P, fol-

lowed by the yield strength of the reinforcement steel, fy, and the peak strength of the

unconfined concrete, fc,cover, while the sensitivity of the reliability index to other parame-

ters is almost negligible. The first-order reliability index is  and the

FORM estimate of the failure probability is . Using an algorithm pro-

posed by Der Kiureghian and De Stefano (1991), the first principal curvature of the LSS at

the DP is obtained, which allows one to find a SORM approximation of the failure proba-

bility, , based on Breitung’s formula (Eq. (11.18)) considering only

the first principal curvature. Computing the Hessian matrix H by finite difference applied

to the “exact” gradient computed through DDM, all the 13 curvatures of the LSS at the DP

are computed (see Subsection 11.4) and the SORM approximation based on the complete

Breitung’s formula is obtained as . The SORM approximation based on

Eq. (11.20) (Hohenbichler and Rackwitz 1988) using all the computed curvatures gives

. An IS analysis is performed using as sampling distribution a joint stan-

dard normal PDF centered at the DP and cov[Pf,IS] = 0.05 as stopping criterion, yielding

 (1955 samples). Finally, a second IS analysis is performed using as

sampling distribution a joint standard normal PDF centered at the DP and cov[Pf,IS] = 0.01

as stopping criterion yielding  (40830 samples). Considering

 as reference solution, it is found that both FORM and SORM analyses provide

accurate estimates of the failure probability of the subject structural system subjected to

βFORM 2.048=

Pf FORM, 0.0203=

PSORM 1, 0.0210=

Pf B, 0.0223=

Pf HR, 0.0257=

Pf IS 0.05( ), 0.0266=

Pf IS 0.01( ), 0.0262=

Pf IS 0.01( ),
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the quasi-static pushover loads considered. The SORM approximation based on the com-

plete Breitung’s formula provides a more accurate result, but is computationally signifi-

cantly more expensive (more than twice) than SORM based on the first principal

curvature at the DP and FORM. The SORM approximation based on Eq. (11.20) is very

accurate (the most accurate among the semi-analytical approximations) at the same com-

putational cost of the SORM approximation based on the complete Breitung’s formula. IS

with cov[Pf,IS] = 0.05 is computationally very expensive. Failure probability estimates and

relative computational times (normalized to the computational time required by FORM)

are provided in Table 11.3 for all the reliability analyses performed.

11.7.2   Time-variant case: linear elastic SDOF and MDOF systems subjected to 

white noise excitation

The methodology presented in Section 11.6 for time-variant reliability analysis has

been tested on simple linear elastic SDOF and MDOF systems subjected to white noise

excitation from at rest initial conditions. The structural properties of the systems are con-

sidered as deterministic quantities. The input ground motion is modeled as a linearly inter-

polated Gaussian white noise discretized into random variables representing the ground

acceleration at instants of time separated by time interval . Mean up-crossing rates are

estimated numerically by FORM analysis using Koo’s approximation in Eq. (11.32) and

then compared with available closed-form solutions (Lutes and Sarkani 2004).

Fig. 11.5 compares analytical and numerical mean up-crossing rates for different

time discretization intervals  (i.e.,  = 0.010s, 0.005s and 0.001s, respectively) for a

Δt

Δt Δt
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linear elastic SDOF system representing an idealized a shear-type single-story steel frame

with height , bay length L = 6.00m and made of European HE340A steel col-

umns. The system is defined by the following parameters (taken as deterministic): mass

, damping ratio , and stiffness K = 40.56kN/mm, resulting in a

natural period of . The Gaussian white noise has PSD  and

the deterministic threshold defining exceedance of the limit-state is  (single-

barrier up-crossing problem). From Fig. 11.5, it is observed that the numerical estimates of

the mean up-crossing rate clearly converge to the exact mean up-crossing rate for decreas-

ing values of . In all the analyses, δt = 10-5s is employed.

The second benchmark example consists of a linear elastic model of a one-bay

three-story shear-frame with bay of length L = 6.00m and story height H = 3.20m. A

model of this structural system is described in Section 6.3.1 of Chapter 6. The fundamen-

tal period of this linear elastic undamped shear-frame is T1 = 0.38s. Natural frequencies,

natural periods and effective modal mass ratios for the undamped structure are given in

Table 6.1. Viscous damping in the form of Rayleigh damping is assumed with a damping

ratio  for the first and third modes of vibration. The Gaussian white noise

ground motion has PSD  and the LSF is defined as , with

deterministic threshold  for the horizontal roof displacement, uroof. Fig. 11.6

plots the DP excitation and DP relative displacement response for the single-barrier up-

crossing problem at time . Fig. 11.7 compares analytical and numerical mean up-

crossing rates for different white noise time discretization intervals  (i.e.,  = 0.020s

H 3.20m=

M 28800kg= ζ 0.02=

T0 0.17s= φ0 0.007m2 s3⁄=

ξ 0.016m=

Δt

ζ 0.02=

φ0 0.029m2 s3⁄= g ξ uroof–=

ξ 0.096m=

t 5.0s=

Δt Δt
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and 0.010s, respectively) obtained for the considered linear elastic 3-DOF system sub-

jected to white noise base excitation, from at rest initial conditions, and upcrossing the

deterministic threshold . Also in this case, the numerical estimates of the

mean up-crossing rate clearly converge to the exact mean up-crossing rate for decreasing

values of  and δt = 10-5s. The results presented in Figs. 11.5 and 11.7 show that the

mean up-crossing rates obtained using FORM analysis are in very good agreement with

the exact results when a sufficiently small time-interval, Δt, is used in discretizing the

white noise excitation process.

11.7.3   Time-variant case: nonlinear hysteretic SDOF system subjected to white 

noise excitation

To incorporate the effects of inelastic structural behavior in FE reliability analysis,

mean out-crossing rate computations are performed for a SDOF system with a force-

deformation relation modeled using the Menegotto-Pinto (MP) constitutive law. This con-

stitutive law is calibrated to a shear-type single-story steel frame with height H = 3.20m,

bay length L = 6.00m and made of European HE340A wide flange steel beams. The sys-

tem is defined by the following parameters (taken as deterministic): mass M = 28800 kg,

damping ratio , initial stiffness K = 40.56kN/mm, initial yield force Fy0 =

734kN and post-yield to initial stiffness ratio (i.e., strain hardening ratio) b = 0.05.

This SDOF system is subjected to two different input ground motions modeled as

Gaussian white noise processes with PSD  and ,

respectively. The expected cumulative number of up-crossing events (single-barrier prob-

ξ 0.096m=

Δt

ζ 0.02=

φ0 0.035m2 s3⁄= φ0 0.25m2 s3⁄=
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lem) and time-variant failure probability relative to the roof displacement exceeding the

threshold  (roof drift ratio = 0.5%) and  (roof drift ratio =

1.5%), respectively, are computed using FORM and MCS. Fig. 11.8 compares the esti-

mates of the expected cumulative number of up-crossing events obtained using FORM

and MCS (with one standard deviation interval as well) for the case 

and , in which the structure behaves quasi-linearly. Fig. 11.8 also compares

the time-variant failure probability estimates obtained through the FORM-based Poisson

approximation and MCS. Fig. 11.9 plots the shear force-roof drift response at the DP for

up-crossing at time t = 5.0s. Fig. 11.10 compares the same estimates as in Fig. 11.8, but for

the case  and , in which the structure yields significantly.

Fig. 11.11 shows the force-displacement response at the DP for up-crossing at time t =

5.0s. For quasi-linear structural behavior, the results in terms of expected cumulative num-

ber of up-crossings obtained using FORM are in good agreement with the MCS results. In

this case, the difference between the FORM-based Poisson approximation and MCS esti-

mate of the time-variant failure probability is mainly due to the relatively high value of Pf,

for which the Poisson assumption of statistically independent up-crossing events is not

very good. On the other hand, a FORM approximation of the LSS for significantly nonlin-

ear structural behavior provides a very inaccurate estimate of the expected cumulative

number of up-crossings and therefore of the time-variant failure probability. Thus, compu-

tationally efficient methodologies are needed to take into account the nonlinear nature of

the LSS for mean out-crossing rate computation in the case of significant inelastic struc-

tural behavior.

ξ 0.016m= ξ 0.048m=

φ0 0.035m2 s3⁄=

ξ 0.016m=

φ0 0.25m2 s3⁄= ξ 0.048m=
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11.8   CONCLUSIONS

In this Chapter, the state-of-the-art of finite element structural reliability analysis

using the concept of design point (DP) is presented. The search of the DP consists of solv-

ing a nonlinear constrained optimization problem for which DDM-based structural

response sensitivities are used. Existing methodologies (FORM, SORM, Importance Sam-

pling, time-variant reliability through mean out-crossing rate computation) are reviewed

and new improvements (some of which developed in this work) in terms of efficiency and

robustness are illustrated.

Examples of both time-invariant and time-variant FE reliability analysis applied to

linear elastic and nonlinear hysteretic models of structural systems are presented and the

corresponding results are discussed in terms of accuracy and computational efficiency. It

is found that the adopted methodologies can often provide results sufficiently accurate for

engineering purposes with a small computational effort (compared to MCS) practically

independent on the magnitude of the failure probability. On the other hand, these approxi-

mate techniques can produce inaccurate estimates of failure probabilities when the struc-

tural systems under study exhibit strong nonlinear inelastic behavior. New techniques are

needed to understand clearly the reasons for these inaccuracies and to improve the meth-

odologies currently employed.
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Table 11.1   Marginal PDFs of material parameters and horizontal loads
for the two-story R/C frame

RV [unit] Distribution Mean c.o.v [%]

fc,core [MPa] lognormal 34.47 20

fcu,core [MPa] lognormal 25.72 20

εc,core [-] lognormal 0.005 20

εcu,core [-] lognormal 0.020 20

Ec,core [MPa] lognormal 27850 20

fc,cover [MPa] lognormal 27.58 20

fcu,cover [MPa] lognormal 1.00 20

εc,cover [-] lognormal 0.002 20

εcu,cover [-] lognormal 0.012 20

Ec,cover [MPa] lognormal 24910 20

fy [MPa] lognormal 248.20 10.6

E0 [MPa] lognormal 210000 3.3

b [-] lognormal 0.02 20

P [kN] lognormal 350 20
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Table 11.2   Design point and importance measures from FORM analysis 
for quasi-static pushover of R/C frame structure

RV [unit] �* y* � � � �

fc,core [MPa] 31.82 -5.62e-2 -0.0275 -0.0387 0.0427 -0.0189

fcu,core [MPa] 24.13 -8.96e-3 -0.0044 0.0000 0.0000 0.0000

εc,core [-] 0.0049 1.23e-2 0.0060 0.0085 -0.0089 0.0017

εcu,core [-] 0.0195 0.00 0.0000 0.0000 0.0000 0.0000

Ec,core [MPa] 24160 -1.64e-2 -0.0080 -0.0113 0.0119 -0.0028

fc,cover [MPa] 25.10 -3.76e-1 -0.1836 -0.1509 0.1685 -0.0845

fcu,cover [MPa] 0.93 -9.68e-3 -0.0047 -0.0091 0.0100 -0.0042

εc,cover [-] 0.0019 -2.86e-2 -0.0139 -0.0056 0.0059 -0.0012

εcu,cover [-] 0.0167 -2.93e-2 -0.0143 -0.0204 0.0215 -0.0048

Ec,cover [MPa] 26970 -6.26e-2 -0.0306 -0.0228 0.0240 -0.0058

fy [MPa] 232.5 -5.67e-1 -0.2767 -0.2781 0.2970 -0.1849

E0 [MPa] 209700 -2.22e-2 -0.0109 -0.0109 -0.0109 -0.0006

b [-] 0.0195 -3.77e-2 -0.0184 -0.0185 0.0195 -0.0043

P [kN] 502.9 1.929 0.9419 0.9469 -0.6313 -1.5991
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Figure 11.1 Geometry, cross-sectional properties and applied horizontal loads for the
two-story R/C frame.

