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Microscopic Calculations of High-Spin Rofational States*
Chin W. Ma
Cyclotron Insﬁitutg and Physics Department, Téxas-A&M Univérsity, Coilege
| Station( Texas. 77543 |
| and |
John O. Rasmussen

‘Lawréﬂce Berkeley Laboratory, University of California,;Berkeley,
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Abstract

The high—spin rotaﬁiéhai.ététes of 162Er,-.l-e-aYb, 174ﬁf, and 2380
are calculéted_micfoScopic;lly by diagonalizing.the-crankisé Hamiltonian
H;me usingbboth BCS ahd fullyvparticle—number projected wave functions.
The coméutétion;i éfforé inzthe la££er case is greétly feducéd due to a
newly de:ived-compact formula for the residuum integral. The results
show thét bairing coilapse does not occur invall foﬁr nuélei.up to spin
- 20. _The:moderate incfease of the moment-of-inertia a£ low spin is due
to both higher-order cranking.and Coriolis—anti-pairing effecﬁs. The
crossing of the decoupléd two quasi—partiéle band with the ground baﬁd
is fesponsiﬁie.for.the rapid increase of the momeﬁt-of;inertia at high
spin. The presep£ calculations afe able to produce the‘rotationél
‘~enérgies fairly well in qenerél,lbut the Nilséon single-?a;ticle leVels
have.to'be ;djustéd in.ofder to feproduce the backbending behavior in
162Er. . o .

IF&U&LEAR ;Tﬁuciuﬁz Eéiculated ﬁiéh—séinertationél stétes by

N

diagonalizing cranking model. New formula for particle-number

et

1 projection. gR factor, backbending, Coriolis-anti-pair;ng'and

Lfotational alignment effects.

-



‘l. Introduction

The energy spaciing of the high~spin nuclear rotational states,
especially the backbénding behavior, has been an interesting subject for
many expérimental and theoretical studies in recent years!ll The rapid
increase of the moment-of~inertia at high spin which causes a reversal
of the mdnotohic increase in level spacing (backbending) to happen in
- some nuclei is considered generally to be the result of the.crossing of
the ground band with an excited band of 1§rge moment-of-inertia whose
real nature is stiil a 4uestion of debate. There exist now several
‘microscopic Hartree-Fock-Bogoliubov (HFB) calculations which either_are.

[2-5] (6]

based on the cranking mode or use angular momentum projection. ?he
general Cénsensus of these 'studies is that the two most important factors
which cause the nuclear moment-of-inertia to rapidly increase are the
rotational alignment effecé?land the Coriolis anti-pairing (CAP) effect!sl
The quantitative results of these studies for particular nuclei, however,
can be guite different. Fof.instance, some éalculatiohs may obfain
pairing collapse while others do nét;

In the present paper we shall study the high-spin rotational states
by diagonaiizing the cranking Hamiltonian:H—wa. Our diagonalization
method resembleé the Coriolis matrix diagonalization approach of Stephens
and Sim047lexcept-that we start with a ﬁicroscopic Hamiltonian Qith pairing
correlation as variation parameters, whereas they use thevrotor plus
particlé model with pairing fixed. The microscopic nature of the present
calculation makes it possible to study the different cohpetinq effects,
for example, the rotational alignment effgct, the CAP effect, etc. in a

self~consistent way. BCS wave functions in some cases and fully particle-

number projected (FBCS) wave functions in others are used in the present
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'Caiculatiohs to study the fixed-particle-number correction for high-spin

states.
" The totational spectra of'l62Er, ;68Yb,'174uf, and 238U are caléulaﬁed.
Experimentally, leEr shows backbending while the other three do not.

We discuss the diagonalization method in section 2 and the particle-
number projection in section 3, The detailed calculations and the

results are presented in sections 4 and 5. Section 6 gives the conclusions.’

2. Diagonaliiation of the cranking equatidn
~ We start with the cranking equation

(H-oT ) e = WarFw 2.1
where w is the angular veloc1ty which is related to the anghlar momentum

I by the constraint ' - o -
S(E(u))ljxi{/(w» / (I -H - (2.2)
The Hamlltonlan H is chosen to be 1dent1ca1 to that of Nllsson et al!gl

who included the Nilsson single-particle Hamiltonian plus a pairing

interaction.

H=Z Ek(C; C + Ci C;;‘ - Z Ce Ck Cr CP ;2
k>0 : . . ' k, p>o . o .

P . . e .
where_Ck and Ck are the.particle creation and annihilation operator

respectively; k is the Iv component along the nuclear symmetric axis, G

is the pairing strength, and the time-reversed state is defined as

Ky =k

We first carry out the Bogoliubov-Valatin:quasi-particle transformation .

-+ + . S |
Ay :"‘Uk G - Vk Cf - (2.4)



with
Vi =1 .

The H and the Jx operators can be expressed in terms of these quasi-

{10]

particle-éperators as .
H = HM T HH N Hzo + ;3:2 t H;u."?' qu.o' (2.5)
Jx=(Jxdu + (:Tx)zo . | (-6

The cranking equation (2.1) can then be solved by expandlng gﬁuﬁ in this

quasi-particle representation

q - . ‘i ) ~, .
Fiw) = Z Raz i, Ty | - (2.7)
T,n20
where n denotes the number of quasi-particles, and 1 stands for all
other appropriate quantuﬁ numbers. For example,

12,43> =0 o{ 13

9

. o ’
where ‘0>'is the quasi-particle vacuum state

O>’ W(Uk+ VkaCk i0> (2.8)

k>g .

) 4
In the BCS approximation the ground state is the vacuum | 0>, and the

rotational excited states are obtained by mixing the quasi-particle states
jn,t> with the vacuum through the Coriolis interaction wa. For low-
spin rotational states, the wa term is small and second order perturbation

{10}

treatment should be sufficiently good. In the intermediate-spin_

. - : . 111)
region (i~10) one can perform fourth-order perturbation calculations.
As the spin becomes even higher, however, the mixing of the quasi-particle

becomes so strong that one probably should avoid the perturbation treat-

ment and rely on the diagonalization method. Indeed, in the remaining
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text we shall use the dlagonallzatlon approach to study the hlqh-spln
'rotatlonal spectrum.

2.1 Choice of truncated space

In order to choose a reasonable truncated space in the expansion
(2 7)., we notice first that the Hamiltonian ‘in Eq. (2.3) does not contain
proton-neutron pairing; thus, the proﬁon part and tﬁe'neutron pért can
always bé-treated separately, In addition, the Jx term does not mix -
vdifférent parity states; thus, if we neglect the quasi—partiéle interaction

terms and consider HOO + Hll- wa only, the wave function f(w) can be

-

%w) P+>|P YINSIN-S

where lP+> and |P->(or |N+> and IN->)denote the proton (or neutron)
positive—parity and negative—parity orbital subspace respectively.

o We next note that_four—quasi-particle contfibutions to the rotational
sfates are unimportant until the spin becomes very high.[7] Hence, in

the present calculations we shall consider only the two-éuaéifparticle

excitations in each orbital subspace. The wave function can now be

wrltten explicitly as

Jow =[P +)+Z 05 (P+y ol ot*][aff)*rza,,(P)o( 1

*[a, (NJ(H;%% (N+) o djf][ao(l\/-)+§a,-,-(,N-)ol:o<;] 15})

(2.9)

with

Wew) = Hoo t Z‘W{C(u)) .? ' - (2.10)
T | '



where T = P+, P-, N+, and N-. The amplitude aO(T), aij(r)'and the values

of w. can be determined by the following equation
. < :r t .
- (W) = (W) ‘/’ (w
[Hee 0 Jx ]’ \f’t W (@) T W) ’ o (2.11)
where
= + ¢+
. ~ .
\l"t‘w) = [aa“) + Z A5 (0) Ay O ] 10> (2.12)
5 ' .
Thus diagonalization can now be carried out separately for each Subspace;
this greatly simplifies our calculations. In the remaining text, the
script T(oi P+, P-, N+ and N-) will be omitted whenever possible,
provided there will be no ambiguity.

