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ABSTRACT OF THE DISSERTATION

Stochastic Optimization Methods for Modern Machine Learning Problems

by

Yuejiao Sun

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2021

Professor Wotao Yin, Chair

Optimization has been the workhorse of solving machine learning problems. The present

dissertation will focus on two fundamental classes of machine learning problems: 1) stochastic

nested problems, where one subproblem builds upon the solution of others; and, 2) stochastic

distributed problems, where the subproblems are coupled through sharing the variables.

One key difficulty of solving stochastic nested problems is that the hierarchically coupled

structure makes the computation of (stochastic) gradients, the basic element in first-order

optimization machinery, prohibitively expensive or even impossible. We will develop the first

stochastic optimization method, which runs in a single-loop manner and achieves the same

sample complexity as the stochastic gradient descent method for non-nested problems.

One key difficulty of solving stochastic distributed problems is the resource intensity,

especially when algorithms are running at resource-limited devices. In this context, we will

introduce a class of communication-adaptive stochastic gradient descent (SGD) methods,

which adaptively reuse the stale gradients, thus saving communication. We will show that the

new algorithms have convergence rates comparable to original SGD and Adam algorithms, but

enjoy impressive empirical performance in terms of total communication round reduction.
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CHAPTER 1

Introduction

Optimization has been the workhorse of solving machine learning problems. However, the

efficiency of these methods remains far from satisfaction to meet the ever-growing demand

that arises in modern machine learning applications. In these applications, the models are

nonconvex and nonsmooth, tasks are coupled or nested, the data are distributed among

agents, which make the theoretically optimal methods often practically inefficient, or even

lose their desired analytical guarantees. A timely opportunity thus emerges to transform

the ordinary optimization framework into a contemporary one tailored for modern machine

learning. My dissertation contributes to this transformative research area.

In this context, the present dissertation will mainly focus on developing new stochastic

optimization algorithms to tackle two fundamental structures of optimization problems: C1)

stochastic nested optimization problems, where one subproblem builds upon the solution

of others; and C2) stochastic distributed optimization problems, where the subproblems

are coupled through sharing the common variables. These two problem structures capture

various machine learning problems.

1.1 Stochastic nested optimization

In the first part of the thesis, which contains Chapters 2 and 3, the goal is to develop sample-

efficient stochastic optimization methods amenable to solve stochastic nested problems in C1.

This part is based on the publications [11, 12]. The stochastic nested problems considered in

1



this thesis can be summarized as

min
θ∈Rd

F (θ) := Eξ[f(θ, y∗(θ); ξ] (1.1)

s.t. y∗(θ) = arg min
y∈Rd′

Eφ[g(θ, y;φ)]

where f and g are differentiable functions; and, ξ and φ are random variables. The above

problem is often referred to as the stochastic bilevel problem, where the upper-level optimiza-

tion problem depends on the solution of the lower-level optimization over y ∈ Rd′ , denoted as

y∗(θ), which depends on the value of upper-level variable θ ∈ Rd.

Stochastic bilevel optimization generalizes the classic stochastic optimization from the

minimization of a single objective to the minimization of an objective function that depends

the solution of another optimization problem. Examples of stochastic nested problems include

model-agnostic meta learning (MAML), where the goal is to find a model that not only

achieves a good average performance on the training set, but also can quickly adapt to a

new data set in the testing stage [26]. Likewise, stochastic nested problems also emerge

in reinforcement learning (RL), where finding the optimal policy requires to estimate the

quality of a given policy, but such a quality estimate can only be obtained by solving a

policy evaluation subproblem [56]. One key difficulty of solving this class of problems is that

the nested structure makes the computation of (stochastic) gradients, the basic element in

first-order optimization machinery, prohibitively expensive or even impossible.

To get some insights, we will first tackle a special case of (1.1). When the lower-level

problem is y∗(θ) = arg miny∈Rd′ Eφ[‖y − g(θ;φ)‖2], the bilevel problem (1.1) reduces to the

stochastic single-level yet compositional optimization, given by

min
θ∈Rd

F (θ) := Eξ[f(θ,Eφ[g(θ;φ)]; ξ]. (1.2)

Stochastic compositional optimization generalizes classic (non-compositional) stochastic

optimization to the minimization of compositions of functions. Each composition may

introduce an additional expectation. Chpater 2 presents a Stochastically Corrected Stochastic

2



Compositional gradient method (SCSC). SCSC runs in a single-time scale with a single loop,

uses a fixed batch size, and guarantees to converge to an ε-stationary point using O(ε−2)

samples in total, which is the same as the stochastic gradient descent (SGD) method for

non-compositional stochastic optimization. It is easy to apply SGD-improvement techniques

to accelerate SCSC. This helps SCSC achieve state-of-the-art performance for stochastic

compositional optimization. In particular, we apply Adam to SCSC, and the exhibited rate of

convergence matches that of the original Adam on non-compositional stochastic optimization.

To tackle the general stochastic bilevel problem (1.1), existing methods require either

double-loop or two-timescale updates, which are sometimes less efficient. In Chapter 3, we

develop a new optimization method for a class of stochastic bilevel problems that we term

Single-Timescale stochAstic BiLevEl optimization (STABLE) method. STABLE runs in a

single loop fashion, and uses a single-timescale update with a fixed batch size. To achieve an

ε-stationary point of the bilevel problem, STABLE requires O(ε−2) samples in total; and to

achieve an ε-optimal solution in the strongly convex case, STABLE requires O(ε−1) samples.

To the best of our knowledge, this is the first bilevel optimization algorithm achieving the

same order of sample complexity as the stochastic gradient descent method for the single-level

stochastic optimization.

1.2 Stochastic distributed optimization

In the second part of the thesis, which contains Chapters 4 and 5, the aim was to de-

velop communication-efficient distributed stochastic optimization methods amenable to solve

stochastic distributed problems in C2. This part is base on the publications [10, 9]. The

key take-home message there is that by exploiting the informativeness of message, our new

distributed stochastic optimization methods can achieve the same convergence rate but save

significantly communication overhead.

3



The stochastic distributed problems considered in this thesis can be summarized as

min
θ∈Rd

L(θ) =
1

M

∑
m∈M

Lm(θ) with Lm(θ) :=Eξm [`(θ; ξm)] , m ∈M (1.3)

whereM = {1, 2 . . . ,M} is the collection of multiple computing nodes, and ξm is the (random)

local data on node m. Examples of stochastic distributed problems in C2 include distributed

learning or recently federated learning [72]. In this case, the data as well as the parameters

are kept on local nodes (e.g., mobile devices), and only the changes of model parameters will

be communicated between computing nodes. There one of the main challenges is the resource

intensity, because machine learning tasks are running at wirelessly connected devices which

are often resource-constrained. Very often, resource scarcity, amplified by data and system

heterogeneity, will become the obstacle of further improving machine learning performance.

Chapter 4 develops algorithms for solving distributed learning problems in a communication-

efficient fashion, by generalizing the recent method of lazily aggregated gradient (LAG) to

deal with stochastic gradient — justifying the name of the new method LASG. While LAG

is effective at reducing communication without sacrificing the rate of convergence, we show it

only works with deterministic gradients. We introduce new rules and analysis for LASG that

are tailored for SGD, so it effectively saves downloads, uploads, or both for distributed SGD.

LASG achieves impressive empirical performance — it typically saves total communication

by an order of magnitude.

In practice, SGD is often used with its adaptive variants such as AdaGrad, Adam, and

AMSGrad. Chapter 5 proposes an adaptive SGD method for distributed machine learning,

which can be viewed as the communication-adaptive counterpart of the celebrated Adam

method — justifying its name CADA. The key components of CADA are a set of new rules

tailored for adaptive SGD that can be implemented to save communication upload. The

new algorithms adaptively reuse the stale Adam gradients, thus saving communication, and

still have convergence rates comparable to original Adam. In numerical experiments, CADA

achieves impressive empirical performance in terms of total communication round reduction.
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CHAPTER 2

Single-loop Algorithms for Stochastic Compositional

Optimization

2.1 Introduction

In this chapter, we consider stochastic compositional optimization problems of the form

min
θ∈Rd

F (θ) := fN (fN−1(· · · f1(θ) · · · )) with fn(θ) := Eξn [fn(θ; ξn)] (2.1)

where θ ∈ Rd is the optimization variable, fn : Rdn → Rdn+1 , n = 1, 2, . . . , N (with dN+1 = 1

and d1 = d) are smooth but possibly nonconvex functions, and ξ1, . . . , ξN are independent

random variables. The formulation (2.1) covers a broader range of applications than the

classical non-compositional stochastic optimization and the empirical risk minimization

problem in machine learning, e.g., [7]. In the non-compositional cases, the problem is to solve

minθ∈Rd Eξ [f(θ; ξ)], which can be formulated under (2.1) when f1(θ) is a scalar function and

f2, · · · , fN are the scalar identity maps, e.g., dN+1 = dN = · · · = d2 = 1 and d1 = d.

Problem (2.1) naturally arises in a number of other areas. In reinforcement learning,

finding the value function of a given policy (often referred to as policy evaluation) can be

casted as a compositional optimization problem; see e.g., [16, 117]. In financial engineering,

the risk-averse portfolio optimization can be also formulated in similar form [101]. A recent

application of (2.1) is the model-agnostic meta learning (MAML), which is under a broader

concept of few-shot meta learning; see e.g., [26]. It is a powerful tool for learning a new task

by using the prior experience from related tasks. Consider a set of empirically observed tasks
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collected in M := {1, . . . ,M} drawn from a certain task distribution. By a slight abuse of

notation, each task m has its local data ξm from a certain distribution, which defines its loss

function as Fm(θ) := Eξm [f(θ; ξm)] , m ∈M, where θ ∈ Rd is the parameter of a prediction

model (e.g., weights in a neural network), and f(θ; ξn) is the individual loss with respect to

each datum. In MAML, the goal is to find a common initialization that can adapt to a desired

model for a set of new tasks after taking several gradient descent steps. Specifically, we find

such initialization by solving the following empirical version of one-step MAML problem

min
θ∈Rd

F (θ) :=
1

M

M∑
m=1

Fm (θ − α∇Fm(θ)) (2.2)

with Fm(θ) := Eξm [f(θ; ξm)]

where α is the stepsize, and ∇Fm is the gradient of the loss function at task m. The problem

(2.2) is called the one-step adaptation since the loss of each task is evaluated at the model

θ − α∇Fm(θ) that is updated by taking one gradient descent of the each task’s loss function.

It is not hard to verify that (2.2) can be formulated as the special case of (2.1) with N = 2.

Despite its generality and importance, stochastic compositional optimization in the form

of (2.1) is not fully explored, especially compared with the major efforts that have been taken

for its non-compositional counterpart during the last decade. Averaging, acceleration, and

variance reduction are all powerful techniques designed for the non-compositional stochastic

optimization. A natural question is Can we develop a simple yet efficient counterpart of SGD

for stochastic compositional optimization? By simplicity, we mean the new algorithm has

easy-to-implement update without double loop, accuracy-dependent stepsizes, nor increasing

batch sizes, and can be easily augmented with existing techniques for improving SGD. By

efficiency, we mean the new algorithm can achieve the same convergence rate or the gradient

query complexity as SGD for stochastic non-compositional problems. This chapter aims to

provide an affirmative answer for this question.
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2.1.1 Prior art

We review prior contributions that we group in the following categories.

Stochastic compositional optimization. Non-asymptotic analysis of stochastic compo-

sitional optimization is pioneered by [117], where a new approach called SCGD uses two

sequences of stepsizes in different time scales: a slower one for updating variable θ, and a

faster one for tracking the value of inner function(s). An accelerated variant of SCGD with

improved convergence rate has been developed in [118]. In concurrent with our work, an

adaptive and accelerated SCGD has been studied in [111], but the updates of [118, 111]

are different from ours, and thus their convergence rates are still slower than ours and that

of SGD for the non-compositional case. While most of existing algorithms for stochastic

compositional problems rely on two-timescale stepsizes, the single timescale approach has

been recently developed for the two-level compositional problems in [32], which has been

recently extended to the multi-level compositional problems in [94]. Our improvements over

[32, 94] are: i) a different and simpler algorithm that tracks only two sequences instead of

three; ii) a neat ODE analysis backing up our algorithm development, which may stimulate

future development; and, more importantly, iii) the simplicity of both our algorithm makes it

easy to adopt the Adam update. In addition, no convergence rate has been established in

[94] neither in terms of the gradient norm nor the function values.

Starting from [62], much attention has been paid to a special class of the stochastic

compositional problem (2.1) with the finite-sum structure. Building upon variance-reduction

techniques for non-compositional problems [46, 18, 81, 25], variance-reduced SCGD methods

have been developed in this setting under the convex [62, 5, 21, 65], and nonconvex assumptions

[39]. Recent advances also include stochastic compositional optimization with a nonsmooth

regularizer [40, 130, 131]. Other variants using ADMM and accelerated variance reduction

methods for finite-sum compositional problems have been studied in [127, 124]. These

variance reduction-based methods have impressive performance in the finite-sum compositional
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problems. While they can be applied to the stochastic compositional problems (2.1), they

require an increasing batch size and run in a double-loop manner, which is not preferable in

practice.

Optimization for model-agnostic meta learning. On the other end of the spectrum,

MAML is a popular framework that learns a good initialization from past experiences for

fast adaptation to new tasks [26, 27]. MAML has been applied to various domains including

reinforcement learning [67], recommender systems, and communication [102]. Due to the

specific formulation, solving MAML requires information on the stochastic Hessian matrix,

which can be costly in practice. Some recent efforts have been made towards developing

Hessian-free methods for MAML; see also e.g., [82, 23, 54, 103, 24, 90, 134]. While most of

existing works aim to find the initialization for the one-step gradient adaptation, the general

multi-step MAML has also been recently studied in [43] with improved empirical performance.

However, these methods do not fully embrace the compositional structure of MAML, and

thus either lead to suboptimal sample complexity or only obtain inexact convergence for

(2.2). While this chapter does not deal with Hessian-free update, our algorithms can friendly

incorporate these advanced techniques motivated by application-specific challenges as well.

2.1.2 Our contributions

In this context, the present paper puts forward a new stochastic compositional gradient frame-

work that introduces a stochastic correction to the original stochastic compositional gradient

method [117], which justifies its name Stochastically Corrected Stochastic Compositional gra-

dient (SCSC). Compared to the existing stochastic optimization schemes, our contributions

can be summarized as follows.

c1) We develop a stochastic gradient method termed SCSC for stochastic compositional

optimization by using stochastically corrected compositional gradients. SCSC is simple to

use as its alternatives, yet it achieves the same order of convergence rate O(k−
1
2 ) as SGD for

non-compositional problems;
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c2) We generalize our SCSC algorithm to solve the multi-level stochastic compositional

problems, and develop its adaptive gradient schemes based on the Adam-type update, both of

which achieve the same order of convergence rate as their counterparts for non-compositional

problems; and,

c3) We empirically verify the effectiveness of our SCSC-based algorithms in the portfolio

management and MAML tasks using standard datasets. Comparing with the existing

algorithms, our new algorithms converge faster and require a fixed batch size.

2.2 A New Method for Stochastic Compositional Optimization

2.2.1 Warm up: Two-level compositional problems

For the notational brevity, we first consider a special case of (2.1) - the two-level stochastic

compositional problem

min
θ∈Rd

f(g(θ)) = Eξ [f (Eφ[g(θ;φ)]; ξ)] (2.3)

where ξ and φ are independent random variables. Connecting the notations of (2.3) with

those in (2.1), they are f2( · ; ξ2) := f( · ; ξ) and f1(θ; ξ1) := g(θ;φ).

Before introducing our approach, we first highlight the inherent challenge of applying the

standard SGD method to (2.1).

When the distributions of φ and ξ are unknown, the stochastic approximation [93] leads

to the following stochastic update

θk+1 = θk − α∇g(θk;φk)∇f(Eφ[g(θk;φ)]; ξk) (2.4)

where φk and ξk are samples drawn at iteration k. Notice that obtaining the unbiased

stochastic gradient ∇g(θk;φk)∇f(Eφ[g(θk;φ)]; ξk) is still costly since the gradient ∇f is

evaluated at Eφ[g(θk;φ)]. Except that the gradient ∇f is linear, the expectation in (2.4)
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Algorithm 1 SCSC for two-level problem

1: initialize: θ0, y0, stepsizes α0, β0

2: for k = 1, 2, . . . , K do

3: randomly select datum φk

4: compute g(θk;φk) and ∇g(θk;φk)

5: update variable yk+1 via (2.7b) or (2.7c)

6: randomly select datum ξk

7: compute ∇f(yk+1; ξk)

8: update variable θk+1 via (2.7a)

9: end for

cannot be omitted, because the stochastic gradient ∇g(θk;φk)∇f(g(θk;φk); ξk) is biased, i.e.,

Eφk,ξk [∇g(θk;φk)∇f(g(θk;φk); ξk)] 6= Eφ,ξ
[
∇g(θk;φ)∇f(Eφ[g(θk;φ)]; ξ)

]
. (2.5)

Therefore, the machinery of stochastic gradient descent cannot be directly applied here.

To overcome this difficulty, a popular SCGD has been developed in [117] for solving the

two-level stochastic compositional problem (2.3), which is given by

yk+1 = (1− βk)yk + βkg(θk;φk) (2.6a)

θk+1 = θk − αk∇g(θk;φk)∇f(yk+1; ξk) (2.6b)

where αk and βk are two sequences of decreasing stepsizes. The above recursion involves

two iterates, yk and θk, whose updates are coupled with each other. To ensure convergence,

SCGD requires yk to be updated in a timescale asymptotically faster than that of θk so that

θk is relatively static with respect to yk; i.e., lim
k→∞

αk/βk = 0. This prevents SCGD from

choosing the same stepsize as SGD for the non-compositional stochastic problems, and also

results in its suboptimal convergence rate. In (2.6a), the iterate yk+1 linearly combines yk and

g(θk;φk), where yk is updated by the outdated iterate θk−1. We notice that this is the main

reason of using a smaller stepsize αk in the proof of [117].
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With more insights given in Section 2.2.2, our new method that we term stochastically

corrected stochastic compositional gradient (SCSC) addresses this issue by linearly combining

a “corrected” version of yk and g(θk;φk). Roughly speaking, if yk ≈ g(θk−1), we gauge that

g(θk) ≈ g(θk−1) +∇g(θk;φk)(θk − θk−1). Therefore, we propose the following new update

θk+1 = θk − αk∇g(θk;φk)∇f(yk+1; ξk) (2.7a)

yk+1 = (1− βk)
(
yk +∇g(θk;φk)(θk − θk−1)

)
+ βkg(θk;φk). (2.7b)

We can also approximate ∇g(θk;φk)(θk − θk−1) by the first-order Taylor expansion, that is

yk+1 = (1− βk)
(
yk + g(θk;φk)− g(θk−1;φk)

)
+ βkg(θk;φk). (2.7c)

Different from (2.6), we use two sequences of stepsizes αk and βk in (2.7) that decrease at

the same rate as SGD. As we will show later, under a slightly different assumption, both

(2.7b) and (2.7c) can guarantee that the new approach achieves the same convergence rate

O(k−
1
2 ) as SGD for the non-compositional stochastic optimization problems. Per iteration,

(2.7b) requires the same number of function and gradient evaluations as SCGD, and (2.7c)

requires one more evaluation at the old iterate θk−1.

2.2.2 Algorithm development motivated by ODE analysis.

We provide some intuition of our design via an ODE-based construction for the corresponding

deterministic continuous-time system. To achieve so, we make the following assumptions

[117, 62, 131].

Assumption 1. Functions f and g are Lf - and Lg-smooth, that is, for any θ, θ′ ∈ Rd, we

have ‖∇f(θ; ξ)−∇f(θ′; ξ)‖ ≤ Lf‖θ − θ′‖, ‖∇g(θ;φ)−∇g(θ′;φ)‖ ≤ Lg‖θ − θ′‖.

Assumption 2. The stochastic gradients of f and g are bounded in expectation, that is

E [‖∇g(θ;φ)‖2] ≤ C2
g and E [‖∇f(y; ξ)‖2] ≤ C2

f .

Assumptions 1 and 2 require both the function values and the gradients to be Lipschitz

continuous. As a result, the compositional function F (θ) = f(g(θ)) is also smooth with
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L := C2
gLf + CfLg [131].

Let t be time in this subsection. Consider the following ODE

θ̇(t) = −α∇g(θ(t))∇f(y(t)) (2.8)

where the constant α > 0. If we set y(t) = g(θ(t)), then this system describes a gradi-

ent flow that monotonically decreases f (g(θ(t))). In this case, we have d
dt
f (g(θ(t))) =

〈∇g(θ(t))∇f(g(θ(t))), θ̇(t)〉 = − 1
α
‖θ̇(t)‖2. However, if we can evaluate gradient ∇f only at

y(t) 6= g(θ(t)), it introduces inexactness and thus f (g(θ(t))) may lose monotonicity, namely

d

dt
f (g(θ(t)))

(a)
= − 1

α
‖θ̇(t)‖2 + 〈∇g(θ(t))

(
∇f(g(θ(t)))−∇f(y(t))

)
, θ̇(t)〉

(b)

≤ − 1

α
‖θ̇(t)‖2 + ‖∇g(θ(t))‖‖∇f(g(θ(t)))−∇f(y(t))‖‖θ̇(t)‖

(c)

≤ − 1

2α
‖θ̇(t)‖2 +

αC2
gL

2
f

2
‖g(θ(t))− y(t)‖2 (2.9)

where (a) follows from (2.8), (b) uses the Cauchy-Schwarz inequality, (c) is due to Assumptions

1 and 2 as well as the Young’s inequality. In general, the RHS of (2.9) is not necessarily

negative. Therefore, it motivates an energy function with both f(g(θ(t))) and ‖g(θ(t))−y(t)‖2,

given by

V(t) := f(g(θ(t))) + ‖g(θ(t))− y(t)‖2. (2.10)

We wish V(t) would monotonically decrease. By substituting the bound in (2.9), we have

V̇(t) ≤ − 1

2α
‖θ̇(t)‖2 +

αC2
gL

2
f

2
‖g(θ(t))− y(t)‖2 + 2

〈
y(t)− g(θ(t)), ẏ(t)−∇g(θ(t))θ̇(t)

〉
= − 1

2α
‖θ̇(t)‖2 −

(
2β −

αC2
gL

2
f

2

)
‖g(θ(t))− y(t)‖2

+ 2
〈
y(t)− g(θ(t)), ẏ(t) + β(y(t)−g(θ(t)))−∇g(θ(t))θ̇(t)

〉
(2.11)

where β > 0 is a fixed constant. The first two terms in the RHS of (2.11) are non-positive

given that α ≥ 0 and β ≥ αC2
gL

2
f/4, but the last term can be either positive or negative.

Following the maximum descent principle of V(t), we are motivated to use the following

dynamics

ẏ(t) = −β (y(t)− g(θ(t))) +∇g(θ(t))θ̇(t) =⇒ V̇(t) ≤ 0. (2.12)

12



Directly implementing (2.12) in the discrete time is intractable. Instead, we approximate the

continuous-time update by either the backward difference or the Taylor expansion, given by

∇g(θ(t))θ̇(t) ≈ γk∇g(θk)
(
θk − θk−1

)
(2.13a)

or ≈ γk

(
g(θk)− g(θk−1)

)
(2.13b)

where k is the discrete iteration index, and γk > 0 is the weight controlling the approximation.

With the insights gained from (2.8) and (2.12), our stochastic update (2.7) essentially

discretizes time t into iteration k, and replaces the exact function g(θ(t)) and the gradients

∇g(θ(t)),∇f(y(t)) by their stochastic values. The choice γk := 1− βk in (2.13) will simplify

some constants in the proof.

Connection to existing approaches. Using this interpretation, the dynamics of y(t) in

SCGD [117] is

ẏ(t) = −β (y(t)− g(θ(t))) (2.14)

which will leave an additional non-negative term 〈y(t)− g(θ(t)),−∇g(θ(t))θ̇(t)〉 ≤ Cg‖y(t)−
g(θ(t))‖‖θ̇(t)‖ in (2.11). To ensure the convergence of V(t), a much smaller stepsize α is

needed.

Using the ODE interpretation, the dynamics of y(t) in the recent variance-reduced

compositional gradient approaches, e.g., [62, 39, 130, 131] can be written as

ẏ(t) = ∇g(θ(t))θ̇(t) (2.15)

which leaves the non-negative term ‖g(θ(t)) − y(t)‖2 uncancelled in (2.11). Therefore, to

ensure convergence of V(t), the variance-reduced compositional approaches must calculate

the full gradient ∇f(g(θ(t))) periodically to erase the error accumulated by ‖g(θ(t))− y(t)‖2.

13



2.3 Adam-type and Multi-level Variants

In this section, we introduce two variants of our new stochastic compositional gradient

method: adaptive stochastic gradient and multi-level compositional gradient schemes.

2.3.1 Adam-type adaptive gradient approach

When the sought parameter θ represents the weight of a neural network, in the non-

compositional stochastic problems, finding a good parameter θ will be much more efficient

if adaptive SGD approaches are used such as AdaGrad [22] and Adam [55]. We first show

that our SCSC method can readily incorporate Adam update for θ, and establish that it

achieves the same convergence rate as the original Adam approach for the non-compositional

stochastic problems [97, 13].

Following the Adam and its modified approach AMSGrad in [55, 97, 13], the Adam SCSC

approach uses two sequences hk and vk to track the exponentially weighted gradient of θk

and its second moment estimates, and uses vk to inversely weight the gradient estimate hk.

The update can be written as

hk+1 = η1h
k + (1− η1)∇k (2.16a)

vk+1 = η2v̂
k + (1− η2)(∇k)2 (2.16b)

θk+1 = θk − αk
hk+1

√
ε+ v̂k+1

(2.16c)

yk+1 via (2.7b) or (2.7c)

where the gradient is defined as ∇k := ∇g(θk;φk)∇f(yk+1; ξk); v̂k+1 := max{vk+1, v̂k} ensures

the monotonicity of the scaling factor in (2.16c); the constant vector is ε > 0; and η1 and

η2 are two exponential weighting parameters. The vector division and square in (2.16) are

defined element-wisely.

The key difference of the Adam-SCSC relative to the original Adam is that the stochastic

gradient ∇k used in the updates (2.16a) and (2.16b) is not an unbiased estimate of the
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true one ∇F (θk). Furthermore, the gradient bias incurred by the Adam update intricately

depends on the multi-level compositional gradient estimator, the analysis of which is not only

challenging but also of its independent interest.