Table 11.3   Time-invariant reliability analysis results for the quasi-static pushover 
analysis of the R/C frame structure

Analysis Pf Relative CPU time

FORM 0.0203 1

SORM1 0.0210 1.02

SORMall,B 0.0223 2.26

SORMall,HR 0.0257 2.26

IS0.05 0.0266 53.83

IS0.01 0.0262 1103.51
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Figure 11.2 Material constitutive model for the reinforcement steel 
of the two-story R/C frame.

Figure 11.3 Material constitutive model for confined and unconfined concrete 
of the two-story R/C frame.
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Figure 11.4 Base shear - horizontal floor displacements of 
two-story R/C frame structure at the mean point and at the DP.

Figure 11.5 Mean up-crossing rate computation for linear elastic SDOF system.
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Figure 11.6 DP excitation and DP response of linear elastic 3-DOF system subjected to
white noise ground motion.

Figure 11.7 Mean up-crossing rate computation for linear elastic 3-DOF system.
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Figure 11.8 Estimates of the expected cumulative number of up-crossing events and
time-variant failure probability for the MP SDOF system relative to a drift
threshold .

Figure 11.9 Shear force - drift relation at the DP for the MP SDOF system relative to
the drift threshold  at time t = 5.0s.
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Figure 11.10 Estimates of the expected cumulative number of up-crossing events and
time-variant failure probability for the MP SDOF system relative to a drift
threshold .

Figure 11.11 Shear force - drift relation at the DP for the MP SDOF system relative to
the drift threshold  at time t = 5.0s.
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CHAPTER 12

MULTIDIMENSIONAL VISUALIZATION 
IN THE PRINCIPAL PLANES

12.1   INTRODUCTION

The geometric properties and interpretation of reliability and random vibration

problems are the object of great interest in structural reliability analysis. FORM and

SORM analysis are based on geometric approximations of the limit-state surface (LSS)

defining the reliability problem at hand (Der Kiureghian 2000). Knowledge of the topol-

ogy (in both the physical and standard normal spaces) of the LSSs corresponding to a

given reliability problem is extremely valuable in:

(1) gaining physical and geometrical insight into the structural reliability problem at hand; 

(2) understanding the reason behind possible difficulties encountered in the DP search; 

(3) developing more robust and efficient DP search algorithms exploiting the identified

physical/geometrical insight; 

(4) analyzing the inaccuracies of the FORM/SORM approximations for time-invariant

probability of failure and mean out-crossing rate computation; and 

(5) pointing to more efficient and accurate computational reliability methods for evaluat-

ing the probability content of failure domains typically encountered in structural reli-

ability analysis.
516
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Nevertheless, only a limited amount of research has been devoted to provide useful

insight into the geometric properties of nonlinear LSSs typically arising in FE reliability

analysis of nonlinear structural models subjected to random loading (Der Kiureghian

2000). This is probably due to the fact that the study of the topology of LSSs is a challeng-

ing task and requires visualization of nonlinear hyper-surfaces in high-dimensional spaces

(i.e., physical or standard normal space defined by random parameters representing load-

ing, geometric and material parameters). Indeed, only very limited tools (Haukaas and Der

Kiureghian 2004) are available to visualize LSSs and LSFs in two- or three dimensional

subspaces (defined by sets of two or three axes of the standard normal space in which the

reliability problem is cast) of high-dimensional spaces, commonly encountered in time-

invariant and time-variant FE reliability analysis. In this work, a new method is developed

for the visualization of LSSs in high-dimensional spaces for both time-invariant and time-

variant FE structural reliability analysis.

12.2   A NEW VISUALIZATION TECHNIQUE FOR LIMIT-STATE 

SURFACES IN HIGH-DIMENSIONAL SPACES: THE MULTI-

DIMENSIONAL VISUALIZATION IN THE PRINCIPAL 

PLANES (MVPP) METHOD

The broad interest on the topology of LSSs in structural reliability problems and

the lack of a general methodology for visualizing hyper-surfaces in high-dimensional

spaces (number of dimensions larger than 3) contribute to make LSS visualization a cru-

cial and interesting topic of research. In this work, a new methodology, herein referred to
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as Multidimensional Visualization in the Principal Planes (MVPP), is proposed for visual-

izing the shape of LSSs near their DP(s) in the context of FE reliability analysis.

The basic idea behind the MVPP method is to visualize the LSS in the neighbor-

hood of the DP(s) in subspaces (planes) of particular interest. In the proposed methodol-

ogy, these planes are defined as the planes of principal curvatures of the LSS at the DP(s),

referred to as Principal Planes (PPs). The MVPP requires finding the traces of the LSS in

the PPs in decreasing order of magnitude of the principal curvatures of these traces at the

DP(s). In the sequel, the MVPP method is introduced first for time-invariant reliability

problems and then is extended to time-variant reliability problems. The method has been

implemented in both the computational frameworks Opensees (Mazzoni et al. 2005) and

FedeasLab-FERUM (Filippou and Constantinides 2004; Haukaas 2001).

12.2.1   MVPP for time-invariant reliability problems

The MVPP method is based on several analysis components which can be devel-

oped and implemented independently. This independence among the different components

is an extremely useful property of the method, since it allows its straightforward imple-

mentation in an object-oriented computational platform such as OpenSees. In the case of

time-invariant reliability analysis, the MVPP method consists of the following major

steps: (1) search of the DP(s), (2) change of reference system, (3), determination of the

PPs of interest, and (4) visualization of the traces of the LSS in these PPs.
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12.2.1.1   Search of the DP(s) 

This step consist of solving a nonlinear constrained optimization problem using

gradient-based optimization algorithms, as described in Subsection 11.2 of Chapter 11. If

more than one DP is found, the subsequent steps can be applied to each of the DPs

retained.

12.2.1.2   Change of reference system 

A new reference system in the standard normal space is defined so that the n-th

axis (with n = number of random variables) is oriented in the direction defined by the DP

vector y* and the new origin coincides with the DP. A generic vector  in the new refer-

ence system is obtained as

(12.1)

where the rotation matrix R is defined so that

(12.2)

in which β = distance from the origin of the DP (i.e., FORM reliability index). The rota-

tion matrix R can be computed using any suitable QR decomposition algorithm, e.g., clas-

sical Gram-Schmidt orthonormalization, modified Gram-Schmidt orthonormalization,

Householder reflections algorithm, Givens rotations algorithm (Stoer and Bulirsch 2002).

y'

y' R y y∗–( )⋅=

R y∗⋅ 0 … 0  β[ ]T=
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12.2.1.3   Definition of the PPs of interest. 

Each PP is defined by the DP vector y* and one of the eigenvectors (Principal

Direction: PD) of the (normalized and reduced) Hessian matrix A (see Chapter 11, Section

11.4):

(12.3)

in which  is the reduced Hessian computed at the DP in the 

space, with i, j = 1, 2, ..., n-1, H is the  Hessian matrix of the LSF at the DP in the

standard normal space, and  denotes the Euclidean norm of the gradient of the

LSF at the DP. Herein, the LSF is assumed to be twice differentiable, to ensure existence

of the Hessian matrix at the DP. As shown in Chapter 6, the above assumption is satisfied

when the constitutive material models are differentiable with respect to the sensitivity

parameters, the loading is piecewise continuous and (for reliability problems based on

dynamic FE analysis) the time-step used to integrate the equations of motion of the system

is sufficiently small.

The PDs are sorted in decreasing order of magnitude (absolute value) of the corre-

sponding eigenvalues (referred to as Principal Eigenvalues: PEs). A limited number of

PDs is computed (using any algorithm for finding the eigenvalues/eigenvectors of a real-

valued symmetric square matrix) together with the corresponding PPs in which the topo-

logical properties of the LSS are of interest. 

A
Hred

G
y∗y∇

----------------------=

Hred[ ]ij R H R⋅ ⋅[ ]ij= y'

n n×

G
y∗y∇
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In this study, the Hessian matrix H in the standard normal space is obtained by for-

ward finite difference (FFD) calculations applied to the DDM-based response sensitivi-

ties. This computation can be carried out in two different ways: (1) computing the Hessian

matrix H� in the physical space and then transforming it to the Hessian matrix in the stan-

dard normal space, or (2) using finite difference calculations in the standard normal space

and obtaining directly H.

The second procedure is less prone to numerical difficulties and inaccuracies and

is adopted herein. After fixing a perturbation value, Δy, for the standard normal random

variables (e.g., ), the i-th row of the Hessian matrix is approximated as

(12.4)

where ei denotes the i-th axis unit vector, i.e., a column vector with all zero components

except the i-th one which is equal to 1. The row vector  is obtained by: (1)

finding the perturbation vector , (2) computing the perturbed gradi-

ent  in the physical space, and (3) transforming the obtained perturbed gra-

dient back to the standard normal space, i.e., . To

simplify the calculations, the quantity  is approximated with its value computed at the

DP.

Using the DDM to compute the exact gradients in the physical space, the FFD

method presented above is more efficient and more accurate than computing the Hessian

Δy 10 3– 10 5–÷=

Hi
1

Δy
------- G

y∗ Δy ei⋅+
G

y∗y∇–y∇[ ]≈

G
y∗ Δy ei⋅+y∇

Δ�
i( )

� Δy ei⋅⋅y∇=

g
�∗ Δ�

i( )+�∇

G
y∗ Δy ei⋅+y∇ g

�∗ Δ�
i( )+�∇ �y∇⋅=

�y∇
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matrix H by central finite difference applied directly to the LSF. Nevertheless, for detailed

FE models of realistic structural systems characterized by a large number of uncertain

model parameters, this approach for computing the Hessian matrix, which is then used to

compute the major eigenvalues/eigenvectors, could still be computationally prohibitive.

Methods are under study for obtaining computationally affordable approximations of the

Hessian matrix able to produce sufficiently accurate major eigenvalues/eigenvectors. In

addition, the use of an existing algorithm (Der Kiureghian and De Stefano 1991) for com-

puting eigenvalues (and corresponding eigenvectors) in order of decreasing magnitude

without having to compute the Hessian matrix is also being considered.

12.2.1.4   Visualization of the traces of the LSS in the PPs

The visualization can be performed following two methods: (1) simulating the val-

ues of the LSF over a grid of points in the PP and obtaining the trace of the LSS in this PP

as zero level curve of the obtained surface; (2) employing a standard zero-finding algo-

rithm (for scalar functions of a single variable) to obtain the zero of the LSF along direc-

tions parallel to the DP direction and contained in the PP. The starting points for the zero-

finding algorithm can be taken on the axis of the PP orthogonal to the DP direction (i.e.,

along the PD defining the PP). This second technique is, in general, more efficient than the

first one if a robust and efficient zero-finding algorithm (e.g., safe-guarded secant or New-

ton’s method, see Gill et al. 1981) is employed.

The visualization is obtained by computing directly LSF values only in the (small

number of) PPs corresponding to large absolute values of the principal curvatures. In the
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subspace not spanned by the considered PPs, the LSS can be approximated as a (reduced

dimension) hyper-plane tangent to the LSS at the DP. The traces of this approximation of

the LSS in any other plane of this subspace coincide with the axis orthogonal to the DP

direction. The MVPP methodology provides important information on the topology of the

LSS at the DP(s), identifying a small number of dimensions which are of interest and thus

requiring a limited number of FE simulations to visualize the LSS.