2.2 . Coriolis anti-pairing effect

The coefficient {U 'V

K k} of the canonical transformation (2.4)

will now be determined by the minimization

FRwlH-o|gwy=0, s

with respect to {Uk,vk}. The trial wave function Q(w) is given in

Eq. (2.9) obtained from the separate diagonalizations.
We choose to reduce the number of variational parameters by constraining
the {Uk'vk} to have the BCS form with v a free variational parameter
2 £ - )\ . :
2 1T 5] | T 5 s (2.14)

Therefore, the set of variables {Uk,Vk} is'reduced to a single variable v. .
We remark here that for w = 0, the trial wave function {(w) of (2.9)

N
reduces to the quasi-particle vacuum |0>, and v becomes the BCS gap parameter

A :&‘ z Uk \/{( | ' {2.15)

k>0 e



|
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- In general, however,v is a function of , and our calcuations show that

the value*of v decreases as increases, which is simply a manifestation
of the CAP effect,
The Chemical potential'x in Eq. (2.14) is adjusted for each angular

velocity w so that the average particle number is conserved, namely
L A : | : .
o w) | l{/w): (2.16)
- F@ [N e n o,

where N fs the particle number operator. Note that for éach valué of

w we\thain a set of yé(w) and Ap(w) for pfotons and a set of Vn(w) apd
_An(w)‘for negtrbns._ Thus for each g one obtains a new set of quasiparticle
basis functions

O(:(u)) = Uk(w) Cl: - \/k(w) CE o (27

'
The wavevfuncpioﬁ,in the new basis, thever, can be expressed in terms
. of the uncranked bésis [Eq. (2.4)). For example, the quaSiparticle
vacuum iﬁ tﬁe new basis : o |
| l;8> — 'ﬂ'(ukm) + \/km) C; CE )10
W k>o _ _

e . . , . : . +
is a superposition of quasiparticle pairs in the uncranked basis o’

namely ' ~

16y = TTCA+ Beoy ol )10y

k>o
‘ .Ak = Uk Uk(w) + Vk Vk(ld)
By = U Vi @) - Vi Uk(‘*’) ‘ -

Therefore, the use of a new set of {Uk(w),vk(m)}fqr each cranking velocity

I

where

w does effectivly. admix 4, 6, etc. quasiparticle states in the
‘uncranked basis and makes our truncation to 0 and 2 quasiparticle states

in the cranked basis more justifiable.



2.3 The quasi-particle interaction

The previous discussions have omitted any interaction between
quasi-particle. We shall now describe how to include them partially.

Let us first consider the 520 term. For non-zero w, V does not equal A,

the BCS equation no longer holds and H does not vanish. It is straightfdrward, o

20

however, to include H20 in our calculation for arbitrary value of V.

Next, the H22 term can couple a quasi-particle pair in orbit p with

another pair in orbit g, where orbitals p and g are of opposite parity..

Likewise‘H4O can create two pairs, one in orbit p and the other in orbit

q. - Therefore, strictly speaking, the full inélusion of H and H4 will

22 0

make it impossible‘for us to_diagonalize the cranking equation separately.

For simplicity, we shall‘neglect the above couplings. Their contributions

are estimated to be small, because for non-zero w, the Coriolis interaction
wa will excite essentially the unpaired states.

To summarize; we shall include in addition to Hoo and Hil the
'quaéi—particle interaction terms given in Eq. (2.5) exceét that they are
restricted to éct only between orbits with the same:parity. For example,
we shall include those H22 terms that couple oﬁe quasi—particle pair in

orbit p with anothér pair in orbit g, provide orbitals p aﬁd q are of

the same parity. We are thus led to solve the following'équations'
(R el - AN ‘
[ -vw:]fx - A¢ /\/t]‘f'_cw): Wy (@) \f't(w) , (2.18)

where } = H- H A =X =Xx, A = A =X and y(w is given by
n

00’ “p+ P- p N+ N-
Eq. (2.12). The total energy of the rotational state is

Ew) = Hoo+ Z“W}Zw) +'w<;_5(w)":);,\l;(w)>
(2.19)

+ Z Ap < ‘7’3(«»}/\7/ f, )
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Note that we have int}oduced a.Lagrange ﬁultiplier tetulxﬁ in (2.185 to
také care of the average particle number relation (2,16). The results
_obtained by solving Egs. (2;i8%(2.20) are labeled as the BCS calculation.

As it turns out, the‘inclﬁsionJof the quasi~particle interactions does

make the_calculated results better.

"3. Calculations with particle-number projection

The wave functions given by egns.. (2.9) and (2.12) do not conserve

{12}

particle number. The study of Rich “shows that the particle-number

fluctuations will cuase a 10% to 20% error in cranking calculations of
low=lying rotational states. Recent Hafffee-?ock-Bogoliubov (HFB)
calculations show that the effect of particle—number‘fluctuatiOns may

become very important in the study of backbending phenomenon. For

13]

example, Dalafi et al. show that a not fully self-consistent HFB

cranking model calculation using BCS wave functions will not reproduce

backbending in 168Er, while calculation with approximate number-projection
will. The same group later found, howevér, that a fully self-cdnsistentv

calculation will reproduée backbending in l62Er even without number

[2] [14]

pfojection . Another example is provided by Faessler et al.”

“they have applied the partial number—projection method first suggested 4
[15] |

by Sorensen in their HFB célculations and found that calculation

166

without number-projection will not'repfoduce backbending in Yb while

calculation with two-point number;projection will, Later it was reported

. . 1 . . . . .
that an improved calculatlon[ 6] with four-point number—prOJectlonvfalls
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again to reproduce tﬁe backbending. Ih this section we shall discuss

how to apply the fullyvnumber-préjected wave function with variation

after projéction (FBCS) to solve the cranking equation.
ihe—normélized projécted BCS ground and two quasi-particle states

can be eXpressed as[l7]'

(#o (RO)J AMA é 33’1 +! ﬂ(Uk"‘Z—L/ka ck) > - (3.1)

4> fR(pHRtr) -R°J* amfﬁ 33}1 7 (3U C;C;“Vf)

xzz;(Uki—}\/kC,:Ci)[D)

! |
'4,??, R cpf,)) :2m f ;}n f CPCi- ”(U +Z'Vk Ck)(o) (3.3)

(3.2)

where 2n0 is the number of particles. The residuum integrals Rg

appearing in egns. (3.1)-(3.3) are defined as

Q:(V,""Vu = Ira ) . (3.4)

0

k¥ 1,
They can be evéluated by the recursion relatioﬁs_given in Ref. 17.
In a realistic calculation, however, the computation of R: is very
~ time consuming, and it becomes one of the main handicaps in using the
FBCS ane’functions. |

We were able to derive a formula which expressed R: in terms of

'RO and Rl(i) as (see appendix)

Q:} “Un) = J;NR TT \/

Azl =V,
, (3.5)
n 2(N-n-1) »
ten' DV U, (T veoym) R wy
| A= VU, o k= 4y ke

A .