2.3.2 Multi-level compositional problems

Aiming to solve practical problems with more general stochastic compositional structures,

we extend our SCSC method in Section 2.2 for (2.3) to the multi-level problem (2.1).

As an example, the multi-step MAML problem [43] can be formulated as the multi-level

compositional problem (2.1). In this case, a globally shared initial model θ for the N -step

adaptation can be found by solving

min
θ∈Rd

F (θ) :=
1

M

M∑
m=1

Fm

(
θ̃Nm(θ)

)
(2.17)

with θ̃n+1
m = θ̃nm − α∇Fm(θ̃nm) recursively

where θ̃Nm(θ) is obtained after N step gradient descent on task m and initialized with θ̃0
m = θ.

Different from SCSC for the two-level compositional problem (2.3), the multi-level SCSC

(multi-SCSC) requires to track N − 1 functions f1, · · · , fN−1 using y1, · · · , yN−1. Following

the tracking update of SCSC, the multi-SCSC update is

yk+1
1 = (1− βk)yk1 + βkf1(θk; ξk1 ) + (1− βk)(f1(θk; ξk1 )− f1(θk−1; ξk1 )) (2.18a)

· · ·

yk+1
N−1 = (1− βk)ykN−1 + βkfN−1(yk+1

N−2; ξkN−1)

+ (1− βk)(fN−1(yk+1
N−2; ξkN−1)− fN−1(ykN−2; ξkN−1)) (2.18b)

θk+1 = θk − αk∇f1(θk; ξk1 ) · · · ∇fN−1(yk+1
N−2; ξkN−1)∇fN(yk+1

N−1; ξkN). (2.18c)

Note that both (2.7b) and (2.7c) can be used in multi-SCSC (2.18), though above we choose

(2.7c). Multi-SCSC can also incorporate Adam-type update. Analyzing multi-SCSC is more

challenging that SCSC, since the tracking variables are statistically dependent on each other.
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Algorithm 2 Adam SCSC method

1: initialize: θ0, y0, v0, h0, η1, η2, α0, β0

2: for k = 1, 2, . . . , K do

3: randomly select datum φk

4: compute g(θk;φk) and ∇g(θk;φk)

5: update variable yk+1 via (2.7b) or (2.7c)

6: randomly select datum ξk

7: compute ∇f(yk+1; ξk)

8: update hk+1, vk+1, θk+1 via (2.16)

9: end for

Specifically, conditioned on the randomness up to iteration k, the variable yk+1
n depends on

yk+1
n−1 and thus also on yk+1

n−2, · · · , yk+1
1 . Albeit its complex compositional form, as we will shown

later, multi-SCSC also achieves the same rate of convergence as SGD for non-compositional

stochastic optimization.

2.4 Convergence Analysis of SCSC

In this section, we establish the convergence of all SCSC algorithms. For our analysis, in

addition to Assumptions 1 and 2, we make the following assumptions.

Assumption 3. Random sampling oracle satisfies that E
[
g(θ;φk)

]
= g(θ), and E

[
∇g(θ;φk)

∇f(y; ξk)
]

= ∇g(θ)∇f(y).

Assumption 4. Function g(θ;φk) has bounded variance, i.e., E
[
‖g(θ;φk)− g(θ)‖2

]
≤ V 2

g .

Assumptions 3 and 4 are standard in stochastic compositional optimization; e.g., [117,

118, 62, 131], and are analogous to the unbiasedness and bounded variance assumptions for

non-compositional problems.
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2.4.1 Convergence in the two-level case

With insights gained from the continuous-time Lyapunov function (2.10), our analysis in this

subsection critically builds on the following discrete-time Lyapunov function:

Vk := F (θk)− F (θ∗) + ‖g(θk−1)− yk‖2 (2.19)

where θ∗ is the optimal solution of the problem (2.3).

Lemma 1 (Tracking variance of SCSC) Consider Fk as the collection of random vari-

ables, i.e., Fk :=
{
φ0, . . . , φk−1, ξ0, . . . , ξk−1

}
. Suppose Assumptions 1-4 hold, and yk+1 is

generated by running SCSC iteration (2.7a) and (2.7c) conditioned Fk. The mean square

error of yk+1 satisfies

E
[
‖g(θk)− yk+1‖2 | Fk

]
≤ (1− βk)2‖g(θk−1)− yk‖2 + 4(1− βk)2C2

g‖θk − θk−1‖2 + 2β2
kV

2
g .

(2.20)

Intuitively, since ‖θk − θk−1‖2 = O(α2
k−1), Lemma 1 implies that if the stepsizes α2

k and β2
k

are decreasing, the mean square error of yk+1 will decrease. Note that Lemma 1 presents the

performance of yk+1 using the update (2.7c). If we use the update (2.7b) instead, the bound

in (2.20) will have an additional term (1 − βk)2‖θk − θk−1‖4. Under a stronger version of

Assumption 2 (e.g., fourth moments), the remaining analysis still follows; see the derivations

in supplementary material.

Building upon Lemma 1, we establish the following theorem.

Theorem 1 (two-level SCSC) Under Assumptions 1-4, if we choose the stepsizes as αk =

2βk
C2
gL

2
f

= α = 1√
K

, the iterates {θk} of SCSC in Algorithm 1 satisfy

∑K−1
k=0 E[‖∇F (θk)‖2]

K
≤ 2V0 + 2B1√

K
(2.21)

where the constant is defined as B1 := L
2
C2
gC

2
f + 4V 2

g + 16C4
gC

2
f .
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Theorem 1 implies that the convergence rate of SCSC is O(k−
1
2 ), which is on the same

order of SGD’s convergence rate for the stochastic non-compositional nonconvex problems [29],

and significantly improves O(k−
1
4 ) of the original SCGD [117] and O(k−

4
9 ) of its accelerated

version [118]. Comparing with [32, 94] that achieves the same rate of O(k−
1
2 ) for the two-level

problem, our algorithm is simpler which makes it possible to adopt the Adam update. In

addition, this rate is not directly comparable to those under variance-reduced compositional

methods, e.g., [62, 39, 130, 131] since SCSC does not need the increasing batchsize nor

double-loop.

2.4.2 Convergence of Adam-SCSC

The convergence analysis for Adam SCSC builds on the following Lyapunov function:

Vk :=F (θk)− F (θ∗)−
∞∑
j=k

ηj−k+1
1 αj

〈
∇F (θk−1),

hk√
ε+ v̂k

〉
+ c
∥∥g(θk−1)− yk

∥∥2
(2.22)

where c is a constant depends on η1, η2 and ε. Clearly, the Lyapunov function (2.22) is a

generalization of (2.19) for SCSC, which takes into account the adaptive gradient update

by subtracting the inner product between the full gradient and the Adam SCSC update.

Intuitively, if the adaptive stochastic gradient direction is aligned with the gradient direction,

this term will also become small.

To establish the convergence of Adam SCSC, we need a slightly stronger version of

Assumption 2, which is standard in analyzing the convergence of Adam [55, 97, 13].

Assumption 5. Stochastic gradients are bounded almost surely, ‖∇g(θ;φ)‖ ≤ Cg, ‖∇f(y; ξ)‖ ≤
Cf . Analogous to Theorem 1, we establish the convergence of Adam SCSC under nonconvex

settings.

Theorem 2 (Adam SCSC) Under Assumptions 1 and 3-5, if we choose the parameters

η1 <
√
η2 < 1, and the stepsizes as αk = 2βk = 1√

K
, the iterates {θk} of Adam SCSC in
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Algorithm 2 satisfy

1

K

K−1∑
k=0

E[‖∇F (θk)‖2] ≤
2(ε+ C2

gC
2
f )

1
2

(1− η1)(V0 + (4C2
g η̃ + V 2

g )c+ 2dη̃L√
K

+
CgCfdη̃

K
+

(1 + (1− η1)−1)C2
gC

2
fdε
− 1

2

K

)
(2.23)

where d is the dimension of θ, and the constant is defined as η̃ := (1− η1)−1(1− η2)−1(1−
η2

1/η2)−1.

Theorem 2 implies that the convergence rate of Adam SCSC is also O(k−
1
2 ). This rate is

again on the same order of Adam’s convergence rate for the stochastic non-compositional

nonconvex problems [13], and significantly faster than O(k−
4
9 ) of the existing adaptive

compositional SGD method [111]. As a by-product, the newly designed Lyapunov function

(2.22) also significantly streamlines the original analysis of Adam under nonconvex settings

[13], which is of its independent interest.

2.4.3 Convergence of multi-SCSC

In this section, we establish the convergence results of the multi-level SCSC, and present the

corresponding analysis.

The subsequent analysis for the multi-level problem builds on the following Lyapunov

function:

Vk := F (θk)− F (θ∗) +
N−1∑
n=1

∥∥ykn − fn(ykn−1)
∥∥2

(2.24)

where θ∗ is the optimal solution of the problem (2.1).

To this end, we need a generalized version of Assumptions 1-4 for the multi-level setting.

Assumption m1. Functions {fn} are Ln-smooth, that is, for any θ, θ′ ∈ Rd, ‖∇fn(θ; ξn)−
∇fn(θ′; ξn)‖ ≤ Ln‖θ − θ′‖.

Assumption m2. The stochastic gradients of {fn} are bounded in expectation, that is

E [‖∇fn(θ; ξn)‖2] ≤ C2
n.
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Assumption m3. Random sampling oracle satisfies that E
[
fn(θ; ξkn)

]
= fn(θ), ∀n, and

E
[
∇f1(θ; ξk1 ) · · · ∇fN(yN−1; ξkN)

]
= ∇f1(θ) · · · ∇fN(yN−1).

Assumption m4. For all n, fn(θ; ξn) has bounded variance, i.e., E [‖fn(θ; ξn)− fn(θ)‖2] ≤
V 2.

Building upon these assumptions, we establish the convergence of multi-SCSC under

nonconvex settings.

Theorem 3 (multi-level SCSC) Under Assumptions m1-m4, if we choose the stepsizes

as αk = 2βk∑N−1
n=1 A

2
n

= 1√
K

, the iterates {θk} of the multi-level SCSC iteration (2.18) satisfy∑K−1
k=0 E[‖∇F (θk)‖2]

K
≤ 2V0 + 2(B2 + B̃2(

∑N−1
n=1 A

2
n)2/4)√

K
. (2.25)

where B2, B3, A1, . . . , AN are some constants that depend on C1, . . . , CN and L1, . . . , LN .

Theorem 3 implies that the convergence rate of multi-SCSC is also O(k−
1
2 ). This rate is again

on the same order of SGD’s rate for the stochastic non-compositional nonconvex problems.

2.5 Numerical Tests

To validate our theoretical results, this section evaluates the empirical performance of our

SCSC and Adam SCSC. We evaluate the empirical performance of SCSC and Adam SCSC in

two tasks: sinusoidal regression for MAML and risk-averse portfolio management.

All experiments are run on a computer with Intel i9-9960x and NVIDIA Titan GPU.

2.5.1 Sinusoidal regression for MAML

For MAML, we consider the sinusoidal regression tasks as that in [26]. Each task in MAML

is to regress from the input to the output of a sine wave

s(x; a, ϕ) = a sin(x+ ϕ) (2.26)
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Figure 2.1: Comparison of two SCSC updates on the Sinewave regression task.

where the amplitude a and phase ϕ of the sinusoid vary across tasks. We sample the amplitude

a uniformly from U([0.1, 5]) and the phase ϕ uniformly from U([0, 2π]). During training,

datum x is sampled uniformly from U([−5, 5]) and s(x; a, ϕ) is observed. We use a neural

network with 2 layers of hidden neurons with weights θ as the regressor ŝ(x; θ) and use the

mean square error Ex[‖ŝ(x; θ)− s(x; a, ϕ)‖2]. We define

Fm(θ) = Ex[‖ŝ(x; θ)− s(x; am, ϕm)‖2]. (2.27)

In this case, to connect with (2.3), both random variables ξ and φ in (2.3) are uniformly

drawn from U([−5, 5]). Let us define

g(θ) = [g1(θ)>, · · · , gM(θ)>]>

= [(θ −∇F1(θ))>, · · · , (θ −∇FM(θ))>]> ∈ RMd (2.28)

and define ym ∈ Rd to track gm(θ). With y := [y>1 , · · · , y>M ]> ∈ RMd, we define

f(y) :=
1

M

M∑
m=1

Fm(ym). (2.29)

Then MAML with sinusoidal regression satisfies the composition formulation (2.3).

Benchmark algorithms. In Figure 2.1, we first compare the performance of SCSC and

Adam SCSC under two different rules (2.7b) and (2.7c). We then compare our SCSC and

Adam SCSC with non-compositional stochastic optimization solver Adam and SGD (the
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Figure 2.2: Summary of results on the Sinewave regression task.

common baseline for MAML), as well as compositional stochastic solver SCGD and ASC in

Figure 2.2.

Hyperparameter tuning. We tune the hyperparameters by first following the suggested

order of stepsizes from the original papers and then using a grid search for the constant. For

SCSC and Adam SCSC, we use stepsizes α, βk = 0.8. For Adam and SGD, we use α. For

SCGD and ASC, we use stepsizes αk = αk−3/4, βk = k−1/2 and αk = αk−5/9 and βk = k−4/9 as

suggested in [117, 118]. The initial learning rate α is chosen from {10−1, 10−2, 10−3, 10−4, 10−5}
and optimized for each algorithm.

During training, we fix M = 100 and we sample 10 data from each task to evaluate

the inner function g(θ), and use another 10 data to evaluate f(y). The MAML adaptation

stepsize in (2.2) is α = 0.01.

We compare the performance of SCSC and Adam SCSC under two different update rules

(2.7b) and (2.7c) in Figure 2.1 for the sinewave regression MAML task. Both (2.7b) and

(2.7c) can guarantee that the new approach achieves the same convergence rate O(k−
1
2 ), but

(2.7c) requires one more function evaluation than (2.7b) at the old iterate θk−1. In terms

of both the number of samples and number of gradients, two update rules have very close

performance, and the two lines are almost overlapping.

In Figure 2.2, at each evaluation point of test loss, we sample 100 data to test the
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Figure 2.3: Summary of results on the Industrial-49 dataset.
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Figure 2.4: Summary of results on the 100 Book-to-Market dataset.

performance of each algorithm on these trained tasks. We also sample 100 unseen tasks

to test the adaptation of the meta parameter learned on M = 100 tasks. For each unseen

task, we start with the learned initialization and perform 10-step SGD with minibatch of

10. As shown in Figure 2.2, in terms of training loss, Adam SCSC again achieves the best

performance, and SCSC outperforms the popular SCGD and ASC methods. In the meta

test, while all algorithms reduce the test loss after several steps of adaptation, Adam SCSC

achieves the fastest adaptation, and SCSC also has competitive performance.

2.5.2 Risk-averse portfolio management

Given d assets, let rt ∈ Rd denote the reward vector with nth entry representing the reward

of nth asset observed at time slot t over a total of T slots. Portfolio management aims to

find an investment θ ∈ Rd with nth entry representing the amount of investment or the split
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of the total investment allocated to the asset n. The optimal investment θ∗ is the one that

solves the following problem

max
θ∈Rd

1

T

T∑
t=1

r>t θ −
1

T

T∑
t=1

(
r>t θ −

1

T

T∑
j=1

r>j θ
)2

. (2.30)

In this case, both random variables ξ and φ in (2.3) are uniformly drawn from {r1, · · · , rT}.
If we define g(θ; rj) = [θ, r>j θ]

> ∈ Rd+1, and y ∈ Rd+1 tracking E[g(θ; r)], and define

f(y; rt) = y(d+1) − (y(d+1) − r>t y(1:d))
2 (2.31)

where y(1:d) and y(d+1) denote the first d entries and the (d + 1)th entry of y. In this case,

problem (2.30) is an instance of stochastic composition problem (2.3).

Benchmark algorithms. We compare SCSC and Adam SCSC with SCGD[117], VRSC-

PG [40] and Nested SPIDER [131]. For linear g(θ; r), it can be verified that SCSC is equivalent

to the accelerated SCGD (ASC) [118], and our SCSC and Adam SCSC under two different

inner update rules (2.7b) and (2.7c) are also equivalent. Therefore, we only include one.

Hyperparameter tuning. We tune the hyperparameters by first following the suggested

order of stepsizes from the original papers and then using a grid search for the constant. For

example, we choose αk = αk−3/4, βk = k−1/2 for SCGD; αk = αk−1/2, βk = k−1/2 for SCSC

and Adam SCSC; the constant stepsize α for VRSC-PG and Nested SPIDER. The initial

learning rate α is chosen from the searching grid {10−1, 10−2, 10−3, 10−4, 10−5} and optimized

for each algorithm in terms of loss versus the number of iterations. Note that whenever

the best performing hyperparameter lies in the boundary of the searching grid, we always

extend the grid to make the final hyperparameter fall into the interior of the grid. For all the

algorithms, we use the batch size 100 for both inner and outer functions. Figures 2.3 and 2.4

show the test results averaged over 50 runs on two benchmark datasets: Industrial-49 and 100

Book-to-Market. The two datasets are downloaded from the Keneth R. French Data Library1

1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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without preprocessing. On both datasets, Adam SCSC achieves the best performance, and

SCSC outperforms several popular alternatives.

2.6 Proofs of results for the two-level SCSC

In this section, we present the proofs of the theorems in Section 2.4. Due to space limitation,

we leave the proofs of the multi-level case in the next chapter.

2.6.1 Proof of Theorem 1

2.6.1.1 Proof of Lemma 1 under Option 1

From the update (2.7b), we have that

yk+1 − g(θk) = (1− βk)(yk − g(θk−1)) + (1− βk)(g(θk−1)− g(θk))

+ βk(g(θk;φk)− g(θk)) + (1− βk)(g(θk;φk)− g(θk−1;φk))

= (1− βk)(yk − g(θk−1)) + (1− βk)T1 + βkT2 + (1− βk)T3. (2.32)

where we define the three terms as T1 := g(θk−1) − g(θk), T2 := g(θk;φk) − g(θk), and

T3 := g(θk;φk)− g(θk−1;φk).

Conditioned on Fk, taking expectation over φk, we have

E
[
(1− βk)T1 + βkT2 + (1− βk)T3|Fk

]
= 0. (2.33)

Therefore, conditioned on Fk, taking expectation on the both sides of (2.32), we have

E[‖yk+1 − g(θk)‖2|Fk] = E[‖(1− βk)(yk − g(θk−1))‖2|Fk]

+ E
[
‖(1− βk)T1 + βkT2 + (1− βk)T3‖2|Fk

]
+ 2E

[〈
(1− βk)(yk − g(θk−1)), (1− βk)T1 + βkT2 + (1− βk)T3

〉
|Fk
]
.
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Using the Young’s inequality, we have

E
[
‖(1− βk)T1 + βkT2 + (1− βk)T3‖2|Fk

]
≤ 2E

[
‖(1− βk)T1 + βkT2‖2|Fk

]
+ 2(1− βk)2E

[
‖T3‖2|Fk

]
≤ 2(1− βk)2E[‖T1‖2 | Fk] + 2β2

kE[‖T2‖2 | Fk]

+ 4βk(1− βk)
〈
T1,E[T2 | Fk]

〉
+ 2(1− βk)2E

[
‖T3‖2|Fk

]
≤ 2(1− βk)2E

[
‖g(θk)− g(θk−1)‖2|Fk

]
+ 2(1− βk)2E

[
‖g(θk;φk)− g(θk−1;φk)‖2|Fk

]
+ 2β2

kV
2
g

≤ 4(1− βk)2C2
g‖θk − θk−1‖2 + 2β2

kV
2
g

from which the proof is complete.

2.6.1.2 Proof of Lemma 1 under Option 2

Lemma 2 (Tracking error under Option 2) Suppose that Assumptions 1-4 hold, and

yk+1 is generated by running iteration (2.7) given θk. Then the variance of yk+1 satisfies

E
[
‖g(θk)− yk+1‖2 | Fk

]
≤ (1− βk)‖yk−1 − g(θk)‖2 + 4(1− βk)2C2

g‖θk − θk−1‖2

+ 2β2
kV

2
g +

(1− βk)2L2

4
‖θk − θk−1‖4. (2.34)

Compared with the tracking variance in Lemma 1 under (2.7c), Lemma 2 under (2.7b) has an

additional term (1−βk)2L2

4
‖θk − θk−1‖4. In this case, under a stronger version of Assumption 2’

(e.g., bounded fourth moments), this term is O (α4
k), which will be dominated by second and

the third terms in the RHS of (2.34) since both of them are O (α2
k).

Once we have established this, the remaining proof of SCSC with (2.7b) follows the same

line as that of SCSC with (2.7c). For brevity, we only present the proof under Lemma 1, and

that under Lemma 2 follows similarly.

Assumption 2’. The stochastic gradients of f and g are bounded in expectation, that is

E [‖∇g(θ;φ)‖4] ≤ C4
g and E [‖∇f(y; ξ)‖4] ≤ C4

f .
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Proof: For (2.7b), using the fact that ∇g(θ) is Lg-Lipchitz continuous, we have

yk+1 − g(θk) =(1− βk)(yk − g(θk−1)) + (1− βk)(g(θk)− g(θk−1)

+ βk(g(θk;φk)− g(θk)) + (1− βk)∇g(θk−1;φk)(θk − θk−1)

=(1− βk)(yk − g(θk−1) + (1− βk)T1 + βkT2 + (1− βk)T3 (2.35)

where we define the terms as T1 := g(θk−1) − g(θk), T2 := g(θk;φk) − g(θk), and T3 :=

∇g(θk−1;φk)(θk − θk−1).

Conditioned on Fk, taking expectation over φk, we have

∥∥E [(1− βk)T1 + βkT2 + (1− βk)T3 | Fk
]∥∥ (2.36)

= (1− βk)
∥∥g(θk−1)− g(θk) +∇g(θk−1)(θk − θk−1)

∥∥
= (1− βk)

∥∥∥∫ 1

0

−∇g(θk−1 + t(θk − θk−1))(θk − θk−1)dt+∇g(θk−1)(θk − θk−1)
∥∥∥

≤ (1− βk)
∫ 1

0

∥∥∇g(θk−1)−∇g(θk−1+t(θk − θk−1))
∥∥‖θk − θk−1‖dt

≤ (1− βk)
∫ 1

0

Lgt‖θk − θk−1‖2 =
(1− βk)Lg

2
‖θk − θk−1‖2.
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Therefore, conditioned on Fk, taking expectation on both sides of (2.35) over φk, we have

E[‖yk+1 − g(θk)‖2 | Fk]

= (1− βk)2‖yk − g(θk−1)‖2 + 2
〈
(1− βk)(yk − g(θk−1)),E

[
(1− βk)T1+βkT2+(1− βk)T3 |Fk

]〉
+ E[‖(1− βk)T1 + βkT2 + (1− βk)T3‖2 | Fk]

(2.36)

≤ (1− βk)2‖yk − g(θk−1)‖2 + 2E[‖(1− βk)T1 + βkT2)‖2 | Fk] + 2(1− βk)2E[‖T3‖2 | Fk]

+ (1− βk)2L‖yk − g(θk−1)‖‖θk − θk−1‖2

≤ (1− βk)2‖yk − g(θk−1)‖2 + 2(1− βk)2E[‖T1‖2 | Fk] + 2β2
kE[‖T2‖2 | Fk]

+ 4βk(1− βk)
〈
T1,E[T2 | Fk]

〉
+ 2(1− βk)2E[‖T3‖2 | Fk]

+ (1− βk)2βk‖yk − g(θk−1)‖2 +
(1− βk)2L2

4
‖θk − θk−1‖4

≤ (1− βk)2(1 + βk)‖yk − g(θk−1)‖2 + 2(1− βk)2E
[
‖g(θk)− g(θk−1)‖2 | Fk

]
+ 2β2

kV
2
g

+ 2(1− βk)2E
[
‖g(θk;φk)− g(θk−1;φk)‖2 | Fk

]
+

(1− βk)2L2

4
‖θk − θk−1‖4

≤ (1− βk)‖yk − g(θk−1)‖2 + 4(1− βk)2C2
g‖θk − θk−1‖2 + 2β2

kV
2
g +

(1− βk)2L2

4
‖θk − θk−1‖4

from which the proof is complete.

2.6.1.3 Remaining proof

Using the smoothness of F , we have

F (θk+1)− F (θk) ≤ 〈∇F (θk), θk+1 − θk〉+
L

2
‖θk+1 − θk‖2

= −αk〈∇F (θk),∇g(θk;φk)∇f(yk+1; ξk)〉+
L

2
‖θk+1 − θk‖2

= −αk‖∇F (θk)‖2 +
L

2
‖θk+1 − θk‖2

+ αk〈∇F (θk),∇g(θk)∇f(g(θk))−∇g(θk;φk)∇f(yk+1; ξk)〉.
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Conditioned on Fk, taking expectation over φk and ξk on both sides, we have

E
[
F (θk+1)|Fk

]
− F (θk)

(a)

≤ − αk‖∇F (θk)‖2 +
L

2
E
[
‖θk+1 − θk‖2|Fk

]
+αkE

[
〈∇F (θk),∇g(θk;φk)(∇f(g(θk); ξk)−∇f(yk+1; ξk)〉|Fk

]
(b)

≤ − αk‖∇F (θk)‖2 +
L

2
E[‖θk+1 − θk‖2|Fk]

+ αk
∥∥∇F (θk)

∥∥E [‖∇g(θk;φk)‖2|Fk
] 1

2E
[
‖∇f(g(θk); ξk)−∇f(yk+1; ξk)‖2|Fk

] 1
2 (2.37)

where (a) uses E[∇g(θk;φk)∇f(g(θk); ξk)|Fk] = ∇g(θk)∇f(g(θk)) in Assumption 3, and (b)

uses the Cauchy-Schwartz inequality.

Further expanding the RHS of (2.37), we have

L

2
E[‖θk+1 − θk‖2|Fk] ≤ L

2
C2
gC

2
fα

2
k (2.38)

which follows from Assumption 2. And

αk
∥∥∇F (θk)

∥∥E [‖∇g(θk;φk)‖2|Fk
] 1

2 E
[
‖∇f(g(θk); ξk)−∇f(yk+1; ξk)‖2|Fk

] 1
2

(c)

≤αkCgLf‖∇F (θk)‖E
[
‖g(θk)− yk+1‖2|Fk

] 1
2

(d)

≤ α2
k

4βk
C2
gL

2
f‖∇F (θk)‖2 + βkE

[
‖g(θk)− yk+1‖2|Fk

]
where (c) uses Assumptions 1 and 2; and (d) uses the Young’s inequality.