12.2.2   MVPP for time-variant reliability problems

In the case of time-variant reliability problems, focus is on the visualization of the

two LSS  (at time t) and  (at time t + δt) and the domain between these

two hyper-surfaces. Indeed, the probability content of this domain is the numerator of the

limit relation to compute the mean out-crossing rate (Hagen and Tvedt 1991, see Chapter

11, Subsection 11.6.1). The MVPP method can be extended to time-variant reliability

problems simply by adding the visualization of the perturbed LSS  as part of the

fourth step of the methodology. 

If the trace of the LSS  is obtained by simulating the LSF over a grid of

points, the trace of the LSS  can be obtained efficiently by using the approxima-

tion 

(12.5)

where r is a vector of response quantities used to formulate the LSF (see Chapter 11, Sub-

section 11.2). This approximation allows to find the trace of  in the PPs of interest

G1 0= G2 0=

G2 0=

G1 0=

G2 0=

G2 G y t δt+,( ) G y t,( ) G∂
t∂

-------δt+≈ g � t,( ) g r∂
t∂

-----δt⋅r∇+= =

G2 0=
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without any additional FE response simulations. If the trace of the LSS  in a PP is

obtained from a zero-finding algorithm, an efficient way to obtain the trace of the LSS

 in the same PP consists of is using as starting point of the zero-finding algorithm

the corresponding zero point of the LSS  in each of the search directions parallel

to the DP vector y*.

12.3   APPLICATION EXAMPLES

The application examples considered in Chapter 11 are revisited here in order to

illustrate the MVPP method, its typical results and its capabilities in terms of providing

insight into the topology of the LSS at the DP(s). In addition, the MVPP method can sug-

gest ways to develop new structural reliability analysis methods to improve FORM,

SORM and mean out-crossing rate computation using FORM approximation. A new

hybrid reliability method, suggested by visualization results obtained through the MVPP

method, will be presented and illustrated in next chapter.

12.3.1   Time-invariant case: quasi-static pushover of a R/C frame structure

The first application example consists of a time-invariant reliability analysis per-

formed on a 2-bay 2-story R/C frame structure subjected to quasi-static pushover (see

Chapter 11, Subsection 11.7.1). The MVPP method is applied to this problem taking full

advantage of the results obtained from the previously performed reliability analysis.

The four steps required by the MVPP method are:

(1) Search of the DP(s) (already performed in FORM and SORM analyses).

G1 0=

G2 0=

G1 0=
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(2) Change of reference system (already performed in SORM analysis).

(3) Determination of the PPs of interest. The PDs and corresponding PEs of the LSS at the

DP are already computed for SORM (curvature fitting) analysis. The results in terms

of principal curvatures and corresponding radii of curvature are given in Table 12.1.

The only remaining task is deciding in which PPs the LSS needs to be visualized. A

useful criterion is to fix a minimum value for the quantity  (i = 1, ..., n-1, with n =

number of random variables) below which visualization in the corresponding PP is not

needed. This criterion is often used in SORM analysis (Der Kiureghian and De Ste-

fano 1991) in order to decide which corrections to apply when using Breitung’s For-

mula (Breitung 1984). Here, this minimum value is taken as .

Therefore, in this particular example, the LSS is visualized in the first three PPs.

(4) Visualization of the trace of the LSS in the PPs. The trace of the LSS in each of the PPs

is obtained as zero level curve of the surface obtained by simulating the value of the

LSF over a grid of points in the considered PP. Given the coordinates of a grid point in

the PP, they are transformed to the original standard normal space coordinates and then

to the physical space coordinates. With these values of the random parameters in the

physical space, a FE analysis is performed to obtain the value of the performance func-

tion. In the current example, for each of the three PPs considered, the employed grid

extends from -0.2 to +0.2 in the direction of the DP vector y* and from -1.0 to +1.0 in

the PD. The LSF is evaluated at 41 grid points in each direction of the PP, for a total of

 additional FE analyses. The visualization obtained with

βκi

βκi( )min 0.02=

nFE 3 412 1–( )⋅ 5040= =
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this procedure is computationally very expensive, but can be regarded as reference

solution for testing more efficient visualization methods and approximation proce-

dures for reliability analysis, which will be presented in next chapter.

Figs. 12.1, 12.3 and 12.5 show the LSS traces in the first, second and third PP,

respectively, together with FORM and SORM approximations, contour lines of the LSF in

the PP and the domain in which the FE analyses do not converge (in short, non-conver-

gence domain, i.e., the domain in which the performance function is not defined). The

trace of the actual LSS in each of the 3 major PPs is very close to the traces of both the

first- and second-order approximations of the LSS in this PP. Figs. 12.2, 12.4 and 12.6

provide zoom views of Figs. 12.1, 12.3 and 12.5, respectively, in the range

 and  (with x = coordinate in the PD and y = coor-

dinate in the DP direction), in which the differences between actual LSS traces and FORM

and SORM approximations can be better appreciated. Notice that the SORM approxima-

tion of the LSS is obtained as the paraboloid tangent to the LSS at the DP with principal

curvatures  (i =1, ..., n). Thus, the trace of the SIRM approximation to the LSS in the i-

th major PP is given by

 (12.6)

where i = number denoting the order of the PP. The non-convergence domain is contained

completely in the failure domain, which is not necessarily the case for very high limit-state

thresholds. The visualization of the LSS using the MVPP method explains the good agree-

x 1.0– 1.0,[ ]∈ y  0.0225 0.0025,–[ ]∈

κi

y 1
2
---κix

2=
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ment between FORM, SORM and IS results obtained for this problem (see Chapter 11,

Subsection 11.7.1).

12.3.2   Time-variant case: linear elastic SDOF system subjected to white noise 

excitation

The MVPP method is also tested with a time-variant reliability problem involving

a linear elastic SDOF system subjected to Gaussian white noise excitation. The example is

taken as the first application example in Chapter 11, Subsection 11.7.2. In this case, in the-

ory the Hessian matrix is a zero matrix, but due to numerical noise and finite precision

arithmetic, it is not exactly a zero matrix and has non-zero eigenvalues (very small in

amplitude). The MVPP method requires: (1) computing a user-defined number of princi-

pal eigenvectors and eigenvalues (in general, much smaller than the number of random

variables n), (2) sorting them in the order of decreasing absolute value of the eigenvalue,

(3) finding the LSS trace using FE analysis in the PPs for which , where

 = user-defined threshold, and (4) visualizing the LSS linearization in the

remaining PPs. Here, a closed-form equation (see Appendix) is derived for the trace (in

the PPs) of the linearization of the LSS . 

Fig. 12.7 shows the traces of the two LSSs at time t = 1.0s and ,

respectively, obtained through FE analysis (setting  to capture the

first PE), together with other contour lines of the LSF in the first PP. Fig. 12.7 also pro-

vides the trace of the LSS at time  obtained using the closed-form equa-

βκi βκi( )min≥

βκi( )min

G2 0=

t δt+ 1.005s=

βκi( )min 2 10 16–⋅=

t δt+ 1.005s=
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tion for the linearization of the LSS. In this closed-form equation, the DP for the perturbed

LSS  is obtained through shifting by  the DP excitation at time t (see Chapter

11, Subsection 11.6.2). The LSS traces obtained by FE analysis and the closed-form equa-

tion practically coincide.

12.3.3   Time-variant case: nonlinear hysteretic SDOF system subjected to white 

noise excitation

As third application example, the MVPP method is applied to the time-variant reli-

ability analysis of a nonlinear hysteretic SDOF system subjected to Gaussian white noise

excitation (see Chapter 11, Subsection 11.7.3). In this case, Poisson approximation based

on mean up-crossing rates computed by FORM approximation (in short, FORM-based

Poisson approximation) provides very inaccurate results compared to MCS (see Fig.

11.10). The FORM-based Poisson approximation suffers from two sources of error: (1)

violation of the hypothesis of independence of out-crossing events, which is at the basis of

the Poisson approximation, and (2) FORM approximation of nonlinear LSSs in computing

the mean out-crossing rate at a given instant of time. It is also observed that, in this case,

the inaccuracy of the FORM-based Poisson approximation is due principally to the FORM

approximation, which suggests a pronounced nonlinearity of the LSSs at their DP. In this

Subsection, the MVPP method is used to investigate the topology of these LSSs and verify

the source of inaccuracy in the FORM-based Poisson approximation.

Fig. 12.8 plots the DP excitations at time t = 1.0s and t + δt = 1.005s, respectively.

The second DP excitation is obtained through shifting the first one along the time axis by

G2 0= δt
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δt = 0.005s. These DP excitations are characterized by low values of the ground accelera-

tion for most of the time-history and very high values concentrated at the end of the exci-

tation time-history. In terms of DP response, the SDOF system behaves almost linearly at

the exception of the last part of the response time-history, in which the nonlinear hysteretic

behavior is concentrated. This behavior has been recognized as typical for structural sys-

tems modeled using the Menegotto-Pinto constitutive model (Barbato et al. 2006; Conte

et. al. 2007). 

Table 12.2 provides the first 10 principal curvatures and corresponding radii of

curvature for the considered problem at time t = 1.0s. It is observed that: (1) the first three

curvatures are very large; (2) the absolute value of the principal curvatures decreases very

fast; (3) even if the number of random variables for this problem is quite large (n = 100),

only a few PPs are needed to visualize the nonlinear behavior of the LSS in the neighbor-

hood of the DP. In this specific case, setting , the MVPP requires to visu-

alize the LSS using FE analysis in only three PPs. Fig. 12.9 shows the first three

normalized PDs, which can be interpreted as the shape of the loadings that, superposed to

the DP excitation, produce the largest curvatures in the LSS in the neighborhood of the

DP.

Figs. 12.10 through 12.12 show the MVPP-based visualization in the first three

PPs of the two LSSs involved in the computation of the mean up-crossing rate at time t =

1.0s. From these figures, it is observed that:

βκi( )min 0.05=
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(1) The differences between the trace of the actual LSS at time t = 1.0s and the traces of

FORM and SORM approximations to the LSS are very pronounced, with FORM

defining a much larger and SORM a much smaller failure domain than the actual one.

(2) The FORM approximation of the failure domain for mean up-crossing rate computa-

tion is poor, particularly in the first and second PPs.

The MVPP results, presented in Figs. 12.10 through 12.12 for this specific applica-

tion example, confirm that the inaccuracy of FORM-based mean up-crossing rate compu-

tation is strictly connected with the significant difference in shape of the actual LSSs

(strongly nonlinear) with their linearizations used in FORM analysis.

12.4   CONCLUSIONS

This Chapter introduces a new visualization technique for LSSs near their DP(s) in

high-dimensional spaces: the Multidimensional Visualization in the Principal Planes

(MVPP). The MVPP method consists of visualizing a LSS in the neighborhood of a DP in

subspaces (planes) of particular interest. These planes are defined as the planes of princi-

pal curvatures of the LSS at the DP and are referred to as Principal Planes (PPs). The

MVPP requires finding the trace of the LSS in the PPs in decreasing order of magnitude of

the principal curvatures. 