‘wave‘fuhctions in terms of{UQ,{VQL{Ré(i)}and Ro_

. of (2.9) term by term and obtain

<o
L
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<
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This enables the expression. of quantiti es calculated with the projected

0 Aé a resglt, the
cdmpgtational effort of a specific FBCS,célculation only‘increaseé‘by
about‘éo% over that of the BCS one. However, in the present BCS éalculatiOn
the chemical<potentiél‘k‘hasbtd be adﬁustéd for each angular velocity'w;
tﬁis in fact‘makes the BCS calculaticn as a whole more time-consuming

than the FBCS one.

In terms of these projected bases, the calculations of the proton

part can still be separated from that of the neutron part. Thus considefing

only the proton (or neutron) part, one can project the total wave function

f-
@w)- 2P+ 0, (P ¢ + a(l’wZ(L,(Pa #;

A,? _ E
o P+ Pf P- ‘v (3.6)
+a,<P)Z a; (B¢, +Z > (P apgc P Firg

L7 PR o

whefezqgqu is fhe;normalized projected four-quasi-particle wave function.
Unlike theABCS éase, the cranking equation cannot be solved separately
in the ésoitive- and negative-pa;ityvorbital subspaces, even if the‘
quasi-particle interactioné béﬁ@een different parity orbits‘are.neglected.
vIn ordef to do so, the followiﬁg approximateions are thus made.
a. In writing d&wn tﬁe se&ular equation of eq. (Z;l)Iusing the

projecfed wave function (3.6), the non-orthogonality relations among

the ground state'<% and the pair states{dk_k}arevonly partiélly applied.

‘b. - All quasi-particle interactions are neglected. That is, only

the diagonal matrix element of the Hamiltonian .

%2 H‘(‘R'Hl(f)@) | | BRRERY
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are taken into account.

c. The following relations which hold in the the BCS representation

are assumed to be also true in the FBCS case, e.dq.

| | <¢ﬁjJTx,¢4‘jp%> RS AN K
Chigse 1Tx Ligpg > = <Pse | Tul pg >
AP B Y = <B D

Using the above approximation, the FBCS cranking equation can then be

diagonalized separately in the four orbital subspaces, namely
(H-ng]qSt(w): W, ¢, ) ©(3.8)

. ) , t
#’t(w) = q,(T) ﬂ +,;% d;’-a) ?é,éj

" where T = P+, P-, N+, and N—;J{ is given in (3.7). The total energy of

) | (3.9)

the rotational state is

Fu) = <ﬁf§l HI¢> + tZ'Wc(w) + w{ Ef(‘f’)ljx}é“")> (3.10)

% é(m)l Tl @@0)> = Z_d’#‘"’l Jx | 9%‘“”) . (3.11)‘

The results obtained by solving (3.8)-(3.11) are labeled as the FBCS

calculations.

4. Detailed Calculations

The deformed single~particle basis used in the present calculations

(9]

is chosen to be identical to that of Nilsson et al. Our treatment '
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of pairing.interaction streﬁgth is also idenfiéal to.theirs,.namely
N-Z
(j !\ ~— Jb = gl %% _ v ..
9.= 122 MV, % =7%MeV

with plus sign for protons and minus sign for neutrons. The BCS equations

1/2

(4.1)

‘are then solved by including (152) or (15N)l/2 states above and below
the protron or neutron Fermi level.

All two-guasi-particle states ‘ij> with zero-order energies

(i) +Am] +[<€ Naesht D] < 08K, w2

are included in our truncated space for rare-earth nuclei, where Ei is

A are respectively the

_} k" \.' . B - . ;A
the Nilsson single-particle energy BCS'_ BCS

‘chemicalvpotential and the gap parametef obtained f:om the BCS calculation.
In the case of actinide nuclei, the truncation is taken to be 0.75ﬁm0.
In.fact, we have varied the tfﬁncated enexrgy from,0.7ﬁ(n0'to 1.2ﬁw0 and
founé tﬁat the.fesults differ by only 1%.

The cfanking equation will ﬁow be diagonalized separately in the
four two-quasi-particle subspaces P+, P; N+ and N: It is interesting to
note;‘however, éhat even ih'éach of the subspaces, the H—wa matrix can

be further réeduced to block form, provide the following bases are used,

(18]

namely

!ﬁkl P ﬁ‘z k2:>4. dr- [.ﬂxa ! ,/12‘< )7 |ﬂ12 k /1. -k, ){] /*r*/“z

(4 3)

g/m <, M k>+ !ch Mk}
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whére k is the Iz component,uis the labeling'of the orbit. 1In order
to avoid‘double counting of the two-quasi-particle states, oﬁe has k1>0,__
.. > i =
kl+k2>/0, and L& Uz if kl k2. |
The vacuum |B> and the states {[ulkl,u2k2>+} then form the symmetric

subspace - |[+} which is decoupled from the anti-symmetric subspace |l-}

spanned by the states{lulkl,u2k2>-}. That is

{+l H-w3ll-} =0

Since we are interested only in the lowest few eigenstates of the cranking
equation, we can confine the presént calcﬁlations to the symmetric sﬁbspace '
because the solutions of the anti-symmetric subspace which does not include
the vacuum state in general lie hégher. Thus, the size of the H—wa maE;ix
is now reduéed by nearly half.  For exampie, using the two quasi-particle
truncation of (4.2), the largest dimension of the H-wa matrix of the N+
orbital subspace is about 200 x 200 fof rare-earth nuclei and it is about
300 x 300 for actinide nuclei. Herver, since fhe non-zero Jx off-diagonal
matrix elements occur mainly along the vicinity of the diagonal line, the
diagonalization can be carrigd out quite fast. |

The matrix elements of Hﬁan using BCS basis are Qell known; those
using FBCS basis will be given in the appendix.

Before we end this section, two remarks are in order. First, we
mention that in the BCS calculation the ground state is treated on the same
footiné as the ekcited states. That is, the crénking equation (2.185 is

diagonalized at w = 0 and the pairing parameter v_ (BCS) is obtained by

0

minimizing the energy equation (2.19). In the FBCS calculation the pairing

parameter Vo (FBCS) of the ground state is obtained by minimizing the
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ground}state energy (B 1), where Ui’vi are again given.by'eqn} (2.14).
Thevpaifing'stfength 9 of the FﬁCS calculation is chosen so tha£ the valué o
of vO(FBCS) approximately'equalé the pairing gap pérametef]ABCS, and the
lowest 2+state of FBCS calculation apéréximately equals that of the

BCS one. Thué, we found

18.0 MeV for the A ~ 165 region

gO(FBCS)

go(FBCS) 17.5 MeV for the A ~ 187 and the A o 242 region ,
Seéond, we notice that the projected ground state db and the pair
stateS'{dk_k}'are not orthogonal among themselves. Thus, we have adopted

(19]

a method described by Kumar and Baranger which cén be used to diagonalize
a matrix in a representation spanned by non-orthogonal basis. This method
is especially suitable for solving the H - wa matrix, the off-diagonal

matrix elements of which are mostly zero.