Therefore, we have

E
[
F (θk+1)|Fk

]
− F (θk)

≤ − αk
(

1− αk
4βk

C2
gL

2
f

)
‖∇F (θk)‖2 + βkE

[
‖g(θk)− yk+1‖2|Fk

]
+
L

2
C2
gC

2
fα

2
k. (2.39)
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Then with the definition of Lyapunov function in (2.19), it follows that

E[Vk+1|Fk]− Vk ≤ −αk
(

1− αk
4βk

C2
gL

2
f

)
‖∇F (θk)‖2 +

L

2
C2
gC

2
fα

2
k (2.40)

+ (1 + βk)E
[
‖g(θk)− yk+1‖2|Fk

]
− ‖g(θk−1)− yk‖2

(a)

≤ −αk
(

1− αk
4βk

C2
gL

2
f

)
‖∇F (θk)‖2 +

L

2
C2
gC

2
fα

2
k

+ 2(1 + βk)β
2
kV

2
g +
(
(1 + βk)(1− βk)2−1

)
‖g(θk−1)− yk‖2

+ 4(1 + βk)(1− βk)2C4
gC

2
fα

2
k

(b)

≤ −αk
(

1− αk
4βk

C2
gL

2
f

)
‖∇F (θk)‖2 +

L

2
C2
gC

2
fα

2
k

+ 2(1 + βk)β
2
kV

2
g + 4C4

gC
2
fα

2
k

where (a) follows from Lemma 1, and (b) uses that (1 + βk)(1− βk)2 = (1− β2
k)(1− βk) ≤ 1

twice.

Select αk = 2βk
C2
gL

2
f

so that 1− αk
4βk
C2
gL

2
f = 1

2
, and define (with βk ∈ (0, 1))

B1 :=
L

2
C2
gC

2
f + 4V 2

g + 4C4
gC

2
f ≥

L

2
C2
gC

2
f + 2(1 + βk)V

2
g + 4C4

gC
2
f . (2.41)

Taking expectation over Fk on both sides of (2.40), then it follows that

E[Vk+1] ≤ E[Vk]− αk
2
E[‖∇F (θk)‖2] +B1α

2
k. (2.42)

Rearranging terms, we have∑K
k=0 αkE[‖∇F (θk)‖2]∑K

k=0 αk
≤ 2V0 + 2B1

∑K
k=0 α

2
k∑K

k=0 αk
.

Choosing the stepsize as αk = 1√
K

leads to∑K−1
k=0 E[‖∇F (θk)‖2]

K
≤ 2V0 + 2B1√

K

from which the proof is complete.
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2.6.2 Proof of Theorem 2

2.6.2.1 Supporting lemmas

We first present the essential lemmas that will lead to Theorem 2.

Lemma 3 Under Assumption 5, the parameters {hk, v̂k} of Adam SCSC in Algorithm 2

satisfy

‖hk‖ ≤ CgCf , ∀k; v̂ki ≤ C2
gC

2
f , ∀k, i. (2.43)

Proof: Using Assumption 5, it follows that ‖∇k‖ = ‖∇g(θk;φk)∇f(yk+1; ξk)‖ ≤ CgCf .

Therefore, from the update (2.16a), we have

‖hk+1‖≤η1‖hk‖+(1− η1)‖∇k‖ ≤ η1‖hk‖+ (1− η1)CgCf .

Since ‖h1‖ ≤ CgCf , if follows by induction that ‖hk+1‖ ≤ CgCf .

Similarly, from the update (2.16b), we have

v̂k+1
i ≤ max{v̂ki , η2v̂

k
i + (1− η2)(∇k

i )
2}

≤ max{v̂ki , η2v̂
k
i + (1− η2)C2

gC
2
f}.

Since v1
i = v̂1

i ≤ C2
gC

2
f , by induction, v̂k+1

i ≤ C2
gC

2
f .

Lemma 4 Under Assumption 5, the iterates {θk} of Adam SCSC in Algorithm 2 satisfy

∥∥θk+1 − θk
∥∥2 ≤ α2

kd(1− η2)−1(1− γ)−1 (2.44)

where d is the dimension of θ, η1 <
√
η2 < 1, and γ := η2

1/η2.
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Proof: Choosing η1 < 1 and defining γ := η2
1/η2, it can be verified that

|hk+1
i | =

∣∣η1h
k
i + (1− η1)∇k

i

∣∣ ≤ η1|hki |+ |∇k
i |

≤ η1

(
η1|hk−1

i |+ |∇k−1
i |

)
+ |∇k

i |

≤
k∑
l=0

ηk−l1 |∇l
i| =

k∑
l=0

√
γk−l
√
η2
k−l|∇l

i|

(a)

≤
(

k∑
l=0

γk−l

) 1
2
(

k∑
l=0

ηk−l2 (∇l
i)

2

) 1
2

≤ (1− γ)−
1
2

(
k∑
l=0

ηk−l2 (∇l
i)

2

) 1
2

(2.45)

where (a) follows from the Cauchy-Schwartz inequality.

For v̂ki , first we have that v̂1
i ≥ (1− η2)(∇1

i )
2. Then since

v̂k+1
i ≥ η2v̂

k
i + (1− η2)(∇k

i )
2

by induction we have

v̂k+1
i ≥ (1− η2)

k∑
l=0

ηk−l2 (∇l
i)

2. (2.46)

Using (2.45) and (2.46), we have

|hk+1
i |2 ≤(1− γ)−1

(
k∑
l=0

ηk−l2 (∇l
i)

2

)
≤(1− η2)−1(1− γ)−1v̂k+1

i .

From the update (2.16c), we have

‖θk+1 − θk‖2 = α2
k

d∑
i=1

(
ε+ v̂k+1

i

)−1 |hk+1
i |2

≤ α2
kd(1− η2)−1(1− γ)−1 (2.47)

which completes the proof.
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2.6.2.2 Remaining steps towards Theorem 2

We are ready to prove Theorem 2. We re-write the Lyapunov function (2.22) as

Vk := F (θk)− F (θ∗)− ck
〈
∇F (θk−1),

hk√
ε+ v̂k

〉
+ c
∥∥g(θk−1)− yk

∥∥2
(2.48)

where {ck} and c are constants to be determined later.

Using the smoothness of F (θk), we have

F (θk+1)− F (θk)

≤ 〈∇F (θk), θk+1 − θk〉+
L

2
‖θk+1 − θk‖2

= −αk〈∇F (θk), (εI + V̂ k+1)−
1
2hk+1〉+

L

2
‖θk+1 − θk‖2 (2.49)

where V̂ k+1 := diag(v̂k+1) and (εI + V̂ k+1)−
1
2 is understood entry-wise.

Recalling ∇k := ∇g(θk;φk)∇f(yk+1; ξk), the inner product in (2.49) can be decomposed

as

− 〈∇F (θk), (εI + V̂ k+1)−
1
2hk+1〉 (2.50)

=−(1− η1)〈∇F (θk), (εI + V̂ k)−
1
2∇k〉

Ik1

−η1〈∇F (θk), (εI + V̂ k)−
1
2hk〉

Ik2

−〈∇F (θk),
(

(εI + V̂ k+1)−
1
2 − (εI + V̂ k)−

1
2

)
hk+1〉

Ik3

.

By defining ∇̄k := ∇g(θk;φk)∇f(g(θk); ξk), we have

Ik1 =− (1− η1)〈∇F (θk), (εI + V̂ k)−
1
2∇̄k〉

− (1− η1)〈∇F (θk), (εI + V̂ k)−
1
2

(
∇k − ∇̄k

)
〉. (2.51)

Conditioned on Fk, taking expectation over φk and ξk on Ik1 , we have

E
[
Ik1 |Fk

] (a)

≤ −(1− η1)
∥∥∇F (θk)

∥∥2

(εI+V̂ k)−
1
2

+(1− η1)
∥∥(εI+V̂ k)−

1
4∇F (θk)

∥∥E[∥∥(εI+V̂ k)−
1
4

(
∇k−∇̄k

)∥∥∣∣Fk] (2.52)
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where (a) uses E
[
∇̄k|Fk

]
= ∇F (θk).

Expanding the second term in the RHS of (2.52), we have

E
[
Ik1 |Fk

] (b)

≤ − (1− η1)

(
1− αk

4βk

)∥∥∇F (θk)
∥∥2

(εI+V̂ k)−
1
2

+
βk
αk

E
[∥∥∥∇k − ∇̄k

∥∥∥2

(εI+V̂ k)−
1
2

∣∣Fk]
(c)

≤−(1− η1)

(
1− αk

4βk

)∥∥∇F (θk)
∥∥2

(εI+V̂ k)−
1
2

+
βk
αk
ε−

1
2C2

gL
2
fE
[∥∥∥g(θk)− yk+1

∥∥∥2∣∣Fk]
(d)

≤−(1− η1)

(
1− αk

4βk

)
(εI + C2

gC
2
f )−

1
2

∥∥∇F (θk)
∥∥2

+
βk
αk
ε−

1
2C2

gL
2
fE
[∥∥∥g(θk)− yk+1

∥∥∥2∣∣Fk] (2.53)

where (b) is due to the Young’s inequality ab ≤ a2

4βk
+ βkb

2 and 1− η1 ≤ 1; (c) follows from

Assumptions 1 and 2; and, (d) uses Lemma 3.

Likewise, for Ik2 , we have

E
[
Ik2 |Fk

]
=− η1〈∇F (θk−1), (εI + V̂ k)−

1
2hk〉

− η1〈∇F (θk)−∇F (θk−1), (εI + V̂ k)−
1
2hk〉

(a)

≤ − η1〈∇F (θk−1), (εI + V̂ k)−
1
2hk〉+ η1Lα

−1
k−1‖θk − θk−1‖2

(b)

≤− η1〈∇F (θk−1), (εI + V̂ k)−
1
2hk〉+αk−1η1Ld(1− η2)−1(1− γ)−1

(c)
= − η1(Ik−1

1 + Ik−1
2 + Ik−1

3 ) + αk−1η1Ld(1− η2)−1(1− γ)−1 (2.54)

where (a) follows from the L-smoothness of F (θ) implied by Assumptions 1 and 2; (b) follows

from Lemma 4; and (c) uses again the decomposition (2.50).

Use hki , v
k
i , θ

k
i ,∇k

i to denote the ith entry of hk, vk, θk,∇k. We have |∇iF (θk)| ≤
‖∇F (θk)‖, |hk+1

i | ≤ ‖hk+1‖ and (ε+ v̂ki )
1
2 ≥ (ε+ v̂k+1

i )
1
2 as v̂k+1

i = max{·, v̂ki } ≥ v̂ki .
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For Ik3 , we have

E
[
Ik3 |Fk

]
=−

d∑
i=1

∇iF (θk)
(

(ε+ v̂k+1
i )−

1
2 − (ε+ v̂ki )−

1
2

)
hk+1
i

≤‖∇F (θk)‖‖hk+1‖
d∑
i=1

(
(ε+ v̂ki )−

1
2 − (ε+ v̂k+1

i )−
1
2

)
(d)

≤C2
gC

2
f

d∑
i=1

(
(ε+ v̂ki )−

1
2 − (ε+ v̂k+1

i )−
1
2

)
(2.55)

where (d) follows from Assumption 5 and Lemma 3.

Recalling the definition of Vk in (2.22), we have

Vk+1 − Vk

=F (θk+1)−F (θk)−ck+1

〈
∇F (θk), (εI + V̂ k+1)−

1
2hk+1

〉
+ c‖g(θk)− yk+1‖2 + ck

〈
∇F (θk−1), (εI + V̂ k)−

1
2hk
〉

− c‖g(θk−1)− yk‖2

(2.49)

≤ − (αk + ck+1)〈∇F (θk), (εI + V̂ k+1)−
1
2hk+1〉

+
L

2
‖θk+1 − θk‖2 + c‖g(θk)− yk+1‖2

+ ck

〈
∇F (θk−1), (εI + V̂ k)−

1
2hk
〉
− c‖g(θk−1)− yk‖2. (2.56)
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Conditioned on Fk, taking expectation over φk and ξk on both sides of (2.56), we have

E[Vk+1|Fk]− Vk

≤(αk + ck+1)E[Ik1 + Ik2 + Ik3 | Fk] +
L

2
E[‖θk+1 − θk‖2 | Fk]

+ ck(I
k−1
1 + Ik−1

2 + Ik−1
3 ) + cE[‖g(θk)− yk+1‖2 | Fk]

− c‖g(θk−1)− yk‖2

(e)

≤ − (αk + ck+1)(1− η1)

(
1− αk

4βk

)
(ε+ C2

gC
2
f )−

1
2‖∇F (θk)‖2

− ((αk + ck+1)η1 − ck) (Ik−1
1 + Ik−1

2 + Ik−1
3 )

+ (αk + ck+1)αk−1η1Ld(1− η2)−1(1− γ)−1

+ (αk + ck+1)C2
gC

2
f

d∑
i=1

(
(ε+ v̂ki )−

1
2 − (ε+ v̂k+1

i )−
1
2

)
+

(
c+

αk + ck+1

αk
βkε
− 1

2C2
gL

2
f

)
E[‖g(θk)− yk+1‖2 | Fk]

+
L

2
α2
k(1− η2)−1(1− γ)−1 − c‖g(θk−1)− yk‖2 (2.57)

where (e) substitutes E[Ik1 + Ik2 + Ik3 | Fk] by (2.53)-(2.55) and applies Lemma 4.

Selecting αk+1 ≤ αk and ck :=
∞∑
p=k

p∏
j=k

η1αp ≤ (1− η1)−1αk, we have

αk + ck+1

αk
βkε
− 1

2C2
gL

2
f ≤

αk + (1− η1)−1αk+1

αk
βkε
− 1

2C2
gL

2
f

≤ αk + (1− η1)−1αk
αk

βkε
− 1

2C2
gL

2
f

:= cβk

where we define c := (1 + (1− η1)−1)ε−
1
2C2

gL
2
f .
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Therefore, applying Lemma 1, we have(
c+

αk + ck+1

αk
βkε
− 1

2C2
gL

2
f

)
E[‖g(θk)− yk+1‖2 | Fk]

− c‖g(θk−1)− yk‖2

≤c(1 + βk)E[‖g(θk)− yk+1‖2 | Fk]− c‖g(θk−1)− yk‖2

≤c
(
(1 + βk)(1− βk)2 − 1

)
‖g(θk−1)− yk‖2

+ 4c(1 + βk)(1− βk)2C2
g‖θk − θk−1‖2 + 2c(1 + βk)β

2
kV

2
g

≤4c(1 + βk)(1− βk)2C2
g

(
α2
k−1d(1− η2)−1(1− γ)−1

)
+ 2c(1 + βk)β

2
kV

2
g

(f)

≤4cC2
gα

2
k−1d(1− η2)−1(1− γ)−1 + 2c(1 + βk)β

2
kV

2
g (2.58)

where (f) follows from (1 + βk)(1− βk)2 =(1− β2
k)(1− βk)≤1.

Selecting ck :=
∞∑
p=k

p∏
j=k

η1αp implies (αk + ck+1)η1 = ck. We thus obtain from (2.57) and

(2.58) that

E[Vk+1|Fk]− Vk

≤− (αk + ck+1)(1− η1)
(

1− αk
4βk

)
(ε+ C2

gC
2
f )−

1
2‖∇F (θk)‖2

+ 4cC2
gα

2
k−1d(1− η2)−1(1− γ)−1 + 2cβ2

k(1 + βk)V
2
g

+ (1− η1)−1Ld(1− η2)−1(1− γ)−1αkαk−1

+ (αk + ck+1)C2
gC

2
f

d∑
i=1

(
(ε+ v̂ki )−

1
2 − (ε+ v̂k+1

i )−
1
2

)
+
L

2
α2
k(1− η2)−1(1− γ)−1. (2.59)

Defining η̃ := (1− η1)−1(1− η2)−1(1− γ)−1
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and rearranging terms in (2.59) and telescoping from k = 0, · · · , K − 1, we have

K−1∑
k=0

αk(1− η1)

(
1− αk

4βk

)
(ε+ C2

gC
2
f )−

1
2E[‖∇F (θk)‖2]

≤V0 − E[VK ] +
K−1∑
k=0

(
4cC2

gα
2
k−1(1− η1)η̃ + 2cβ2

k(1 + βk)V
2
g

)
+

K−1∑
k=0

(
η̃Ldα2

k−1 +
L

2
(1− η1)η̃α2

k

)

+
K−1∑
k=0

(αk + ck+1)C2
gC

2
f

d∑
i=1

(
(ε+ v̂ki )−

1
2 − (ε+ v̂k+1

i )−
1
2

)
(g)

≤V0 + (1− η1)−1αkCgCfd(1− η1)η̃

+
K−1∑
k=0

(
4cC2

gα
2
k−1(1− η1)η̃ + 2cβ2

k(1 + βk)V
2
g

)
+

K−1∑
k=0

(
η̃Ldα2

k−1 +
L

2
(1− η1)η̃α2

k

)

+ (1 + (1− η1)−1)α0C
2
gC

2
f

d∑
i=1

(
(ε+ v̂0

i )
− 1

2 − (ε+ v̂Ki )−
1
2

)
where (g) follows from αk + ck+1 ≤ (1 + (1− η1)−1)αk ≤ α0 and the definition of Vk that

E[Vk] ≥ F (θk)− F (θ∗) + c‖g(θk−1)− yk‖2 − (1− η1)−1αkCgCfd(1− η2)−1(1− γ)−1.

Select αk = 2βk = α = 1√
K

so that 1− αk
4βk

= 1
2
. We have that

1

K

K−1∑
k=0

E[‖∇F (θk)‖2]

≤
V0 +

K−1∑
k=0

(
4C2

g (1− η1)η̃ + V 2
g

)
cα2

K α(1−η1)
2

(ε+ C2
gC

2
f )−

1
2

+

K−1∑
k=0

(
η̃Ld+ L

2
(1− η1)η̃

)
α2 + CgCfdη̃α

K α(1−η1)
2

(ε+ C2
gC

2
f )−

1
2

+
(1 + (1− η1)−1)α0C

2
gC

2
f

∑d
i=1(ε+ v̂0

i )
− 1

2

K α(1−η1)
2

(ε+ C2
gC

2
f )−

1
2

=
2(ε+ C2

gC
2
f )

1
2

(1− η1)

(V0+(4C2
g (1− η1)η̃ + V 2

g )c+ (d+ 1
2
(1− η1))η̃L√

K

+
CgCfdη̃ + (1 + (1− η1)−1)C2

gC
2
fdε
− 1

2

K

)
≤

2(ε+ C2
gC

2
f )

1
2

(1− η1)

(V0 +
(
4C2

g η̃ + V 2
g

)
c+ 2dη̃L√

K
+
CgCfdη̃

K
+

(1 + (1− η1)−1)C2
gC

2
fdε
− 1

2

K

)
from which the proof is complete.
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2.7 Convergence results of the multi-level SCSC

In this section, we establish the convergence results of the multi-level SCSC, and present the

corresponding analysis.

2.7.1 Supporting lemma

We first prove a multi-level version of the tracking variance lemma.

Lemma 5 (Tracking variance of multi-level SCSC) If Assumptions 1-4 hold, and yk+1
n

is generated by running the multi-level SCSC iteration (2.18) given θk, then the variance of

yk+1
n satisfies

E
[
‖yk+1

n − fn(yk+1
n−1)‖2 | Fk

]
≤ (1− βk)2‖ykn − fn(ykn−1)‖2

+ 4(1− βk)2C2
nE
[
‖ykn−1 − yk+1

n−1‖2|Fk
]

+ 2β2
kV

2. (2.60)

Proof: Use Fk,n to denote the σ-algebra generated by {· · · , θk, yk1 , . . . , ykn−1} From the

update (2.18), we have that

yk+1
n − fn(yk+1

n−1) = (1− βk)
(
ykn − fn(ykn−1)

)
+ (1− βk)

(
fn(ykn−1)− fn(yk+1

n−1)
)

+ βk
(
f(yk+1

n−1; ξkn)− fn(yk+1
n−1)

)
+ (1− βk)

(
f(yk+1

n−1; ξkn)− f(ykn−1; ξkn)
)

= (1− βk)(ykn − fn(ykn−1)) + (1− βk)T1 + βkT2 + (1− βk)T3 (2.61)

where we define the three terms as

T1 := fn(ykn−1)− fn(yk+1
n−1))

T2 := fn(yk+1
n−1; ξkn)− fn(yk+1

n−1)

T3 := fn(yk+1
n−1; ξkn)− fn(ykn−1; ξkn).

Conditioned on Fk, taking expectation over φk, we have

E
[
(1− βk)T1 + βkT2 + (1− βk)T3|Fk

]
= 0. (2.62)
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Conditioned on Fk,n := {Fk, yk+1
1 , . . . , yk+1

n−1}, taking expectation on (2.61), we have

E[‖yk+1
n − fn(yk+1

n−1)‖2 | Fk,n]

=E[‖(1− βk)(ykn − fn(ykn−1))‖2|Fk] + E
[
‖(1− βk)T1 + βkT2 + (1− βk)T3‖2 | Fk,n

]
+ 2E

[〈
(1− βk)(ykn − fn(ykn−1)), (1− βk)T1 + βkT2 + (1− βk)T3

〉
| Fk,n

]
=(1− βk)2‖ykn − fn(ykn−1)‖2 + E

[
‖(1− βk)T1 + βkT2 + (1− βk)T3‖2 | Fk,n

]
≤(1− βk)2‖ykn − fn(ykn−1)‖2 + 2E

[
‖(1− βk)T1 + βkT2‖2 | Fk,n

]
+ 2(1− βk)2E

[
‖T3‖2 | Fk,n

]
≤(1− βk)2‖ykn − fn(ykn−1)‖2 + 2(1− βk)2E[‖T1‖2 | Fk,n] + 2β2

kE[‖T2‖2 | Fk,n]

+ 2βk(1− βk)
〈
T1,E[T2 | Fk,n]

〉
+ 2(1− βk)2E[‖T3‖2 | Fk,n]

≤(1− βk)2‖ykn − fn(ykn−1)‖2 + 2(1− βk)2E
[
‖fn(ykn−1)− fn(yk+1

n−1)‖2|Fk
]

+ 2(1− βk)2E
[
‖fn(ykn−1; ξkn)− fn(yk+1

n−1; ξkn)‖2|Fk
]

+ 2β2
kV

2

≤(1− βk)2‖ykn − fn(ykn−1)‖2 + 4(1− βk)2C2
nE
[
‖ykn−1 − yk+1

n−1‖2|Fk
]

+ 2β2
kV

2

from which the proof is complete.

Define f (n)(θ) := fn ◦ fn−1 ◦ · · · ◦ f1(θ) and the stochastic compositional gradients as

∇k := ∇f1(θk; ξk1 ) · · · ∇fN−1(yk+1
N−2; ξkN−1)∇fN(yk+1

N−1; ξkN)

∇̄k := ∇f1(θk; ξk1 ) · · · ∇fN−1(f (N−2)(θk); ξkN−1)∇fN(f (N−1)(θk); ξkN).

Thus, taking expectation with respect to ξk1 , . . . , ξ
k
N , we have

E
[
∇k | Fk,N

]
− ∇̄k =∇f1(θk; ξk1 ) · · · ∇fN−1(yk+1

N−2; ξkN−1)∇fN(yk+1
N−1; ξkN)

−∇f1(θk; ξk1 ) · · · ∇fN−1(yk+1
N−2; ξkN−1)∇fN(f (N−1)(θk); ξkN)

+∇f1(θk; ξk1 ) · · · ∇fN−1(yk+1
N−2; ξkN−1)∇fN(f (N−1)(θk); ξkN)

−∇f1(θk; ξk1 ) · · · ∇fN−1(f (N−2)(θk); ξkN−1)∇fN(f (N−1)(θk); ξkN)

· · ·

+∇f1(θk; ξk1 )∇f2(yk+1
1 ; ξk2 ) · · · ∇fN(f (N−1)(θk); ξkN)

−∇f1(θk; ξk1 )∇f2(f1(θk); ξk2 ) · · · ∇fN(f (N−1)(θk); ξkN). (2.63)
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Since the nth difference term in (2.63) can be bounded by (for convenience, define

yk+1
0 = θk)∥∥∥E[∇f1(θk; ξk1 ) · · · ∇fn(yk+1

n−1; ξkn) · · · fN(f (N−1)(θk); ξkN)

−∇f1(θk; ξk1 ) · · · ∇fn(f (n−1)(θk); ξkn) · · · ∇fN(f (N−1)(θk); ξkN) | Fk
]∥∥∥

(a)

≤ E
[ ∥∥∇f1(θk; ξk1 ) · · · ∇fn−1(yk+1

n−2; ξkn−1)∇fn+1(f (n)(θk); ξkn+1) · · · ∇fN(f (N−1)(θk); ξkN)
∥∥2 | Fk

] 1
2

Ikn

× E
[ ∥∥∇fn(yk+1

n−1; ξkn)−∇fn(f (n−1)(θk); ξkn)
∥∥2 | Fk

] 1
2

Jkn

(2.64)

where (a) uses the Cauchy-Schwartz inequality.

For Ikn, using Assumption m2, we have

Ikn = E
[
E
[ ∥∥∇f1(θk; ξk1 ) · · · ∇fN(f (N−1)(θk); ξkN)

∥∥2 | Fk,N
]
| Fk

] 1
2

≤ E

[
E
[ ∥∥∇fN(f (N−1)(θk); ξkN)

∥∥2
]
E
[ ∥∥∇f1(θk; ξk1 ) · · · ∇fN−1(f (N−2)(θk); ξkN−1)

∥∥2 | Fk,N
]
| Fk

] 1
2

≤ CNE

[
E
[ ∥∥∇f1(θk; ξk1 ) · · · ∇fN−1(f (N−2)(θk); ξkN−1)

∥∥2 | Fk,N
]
| Fk

] 1
2

≤ CNE

[
E
[ ∥∥∇fN−1(f (N−2)(θk); ξkN−1)

∥∥2
]

× E
[ ∥∥∇f1(θk; ξk1 ) · · · ∇fN−2(f (N−3)(θk); ξkN−2)

∥∥2 | Fk, yk+1
1 , . . . , yk+1

N−2

]
| Fk

] 1
2

≤ CN−1CNE
[
E
[ ∥∥∇f1(θk; ξk1 ) · · · ∇fN−1(f (N−2)(θk); ξkN−1)

∥∥2 | Fk, yk+1
1 , . . . , yk+1

N−2

]
| Fk

] 1
2

≤ C1 · · ·Cn−1Cn+1 · · ·CN .