The MVPP methodology provides important information about the topology of the

LSS, identifying a small number of dimensions which are of interest and thus requiring a

limited number of FE analyses to effectively visualize the LSS. The newly gained insight

into the geometric properties of the reliability problem at hand can be used to develop
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more efficient and accurate computational reliability methods for evaluating the probabil-

ity content of failure domains typically encountered in FE structural reliability analysis.
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APPENDIX: TRACE OF THE FORM APPROXIMATION OF THE 

PERTURBED LSS G2 = 0 IN A GIVEN PP

The hyper-plane tangent to the LSS  at the DP at time , , can be

written in the original standard normal space as

(12.7)

where 

(12.8)

Thus, Eq. (12.7) can be rewritten as

(12.9)

Introducing the new reference system defined in Subsection 12.3.1 through Eqs. (12.1)

and (12.2), and noticing that matrix R is a rotation matrix with the following property

(12.10)

in which In denotes the (n x n) unit matrix, the left-end-side of Eq. (12.9) can be manipu-

lated as follows

(12.11)

where , in which  denotes the DP of the LSS  at time t.
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G2y∇
y2∗

y y2∗–( )⋅ 0=

G2y∇
y2∗

 
G2y∇

y2∗

y2∗
-------------------------- y2∗( )

T–=

y2∗( )
T y y2∗–( )⋅ 0=

RTR RRT In= =

y2∗( )
T y y2∗–( )⋅ y2∗( )

T RTR( ) y y2∗–( ) y2∗( )
TRT[ ] R y y2∗–( )[ ]= =

R y⋅ 2∗( )
T R y y∗–( ) R y2∗ y∗–( )–[ ] y2' R y⋅ ∗+( )

T y' y2'–( )==

y2' R y2∗ y∗–( )= y∗ G1 0=



533
If the PD (i.e., the normalized principal eigenvector in the original standard normal

space) defining the PP of interest is denoted as , its expression in the transformed ref-

erence system is . Notice that the n-th component of  is equal to zero,

i.e., , since, by the definition of a PD,  must be orthogonal to the DP

direction . A new rotation matrix, , can be defined so that

(12.12)

(12.13)

and

(12.14)

A rotation matrix  satisfying Eqs. (12.12) through (12.14) can be obtained by Gram-

Schmidt orthonormalization of a (n x n) matrix having the vector  as (n-1)-th

row, 1’s on the main diagonal (with the exception of the (n-1)-th position) and 0’s else-

where. The rotation matrix  identifies a new coordinate reference system with origin

centered in the DP, with the n-th axis oriented as the DP direction and (n-1)-th axis ori-

ented as the PD considered. The corresponding transformation is given by

(12.15)

Substituting Eq. (12.11) into Eq. (12.9) and using Eqs. (12.12) through (12.15) yields

(12.16)

yPD

yPD' R yPD⋅= yPD'

yPD'( )n 0= yPD

y∗ R2

R2 y⋅ PD' 0  ...  0  1  0[ ]T=
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A vector  belonging to the considered PP has the first (n-2) components equal to

zero, thus the trace of the hyper-plane defined by Eq. (12.16) in the PP can be expressed as

(12.17)

Introducing the notation  and , Eq. (12.17) becomes

(12.18)

Finally, the required trace of the hyper-plane tangent to the LSS at the DP at time t + δt in

the PP is the line defined by the following equation

(12.19)

where

(12.20)
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Table 12.1   Principal curvatures and radii of curvature for MVPP method applied to the 
time-invariant reliability analysis of a R/C frame structure subjected to quasi-static 

pushover

PD
Curvature Radius of curvature

1 -0.0412 -24.25 -0.0845

2  -0.0224 -44.68  -0.0459

3  -0.0137 -73.21  -0.0280

4  -0.0067 -150.2  -0.0136

5  -0.0035 -282.1  -0.0073

6  -0.0021 -480.6  -0.0043

7  0.0013 768.9  0.0027

8  -0.0010 -1002  -0.0020

9  -0.0008 -1188  -0.0017

10  0.0008 1220  0.0017

11  -0.0006 -1709  -0.0012

12  1.6e-007 6.3e+006  3.3e-007

13  -7.1e-010 -1.4e+009  -1.5e-009

κi 1 κi⁄ βκi
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Table 12.2   First 10 principal curvatures and radii of curvature for MVPP method applied 
to the time-variant reliability analysis of a nonlinear hysteretic SDOF system subjected to 

white noise excitation (t = 1.0s, , )

PD
Curvature Radius of curvature

1 4.5498 0.22 15.692

2  0.8714 1.15  3.006

3  0.2205 4.54 0.760

4  0.0120 83.11 0.0415

5  -0.0093 -107.1  -0.032

6  -0.0014 -717.2 -0.005

7  -0.0009 -1130  -0.003

8  -0.0003 -2912 -0.001

9  0.0001  9384  3.7e-004

10  -7.5e-005  -13413  -2.6e-004

ξ 0.048m= φ0 0.25m2 s3⁄=

κi 1 κi⁄ βκi
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Figure 12.1 MVPP for time-invariant reliability analysis of a R/C frame structure sub-
jected to quasi-static pushover: first PP.

Figure 12.2 MVPP for time-invariant reliability analysis of a R/C frame structure sub-
jected to quasi-static pushover: first PP (zoom view).

−1 −0.5 0 0.5 1
−0.5

0

0.5

−0.03−0.02 −0.01
0.01

0.02
0.03

 

 

Non−conv.
LSS trace
FORM
SORM
DP

First Principal Direction

D
es

ig
n 

Po
in

t D
ire

ct
io

n

−1 −0.5 0 0.5 1

−0.02

−0.015

−0.01

−0.005

0

 

 

LSS trace
FORM
SORM

First Principal Direction

D
es

ig
n 

Po
in

t D
ire

ct
io

n



538
Figure 12.3 MVPP for time-invariant reliability analysis of a R/C frame structure sub-
jected to quasi-static pushover: second PP.

Figure 12.4 MVPP for time-invariant reliability analysis of a R/C frame structure sub-
jected to quasi-static pushover: second PP (zoom view).
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Figure 12.5 MVPP for time-invariant reliability analysis of a R/C frame structure sub-
jected to quasi-static pushover: third PP.

Figure 12.6 MVPP for time-invariant reliability analysis of a R/C frame structure sub-
jected to quasi-static pushover: third PP (zoom view).
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Figure 12.7 MVPP for time-variant reliability analysis of a linear elastic SDOF sub-
jected to white noise excitation: first Principal Plane.
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Figure 12.8 Design point excitations at time  and for time-
variant reliability analysis of a nonlinear hysteretic SDOF system subjected
to white noise excitation ( , ).

Figure 12.9 Normalized principal eigenvectors for time-variant reliability analysis of a
nonlinear hysteretic SDOF system subjected to white noise excitation
( , , ).
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Figure 12.10 MVPP for time-variant reliability analysis of a nonlinear hysteretic SDOF
system subjected to white noise excitation ( , ,

, ): first Principal Plane.
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Figure 12.11 MVPP for time-variant reliability analysis of a nonlinear hysteretic SDOF
system subjected to white noise excitation ( , ,

, ): second Principal Plane.
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Figure 12.12 MVPP for time-variant reliability analysis of a nonlinear hysteretic SDOF
system subjected to white noise excitation ( , ,

, ): third Principal Plane.
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CHAPTER 13

DESIGN POINT - RESPONSE SURFACE - 
SIMULATION (DP-RS-SIM) HYBRID 

RELIABILITY METHOD

13.1   INTRODUCTION

Classical reliability methods such as FORM and SORM have been real break-

throughs toward feasible and reliable methods for integrating probabilistic information

and uncertainty analysis into advanced design methods and modern design codes. These

methods have been widely used with success in solving challenging reliability problems.

Nevertheless, caution should be used in their applications since limits and shortcomings in

terms of accuracy are known and documented, e.g., (1) existence of multiple DPs (Der

Kiureghian and Dakessian 1998; Au et al. 1999), (2) nonlinearity of the LSS due to non-

gaussianess of the input process for random vibration problems (Der Kiureghian 2000),

(3) nonlinearity of the LSS due to nonlinearity in the system response (see Chapter 11,

Subsection 11.7.3, where an example is presented on time-variant reliability analysis of a

structural system exhibiting a strongly nonlinear behavior).

As already seen in Chapter 11, alternative methods, which are not directly based

on the concept of DP, have been the object of vast research. Among these methods, atten-

tion is focused on Response Surface (RS) methods in this chapter.
546
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The RS method consists of a collection of statistical methods to substitute an

unknown function g(�) of some variables � with an analytical one, , obtained using

a limited number of known values of g(�) and referred to as RS. The problem of the deter-

mination of  consists essentially of three steps:

(1) Choice of an appropriate analytical form for the RS, i.e., definition of the parameters p

necessary to determine a sufficiently accurate analytical function 

representing the major sources of variability/uncertainty in g(�). Generally, in this

step, a reduction of the variables to be accounted for explicitly in the RS is performed.

(2) Design of an appropriate experiment, i.e., definition of the most appropriate location

in the space of the variables � for the points (called experimental points) at which

g(�) needs to be evaluated. This step is known in the literature as “experimental

design” (Khuri and Cornell 1996) and requires two substeps: (a) finding the so-called

“center point”, and (b) defining the best location of experimental points around the

center point to estimate accurately the parameters p. 

(3) Estimation of the undetermined parameters p of  using known values of g(�)

at the experimental points and statistical/regression analysis tools.

Once a satisfactory procedure is defined to determine , the reliability analysis

can be subsequently carried out using FORM/SORM or Monte Carlo simulation with vari-

ance reduction techniques. It is noteworthy that, in the initial stages of the development of

the RS methodology (Wong 1984, 1985; Faravelli 1989, 1992; Bucher and Bourgund

1990; Rajashekhar and Ellingwood 1993; Breitung and Faravelli 1996; Yao and Wen

g̃ �( )

g̃ �( )

g̃ �( ) g̃ � p,( )=

g̃ � p,( )

g̃ �( )
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1996; Zhao et al. 1999; Huh and Haldar 2002), the objective of its application in structural

reliability was to avoid carrying out a DP search based on FE response and response sensi-

tivity analysis, viewed as too complex and computationally expensive. Large amount of

research has been devoted to finding a center point as close as possible to the DP (Bucher

and Bourgund 1990; Rajashekhar and Ellingwood 1993; Breitung and Faravelli 1996; Huh

and Haldar 2002). As shown in Chapters 2 through 6, FE response sensitivity analysis

underwent significant developments in the last decade and is still a very active field of

research, overcoming in large part the difficulties encountered in its application to reliabil-

ity analysis. 

Current research trends highlight the importance of structural reliability analysis

methodologies able to provide improved estimates of the failure probability without an

excessive increase in computational cost when compared with ordinary FORM/SORM

analyses. In this work, a new hybrid reliability analysis method, combining the DP search

techniques used in FORM/SORM analyses with the RS method and based on the insight

gained from the MVPP method (see Chapter 12) is developed, described and illustrated

through several application examples.

13.2   A NEW RELIABILITY METHOD: THE DESIGN POINT - 

RESPONSE SURFACE - SIMULATION (DP-RS-SIM) METHOD

Information about the topology of the LSS(s) near the DP(s) can be used effec-

tively in order to improve on the FORM approximation accounting for nonlinearities in

the LSF. The development of a new hybrid reliability method, referred to as Design Point-
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Response Surface-Simulation (DP-RS-Sim) method, is presented in this chapter. This

method has been suggested by the insight on the topology of typical LSSs gained by using

the MVPP method, which indicates that the inaccuracy in FORM/SORM approximations

of nonlinear LSS(s) can be the major source of error in estimating time-invariant and time-

variant failure probabilities for structural systems exhibiting nonlinear behavior.

The DP-RS-Sim method combines: (1) the concept of DP (basis of FORM and

SORM), (2) the RS method to approximate in analytical (polynomial) form the LSF near

the DP, and (3) a simulation technique (Sim) to be applied on the RS representation of the

actual LSF. The innovative integration of these three methods together with the insight

gained through the MVPP method provides several beneficial properties:

(1) The DP is an optimal center point for generating a RS approximation of a LSS. This

fact is well known and documented in the literature (Yao and Wen 1996; Carley et al.

2004) and, therefore, several approximate methods have been proposed to find a suit-

able center point as close as possible to the DP (Bucher and Bourgund 1990; Rajashek-

har and Ellingwood 1993; Liu and Moses 1994; Breitung and Faravelli 1996; Yao and

Wen 1996; Zhao et al. 1999). In the work of Huh and Haldar (2002), the use of the DP

obtained through FORM analysis is directly employed.

