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Microscopic Calculations of High-Spin Rotational States* 

Chin w. Ma 

Cyclotron Institute and Physics Department, Texas A&M University, College 

Station, Texas 77843 

and 

John o. Rasmussen 

Lawrence Berkeley Laboratory, University of California, Berkeley, 

California 94720 

Abstract 

162 168 174 f d 238 The high-spin rotational states of Er, Yb, H , an u 

are calculated microscopically by diagonalizing the cranking Hamiltonian 

H-wJ using both BCS and fully particle-number projected wave functions. 
X 

The computational effort in the latter case is greatly reduced due to a 

newly derived compact formula for the residuum integral. The results 

show that pairing collapse does not occur in all four nuclei up to spin 

20. The:moderate increase of the moment-of-inertia at low spin is due 

to both higher-order cranking and Coriolis-anti-pairing effects. The 

crossing of the decoupled two quasi-particle band with the ground band 

is responsible for the rapid increase of the moment-of-inertia at high 

spin. The present calculations are able to produce the rotational 

. energies fairly well in qeneral, but the Nilsson single-particle levels 

have to be adjusted in order to reproduce the backbending behavior in 

162Er. 

NUCLEAR STRUCTURE calculated high-spin rotational states by 
\ ., 

diagonalizing cranking model. New formula for particle-number 
· ... ~· ... 

projection. gR factor, backbending, Coriolis-anti-pairing and 

rotational alignment effects. 
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l. Introduction 

The energy spaciing of the high-spin nuclear rotational states, 

especially the backbending behavior, has been an interesting subject for 

. . [1) 
many experimental and theoretical studies 1n recent years. The rapid 

increase of the moment-of-inertia at high spin which causes a reversal 

of the monotonic increase in level spacing (backbending) to happen in 

some nuclei is considered generally to be the result of the crossing of 

the ground band with an excited band of large moment-of-inertia whose 

real nature is stiil a question of debate. There exist now several 

microscopic Hartree-Fock-Bogoliubov (HFB) calculations which either.are 

based on the cranking modef2-SJor use angular momentum projection! 61 The 

general consensus of these ·studies is that the two most important factors 

which cause the nuclear moment-of-inertia to rapidly increase are the 

rotational alignment effecP]and the Coriolis anti-pairing (CAP) effect! 81 

The quantitative results of these studies for particular nuclei, however, 

can be .quite different. For instance, some calculations may obtain 

pairing collapse while others do not •. 

In the present paper we shall study the high-spin rotational states 

by diagonalizing the cranking Hamiltonian H-wJ . Our diagonalization 
X 

method resembles the Coriolis matrix diagonalization approach of Stephens 

and SimoJ7 Jexcept that we start with a microscopic Hamiltonian with pairing 

correlation as variation parameters, whereas they use the rotor plus 

particle model with pairing fixed. The microscopic nature of the present 

calculation makes it possible to study the different competing effects, 

for example, the rotational alignment effect, the CAP effect, etc. in a 

self-consistent way. BCS wave.functions in some cases and fully particle-

number projected (FBCS) wave functions in others are used in the present 

~· 
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calculations to study the fixed-particle-number correction for high-spin 

states. 

The rotational spectra of 162Er, 168Yb, 
174

Hf, and 
238u are calculated. 

I 

Experimentally, 162Er shows backbending while the other three do not. 

We diScuss the diagonalization method in section 2 and the particle-

number projection in sec.tion 3. The detailed calculations and the 

results are presented in sections 4 and 5. Section 6 gives the conclusions. 

2. Diagonalization of the cranking equation 

We start with the cranking equation 

{ H- 6.> JJ<) ft"-'> = Wtw) f(w) 
' 

(2. 1) 

where w is the angular velocity which is related to the angular momentum 

I by the constraint 

(2. 2) 

The Hamiltonian H is chosen to be identical to that .of Nilsson et al.[g~ 

who 'included the Nilsson single-particle Hamiltonian plus a pairing 

• interaction. 

G- L c; c; Cp Cr 
~. P>O. 

(2. 3) , 
+ where ck and ck are the particle creation and annihilation operator 

respectively; k is the I component along the nuclear symmetric axis, G 
2: 

is the pairing strength, and the time-reversed state is defined as 

- 1<- t l I > I k 7 = (-t) · -r.. 

We first carry out the Bogoliubov-Valatin quasi-particle transformation 

(2.4) 

' 
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with 

-J • 

The H and the J operators can be expressed in terms of these quasi
x 

. 1 [10 l part1c e operators as . 

H = Hoo + H~~ +H2o+ H!!:z + H31 + H4o· (2 .5} 

Jx - ( Jx )n t ( Jx) 20 
(2.6} 

The cranking equation (2 .1) can then be solved by expanding ~( w) in this 

quasi-particle representatibn 

few)= L U11.-c I iC r;) (2. 7} 
t:, n~o 

where n denotes the nurnber of quasi-particles, and 1' stands for all 

other appropriate quantum numbers. For example, 

'V 

where lo>·is the quasi-particle vacuum state 

l 0) ~ Tf ( uk + v~ ck cE ) I 0 > 
!<>c 

{2.8} 

'V 

In the BCS approximation the ground state. is the vacuum 1 0>, and the 

rotational excited states are obtained by mixing the quasi-particle states 

'V 
ln,T> with the vacuum through the Coriolis interaction wJx. For low-

spin rotational states, the wJ term is small and second order perturbation 
X 

h ld ' ff' . 1 . d [lO] h . d' . treatment s ou De su 1c1ent y goo • In t e 1nterme 1ate-sp1n 

. [11] 
region (I-10} one can perform fourth-order perturbation calculat1ons. 

As the spin becomes even higher, however, the mixing of the quasi-particle 

becomes so strong that one probably should avoid the perturbation treat-

ment and rely on the diagonalization method. Indeed, in the remaining 
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7 . 
I 0 

s 

text we shall use the diagonalization approach to study the high-spin 

rotational spectrum. 

2.1 Choice of truncated space 

In order to choose a reasonable truncated space in the expansion 

(2.7),·we notice first that the Hamiltonian in Eq. (2.3) does not contain 

proton-neutron pairing; thus, the proton part and the neutron part can 

always be treated separately. In addition, the J term does not mix 
X 

different parity states; thus, if we neglect the quasi-particle interaction 

terms and consider H00 + H11- wJx only, the wave function ~(w) can be 

expressed as a product 

f <w.) ~.I P + > I P -> I N + '> J N -> , 
where IP+> and IP->(or IN+> and !N->)denote the proton (or neutron) 

positive-parity and negative-parity orbital subspace respectively. 

We next note that four-quasi-particle contributions to the rotational 

states are unimportant until the spin becomes very high.(?] Hence, in 

the present calculations we shall consider only the two-quasi-:-particle 

excitations in each orbital subspace. The wave function can now be 

written explicitly as 
P+ P-

'f tw> = [rlDtP+) t .2:.. a.Ai ( P+) o<t rtl] [a.,(P-) t .[ ai-i ( P-> o<: o</J 
A,J ~.J {2.9) 

with 

~ [ct. <N-1-l-+ fa,; CNt) rx; oin (a. iN-)+ fa~;<N-)ol: oi.j) 1/h 
··J ~.f J 

W(w):::: Hoo + I 1.Ut (W) , 
"t: 

(2.10) 
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where < = P+, P-, N+, ·and N-. The amplitude a
0

(-r), a .. (<) and the values 
1.) 

of w, can be determined by the following equation 

(2.11) 

' 
where 

·c 

lf'r.(w) - ( al)ct > t L. a;.i (t) eX/ oi.J J J 5 > (2 .12) 
.A,j 

Thus diagonalization can now be carried out separately for each subspace; 

this greatly simplifies our calculations. In the remaining text, the 

script <(or P+, P-, N+ and N-) will be omitted whenever possible, 

provided there will be no ambiguity. 