For Jkn , using Assumption m1, we have

Jkn = E
[ ∥∥∇fn(yk+1

n−1; ξkn)−∇fn(f (n−1)(θk); ξkn)
∥∥2 | Fk

] 1
2

≤ LnE
[ ∥∥yk+1

n−1 − f (n−1)(yk+1
n−2)

∥∥ | Fk].
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Plugging the above two upper bounds into (2.64), we have

∥∥E [∇k − ∇̄k | Fk
]∥∥ =

∥∥∥E[∇f1(θk; ξk1 ) · · · ∇fn(yk+1
n−1; ξkn) · · · fN(f (N−1)(θk); ξkN)

−∇f1(θk; ξk1 ) · · · ∇fn(f (n−1)(θk); ξkn) · · · ∇fN(f (N−1)(θk); ξkN) | Fk
]∥∥∥

≤C1 · · ·Cn−1Cn+1 · · ·CNLnE
[ ∥∥yk+1

n−1 − f (n−1)(θk)
∥∥ | Fk]

(b)

≤C1 · · ·Cn−1Cn+1 · · ·CNLnE
[ ∥∥yk+1

n−1 − fn−1(yk+1
n−2)

∥∥ | Fk]
+ C1 · · ·Cn−1Cn+1 · · ·CNLnE

[ ∥∥fn−1(yk+1
n−2)− f (n−1)(θk)

∥∥ | Fk]
(2.65)

where (b) uses the triangular inequality.

Using the Ln−1 Lipschitz continuity of f (n−1), we have

∥∥E [∇k − ∇̄k | Fk
]∥∥ ≤C1 · · ·Cn−1Cn+1 · · ·CNLnE

[ ∥∥yk+1
n−1 − fn−1(yk+1

n−2)
∥∥ | Fk]

+ C1 · · ·Cn−1Cn+1 · · ·CNLnLn−1E
[ ∥∥yk+1

n−2 − f (n−2)(θk)
∥∥ | Fk].

(2.66)

Repeating the steps in (2.65) and (2.66), we can recursively obtain

∥∥E [∇k − ∇̄k | Fk
]∥∥ ≤C1 · · ·Cn−1Cn+1 · · ·CNLnE

[ ∥∥yk+1
n−1 − fn−1(yk+1

n−2)
∥∥ | Fk]

+ C1 · · ·Cn−1Cn+1 · · ·CNLnLn−1E
[ ∥∥yk+1

n−2 − fn−2(yk+1
n−3)

∥∥ | Fk]
+ C1 · · ·Cn−1Cn+1 · · ·CNLn · · ·Ln−2E

[ ∥∥yk+1
n−3 − fn−3(yk+1

n−4)
∥∥ | Fk]

+ · · ·+ C1 · · ·Cn−1Cn+1 · · ·CNLn · · ·L2E
[ ∥∥yk+1

1 − f1(θk)
∥∥ | Fk]

(c)
=

n−1∑
m=1

Am,nE
[ ∥∥yk+1

m − fm(yk+1
m−1)

∥∥ | Fk] (2.67)

where (c) follows by defining

Am,n := CN · · ·Cn+1Cn−1 · · ·C1Ln · · ·Lm+1. (2.68)

42



Therefore, using Assumption m3, we have

∥∥E [∇k | Fk
]
−∇F (θk)

∥∥ =
∥∥E [∇k | Fk

]
− E

[
∇̄k | Fk

]∥∥
=
∥∥E [∇k − ∇̄k | Fk

]∥∥
(d)
=

N∑
n=2

n−1∑
m=1

Am,nE
[ ∥∥yk+1

m − fm(yk+1
m−1)

∥∥ | Fk]
=

N−1∑
n=1

AnE
[ ∥∥yk+1

n − fn(yk+1
n−1)

∥∥ | Fk] (2.69)

where (d) follows from (2.67) and An :=
∑N−1

m=n+1An,m.

2.7.2 Remaining steps towards Theorem 3

Using the smoothness of F (θk), we have

F (θk+1) ≤ F (θk) + 〈∇F (θk), θk+1 − θk〉+
L

2
‖θk+1 − θk‖2

= F (θk)− αk〈∇F (θk),∇k〉+
L

2
‖θk+1 − θk‖2

= F (θk)− αk‖∇F (θk)‖2 +
L

2
‖θk+1 − θk‖2 + αk〈∇F (θk),∇F (θk)−∇k〉.

Conditioned on Fk, taking expectation over ξ1, . . . , ξN , we have

E
[
F (θk+1)|Fk

]
≤F (θk)− αk‖∇F (θk)‖2 +

L

2
E
[
‖θk+1 − θk‖2|Fk

]
+ αk

〈
∇F (θk),E

[
∇F (θk)−∇k|Fk

]〉
(b)

≤F (θk)− αk‖∇F (θk)‖2 +
L

2
C2

1 · · ·C2
Nα

2
k + αk‖∇F (θk)‖

∥∥E [∇k | Fk
]
−∇F (θk)

∥∥
(c)

≤F (θk)− αk‖∇F (θk)‖2 +
L

2
C2

1 · · ·C2
Nα

2
k + αk

N−1∑
n=1

An‖∇F (θk)‖E
[∥∥yk+1

n − fn(yk+1
n−1)

∥∥ |Fk]
(d)

≤ F (θk)−αk
(

1− αk
4βk

N−1∑
n=1

A2
n

)
‖∇F (θk)‖2+βk

N−1∑
n=1

E
[∥∥yk+1

n −fn(yk+1
n−1)

∥∥2 |Fk
]

+
L

2
C2

1 · · ·C2
Nα

2
k

where (b) uses the Cauchy-Schwartz; (c) follows from (2.69); and (d) uses the Young’s

inequality.
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Then with the definition of Lyapunov function in (2.24), it follows that

E[Vk+1|Fk] ≤Vk − αk
(

1− αk
4βk

N−1∑
n=1

A2
n

)
‖∇L(θk)‖2 +

L

2
C2

1 · · ·C2
Nα

2
k

+ (1 + 2βk)
N−1∑
n=1

E
[∥∥yk+1

n − fn(yk+1
n−1)

∥∥2 |Fk
]
−

N−1∑
n=1

E
[∥∥ykn − fn(ykn−1)

∥∥2 |Fk
]

− βk
N−1∑
n=1

E
[∥∥yk+1

n − fn(yk+1
n−1)

∥∥2 |Fk
]

(e)

≤ Vk − αk
(

1− αk
4βk

N−1∑
n=1

A2
n

)
‖∇L(θk)‖2 +

L

2
C2

1 · · ·C2
Nα

2
k + 2(1 + 2βk)β

2
kV

2

+
(
(1 + 2βk)(1− βk)2 − 1

)N−1∑
n=1

E
[∥∥ykn − fn(ykn−1)

∥∥2 |Fk
]

+ 4(1 + 2βk)(1− βk)2C2
1E
[
‖θk − θk−1‖2|Fk

]
+

N−1∑
n=2

[
4(1 + 2βk)(1− βk)2C2

n + γn
]
E
[
‖yk+1

n−1 − ykn−1‖2|Fk
]

−
N−1∑
n=2

γnE
[
‖yk+1

n−1 − ykn−1‖2|Fk
]
− βk

N−1∑
n=1

E
[
‖yk+1

n − fn(yk+1
n−1)‖2|Fk

]
(f)

≤ Vk − αk
(

1− αk
4βk

N−1∑
n=1

A2
n

)
‖∇L(θk)‖2 +

L

2
C2

1 · · ·C2
Nα

2
k + 2(1 + 2βk)β

2
kV

2

+ 4C2
1E
[
‖θk − θk−1‖2 | Fk

]
+

N−1∑
n=2

(4C2
n + γn)E

[
‖yk+1

n−1 − ykn−1‖2 | Fk
]

−
N−1∑
n=2

γnE
[
‖yk+1

n−1 − ykn−1‖2 | Fk
]
− βk

N−1∑
n=1

E
[
‖yk+1

n − fn(yk+1
n−1‖2 | Fk

]
(2.70)

where (e) follows from Lemma 5; uses that (4(1 + 2βk)(1− βk)2C2
1)E

[
‖yk+1

0 − yk0‖2|Fk
]
≤

4C2
1E
[
‖θk − θk−1‖2|Fk

]
; and γn > 0 is a fixed constant.

On the other hand, from the update (2.18), we have that

(1− βk)
(
yk+1
n−1 − ykn−1

)
=βk

(
f(yk+1

n−2; ξkn−1)− yk+1
n−1

)
+ (1− βk)

(
f(yk+1

n−2; ξkn−1)− f(ykn−2; ξkn−1)
)
.
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Squaring both sides, and taking expectation conditioned on Fk, we have

E
[
‖yk+1

n−1 − ykn−1‖2 | Fk
]

(g)

≤ 2

(
βk

1− βk

)2

E
[
‖fn−1(yk+1

n−2; ξkn−1)− fn−1(yk+1
n−2) + fn−1(yk+1

n−2)− yk+1
n−1‖2 | Fk

]
+ 2E

[∥∥fn−1(yk+1
n−2; ξkn−1)− fn−1(ykn−2; ξkn−1)

∥∥2 | Fk
]

≤ 2

(
βk

1− βk

)2

E
[
‖yk+1

n−1 − fn−1(yk+1
n−2)‖2 | Fk

]
+ 2C2

n−1E
[
‖yk+1

n−2 − ykn−2‖2 | Fk
]

+ 2

(
βk

1− βk

)2

V 2 (2.71)

where (g) follows from the Young’s inequality.

Plugging (2.71) into (2.70), we have

E[Vk+1|Fk] ≤ Vk − αk
(

1− αk
4βk

N−1∑
n=1

A2
n

)
‖∇L(θk)‖2 +

L

2
C2

1 · · ·C2
Nα

2
k + 4C2

1‖θk − θk−1‖2

+

(
2(1 + 2βk)β

2
k + 2

(
βk

1− βk

)2 N−1∑
n=2

(4C2
n + γn)

)
V 2

+ 2

(
βk

1− βk

)2 N−1∑
n=2

(4C2
n + γn)E

[
‖yk+1

n−1 − fn−1(yk+1
n−2)‖2 | Fk

]
+ 2

N−1∑
n=2

(4C2
n + γn)C2

n−1E
[
‖yk+1

n−2 − ykn−2‖2|Fk
]

−
N−1∑
n=2

γnE
[
‖yk+1

n−1 − ykn−1‖2|Fk
]
− βk

N−1∑
n=1

E
[
‖yk+1

n − fn(yk+1
n−1)‖2|Fk

]
. (2.72)

Choose parameters {γn} and {βk} such that

2(4C2
n + γn)C2

n−1 ≤ γn−1

2

(
βk

1− βk

)2

(4C2
n + γn) ≤ βk.

For γn, the condition can be satisfied by choosing

γN−1 = 0, γN−2 = 8C2
N−1C

2
N−2, γN−3 = 16C2

N−1C
2
N−2C

2
N−3 + 8C2

N−2C
2
N−3, · · · (2.73)
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For βk, the condition can be satisfied by solving following inequality that always has a solution

βk ≤
1− 2βk + (βk)

2

γn−1C2
n−1

. (2.74)

Select βk = β ≤ 1
2

and αk = α = 2β∑N−1
n=1 A

2
n

so that 1− αk
4βk

∑N−1
n=1 A

2
n = 1

2
, and define

B2 :=

(
L

2
+ 4C2

1 + 8C2
1C

2
2 + 2γ2C

2
1

)
C2

1 · · ·C2
N and B3 := 4

(
1 + 2

N−1∑
n=2

(4C2
n + γn)

)
V 2.

Plugging into (2.72) leads to

E[Vk+1] ≤ E[Vk]− α

2
E[‖∇L(θk)‖2] +

L

2
C2

1 · · ·C2
Nα

2 + 2(4C2
2 + γ2 + 2)C2

1E
[
‖θk − θk−1‖2

]
+

(
2(1 + 2β)β2 + 2

(
β

1− β

)2 N−1∑
n=2

(4C2
n + γn)

)
V 2

≤ E[Vk]− α

2
E[‖∇L(θk)‖2] +

(
L

2
+ 4C2

1 + 8C2
1C

2
2 + 2γ2

)
C2

1 · · ·C2
Nα

2

+ 2

(
1 + 2β + 4

N−1∑
n=2

[
4C2

n + γn
])

V 2β2

≤ E[Vk]− α

2
E[‖∇L(θk)‖2] +B2α

2 +B3β
2 (2.75)

Choosing the stepsize as αk = cα√
K

leads to∑K−1
k=0 E[‖∇F (θk)‖2]

K
≤ 2V0

Kα
+ 2Bα + 2B3

β2

α
=

2V0 + 2(B +B3(
∑N−1

n=1 A
2
n)2/4)√

K
.

This completes the proof of Theorem 3.
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CHAPTER 3

Single-loop Stochastic Algorithms for Stochastic

Bilevel Optimization

3.1 Introduction

In this chapter, we consider solving the stochastic problems of the following form

min
θ∈Rd

F (θ) := Eξ [f (θ, y∗(θ); ξ)] (upper) (3.1a)

s. t. y∗(θ) ∈ arg min
y∈Rd′

Eφ[g(θ, y;φ)] (lower) (3.1b)

where f and g are differentiable functions; and, ξ and φ are random variables. The problem

(3.1) is often referred to as the stochastic bilevel problem, where the upper-level optimization

problem depends on the solution of the lower-level optimization over y ∈ Rd′ , denoted as

y∗(θ), which depends on the value of upper-level variable θ ∈ Rd.

Bilevel optimization has a long history in operations research. It can be viewed as a

generalization of the classic two-stage stochastic programming [101], in which the upper-level

objective function depends on the optimal lower-level objective value rather than the lower-

level solution. Earlier works have studied applications in portfolio management and game

theory [104]; see a survey [20]. Recently, bilevel optimization has gained growing popularity in

a number of machine learning applications such as meta-learning [88], reinforcement learning

[56, 37], hyper-parameter optimization [28], continual learning [6], and image processing [58].

In some of these applications, when the lower-level problem admits a closed-form solution,

bilevel optimization also reduces to the stochastic compositional optimization [117, 32, 11].
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Unlike single-level stochastic problems, algorithms tailored for solving bilevel stochastic

problems are much less explored. This is partially because solving this class of problems via

traditional optimization techniques faces a number of challenges. A key difficulty due to the

nested structure is that (stochastic) gradient, a basic element in continuous optimization

machinery, is prohibitively expensive or even impossible to compute. As we will show

later, since computing an unbiased stochastic gradient of F (θ) requires solving the lower-

level problem once, running stochastic gradient descent (SGD) on the upper-level problem

essentially results in a double-loop algorithm which uses an iterative algorithm to solve the

lower-level problem thousands or even millions of times.

3.1.1 Prior art

To put our work in context, we review prior art that we group in the following two categories.

Bilevel optimization. Many recent efforts have been made to solve the bilevel optimization

problems. One successful approach is to reformulate the bilevel problem as a single-level

problem by replacing the lower-level problem by its optimality conditions [14, 57]. Recently,

gradient-based first-order methods for bilevel optimization have gained popularity, where the

idea is to iteratively approximate the (stochastic) gradient of the upper-level problem either

in forward or backward manner [95, 28, 99, 35]. While most of these works assume the unique

solution of the lower-level problem, cases where this assumption does not hold have been

tackled in the recent work [68]. All these algorithms have excellent empirical performance,

but many of them either provide no theoretical guarantees or only focus on the asymptotic

performance analysis.

The non-asymptotic analysis of bilevel optimization algorithms has been recently studied

in some pioneering works, e.g., [33, 37, 44], just to name a few. In both [33, 44], bilevel

stochastic optimization algorithms have been developed that run in a double-loop manner. To

achieve an ε-stationary point, they only need the sample complexity O(ε−2) that is comparable

to the complexity of SGD for the single-level case. Recently, a single-loop two-timescale
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stochastic approximation algorithm has been developed in [37] for the bilevel problem (3.1).

Due to the nature of two-timescale update, it incurs the sub-optimal sample complexity

O(ε−2.5). Therefore, the existing single-loop solvers for bilevel problems are significantly

slower than those for problems without bilevel compositions, but otherwise share many

structures and properties.

Stochastic compositional optimization. When the lower-level problem in (3.1b) admits

a smooth closed-form solution, the bilevel problem (3.1) reduces to stochastic compositional

optimization

min
θ∈Rd

F (θ) := Eξ [f (θ,Eφ[g(θ;φ)]; ξ)] . (3.2)

Popular approaches tackling this class of problems use two sequences of variables being

updated in two different time scales [117, 118]. However, the complexity of [117] and [118] is

worse than O(ε−2) of SGD for the non-compositional case. Building upon recent variance-

reduction techniques, variance-reduced methods have been developed to solve a special class

of the stochastic compositional problem with the finite-sum structure, e.g., [62, 131], but they

usually operate in a double-loop manner.

While most of existing algorithms rely on either two-timescale or double-loop updates,

the single-timescale single-loop approaches have been recently developed in [32, 11], which

achieve the sample complexity O(ε−2). These encouraging recent results imply that solving

stochastic compositional optimization is nearly as easy as solving stochastic optimization.

However, whether the stochastic optimization techniques used therein permeate to solving

more challenging bilevel problems remains unknown.

3.1.2 Our contributions

To this end, this chapter aims to develop a single-loop single-timescale stochastic algorithm,

which, for the class of smooth bilevel problems, can match the sample complexity of SGD for

single-level stochastic optimization problems.
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In the context of existing methods, our contributions can be summarized as follows.

1. We develop a new stochastic gradient estimator tailored for a certain class of stochas-

tic bilevel problems, which is motivated by an ODE analysis for the corresponding

continuous-time deterministic problems. Our new stochastic bilevel gradient estimator

is flexible to combine with any existing stochastic optimization algorithms for the single-

level problems, and solve this class of stochastic bilevel problems as sample-efficient as

single-level problems.

2. When we combine this stochastic gradient estimator with SGD for the upper-level

update, we term it as the Single-Timescale stochAstic BiLevEl optimization (STABLE)

method. In the nonconvex case, to achieve ε-stationary point of (3.1), STABLE only

requires O(ε−2) samples in total. In the strongly convex case, to achieve ε-optimal

solution of (3.1), STABLE only requires O(ε−1) samples. To the best of our knowledge,

STABLE is the first bilevel algorithm achieving the order of sample complexity as SGD

for the classic stochastic single-level problems.

Trade-off and limitations. While our new bilevel optimization algorithm significantly

improves the sample complexity of existing algorithms, it pays the price of additional

computation per iteration. Specifically, in order to better estimate the stochastic bilevel

gradient, a matrix inversion and an eigenvalue truncation are needed per iteration, which

cost O(d3) computation for a d × d matrix. In contrast, some of recent works [33, 37, 44]

reduce matrix inversion to more efficient computations of matrix-vector products, which cost

O(d2) computation per iteration. Therefore, our algorithm is preferable in the regime where

the sampling is more costly than computation or the dimension d is relatively small.

3.1.3 Applications

Next we describe two popular applications, all of which can be formulated as a bilevel problem.

50



Hyper-parameter optimization. Hyper-parameter optimization aims to find the optimal

hyper-parameter θ ∈ Rd (e.g., learning rate, regularization coefficient, neural network archi-

tecture), which is used in training a model w ∈ Rd on the training set, such that the learned

model achieves the low risk on the validation set. Let `(w; ξ) denote the loss of the model

w on datum ξ, and Dval and Dtra denote, respectively, the training and validation datasets.

Specifically, considering the sought hyper-parameter as the regularization coefficient [28], we

aim to solve

min
θ∈Rd

F (θ) := Eξ∼Dval
[`(w∗(θ); ξ)] (3.3)

s.t. w∗(θ) ∈ arg min
w∈Rd

Eφ∼Dtra [`(w;φ)] +
d∑
i=1

θiw
2
i .

Model-agnostic meta-learning. The goal of model-agnostic meta-learning (MAML) is to

find a common initialization that can adapt to a desired model for new tasks, which inherently

consists of two steps: i) training a model over a variety of learning tasks; ii) refining the model

for each task. Consider a set of empirically observed tasks collected in M := {1, . . . ,M}
drawn from a certain task distribution. Each task m has its local data ξm from a certain

distribution, which defines its loss function as Fm(θ) := Eξm [`(θ; ξm)] , m ∈M, where θ ∈ Rd

is the parameter of a prediction model (e.g., weights of a neural network), and `(θ; ξm) is

again the loss on datum ξm. As an example, the MAML problem can be formulated as the

bilevel problem (3.1), that is [88]

min
θ∈Rd

F (θ) :=
1

M

M∑
m=1

Fm (y∗m(θ)) (3.4)

s. t. y∗m(θ) ∈ arg min
ym∈Rd

Fm(ym) +
λ

2
‖ym − θ‖2, ∀m

where λ is a constant and y∗m(θ) is, initialized with θ, obtained after fine tuning on task m.
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3.2 A Single-loop Stochastic Method for Bilevel Problems

In this section, we will first provide background of bilevel problems, and then present our

stochastic bilevel gradient method, followed by an ODE analysis to highlight the intuition of

our design.

3.2.1 Preliminaries

We use ‖ · ‖ to denote the `2 norm for vectors and Frobenius norm for matrices. We use

Fk to denote the collection of random variables, i.e., Fk :=
{
φ0, . . . , φk−1, ξ0, . . . , ξk−1

}
. For

convenience, we define the deterministic version of (3.1) as

min
θ∈Rd

F (θ) := f (θ, y∗(θ)) s. t. y∗(θ) ∈ arg min
y∈Rd′

g(θ, y) (3.5)

where the functions are defined as g(θ, y) := Eφ[g(θ, y;φ)] and f(θ, y) := Eξ[f(θ, y; ξ)].

We also define∇2
yyg (θ, y) as the Hessian matrix of g with respect to y and define∇2

θyg (θ, y)

as

∇2
θyg (θ, y) :=


∂2

∂θ1∂y1
g (θ, y) · · · ∂2

∂θ1∂yd′
g (θ, y)

· · ·
∂2

∂θd∂y1
g (θ, y) · · · ∂2

∂θd∂yd′
g (θ, y)

 .
We make the following standard assumptions that are commonly used in stochastic bilevel

optimization literature [33, 37, 44].

Assumption 1 (Lipschitz continuity). For any fixed θ, ∇θf(θ, ·), ∇yf(θ, ·), ∇yg(θ, y),

∇2
θyg(θ, ·;φ), ∇2

yyg(θ, ·;φ) are Lfθ , Lfy , Lg, Lgθy , Lgyy-Lipschitz continuous. For any fixed y,

∇θf(·, y; ξ), ∇yf(·, y; ξ), ∇2
θyg(·, y;φ), ∇2

yyg(·, y;φ) are L̄fθ , L̄fy , L̄gθy , L̄gyy-Lipschitz continu-

ous.

Assumption 2 (strong convexity of lower-level objective). For any fixed θ, g(θ, y) is

µg-strongly convex in y, that is, ∇2
yyg(θ, y) � µgI.
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Assumptions 1 and 2 together ensure that the first- and second-order derivations of

f(θ, y), g(θ, y) as well as the solution mapping y∗(θ) are well-behaved.

Assumption 3 (stochastic derivatives). The stochastic derivatives ∇θf(θ, y; ξ), ∇yf(θ, y; ξ),

∇yg(θ, y;φ), ∇2
θyg(θ, y, φ), and ∇2

yyg(θ, y, φ) are unbiased estimators of ∇θf(θ, y), ∇yf(θ, y),

∇yg(θ, y), ∇2
θyg(θ, y), and ∇2

yyg(θ, y), respectively; and their variances are bounded by σ2
fθ
, σ2

fy
,

σ2
gy , σ2

gθy
, σ2

gyy , respectively. Moreover, their monuments are bounded by

Eξ[‖∇θf(θ, y; ξ)‖p] ≤ Cp
fθ
, Eξ[‖∇yf(θ, y; ξ)‖p] ≤ Cp

fy
, p = 2, 4 (3.6a)

Eφ[‖∇2
θyg(θ, y;φ)‖2] ≤ C2

gθy
, Eφ[‖∇2

yyg(θ, y;φ)‖2] ≤ C2
gyy . (3.6b)

Assumption 3 is the counterpart of the unbiasedness and bounded variance assumption in

the single-level stochastic optimization. In addition, the bounded moments in Assumption 3

ensure the Lipschitz continuity of the upper-level gradient ∇F (θ).

We first highlight the inherent challenge of directly applying the single-level SGD method

[93] to the bilevel problem (3.1). To illustrate this point, we derive the gradient of the

upper-level function F (θ) in the next proposition; see the proof in Appendix.

Proposition 1 Under Assumption 2, we have the gradients

∇θy
∗(θ)> :=−∇2

θyg(θ, y∗(θ))
[
∇2
yyg(θ, y∗(θ))

]−1
(3.7a)

∇F (θ) = ∇θf(θ, y∗(θ)) +∇θy
∗(θ)>∇yf(θ, y∗(θ)). (3.7b)

Notice that obtaining an unbiased stochastic estimate of ∇F (θ) and applying SGD on

θ face two main difficulties: (D1) the gradient ∇F (θ) at θ depends on the minimizer

of the lower-level problem y∗(θ); (D2) even if y∗(θ) is known, it is hard to apply the

stochastic approximation to obtain an unbiased estimate of ∇F (θ) since ∇F (θ) is nonlinear

in∇2
yyg(θ, y∗(θ)); see the discussion of (D2) in stochastic compositional optimization literature,

e.g., [117, 11].

Similar to some existing algorithms for bilevel problems, our method addresses (D1) by

evaluating ∇F (θ) on a certain vector y in place of y∗(θ), but it differs in how to recursively
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update y and how to address (D2). Resembling the definition (3.7) with y∗(θ) replaced by y,

we introduce the notation

∇θf (θ, y) := ∇θf (θ, y)−∇2
θyg (θ, y)

[
∇2
yyg (θ, y)

]−1∇yf (θ, y) . (3.8)

As we will show in Lemma 9 of Appendix, Assumptions 1-3 ensure that ∇F (·), ∇θf(θ, ·),
and y∗(·) are all Lipschitz continuous with constants LF , Lf , Ly, respectively.