5.. Results and Discussion

- The present calculations have been applied to four nﬁclei, 162Er,

: 2
168 174 38U

Yb, Hf and . The experimental specturm of 162Er_shows back~-

bending while the other three do not.[20'2l'22]

The values of the quadrupole and hexadecapole defofmations taken from
Niisson gE_EL,[gl together with the calculated ground-state pairing
paraﬁéters VO(BCS) and VO(FBCS) of the four nuclei,lare given in table I.
The energies E are.plotted as a.function of I(I+1l) in Fig; 1 to Fig. 4,
where I is the spin; The dashed curve represents the BCS calculation

withoht"Coriolisfantipairing (caP) effect, the dotted curve represents

the same calculation with CAP effect, the dotted curve represents the

FBCS calculation also with CAP effect. The dash-dot curve is the

regular cranking result.
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‘5.1 Results of diagonalization

We first discuss the result of pure diagonalization, that is of the
calculation performed at vO(BCS) without taking into account the CAP
effect’ and particle-number fluctuation. One immediately ‘notices in
Fig. i to Fig.‘4 the significance of diagonalization in calculating the
high spin sfate. For example, the second-order perturbation calculation
will produce a straight line in the E~I(I+l) plot, represented by the daéh-
dot‘curve. It is seen that diagonalization alone is able to improve
the agreement substantially; This indicaes that the deviation from the
I(I+l).rule in fact comes maihly from the higher-~order cranking terms,
which aré now taken into accbunt through diagoﬁalization. Recall that
wé constrain the deformagion to be constant.
| Let us now analyze the structure of the wave function of the fotational
state.  For this purpose the vacuum amplitude ao(r) in eq. (2.9) is
plotted;aé a function of I in Fig. 5, where 1 = P+, P-, N+ and N~. We
noticeafirst that for the ;are—earth nuclei, ao(P+) and aO(N—2 stay
close to unity up to spin I~l§. This is because the configuration mixing
dependswstréngly on the matrix elements of wa between states neaf the
chemical potential A. A look at the Nilsson diagram reveals that no
high-j and low-fl orbits of P+ or N— types lie close to the chemical '
potential of the rare-earth nuclei, where j énva are the angular mémentum
and its z~component of the'singel—particle orbit. Hence, the Jx matrix
elements and gonsequently the configuration mixing are small. The situation
. is gquite different for the N+ and P- solutions. Let us consider 162Er
for example. The proton chemical potential lies near the 7/2[523] state
of the lh 11/2 orbit. Since the neighboring states.have large values

of £, the Jxmatrix elements are still relatively small, thus, the
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configuratidn mixing becomes important Qniy around spin I-14. The
neutron chemical poténtial, on. the other hand, lies neér the.3/2[6511
state of the 1i13/2 orbit, therefofe large configuratioh miking occurs
already around‘spin I~10. The N+ solution at high spin coniains

mainly two-quasi-particle excitations in the 1i 13/2 otbits. The two
neutroh quasi-particles are nearly deéoupledvaftér spin I~14 as can bg
seen from Fig. 6, where the value‘of <Jx> of each soluﬁiqn is plotted

as - a function.of "spin I. In the case of l6.2Er it is seen from Fig. 6
that <J4> of the N+ solution reaches dbout 10 éround spin I~14 and increases
: vefy slowly thereafter. On the other‘hand,'roughly speaking, the P+,

P-, N- solutions are ddminéted by the vécuum st#tevwith oniy a small
~amount of quési—particle,admixiure. - Thus, thevproduct of the P+, P-, and
N- solutions can bekconsidered to represent a rotating core. |

"The solutions of l68Yb and 174Hf show a similar trend. . In the case -

df 2380 apd P- and N+ solutions remain quite pure up to spin 18,.the P+
solution begins to have large two-quasi-particle mixing afound spin
I~l4.. This is becauge'the proton chemical potential now lies near the
3/2 [651] state of the 1li 13/2 orbit. The two proton quasi-particles
become. nearly decoupled after spin I~20. The N- solution on the other
hahd, will notvbecome étfonqu mixed until spin I-~18. Thus, the core
is now represented by the P-, N+ 'and N- solutions. Therefore, although
we did not use the rotor-particle model, the present'calculatién shows
this_picturé»is basically cor;ect, provided one keeps in hind that the
concept of an ipert core with canfant moment-of-inertia becomes
inc%easingly inaccurate beyond spin 14 in the case of rare-earth nﬁclei

and beyond spin 18 in the case of 2380.
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The very different natures of the N+ solutions of 162ér at low
spin, dominated by the §acuum component, and that at high spin, dominated
by ‘the two decoupled quasi—péfticles,‘are actually the iesults of band-
crossing. In order to illustrate this, the vacuum amplitudg aO(N+) of
the second lowest solution n = 2 of l62Er as well as that 6f the_
n ; 1 solution are plotted as a funCtioﬁ of angular velocity w in Fig. 7.
It is interesting to see that the t&o solutions actually cross each othér.
That is , ﬁhe overlap with the ground stafe of the n = 2 solution is
larger than that of the n = 1 solution after w~0.28. Similar crossing

174Hf. In the case of 238U, it is seen from

also happens in 168Yb and
Fig. 7 that the first two P+ solutions cross after w-~0.22.

We next study the effective moment-of-inertia  defined by

= ' o 5.1
(T ) =wh NI
The ratio of 9 obtained by diagonalization to that obtained by second-
order perturbation (ordinary cranking) are plotted in Fig. 8. For the

purpose of comparision both results are calculated in the BCS approximation

. The small

omitting the quasi-particle interaction and evaluated at ABCS

configuration mixing of the P+ and N- solutions of the three rare-earth
nuclei indicates that their moments-of-inertia should change only
slightly as the spin increases. This is indeed true as can be seen
from Fig. 8, where the values of the above-mentioned ratio are all close
to one.
, . . 162 .

The moment—of-lnertJilg'of the P~ solution of Er near I~18 and

that of the N+ solution near I~8 both show moderate increase (by a

factor of 2). This éan be attributed to the moderate amount of two
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quasi-particlé excitations due to higher-order crahking in the solutions
near these spin values. ‘on the other hand, the 1arge'increasé of g'of
the N+ solution around spin I~14 (by a factor of 6) has a different origin,
the band~c£ossing. As we have discussed above, the structure of the.
'yfast state after crossing is véry-different from that before crdsSing;
thus causing the large increase in the apparent moment-of-inertia.

: . 5 . lés,,-
Similar trends of g-for the P- and N+ solutions also occur in Yb and

174 . ' . ' .
. Hf, "except now the maximal increase of 9 is by a factor of 4 (see

2380, the momentséof-inertia 9 of the P- and N+

Fig. 8). 1In the case of
solutions change very little up to spin 24. There is a moderate increase
: of‘g {by a factor of 2) of the N- solution around spin I-24 and of the
P+ ‘solution around'spinvf~10 due to higher-order cranking. There also
appears a large increase of 9'of the P+ solution (by a factor of 7)
around spin 20 because of band?ctossing.
vAnofhef quantity of interest is the collective gyromagnetic ratio
ggps Which can be ekpressed approximately as
R 9 9 e (5.2)
, P n . - -
‘where 9b and 9h are the moment-of-inertia of the proton.part and neutron:
part} respectively. We have neglected the spin contribution in eq.
_ ) o [23] - _ '
(5.2) which amounts to about 10%. ’muagb andrgh dre calculated by
eq. (5.1), the results for the rare-earth-nuclei and that of %% are
plotted:as'a function of spin I in Fig. 9. It'is_interesting to see
that the I9r factor behaves quite differently in the two cases. For

. rare-earth nuclei, the'gR factor decreases first up to spin around 12

and then gradually ‘increases. The behavior of I is just the opposite
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238 . ' .
for U; there the gR factor first increases up to spin around 18 and

then decreases. The reason is the following: in the case of rare—earth.
nuclei the large two-quasi-particle mixing in thevN+ solution causes

gh to incregse while gb stays about the same. After spin 12 the increase
of 9n levels off and gb begins to increase, thus leading 92 to decrease
first ana then increase. In the case of 2380, howevér, the large
éonfiguration mixing in the P+ solution causés gp to increase first,

thus reversing the behavior of Ig

5.2 Coriolis-antipairing effect

The‘célculated energy which takes into account the CAP effect is
represented by the dotted curves in Fig. 1 to Fig. 4. Although the CAP
effect always improves the results by lowering the eﬂerg& by about 0.2
MeV to 0.3 MeV for high—spin states, it is not the main source éf the
rapid increase of the moment-of~inertia at high spin.