2.2 • Coriolis anti-pairing effect 

The coefficient {uk,vk} of the canonical transformation (2.4) 

will now be determined by the minimization 

' 
with respect to {uk,Vk}. The trial wave function ~(w) is given in 

Eq. (2.9) obtained from the separate diagonalizations. 

(2.13) 

We choose to reduce the nwnber of variational parameters by constraining 

the to have the BCS form with v a free variational parameter 

(2 .14) 

Therefore, the set of variables {uk,Vk} is reduced to a single variable v. 

We remark here that for w = 0, the trial wave function ~(w) of (2.9) 

"' reduces to the quasi-particle vacuum IO>, and v becomes the BCS gap parameter 

(2.15) 

• 
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In 9eneral, however,v is a functionof WI and our calcuations show that 

the valuc 1 0f v decreases as w increases, whi~h is simply a manifestation 

of the CAP effect. 

The chemical potential A in Eq. (2.14) is adjusted for each angular 

velocity w so that the average particle number is conserved, namely 

(2.16) 

' 
" .: where N is the particle number operator. Note that for each value of 

w we'·obtain a set of v (w) and A (w) for protons and a set of v (w) and . p p n 

A (w) for neutrons. Thus for each w one obtains a new set of quasiparticle 
n 

basis functions 

The wave function in the new basis, however, can be expressed in terms 

of the uncranked basis (Eq. (2.4)]. For example, the quasiparticle 

vacuum in the new basis 

+ is a superposition of quasiparticle pairs in the uncranked basis ak' 

namely 

where 

Ak. -= uk uk (tV) + vk vi< (IU) 

Bk = Uk Vk lw > - Vk Uk(c.U) 

' 

.. 

(2.17) 

Therefore, the use of a new set of {Uk(w),Vk(w)}for each cranking velocity 

w does effectivly admix 4, 6, etc. quasiparticle states in the 

uncranked basis and makes our truncation to 0 and 2 quasiparticle states 

in the cranked basis more justifiable. 
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2.3 The quasi-particle interaction 

The previous discussions have omitted any interaction between 

quasi-particle. We shall now describe how to include them partially. 

Let us first consider the H
20 

term. For non-zero w, v does not equal~. 

the BCS equation no longer holds and H
20 

does not vanish. It is straightforward, 

however, to include H20 in our calculation for arbitrary value of v. 

Next, the H22 term can couple a quasi-particle pair in orbit p with 

another pair in orbit q, where orbitals p and q are of opposite parity. 

Likewise H
40 

can create two pairs, one in orbit p and the other in orbit 

q. Therefore, strictly speaking, the full inclusion of H22 and H40 will 

make it impossible.for us to diagonalize the cranking equation separately. 

For simplicity, we shall neglect the above couplings. Their contributions 

are estimated to be small, because for non-zero w, the Coriolis interaction 

wJ will excite essentially the unpaired states. 
X 

To summarize, we shall include in addition to H
00 

and H
11 

the 

quasi-particle interaction terms given in Eq. (2.5) except that they are 

restricted to act only between orbits with the same parity. For example, 

we shall include those H
22 

terms that couple one quasi-particle pair in 

orbit p with another pair in orbit q, provide orbitals p and q are of 

the same parity. We are thus led to solve the following equations 

(2 .18) 

where ){ = H- H
00

, A = A = A , A = A = A and ljl( Ul) is given by 
P+ P- p N+ N- n 

Eq. (2.12). The total energy of the rotational state is 

[(tv) == Hoo + I 1Afrlw) + w < f(w) /Jx / f(w)) 
'C 

(2 .19) 

+ L_ Ar < lf-ccw) J N J t-clwJ) 
"C ' 
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with 

(2. 20) 

" Note that we have introduced a Lagrange multiplier term>. N in (2 .18) to 

take care of the average particle number relation (2.16). The results 

obtained by solving Eqs. (2.18)-(2.20) are labeled as the BCS calculation. 

As it turns out, the inclusion of the quasi-particle interactions does 

make the calculated results better. 

3. Calculations with particle-number projection 

The wave functions given by eqns. (2.9) and .(2.12) do not conserve 

particle number. The study of Rich [l2] ·.shows that the particle-number 

fluctuations will cuase a 10\ to 20\ error in cranking calculations of 

low""'lying rotational states. Recent Hartree-Fock-Bogoliubov (HFB) 

calculations show that the effect of particle-number fluctuations may 

become very important in the study of backbending phenomenon. For 

. [13] 
example, Dalaf1 et al. show that a not fully self-consistent HFB 

cranking model calculation using BCS wave functions will not reproduce 

168 backbending in Er, while calculation with approximate number-projection 

will. The same group later found, however, that a fully self-consistent 

1 . '11 d b kb d' . 162 . h umb calcu at1on w1 repro uce ac en 1ng 1n Er even w1t out n er 

. . [ 2] ' . . [ 14] 
pro]ect1on . Another example is provided by Faessler et al. ; 

they have applied the partial number-projection method first suggested 

[ 15 ] . h . . '1 1. . . d f d. th t 1 1 t. by Sorensen 1n t e1r HFB ca cu at1ons an qun a ca cu a 1on 

without number-projection will not reproduce backbending in 
166

Yb while 

calculation with two-point number-projection will. Later it was reported 

h . d 1 1 . [lG] . h f . ·'~ . . f '1 t at an 1mprove ca cu at1on w1t . our-po1nt nun~er-proJeCt1on a1 s 
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again to reproduce the back.bending. In this section we shall discuss 

how to apply the fully number-projected wave function with variation 

after projection (FBCS) to solve the cranking equation. 

The normalized projected BCS ground and two quasi-particle states 

can be expressed as[l?] 

cp() = (n~ )i" *A A) d17TI~+I n ( uk +} \4 c; cE) I 0) 
~o ~ ~ ~>o . 

A. I _L rhrJ. t U + + ' I ) 
1r;;= [R;ce>+R~cr)-R:Jf cnr; J ~ 1"o+J ( 1- Pel' Cr - vr 

x 1T ( u~< + 1r ~ c; c; > 1 o > 
k~P 

t '- ( ~' y ~ !:d1 n~tt c;ct D(UkH\4Ckci)to) 
rt- R, lf/6-) ~ """~!~ r ~ k"%f,i ' 

where 2n
0 

is the number of particles. The residuum integrals RN 
n 

appearing in eqns. (3.1)-(3.3) are defined as 

They can be evaluated by the recursion relations given in Ref. 17. 

In a realistic calculation, however, the computation of RN is very 
n 

time consuming, and it becomes one of the main handicaps in using the 

FBCS wave functions. 