3.2.2 A single-timescale bilevel optimization method

Before we present our method, we first review a successful recent effort. To overcome the

difficulty of applying plain-vanilla SGD, a two-timescale stochastic approximation (TTSA)

algorithm has been recently developed in [37]. TTSA is a single-loop algorithm and amenable

to efficient implementation. It consists of two sequences {θk} and {yk}: for a given θk, yk

estimates the minimizer y∗(θk); and, θk estimates the minimizer θ∗. For notational brevity,

we define

hkg := ∇yg(θk, yk;φk), hkyy(φ) := ∇2
yyg(θk, yk;φ), hkθy(φ) := ∇2

θyg(θk, yk;φ). (3.9)

With αk and βk denoting two sequences of stepsizes, the TTSA recursion is given by

yk+1 = yk − βkhkg (3.10a)

θk+1 = θk − αk
(
∇θf(θk, yk; ξk)− hkθy(φk)∇−1

yy∇yf(θk, yk; ξk)
)

(3.10b)

where ∇−1
yy is a mini-batch approximation of

[
∇2
yyg(θk, yk)

]−1
. To ensure convergence,

TTSA requires yk to be updated in a timescale faster than that of θk so that θk is relatively

static with respect to yk; i.e., limk→∞ αk/βk = 0 [37]. However, this prevents TTSA from

choosing the stepsize O(1/
√
k) as SGD, and also results in its suboptimal complexity.

We find that the key reason preventing TTSA from using a single-timescale update is its

undesired stochastic upper-level gradient estimator (3.10b) that uses an inaccurate lower-level

variable yk to approximate y∗(θk). With more insights given in Section 3.2.3, we propose
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Algorithm 3 STABLE for stochastic bilevel problems

1: initialize: θ0, y0, H0
θy, H

0
yy, stepsizes {αk, βk}.

2: for k = 0, 1, . . . , K − 1 do

3: compute hk−1
θy (φk) and hkθy(φ

k) . randomly select datum φk

4: update Hk
θy via (3.12a)

5: compute hk−1
yy (φk) and hkyy(φ

k)

6: update Hk
yy via (3.12b)

7: compute ∇θf
(
θk, yk; ξk

)
, ∇yf

(
θk, yk; ξk

)
. randomly select datum ξk

8: update θk and yk via (3.11)

9: end for

a new stochastic bilevel optimization method based on a new stochastic bilevel gradient

estimator, which we term Single-Timescale stochAstic BiLevEl optimization (STABLE)

method. Its recursion is given by

θk+1 = θk−αk
(
∇θf(θk, yk; ξk)−Hk

θy(H
k
yy)
−1∇yf(θk, yk; ξk)

)
(3.11a)

yk+1 = yk− βkhkg − (Hk
yy)
−1(Hk

θy)
>(θk+1 − θk). (3.11b)

In (3.11), the estimates of second-order derivatives are updated as (with stepsize τk > 0)

Hk
θy = P

(
(1− τk)

(
Hk−1
θy − hk−1

θy (φk)
)

+ hkθy(φ
k)
)

(3.12a)

Hk
yy = P

(
(1− τk)

(
Hk−1
yy − hk−1

yy (φk)
)

+ hkyy(φ
k)
)

(3.12b)

where P is the projection to set {X : ‖X‖ ≤ Cgθy} and P is the projection to {X : X � µgI}.

Compared with (3.10) and other existing algorithms, the unique features of STABLE lie

in: (F1) its yk-update that will be shown to better “predict” the next y∗(θk+1); and, (F2) a

recursive update of Hk
θy, H

k
yy that is motivated by the advanced variance reduction techniques

for single-level problems [81, 15] and the recent stochastic compositional optimization method

[11]. The marriage of (F1)-(F2) enables STABLE to have a better estimate of ∇f(θk), which

is responsible for its improved convergence. Note that we use three stepsizes αk, βk and τk in
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(3.11), but all of them decrease at the same rate as SGD. As we will show later, for a class of

bilevel problems, the single-timescale recursion (3.11) achieves the same convergence rate as

SGD for single-level problems. See a summary of STABLE in Algorithm 3.

Remark 1 Note that the projection in (3.12a) is not uncommon in stochastic algorithms to

ensure stability, and the eigenvalue truncation in (3.12b) is a usual subroutine in Newton-based

methods, which is also referred to the positive definite truncation [83].

3.2.3 Continuous-time ODE analysis

Similar to the stochastic compositional optimization [11], we provide some intuition of our

algorithm design via an ODE for the deterministic problem (3.5). To minimize F (θ), we use

an ODE analysis to design a continuous dynamic

θ̇(t) = −αT (θ(t), y(θ(t))) (3.13)

by choosing an operator T . For single-level minimization of a smooth function h(θ(t)), one

can use the gradient flow θ̇(t) = −α∇h(θ(t)). For bilevel minimization (3.5), however, we

shall avoid T (θ, y) = ∇θ (f(θ, y∗(θ)) and instead use y to approximate y∗(θ). Here note that

we have dropped (t) for conciseness. Hence, define the operator as

T (θ, y) := ∇θf(θ, y)−∇2
θyg(θ, y)[∇2

yyg(θ, y)]−1∇yf(θ, y)
(3.8)
= ∇θf(θ, y). (3.14)

Here, the variable y follows another dynamic that we specify below, which accompanies

the θ-dynamic (3.13). We will also find a corresponding Lyapunov function V such that

(C1) V̇ < 0; and, (C2) V̇ = 0 if and only if ∇F (θ) = 0 and y = y∗(θ).

If the θ̇ and ẏ dynamics drive an appropriate Lyapunov function V satisfying (C1) and (C2),

then θ converges to a stationary point of the upper-level problem F (θ) and y converges to

the solution of the lower-level problem.

We first state the results for the continuous-time dynamics below.
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TTSA

BSA
STABLE

stocBiO

Figure 3.1: A geometric illustration of the yk update under different algorithms; black dot

represents yk, red dots represent the lower-level solution y∗(θk) and y∗(θk+1), blue dots

represent yk+1 under different algorithms, and blue arrow denotes the inner loop updates.

STABLE updates yk by linearly combining the stochastic gradient direction towards y∗(θk)

and the moving direction from y∗(θk) to y∗(θk+1). In contrast, BSA [33] runs multiple

stochastic gradient steps; TTSA [37] runs one stochastic gradient step with a smaller

stepsize; stocBiO [44] runs multiple stochastic gradient steps with an increasing batch size.

Theorem 1 (Continuous-time dynamics) If we define the θ- and y-dynamics as

θ̇ = −α∇θf(θ, y)− α∇2
θyg(θ, y)[∇2

yyg(θ, y)]−1∇yf(θ, y) (3.15a)

ẏ = −β∇yg(θ, y)−
[
∇2
yyg (θ, y)

]−1∇2
θyg (θ, y) θ̇ (3.15b)

and choose the constants α and β appropriately, then there exists a Lyapunov function V of

the θ- and y-dynamics that satisfies (C1) and (C2).

Proof: To highlight the intuition, we provide a constructive proof of this theorem. We

first try V0 := f(θ, y∗(θ)). To clarify, we can use y∗(θ) in a Lyapunov function but not in a
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dynamic to evolve a quantity. In this case, we have

V̇0 = 〈∇θf(θ, y∗(θ)), θ̇〉+ 〈∇yf(θ, y∗(θ)),∇θy
∗(θ)θ̇〉

= 〈∇θf(θ, y∗(θ)) +∇θy
∗(θ)>∇yf(θ, y∗(θ)), θ̇〉.

Recall the definition in (3.7). Then we have

V̇0 = −α〈T (θ, y∗(θ)), T (θ, y)〉
(a)

≤ −α‖T (θ, y∗(θ))‖2 + α‖∇θf(θ, y)−∇θf(θ, y∗(θ))‖‖T (θ, y∗(θ))‖
(b)

≤ −α‖T (θ, y∗(θ))‖2 + αLf‖y − y∗(θ)‖‖T (θ, y∗(θ))‖
(c)

≤ −α
2
‖T (θ, y∗(θ))‖2 +

αL2
f

2
‖y − y∗(θ)‖2 (3.16)

where (a) uses the Cauchy-Schwarz inequality, (b) follows from the Lf -Lipschitz continuity of

∇θf(θ, ·) established in Lemma 9, and (c) is due to the Young’s inequality.

To satisfy (C1), we have V̇0 ≤ 0 only if Lf‖y − y∗(θ)‖ ≤ ‖T (θ, y∗(θ))‖, thus, requiring

the information of ‖y − y∗(θ)‖ — not doable without knowing y∗(θ).

Let us try to mitigate the term ‖y(θ)− y∗(θ)‖2 by defining the following new Lyapunov

function:

V := V0 +
1

2
‖y − y∗(θ)‖2 = f(θ, y∗(θ)) +

1

2
‖y − y∗(θ)‖2 (3.17)

which implies that

V̇ =−α〈T (θ, y∗(θ)), T (θ, y)〉+〈y − y∗(θ), ẏ −∇θy
∗(θ)θ̇〉

(3.16)

≤ −α
2
‖T (θ, y∗(θ))‖2 +

αL2
f

2
‖y − y∗(θ)‖2 + 〈y − y∗(θ), ẏ −∇θy

∗(θ)θ̇〉 (3.18)

≤ −α
2
‖T (θ, y∗(θ))‖2 −

(
β −

αL2
f

2

)
‖y − y∗(θ)‖2

+ 〈y − y∗(θ), ẏ + β(y − y∗(θ))−∇θy
∗(θ)θ̇〉 (3.19)

where β > 0 is a fixed constant. The first two terms in the RHS of (3.19) are non-positive

given that α ≥ 0 and β ≥ αL2
f/2, but the last term can be either positive or negative. To

58



control the last term and thus ensure the descent of V (t), we are motivated to use a y-dynamic

like

ẏ ≈ −β(y − y∗(θ)) +∇θy
∗(θ)θ̇. (3.20)

To avoid using y∗ in a dynamic, we approximate y − y∗(θ) by ∇yg(θ, y) and ∇θy
∗(θ) by (cf.

(3.7a))

∇θy(θ) := −
[
∇2
yyg (θ, y)

]−1∇2
θyg (θ, y) . (3.21)

These choices lead to the y-dynamics:

ẏ = −β∇yg(θ, y) +∇θy(θ)θ̇. (3.22)

Although we approximate (3.20) by (3.22), next we will plug y-dynamics (3.22) into (3.19)

and show that V satisfies (C1). Specifically, plugging (3.22) into (3.18) leads to

〈y − y∗(θ), ẏ −∇θy
∗(θ)θ̇〉 = −〈y − y∗(θ), β∇yg(θ, y)−∇θy(θ)θ̇ +∇θy

∗(θ)θ̇〉. (3.23)

As g(θ, ·) is µg-strongly convex by Assumption 2, we have

〈
y − y∗(θ),∇yg(θ, y)−∇yg(θ, y∗(θ))

〉
≥ µg‖y − y∗(θ)‖2 (3.24)

where ∇yg(θ, y∗(θ)) = 0 as y∗(θ) minimizes g(θ, y).

Therefore, plugging (3.24) into (3.23), we have

〈y − y∗(θ), ẏ −∇θy
∗(θ)θ̇〉 ≤−〈y − y∗(θ), (∇θy

∗(θ)−∇θy(θ))θ̇〉−βµg‖y − y∗(θ)‖2

≤‖y − y∗(θ)‖‖∇xy
∗(θ)−∇θy(θ)‖‖θ̇‖ −βµg‖y − y∗(θ)‖2

≤αBθLy‖y − y∗(θ)‖2 −βµg‖y − y∗(θ)‖2 (3.25)

where the second inequality uses the Cauchy-Schwarz inequality, and the last inequality

follows the bound Bθ of ‖θ̇‖ and the Lipschitz constant Ly of ∇θy(θ), both of which can be

derived from Assumptions 1–3.
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Now plugging (3.25) into (3.18), we have

V̇ ≤ −α
2
‖T (θ, y∗(θ))‖2 −

(
βµg −

αL2
f

2
− αBθLy

)
‖y − y∗(θ)‖2. (3.26)

Now let us check (C1) and (C2). To ensure V̇ ≤ 0 in (C1), we can set α ≤ 2µgβ

L2
f+2BθLy

. For

(C2), we have V̇ = 0 if and only if y = y∗(θ) and T (θ, y∗(θ)) = ∇F (θ) = 0.

With the insights gained from the continuous-time update (3.15), our stochastic update

(3.11) essentially discretizes time t into iteration k, and replaces the first- and second-order

derivatives in θ̇ and ẏ by their recursive (variance-reduced) stochastic values in (3.12).

Remark 2 The key ingredient of our STABLE method is the design of the lower-level update

on yk, which leads to a more accurate stochastic estimate of ∇f(θk). See a comparison of

the y-update with other algorithms in Figure 3.1. In the update (3.11), we implement the

SGD-like update for the upper-level variable θk. With the lower-level yk update unchanged, it

is easy to apply SGD-improvement techniques such as momentum and variance reduction,

to accelerate the convergence of STABLE. This will help STABLE achieve state-of-the-art

performance for stochastic bilevel optimization.

3.3 Convergence Analysis

In this section, we establish the convergence rate of our single-timescale STABLE algorithm.

We will highlight the key steps of the proof and leave the detailed analysis in Appendix.

3.3.1 Main results

We first present the result of our algorithm when the upper-level function F (θ) is nonconvex

in θ.
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Theorem 2 (Nonconvex) Under Assumptions 1–3, if we choose the stepsizes as

βk ≤ min

{
1√
K
,

µg/Lg
32(µg + Lg)

}
(3.27a)

αk ≤ min

{
βk,

(c+ 2C2
gθy
C2
fy
/µ4

g)
−1

√
K

,
(c+ 2C2

fy
/µ2

g)
−1

√
K

,
µgLgβk/(µg + Lg)

2(c+ L2
f )

}
(3.27b)

and τk = 1√
K

, then the iterates {θk} and {yk} satisfy

E
[∥∥∇f(θK)

∥∥2
]

= O
(

1√
K

)
and E

[∥∥yK − y∗(θk)∥∥2
]

= O
(

1√
K

)
(3.28)

where y∗(θk) is the minimizer of the lower-level problem in (3.1b), and c > 0 is an absolute

constant that is independent of the stepsizes αk, βk, τk and the number of iterations K.

Theorem 2 implies that the convergence rate of STABLE to the stationary point of

(3.1) is O(K−
1
2 ). Since each iteration of STABLE only uses two samples (see Algorithm 3),

the sample complexity to achieve an ε-stationary point of (3.1) is O(ε−2), which is on the

same order of SGD’s sample complexity for the single-level nonconvex problems [29], and

significantly improves the state-of-the-art single-loop TTSA’s convergence rate O(ε−2.5) [37].

In addition, this convergence rate is not directly comparable to other recently developed

bilevel optimization methods, e.g., [33, 44] since STABLE does not need the increasing

batchsize nor double-loop. Regarding the sample complexity, however, STABLE improves

over [33, 44] by at least the order of O(log(ε−1)).

We next present the result in the strongly convex case. For the strong-convex case, we

slightly modify the update of θk in (3.11a) to

θk+1 = PΘ

(
θk − αk

(
∇θf(θk, yk; ξk)−Hk

θy(H
k
yy)
−1∇yf(θk, yk; ξk)

))
(3.29)

where PΘ denotes the projection on set Θ.

We need the following additional assumption.

Assumption 4 (strong convexity). Function F (θ) is µ-strongly convex in θ, that is,

∇2
xxF (θ) � µI.
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Theorem 3 (Strongly convex) Under Assumptions 1–4, if we choose the stepsizes as

βk = τk ≤ min

{
µg/Lg

32(µg + Lg)
,

1

K0 + k

}
(3.30a)

αk ≤ min

{√
µgLg

4c(µg + Lg)
,

µµgLg
2L2

f (µg + Lg)
,

1√
4c
,

µµ4
g

8C2
gθy
C2
fy

,
µµ2

g

8C2
fy

}
βk (3.30b)

where K0 > 0 is a sufficiently large constant and c > 0 is an absolute constant that is

independent of the stepsizes αk, βk, τk, then the iterates {θk} and {yk} satisfy

E
[∥∥θk − θ∗∥∥2

]
= O

(
1

k

)
and E

[∥∥yk − y∗(θk)∥∥2
]

= O
(

1

k

)
(3.31)

where the solution θ∗ is defined as θ∗ = arg minθ∈× F (θ) and y∗(θk) is the minimizer of the

lower-level problem in (3.1b).

Theorem 3 implies that to achieve an ε-optimal solution for both the lower-level and upper-

level problems, the sample complexity of STABLE is O(ε−1). This complexity is on the same

order of SGD’s complexity for the single-level strongly convex problems [29], and improves the

state-of-the-art single-loop TTSA’s sample complexity O(ε−2) for an ε-optimal upper-level

solution and O(ε−1.5) for an ε-optimal lower-level solution [37]. Compared with double-loop

bilevel algorithms in this strong-convex case, STABLE also improves over the BSA’s query

complexity O(ε−1) in terms of the stochastic upper-level function and O(ε−2) in terms of the

stochastic lower-level function [33].

3.3.2 Proof sketch

Next we highlight the key steps of the proof towards Theorem 2. The proof for the strongly

convex case in Theorem 3 will follow similar steps.

For simplicity of the convergence analysis, we define the following Lyapunov function

Vk :=f(θk) + ‖yk − y∗(θk)‖2 + ‖Hk
yy −∇2

yyg(θk, yk)‖2 + ‖Hk
θy −∇2

θyg(θk, yk)‖2 (3.32)

which mimics the continuous-time Lyapunov function (3.17) for the deterministic problem.
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Similar to the ODE analysis, we first quantify the difference between two Lyapunov

functions as

Vk+1 − Vk = f(θk+1)− f(θk)

Lemma 6

+ ‖yk+1 − y∗(θk+1)‖2 − ‖yk − y∗(θk)‖2

Lemma 7

+ ‖Hk+1
yy −∇2

yyg(θk+1, yk+1)‖2 − ‖Hk
yy −∇2

yyg(θk, yk)‖2

Lemma 8

+ ‖Hk+1
θy −∇2

θyg(θk+1, yk+1)‖2 − ‖Hk
θy −∇2

θyg(θk, yk)‖2

Lemma 8

. (3.33)

The difference in (3.33) consists of four difference terms: the first term quantifies the

descent of the upper-level objective functions; the second term characterizes the descent of the

lower-level optimization errors; and, the third and fourth terms measure the estimation error

of the second-order quantities. We will bound them, respectively, in the ensuing lemmas.

We will first analyze the descent of the upper-level objective in the next lemma.

Lemma 6 (Descent of upper level) Suppose Assumptions 1–3 hold. The sequence of θk

satisfies

E[f(θk+1)]− E[f(θk)] ≤− αk
2
E[‖∇f(θk)‖2] +

LF
2
E[‖θk+1 − θk‖2] + αkL

2
fE[‖yk − y∗(θk)‖2]

+
2C2

gθy
C2
fy
αk

µ4
g

E[‖Hk
yy −∇2

yyg(θk, yk)‖2]

+
2C2

fy
αk

µ2
g

E[‖Hk
θy −∇2

θyg(θk, yk)‖2] (3.34)

where Lf , LF are defined in Lemma 9 of Appendix, and Cgθy is the projection radius in

(3.12a).

Lemma 6 implies that the descent of the upper-level objective functions depends on the

error of the lower-level variable yk, and the estimation errors of Hk
yy and Hk

θy. We will next

analyze the error of the lower-level variable, which is the key step to improving the existing

results.
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Lemma 7 (Error of lower level) Suppose that Assumptions 1–3 hold, and yk+1 is gener-

ated by running iteration (3.11) given θk. If we choose βk ≤ 2
µg+Lg

, then yk+1 satisfies

E
[
‖y∗(θk+1)− yk+1‖2|Fk

]
≤
(

1− µgLgβ
k

µg + Lg
+
cα2

k

βk

)
‖yk − y∗(θk)‖2 +

(
1 +

µgLgβ
k

µg + Lg

)
β2
kσ

2
gy

+
cα4

k

βk
+ E

[
‖Hk

yy −∇2
yyg(θk, yk)‖2|Fk

] cα2
k

βk

+ E
[
‖Hk

θy −∇2
θyg(θk, yk)‖2|Fk

] cα2
k

βk
. (3.35)

Roughly speaking, Lemma 7 implies that if the stepsizes α2
k and β2

k and the estimation

errors of Hk
yy and Hk

θy are decreasing fast enough, the error of yk+1 will also decrease.

Since the RHS of both Lemmas 6 and 7 critically depend on the quality of Hk
yy and Hk

θy,

we will next build upon the results in [11, Lemma 2] to analyze the estimation errors.

Lemma 8 (Estimation errors of Hk
θy and Hk

yy) Suppose Assumptions 1–3 hold, and Hk
θy

and Hk
yy are generated by running (3.12). The mean square error of Hk

θy satisfies

E
[
‖Hk

θy −∇2
θyg(θk, yk)‖2 | Fk

]
≤ (1− τk)2‖Hk−1

θy −∇2
θyg(θk−1, yk−1)‖2 + 2τ 2

kσ
2
gθy

+ 2(1− τk)2(L̄2
gθy

+ L2
gθy

)‖θk − θk−1‖2 + 2(1− τk)2(L̄2
gθy

+ L2
gθy

)‖yk − yk−1‖2 (3.36)

where the constants Lgθy , Lgyy , L̄gθy , L̄gyy , σgθy , σgyy are defined in Assumptions 1 and 3. And

likewise, the mean square error of Hk
yy satisfies

E
[
‖Hk

yy −∇2
yyg(θk, yk)‖2 | Fk

]
≤ (1− τk)2‖Hk−1

yy −∇2
yyg(θk−1, yk−1)‖2 + 2τ 2

kσ
2
gyy

+ 2(1− τk)2(L̄2
gyy + L2

gyy)‖θk − θk−1‖2 + 2(1− τk)2(L̄2
gyy + L2

gyy)‖yk − yk−1‖2. (3.37)

Intuitively, the update of θk is bounded and so is the update of yk, and thus ‖θk−θk−1‖2 =

O(α2
k−1) and ‖yk − yk−1‖2 = O(β2

k−1). Plugging them into the RHS of Lemma 8, it suggests

that if the stepsizes α2
k, β

2
k , τ

2
k are decreasing, then the estimation errors of Hk

θy and Hk
yy also

decrease.
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Applying Lemmas 6–8 to (3.33) and rearranging terms, we will be able to get

E[Vk+1]− E[Vk] ≤ −c1E[‖yk − y∗(θk)‖2]− c2E[‖∇f(θk)‖2] + c3 (3.38)

where the constants are c1 = O(βk), c2 = O(αk) and c3 = O(α2
k + β2

k + τ 2
k ). By choosing

stepsizes αk, βk, τk as (3.27) and telescoping both sides of (3.38), we obtain the main results

in Theorem 2.

3.4 Appendix

3.4.1 Auxiliary Lemmas

In this appendix, we first present some auxiliary lemmas that will be used frequently in the

proof.

Lemma 9 ([33, Lemma 2.2]) Under Assumptions 1 and 2, we have

‖∇θf(θ, y∗(θ))−∇θf(θ, y)‖ ≤ Lf‖y∗(θ)− y‖ (3.39a)

‖∇f(θ1)−∇f(θ2)‖ ≤ LF‖θ1 − θ2‖ (3.39b)

‖y∗(θ1)− y∗(θ2)‖ ≤ Ly‖θ1 − θ2‖ (3.39c)

and the constants Lf , Ly, LF are defined as

Lf := Lfθ +
CgθyLfy
µg

+
Cfy
µg

(
Lfθy +

CgθyLgyy
µg

)
, Ly :=

Cgθy
µg

LF := L̄fθ +
Cgθy(L̄fy + Lf )

µg
+
Cfy
µg

(
L̄fθy +

Cgθy L̄gyy
µg

)
where the constants are defined in Assumptions 1–3.
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3.4.2 Proof of Proposition 1

Proof: Define the Jacobian matrix

∇θy(θ) =


∂
∂θ1
y1(θ) · · · ∂

∂θd
y1(θ)

· · ·
∂
∂θ1
yd′(θ) · · · ∂

∂θd
yd′(θ)

 .
By the chain rule, it follows that

∇F (θ) := ∇θf (θ, y∗(θ)) +∇θy
∗(θ)>∇yf (θ, y∗(θ)) . (3.40)

The minimizer y∗(θ) satisfies

∇yg(θ, y∗(θ)) = 0, thus ∇θ (∇yg(θ, y∗(θ))) = 0. (3.41)

By the chain rule again, it follows that

∇2
θyg (θ, y∗(θ)) +∇θy

∗(θ)>∇2
yyg (θ, y∗(θ)) = 0.

By Assumption 2, ∇2
yyg (θ, y∗(θ)) is invertible, so

∇θy
∗(θ)> := −∇2

θyg (θ, y∗(θ))
[
∇2
yyg (θ, y∗(θ))

]−1
. (3.42)

By substituting (3.42) into (3.40), we arrive at (3.7).

3.4.3 Proof of Lemma 6

Proof: Now we turn to analyze the update of θ. For convenience, we define the update in

(3.11a) as

θk+1 = θk − αkh̄kf with h̄kf := ∇θf
(
θk, yk; ξk

)
−Hk

θy(H
k
yy)
−1∇yf

(
θk, yk; ξk

)
(3.43)
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Using the smoothness of f(θk) obtained from Lemma 9, we have

E[f(θk+1)|Fk]

≤ f(θk) + E[〈∇f(θk), θk+1 − θk〉|Fk] +
LF
2
E[‖θk+1 − θk‖2|Fk]

= f(θk)− αk〈∇f(θk),E[h̄kf |Fk]〉+
LF
2
E[‖θk+1 − θk‖2|Fk]

= f(θk)− αk‖∇f(θk)‖2 + αk〈∇f(θk),∇f(θk)− E[h̄kf |Fk]〉+
LF
2
E[‖θk+1 − θk‖2|Fk]

≤ f(θk)−
(
αk −

α2
k

4γk

)
‖∇f(θk)‖2 + γk‖∇f(θk)− E[h̄kf |Fk]‖2 +

LF
2
E[‖θk+1 − θk‖2|Fk]

(3.44)

where the last inequality uses Young’s inequality with parameter γk. We choose γk = αk/2.