The protcen and neutron pairing parameters'vp and vn are plotted.as
dotted curves as functions of spin I in Fig. 10. In the case of rare-
earth nuclei, the neutron vn first decreases to half its ground-state
value at spin éround 12 and then stays about the same up to spin 18.
The proton pairing parameter vp also decreases but at a slowér rate.
It does not aecrease sefiéusly until around spin 14 and even at spin
18, 70% of the proton pairing still remains.‘ In the case of 2380, the
proton pairing decreases ‘at a faster rate than neutron pairing; in both
cases, however, 50% of the pairing still remains at spin 22.

The attenuation of pairing is closely related to the two-quasi-

particle mixing in high-spin states. In the case of rare-earth nuclei,

for example, the neutron orbits of positive-parity become rapidly blocked



as the amount of the unpaired two-quasi-particle excitations in the ﬁ+

solution increases. ,ThiS blocking of orbits"thus'curtails the pairing

effect. At spin around 12, the neurtron orbits of postive—parity are

essentlally blocked causing the neutron pairing to reduce by half Any
further weakening of pariing must now come from the blocking of the neutron
orbits of negative parity. But the small confignration mixing of thevn-
solucion‘indicateschat the Nf orbits are.iargely,unblocked up to spin 18,
leading to the fact that the neucron pairing'stays’almost cnchanged from

spin 12 to spin 18. It will diminish again when the quasi-particle

excitations in the N- solutions become large which of course will eventually

happen at very high spin. Our present calculations, however, indicate that

‘there is no pairing collapse up to spin 20 £or‘rare-earth nuclei. The

reductiqn of proton.paifing can be understood in similar.way. _Fog example,
its sloyer,rate»of reduction is due to the fact that configuration mixing
in the protcn wave_function is quite small until around spin 14. After
thatsthe.cwo-quasifpa;ticle excitations rapidly increase and;the proton
pairing‘also diminiShes accordinglyi | |

38

The CAP effecc ing? U follow similar trend, except now the large

two—quasi—particle mixing in the P+‘solution causes the proton pairing

“to decrease at a faster rate than the neutron pairing.

In the HFB calculations of Ref 2 the pairing in the high—j orbitals

'subject to decoupling falls more rapidly with spin than for other orbitals.

Our simplifying_assump;ion of egqn. (2.14) contrains pairing to be about

ithe same in all orbitals, and thus our Variational solutions would not be

"as low in energy as those with all vk as variational parameters., Both the

{2)
HFB and ou:.calcnlations‘agree that there is not a general pairing collapse
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in the backbending or near backbending region.

We shall now study the influence of the CAP éffect on thé moment-of-
inertia g. For this purpose we extract 9 from the-calcuiated énérgies by
the standard formula

'»29 _ 41*2
% AE(I—1-2)

The values of the fatio (9& - 9?)/ 9? ébtained from diagonalization alone
(the dotted curve]! and that obtained from the full caiculation (ﬁhe sélid
curve) are plotted as a functibn of spin i in fié. 11.  Oniy thé results of
'162Er»and 174Hf are given for illustration. The détted curve rep{esénts
the fractional increment'of the moment-of-inertia gﬁat spih I over.that at
spin 2 due to diagonalization withouthAP, so the diffefence.betﬁeen'tﬁe
solid curve and the croresponding dotted curve reprgsenté.the fraétional
increment due to the CAP effect. It is seen.fhat'the CAP effect and the
highér—order cranking both contribute‘importantly to the slow increase
of the moment«of-inertia_9 at low spin 158. However, the.rapid increase
of g at high spin is maily due to the crossing of the decoupled bana,
as we have discussed in the last sec;ion. Here the CAP effect Only plays
a minor rolg.

In the aboyevdiscussion the meéning of CAP effect is restricted to

a narrow sense; that is i1f the pairing parmeter is kept fixed at v, we

0'
consider the calculation made without CAP effect. This is not true in a

broad sense. For example, the decoupling of two neutron quasi-partiéles

in the 1i 13/2 orbit at constant vO does imply a decrease in the pairing-
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field

<FY = (.GZ Ch i) | ,

'Using'thebBCS solution (2.9), the expectatidn value of the pairing field

operator for neutron can be written as

| :w- N- ..%
. £2; 2 2 2
Y= 08.-G2 =0 o0, (V-UD)
A
Nf,N ) L | (5.3)
Ajl (U;Vg‘*’Ujvj)’ |
A,g ‘

and a similar expression for proton. In the case of l62Er, for calculations

with fixed pairing parameters von'and‘vop given in table I, <& > decreases
'from.0;92 MeV at ground étate’tb 0.81 MeV at spin I = 18; and <Fp> decreases
from 0.94.Mev at groﬁnd state to 0.90 MeV at I = 18, since the two-quasi-
particle admixﬁuré in the latter case is much smalier. For calculations
including CAP effect the values of v and <F3> differ by less than 5%.
This is because A is larger than v in general, the difference A~V increases
as v reduces, this parﬁially cancels the negative coﬁtributions Qf the
second and third teims in eqgn. (5.3).

Finally, we want to mention that the increase of neutron pairing
after spin 12 in 168Yb'ziccompanie~s a fall in proton pairing and rise
in p;oton momentwof—inertia.. The results of the FBCS calculation.do not show
this behavior. |

5.3 Results of Particle-number Projection

The results of FBCS calculations with the inclusion of CAP effect

are plotted as solid curve in Fig. 1 to Fig. 4. In general the FBCS results

L]

are slightly better than the BCS ones. It is interesting to see that the
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fixed-particle-number correction does not'chapge appreciably as thé.excitation
energy increases. Thus, the BCS approximation is quite reliable eQen for
high-spin states where substantial quasi-particle excitations are present

in the wave functions. The FBCS calculations also give a somewhat smailer

CAP effect than that givén by the BCS ones, as can be seen in fié; 10,

where the FBCS calculations are represented by the solid curves. . For

example, the nuetron pairing parameter v, and the proton pairing parameter

vp have still about 70% of the ground-state values at spin around 18.

5.4 Backbending in l62Er

The present calculations are able to reproduce the energies of the
high-spin rotational states quite well without introducing any free parameter.
However, we can reproduce actual reversal in the monotonic increase of

. . . . 162 e
rotational level spacing (backbending) in Er only by shifting the
Nilsson single-particle levels. In this section we shall discuss this
problem in detail.

F

It'was pointed out by Sorensen[ that the exact treatment of cranking
formalism wiﬁhout angular momentum projectionrwill not pioduce backbending.
This failure is attributed to the fact that large spreading in <Jx> will
occur in the cranking solution at the band crpssing region, thus smoothing

[24] showed that HFB

out the backbending effect. Recently, Hamamoto

calculations without self-consistency, that is, in which the pairing field is

kept constant for all values of yu, are also unable to produce backbending

for the same reason. But a detailed study by Sorensen on the two-level
o [25] | : . .

pairing model does demonstrate that if the self-consistency of pairing

is properly taken into account, the HFB calculation will reduce the spreading

. .

in <Jx> and consequently produce the backbending behavior, although in

realistic case the HFB calculation may be less accurate in the backbending
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region as was pointed out by Chu et al.[26]

vThe‘presenf method of diagonalization show similar featu;es. According
to the'genéral afguments of Sorensen,[l] diagonaliéation of the crankiﬁg
equation (2.1) alone without taking into account the CAP effect willvndt .
produce backbending. The reason is that for each valué of W only the lowest
soltuion of W(w) of eqgn. (2.1) corresponds to the yrast state, since the
eiéehvalue curve W(w) as a function of the parameter w will not crosé |
itself (the "no croésing" rule); therefore there will be only one yrast
>State for each w, and backbending will not occur. However, in aadiﬁion'to
diagonalization, we also treat the pairing self-c&nsistently,i.e. for eéch
value of ‘w the pairing parameter Vv is varied after diagonalization to
study thé CAP effect. Although our treatment is not fully self-consistent

in the sense that we do not vary all V, but only v. Nevertheless, one may

k
now obtain two or more minima of 6<H—wa> = 0 at different values of v
" for a given w, wich make it possible for backbending to occur. Note that
the eigenvalues at the different minima of a given w now correspond to
different Hamiltonians, so the above "no crossing" rule is no longer valid.
Similar consideration are also true in the case of self-consistent HFB

o . [25]
treatment, as pointed out by Sorensen.