(2) In general, the application of the RS method is limited to problems defined in terms of

a small number of variables (5-7 at most), due to the fact that the number of samples

required to define the RS approximation increases exponentially with the number of

dimensions (or basic random variables). Several techniques have been proposed to

decrease the total number of parameters to be explicitly considered in the definition of



550
the RS approximation, neglecting some parameters or lumping parameters in groups

(e.g., Schotanus 2002). The proposed method does not require to eliminate parameters

at the modeling stage but, based on the decomposition in linear and nonlinear parts of

the LSF at the DP suggested by the MVPP method, is able to capture the nonlinearities

in the LSF by using a relatively small number of transformed parameters. 

(3) Simulation techniques are very general and able to take into account the existence of

multiple DPs and multiple failure modes (system reliability) without additional

approximations. On the other hand, when sampling requires a FE analysis of a large

nonlinear model of a complex real-world structural system, the computational cost of

sample generation repeated a large number of times can be unfeasible and inhibit the

use of simulation techniques in FE reliability analysis. The capability of accounting

for multiple DPs and multiple failure modes is retained by the proposed method, while

the relative computational cost of a single simulation is reduced dramatically and con-

sists of a simple polynomial evaluation, making possible the generation of millions of

samples in few seconds on a regular personal computer.

Since the proposed method is base on simulation techniques for estimating the fail-

ure probability, it is, in principle and with only minor variations, suitable for both compo-

nent and system time-invariant reliability problems and for component mean out-crossing

rate computations.

13.2.1   DP-RS-Sim method for time-invariant component reliability problems

The main steps of the DP-RS-Sim method for time-invariant component reliability

analysis involving a LSS with a single DP are:
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(1) DP search (step common to FORM, SORM and MVPP method).

(2) Change of the reference system (step common to SORM and MVPP method)

(3) Determination of the principal directions (PDs) of interest (step common to SORM

with curvature fitting and MVPP method).

(4) Decomposition of the LSF in a linear and a nonlinear part.

(5) RS approximation of the nonlinear part of the LSF.

(6) Computation of Pf through simulation.

Steps 1 through 3 have already been explained and described in detail (see Chapter 11,

Subsection 11.2, for the DP search and Chapter 12, Subsection 12.2, for the change of ref-

erence system and the computation of the PDs of interest). Steps 4 through 6 are explained

in detail in the following Subsections.

13.2.1.1   Decomposition of the LSF in linear and nonlinear parts

It has been observed (see Chapter 12) that only few of the principal curvatures of

the LSS at the DP are non-negligible. The MVPP results confirm that even strongly non-

linear LSSs concentrate their nonlinearity in a few principal directions (PDs) only, while

they are almost linear in the subspace defined by the remaining variables. Therefore, it is

useful to separate the contribution to the LSF of variables defining a subspace of the stan-

dard normal space in which the LSS at the DP is strongly nonlinear from the contribution

of the remaining variables, which can then be linearized with little or negligible loss of

accuracy in representing the LSF.



552
Letting nPD = number of PDs of interest (typically ), the following three

reference systems are used in the proposed method:

(1) the original reference system  in the standard normal space, with generic vector

;

(2) the transformed reference system  with origin at the DP and n-th axis oriented in

the direction of the DP vector y*, with generic vector ; and

(3) the final reference system , with generic vector , obtained by

rotating  so that the (n-1)-th to (n-nPD)-th axes coincide with the first to nPD-th

PDs, respectively. 

The corresponding transformations between reference systems are

 ( ) (13.1)

 ( ) (13.2)

 ( ) (13.3)

The LSF G(y) can be rewritten in the final reference system  as

(13.4)

where the vector  is partitioned as , 

and . The term  is equal to zero since, in the refer-

nPD 5≤

Rn

y y1  …  yn[ ]T=

Rn'

y' y'1  …  y'n[ ]T=

Rn'' y'' y''1  …  y''n[ ]T=

Rn'

y' R y y∗–( )      y↔ RT y'⋅ y∗+= = Rn  Rn'↔

y'' R2 y⋅ '      y'↔ R2
T y''⋅= = Rn'  Rn''↔

y'' R2R y y∗–( )      y↔ RTR2
T y''⋅ y∗+= = Rn  Rn''↔

 Rn''

G y( ) G RTR2
Ty'' y∗+( ) G y''( ) Glin y''lin( ) Gnl y''nl( )+≅( ) Gnl y''nl( )= = =

y'' y'' y''lin
T    y''nl

T[ ]
T

= y''lin y''1  …  y''n nPD– 1–[ ]T=

y''nl y''n nPD–   …  y''n[ ]T= Glin y''lin( )
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ence system , the gradient of the LSF is oriented in the direction of the DP vector y*

and thus orthogonal to all other variables, i.e.,

(13.5)

The approximate expression of the LSF in Eq. (13.4) neglects higher-order terms in the

variables  as well as the interaction terms between  and , but also allows to

reduce drastically the number of variables to consider for approximating the nonlinear

LSF. This step is innovative and unique to the proposed DP-RS-Sim method.

13.2.1.2   RS approximation of the nonlinear part of the LSF

The term  needs to be approximated using the RS method. Any of the

existing methods can be applied. Herein, the recently proposed Multivariate Decomposi-

tion Method (MDM) (Xu and Rahman 2004, 2005; Rahman and Xu 2004; Rahman and

Wei 2006; Wei and Rahman 2007) is adopted. 

The MDM involves an additive decomposition of an N-dimensional function into

at most S-dimensional functions, where . This work considers the two cases S = 1,

for which the MDM reduces to the Univariate Decomposition Method (UDM), and S = 2,

corresponding to the Bivariate Decomposition Method (BDM). It is noteworthy that the

low computational cost of the RS approximation in the DP-RS-Sim method is mainly due

to the decomposition of the LSF into a linear and a nonlinear part, which reduces the num-

ber of variables from n (total number of random variables) to . The use

 Rn''

Glin y( ) G
y∗ y y∗–( )y∇ G

y∗RTR2
TR2R y y∗–( )y∇==

G
y∗y∇ 0 … 0 1[ ] y'' G

y∗y∇ y''n⋅–=⋅ ⋅–=

y''lin y''lin y''nl

Gnl y''nl( )

S N«

N nPD 1+ n«=
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of the UDM or BDM to build the RS approximation of  further increases this

intrinsic efficiency and allows the use of polynomial approximations of order higher than

two in the variables that influence the most the nonlinear behavior of the LSS at the DP.

Considering a nonlinear function G(y) of the N-dimensional vector y = [y1 ... yN]T,

the UDM assumes the approximation , in which  is given by

(13.6)

where  = point around which the approximation is done (center point)

and  = univariate component function. 

The BDM assumes the following approximation , in which

 is given by

(13.7)

where  = bivari-

ate component function. 

Xu and Rahman (2004) show that the UDM and BDM provide approximations of

the nonlinear function G(y) consisting of all terms of the Taylor series expansion around

Gnl y''nl( )

G y( ) G̃1 y( )≅( ) G̃1 y( )

G̃1 y( ) Gi yi( ) N 1–( )G y( )–
i 1=

N

∑=

y y1 … yN[ ]T=

Gi yi( ) G y1 … yi 1– yi yi 1+ … yN, , , , , ,( )=

G y( ) G̃2 y( )≅( )

G̃2 y( )

G̃2 y( ) Gi1 i2, yi1
yi2

,( )  N 2–( ) Gi yi( ) N 1–( ) N 2–( )
2

------------------------------------ G⋅ y( )+
i 1=

N

∑–
i1 i2 N≤<

∑=

Gi1 i2, yi1
yi2

,( )  N 2–( )G̃1 y( )– N 1–( ) N 2–( )
2

------------------------------------ G y( )⋅–
i1 i2 N≤<

∑=

Gi1 i2, yi1
yi2

,( ) G y1 … yi1 1– yi1
yi1 1+ … yi2 1– yi2
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point  containing one and two variables, respectively, i.e., differing from the original

function only by residuals of second and third order, respectively. For sufficiently smooth

G(y) with a convergent Taylor series, the coefficients associated with higher-dimensional

terms are usually much smaller than those with one- or two-dimensional terms. As such,

higher-dimensional terms contribute less to the function, and therefore can be neglected.

The basic idea and principal assumption behind the UDM and BDM is that compo-

nent functions of order higher that one (for UDM) and two (for BDM) will be negligible

compared to lower order component functions, i.e., the effects of the interaction between

two (UDM) or more than two (BDM) variables are much smaller than the effects deriving

from each variable (UDM) or the interaction between two variables (BDM). When this

hypothesis is satisfied, the method provides useful lower-variate approximations of a

high-dimensional function. 

After defining a univariate or a bivariate approximation of the original function,

the coefficients defining the univariate and bivariate component functions need to be

determined. Xu and Rahman (2004) suggest to obtain the component functions as polyno-

mials with coefficients fitted by using Lagrangian interpolation. It is assumed that nP =

function evaluations are available, i.e.,

(13.8)

where  (j = 1, ..., nP) = values of variable yi at which G(y) is computed

y

Gi
j( ) G y1 … yi 1– yi

j( ) yi 1+ … yN, , , , , ,( ) Gi yi
j( )( )= =

yi
j( )
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Using Lagrangian interpolation (i.e., imposing that the approximating function has

exactly the same value as the original function at the experimental points), each univariate

component function is given by

(13.9)

in which  denotes the following shape function

(13.10)

In a similar way, the bivariate components can be expressed as

(13.11)

where the coefficients  are given by

(13.12)

Here, nP is assumed constant for all variables, even though this is not necessary.

Notice also that, in the DP-RS-Sim method, the RS approximation is built in the reference

Gi yi( ) Gi
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system , with center point coincident with the origin of the reference system (i.e., the

DP). Thus, ,  and Eqs. (13.6) and (13.7) simplify to

(13.13)

(13.14)

From Eq. (13.14), it is clear that a bivariate approximation requires to develop first the

univariate approximation.

13.2.1.3   Computation of Pf through simulation

The estimate of the time-invariant failure probability is obtained using crude MCS

or any other more advanced variance reduction simulation technique (e.g., importance

sampling) applied on the analytical RS approximation of the actual LSF. In this work, IS is

employed with sampling distribution taken as the standard normal joint PDF centered at

the DP. Defining the indicator functions  and  as

(13.15)

(13.16)

and defining the vector , the failure probability Pf for a time-invariant

component reliability problem can be expressed as

Rn''

y y''∗≡ 0= G y( ) G y''∗( ) 0= =

G̃1 y( ) Gi yi( )

i 1=

N

∑=

G̃2 y( ) Gi1 i2, yi1
yi2

,( )  N 2–( )G̃1 y( )–
i1 i2 N≤<

∑=

I y( ) I y''( )

I y( ) 1      if    G y( ) 0≤
0 otherwise⎩

⎨
⎧

=

I y''( )
1      if    G y''( ) G≅ lin y''lin( ) G+ y''nl( )  G= nl y''nl( ) 0≤

0 otherwise⎩
⎨
⎧

=

y RTR2
Ty'' y∗+=
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(13.17)

where  denotes the entire standard normal space of dimension n and  represents

the standard normal joint PDF. Thus, an unbiased estimator of Pf is given by

(13.18)

where  is the i-th realization of the random variable 

according to the sampling distribution and N is the number of samples.