The approximation error of h̄kf can be bounded by

∥∥∇f(θk)− E[h̄kf |Fk]
∥∥2

(3.45)

≤ 2
∥∥∇f(θk)−∇f(θk, yk)

∥∥2
+ 2E

[
‖∇f(θk, yk)− Eξk [h̄kf ]‖2|Fk

]
(a)

≤ 2L2
f

∥∥yk − y∗(θk)∥∥2
+ 2E

[
‖∇f(θk, yk)− Eξk [h̄kf ]‖2|Fk

]
(b)

≤ 2L2
f

∥∥yk − y∗(θk)∥∥2
+ 2
∥∥(Hk

yy)
−1Hk

θy −Hyy(θ
k, yk)−1Hθy(θ

k, yk)
∥∥2∥∥∇yf(θk, yk)

∥∥2

(c)

≤ 2L2
f‖yk − y∗(θk)‖2 +

4C2
gθy
C2
fy

µ4
g

E[‖Hk
yy −Hyy(θ

k, yk)‖2|Fk] +
4C2

fy

µ2
g

E[‖Hk
θy −Hθy(θ

k, yk)‖2|Fk]

where (a) follows from Lemma 9, (b) uses the fact that

Eξk [h̄kf |Fk] = ∇θf
(
θk, yk

)
− (Hk

yy)
−1Hk

θy∇yf
(
θk, yk

)
(3.46)

and (c) follows the same steps of (3.56) and Assumption 3. Plugging (3.45) into (3.44) and

taking expectation over all the randomness lead to the lemma.
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3.4.4 Proof of Lemma 7

Proof: We start by decomposing the error of the lower level variable as

E
[
‖yk+1 − y∗(θk+1)‖2|Fk

]
= E

[
‖yk − βkhkg − y∗(θk) + y∗(θk)− y∗(θk+1)− (Hk

yy)
−1(Hk

θy)
>(θk+1 − θk)‖2|Fk

]
≤ (1 + ε)E[‖yk − βkhkg − y∗(θk)‖2|Fk]

I1

+ (1 + ε−1)E[‖y∗(θk)− y∗(θk+1)− (Hk
yy)
−1(Hk

θy)
>(θk+1 − θk)‖2|Fk]

I2

. (3.47)

The upper bound of I1 can be derived as

I1 = ‖yk − y∗(θk)‖2 − 2βkE[〈yk − y∗(θk), hkg〉|Fk] + β2
kE[‖hkg‖2|Fk]

(a)

≤ ‖yk − y∗(θk)‖2 − 2βk〈yk − y∗(θk),∇yg(θk, yk)〉+ β2
k‖∇yg(θk, yk)‖2 + β2

kσ
2
gy

(b)

≤
(

1− 2µgLg
µg + Lg

βk
)
‖yk − y∗(θk)‖2 + βk

(
βk −

2

µg + Lg

)
‖∇yg(θk, yk)‖2 + β2

kσ
2
gy

(c)

≤
(

1− 2µgLg
µg + Lg

βk
)
‖yk − y∗(θk)‖2 + β2

kσ
2
gy (3.48)

where (a) comes from the fact that Var[X] = E[X2]− E[X]2, (b) follows from the µg-strong

convexity and Lg smoothness of g(θ, y) [79, Theorem 2.1.11], and (c) follows from the choice

of stepsize βk ≤ µg/Lg
32(µg+Lg)

≤ 2
µg+Lg

in (3.27a).

The upper bound of I2 can be derived as

I2 = E
[∥∥y∗(θk)− y∗(θk+1)− (Hk

yy)
−1(Hk

θy)
>(θk+1 − θk)

∥∥2 |Fk
]

≤ 3E
[∥∥y∗(θk+1)− y∗(θk)−∇θy

∗(θk)(θk+1 − θk)
∥∥2 |Fk

]
+ 3E

[∥∥(∇θy
∗(θk)−Hyy(θ

k, yk)−1Hθy(θ
k, yk)>

)
(θk+1 − θk)

∥∥2 |Fk
]

+ 3E
[∥∥(Hyy(θ

k, yk)−1Hθy(θ
k, yk)> − (Hk

yy)
−1(Hk

θy)
>) (θk+1 − θk)

∥∥2 |Fk
]
. (3.49)
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We first bound the first approximation error in the RHS of (3.49) by

∥∥y∗(θk+1)− y∗(θk)−∇θy
∗(θk)(θk+1 − θk)

∥∥2

=

∥∥∥∥∫ 1

0

∇θy
∗(θk + t(θk+1 − θk))(θk+1 − θk)dt−∇θy

∗(θk)(θk+1 − θk)
∥∥∥∥2

≤
∫ 1

0

∥∥∇θy
∗(θk + t(θk+1 − θk))−∇θy

∗(θk)
∥∥2 ‖θk+1 − θk‖2dt ≤ L2

y

2
‖θk+1 − θk‖4 (3.50)

where the first inequality follows from the Cauchy-Schwarz inequality, and the second

inequality follows from the Ly-Lipschitz continuity of ∇θy
∗(θ) in Lemma 9.

Next we bound the second term in the RHS of (3.49) as

E
[∥∥(∇θy

∗(θk)−Hyy(θ
k, yk)−1Hθy(θ

k, yk)>
)

(θk+1 − θk)
∥∥2 |Fk

]
≤E

[∥∥∇θy
∗(θk)−Hyy(θ

k, yk)−1Hθy(θ
k, yk)>

∥∥2 ∥∥θk+1 − θk
∥∥2 |Fk

]
(3.51)

and likewise, the third term of (3.49) as

E
[∥∥(Hyy(θ

k, yk)−1Hθy(θ
k, yk)> − (Hk

yy)
−1(Hk

θy)
>) (θk+1 − θk)

∥∥2 |Fk
]

≤E
[∥∥Hyy(θ

k, yk)−1Hθy(θ
k, yk)> − (Hk

yy)
−1(Hk

θy)
>∥∥2 ∥∥θk+1 − θk

∥∥2 |Fk
]
. (3.52)

We then bound the approximation error of Hyy(θ
k, yk)−1Hθy(θ

k, yk)> in (3.51) by

∥∥∇θy
∗(θk)−Hyy(θ

k, yk)−1Hθy(θ
k, yk)>

∥∥2

=
∥∥∥Hyy

(
θk, y∗(θk)

)−1
Hθy

(
θk, y∗(θk)

)> −Hyy(θ
k, yk)−1Hθy(θ

k, yk)>
∥∥∥2

=
∥∥∥Hyy

(
θk, y∗(θk)

)−1
Hθy

(
θk, y∗(θk)

)> −Hyy(θ
k, yk)−1Hθy

(
θk, y∗(θk)

)>
+Hyy(θ

k, yk)−1Hθy

(
θk, y∗(θk)

)> −Hyy(θ
k, yk)−1Hθy(θ

k, yk)>
∥∥∥2

≤2C2
gθy

∥∥∥Hyy

(
θk, y∗(θk)

)−1−Hyy(θ
k, yk)−1

∥∥∥2

+
2

µ2
g

∥∥∥Hθy

(
θk, y∗(θk)

)
−Hθy(θ

k, yk)
∥∥∥2

(3.53)

where the inequality follows from ‖Hθy(θ, y)‖ ≤ Cgθy and Hyy(θ, y) � µgI.
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Note that∥∥∥Hyy

(
θk, y∗(θk)

)−1−Hyy(θ
k, yk)−1

∥∥∥2

=
∥∥∥Hyy

(
θk, y∗(θk)

)−1
(
Hyy

(
θk, y∗(θk)

)
−Hyy(θ

k, yk)
)
Hyy(θ

k, yk)−1
∥∥∥2

≤
∥∥∥Hyy

(
θk, y∗(θk)

)−1
∥∥∥2∥∥∥Hyy

(
θk, y∗(θk)

)
−Hyy(θ

k, yk)
∥∥∥2∥∥∥Hyy(θ

k, yk)−1
∥∥∥2

≤ 1

µ4
g

∥∥∥Hyy

(
θk, y∗(θk)

)
−Hyy(θ

k, yk)
∥∥∥2

(3.54)

where the last inequality follows from Hyy(θ, y) � µgI.

Therefore, we have∥∥∇θy
∗(θk)−Hyy(θ

k, yk)−1Hθy(θ
k, yk)>

∥∥2

≤
2C2

gθy

µ4
g

∥∥∥Hyy

(
θk, y∗(θk)

)
−Hyy(θ

k, yk)
∥∥∥2

+
2

µ2
g

∥∥∥Hθy

(
θk, y∗(θk)

)
−Hθy(θ

k, yk)
∥∥∥2

. (3.55)

Following the steps towards (3.55), we bound the error of (Hk
yy)
−1(Hk

θy)
> in (3.52) by∥∥(Hk

yy)
−1(Hk

θy)
> −Hyy(θ

k, yk)−1Hθy(θ
k, yk)>

∥∥2

=
∥∥∥(Hk

yy)
−1(Hk

θy)
>−Hyy(θ

k, yk)−1(Hk
θy)
>+Hyy(θ

k, yk)−1(Hk
θy)
>−Hyy(θ

k, yk)−1Hθy(θ
k, yk)>

∥∥∥2

≤2
∥∥∥(Hk

yy)
−1(Hk

θy)
>−Hyy(θ

k, yk)−1(Hk
θy)
>
∥∥∥2

+ 2
∥∥∥Hyy(θ

k, yk)−1(Hk
θy)
>−Hyy(θ

k, yk)−1Hθy(θ
k, yk)>

∥∥∥2

≤
2C2

gθy

µ4
g

∥∥∥Hk
yy −Hyy(θ

k, yk)
∥∥∥2

+
2

µ2
g

∥∥∥Hk
θy −Hθy(θ

k, yk)
∥∥∥2

(3.56)

where the second inequality follows from ‖Hk
θy‖ ≤ Cgθy and Hk

yy � µgI.

Plugging (3.50)-(3.56) back to (3.49), we have

I2 ≤
3L2

y

2
E[‖θk+1 − θk‖4|Fk] +

6C2
gθy

µ4
g

‖Hyy(θ
k, y∗(θk))−Hyy(θ

k, yk)‖2E[‖θk+1 − θk‖2|Fk]

+
6

µ2
g

‖Hθy(θ
k, y∗(θk))−Hθy(θ

k, yk)‖2E[‖θk+1 − θk‖2|Fk]

+
6C2

gθy

µ4
g

E[‖Hk
yy −Hyy(θ

k, yk)‖2‖θk+1 − θk‖2|Fk]

+
6

µ2
g

E[‖Hk
θy −Hθy(θ

k, yk)‖2‖θk+1 − θk‖2|Fk]. (3.57)
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Using the Lipschitz continuity of Hθy(θ, y) and Hyy(θ, y) in Assumption 1, from (3.57),

we have

I2 ≤
3L2

y

2
E[‖θk+1 − θk‖4|Fk] +

6

µ2
g

(
C2
gθy
Lgyy

µ2
g

+ Lgθy

)
‖yk − y∗(θk)‖2E[‖θk+1 − θk‖2|Fk]

+
6C2

gθy

µ4
g

E[‖Hk
yy −Hyy(θ

k, yk)‖2‖θk+1 − θk‖2|Fk]

+
6

µ2
g

E[‖Hk
θy −Hθy(θ

k, yk)‖2‖θk+1 − θk‖2|Fk]. (3.58)

For any p = 2, 4, we next analyze quantity E[‖θk+1 − θk‖p|Fk] in (3.58). Recall the

simplified update (3.43). Therefore, we have ‖θk+1 − θk‖ = αk‖h̄kf‖ and

‖h̄kf‖ =
∥∥∥∇θf

(
θk, yk; ξk

)
− (Hk

yy)
−1Hk

θy∇yf
(
θk, yk; ξk

) ∥∥∥
≤
∥∥∇θf(θk, yk; ξk)

∥∥+
∥∥∥(Hk

yy)
−1Hk

θy∇yf
(
θk, yk; ξk

) ∥∥∥
(a)

≤
∥∥∇θf(θk, yk; ξk)

∥∥+
Cgθy
µg

∥∥∇yf(θk, yk; ξk)
∥∥ (3.59)

where (a) follows from the upper and lower projections of Hk
θy and Hk

yy in (3.12).

Therefore, for p = 2, 4, we have

E[‖h̄kf‖p|Fk, Hk
θ,y, H

k
yy] ≤ 2p−1E

[
‖∇θf(θk, yk; ξk)‖p|Fk, Hk

θ,y, H
k
yy

]
+ 2p−1

(
Cgθy
µg

)p
E
[
‖∇yf(θk, yk; ξk)‖p|Fk, Hk

θ,y, H
k
yy

]
≤ 2p−1

(
Cp
fθ

+

(
Cgθy
µg

)p
Cp
fy

)
(3.60)

where the last inequality from Assumption 3. And thus

E
[
‖θk+1 − θk‖p|Fk, Hk

θy, H
k
yy

]
≤ 2p−1

(
Cp
fθ

+

(
Cgθy
µg

)p
Cp
fy

)
αpk. (3.61)
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Plugging (3.61) into (3.58), we have

I2 ≤ 12L2
y

(
C4
fθ

+

(
Cgθy
µg

)4

C4
fy

)
α4
k

+
12

µ2
g

(
C2
gθy
Lgyy

µ2
g

+ Lgθy

)(
C2
fθ

+

(
Cgθy
µg

)2

C2
fy

)
‖yk − y∗(θk)‖2α2

k

+
12C2

gθy

µ4
g

(
C2
fθ

+

(
Cgθy
µg

)2

C2
fy

)
E[‖Hk

yy −Hyy(θ
k, yk)‖2|Fk]α2

k

+
12

µ2
g

(
C2
fθ

+

(
Cgθy
µg

)2

C2
fy

)
E[‖Hk

θy −Hθy(θ
k, yk)‖2|Fk]α2

k. (3.62)

Now let us define the constants as

c̃1 := max

{
12L2

y

(
C4
fθ

+

(
Cgθy
µg

)4

C4
fy

)
,

12

µ2
g

(
C2
gθy
Lgyy

µ2
g

+ Lgθy

)(
C2
fθ

+

(
Cgθy
µg

)2

C2
fy

)
,

12C2
gθy

µ4
g

(
C2
fθ

+

(
Cgθy
µg

)2

C2
fy

)
,

12

µ2
g

(
C2
fθ

+

(
Cgθy
µg

)2

C2
fy

)}
c̃2 :=

2

µg + Lg
+
µg + Lg
µgLg

, c := c̃1c̃2.

Plugging the upper bounds of I1 in (3.48) and I2 in (3.62) into (3.47) with ε = µgLg
µg+Lg

βk,

we have

E
[
‖yk+1 − y∗(θk+1)‖2|Fk

]
≤
(

1− µgLg
µg + Lg

βk
)
‖yk − y∗(θk)‖2 +

(
1 +

µgLg
µg + Lg

βk
)
β2
kσ

2
gy + c̃1c̃2

α4
k

βk

+ c̃1c̃2
α2
k

βk
‖yk − y∗(θk)‖2 + c̃1c̃2E

[
‖Hk

yy −Hyy(θ
k, yk)‖2|Fk

] α2
k

βk

+ c̃1c̃2E
[
‖Hk

θy −Hθy(θ
k, yk)‖2|Fk

] α2
k

βk
(3.63)

where we have used the fact that(
1 +

µgLg
µg + Lg

βk
)(

1− 2µgLg
µg + Lg

βk
)
≤ 1− µgLg

µg + Lg
βk(

1 +

(
µgLg
µg + Lg

βk
)−1

)
≤ 1

βk

(
2

µg + Lg
+
µg + Lg
µgLg

)
=
c̃2

βk

72



where the last inequality uses βk ≤ 2
µg+Lg

in (3.27a). The proof is complete by defining

c := c̃1c̃2.

3.4.5 Proof of Lemma 8

Proof: Recall that g(θ, y) = Eφ[g(θ, y, φ)]. We only have access to the stochastic estimates

of ∇2
θyg (θ, y) ,∇2

yyg (θ, y), that is

hkyy(φ) := ∇2
yyg
(
θk, yk;φ

)
, hkθy(φ) := ∇2

θyg
(
θk, yk;φ

)
. (3.64)

For notational brevity in the analysis, we define

Hθy(θ, y) := ∇2
θyg (θ, y) , Hyy(θ, y) := ∇2

yyg (θ, y) . (3.65)

and rewrite the update of (3.12) as

Hk
θy := P{X:‖X‖≤Cgθy}

{
Ĥk
θy

}
with Ĥk

θy :=(1− τk)(Hk−1
θy −hk−1

θy (φk))+hkθy(φ
k) (3.66a)

Hk
yy := P{X:X�µgI}

{
Ĥk
yy

}
with Ĥk

yy := (1− τk)
(
Hk−1
yy − hk−1

yy (φk)
)

+ hkyy(φ
k). (3.66b)

To analyze the approximation error of Hk
θy, we decompose it into

E
[
‖Hk

θy −Hθy(θ
k, yk)‖2

∣∣Fk] ≤ E
[
‖Ĥk

θy −Hθy(θ
k, yk)‖2

∣∣Fk]
=
∥∥∥E [Ĥk

θy −Hθy(θ
k, yk)|Fk

]∥∥∥2

+
∑
i,j

Var
[
(Ĥk

θy −Hθy(θ
k, yk))i,j|Fk

]
(3.67)

where the inequality holds since the projection onto the convex set {X : X � µgI} is

non-expansive, and the equality comes from the bias and variance decomposition that

Var[X] = E[X2]− E[X]2 for any random variable X.

We first analyze the bias term in (3.67) by

E
[
Ĥk
θy −Hθy(θ

k, yk)|Fk
]

(3.12)
= E

[
(1− τk)

(
Hk−1
θy + hkθy(φ

k)− hk−1
θy (φk)

)
+ τkh

k
θy(φ

k)−Hθy(θ
k, yk)|Fk

]
= (1− τk)

(
Hk−1
θy +Hθy(θ

k, yk)−Hθy(θ
k−1, yk−1)

)
+ τkHθy(θ

k, yk)−Hθy(θ
k, yk)

= (1− τk)
(
Hk−1
θy −Hθy(θ

k−1, yk−1)
)
. (3.68)
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The variance term in (3.67) follows

∑
i,j

Var
[
(Ĥk

θy −Hθy(θ
k, yk))i,j|Fk

]
=
∑
i,j

Var
[
(Ĥk

θy)i,j|Fk
]

(3.66a)
=

∑
i,j

Var
[
(1− τk)(hkθy(φk)− hk−1

θy (φk))i,j + τk(h
k
θy(φ

k))i,j|Fk
]

≤ 2(1− τk)2
∑
i,j

Var
[
(hkθy(φ

k)− hk−1
θy (φk))i,j|Fk

]
+ 2τ 2

k

∑
i,j

Var
[
(hkθy(φ

k))i,j|Fk
]

(a)

≤2(1− τk)2E
[
‖hkθy(φk)− hk−1

θy (φk)‖2|Fk
]

+ 2τ 2
k

∑
i,j

Var
[
(hkθy(φ

k))i,j|Fk
]

(b)

≤2(1− τk)2
(
L̄2
gθy

+ L2
gθy

) (
‖θk − θk−1‖2 + ‖yk − yk−1‖2

)
+ 2τ 2

kσ
2
gθy

(3.69)

where (a) uses Var[X] ≤ E[X]2 and (b) follows from Assumptions 1 and 3.

Therefore, plugging (3.68) and (3.69) into (3.67), we have

E[‖Hk
θy −Hθy(θ

k, yk)‖2|Fk] ≤ (1− τk)2
∥∥Hk−1

θy −Hθy(θ
k−1, yk−1)

∥∥2
+ 2τ 2

kσ
2
gθy

+ 2(1− τk)2
(
L̄2
gθy

+ L2
gθy

) (
‖θk − θk−1‖2 + ‖yk − yk−1‖2

)
.

Similarly, we can derive the approximation error of Hk
yy as

E[‖Hk
yy −Hyy(θ

k, yk)‖2|Fk] ≤ (1− τk)2‖Hk−1
yy −Hyy(θ

k−1, yk−1)‖2 + 2τ 2
kσ

2
gyy

+ 2(1− τk)2
(
L̄2
gyy + L2

gyy

) (
‖θk − θk−1‖2 + ‖yk − yk−1‖2

)
.

The proof is then complete.
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3.4.6 Proof of Theorem 2

Proof: Using Lemmas 6-8, we, respectively, bound the four difference terms in (3.33) and

obtain

E[Vk+1]− E[Vk] ≤ −αk
2
E[‖∇f(θk)‖2]−

(
µgLg
µg + Lg

βk − c̃1c̃2
α2
k

βk
− αkL2

f

)
E[‖yk − y∗(θk)‖2]

−
(
τk+1 − c̃1c̃2

α2
k

βk
−

2αkC
2
gθy
C2
fy

µ4
g

)
E[‖Hk

yy −Hyy(θ
k, yk)‖2]

−
(
τk+1 − c̃1c̃2

α2
k

βk
−

2αkC
2
fy

µ2
g

)
E[‖Hk

θy −Hθy(θ
k, yk)‖2]

+
LF
2
E[‖θk+1 − θk‖2] +

(
1 +

µgLg
µg + Lg

βk
)
β2
kσ

2
gy + c̃1c̃2

α4
k

βk
+ 4τ 2

k+1σ
2
gy

+ 2(1− τk+1)2c̃3E[‖θk+1 − θk‖2] + 2(1− τk+1)2c̃3E[‖yk+1 − yk‖2]. (3.70)

where the constant is defined as c̃3 := L̄2
gθy

+ L2
gθy

+ L̄2
gyy + L2

gyy .

Note that using the y-update (3.11b), we also have

E[‖yk+1 − yk‖2] = E
[∥∥βkhkg − (Hk

yy)
−1Hk

θy(θ
k+1 − θk)

∥∥2]
≤ 2β2

kE
[
‖hkg‖2

]
+ 2E

[
‖(Hk

yy)
−1‖2‖Hk

θy‖2
∥∥θk+1 − θk

∥∥2]
(a)

≤ 2β2
kE
[
‖∇yg(θk, yk)‖2

]
+ 2β2

kσ
2
gy + 2E

[
‖(Hk

yy)
−1‖2‖Hk

θy‖2
∥∥θk+1 − θk

∥∥2]
(b)

≤ 2β2
kE
[
‖∇yg(θk, yk)‖2

]
+ 2β2

kσ
2
gy + 2

(
Cgθy
µg

)2

E
[∥∥θk+1 − θk

∥∥2]
(c)

≤ 2β2
kL

2
gE[‖yk − y∗(θk)‖2] + 2β2

kσ
2
gy + 2

(
Cgθy
µg

)2

E[‖θk+1 − θk‖2] (3.71)

where (a) follows from E[X2] = Var[X] + E[X]2 and Assumption 3, (b) uses the upper and

lower projections of Hk
θy and Hk

yy in (3.12), and (c) is due to ∇yg(θk, y∗(θk)) = 0 as well as

Assumption 1.

Selecting parameter τk = 1√
K

and using (3.70)-(3.71),
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we have

E[Vk+1]− E[Vk] ≤ −αk
2
E[‖∇f(θk)‖2] +

(
LF
2

+ 2c̃3 + 4c̃3

(
Cgθy
µg

)2
)
E[‖θk+1 − θk‖2]

−
(

µgLg
µg + Lg

βk − c̃1c̃2
α2
k

βk
− αkL2

f − 8β2
kL

2
g

)
E[‖yk − y∗(θk)‖2]

−
(

1√
K
− c̃1c̃2

α2
k

βk
−

2C2
gθy
C2
fy
αk

µ4
g

)
E[‖Hk

yy −Hyy(θ
k, yk)‖2]

−
(

1√
K
− c̃1c̃2

α2
k

βk
−

2C2
fy
αk

µ2
g

)
E[‖Hk

θy −Hθy(θ
k, yk)‖2]

+

(
1 +

µgLg
µg + Lg

βk
)
β2
kσ

2
gy + c̃1c̃2

α4
k

βk
+

4σ2
gy

K
+ 8β2

kL
2
gσ

2
gy . (3.72)

Choosing the stepsize αk as (3.27), it will lead to (cf. c := c̃1c̃2)

1√
K
− c̃1c̃2

α2
k

βk
−

2C2
gθy
C2
fy
αk

µ4
g

(a)

≥ 1√
K
− c̃1c̃2αk −

2C2
gθy
C2
fy
αk

µ4
g

(b)

≥ 0 (3.73a)

1√
K
− c̃1c̃2

α2
k

βk
−

2C2
fy
αk

µ2
g

(c)

≥ 1√
K
− c̃1c̃2αk −

2C2
fy
αk

µ2
g

(d)

≥ 0 (3.73b)

where both (a) and (c) follow from αk ≤ βk in (3.27b); and (b) and (d) follow from the second

and the third terms in (3.27b). In addition, choosing the stepsize βk as (3.27) will lead to

µgLg
µg + Lg

βk − c̃1c̃2
α2
k

βk
− αkL2

f − 8β2
kL

2
g

(e)

≥ µgLg
µg + Lg

βk − (c̃1c̃2 + L2
f )αk − 8β2

kL
2
g

(f)

≥ µgLgβk
2(µg + Lg)

− 8β2
kL

2
g

(g)

≥ µgLgβk
4(µg + Lg)

(3.73c)

where (e) follows from αk ≤ βk in (3.27b), (f) is due to the last terms in (3.27b), and (g) uses

(3.27a).

Using (3.73) to cancel terms in (3.72) and using (3.61) to bound E[‖θk+1 − θk‖2], we are

able to get

E[Vk+1]− E[Vk] ≤ − µgLgβk
4(µg + Lg)

E[‖yk − y∗(θk)‖2]− αk
2
E[‖∇f(θk)‖2] +O

(
1

K

)
(3.74)

from which we can reach Theorem 2 after telescoping the both sides of (3.74).
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3.4.7 Proof of Theorem 3

For the strong-convex case, we slightly modify the update of θk to

θk+1 = PΘ

(
θk − αkh̄kf

)
(3.75)

where h̄kf is defined as (3.43) and PΘ denotes the projection on set Θ.

Slightly different from the Lyapunov function (3.32), we define the following Lyapunov

function

Vk := ‖θk − θ∗‖2 + ‖yk − y∗(θk)‖2 + ‖Hk
yy −∇2

yyg(θk, yk)‖2 + ‖Hk
θy −∇2

θyg(θk, yk)‖2.

Lemma 10 Suppose Assumptions 1–3 hold and F (θ) is µ-strongly convex. Then θk satisfies

E[‖θk+1 − θ∗‖2] ≤ (1− µαk)E[‖θk − θ∗‖2] +
2L2

f

µ
αkE[‖yk − y∗(θk)‖2] + α2

kE[‖h̄kf‖2]

+
4C2

gθy
C2
fy

µ4
gµ

αkE[‖Hk
yy −Hyy(θ

k, yk)‖2] +
4C2

fy

µ2
gµ

αkE[‖Hk
θy −Hθy(θ

k, yk)‖2]

(3.76)

where Lf , LF are defined in Lemma 9, and Cgθy is the projection radius of Hk
θy in (3.12a).