We were able to derive a formula which expressed RN in terms of 
n 

·R~ and R~(i) as (see appendix) 

N R )\. (II,,_ .. v,.,) 

(3.4) 

' 

(3.1) 

(3.2) 

(3.3) 

• 
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This enables the expression of quantities calculated with the projected 

wave functions in terms of {uJ, {vJ, {R~ (i)} and Rg. As a result, the 

computational effort of a specific FBCS, calculation only increases by 

about 20% over that of the BCS one. However, in the present BCS calculation 

the chemical potential A has to be adjusted for each angular velocity w; 

this in fact makes the BCS calculation as a whole more time-consuming 

than the FBCS one. 

In terms of these proj~cted bases, the calculations of the proton 

part can still be separated from that of the neutron part. Thus considering 

only the proton (or neutron} part, one can project the total wave function 

of (2.9) term by term and obtain 

where cf>. •; is the normalized projected four-quasi-particle wave function. 
. l.Jpq 

Unlike the BCS case, the cranking equation cannot be solved separately 

in the psoitive- and negative-parity orbital subspaces, even if the 

quasi-particle interactions between different parity orbits are neglected. 

In order to do so, the following approximateions are thus made. 

a. In writing down the secular equation of eq. (2.1} using the 

projected wave function (3.6}, the non-orthogonality relations among 

the ground state <b and the pair states {<pk~k} are only partially applied. 

b. All quasi-particle interactions are neglected. That is, only 

the diagonal matrix element of the Hamiltonian 

(3. 7) 
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are taken into account. 

c. The following relations which hold in the the BCS representation 

are assumed to be also true in the FBCS case, e.g. 

< 4--'j} J)( I cp.ij Pt.) = < 4; I J; I cfpfr) 

<f.i;st IJx J;jpt-> = <cf>st I J)( lcf>r~> 

< fA j J cp~; k -/< > -= ( cfo I <j> 1< -k ) 
Using the .above approximation, the FBCS cranking equation can then be 

diagonalized separately in the four orbital subspaces, namely 

(3.8) 

' (3.9) 

where T = P+, P-, N+, and N-; Jf is given in (3.7). The total energy of 

the rotational state is 

(3.10) 

with 

(3.11) 

The results obtained·by solving (3.8)-{3.11) are labeled as the FBCS 

calculations. 

4. Detailed Calculations 

The deformed single-particle basis used in the present calculations 

is chosen to be identical to that of Nilsson et al. [9] Our treatment 
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of pairing interaction strength is also identical to theirs, namely 

&A N-"l. 
A 

~~ = 7. 4- MeV 
(4. 1) 

' with plus sign for protons and minus sign for neutrons. The BCS equations 

are then solved by including (15Z) l/2 or (15N) l/2 states above and below 

the protron or neutron Fermi level. 

All two~quasi-particle states \ij> with zero-order energies 

are included in our truncated space for rare-earth nuclei, where EA is 

the Nilsson single-particle energy; ABCS' !1BCS are respectively the 

chemical potential and the gap parameter obtained from the BCS calculation. 

In the case of actinide nuclei, the truncation is taken to be 0.75~w0 • 

In fact, we have varied the trlincated energy from 0.7~w0 to 1.2~w0 and 

found that the results differ by only 1%. 

'!'he cranking equation will now be diagonalized separately in the 

four two-quasi-particle subspaces P+, P; N+ and N:: It is interesting to 

note, however, that even in each of the subspaces, the H-wJ matrix can 
X 

be further reduced to block form, provide the following bases are used, 

[ 18) 
namely 

l fl'\t k,, f2 k1)±- if [Jp,,k,, #2 kl) t ,lft2.-kl·,)A, -k,)] J jJ-a!f}-42 

(4. 3) 
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where k is the I component,~is the labeling of the orbit. In order 
z 

to avoid double counting of the two-quasi-particle states, one ha~ k
1

>o, 

k
1 

+k
2 
~ 0; and ~ >~2 if k1 = k

2
• 

The vacuum I~> and the states { 1~1k1 ,~ 2k 2 >t} then form the symmetric 

subspace II+} which is decoupled from the anti-symmetric subspace II-} 

spanned by the states{!~ 1k1 ,~ 2k2 >-}. That is 

{+II H •CA:>Jx II-}== o 

Since we are interested only in the lowest few eigenstates of the cranking 

equation, we can confine the present calculations to the symmetric subspace 

because the solutions of the anti-symmetric subspace which does not include 

the yacuum state in general lie higher. Thus, the size of the H-wJ matrix 
X 

is now reduced by nearly half. For example, using the two quasi-particle 

truncation of (4.2), the largest dimension of the H-wJ matrix of theN+ 
X 

orbital·subspace is about 200 x 200 for rare-earth nuclei and it is about 

300 x 300 for actinide nuclei. However, since the non-zero J off-diagonal 
X 

matrix elements occur mainly along the vicinity of the diagonal line, the 

diagonalization can be carried out quite fast. 

The matrix elements of H-wJ using BCS basis are well known; those 
X 

using FBCS basis will be given in the appendix. 

Before we end this section, two remarks are in order. First, we 

mention that in the. BCS calculation the ground state is treated on the same 

footing as the excited states. That is, the cranking equation (2.18) is 

diagonalized at w = 0 and the pairing parameter v
0 

(BCS) is obtained by 

minimizing the energy equation (2.19). In the FBCS calculation the pairing 

parameter v
0 

(FBCS) of the ground state is obtained by minimizing the 
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ground-state energy (B 1), where U.,V. are again given by eqn. (2.14). 
~ ~ 

The pairing strength g
0 

of the FBCS calculation is chosen so that the value 

of v0 (FBCS) approximately equals the pairing gap parameter ~cs' and the 

lowest 2+state of FBCS calculation approximately equals that of the 

BCS one. Thus, we found 

g
0

(FBCS) = 18.0 MeV for the A~ 165 region 

g·0 (FBCS) = 17.5 MeV for the A ~ 187 and the A ':V 242 region • 

Second, we notice that the projected ground state ~O and the pair 

states { ~k-k} are not orthogonal among themselves. Thus, we have adopted 

a method described by Kumar and Baranger [l9 ] which can be used to diagonalize 

a matrix in a representation spanned by non-orthogonal basis. This method 

is especially suitable for solving the H - wJ matrix, the off-diagonal 
X 

matrix elements of which are mostly zero. 

5. Results and Discussion 

· 162E The present calculations have been applied to four nuclei, r, 

168 b 174 f d 238 Y , H an u. 162 
The experimental specturrn of Er shows back-

b d . h'l th other three do not.[ 20 ' 21 • 221 en ~ng w ~ e e 

The values of the quadrupole and hexadecapole deformations taken from 

'1. 1 (9 ] h . h h 1 1 d d . . N1 sson et ~' toget er w1t t e ca cu ate groun ~state pa1r1ng 

parameters v
0

(BCS) and v
0

(FBCS) of the four nuclei, are given in table I. 

The energies E are plotted as a function of I(I+l) in Fig. 1 to Fig. 4, 

where I is the spin. The dashed curve represents the BCS calculation 

withoutCoriolis-antipairing (CAP) effect, the dotted curve represents 

the same calculation with CAP effect, the dotted curve represents the 

FBCS calculation also with CAP effect. The dash-dot curve is the 

regular cranking result. 
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5.1 Results of diagonalization 

We first discuss the result of pure diagonalization, that is of the 

calculation performed at v
0

(BCS) without taking into account the CAP 

effect and particle-number fluctuation. One inunediately"notices in 

Fig. 1 to Fig. 4 the significance of diagonalization in calculating the 

high spin state. For example, the second-order perturbation calculation 

will produce a straight line in the E-I(I+l) plot, represented by the dash-

dot curve. It is seen that diagonalization alone is able to improve 

the agreement substantially. This indicaes that the deviation from the 

I(I+l) rule in fact comes mainly from the higher-order cranking terms, 

which are now taken into account through diagonalization. Recall that 

we constrain the deformation to be constant. 