The numerical results and how several minima of 6<H-me> = 0 may occur
by variation of Vv will now be discussed. Our calculations indicate first
that pairing collapse does not happen in rare-earth nuclei up to spin

N .. 162
I~20. Thus, it is not a source of backbending in Er. On. the other hand,
we observe the crossing of the ground band and the decoupled two-quasi-

particle band in all four nuclei under study. We notice that in the

present calculations the decdupled band crossing can oécur in two ways.
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It can either occur by increasing the angular velocity w.while-keeping_
the pairing parameter v fixed (cf. Fig. 7), or it can occur in the’stﬁdy
of CAP effect where V is varied while ® is kept.fixed (cf. Fig; 12). As
we have already discussed, the first ﬁype of crossing in w-space with v
kept constant will not produce backbending, but the second type of
crossing in v-space wiﬁh w kept constant may produce two or more minima,
thus making it possible for backbendiné to happen.

Until now the decoupled baﬁd crossing in the v-space is quite émooth
(cf. Fig. 12), and Qe always obtain one minimum in the variation of v;
thus backbending is not found. However, the way the decoupled band
crosseé depends strongly on the singlevparticle levels located near the
chemical'potential A. It is at this point that ﬁhe uncertainty-sets in.
Althouéh the single-particle levels as a whole are well described by
Nilsson modél, the spacing between individual levels, nevertheless may
be in error by several hundred keV. :In the following we shail try to
shift the single-particle levels to study the sensitivity of the backbending
phenomenon.’ |

In the case ofilGZEr the neutron chemicai potential An is located
between the 1 13/2, 3/2 [651] state and the 5/2 [642] state. These
statgs have energies of 6;344‘Kw0>$nd 6.457ﬁm0, fespectively. It is not
ouriinténtion here to search for better single-particle neutron levels.
Instead the emphasis is tostudy their influence on the backbending.
Therefore we arbitiarily shift the energy of the 3/2[6511_$tate to three

different values, namely 6.37Kuw 6.40‘Kw0 and 6.42 Kwo (denoted as

OI

calculation B) and repeat the FBCS calculations. In the first case)

backbending still does not happen; in the second case it occurs at
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I = 6.and in the third case (calculation B) it océurs at I = 12, while
eXperiﬁental;y backbending occurs at I = 16.

The-reason_that one obtains backbending in the third case is the
following. First one observes that the pand crossing in the v-space is
now sharper than the previous one in which the original Nilsson single-
particile leveis are used, see Fig. 12.v Oﬁe then finds that in the study
of the CAP effect,.the variation of 6<H—wa> = 9 with respect to the
neutron pairing parametex vh has one minimum for w<0.170 MeV; it has two
minima for 0.170 5.w s Q.185, and again it has only one minimum for w >

| 0.185 MeV. The results are plotted in Fig. 13, the existence of two
'minima for a given Vvalue of w in the above-mentioned reéion thus produces
the backbending.

The nature of the solutions at these two minima are very different.
In order to illustrate this, the vacuum amplitude of the N+ solution
ao(N+) is plotted against vn'at three values of w in Fig. 14. For w = 0.16,
there exists only one minimu at v = 0.98 with aO(Nf) = '9.980; thus the

usolution,beldngs to the ground band. For w = 0.18, there are two mimima,
the fir;t'oné is located ét vn = 0.96 with aO(N+) = 0.956, while the second
one is located at v, T 0.74 with aO(N+) = 0.076. Obviouély, the>first
solution has the character of the éfound band, while.the second solution
has the character of the decoupled band. Thus,.two solutions of different
nature.coexist aﬁ W= (0.18 MeV. For w = 0.20 MeV, there existg again only
one minimum at‘\’n = 0.73 with aO(N+) = 0.075; thus; the solution belongs
to thévdecoupled band.

By intérpolating the.solutions from @ = 0 to w= 0.185 MeV of the

~upper branch (vn.3 0.90) in Fig. 13, the states of spin I = 2, 4 can be

obtained. On the other hand, the states of spin I = 12, 14, 16, 18 can
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5e obtained by interpolating the solutions from w = 0.170 to w = 0.40
éf-the lower branch (\)n < 0.75). However, we are unable to obtain the
‘solutions of spin I = 6, 8, 10 by variation of 6<H—wa> = 0. Invfaét,
they are obtained by variation of &<i> = vaith <Jx> = [I(I+l)]l/2; That
is, the cranking equation is first solved on a two dimensional mesh
of points (vi,wj). For each vy the re;ults are interpolated to give
the solution of a given spin I, and the minimum of &§<H> = 0 with variation
of-v can then be searched. This method works very well in the backbending
region;wand both methods yield the same results for other spins; The
present results resemble those of the HFB cranking model calculations

. 2]

of Banerjee et al.* They vary the set of Vk'and find two minima of

6<H—me> = 0 in the regidn of 0.2044 Zw £ 0.2099, and they too are unable

to qbtain the solutions of I = 10, 12 by variation of 6<H—me> = 0.

“The calculation with the 113/2,3/2{651} single-particle energy
shifted to 6;42Kw0 is denoted as calculafion B; its energies are plotteé
in Fig.ilSltogether with the FBCS results calculated with khe original
Nilsson levels. One notices first that on the average the latter is better,
but the former produce backbending while the latter doés not. Second,
in calculation B the enrgy interval aAE(10 - 8) is smaller tﬁan the 4aE(8 - 6)
by 3 keV which seems to be insignificant while the energy intefval AE(12 » 10)
is smaller than the AE(10 - 8) by 17 keV; ﬁhUs, we conslider the backbending - -
occurs at spin I = 12, Egperimentally the backbending occurs at.I = 16.
In order to understand the differnence we observe that the two quasi-
particles in the N+ solgtion at spin I = 12 are alreédy decoupled. In
fact the valug of <Jx> of the N+ solution alone increases from 9.2 at-

I =12 (w= 0.19) to 10.3 at I = 18 (w = 0.40). On the other hand,
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Ithe <Jx> of the N- solution at I = 12 is 1,8’énd ﬁﬁat of the proton
-solution is 1.5. This suggests.that in order to raise the value of
spin-at which thé backbending occurs one probalbf has to increase the
contribution to the angular momentum by the N-, P+ and P- solutions, which
represent the rotating core.

We now compare the wave functions of the N+ solutions to those of
_the neutron il3/2 solutions of Stephéns and Simon!7] bnly the six largest
amplitudes of the states at the band;crossing region are listed in Tablé II which
are the states of spin I = 10, 12 in our case and the states of I = 16, 18
in theirs. For comparison purpose our listed wave functions are those
without'CAﬁ effect. It is interesting to see that the two. sets of wave
functions are gquite simiiar-to each other.