Proof: We start with

E[‖θk+1 − θ∗‖2|Fk]
(a)

≤ E[‖θk − αkh̄kf − θ∗‖2|Fk]

= ‖θk − θ∗‖2 − 2αk〈θk − θ∗,E[h̄kf |Fk]〉+ α2
kE[‖h̄kf‖2|Fk]

= ‖θk − θ∗‖2 − 2αk〈θk − θ∗,∇f(θk)〉

+ 2αk〈θk − θ∗,∇f(θk)− E[h̄kf |Fk]〉+ α2
kE[‖h̄kf‖2|Fk]

(b)

≤ ‖θk − θ∗‖2 − 2αk〈θk − θ∗,∇f(θk)−∇f(θ∗)〉

+ 2αk〈θk − θ∗,∇f(θk)− E[h̄kf |Fk]〉+ α2
kE[‖h̄kf‖2|Fk] (3.77)

where (a) follows the fact that PΘ is non-expansive, and (b) follows the optimality condition

that 〈∇f(θ∗), θ − θ∗〉 ≥ 0 for any θ ∈ Θ.
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Using the µ-strong convexity of F (θ), it follows that

− 〈θk − θ∗,∇f(θk)−∇f(θ∗)〉 ≤ −µ‖θk − θ∗‖2 (3.78)

plugging which into (3.77) leads to

E
[
‖θk+1 − θ∗‖2|Fk

]
≤ (1− 2µαk)‖θk − θ∗‖2 + 2αk〈θk − θ∗,∇f(θk)− E[h̄kf |Fk]〉+ α2

kE
[
‖h̄kf‖2|Fk

]
(c)

≤ (1− µαk)‖θk − θ∗‖2 +
αk
µ

∥∥∇f(θk)− E[h̄kf |Fk]
∥∥2

+ α2
kE
[
‖h̄kf‖2|Fk

]
where (c) uses the Young’s inequality. Plugging (3.45) into the above completes the proof.

Similar to (3.33), we first quantify the difference between consecutive Lyapunov functions

as

Vk+1 − Vk = ‖θk+1 − θ∗‖2 − ‖θk − θ∗‖2

Lemma 10

+ ‖yk+1 − y∗(θk+1)‖2 − ‖yk − y∗(θk)‖2

Lemma 7

+ ‖Hk+1
yy −∇2

yyg(θk+1, yk+1)‖2−‖Hk
yy −∇2

yyg(θk, yk)‖2

Lemma 8

+ ‖Hk+1
θy −∇2

θyg(θk+1, yk+1)‖2−‖Hk
θy −∇2

θyg(θk, yk)‖2

Lemma 8

. (3.79)

Using Lemmas 7-8 and 10 and defining c̃3 := L̄2
gθy

+ L2
gθy

+ L̄2
gyy + L2

gyy , we obtain

E[Vk+1]− E[Vk] ≤ −µαkE[‖θk − θ∗‖2]−
(
µgLgβk
µg + Lg

− c̃1c̃2
α2
k

βk
−

2L2
fαk

µ

)
E[‖yk − y∗(θk)‖2]

−
(
τk+1 − c̃1c̃2

α2
k

βk
−

4C2
gθy
C2
fy

µ4
gµ

αk

)
E[‖Hk

yy −Hyy(θ
k, yk)‖2]

−
(
τk+1 − c̃1c̃2

α2
k

βk
−

4C2
fy

µ2
gµ

αk

)
E[‖Hk

θy −Hθy(θ
k, yk)‖2]

+ α2
kE[‖h̄kf‖2] +

(
1 +

µgLg
µg + Lg

βk
)
β2
kσ

2
gy + c̃1c̃2

α4
k

βk
+ 4τ 2

k+1σ
2
gy

+ 2(1− τk+1)2c̃3E[‖θk+1 − θk‖2] + 2(1− τk+1)2c̃3E[‖yk+1 − yk‖2]. (3.80)

Note that for the projected update (3.75), (3.60) still holds. Plugging (3.71) and (3.60)
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into (3.80), we have

E[Vk+1]− E[Vk] ≤ −µαkE[‖θk − θ∗‖2] +

(
2 + 4c̃3 + 8c̃3

(Cgθy
µ2
g

)2
)(

C2
fθ

+
(Cgθy
µg

)2

C2
fy

)
c̃4:=

α2
k

−
(
µgLgβk
µg + Lg

− c̃1c̃2
α2
k

βk
−

2L2
fαk

µ
− 8β2

kL
2L2

g

)
E[‖yk − y∗(θk)‖2]

−
(
τk+1 − c̃1c̃2

α2
k

βk
−

4C2
gθy
C2
fy

µ4
gµ

αk

)
E[‖Hk

yy −Hyy(θ
k, yk)‖2]

−
(
τk+1 − c̃1c̃2

α2
k

βk
−

4C2
fy

µ2
gµ

αk

)
E[‖Hk

θy −Hθy(θ
k, yk)‖2]

+

(
1 +

µgLg
µg + Lg

βk
)
β2
kσ

2
gy + c̃1c̃2

α4
k

βk
+ 4τ 2

k+1σ
2
gy + 8L2

gβ
2
kσ

2
gy . (3.81)

We choose the stepsizes αk, βk, τk as (3.30) to guarantee that (cf. c := c̃1c̃2)

(a) τk+1 − c̃1c̃2
α2
k

βk
−

4C2
gθy
C2
fy

µ4
gµ

αk ≥
βk
4

; (b) τk+1 − c̃1c̃2
α2
k

βk
−

4C2
fy

µ2
gµ

αk ≥
βk
4

(c)
µgLg
µg + Lg

βk − c̃1c̃2
α2
k

βk
−

2L2
f

µ
αk − 8β2

kL
2L2

g ≥
µgLg

4(µg + Lg)
. (3.82)

Therefore, plugging (3.82) into (3.81), we have

E[Vk+1]− E[Vk] ≤ −µαkE
[
‖θk − θ∗‖2

]
− µgLg

4(µg + Lg)
βkE

[
‖yk − y∗(θk)‖2

]
− βk

4
E
[
‖Hk

yy −Hyy(θ
k, yk)‖2

]
− βk

4
E
[
‖Hk

θy −Hθy(θ
k, yk)‖2

]
+ c̃6β

2
k

≤ −c̃5βkE[Vk] + c̃6β
2
k (3.83)

where the first and second inequalities hold since we define

c̃5 := min

{
µαk
βk

,
µgLg

4(µg + Lg)
,
1

4

}
= O(1)

c̃6 :=

(
1 +

µgLg
µg + Lg

βk
)
σ2
gy +

α2
k

4βk
+ 4σ2

gy + 8L2
gσ

2
gy + c̃4 = O(1). (3.84)
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If we choose βk = 2
c̃5(K0+k)

, where K0 is a sufficiently large constant, then we have

E[VK ] ≤
K−1∏
k=0

(1− c̃5βk)V0 + c̃6

K−1∑
k=0

β2
k

k−1∏
j=k+1

(1− c̃5βj)

≤ (K0 − 2)(K0 − 1)

(K0 +K − 2)(K0 +K − 1)
V0 +

c̃6

c̃2
5

K−1∑
k=0

4

(k +K0)2

(k +K0 − 1)(k +K0)

(K +K0 − 2)(K +K0 − 1)

≤ (K0 − 1)2

(K0 +K − 1)2
V0 +

4c̃6K

c̃2
5(K +K0 − 1)2

(3.85)

from which the proof is complete.
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CHAPTER 4

Communication-Adaptive Stochastic Gradients for

Distributed Learning

4.1 Introduction

Stochastic gradient descent (SGD) method [93] is prevalent in solving large-scale machine

learning problems during the last decades. Although simple to use, the plain-vanilla SGD

often becomes less efficient when it is applied to the distributed setting, especially in terms

of the communication efficiency.

In this chapter, we aim to solve the distributed learning problem in a communication-

efficient fashion while maintaining the learning accuracy. Consider a setting consisting of a

cloud server and a set of M devices (workers) collected in M := {1, . . . ,M}. Each device m

has its local dataset {ξn, n ∈ Nm}, which defines the loss function of device m as

Lm(θ) :=
∑
n∈Nm

`(θ; ξn), m ∈M (4.1)

where θ ∈ Rp is the sought vector (e.g., parameters of a prediction model) and ξn is a data

sample. For example, in linear regression, `(θ; ξn) is the square loss; and, in deep learning,

`(θ; ξn) is the loss function of a neural network, and θ concatenates the weights. The goal is

to solve

min
θ∈Rp

L(θ) with L(θ) :=
1

M

∑
m∈M

Lm(θ). (4.2)

Problem (4.2) also arises in a number of areas, such as multi-agent optimization [77], dis-

tributed signal processing [34], and distributed machine learning [17]. While our algorithms
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can be applied to other settings, we focus on the setting that for bandwidth and privacy

concerns, local data {ξn, n ∈ Nm} at each worker m are not uploaded to the server. This

setting naturally arises in e.g., federated learning, in which collaboration is needed through

communication between the server and multiple workers (e.g., mobile devices).

To solve (4.2), we can in principle apply the distributed version of SGD. In this case, at

iteration k, the server broadcasts the current model θk to all the workers; each worker m

computes ∇`(θk; ξkm) using a randomly selected sample or a minibatch of samples {ξkm} ⊆
{ξn, n ∈ Nm}, and then uploads it to the server; and once receiving stochastic gradients from

all workers, the server updates the model parameters via

SGD θk+1 = θk − ηk
M

∑
m∈M

∇`(θk; ξkm) (4.3)

where ηk > 0 is the (possibly) time-varying stepsize used at iteration k. When ∇`(θk; ξkm) is

an unbiased gradient estimator of Lm(θ), the convergence of SGD update (4.3) is guaranteed

[7]. To implement (4.3), however, the server has to communicate with all workers to obtain

fresh {∇`(θk; ξkm)}. This prevents the efficient implementation of SGD in scenarios where

communication between the server and the workers is costly [73]. For example, consider

using SGD to iteratively train an image classification model over a group of wireless devices.

The start-of-the-art deep neural network models (e.g., ResNet, LSTM) for computer vision,

speech and natural language processing tasks involve millions of parameters (e.g., 500MB).

This training process is costly because one SGD update generates around 500 MB data on

each device’s up- and down-link transmission, and SGD takes thousands of iterations to

converge. Therefore, our goal is to find the parameter θ that minimizes (4.2) with minimal

communication overhead.

4.1.1 Related work

Communication-efficient distributed learning methods have gained popularity recently [76, 48].

Most methods belong to two categories: c1) reducing the bits per communication round; and,
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c2) reducing the communication rounds.

Reducing communication bits. For c1), methods are centered around the ideas of

quantization and sparsification.

Quantization has been successfully applied to wireless sensor networks [87, 75]. In the

context of distributed machine learning, a 1-bit and multi-bits quantization methods have

been developed in [98, 4, 2]. Other variants of quantized gradient schemes include error

compensation [122], variance-reduced quantization [129], and quantization to a ternary vector

[121].

Sparsification amounts to transmitting only gradient coordinates with large enough

magnitudes exceeding a certain threshold [1]. To avoid losing information of skipping

communication, small gradient components will be accumulated and then transmitted when

they are large enough [66, 105, 3, 119, 114].

Quantization and sparsification address c1) but not address c2), so they are still affected

by latencies due to initiating communication, queuing, and propagating messages [85].

Reducing communication rounds. Methods using periodic averaging include elastic

averaging SGD [132], local SGD (FedAvg) [73, 106, 115, 126, 52, 36] and momentum SGD

[116]. Except [50, 115, 36], local SGD methods follow a fixed communication schedule. They

work well in the homogeneous setting where data are i.i.d. over all workers, but often sacrifice

the learning accuracy in the non-i.i.d. case. Work tailored for the heterogeneous setting

includes FedProx [60]. Other methods that reduce the number of iterations include the

gradient tracking [108, 59], primal-dual update [69, 71], opportunistic communication [96],

and higher-order methods [100, 133]. Roughly speaking, algorithms in [60, 42, 100, 133]

reduce communication by increasing local gradient computation.

This chapter is based on the method of lazily aggregated gradient (LAG) [8, 109]. LAG

is adaptive and works well for the heterogeneous setting. Parameters in LAG are updated at

the server, and workers only upload information that is informative enough. LAG has great
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performance with full gradient, but its performance degrades significantly with stochastic

gradients, which make its rule of communication highly unreliable.

4.1.2 Our approach

This chapter proposes Lazily Aggregated Stochastic Gradient (LASG), which includes a

set of SGD-based methods that considerably reduce the communication of distributed SGD.

Compared with popular communication-efficient algorithms such as local SGD [73, 106, 115,

126], our LASG does not sacrifice learning accuracy in the non-i.i.d. settings. Observing

that not all communications between the server and the workers are equally important,

LASG uses conditions to decide communication adaptively. When a worker skips a round of

communication, the server uses its stale gradient to perform parameter updates.

Define Mk as the set of uploading workers at iteration k, and define τ km as the staleness

of the gradient from worker m used at iteration k. LASG has the following update

θk+1 = θk − ηk
M

∑
m∈M\Mk

∇`(θk−τkm ; ξk−τ
k
m

m )− ηk
M

∑
m∈Mk

∇`(θk; ξkm) (4.4)

or equivalently (see also Figure 4.1)

Generic LASG θk+1 = θk − ηk∇k (4.5)

with ∇k=∇k−1 +
1

M

∑
m∈Mk

δkm

where the stochastic gradient innovation is defined as

δkm := ∇`(θk; ξkm)−∇`(θk−τkm ; ξk−τ
k
m

m ). (4.6)

The staleness {τ km} depend on Mk: at iteration k, if worker m /∈ Mk, the server increases

staleness τ k+1
m = τ km + 1; otherwise, worker m uploads its stochastic gradient, and the server

resets τ k+1
m = 1.

Clearly, selection of subset Mk is critical. The challenges are 1) the importance of each

communication round is dynamic, thus a fixed condition is ineffective; and 2) checking the
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Server

Workers

θk+1 = θk − ηk∇k

θk θk θkδkmδk1 δkM

Figure 4.1: Generic LASG implementation.

condition must be numerically efficiently. To address these challenges, we develop two types of

adaptive condition based on different communication, computation and memory requirements.

The first type is computed by each worker (WK), and the second by the server (PS).

LASG-WK: At iteration k, the server broadcasts θk to all workers; each worker m computes

∇`(θk; ξkm), and checks whether m ∈Mk; only those in Mk upload δkm to the server, which

executes (4.5).

LASG-PS: At iteration k, the server determinesMk and sends θk to those workers m ∈Mk;

each worker m∈Mk computes ∇`(θk; ξkm) and uploads δkm; those workers m /∈Mk do nothing;

the server executes (4.5);

How Mk are computed are deferred to Chapter 4.2. We summarize the contributions of

this chapter as follows.

1) We introduce LASG, a set of communication-skipping methods for distributed SGD.

It reuses stale stochastic gradients to reduce redundant communication.

2) We establish convergence of our proposed methods. The convergence rates match

those of SGD.

3) We tested LASG on logistic regression and neural network training and confirm its

performance gains.
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Metric Communication Computation Memory

Algorithm PS→WK m WK m→PS PS WK m PS WK m

Sync SGD always always (4.3) (4.3) O(p) /

LASG-WK1 always if m∈Mk (4.5) (4.9) O(p) O(p)

LASG-WK2 always if m∈Mk (4.5) (4.12) O(p) O(p)

LASG-PS if m∈Mk if m∈Mk (4.5), (4.14) if m∈Mk O(Mp) O(p)

LASG-PSE if m∈Mk if m∈Mk (4.5), (4.16) if m∈Mk O(Mp) O(p)

Table 4.1: A comparison of communication, computation and memory requirements. PS

denotes the parameter server, WK denotes the worker, PS→WK m is the download from

the server to worker m, and WK m → PS is the upload from worker m to the server.

4.1.3 Why LAG does not work well with SGD?

Let us revisit the LAG method [8] and provide why it works poorly with stochastic gradients.

Similar to what is described above, LAG has both WK and PS types of conditions to

decideMk. Since they are equally ineffective with stochastic gradients, we limit our discussion

to LAG-WK. Applying LAG-WK to stochastic gradients amounts to, in the condition of [8],

replacing worker m’s gradient by its stochastic gradient, that is, exclude m from Mk if

∥∥∥∇`(θk; ξkm)−∇`(θk−τkm ; ξk−τ
k
m

m )
∥∥∥2

≤ c

dmax

dmax∑
d=1

∥∥θk+1−d − θk−d
∥∥2
, (4.7)

where c ≥ 0 is a pre-defined constant, and dmax is the number of consecutive past iterates.

This condition compares the new stochastic gradient to the stale copy at the server; if the

difference is small compared to the recent changes in θ, then the server will reuse the stale

copy.

When used with (standard) gradients, LAG [8] proves the condition leads to “larger

descent per upload”. Unfortunately, the two stochastic gradients in (4.7) are evaluated with

two different samples, ξkm and ξ
k−τkm
m . The left-hand side (LHS) is almost never small. So,

(4.7) becomes ineffective at judging the contribution of ∇`(θk; ξkm) to the stochastic descent.
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Figure 4.2: Comparison of upload numbers (10 iterations per epoch). Applying LAG-WK

with stochastic gradients is ineffective. Even using an aggressive parameter c = 4, it is

significantly less effective than LASG-WK2 (proposed).

Figure 4.2 compares the stochastic LAG and one of our new algorithms LASG-WK2

(introduced later) on a synthetically generated logistic regression task, which demonstrates

that the stochastic LAG is ineffective in saving communication — when c is small (e.g.,

0.4), (4.7) is almost never satisfied due to the inherent variance of the computed stochastic

gradients; and when c is large (e.g., 4), (4.7) is satisfied only initially. Mathematically, this

can be explained by expanding the LHS of (4.7) by (see the supplemental material for the

deduction)

E
[
‖∇`(θk; ξkm)−∇`(θk−τkm ; ξk−τ

k
m

m )‖2
]

(4.8a)

≥ 1

2
E
[∥∥∇`(θk; ξkm)−∇Lm(θk)

∥∥2
]

(4.8b)

+
1

2
E
[[∥∥∇`(θk−τkm ; ξk−τ

k
m

m )−∇Lm(θk−τ
k
m)
∥∥2]]

(4.8c)

−E[‖∇Lm(θk)−∇Lm(θk−τ
k
m)‖2]. (4.8d)

When θk converges, e.g., θk → θ∗, the right-hand side (RHS) of (4.7)
∥∥θk+1−d−θk−d

∥∥2→0.

But the LHS of (4.7) does not since the gradient variances in (4.8b) and (4.8c) do not vanish.

Therefore, the key issue is the variance of stochastic gradients is not diminishing and fails

the LAG rule (4.7) eventually.
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4.2 LASG: Lazily Aggregated Stochastic Gradients

In this section, we formally develop our LASG method. To overcome the limitations of

LAG in stochastic settings, the key of the LASG design is to reduce the variance of the

innovation measure appeared in the adaptive condition. As discussed, LASG-WK uses a

condition checked by each worker; LASG-PS uses one checked by the parameter server.

Algorithm 4 LASG-WK1

1: Input: Delay counter {τ0
m}, stepsizes {ηk},

max delay D.

2: for k = 0, 1, . . . ,K − 1 do

3: Server broadcasts θk to all workers.

4: All workers save θ̃ = θk if k mod D = 0.

5: for m = 1, 2, . . . ,M do in parallel

6: Compute ∇`(θk; ξkm), ∇`(θ̃; ξkm).

7: Check condition (4.9)

8: if (4.9) is violated

9: or k modD = 0 then

10: Upload δkm.

. Save δ̃km and set τk+1
m = 1

11:12: else

13: Upload nothing.

. Set τk+1
m = τkm + 1

14:15: end if

16: end for

17: Server updates via (4.4).

18: end for

Algorithm 5 LASG-WK2

1: Input: Delay counter {τ0
m}, stepsizes {ηk},

max delay D.

2: for k = 0, 1, . . . ,K − 1 do

3: Server broadcasts θk to all workers.

4: for m = 1, 2, . . . ,M do in parallel

5: Compute ∇`(θk; ξkm), ∇`(θk−τ
k
m

m ; ξkm).

6: Check condition (4.12).

7: if (4.12) is violated, or, τkm ≥ D then

8: Upload δkm.

. Save θk and set τk+1
m = 1

9:10: else

11: Upload nothing.

. Set τk+1
m = τkm + 1

12:13: end if

14: end for

15: Server updates via (4.4).

16: end for

Table 4.2: A comparison of LASG-WK1 and LASG-WK2.
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4.2.1 Worker LASG: save communication uploads

We first introduce two LASG-WK variants. The first one, which we term LASG-WK1,

calculates two stochastic gradient innovations with one at sample ξkm as

δ̃km := ∇`(θk; ξkm)−∇`(θ̃; ξkm)

and one at sample ξ
k−τkm
m as

δ̃k−τ
k
m

m := ∇`(θk−τkm ; ξk−τ
k
m

m )−∇`(θ̃; ξk−τkmm ).

where θ̃ is a snapshot of the previous iterate θ that will be updated every D (≥ dmax)

iterations. As we will show in (4.10), δ̃km − δ̃k−τ
k
m

m can be viewed as the difference of two

variance-reduced gradients calculated at θk and θk−τ
k
m . Using δ̃km− δ̃k−τ

k
m

m as the error induced

by using stale information, LASG-WK1 excludes m from Mk if∥∥∥δ̃km − δ̃k−τkmm

∥∥∥2

≤ c

dmax

dmax∑
d=1

∥∥θk+1−d − θk−d
∥∥2
. (4.9)

Recall if (4.9) is satisfied, we increment staleness τ k+1
m = τ km + 1; otherwise, worker m

uploads the fresh stochastic gradient and resets staleness as τ k+1
m = 1.

Behind (4.9) is the reduction of its inherent variance. To see this, decompose the LHS of

(4.9) as the difference of two variance reduced stochastic gradients at iteration k and k − τ km:

δ̃km − δ̃k−τ
k
m

m =
(
∇`(θk; ξkm)−∇`(θ̃; ξkm) +∇Lm(θ̃)

)
−
(
∇`(θk−τkm ; ξk−τ

k
m

m )−∇`(θ̃; ξk−τkmm ) +∇Lm(θ̃)
)
. (4.10)

To provide some intuition, we define the minimizer of (4.2) as θ? and assume that ∇`(θ; ξm)

is L̄-Lipschitz continuous1 for any ξm. The LHS of (4.9) is upper-bounded in expectation by

E
[∥∥δ̃km − δ̃k−τkmm

∥∥2
]
≤ 8L̄(EL(θk)− L(θ?)) + 8L̄(EL(θk−τ

k
m)− L(θ?))

+ 16L̄(EL(θ̃)− L(θ?)). (4.11)

1This Lipschitz continuous assumption is needed only when we provide some intuitions of our design, but
in our subsequent analysis.
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When the iterate θk converges, e.g., θk, θk−τ
k
m , θ̃ → θ∗, the RHS of (4.11) diminishes, and

thus the LHS of (4.9) diminishes. This is in contrast to the stochastic LAG-WK rule in (4.8)

that is lower-bounded by a non-diminishing value.

The second rule LASG-WK2 excludes m from Mk if

∥∥∥∇`(θk; ξkm)−∇`(θk−τkmm ; ξkm)
∥∥∥2

≤ c

dmax

dmax∑
d=1

∥∥θk+1−d− θk−d
∥∥2
. (4.12)

Note that different from (4.7), condition (4.12) is evaluated at two different iterates but on

the same sample ξkm.

LASG-WK2 (4.12) also reduces its inherent variance since the LHS of (4.12) can be

written as the difference between a variance reduced stochastic gradient and a deterministic

gradient, that is

∇`(θk; ξkm)−∇`(θk−τkm ; ξkm) =
(
∇`(θk; ξkm)−∇`(θk−τkm ; ξkm)

+∇Lm(θk−τ
k
m)
)
−∇Lm(θk−τ

k
m). (4.13)

With derivations deferred to the supplementary, we conclude that E[‖∇`(θk; ξkm)−∇`(θk−τkm ; ξkm)‖2]→
0 as θk → θ?.

4.2.2 Server LASG: save up/downloads and calculations

We next introduce two LASG-PS variants. The rationale is that if the model difference is

small, the gradient difference used in Chapter 4.2.1 is likely to be small.

The first variant LASG-PS excludes m from Mk if

L2
m

∥∥∥θk − θk−τkm∥∥∥2

≤ c

dmax

dmax∑
d=1

∥∥θk+1−d − θk−d
∥∥2

(4.14)

where Lm is the smoothness constant of Lm(θ). Condition (4.14) can be checked at the server

side without computing new gradients if the server stores {θk−τkm} for each worker m.
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The LHS of (4.14) can be upper-bounded in expectation by

E
[∥∥θk − θk−τkm∥∥2

]
≤2D

D∑
d=1

E
[∥∥θk−d−θk−d−τk−dm

∥∥2
]
η2
k−D

+ 2D
D∑
d=1

E
∥∥∇L(θk−d)

∥∥2
η2
k−D +D2

(∑
m∈M

σ2
m

)
η2
k−D. (4.15)

Assume
∥∥∇L(θk)

∥∥2
is bounded; then the diminishing stepsizes {ηk} ensure that the 2nd and

3rd terms in the RHS of (4.15) vanish. Using mathematical induction, the LHS of (4.14) also

diminishes. Therefore, this condition remains effective asymptotically.

When an estimate Lm is not available, one can use LASG-PSE, a variation of LASG-PS

that estimates Lm “on-the-fly.” With L̂km denoting the estimate of Lm, LASG-PSE excludes

m from Mk if

(L̂km)2‖θk − θk−τkm‖2≤ c

dmax

dmax∑
d=1

‖θk+1−d − θk−d‖2 (4.16)

where the estimated constant L̂km is updated iteratively via

L̂k+1
m = max

{
L̂km,
‖∇`(θk; ξkm)−∇`(θk−τkm ; ξkm)‖

‖θk − θk−τkm‖

}
. (4.17)

We give LASG-PS and LASG-PSE in Algorithms 6 and 7, respectively, and compare all

LASG methods in Table 4.1.

Comparison of all LASG methods. All the LASG rules can be computed efficiently

without storing all previous θk. LASG-PS and LASG-PSE need extra memory at the server

but save both local computation and download communication while LASG-WK1 and LASG-

WK2 save only upload communication. LASG-WK1 is more conservative as LASG-WK1

measures the change of gradients at two model states for both new and old data samples,

but LASG-WK2 measures only the change of gradient at the new sample.
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Algorithm 6 LASG-PS

1: Input: θ0, delay counter {τ0
m}, smoothness

contants {Lm}, stepsizes {ηk}, maximum de-

lay D.

2: for k = 0, 1, . . . ,K − 1 do

3: for m = 1, 2, . . . ,M do in parallel

4: Server checks condition (4.14).