Let us now analyze the structure of the wave function of the rotational 

state. For this purpose the vacuum amplitude a
0

(T) in eq. (2.9) is 

plotted as a function of I in Fig. 5, where T = P+, P-, N+ and N-. We 

notice.first that for the rare-earth nuclei, a
0

(P+) and a
0

(N-) stay 

close to unity up to spin I-14. This is because the configuration mixing 
I 

depends.strongly on the matrix elements of WJ between states near the 
X 

chemical potential X. A look at the Nilsson diagram reveals that no 

high-j and low-.0. orbits of P+ or N- types lie close to the chemical 

potential of the rare-earth nuclei, where j and n are the angular mo~enturn 

and its z-component of the singel-particle orbit. Hence, the J matrix 
X 

elements and yonsequently the configuration mixing are small. The situation 

is quite different for the N+ and P- solutions. Let us consider 
162

Er 

for example. The proton chemical potential lies near the 7/2[523] state 

of the lh 11/2 orbit. Since the neighboring states have large values 

of n, the J matrix elements are still relatively small, thus, the 
X 
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configuration mixing becomes important only around spin I-14. The 

neutron chemical potential, on the other hand, lies near the 3/2[651] 

state of the lil3/2 orbit, therefore large configuration mixing occurs 

already around spin I-10. The N+ solution at high spin contains 

mainly two-quasi-particle excitations in the li 13/2 orbits. The two 

neutron quasi-particles are nearly decoupled after spin I-14 as can be 

seen from Fig. 6~ where the value of <J > of each solution is plotted 
X 

f ' f . I I h f 162 't . f F' 6 as a unCtJ.on o sp1n • n t e case o Er 1 J.S seen rom J.g. · 

that <Jx> of the N+ solutio~ reaches about 10 around spin I-14 and increases 

very slowly thereafter. On the other hand, roughly speaking, the P+, 

P-, N- solutions are dominated by the vacuum state with only .a small 

amount of quasi-particle .admixture. Thus, the product of the P+, P-, and 

N- solutions can be considered to represent a rotating core. 

The solutions of 168Yb and 
174

Hf show a similar trend. In the ca~~ 

of 238u and P- and N+ solutions remain quite pure up to spin 18, the P+ 

solution begins to have large two-quasi-particle mixing around spin 

\ 
I-14. This is because the proton chemical potential now lies near the 

3/2 [651] state of the li 13/2 orbit. The two proton quasi-particles 

become. nearly decoupled after spin I-20. The N- solution on the other 

hand, will not become strongly mixed until spin I-18. Thus, the core 

is now represented by the P-, N+ and N- solutions. Therefore, although 

we did not use the rotor-particle model, the present calculation shows 

this picture is basically correct, provided one keeps in mind that the 

concept of an inert core with constant moment-of-inertia becomes 

increasingly inaccurate beyond spin 14 in the case of rare-earth nuclei 

and beyond spin 18 in the case of 238u. 
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162" The very different natures of the N+ solutions of Er at low 

spin, dominated by the vacuum component, and that at high spin, dominated 

by the two decoupled quasi-particles, are actually the results of band-

crossing. In order to illustrate this, the vacuum amplitude a
0

(N+) of 

the second lowest solution n = 2 of 162Er as well as that of the 

n = 1 solution are plotted as a function of angular velocity w in Fig. 7. 

It is interesting to see that the two solutions actually cross each other. 

That is , the overlap with the ground state of the n = 2 solution is 

larger than that of the n = 1 solution after w-0.28. Similar crossing 

also happens in 168Yb and 174Hf. In the case of 238u, it is seen from 

Fig. 7 that the first two P+ solutions cross after w-0.22. 

We next study the effective moment-of-inertia defined by 

The ratio of ~ obtqined by diagonalization to that obtained by second-

order perturbation (ordinary cranking) are plotted in Fig. 8. For the 

(5 .1) 

purpose of comparision both results are calculated in the BCS approximation 

omitting the quasi-particle interaction and evaluated at ~Bcs· The small 

configuration mixing of the P+ and N- solutions of the three rare-earth 

nuclei indicates that their moments-of-inertia should change only 

slightly as the spin increases. This is indeed true as can be seen 

from Fig. 8, where the values of the above-mentioned ratio are all close 

to orie. 

The moment-of-inertia~ of tpe P- solution of 
162

Er near I-18 and 

that of the N+ solution near I-8 both show moderate increase (by a 

factor of 2). This can be attributed to the moderate amount of two 
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quasi-particle excitations due to higher-order cranking in the solutions 

near these spin values. On the other hand, the large increase of ~ of 

the N+ solution around spin I~l4 (l:>y a factor of 6) has a different origin, 

the band-crossing. As we have discussed above, the structure of the 

yrast state after crossing is very different from that before crossing, 

thus causing the large increase in the apparent moment-of-inertia. 

n. . 168 . 
Similar trends of J for the P- and N+ solutions also occur in Yb and 

174
nf, ·except now the maximal increase of ~is l:>y a factor ·of 4 (see 

Fig. 8). In the case of 238u, the moments~of-inertia g of the P- and N+ 

solutions change very little up to spin 24. There is a moderate increase 

of ·~ (by a factor of 2) of the N....; solution around spin I-24 and of the 

P+ solution around spin 1~10 due to higher-order cranking. There also 

appears a large incr~ase of ~ of the P+ solution (by a factor of 7) 

around spin 20 because of band-crossing. 

Another quantity of interest is the collective gyromagnetic ratio 

gR, which can be expressed approximately as 

~ ~ 9e 
R ~,~p -t ~n (5.2) 

where ~p and ~n are the moment-of-inertia of the proton.part and neutron· 

part, respectively. We have neglected the spin contribution in eq. 

(5.2) which amounts to about ld%! 231 The ~p and ~n are calculated by 

eq. · (5.1), the results for the rare-earth·nuclei and that of 238u are 

. . . 
plotted as a function of spin r·in Fig. 9. It is interesting to see 

that the gR factor behaves quite differently in the two cases. For 

rare-earth nuclei, the gR factor decreases first up to spin around 12 

and then gradually increases~ The behavior of gR is just the opposite 
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238 
for U; there the gR facto:r;- first increases up to spin around 18 and 

then decreases. The reason is the following: in the case of rare-earth 

nuclei the large two-quasi-particle mixing in the N+ solution causes 

n to 
Tn 
of (\ 

lfn 

increase while 9-P 
levels off and ~p 

stays about the same. After spin 12 the increase 

first and then increase. 

begins to increase, thus leading gR to decrease 

In the case of 238u, however, the large 

configuration mixing in the P+ solution caus~s 9 to increase first, 
p 

thus reversing the behavior of gR. 

5.2 Coriolis-antipairing effect 

The calculated energy which takes into account the CAP effect is 

represented by the dotted curves in Fig. 1 to Fig. 4. Although the CAP 

effect always improves the results by lowering the energy by about 0.2 

MeV to 0.3 MeV for high-spin states, it is not the main source of the 

rapid increase of the moment-of-inertia at high spin. 