13.2.2   DP-RS-Sim method for time-invariant system reliability problems

In time-invariant system reliability analysis, the DP-RS-Sim method requires

repeating the first three steps defined above for each of the components/LSFs and apply-

ing the fourth step after forming a Boolean indicator which provides correspondence

between failures of the single components and failure of the system. Parallel and series

systems are relevant particular cases for which the failure domains are defined respec-

tively as

(13.19)

and

Pf I y( )φ y( ) yd
Ωn

∫ I y''( ) φ y( )
φ y''( )
------------- φ y''( ) y''d

Ωn

∫= =

Ωn φ …( )

Pf Pf IS,≅ 1
N
---- qi

i 1=

N
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qi Q y''( ) I y''( )
φ RTR2

Ty'' y∗+( )
φ y''( )

-----------------------------------------=

φ y''( )

Dp Di
i 1=

nC

∩=
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(13.20)

where  denotes the failure domain for the i-th component (or failure mode) and nC is

the number of components (or failure modes). Time-invariant component reliability analy-

sis with a LSS characterized by multiple DPs can be interpreted as a special case of a time-

invariant series system reliability problem, i.e., with the failure domain given by the union

of the failure domains defined by the response surfaces approximating the original LSF in

the neighborhood of each of the DPs. 

13.2.3   DP-RS-Sim method for time-variant reliability problems

Time-variant component reliability analysis is performed using the DP-RS-Sim

method to compute the mean out-crossing rate with the limit relation (Hagen and Tvedt

1991)

(13.21)

where  and . As already seen in Chapter 11, Subsec-

tion 11.6, this problem can be solved as a time-invariant two-component parallel system

reliability problem, with the two component LSSs given by  and . The

specific properties of this problem (in particular the fact that the two LSSs are almost

superposed, as indicated by the correlation coefficient between the two linearized failure

modes being very close to -1) suggest to approach it in a slightly different way, as already

done in the application of the MVPP method.

Ds Di
i 1=

nC

∪=

Di

νg t( )
P G1 0<( ) G2 0<( )∩[ ]

δt
----------------------------------------------------------

δt 0→
lim=

G1  G y t,( )–= G2 G y t δt+,( )=

G1 0= G2 0=
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The modification of the DP-RS-Sim method to deal with the time-variant reliabil-

ity problem are summarized below:

(1) The DP search is performed only for the DP of LSF , while the DP for  is

obtained through shifting the first DP by the small time interval δt. 

(2) The RS approximation for the second LSF is performed in the same reference system

( ) in which the RS approximation to the first LSF is defined. This assumes that

the PDs of the second LSS at the DP are close to the corresponding ones for the first

LSS. It also implies that the linear part of LSF  in the reference system  is not

equal to zero any more and must be accounted for by using the gradient at the DP of

the second LSS. This gradient is not computed directly (since it would require to

repeat the DP search for the LSS  defined at time t + δt), but it is approxi-

mated by a vector with direction defined by the shifted DP of the first LSS and magni-

tude equal to the one of the gradient at the DP of the first LSS.

(3) The RS approximation of the second LSF is obtained without additional FE analyses,

using the following approximation: 

(13.22)

(see Chapter 11, Subsection 11.2 and Chapter 12, Subsection 11.2.2) at the same

experimental points used to approximate the first LSF, where the values of  and

 have already been computed.

G1 G2

 Rn''

G2  Rn''

G2 0=

G2 G y t δt+,( ) G y t,( ) G∂
t∂

-------δt+≅ G1–
G1∂
t∂

---------δt–= =

G1

G1∂
t∂

---------
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13.3   APPLICATION EXAMPLES

13.3.1   Time-invariant component reliability case: analytical LSF

The first application example is a time-invariant component reliability problem

with an analytical LSF depending on three independent standard normal variables yi (i = 1,

2, 3). This case study is used here to illustrate the methodology step by step, as explained

in Subsection 13.2. The analytical LSF is chosen as

(13.23)

A visualization of the LSS  is given in Fig. 13.1. The DP is found as

 (Step 1), the rotation matrix R is obtained via Gram-Schmidt orthonor-

malization as 

(13.24)

and the new expression for the LSF in the transformed reference system  (Step 2) is

(13.25)
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The visualization of the LSS  in the reference system  is provided in Fig.

13.2. The norm of the gradient at the DP is  and the normalized and

reduced Hessian matrix A at the DP in the reference system  is 

(13.26)

The principal eigenvalues are  and . Since , in the RS

approximation, the contribution to the LSF of the variable corresponding to the second PD

will be linearized (Step 3). The rotation matrix  is given by

(13.27)

and the LSF in the final reference system (shown in Fig. 13.3) is given by

(13.28)

Neglecting the higher-order contribution of the second PD corresponding to variable ,

Eq. (13.28) can be approximated as (Step 4)

(13.29)
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The RS approximation is obtained by the UDM considering three points (to fit a

quadratic function) on each of the two axes (i.e., located at -1, 0 and +1 in the final refer-

ence system  on the axes defined by variables  and ). Thus, the univariate RS

approximation requires only four additional evaluations of function . In fact,

the value of this function at the origin is zero, since the origin coincides with the DP.

The univariate component functions are

(13.30)

(13.31)

and the univariate RS approximation (Step 5) is

(13.32)

Figure 13.4 shows the visualization of the univariate RS approximation of LSS

.

Finally, IS on the RS approximation is performed to estimate the failure probabil-

ity corresponding to the failure event , yielding  (Step 6).

This estimate is compared with estimates from FORM, SORM using Breitung’s formula

(Breitung 1984), SORM using Hohenbichler and Rackwitz (1986) formula, IS using the

exact equation for the LSF and crude Monte Carlo Simulation (MCS). Table 13.1 provides
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these analysis results and shows that the DP-RS-Sim method results are close to the ones

obtained from IS and MCS, while FORM largely overestimates the failure probability and

the two SORM analyses improve the FORM results but still overestimate noticeably the

failure probability compared to MCS.

13.3.2   Time-invariant component reliability case: quasi-static pushover of a R/C 

frame structure

The time-invariant component reliability problem consisting of a quasi-static

pushover of a two-bay two-storey R/C frame already considered in Chapter 11, Subsection

11.7.1 and Chapter 12, Subsection 12.3.1, is solved here using the DP-RS-Sim method.

Three different approximations are considered in the decomposition of the LSF into a lin-

ear and a nonlinear part of the LSF, corresponding to retaining the nonlinear contribution

of one, two and three variables along PDs, respectively. A univariate decomposition is

adopted to obtain the RS approximation of the LSF at the DP. A fourth order approxima-

tion over a square grid of side length equal to two units and centered at the DP is used for

each of the univariate components (i.e., five points are used in the Lagrangian interpola-

tion, with points positioned at  on each axis). The visualization of the

trace of the LSS in the first PP is shown in Fig. 13.5 together with the traces of 1-st

(FORM), 2-nd (SORM) and 4-th order (RS) approximations of the LSF. The results

obtained are compared with the failure probability estimates derived from other reliability

analysis methods (see Chapter 11, Subsection 11.7.1) in Table 13.2. It is found that the

DP-RS-Sim provides accurate estimates of the failure probability (considering the IS esti-

1 0.5 0 0.5 1, , ,–,–
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mates as reference solution) with a small increase in computational cost compared to

FORM and SORM analyses.

13.3.3   Time-variant component reliability case: linear elastic SDOF system 

subjected to white noise excitation

The linear elastic SDOF system used as benchmark example in Chapter 11, Sub-

section 11.7.2, for FORM-based mean up-crossing rate computation, and in Chapter 12,

Subsection 12.3.2, as application example of the MVPP method, is revisited here to verify

the applicability of the DP-RS-Sim method to mean up-crossing rate computation. The

SDOF system is subjected to Gaussian white noise excitation with PSD 

discretized in time with a fixed time interval . The mean up-crossing rate

computation is performed at time  relative to a deterministic roof displacement

threshold  (roof drift ratio = 1.5%). In Table 13.3, it is found that the DP-RS-

Sim results converge (for decreasing time perturbation ) to the FORM results obtained

using Koo’s formula (Koo et al. 2005) with .

13.3.4   Time-variant component reliability case: nonlinear hysteretic SDOF system 

subjected to white noise excitation

The use of the DP-RS-Sim method in the case of a time-variant component reli-

ability problem is illustrated using the nonlinear hysteretic SDOF system defined in Chap-

ter 11, Subsection 11.7.3 (with deterministic parameters) when subjected to white noise

base excitation with power spectral density  and relative to the determin-

φ0 0.25m2 s3⁄=

Δt 0.01s=

t 1.00s=

ξ 0.048m=

δt

δt 0.0001s=

φ0 0.25m2 s3⁄=
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istic displacement threshold  (corresponding to a significantly nonlinear

behavior of the structural system, for which visualization using the MVPP method is pro-

vided in Chapter 12, Subsection 12.3.3). 

The DP-RS-Sim method is applied to compute the time-variant failure probability

(for T = 5.0s) of the inelastic SDOF system defined above. The time-variant probability of

failure is estimated by integrating numerically the mean out-crossing rate computed at

given instants of time (t = 0.25s, 0.5s, 0.75s, 1.0s, 1.5s, 2.0s, 3.0s, 4.0s and 5.0s). The

Gaussian white noise excitation is discretized with Δt = 0.01s into 25, 50, 75, 100, 150,

200, 300, 400, and 500 random variables for these instants of time. Each of the LSFs is

approximated with a RS obtained as the sum of: (1) an 8-th order polynomial in the four

transformed variables defined by the direction of the DP vector and the first three princi-

pal directions, and (2) a 1-st order polynomial in the remaining variables (i.e., hyperplane

tangent to the LSS at the DP in the subspace defined by the remaining n - 4 variables, with

n = total number of random variables). The bivariate component functions are obtained

using LSF evaluations over a square grid of points of side length equal to four units and

centered at the DP (i.e., 9 points are used in the Lagrangian interpolation, with points posi-

tioned at -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, and 2 on each axis). The probability content of the

hyper-wedge defined by the intersection of the two component failure domains is esti-

mated via importance sampling with a sampling distribution taken as the standard normal

joint PDF centered at the DP. 

Figs. 13.6 through 13.8 provide visualization of the LSSs at times  and

 using the MVPP method in the first through third PPs, respectively. The

ξ 0.048m=

t 1.0s=

t δt+ 1.005s=
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traces of these two LSSs (obtained as the zero level contour lines of the LSF simulated

over a fine grid of points in each PP) are compared with the corresponding traces of differ-

ent response surface approximations, namely a 1-st order (FORM), 2-nd order (fitted over

a grid of 3x3 points located at -2, 0, +2 along each axis) and 8-th order polynomial approx-

imation. It is seen that the 8-th order RS approximates the actual LSSs fairly well in the

first PP (Fig. 13.6) and very well in the second and third PPs (Figs. 13.7 and 13.8).

Fig. 13.9 compares the results obtained through crude MCS for the expected

cumulative number of up-crossing events, E[N], and the time-variant failure probability,

Pf, with the upper bound approximation of the failure probability obtained through FORM

and the DP-RS-Sim method. As seen in Chapter 11, Subsection 11.7.3, the error due to the

use of the analytical upper-bound to the probability of failure Pf is small, while the error

due to the use of a FORM approximation to E[N] is very large (error = 266% at time t =

5.0s). The DP-RS-Sim method reduces significantly the error compared to FORM, provid-

ing a very good estimate of E[N] (error = 16% at time t = 5.0s) with a small additional

computational cost compared to FORM.

13.4   CONCLUSIONS

A new hybrid FE reliability method, referred to as DP-RS-Sim method, has been

developed and presented. It combines the concept of design point, the response surface

methodology and a simulation technique to improve the accuracy of failure probability

estimates obtained by classical FORM and SORM analyses. The new method can be used

in time-invariant component reliability, time-invariant system reliability and time-variant
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component reliability analyses. Some application examples are provided to illustrate the

method and its capabilities.