The above results seem to indicate that the backbending behavior
is'very.sensitive to the exact spacing of the single—particle levels
near thé chemical potential A. This is understandable because the present
calculations show that the decoupled band crossing occurs in the N+
solutions for all rére?earﬁh'nuclei below spin 20, but thére is a strong
influence of the local single-particle levels near A determining how
sharply the corssing occurs, causing some nuclei to backbeﬁd while near
neighbors do not. However, the present calculated result of backbending
probably is too sensitive to the single-particle level spacing, perhaps
due to the spreadiﬁg in <Jx> at the band-crossing region. Cranking
éalculétions with angular momentum projection will certainly provide
deeper insight into this problem. |

5.5 The excited solutions

So far we have focused our attention only on the lowest solution,
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.

whicﬁ cérresponds to the yrast band. The diagonalization,vunlike variation,
also gives many other solutions at higher energies. Since the total
wave function is the product of the P+, P-, N+ and N- solutions, for
rare-earth nuclei the lowest solution (n = 1) is

[n=1>= |P+,n = 1> P-, n= l>| N~-, n = l>| N+, n‘= 1>
while the second lowest solution (n = 2) is

In=2>= [P+, n=1>| P-, n= 15| N-, n = l>|AN+, n=2>_
We have already mentioned before that the lowest N+ solution crosses
the second lowest N+ solution at high spin, see Fig. 7. Therefore it
is of interest to know whether the second solution after crossing
will form a second branch of the ground band. 1In Fig. 16, the energies
‘ of the two lowest solutions of the FBCS calculation with CAP effect
‘included.are plotted as function of spin I for 174Hf. The lower curve
represeﬁts the n = 1 solution while the upper curve represents the
n.= 2 solution. Some of the corresponding  values are also indicated
along .the curve. The cusp of the upper curve where the total spin decreases
with increasiné value of (; results from the band crossing. This is
because the vacuum amplitude of the second N+ solution increases with
w due to crossing (see.the graph at the upper corner of Fig. 16); as 5
result, the angular momentum of the N+ solution decreases with increasing
®w although the angular momenta of the P+, P— and N- solutions, which represent
the'éore, continue.to increase. Figure 16 seems to indicate ﬁhat it is
possibie that a second branch of the ground band may appear at high
spiﬁ. However, the above discussion is only preliminary; since our

(24]

result of the excited solution resembles the HFB calculation of Hamamoto ‘

who showed that the excited solution contains large spreading in <J >.
X
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- Therefore care must be taken in interpreting the excited sﬁéte solutions.
We'havé not felt it juStified t§ Ealculate B(E2) transition rate values
between bénds because of non-orthogonality uncertainties. That is,

our ground and excited solutions are orthogonal at fixed angular

velocity w;, but in general these solutions correspond ﬁo different éngular
moﬁentﬁm I. Hench at fixed I and different y the solutions may depart
from orthogonality. Any detailed interpretation of the multiple-valued'b
solutions at fixgd I in the I-12 cusp region of Fig; 16 must also take

the non-orthogonality problem into account.

6. @ Conclusions

162 16

The high-spin rotational states of Er, . 8Yb, 174

Hf, and 2380

were Calculated microscopically by diagonalizing the cranking model using
both BCS and fully particle-number-projection wave functions. The
>results show that the fixed-particle-number correction does not incréése
appreciably as the spin goes up; thus, the BCS method can still be applied
to high-spin states without sérious error. We have studied three sourcesv
that cause the moment-of-inertia s'to increase, the CAP effect, the
higher-order cranking and the decoupled band crossing with the‘deformation
keft fixed. The first two factors both qontribute significantly to the
vslow‘increase of 9 at low spin. The third one is mainly responsible fér
the rapid increase of'9 at high spin. We do not find pairing collapse;
in fact’ substantial proton and neﬁtron'pairing still remain up to spin
1~20.

In the present calculations, the self-consistent treatmént of the

pairing effect is vital in order to obtain backbending behavior, which
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also dépehds very strongly on the two high-j low:ﬁ;quasi—particles being'
near to the chemical potential. These results are affected to some
extent by the undetermined spreading.in,<Jx> of the cranking soluﬁion
at the band-crossing region. A deeper understanding of backbending
béhaviothhus calls for a more careful study of the <Jx>.spreading problemn.
The'pfoblem éf nﬁclear rotational band theory and backbending must
be regarded aslstill open, despite all the cranking-model and HFB studies
to date. We believe that our dembnstration in Sec. 5.4 of the great
sensitivity 6f backbending to shift of just one orbital energy near
the chemical potential underséorés the difficulty of exact matching of theory
and experiment. It is often not clear in HFB calculations just how Qell
the orbitél energiés near the chemical poﬁential-match'experimental
observations from the band head energies in neighboring odd-mass. nuclei.
Our caléulétion, thougﬁ lacking the number of variational parameters
of SOme-HfB studies and lacking self—consistency in the imposed average
field, has the advantage of being closely tied to the sophisticated 1969
version of the ﬁilsson model, with potehtial parameters and pairing constants
fine~tuned to reproduce well the experimental level ordering, the occurrence
of subshells, ana the odd-even mass differences.
One of the important next steps,'thdugh difficult, will be for
calculations to incorpdrate avmore realistic Hamiltonian than pairing
plus quadrupole-quadrupole or surface delta interactions. Even for the simpler
cases of spherical near-closed-shell nuclei the.effective_residual shéli
model interaction question is not resolved, despite advances through

Kuo-Brown renormalization, use of density-dependent, velocity-dependent
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interactions, Skyrme forces, etc. We pointed out some time ago that the
'constant'pairing‘matrix element approximation systematically deviates
: [27]

from results of a delta force or finite-range Gaussian force. Namely,
the more realistic forces give diagonal pairing matrix elements considerably
larger than off-~diagonal. Thus, there is actually less pairing configuration
mixing than is given in the ordinary constant pairing treatments. See for
example the recent work of Chasman on deformed nuclei using a density-

. oo [e8) . . s
dependent delta interaction. This interaction would seem promising
for future calculations of the nuclear rotational state properties.
Of course, refined treatments should take into account‘the full sz
interaction between quasi-particles. In view of the'great complexity of
the microscopic nuclear rotational theory it is encouraging that there
is additional experimental information coming forth, as very heavy

ion beams are used to measure E2 matrix eiements.between high-lying

rotational states of ground and crossing bands in the backbending region.
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Appendix
A. Derivation of equation (3.5):

We want to prove first the following auxilia.ry formula

V= Gy 11 Uit 8 Vi

’V Wy V2
2 2
A 2(NMn-1), an U t3 Vk NZn
+(“) Z \/4 2
Ly k=y,~y, V‘ - Vk . (Al
¥i

It is eésy to show that eq. (Al) with n = 0 is correct for N=1, 2,
3. Now if (Al) holds for n = O and N =M+ 1, then consider the

identity

=% m/)+ (U3 V)
) VS" % VS ! .
(A2)

Multiplying the first and the second term in the right-hand side separately
by (Al)‘withn =0, N=M+ 1, v

. 2 2
- Vs (U +32 VZM Uk + & \{k
’ l VS V‘l‘ | V* A:VZ-VM; kz—r u \/ \/

l

. 3 2
+-—L-V Wy RV D meﬂ-' Ui + 2 Vg
- Vs IR Yyt Ve = Ve

then it is straighforward to show that (Al) also holds for n = 0 and

N =M+ 2. Thus eq. (Al) is correct for n = 0 and any N21, namely

2 2

LN~ +3V

Vil p R S A SV
s k>, U \/A. - Vk '

t . o
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b, n=1l:s "
ansider the identit§
2 2
V* . ‘ b& :

(5
(Ad)
It is obvious tbat'(Al) reduces to (A4) for N=n = 1. . For NZZ, we
‘multiply'separately fhe first and the second term oﬁ the right-hand side
s by (A3), but one with N = M and the other’with N.= M+ 1. Then it is
easy to show that eq. (Al) holdé for n = 1 and N22.
c.. n=2

Consider the identity

.‘%z_= Lj:+.f_\c: }-:;- J:&;; .