The proton and neutron pairing parameters \i and v are plotted as 
P n 

dotted curves as functions of spin. I in Fig. 10. In the case of rare-

earth nuclei, the neutron v first decreases to half its ground-state 
n 

value at spin around 12 and then stays about the same up to spin 18. 

The proton pairing parameter v also decreases but at a slower rate. 
p 

It does not decrease seriously until around spin 14 and even at spin 

18, 70% of the proton pairing still remains. In the case of 238u, the 

proton pairing decreases at a faster rate than neutron pairing; in both 

cases 1 however, 50% of the pairing still remains at spin 22. 

The attenuation of pairing is closely related to the two-quasi-

particle mixing in high-spin states. In the case of rare-earth nuclei, 

for example, the neutron orbits of positive-parity become rapidly blocked 
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as the amount of the unpaired two-quasi-particle excitations in the N+ 

solution increases •. This blocking of orbitsthus curtails the pairing 

effect. At spin.around 12, the neurtron orbits of postive-parity are 

essentially blocked causing the neutron pairing to reduce by half. Any 

further weakening of pariing must now come from the blocking of the neutron 

orbits of negative parity. But the small configuration mixing of the N-

solution indicates that the N- orbits are largely unbloeked up to spin 18, 

leading to the fact that the neutron pairing stays almost unchanged from 

spin 12 to spin 18. It will diminish again when the quasi-particle 
. ·. ' : 

excitations in the N- sol~tions become large which of course will eventually 

happen at very high spin. our present calculations, however, indicate that 

there ~s no pairing collapse up to spin 20 for rare-earth nuclei. The 

!:eduction of proton. pairing can be understood in similar way. For example, 

its slower .rate of reduction is due to the fact that configuration mixing 

in the proton wave function is quite small until around spin 14. After 

that th~ two-quasi-:-particle excitations rapidly increase and the proton 

pairing also diminishes accordingly. 

The CAP effect in 238u follow similar trend, except now the large 

two-quasi-particle mixing in the P+ solution causes the proton pairing 

to decrease at a faster rate than the neutron pairing. 

In the HFB calculations of Ref. 2 the pairing in the high-j orbitals 

subject to decoupling falls more rapidly with spin than for other orbitals. 

our simplifying ass~ption of eqn. (2.14) contrains pairing to be about 

the same in. all orbitals, and thus our variational solutions would not be 

as low in energy as those with all Vk as variational parameters. Both the 
[2] 

HFB and our calculations agree that there is not a general pairing collapse 



in the backbendins or near backbending region. 

We shall no~tJ study the influence of the CAP effect on the moment-of

inertia~· For this purpose we extract~ from the calculated energies by 

the standard formula 

41-2 
AE<I_.I.-1) 

The values of the ratio (~I - ~2 )/ ~2 obtained from diagonalization alone 

(the dotted curve) and that obtained from the full calculation (the solid 

curve) are plotted as a function of spin I in Fig. 11. Only the results of 

162 174 . Er and Hf are glven for tllustration. The dotted curve rep:;esents 

the fractional increment of the moment-of-inertia ~ at spin I over that at 

spin 2 due to dialjonalization without CAP, so the di-fference between the 

solid curve and the cruresponding dotted curve represents the fractional 

increment due to the CAP effect. It is seen that the CAP effect and the 

higher-order cranking both contribute importantly to the slow increase 

of the moment-of-inertia.~ at low spin I~B. However, the rapid increase 

of n at high spin is maily due to the crossing of the decoupled band, {f 

as we have discussed in the last r;ection. Here the CAP effect only plays 

a minor role. 

In the aboye discussion the meaning of CAP effect is restricted to 

a narrow sense; that is if the pairing parmeter is kept fixed at v
0

, we 

consider the calculation made without CAP effect. This is not true in a 

broad sense. For example, the decoupling of two neutron quasi-particles 

in the li 13/2 orbit at constant v0 does imply a decrease in the pairing 

"'· 
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field 

<F> <'LT2 
k>o 

Using the BCS solution (2.9), the expectation value of the pairing field 

operator for neutron can be written as 

(5.3) 

and a similar expression for proton. 

with fixed pairing parameters von and \) given in table I, <F > decreases 
op n 

from 0.92 MeV at ground state to 0.81 MeV at spin I = 18; and <F > decreases p 

from 0.94 MeV at ground state to 0.90 MeV at I = 18, since the two-quasi-

particle admixture in the latter case is much smaller. For calculations· 

including CAP effect the values of v and <F> differ by less than 5%. 

This is because ~ is larger than v in general, the difference ~-V increases 

as v reduces, this partially cancels the negative contributions of the 

second and third terms in eqn. (5.3). 

Finally, we want to mention that the increase of neutron pairing 

after spin 12 in 168Yb accompanies a fall in proton pairing and rise 

in proton moment-·of-inertia. The results of the FBCS calculation do not show 

this behavior. 

5.3 Results of Particle-number Projection 

The results of FBCS calculations with the inclusion of CAP effect 

are plotted as solid curve in Fig. 1 to Fig~ 4. In general the FBCS results 

are slightly better than the BCS ones~ It is interesting to see that the 
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fixed-particle-number correction does not change appreciably as the excitation 

energy increases. Thus, the BCS approximation is quite reliable even for 

high-spin states where substantial quasi-particle excitations are present 

in t.he wave functions. The FBCS calculations also give a somewhat smaller 

CAP effect than that given by the BCS ones, as can be seen in Fig. 10, 

where the FBCS calculations are represented by the solid curves. For 

example, the nuetron pairing parameter v and the proton pairing parameter 
n 

v have still about 70% of the ground-state values at spin around 18. 
p 

5.4 
162 

Backbending in Er 

The present calculations are able to reproduce the energies of the 

high-spin rotational states quite well without introducing any free parameter. 

However,. we can reproduce actual reversal in the monotonic increase of 

162 
rotational level spacing (backbending) in Er only by shifting the 

Nilsson single-particle levels. In this section we shall discuss this 

problem in detail. 

It·was pointed out by Sorensen[l] that the exact treatment of cranking 

formalism without angular momentum projection ~ill not produce backbending. 

This failure is attributed to the fact that large spreading in <J > will 
X 

occur in the cranking solution at the band crossing regiori, thus smoothing 

out the backbending effect. Recently, Hamamoto[
241 

showed that HFB 

calculations without self-consistency, that is, in which the pairing field is 

kept constant for all values of w. are also unable to produce backbending 

for the same reason. But a detailed study by Sorensen on the two-level 

pairing model [251 does demonstrate that if the self-consistency of pairing 

is properly taken into accotmt, the HFB calculation will reduce the spreading 

in <J > and consequently produce the backbending behavior, although in 
X 

realistic case the HFB calculation may be less accurate in the backbending 
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region as was pointed out by Chu et al. [261 

The present method of diagonalization show similar features. According 

[1) 
to the general arguments of Sorensen, diagonalization of the cranking 

equation (2.1) alone without taking into account the CAP effect will not 

produce backbeilding. The reason is that for each value of w only the lowest 

soltuion of W(w) of eqn. (2.1) corresponds to the yrast state, since the 

eigenvalue curve W(w) as a function of the parameter w will not cross 

itself ('the "no crossing" rule); therefore there will be only one yrast 

state for each w, and backbending will not occur. However, in addition to 

diagonalization, we also treat 'che pairing self-consistent·ly, i.e. for each 

value of'w the pairing parameter vis varied after diagonalization to 

study the CAP effect. Although our treatment is not fully self-consistent 

in the sense that we do not vary all Vk but only v. Nevertheless, one may 

now obtain two or more minima of o<H-wJ > = 0 at different values of v 
X 

for a given w, wich make it possible for backbending to occur. Note that 

the eigenvalues at the different minima of a given w now correspond to 

different Hamiltonians, so the above "no crossing" rule is no longer valid. 