The DP-RS-Sim method is still under development and both its capabilities and

limitations need further study to be fully assessed. Nevertheless, the DP-RS-Sim method

is very promising since, as shown here, it is able to provide at reasonable computational

cost accurate failure probability estimates for FE reliability problems involving advanced

nonlinear FE models and a large number of random variables.

Table 13.1   Time-invariant reliability analysis results for the time-invariant component 
reliability problem with analytical LSF

Analysis Method Pf # of simulations cov

FORM 0.23975 - -

SORMB 0.16544 - -

SORMHR 0.15334 - -

IS 0.12741 109894 0.005

MCS 0.12848 271324 0.005

DP-RS-Sim(univ,1) 0.13387 107987 0.005
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Table 13.2   Time-invariant reliability analysis results for the quasi-static pushover 
analysis of the R/C frame structure

Analysis Pf CPU relative time

FORM 0.0203 1

SORM1 0.0210 1.02

SORMall,B 0.0223 2.26

SORMall,HR 0.0257 2.26

IS0.05 0.0266 53.83

IS0.01 0.0262 1103.51

DP-RS-Sim(univ,1) 0.0264 2.63

DP-RS-Sim(univ,2) 0.0269 2.90

DP-RS-Sim(univ,3) 0.0269 3.17

Table 13.3   DP-RS-Sim estimates of the mean up-crossing rate (for ξ = 0.048m) of linear 
elastic SDOF system subjected to Gaussian white noise with PSD φ0 = 0.25m2/s3

ν(t = 1.0s)
[1/s] cov # of 

simulations

FORM (δt = 0.0001s) 0.0982 - -

DP-RS-Sim

δt = 0.010s 0.1901 0.05 10029

δt = 0.005s 0.1354 0.05 15449

δt = 0.001s 0.0989 0.05 70044
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Figure 13.1 Time-invariant component reliability case for analytical LSF: LSS visual-
ization in the original reference system.

Figure 13.2 Time-invariant component reliability case for analytical LSF: LSS visual-
ization in the transformed reference system.
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Figure 13.3 Time-invariant component reliability case for analytical LSF: LSS visual-
ization in the final reference system.

Figure 13.4 Time-invariant component reliability case for analytical LSF: RS approxi-
mation of the LSS in the final reference system.
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Figure 13.5 MVPP-based visualization of the LSS trace and its different approxima-
tions in the first PP for the time-invariant reliability problem of the bench-
mark R/C frame subjected to quasi-static pushover (vertical axis scaled up
by a factor 80).
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Figure 13.6 Time-variant component reliability case for nonlinear hysteretic SDOF
system subjected to white noise excitation: LSSs visualization in the first
principal plane.
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Figure 13.7 Time-variant component reliability case for nonlinear hysteretic SDOF
system subjected to white noise excitation: LSSs visualization in the sec-
ond principal plane.
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Figure 13.8 Time-variant component reliability case for nonlinear hysteretic SDOF
system subjected to white noise excitation: LSSs visualization in the third
principal plane.
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Figure 13.9 Estimates of the expected cumulative number of up-crossing events for the
MP SDOF system relative to a roof displacement threshold .

REFERENCES

Au S.K., Beck J.L. (1999) “A new adaptive importance sampling scheme” Structural
Safety, 21(2):135–158.

Breitung K. (1984) “Asymptotic approximations for multinormal integrals” Journal of the
Engineering Mechanics Division (ASCE), 110(3):357–366.

Breitung K., Faravelli L. (1996) “Chapter 5: Response surface methods and asymptotic
approximations.” Mathematical models for structural reliability analysis. Casciati
F., Roberts J.B., editors, CRC Press, New York.

Bucher C.G., Bourgund U. (1990) “A fast and efficient response surface approach for
structural reliability problem.” Structural Safety, 7:57-66.

0 1 2 3 4 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

 

E[N]  MC
E[N]±σ  MC
E[N]  FORM
E[N]  hybrid
E[N]±σ  hybrid

Time  s[ ]

E
N[

]

ξ 0.048m=



577
Carley K.M., Kamneva N.Y., Reminga J. (2004) “Response surface methodology”.
CASOS Technical Report CMU-ISRI-04-136, Carnegie Mellon University, Pitts-
burgh, PA, USA.

Der Kiureghian A., Dakessian T. (1998) “Multiple design points in first and second-order
reliability” Structural Safety, 20:37-49.

Faravelli L. (1989) “Response-surface approach for reliability analysis.” Journal of Engi-
neering Mechanics (ASCE), 115(12):2763-2781.

Faravelli L. (1992) “Structural reliability via response surface.” Proceedings of the
IUTAM symposium on Nonlinear Stochastic Mechanics, Bellomo N., Casciati F.,
editors, Springer Verlag, Heidelberg, Germany.

Hohenbichler M., Rackwitz R. (1986) “Sensitivity and importance measures in structural
reliability” Civil Engineering Systems, 3(4):203–209.

Huh J., Haldar A. (2002) “Seismic reliability of nonlinear frames with PR connections
using systematic RSM.” Probabilistic Engineering Mechanics, 17(2): 77-190.

Khuri A.I., Cornell J.A. (1996) Response surface designs and analyses. Marcel Dekker,
New York, NY, USA.

Koo H., Der Kiureghian A., Fujimura K. (2005) “Design-point excitation for non-linear
random vibrations” Probabilistic Engineering Mechanics, 20:136-147.

Rahman S., Wei D. (2006) “A univariate approximation at most probable point for higher-
order reliability analysis.” International Journal of Solids and Structures, 43:2820-
2839.

Rahman S., Xu H. (2004) “A univariate dimension-reduction method for multidimen-
sional integration in stochastic mechanics.” Probabilistic Engineering Mechanics,
19(4):393-408.

Rajashekhar M.R., Ellingwood B.R. (1993) “A new look at the response surface approach



578
for reliability analysis.” Structural Safety, 12:205-220.

Schotanus M.I. (2002) “Fragility analysis of reinforced concrete structures using a
response surface approach”, Master Degree Thesis, IUSS, Pavia, Italy.

Wei D., Rahman S. (2007) “Structural reliability analysis by univariate decomposition and
numerical integration.” Probabilistic Engineering Mechanics, 22(1):27-38.

Wong F.S. (1984) “Uncertainties in dynamic soil-structure interaction.” Journal of Engi-
neering Mechanics (ASCE), 110(2):308-324.

Wong F.S. (1985) “Slope stability and response surface method.” Journal of Geotechnical
Engineering (ASCE), 111(1):32-53.

Xu H., Rahman S. (2004) “A generalized dimension-reduction method for multidimen-
sional integration in stochastic mechanics.” International Journal for Numerical
Methods in Engineering, 61:1992-2019.

Xu H., Rahman S. (2005) “Decomposition methods for structural reliability analysis.”
Probabilistic Engineering Mechanics, 20:239-250.

Yao T.H.-J., Wen Y.-K. (1996) “Response surface method for time-variant reliability anal-
ysis”. Journal of Structural Engineering (ASCE), 122(2):193-201.

Zhao Y.G., Ono T., Idota H. (1999) “Response uncertainty and time-variant reliability
analysis for hysteretic MDOF structures.” Earthquake Engineering and Structural
Dynamics, 28:1187-1213.



CHAPTER 14

CONCLUSIONS

14.1   SUMMARY OF CONTRIBUTIONS AND MAJOR FINDINGS

The research work presented in this thesis contributes to three different research

areas: (1) finite element response sensitivity analysis, (2) stochastic process modeling and

random vibration theory, and (3) computatonal reliability analysis of structural systems.

The principal contributions and major findings of this research work are summa-

rized below:

(1) An algorithm for DDM-based response sensitivity computation is developed for

force-based frame elements and implemented in FEDEASLab. 

Previous research has shown that force-based frame elements are superior to classical

displacement-based frame elements enabling, at no significant additional computa-

tional costs, a drastic reduction in the number of elements required for a given level of

accuracy in the simulated response. The present work shows that this advantage of

force-based over displacement-based frame elements is even more conspicuous in the

context of gradient-based optimization methods, which are used in several structural

engineering sub-fields (e.g., structural optimization, structural reliability analysis,

finite element model updating) and which require accurate and efficient computation

of structural response and response sensitivities to material and loading parameters.
579
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(2) An algorithm for DDM-based response sensitivity computation is derived for finite

elements with static condensation of internal degrees of freedom and is implemented

in several types of finite elements in FEDEASLab. 

It is found that response sensitivity calculations can be performed at the structure

level assembling only the sensitivities (with respect to modeling parameters) of con-

densed element nodal forces and retained (external) element nodal displacements,

similarly to response-only calculations.

(3) The DDM is extended to steel-concrete composite frame structures, with implementa-

tion in FEDEASLab of several finite element, fiber-discretized section and material

constitutive models.

This extension allows efficient and accurate response sensitivity analysis using

advanced FE models specifically designed for this type of structures. In particular, the

sensitivity of local response quantities such as interlayer slip and shear force between

the steel beam and concrete slab components is examined. It is found that local

response quantities are very sensitive to material strength parameters when the struc-

tural system undergoes large plastic deformations.

(4) A DDM-based response sensitivity algorithm for three-field mixed-formulation finite

element based on the Hu-Washizu functional is developed for the general case,

including nonlinear geometry and shape sensitivity, and implemented into FEDEA-

SLab for a 10-dof steel-concrete composite frame element.

(5) The effects upon the design point search of gradient discontinuities caused by non-

smoothness of material constitutive models in the context of finite element reliability

analysis are studied. The response computation algorithms for several smooth/
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smoothed constitutive models (e.g., Menegotto-Pinto smooth material constitutive

model for steel and smoothed Popovics-Saenz model for concrete) are extended to

response sensitivity analysis using the DDM and implemented in both FEDEASLab

and OpenSees. 

Implications of using smooth versus non-smooth material constitutive models in

finite element response, response sensitivity and reliability analyses are analyzed. In

general, for both quasi-static and dynamic analysis, gradient-based optimization algo-

rithms do not ensure convergence to a (local) optimum of the objective function sub-

ject to the given constraints (expressed in terms of structural response quantities) if

response sensitivities are discontinuous. Typically, non-convergence to an existing

optimum happens if discontinuities in the gradient of the limit-state function (i.e.

response sensitivity discontinuities) occur in the neighborhood of the optimum itself.

Even in cases when convergence can be achieved, gradient discontinuities could be

detrimental to the convergence rate of the optimization procedure. In theory, gradient-

based optimization algorithms can reach (locally) a quadratic convergence rate, when

the Lagrangian function associated with the given problem is second-order differen-

tiable and its exact Hessian is available (Gill et al., 1981). However, this is not the

case in structural reliability problems, for which at most exact first-order response

sensitivities are available. It can thus be concluded that, for general/practical purposes

in finite element reliability analysis, requiring at least continuous finite element

response sensitivities is a good compromise between convergence rate and computa-

tional cost. 
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A sufficient condition on the smoothness of uni-axial material constitutive models for

obtaining continuous finite element response sensitivities is stated and proved for the

quasi-static case. The issue of continuity/discontinuity of response sensitivities for the

dynamic case is also discussed. It is found that the linear inertia and damping terms in

the equations of motion have significant smoothing effects on response sensitivities

along the time axis. Nevertheless, discontinuities along the parameter axes are

observed for both non-smooth and smooth constitutive models, if the time discretisa-

tion of the equations of motion is not sufficiently refined. Several application exam-

ples suggest that, for the FE dynamic analysis case, response sensitivity

discontinuities can be eliminated by using smooth material constitutive models and

refining the time discretisation of the equations of motion.

(6) The efficiency and robustness of different gradient-based nonlinear constrained opti-

mization algorithms is investigated. The general purpose optimization code SNOPT,

employing a Sequential Quadratic Programming (SQP) algorithm, is integrated with

both FEDEASLab-FERUM and OpenSees, extending the existing options in terms of

optimization algorithms available for the DP search. 