(A5)
Replacing z in the first and the second term én the right-hand side
spearately by (Aal), but one with n = 1, N = M2l and the other with
n=1, N=M +A1, one can show that eq. (Al) is true for n = 2.
d. Arbitrary n:
We have now shown that (Al)‘is correct for n = 0, 1, 2. If (al)
holds for n = m, then consider the.identity | |
| 2 v
3 3"
2 v
W .

?S_'“+"= U: + Z—V; m o U

(n6)
By applying a similar method to that described above, one can show that

(Al)‘is also true for n =m +:1. Therefore eq. (Al) holds for any

value of n.
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One can now substitute zn,inside the integral of eq. (3.4) by (Al),

this immediately yields eqg. (3.5).

B. Matrix elements used in the FBCS calculations:

. We list below some of the Hamiltonian and Jx matrix elements using

- FBCS wave functions (3.1)-.3).

A IHI > = R,, S ag Ul Rldo - &Z VZ Rk

> ko 0 k>0
-L G2 UV, U%V%R (P, §)
‘ Ro P,%>o0
P+t

| !
RIHI ﬂi > = Ritky+ Rlckry- R,

p>o

pe

& 2 UV UV, (U RIckp1)

P.%>o

(Ec+8) Rtk 1)

| -. : _ + (22 _&-)VZ R;Ck,).{’) ‘
SR e(k:) %:1 r Fe

P.&>0 ‘
,P#&tk#}

+Zc4£ gr>v (Ug R, tpy + VS Rick, F>)

PRSI K +Vk2R.?C/<.Pf%))

-6 2> UV Ug Y Rick Pt

(B1)

(25U gckuaé‘rUkaZU Y R ck,p>

.
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<4’°|‘L14>‘,%>~ Z‘] <r17,l@>(u V@ Ve ug
]  Rewm )?
SRR e J

X< Pl il $>(u,,u?,+\/,, V) (i - al; er t k)

|
2 3
Ritk.0) R1h,p))

'(411"3; '4?@)':= [
gkp(ﬂ’axl ?r>[U,QU3, R,gu‘:f,p,*' Ve Vs Kftk,ﬁ. Z—)}
~Gyq <210 p>[U, U, RIck, .23+ Vp RSk, £.p)]

- 3,0 <kl 19 { U Uy Rk 83 +Vic Vi Rtk 1,8))

8 <kl7u 1> (U Uy Rk, 1,2 +V U R k2]
U | )

v‘ It is then simple to calculate the matrix elements in the symmetric

representation ||+}, see eqn. (4.3).
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Table I. The quadrupole and hexadecapole deformation parameters €,

and €4 are taken from Ref. 9. The pairing parameters v T(BCS) and

0

VOT(FBCS) in MeV are calculated with pairing strength as given in

Eqs. (4.1) and (4.4) where 1 = proton or neutron.

Nucleus ig 64 vop(BCS) vop(FBCS) von(BCS) von‘FBCS)
le62

Er 0.242 -0.007 0.935 1.015 0.915 0.975
168 .

. Yb 0.255 0.014 0.900 0.990 0.815 - 0.830

174 _

Hf 0.258 0.034 0.860 0.910 0.765 0.810
238

6] 0.205 -0.038 0.760 0.830 0.610 0.630
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Table II. Comparison of the wave functions of the N+ soiution of cal-
vculation B with fhose of ﬁhe neuton i 13/2 solutions of Stephens and
simon‘(SS)7, 'Oﬁly the six largest amplitudes of the states at the band
crosging rggion are listed. (Qi,Qj) denotes the Iz components of the

two quasiparticles in the SS solutions

, n 33 5 3 5 1 7 5 5 1
(Qi’Q]) 0> (21- 2) (21" 2) (21" 2) v (21“ 2) (2: 2)
ss, I =16 0.730 0.225 0.469 0.265 . -0.178 0.152
calc. B, 0.581 0.309 0.448 0.202 0.000 0.086
I =10 . '

n 3 3 5 5 3 1. 5 3 5 1
(QI'QJ) . o> (2"' 2) (21— 2) 2," 2) (21" 2) (2r 2)
SS, I =18 0.329 0.325 - 0.219 0.289 0.498 0.389
calc. B, 0.343 0.361 0.367 0.251 0.550 0.241

I =12
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FIGURE CAPTIONS

1
Energy E versus spin I(I+l) for 62Er. The dashed curve represents the

BCS calculation without Coriolis-antipairing effect, the dotted curve
represents the same calculation with CAP effec£, the s0l1id curve is the
fixed—particle—number-projection (FBCS) calculation also with CAP effect,
and the dash-dot curve is the regular cranking result. The experimental

data are indicated by dots.

168

Energy E versus spin I(I+l) for Yb, see Fig. 1 for detailed explanation.
.. 174 . . .

Energy E versus spin I(I+1) for Hf, see Fig. 1 for detailed explanation.
. 238 . _ . .

Energy E. versus spin I(I+1) for U, see Fig. 1 for detailed explanation.

The vacuum amplitude aO(T)in eq . (2.9) versus spin I, where 1(= P+, P-,
N+ and N—)represents the proton and neutron solution with positive and

negative parity, respectively.

The contributions to (Jx> by the P+, P-, N+, and N- solutions are plotted

as functions of spin I.

The vacuum amplitudes a, of the lowest solution n = 1 and the second
lowest solution n = 2 are plotted as functions of angular velocity w,

note the crossing of the two solutions.

The ratio of the moment-of-inertia obtained by diagonalization to that

obtained by second-order perturbation is plotted as a function of spin
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Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14
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The collective gyromagnetic'ratio gR versus spin I.

Coriolis-antipairing effect: the pairing parameters vp and v, are
plotted as functions of spin I, The dotted curve represents the BCS

résults while the solid curve represents the FBCS results.

The fractional increment of the moment—of—inertié (9}— 92)/9§ versus
spin"I. The dotted curve represents calculations without CAP effect

while the solid curve represents those with CAP effect.

The vacuum amplitude a, of the N+ solution of 162Er versus the pairing
parameter vn for fixed angular velocity w. The lower graph corresponds
to calculations using thé 1969 Nilsson single particle 1evels(93while
the 'upper graph represents calculations in which the neutron level

3/2 [651] is shifted. |

The neutron pairing parameter vn of l62Er is plotted as a function of
angular velocity w for calculation B. Note the existence of two so-
lutions in the region 0.170 < w £ 0.185.

. ; . 162 ..
The vacuum amplitude a. of the N+ solutions of Er versus the pairing

0

éarémeter Vn at three different values of w. The dot denotes the solu-

tion which minimizes <H —wJ >,



Fig. 15

Fig. 16
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Comparison between the experimental and calculated rotational energies

162 . . .
of " "Er. The second column represents calculations in which the neutron

level 3/2[§Sﬂ is shifted while the third colﬁmn represents calculations

(o2

using the 1969 Nilsson energy levels . The numbers between levels are
their energy differences in keV. ‘The symbol * has been used to indicate

a backbending transition.

162

Energy E versus spin I for Er. The lower curve represents *he lowest

solution (n = 1) while the upper curve represents the second lowest solu-

tion (n = 2). The vacuum amplitudes a. of the two solutions are plotted

0

as functions of angular velocity w in the upper corner.
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