Similar consideration are also true in the case of self-consistent HFB 

treatment, as pointed out by Sorensen.[ 251 

The numerical results and how several minima of o<H-wJ > = 0 may occur 
X . 

by variation of v will now be discussed. Our calculations indicate first 

that pairing collapse does not happen in rare-earth nuclei up to spin 

r-20. Thus, it is not a so·urce of backbending in 162Er. On the other hand, 

we observe the crossing of the ground band and the de~oupled two-quasi-

particle band in all four nuclei under study. We notice that in the 

present calculations the decoupled band crossing can occur in two ways. 



26 

It can either occur by increasing the angular v_eloci ty w while keeping 

the pairing parameter \! fixed (cf. Fig. 7), or it can occur in the study 

of CAP effect where\! is varied while w is kept fixed (cf. Fig. 12). As 

we have already discussed, the first type of crossing in w-space with \! 

kept constant will not produce backbending, but the second type of 

crossing in \!-space with w kept constant may produce two or more minima, 

thus making it possible for backbending to happen. 

Until now the decoupled band crossing in the \!-space is quite smooth 

(cf. Fig. 12), and we always obtain one minimum in the variation of \!i 

thus backbending is not found. However, the way the decoupled band 

crosses depends strongly on the single-particle levels located near the 

chemical· potential .\. It is at this point that the uncertainty sets in. 

Although the single-particle levels as a whole are well described by 

Nilsson model, the spa~ing between individual levels, nevertheless may 

be in error by several hundred keV. In the following we shall try to 

shift the single-particle levels to st.udy the sensitivity of the backbending 

phenomenon. 

162 
In the case of Er the neutron chemical potential A is located n . 

between the i 13/2, 3/2 [651] stat.e and the 5/2 [642] state. These 

states have energies of 6.3441\w
0 

and 6.457-flw
0

, respectively. It is not 

our intention here to search for better sin~le-particle neutron levels. 

Instead the emphasis is tostudy their influence on the backbending. 

Therefore we arbitrarily shift the energy of the 3/2[651] state to three 

different values, namely 6. 37 -f\ w
0

, 6. 40 -K w
0 

and 6. 42 -Kw
0 

(denoted as 

calculation B) and repeat the FDCS calculations. In the first case, 

backbcnding still does not happen; in the second case it occurs at 



0 0 

27 

I = 6 and in the third case (calculation B) it occurs at I = 12, while 

experimentally backbending occurs at I = 16. 

The reason that one obtains backbending in the third case is the 

following. First one observes that the band crossing in the v-space is 

now sharper than the previous one in which the original Nilsson single-

particle levels are used, see Fig~ 12. One then finds that in the study 

of the CAP effect, the variation of o<H-wJ > = 0 with respect to the 
X 

neutron pairing parameter v has one minimum for w<O.l70 MeV; it has two 
n 

minima for 0.170 S. ul ~ 0.185, and again it has only one minimum for w > 

0.185 MeV. The results are plotted in Fig. 13, the existence of two 

minima for' a given value of w in the above-mentioned region thus produces 

the backbending. 

The nature of the solutions at these two minima are very different. 

In order to illustrate this, the vacuum amplitude of the N+ solution 

a
0

(N+). is plotted againstvn at three values ofw in Fig. 14. Forw = 0.16, 

there exists only one minimu at vn 0.98 with a 0 (N+) = 9.980; thus the 

.solution.belongs to the ground band. For w = 0.18, there are two mimima, 

the first one is located at vn = 0.96 with a
0

(N+) = 0.956, while the second 

one is located at vn = 0.74 with a 0 (N+) = 0.076. Obviously, the first 

solution has the character of the ground band, while the second solution 

has the chpracter of the decoupled band. Thus, two solutions of different 

nature coexist at W= 0.18 MeV. For w = 0.20 MeV, there exists again only 

one minimum at vn = 0.73 with a
0

(N+) = 0.075; thus, the solution belongs 

to the decoup1ed band. 

By interpolating the.so1utions from w = 0 to ul= 0.185 MeV of the 

upper branch (v ~ 0.90) in Fig. 13, the states of spin I = 2, 4 can be 
n 

obtained. On the other hand, the states of spin I = 12, 14, 16, 18 can 
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be obtained by interpolating the solutions from w = 0.170 to w = 0.40 

of the lower branch (v ~ 0.75). However, we are unable to obtain the 
n 

solutions of spin I = 6, 8, 10 by 

they are obtained by variation of 

variation of o<H-wJ > = 0. In fact, 
X 

o<H> = 0 with <J > = [I(I+l)]l/2 . That 
X 

is, the cranking equation is first solved on a two dimensional mesh 

of points (v.,w.). For each v. the results are interpolated to give 
l. J l. 

the solution of a given spin I, and the minimum of o<H> = 0 with variation 

of v can then be searched. This method works very well in the backbending 

region, -and both methods yield the same results for other spins. The 

present results resemble those of the HF'B cranking model calculations 

f 
. [2] 

o BanerJee et al. They vary the set of Vk and find two minima of 

o<H-wJ-> = 0 in the region of 0.2044 ~w ~ 0.2099, and they too are unable 
X 

to obtain the solutions of I = 10, 12 by variation of o<H-wJ > = 0. 
X 

The calculation with the il3/2,3/2[651] single-particle energy 

shifted to 6.42~w0 is denoted as calculation B; its energies are plotted 

in Fig.' 15 together with the FBCS results calculated with the original 

Nilsson levels. One notices first that on the·avera.ge the latter is better, 

but the former produce backbending while the latter does not. Second, 

in calculation B the enrgy interval AE(lO + 8) is smaller than the dE(8 + 6) 

by 3 keV which seems to be insignificant while the energy interval AE(l2 + 10) 

is smaller than the AE(lO + 8) by 17 keV; thus, we consider the backbending 

occurs at spin I = 12. Experimentally the backbending occurs at I = 16. 

In order to understand the differnence we observe that the two quasi~ 

particles in the N+ solution at spin I = 12 are already decoupled. In 

fact the value of <J >of theN+ solution alone increases from 9.2 at· 
X 

I= 12 (w c 0.19) to 10.3 at I= 18 (w = 0.40). On the other hand, 

·•. 
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the <J > of .the N- solution at I = 12 is 1. 8 and that of. the proton 
X 

solution is 1.5. This suggests that in order to raise the value of 

spin at which the backbending occurs one probalby has to increase the 

contribution to the angular momentum by the N-, P+ and P- solutions, which 

represent the rotating core. 