It is observed that, for cases in which the limit-state surface (constraint function in the

optimization problem) is linear or slightly nonlinear, the modified Hasofer-Lind

Rackwitz-Fiessler algorithm outperforms other algorithms. When the LSS is very

nonlinear, SQP performs better than other algorithms. When the domain in which the

FE analyses do not converge at equilibrium is close to the DP, appropriate methods to

avoid this non-convergence domain need to be employed. Such methods are built-in

into SNOPT, which in general is very robust.
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(7) The effect of the convergence tolerance threshold used to measure the convergence of

the iterative FE response calculation on the accuracy of the DDM-based FE response

sensitivities is investigated. 

It is found that the choice of a strict enough convergence tolerance for the iterative

response calculation is also important for DDM-based response sensitivity analysis,

since the equations of equilibrium/motion are the starting point of the DDM. Use of

an inadequate convergence tolerance for response calculation may lead to loss of

agreement between response sensitivity results obtained using the DDM and FFD

analysis (e.g., an insufficiently small convergence tolerance threshold may lead to

erroneous DDM results and very inaccurate FFD results if the perturbation of the sen-

sitivity parameter is “too small” in relation to the tolerance).

(8) A new simulation method is presented for a specific fully nonstationary stochastic

earthquake ground motion model which has found wide application in earthquake

engineering research. This new method, based on a “physical” interpretation of the

considered stochastic model, is limited in scope but outperforms the more general

spectral representation method in terms of both accuracy and efficiency.

The new simulation technique is implemented as a stand-alone Matlab-based routine,

which is also integrated with FEDEASLab for efficient FE simulation of structural

response to stochastic earthquake ground motion excitation.

(9) The definition of the existing non-geometric spectral characteristics (NGSCs) is

extended to general complex-valued nonstationary random processes. These newly

defined NGSCs are essential for computing the time-variant central frequency and

bandwidth parameter of nonstationary response processes of linear systems. The
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bandwidth parameter is also used in structural reliability applications, e.g., for obtain-

ing analytical approximations of the probability that a structural response process out-

crosses a specified limit-state threshold.

(10) Using the non-geometric spectral characteristics of complex-valued nonstationary

processes and employing complex modal analysis, closed-form exact solutions are

found for the classical problem of deriving the time-variant central frequency and

bandwidth parameter of the response of linear SDOF and MDOF systems, both clas-

sically and non-classically damped, when subjected to white noise excitation from at

rest initial conditions. 

The exact closed-form solutions derived for the linear SDOF oscillator are used to

investigate the dependency of the stationary and time-variant central frequency and

bandwidth parameter on the SDOF system parameters, i.e., natural circular frequency

and damping ratio. These exact closed-form solutions have their own mathematical

merit, since to the best of the authors’ knowledge, they are new solutions for a classi-

cal problem in the field of random vibration theory. These solutions have a direct and

important application, since the response of many structures can be approximated by

using linear SDOF and MDOF models, and provide valuable benchmark solutions for

validating (at the linear structural response level) numerical methods developed to

estimate the probabilistic response of non-linear systems subjected to nonstationary

excitations.

(11) The non-geometric spectral characteristics of nonstationary random processes are

applied to the time-variant first passage problem in structural reliability. The first pas-

sage problem consists of computing the probability of a response quantity (linearly
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related to the displacement and velocity responses, e.g., absolute displacement, rela-

tive displacement, elastic force) exceeding a deterministic time-invariant threshold.

This probability is generally known as time-variant probability of failure. 

The so-called Vanmarcke failure probability approximations (i.e., classical Van-

marcke and modified Vanmarcke approximations) are computed, by numerical inte-

gration of the closed-form solutions of the corresponding hazard functions, for linear

elastic single- (SDOF) and multi-degree-of-freedom (MDOF) systems subjected to

white noise base excitation from at rest initial conditions. The closed-form expres-

sions for the two Vanmarcke hazard functions are obtained using the closed-form

solutions for the time-variant bandwidth parameter relative to the nonstationary sto-

chastic process representing the displacement response. 

The results obtained from several application examples indicate that the two Van-

marcke approximations provide greatly improved estimates of the failure probability

for the first passage problem as compared to the simpler Poisson approximation. On

the other hand, the relative accuracy of the classical Vanmarcke and modified Van-

marcke approximations can be evaluated only on a case by case basis.

(12) A simplified probabilistic response analysis based on the mean centered First-Order

Second-Moment (FOSM) analysis using non-linear finite element response and

response sensitivity analyses is applied to structural and geotechnical systems sub-

jected to quasi-static pushover. The effects on FOSM analysis results of using differ-

ent methods for computing response sensitivities are also investigated. It is found that

the FOSM approximation using the DDM for computing response sensitivities pro-

vides, at very low computational cost, very good estimates of the mean and standard



586
deviation of the response for low-to-moderate levels of material non-linearity in the

response of structural and geotechnical systems subjected to quasi-static pushover

analysis.

Furthermore, the relative importance (in both the deterministic and probabilistic

sense) of the material parameters on the structural response is obtained as by-product

of a FOSM analysis at negligible additional computational cost. 

It can be concluded that FOSM analysis provides a large amount of probabilistic

information at low computational cost and can provide satisfactory accuracy for prob-

abilistic analysis of structural and geotechnical systems subjected to quasi-static

pushover analysis, provided that the level of non-linearities exhibited by the system

are low-to-moderate. For large non-linearities, FOSM can still be used effectively to

obtain qualitative information on the importance ranking of model parameters on the

system response.

(13) The use of state-of-the-art methodologies (FORM, SORM, Importance Sampling,

time-variant reliability through mean out-crossing rate computation) in finite element

structural reliability analysis based on the concept of design point is investigated for

application to realistic nonlinear FE structural models. Several improvements to these

methodologies in terms of efficiency and robustness are made and illustrated.

It is found that the adopted methods can often provide results sufficiently accurate for

engineering purposes with a relatively small computational effort practically indepen-

dent on the magnitude of the failure probability. On the other hand, these approximate

methods can produce inaccurate estimates of failure probabilities when the structural

systems under study exhibit a strongly nonlinear response behavior. 
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(14) A new technique is developed for visualization of limit-state surfaces (LSSs) near

their design point(s) (DPs) in high-dimensional spaces: the Multidimensional Visual-

ization in the Principal Planes (MVPP). The MVPP method consists of visualizing a

LSS in the neighborhood of a DP in subspaces (planes) of particular interest. These

planes are defined as the planes of principal curvatures of the LSS at the DP and are

referred to as Principal Planes (PPs). The MVPP requires finding the trace of the LSS

in the PPs in decreasing order of magnitude of the principal curvatures. 

The MVPP methodology provides important information about the topology of the

LSS, identifying a small number of dimensions which are of interest and thus requir-

ing a limited number of FE analyses to visualize the LSS. 

(15) A new hybrid FE reliability analysis method, referred to as Design Point - Response

Surface - Simulation (DP-RS-Sim) method, is proposed. The DP-RS-Sim method

combines the concept of design point, the response surface methodology and a simu-

lation technique to improve the accuracy of the classical FORM and SORM. The new

method can be used in time-invariant component reliability, time-invariant system

reliability and time-variant component reliability analyses. Some application exam-

ples are provided to illustrate the method and its capabilities.

The DP-RS-Sim method is still under development and both its capabilities and limi-

tations need further study to be fully assessed. Nevertheless, the DP-RS-Sim method

is very promising since it is able to provide, at reasonable computational cost, accu-

rate failure probability estimates for FE reliability problems involving advanced non-

linear FE models and a large number of random variables. 
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14.2   RECOMMENDATIONS FOR FUTURE WORK

Based on the research work performed and presented herein, several research areas

have been identified as open to and in need of future work.

(1) In order to fully exploit the advantages of the state-of-the-art FE technology, DDM-

based FE response sensitivity analysis must follow closely the advances of FE

response-only methods. To date, the gap is still wide. Derivation and implementation

of the response sensitivity algorithms are required for new elements, new integration

points (e.g., frame section models), new material constitutive models, etc.

(2) The sources of discontinuities in response sensitivities in FE dynamic analysis need to

be detected. Finding the reason(s) of the discontinuities along the parameter axes may

indicate a method to eliminate them more efficiently than reducing the time-step size

in the numerical integration of the equations of motion.

(3) The possibility of coupling DDM-based response sensitivity analysis with the adjoint

method should be investigated to exploit the efficiency of the adjoint method for lin-

ear elastic structures. In particular, when the nonlinear behavior is concentrated in a

small part of the FE model, this combination could provide a very efficient method

for FE response sensitivity computation.

(4) Challenges remain in the FE reliability analysis method proposed, in particular for the

DP search in very high-dimensional spaces, which is commonly encountered in time-

variant reliability problems. More robust and efficient methods for finding the DP are

still needed. It is believed that the geometric insight gained using the MVPP method
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could be exploited to develop improved optimization algorithms specifically designed

for the DP search.

(5) Parallel/distributed computing is a promising approach to alleviate the computational

demand in conducting large-scale FE analysis of structural and geotechnical systems.

Parallel/distributed computing methods have experienced great development in the

last few decades and are very well suited to be applied to certain types of reliability

analysis, such as sampling analysis. The study of other applications of parallel/distrib-

uted computing to reliability analysis is strongly recommended. 

(6) Development of a method for efficient/parsimonious representation of a nonstation-

ary random process is desirable. The nonstationary stochastic earthquake ground

motion model considered in this work is able to capture the amplitude and frequency

nonstationarities typical of actual earthquake records, but its representation in terms

of random variables is far from efficient/parsimonious. There may be more efficient

approaches for representation of a nonstationary continuous random process, e.g., fre-

quency domain representation.

(7) Derivation of closed-form expressions for the spectral characteristics of the response

processes of linear elastic SDOF and MDOF systems subjected to input processes

more realistic than Gaussian white noise (e.g., modulated white noise, filtered white

noise, fully nonstationary earthquake ground motion models) can provide important

benchmark solutions for numerical methods more generally applicable to nonlinear

systems. Research in this direction is recommended.

(8) Numerical methods for the computation of the spectral characteristics of non-Gauss-

ian processes (e.g., response of linear elastic systems subjected to non-Gaussian
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input, nonlinear inelastic systems subjected to Gaussian input, nonlinear inelastic sys-

tems subjected to non-Gaussian input) are essential to extend the scope of existing

improved estimates of the time-variant failure probability (e.g., Vanmarcke approxi-

mations).

(9) Parameterization, in terms of seismological variables such as magnitude and site-to-

source distance, of stochastic earthquake ground motion models is crucial to propose

them as a feasible and meaningful alternative to ensembles of scaled actual ground

motion records, which are currently used in structural engineering practice. This

parameterization will enable end-to-end probabilistic seismic performance analysis of

structural systems, integrating seamlessly seismic hazard analysis, probabilistic

demand analysis, damage analysis, and reliability analysis.

(10) The study of simplified probabilistic response methods in dynamic FE analysis is

strongly recommended.

(11) The proposed DP-RS-Sim reliability analysis method is still in its embrionic stage of

development. Further testing and extensions are needed. In particular, the method

could be improved by the development of adaptive algorithms to determine the opti-

mal number of principal directions to be considered in the nonlinear part of the RS

approximation, the optimal order of the RS approximation and the optimal size of the

grid on which the RS is fitted. The use of other RS approximations needs to be

explored as well. Finally, error analysis methods could be extended to the RS approx-

imation used in the DP-RS-Sim method. 

(12) FE structural reliability analysis of uncertain systems subjected to random loadings is

not addressed in this work. Significant research is needed in this important topic.
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