We now compare the wave functions of the N+ solutions to those of 

the neutron il3/2 solutions of Stephens and Simon.[?] Only the six largest 

amplitudes of the states at the band-crossing region are listed in Table II which 

are the states of spin I = 10, 12 in our case and the states of I = 16, 18 

in theirs. For comparison purpose our listed wave functions are those 

without CAP effect. It is interesting to see that the two. sets of wave 

functions are quite similar to each other. 

The above results seem to indicate that the backbending behavior 

is very sensitive to the exact spacing of the single-particle levels 

near the chemical potential A. This is understandable because the present 

calculations show that the decoupled band crossing occurs in the N+ 

solutions for all rare-earth nuclei below spin 20, but there is a strong 

influence of the local single-particle levels near A determining how 

sharply the corssing occurs, causing some nuclei to backbend while near 

neighbors do not. However, the present c.alculated result of backbending 

probably is too sensitive to the single-particle level spacing, perhaps 

due to the spreading in <J > at the band-crossing region. Cranking 
X 

calculations with angular momentum projection will certainly provide 

deeper insight into this problem. 

5.5 The excited solutions 

So far we have focused our attention only on the lowest solution, 
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which corresponds to the yrast band. The diagonalization, unlike variation, 

also gives many other solutions at higher energies. Since the total 

wave function is the product of the P+, P-, N+ and N- solutions, for 

rare-earth nuclei the lowest solution (n = 1) is 

In = 1 > = IP+, n = 1 > 1 P-, n = 1 >I N-, n = 1 > I N+, n = 1 > 

while the second lowest solution (n = 2) is 

In = 2 > = IP+, n = 1 >I P-, n = 1 > I N-, n = 1 > 1 N+, n = 2 > • 

We have already mentioned before that the lowest N+ solution crosses 

the second lowest N+ solution at high spin, see Fig. 7. Therefore it 

is of interest to know whether the second solution after crossing 

will form a second branch of the ground band. In Fig. 16, the energies 

of the two lowest solutions of the FBCS calculation with CAP effect 

. 1 d d 1 d f . f . f 174 f 1nc u e are p otte as unct1on o sp1n I or H . The lower curve 

represents the n = 1 solution while the upper curve represents the 

n = 2 solution. Some of the corresponding w values are also indicated 

along.the curve. The cusp of the upper curve where the total spin decreases 

with increasing value of w results from the band crossing. This is 

because the vacuum amplitude of the second N+ solution increases with 

w due to crossing (see the graph at the upper corner of Fig. 16); as a 

result, the angular momentum of the N+ solution decreases with increasing 

w although the angular momenta of the P+, P- and N- solutions, which represent 

the core, continue to increase. Figure 16 seems to indicate that it is 

possible that a second branch of the ground band may appear at high 

spin. However, the above discussion is only preliminary, since our 

[24] 
result of the excited solution resembles the HFB calculation of Hamamoto , 

\o!ho showed that the excited solution contains large spreading in <J >. 
X 
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Therefore care must be taken in interpreting the excited state solutions. 

We have not felt it justified to calculate B(E2) transition rate values 

between bands because of non-orthogonality uncertainties. That is, 

our ground and excited solutions are orthogonal at fixed angular 

velocity w; but in general these solutions correspond to different angular 

momentum I. Hench at fixed I and different w the solutions may depart 

from orthogonality. Any detailed interpretation of the multiple-valued 

solutions at fixed I in the I-12 cusp region of Fig. 16 must also take 

the non-orthogonality problem into account. 

6. Conclusions 

The high-spin rotational states of 162Er, 168Yb, 174Hf, and 238u 

were calculated microscopically by diagonalizing the cranking model using 

both BCS and fully particle-number-projection wave functions. The 

results show that the fixed-particle-number correction does not increase 

appreciably as the spin goes up; thus, the BCS method can still be applied 

to high-spin states without serious error. We have studied three sources 

that cause the moment-of~inertia ~to increase, the CAP effect, the 

higher-order cranking and the decoupled band crossing with the deformation 

kept fixed. The first two factors both contribute significantly to the 

slow increase of ~ at low spin. The third one is mainly responsible for 

the rapid increase of 9 at high spin. We do not find pairing collapse; 

in fact substantial proton and neutron pairing still remain up to spin 

I-20. 

In the present calculations, the self-consistent treatment of the 

pairing effect is vital in order to obtain backbending behavior, which 
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also depends very strongly on the two high-j low-~quasi-particles being 

near to the chemical potential. These results are affected to some 

extent by the undetermined spreading in <J > of the cranking solution 
X 

at the band-crossing region. A deeper understanding of backbending 

behavior thus calls for a more careful study of the <J > spreading problem. 
X 

The problem of nuclear rotational band theory and backbending must 

be regarded as still open, despite all the cranking model and HFB studies 

to date. We believe that our demonstration in Sec. 5.4 of the great 

sensitivity of backbending to shift of just one orbital energy near 

the chemical potential underscores the difficulty of exact matching of theory 

and experiment. It is often not clear in HFB calculations just how well 

the orbital energies near· the chemical potential match experimental 

observations from the band head energies in neighboring odd-mass. nuclei. 

Our calculation, though lacking the number of variational parameters 

of some·HFB studies and lacking self-consistency in the imposed average 

field, has the advantage of being closely tied to the sophisticated 1969 

version of the Nilsson model, with potential parameters and pairing constants 

fine-tuned to reproduce well the experimental level ordering, the occurrence 

of subshells, and the odd-even mass differences. 

One of the important next steps, though difficult, will be for 

calculations to incorporate a more realistic Hamiltonian than pairing 

plus quadrupole-quadrupole or surface delta interactions. Even for the simpler 

cases of spherical near-closed-shell nuclei the effective residual shell 

model interaction question is not resolved, despite advances through 

Kuo-Brown renormalization, use of density-dependent, velocity-dependent 
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interactions, Skyrme forces, etc. We pointed out some tim<? ago that the 

constant pairing matrix element approximation systematically deviates 
[27] 

from results of a delta force or finite-range Gaussian force. Namely, 

the more realistic forces give diagonal pairing matrix elements considerably 

larger than off-diagonal. Thus, there is actually less pairing configuration 

mixing than is given in the ordinary constant pairing treatments. See for 

example the recent work of Chasrnan on deformed nuclei using a density

dependent delta interaction. (2a] This interaction would seem promising 

for future calculations of the nuclear rotational state properties. 

Of course, refined treatments should take into account the full H22 

interaction between quasi-particles. In view of the great complexity of 

the rni.croscopic nuclear rotational theory it is encouraging that there 

is additional experimental information corning forth, as very heavy 

ion beams are used to measure E2 matrix eiements between high-lying 

rotational states of ground and crossing bands in the backbending region. 
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Appendix 

A. Derivation of equation (3.5): 

We want to prove first the following auxiliary formula 

:a v 2 
'1 )\. = cJ n u ~ t ~ .. · 
T )'\.(\/. ,1 V 2 

4ll ... , ... VN " 
2 \ /2 

1\ ' \ /l(f/·~-1) 27\ TT Ute + l Vf< 
+l-1) L vA u. v:l ,,z 

h v, ... liN A k ="' ... ~ A - v I< 
~l 

a. n = 0: 

(Al) 

It is easy to show that eq .. (Al) with n = 0 is correct for N = 1, 2, 

3. Now if (Al) holds for n = 0 and N = M + 1, then consider the 

identity 

I= V: J{ 1 Vt) ---(Us+~ s 
v/ -v: ·, 

(A2) 

Multiplying the first and the second term in the right-hand side separately 

by (Al);with n = 0, N = M + 1, 

' 
N = M + 2. Thus eq. (Al) is correct for n = 0 and any N~l, namely 

2 v.z 
I \J..a.CAI-1) n uk + ). ~< /J?, I - v/ vlcz (A3) .4 

.A : 1), ••• v
111 lc. ~ ·- v. I fJ 

*l • 
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b. n = l: 

Consider the identity 

1= 
(A4) 

It is obvious that (Al) reduces to (A4) for N = n = 1. For N~2, we 

multiply ·separately the first and the second term on the right-hand side 

by (A3),- but one with N = M and the other 1with N = M + 1. Then it is 

easy to show that eq. (Al) holds for n = 1 and N~2. 

c.. n = 2 

Consider the identity 

ut + 1- v; 
V./ 

(AS) 

Replacing z in the first and the second term on the right-hand side 

spearately by (Al), but one with n = 1, N = M~l and the other with 

n = 1, N = M + 1, one can show that eq. (Al) is true for n = 2. 

d. Arbitrary n: 

We have now shown that (Al) is correct for n = 0; l, 2. If (Al) 

holds for n = m, then consider the identity 

t'\\ ... , 

1. -
(A6) 

By applying a similar method to that described above, one can show that 

(Al) is also true for n = m + 1. Therefore eq. (Al) hoids for any 

value of n. 
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One can now substitute zn inside the integral of eq. (3.4) by (Al), 

this immediately yields eq. (3.5). 

B. Matrix elements used in the FBCS calculations: 

We list below some of the Hamiltonian and J matrix elements using 
X 

FBCS wave functions (3.1)~.3). 

I 

(Bl) 

( e1. t~c .. er) U~<2 R,'ck) + ~ ~ uk vk ~uP~ R,\k.r> 
f>O . 
t-1< 

+ 2. Cl Zr-&-> v; R!tk, J, f) 
p>o 
?k,J 

- Gr L u ~ vr u g. vb- R: c k. J , r, t) 
r. t >o 
P~t.~~~J 



x· 

• 

It is then simple to calculate the matrix elements in the synunetric 

representation II+}, see eqn. (4.3). 
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Table I. The quadrupole and hexadecapole deformation parameters £
2 

and £4 are taken from Ref. 9. The pairing parameters v
01

(BCS) and 

v01 (FBCS) in MeV are calculated with pairing strength as given in 

Eqs. (4.1) and (4.4) where T = proton or neutron. 

Nucleus £2 €4 "op(BCS) "op(FBCS) vOn (BCS) von (FBCS) 
( 

162Er 0.242 -0.007 0.935 1.015 0.915 0.975 

168Yb 0.255 0.014 0.900 0.990 0.815 0.830 

174Hf 0. 258 . 0.034 0.860 0.910 0.765 0.810 

238u 0.205 -0.038 0.760 0.830 0.610 0.630 
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Table II. Comparison of the wave functions of the N+ solution of cal-

culation B with those of the neuton i 13/2 solutions of Stephens and 

Simon (SS) 
7

. Only the six largest amplitudes of the states at the band 

crossing region are listed. (n. ,n.) denotes the I components of the 
l. J z 

two quasiparticles in the SS solutions 

w. ,n. > I~> 3 3 5 3 5 1 7 5 5 .!.) (2,- 2) (2,- 2) (2,- 2) (2,- 2) (2, 
l. J 2 

ss, I = 16 0.730 0.225 0.469 0.265 -0.178 0.152 

Calc. B, 0.581 0.309 0.448 0.202 0.000 0.086 
I = 10 

w. ,n .> 
l. J 

I()> 3 3 (2,- 2) 5 5 (2,- 2) 3 1 (2,- 2) 
5 3 (2,- 2) 

5 1 (2,- 2) 

SS, I 18 0.329 o·. 325 0.219 0.289 0.498 0.389 

Calc. B, 0.343 0.361 0.367 0.251 0.550 0.241 
I = 12 



Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 
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FIGURE CAPTIONS 

162 
Energy E versus spin I(I+l) for Er. The dashed curve represents the 

BCS calculation without Coriolis-antipairing effect, the dotted curve 

represents the same calculation with CAP effect, the solid curve is the 

fixed-particle-number-projection (FBCS) calculation also with CAP effect, 

and the dash-dot curve is the regular cranking result. The experimental 

data are indicated by dots. 

Energy E versus spin I(I+l) for 
168

Yb, see Fig. 1 for detailed explanation. 

Energy E versus spin'I(I+l) for 
174

Hf, see Fig. 1 for detailed explanation. 

238 
Energy E. versus spin I(I+l) for U, see Fig. 1 for detailed explanation. 

The.vacuum amplitude a
0

(T) in eq. (2.9) versus spin I, where T(= P+, p-, 

N+ and N-)represents the proton and neutron solution with positive and 

negative parity, respectively. 

The contributions to <J > by the P+, P-, N+, and N- solutions are plotted 
X 

as functions of spin I. 

The·vacuum amplitudes a
0 

of the lowest solution n = 1 and the second 

lowest solution n = 2 are plotted as functions of angular velocity w, 

note the crossing of the two solutions. 

The ratio of the moment-of-inertia obtained by diagonalization to that 

obtained by second-order pcrturbz1tion is plotted as a function of spin 
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Fig. 9 The collective gyrornagnetic ratio gR versus spin I. 

Fig. 10 Coriolis-antipairing effect: the pairing parameters v and v are 
P n 

plotted as functions of spin I. The dotted curve represents the BCS 

results while the solid curve represents the FBCS results. 

Fig. 11 The fractional increment of the moment-of-inertia (9!- ~2 >192 versus 

Fig. 12 

Fig. l3 

spin·r. The dotted curve represents calculations without CAP effect 

while the solid curve represents those with CAP effect. 

162 
The vacuum amplitude a

0 
of the N+ solution of Er versus the pairing 

parameter v for fixed angular 
n 

to calculations using the 1969 

velocity w. The lower graph corresponds 

'1 . 1 . 1 1 (g) h '1 N1 sson s1ng e part1cle eve s w 1 e 

the·upper graph represents calculations in which the neutron level 

3/2 ij;sl] is shifted. 

Th . . f 162 . 1 d f . f e neutron pa1r1ng parameter v o Er 1s p otte as a unct1on o. 
n 

angular velocity w for calculation B. Note the existence of two so-

lutions in the region 0.170 ~ w ~ 0.185. 

" Fig. 14 The vacuum amplitude a
0 

of the N+ solutions of 
162

Er versus the pairing 

parameter v at three different values of w. The dot denotes the solu
n 

tiori which' minimizes <H - WJ >. 
X 
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Fig. 15 Comparison between the experimental and calculated rotational energies 

of 
162

Er. The second column represents calculations in which the neutron 

level 3/2 [65~ is shifted while the third column represents calculations 

using the 1969 Nilsson energy levels(9~ The numbers between levels are 

their energy differences in keV. The symbol * has been used to indicate 

a backbending transition. 

F . 16 E . f 162 1g. nergy E versus sp1n I or Er. The lower curve represents ~he lowest 

solution (n = 1) while the upper curve represents the second lowest solu-

tion (n = 2). The vacuum amplitudes a
0 

of the two solutions are plotted 

as functions of angular velocity w in the upper corner. 
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