5: if (4.14) is violated or τkm ≥ D then

6: Server sends θk to worker m

7: Worker m computes ∇`(θk; ξkm).

8: Worker m uploads δkm.

. Save θk and τk+1
m = 1

9:10: else

11: No action. . τk+1
m = τkm + 1

12: end if

13: end for

14: Server updates via (4.4).

15: end for

Algorithm 7 LASG-PSE

1: Input: θ0, delay counter {τ0
m}, smoothness

estimates {L̂0
m}, stepsizes {ηk}, maximum

delay D.

2: for k = 0, 1, . . . ,K − 1 do

3: for m = 1, 2, . . . ,M do in parallel

4: Server checks condition (4.16).

5: if (4.16) is violated or τkm ≥ D then

6: Server sends θk to worker m.

7: Worker m computes ∇`(θk; ξkm).

8: Worker m uploads δkm.

. Save θk and τk+1
m = 1

9:10: Worker m uploads L̂k+1
m in (4.17).

11: else

12: No action. . τk+1
m = τkm + 1

13: end if

14: end for

15: Server updates via (4.4).

16: end for

Table 4.3: A comparison of LASG-PS and LASG-PSE.

4.2.3 Quantized LASG: Save also communication bits

We further reduce communication bits per round by applying quantization.We define the

gradient under a quantization operator Q as

Q(θ; ξ) := Q (∇`(θ; ξ)) . (4.18)

We adopt the stochastic quantization scheme in [2] and develop quantized LASG (LAQSG)
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as

θk+1 =θk−ηk
∑

m∈M\Mk

Q(θk−τ
k
m ; ξk−τ

k
m

m )− ηk
∑
m∈Mk

Q(θk; ξkm)

where Mk is determined by one of four described rules.

4.3 Main Results

In this section we present the convergence results of LASG-WK1, LASG-WK2 and LASG-

PS under both the nonconvex condition and the Polyak- Lojasiewicz condition, and the

convergence results of LAQSG under the nonconvex condition only. We leave the analysis of

LASG-PSE for future work, but it empirically has very impressive performance.

First, we make some basic assumptions.

Assumption 1 The loss function L(θ) is L-smooth, i.e. for any θ1, θ2 ∈ Rp, it follows that

L(θ2) ≤ L(θ1) + 〈∇L(θ1), θ2 − θ1〉+
L

2
‖θ2 − θ1‖2. (4.19)

Assumption 2 The samples ξ1
m, ξ

2
m, . . . are independent, and the stochastic gradient∇`(θ; ξkm)

satisfies

Eξkm
[
∇`(θ; ξkm)

]
= ∇Lm(θ), (4.20a)

Eξkm
[
‖∇`(θ; ξkm)−∇Lm(θ)‖2

]
≤ σ2

m. (4.20b)

For LASG-PS, we require an extra smoothness assumption.

Assumption 3 The local gradient ∇Lm is Lm-Lipschitz continuous, i.e. for any θ1, θ2 ∈ Rp,

we have

‖∇Lm(θ1)−∇Lm(θ2)‖ ≤ Lm‖θ1 − θ2‖. (4.21)
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Figure 4.3: Logistic regression on covtype dataset
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Figure 4.4: Logistic regression on mnist digits 3 and 5

Assumption 1 implies that the loss function L can be upper bounded by a quadratic

function at any point. Assumption 2 ensures that the stochastic gradient is unbiased, and has

bounded variance. Assumption 3 bounds the change of local gradients when they are evaluated

at two points. Assumptions 1-3 are common in analyzing SGD [30, 47, 2, 105, 3, 119, 114, 109].

4.3.1 Convergence in the nonconvex case

We first present the convergence in the nonconvex case.

Theorem 4 (nonconvex) Under Assumptions 1, 2 (for Algorithm 6 also Assumption 3),

if the stepsize is chosen as ηk = η = O( 1√
K

), and the threshold is c ≤ min{ 1
12Dη2

,
√
ML2

18
}, then
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Figure 4.5: Logistic regression on ijcnn1 dataset

{θk} generated by Algorithms 4-6 satisfy

1

K

K−1∑
k=0

E
[
‖∇L(θk)‖2

]
= O

√M
K

+

√∑M
m=1 σ

2
m

M
3
4

√
K

. (4.22)

From Theorem 4, the convergence rate of LASG in terms of the average gradient norms is

still O(1/
√
K), matching standard SGD [30]. When K �M , the second term is dominant.

If we simplify σm = σ, ∀m, then the bound becomes O(1/(M
1
4K

1
2 )), and the convergence

rate will be improved as the number of workers M increases.

The assumption below bounds the variance of the quantized stochastic gradient.

Assumption 4 For any θ ∈ Rp and any m ∈M, we have Eξm [‖∇`(θ; ξm)‖2] ≤ B.

Based on this assumption, we have the following result.

Theorem 5 (LAQSG) Under Assumptions 1, 2, 4 (also Assumption 3 for Algorithm 6), if

ηk=η= O( 1√
K

), c ≤ min{ dmax

16Dη2
, dmax

√
ML2

24
} where cη > 0 is a constant, then {θk} generated

by quantized Algorithms 4 - 6 satisfy

1

K

K−1∑
k=0

E
[
‖∇L(θk)‖2

]
= O

(
1/
√
K
)
. (4.23)

The rate O(1/
√
K) matches the standard QSGD [2].
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4.3.2 Convergence under the Polyak- Lojasiewicz condition

Assumption 5 The loss function L satisfies the Polyak- Lojasiewicz (PL) condition with

constant µ > 0, that is

L(θ)− L(θ∗) ≤ 1

2µ
‖L(θ)‖2 . (4.24)

The PL condition is weaker than strong convexity and may hold with convexity [51]. It is

met by underdetermined least squares and logistic regression.

Theorem 6 (PL-condition) Under Assumption 1,2,5 (for Algorithm 6 also Assumption

3), if ηk = 2
µ(k+K0)

≤ η0 for a given constant K0, and c ≤ min{ dmax

24Dη20
, dmax

√
ML2

18
}, then θK

generated by Algorithms 4, 5 and 6 satisfies

E
[
L(θK)

]
− L(θ?) = O (1/K) . (4.25)

The rate O(1/K) matches that of SGD [89]. Under the same (or even slightly stronger)

assumptions of Theorem 3, it has been shown that O(1/K) is the best rate by any stochastic

gradient-based algorithm; see [78, Theorems 5.3.1 and 7.2.6].

4.4 Numerical Tests

We conducted numerical tests on both logistic regression and neural network models. We

benchmarked LA(Q)SG with SGD, LAG-WK, local SGD (with varying intervals H) and

QSGD. We did a grid search for best learning rates.

4.4.1 Logistic regression

The data are distributed across M = 10 workers for ijcnn1, MNIST (with digits 3, 5) and

M = 20 for Covtype. For each worker, the batch size is selected to be 0.01 of the local data

size for ijcnn1, MNIST and 0.001 for Covtype. The `2-regularization parameter is set to
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Figure 4.6: Training loss on mnist dataset under different number of workers.
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Figure 4.7: Test accuracy on mnist dataset under different number of workers.

be 10−5. We choose stepsize η = 0.1. For all LASG algorithms, D = 100, dmax = 10 and

c = 1/η2. For local-SGD, the communication period is H = 50, 10, 20 iterations for ijcnn1,

MNIST, Covtype respectively. This is optimized to save communication as much as possible

without largely affecting the convergence speed. For quantization methods, we perform 4-bit

stochastic quantization [2]. Numerical results are reported in Figures 4.3-4.5.

4.4.2 Training neural networks

We train a convolutional neural network with two convolution-ELU-maxpooling layers (ELU

is a smoothed ReLU) followed by two fully-connected layers for 10 classes classification on

MNIST. The data are distributed on M = 10 workers. We choose stepsize η = 0.05. Since
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Figure 4.8: Training loss on mnist dataset averaged over 30 trials.
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Figure 4.9: Test accuracy on mnist dataset averaged over 30 trials.

the objective function is nonsmooth (Lm is unavailable), LASG-PS is not tested. For other

LASG algorithms, we set D = 50, dmax = 10, and c = 1/η2. For local-SGD, we set H = 4.

For all quantization methods, we set 8 bits. We first report the the total number of uploads

needed to achieve the training loss 0.1 and the test accuracy 95% under different number of

workers M in Figures 4.6 and 4.7, respectively. We also report the numerical results averaged

over 30 Monte Carlo runs in Figures 4.8 and 4.9.

All algorithms have been tested on the popular tiny imagenet dataset, which contains

200 classes and 500 images per class for training and 10,000 images for testing. All images

in tiny imagenet are 64x64 colored ones. We use the Resnet18 model initialized by weights

pretrained on ImageNet1000; see the accuracy versus the number of communication uploads

in Figures 4.10 and 4.11. For training loss, LASG-WK1 and -WK2 require much less total
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Figure 4.11: Test accuracy on tiny imagenet dataset.

time than SGD and local SGD with H = 2, but slightly more than local SGD with H = 4

and 6. However, as shown in Figure 4.11, local SGD with larger communication period

sacrifices the testing accuracy by 3-4%. This reduced test accuracy is common among local

SGD methods, which has been studied theoretically; see e.g., [126].

All LASG algorithms has the same iteration complexity as SGD and outperform local-SGD

in most cases. Compared with SGD, LASG-WK2 and LASG-PSE reduce communication

rounds by about one order of magnitude for neural network training and even more for logistic

regression. LASG-WK1 also reduce communication by more than one order of magnitude for

logistic regression. Based on the results of LAG-WK, it is evident that the selection rules (4.9),

(4.12) and (4.16) achieve more significant improvement in terms of saving communication

than the selection rule (4.7) of LAG-WK. Moreover, the performance of LAQSG validates
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that LASG can be easily equipped with stochastic quantization with extra benefits from

quantization.

4.5 Appendix

We first highlight the key steps, present some supporting lemmas that will be used frequently

in the subsequent analysis, which is followed by the proofs of the results in Chapter 4.3.

4.5.1 Derivations of missing steps in Chapter 4.2

We will provide the detailed derivations of some missing steps in Chapter 4.2. We define an

auxiliary function as

ψm(θ) := Lm(θ)− Lm(θ?)− 〈∇Lm(θ?), θ − θ?〉

where θ? is a minimizer of L(θ). Assume that ∇`(θ; ξm) is L̄-Lipschitz continuous for all ξm,

we have ‖∇`(θ; ξm)−∇`(θ?; ξm)‖2 ≤ 2L̄(`(θ; ξm)− `(θ?; ξm)− 〈∇`(θ?; ξm), θ − θ?〉). Taking

expectation with respect to ξm, we can obtain

Eξm [‖∇`(θ; ξm)−∇`(θ?; ξm)‖2] ≤

2L̄ (Lm(θ)− Lm(θ?)− 〈∇Lm(θ?), θ − θ?〉) = 2L̄ψm(θ). (4.26)

Note that ∇Lm is also L̄-Lipschitz continuous and thus

‖∇Lm(θ)−∇Lm(θ?)‖2 ≤ 2L̄ψm(θ).
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Derivations of (4.8)

By (4.38), we can derive that ‖θ1‖2 ≥ 1
2
‖θ1 + θ2‖2 − ‖θ2‖2. As a consequence, we can obtain

E
[∥∥∇`(θk; ξkm)−∇`(θk−τkm ; ξk−τ

k
m

m )
∥∥2
]

≥1

2
E
[∥∥(∇`(θk; ξkm)−∇Lm(θk)

)
+
(
∇Lm(θk−τ

k
m)−∇`(θk−τkm ; ξk−τ

k
m

m )
)∥∥2
]

− E
[∥∥∇Lm(θk)−∇Lm(θk−τ

k
m)
∥∥2
]

=
1

2
E
[∥∥∇`(θk; ξkm)−∇Lm(θk)

∥∥2
]

+
1

2
E
[[∥∥∇`(θk−τkm ; ξk−τ

k
m

m )−∇Lm(θk−τ
k
m)
∥∥2]]

+E
[
〈∇`(θk; ξkm)−∇Lm(θk),∇Lm(θk−τ

k
m)−∇`(θk−τkm ; ξk−τ

k
m

m )〉
]

− E
[∥∥∇Lm(θk)−∇Lm(θk−τ

k
m)
∥∥2
]
.

To obtain (4.8), we use that〈
E
[
∇`(θk; ξkm)

∣∣Θk
]

=∇Lm(θk)

−∇Lm(θk),∇Lm(θk−τ
k
m)−∇`(θk−τkm ; ξk−τ

k
m

m )
〉

= 0.

Derivations of (4.11)

Recall that

δ̃km − δ̃k−τ
k
m

m

=
(
∇`(θk; ξkm)−∇`(θ̃; ξkm) +∇Lm(θ̃)

)
−
(
∇`(θk−τkm ; ξk−τ

k
m

m )−∇`(θ̃; ξk−τkmm ) +∇Lm(θ̃)
)

=
(
∇`(θk; ξkm)−∇`(θ̃; ξkm) +∇ψm(θ̃)

)
:=gkm

−
(
∇`(θk−τkm ; ξk−τ

k
m

m )−∇`(θ̃; ξk−τkmm ) +∇ψm(θ̃)
)

:=g
k−τkm
m

.
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And by (4.38), we have ‖δ̃km − δ̃k−τ
k
m

m ‖2 ≤ 2‖gkm‖2 + 2‖gk−τkmm ‖2. We decompose the first term

as

E[‖gkm‖2]≤2E[‖∇`(θk; ξkm)−∇`(θ?; ξkm)‖2]

+ 2E[‖∇`(θ̃; ξkm)−∇`(θ?; ξkm)−∇ψm(θ̃)‖2]

=2E[E[‖∇`(θk; ξkm)−∇`(θ?; ξkm)‖2|Θk]]

+ 2E[‖∇`(θ̃; ξkm)−∇`(θ?; ξkm)

− E[∇`(θ̃; ξkm)−∇`(θ?; ξkm)|Θk]‖2]

≤4L̄E[ψm(θk)] + 2E[‖∇`(θ̃; ξkm)−∇`(θ?; ξkm)‖2]

(a)

≤4L̄E[ψm(θk)] + 4L̄Eψm(θ̃).

where (a) follows from (4.26).

By nonnegativity of ψm, we have

E[‖gkm‖2] ≤ 4L̄
∑
m∈M

Eψm(θk) + 4L̄
∑
m∈M

Eψm(θ̃)

= 4ML̄(EL(θk)− L(θ?)) + 4ML̄(EL(θ̃)− L(θ?)). (4.27)

Similarly, we can prove

E[‖gk−τkmm ‖2] ≤ 4ML̄(EL(θk−τ
k
m)− L(θ?)) + 4ML̄(EL(θ̃)− L(θ?)). (4.28)

Therefore, it follows that

E[‖δ̃km − δ̃k−τ
k
m

m ‖2] ≤ 8ML̄(EL(θk)− L(θ?))

+ 8ML̄(EL(θk−τ
k
m)−L(θ?))+16ML̄(EL(θ̃)− L(θ?)).
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Derivations of (4.13)

The LHS of (4.12) can be written as

∇`(θk; ξkm)−∇`(θk−τkm ; ξkm)

=
(
∇`(θk; ξkm)−∇`(θk−τkm ; ξkm)+∇Lm(θk−τ

k
m)
)
−∇Lm(θk−τ

k
m)

=
(
∇`(θk; ξkm)−∇`(θk−τkm ; ξkm)+∇ψm(θk−τ

k
m)
)
−∇ψm(θk−τ

k
m).

Similar to (4.27), we can obtain

E[‖∇`(θk; ξkm)−∇`(θk−τkm ; ξkm) +∇ψm(θk−τ
k
m)‖2]

≤ 4ML̄(EL(θk)− L(θ?)) + 4ML̄(EL(θk−τ
k
m)− L(θ?)).

Combined with the fact

E[‖∇ψm(θk−τ
k
m)‖2] = E[‖∇Lm(θk−τ

k
m)−∇Lm(θ?)‖2]

≤ 2L̄Eψm(θk−τ
k
m)

≤ 2ML̄(EL(θk−τ
k
m)− L(θ?))

we have

E[‖∇`(θk; ξkm)−∇`(θk−τkm ; ξkm)‖2]

≤8ML̄(EL(θk)− L(θ?)) + 12ML̄(EL(θk−τ
k
m)− L(θ?)).

Derivations of (4.15)

Expanding LASG update, we have

E
[
‖θk − θk−τkm‖2

]
=

1

M2
E
[∥∥∥ τkm∑

d=1

∑
m∈M

ηk−d∇`(θk−d−τ
k−d
m ; ξk−d−τ

k−d
m

m )
∥∥∥2]

≤ τ km
M2

τkm∑
d=1

η2
k−d E

[∥∥∥ ∑
m∈M

∇`(θk−d−τk−dm ; ξk−d−τ
k−d
m

m )
∥∥∥2]
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where we used the Cauchy-Schwartz inequality.

Using E[‖A− E[A]‖2] + ‖E[A]‖2 = E[‖A‖2], we have

E
[
‖θk − θk−τkm‖2

]
=

τkm
M2

τkm∑
d=1

η2
k−d

× E
[∥∥∥ ∑

m∈M

(
∇`(θk−d−τk−dm ; ξk−d−τ

k−d
m

m )−∇Lm(θk−d−τ
k−d
m )

)∥∥∥2]

+
τkm
M2

τkm∑
d=1

η2
k−dE

[∥∥∥ ∑
m∈M

∇Lm(θk−d−τ
k−d
m )

∥∥∥2]

≤ τ
k
m

M2

τkm∑
d=1

η2
k−d

∑
m∈M

σ2
m+

τkm
M2

τkm∑
d=1

η2
k−dE

[∥∥∥ ∑
m∈M
∇Lm(θk−d−τ

k−d
m )

∥∥∥2]

≤ τ
k
m

M2

τkm∑
d=1

∑
m∈M

σ2
mη

2
k−d +

2τkm
M2

τkm∑
d=1

E
[∥∥∥∇L(θk−d)

∥∥∥2]
η2
k−d

+
2τkm
M2

τkm∑
d=1

∑
m∈M

L2
mE
[∥∥∥θk−d − θk−d−τk−dm

∥∥∥2]
η2
k−d.

We arrive at our statement since τ km ≤ D and ηk−d ≤ ηk−D.

4.5.2 Key steps of Lyapunov analysis

With these assumptions, LASG will yield descent of L(θk).

Lemma 11 Under Assumptions 1, 2 and 3, {θk} generated by Algorithms 4, 5 and 6 satisfy

E[L(θk+1)]− E[L(θk)] ≤ −
(
ηk −

Lη2
k

2

)
E
[
‖∇L(θk)‖2

]
+

Lη2
k

2
E

[∥∥∥∥∥ 1

M

∑
m∈M

∇`(θk−τkm ; ξk−τ
k
m

m )−∇L(θk)

∥∥∥∥∥
2]

+
(ηk − Lη2

k)

M

∑
m∈M

E
[
〈∇L(θk), δkm〉

]
(4.29)

where δkm := ∇`(θk; ξkm)−∇`(θk−τkm ; ξ
k−τkm
m ).

Among three terms in the RHS of (4.29): the first term resembles the standard unbiased

stochastic descent; the second term captures the variance of the stale aggregated stochastic
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gradient; and, the last term quantifies the correlations between the gradient direction ∇L(θk)

and the error induced by the stale stochastic gradient ∇k.

Analyzing the progress of L(θk) under LASG is challenging. Below we characterize the

regularity of the stale stochastic gradients ∇k, which lays the foundation for incorporating

the properly controlled staleness into the SGD update.

Lemma 12 Under Assumptions 1 and 2, if the stepsizes satisfy ηk+1 ≤ ηk ≤ 1/L, then we

have

E
[
〈∇L(θk), δkm〉

]
≤ Lηk

2
E
[∥∥∇L(θk)

∥∥2
]
+

6DLηk

2M
√
M

∑
m∈M

σ2
m

+
D∑
d=1

(
c

2Lηkdmax

+

√
ML

12ηk

)
E
[
‖θk+1−d − θk−d‖2

]
. (4.30)

Lemma 12 justifies the relevance of the stale yet properly selected stochastic gradients.

Intuitively, the first term in the RHS of (4.30) will reduces the magnitude of descent in

(4.29), and the second and third terms will diminish if the stepsizes are diminishing since

E
[
‖θk − θk−1‖2

]
= O(η2

k).

The next lemma implies that the variance of the stale aggregated stochastic gradient

reduces to that of standard SGD if the stepsizes are diminishing since E
[
‖θk − θk−1‖2

]
=

O(η2
k).

Lemma 13 Under Assumptions 1 and 2, if the stepsizes satisfy ηk+1 ≤ ηk ≤ 1/L, then we

have

E

[∥∥∥∥∥ 1

M

∑
m∈M

∇`(θk−τkm ; ξk−τ
k
m

m )−∇L(θk)

∥∥∥∥∥
2]

≤ 3c

dmax

dmax∑
d=1

E‖θk+1−d − θk−d‖2 +
9

M2

∑
m∈M

σ2
m. (4.31)

In view of Lemmas 11-13, we introduce the following Lyapunov function to capture
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the progress of LASG:

V k := L(θk)− L(θ?) +
D∑
d=1

γd‖θk+1−d − θk−d‖2 (4.32)

where {γd}Dd=1 are constants to be determined later. The following lemma is a direct application

of Lemmas 11–13.

Lemma 14 Under Assumptions 1 and 2, there exist nonnegative constants {Akd}Dd=1, Bk
0 and

Bk
1 such that

E[V k+1]− E[V k] ≤−Bk
0 E
[
‖∇L(θk)‖2

]
+Bk

1

M∑
m=1

σ2
m

−
D∑
d=1

Akd E
[
‖θk+1−d − θk−d‖2

]
. (4.33)

The constants {Akd}Dd=1, B
k
0 and Bk

1 depend on the stepsize ηk, the threshold c and the

parameters {γd}Dd=1. Their expressions are specified in the proof. By choosing proper ηk and

c, we are able to ensure the convergence of LASG.

4.5.3 Supporting lemmas

Define the σ-algebra Θk = {θl, 1 ≤ l ≤ k}. For convenience, we initialize parameters as

θ−D = · · · = θ−1 = θ0, and define the difference between θk+1−d and θk−d as

∆k−d := θk+1−d − θk−d (4.34)

which implies that ∆k := θk+1 − θk.

Some basic facts used in the proof are reviewed as follows.

Fact 1. Assume that X1, X2, . . . , Xn ∈ Rp are independent random variables, and EX1 =

· · · = EXn = 0. Then

E

[∥∥∥ n∑
i=1

Xi

∥∥∥2
]

=
n∑
i=1

E
[
‖Xi‖2

]
. (4.35)
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Fact 2. (Young’s inequality) For any θ1, θ2 ∈ Rp, ε > 0,

〈θ1, θ2〉 ≤
‖θ1‖2

2ε
+
ε‖θ2‖2

2
. (4.36)

As a consequence, we have

‖θ1 + θ2‖2 ≤
(

1 +
1

ε

)
‖θ1‖2 + (1 + ε)‖θ2‖2. (4.37)

Fact 3. (Cauchy-Schwartz) For θ1, . . . , θn ∈ Rp, we have∥∥∥ n∑
i=1

θi

∥∥∥2

≤ n
n∑
i=1

‖θi‖2. (4.38)

Lemma 15 For k −D ≤ l ≤ k − τ km, if {θk} are the iterates generated by LASG, we have

E
[
〈∇L(θk),∇`(θl; ξkm)−∇`(θl; ξk−τkmm )〉

]
≤
√
ML

12ηk

D∑
d=1

E
[
‖∆k−d‖2

]
+

6DLηk√
M

σ2
m (4.39)

and similarly, we have

E
[
〈∇L(θk),∇Lm(θl)−∇`(θl; θk−τkm)〉

]
≤
√
ML

12ηk

D∑
d=1

E
[
‖∆k−d‖2

]
+

3DLηk√
M

σ2
m. (4.40)

Proof: We first prove (4.39) by decomposing it as

E
[
〈∇L(θk),∇`(θl; ξkm)−∇`(θl; ξk−τkmm )〉

]
(a)
=E

[
〈∇L(θk)−∇L(θl),∇`(θl; ξkm)−∇`(θl; ξk−τkmm )〉

]
≤LE

[
‖θk − θl‖‖∇`(θl; ξkm)−∇`(θl; ξk−τkmm )‖

]
(b)

≤
√
ML

12Dηk
E
[
‖θk − θl‖2

]
:=T1

+
6DLηk

2
√
M

E
[
‖∇`(θl; ξkm)−∇`(θl; ξk−τkmm )‖2

]
:=T2

(4.41)
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where (a) holds due to

E
[
〈∇L(θl),∇`(θl; ξkm)−∇`(θl; ξk−τkmm )〉

]
=E

[
E
[
〈∇L(θl),∇`(θl; ξkm)−∇`(θl; ξk−τkmm )〉

∣∣∣Θl
]]

=E
[
〈∇L(θl),E

[
∇`(θl; ξkm)−∇`(θl; ξk−τkmm )

∣∣Θl
]
〉
]

=E
[
〈∇L(θl),∇Lm(θl)−∇Lm(θl)〉

]
= 0

and (b) is a direct application of Fact 2.

Applying Fact 3 to T1, we have

T1 = E
[∥∥∥ k−l∑

d=1

∆k−d
∥∥∥2]
≤ (k − l)

k−l∑
d=1

E
[
‖∆k−d‖2

]
≤ D

D∑
d=1

E
[
‖∆k−d‖2

]
(4.42)

and applying Fact 1 to T2, we have

T2 =E
[∥∥∇`(θl; ξkm)−∇`(θl; ξk−τkmm )

∥∥2
]

=E
[∥∥∇`(θl; ξkm)−∇Lm(θl)+∇Lm(θl)−∇`(θl; ξk−τkmm )

∥∥2
]

=E
[∥∥∇`(θl; ξkm)−∇Lm(θl)

∥∥2
]

+ E
[∥∥∇Lm(θl)−∇`(θl; ξk−τkmm )

∥∥2
]

≤2σ2
m (4.43)

where the last inequality uses Assumption 2. Plugging (4.42) and (4.43) into (4.41), it leads

to (4.39).

Likewise, following the steps to (4.41), it can be verified that (4.40) also holds true.
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4.5.4 Proof of Lemma 11

Due to the smoothness of L(θ) in Assumption 1, we have

E
[
L(θk+1)

]
− E

[
L(θk)

]
≤ηk E

[
− 〈∇L(θk),

1

M

∑
m∈M

∇`(θk−τkm ; ξk−τ
k
m

m )〉
]

:=I1

+
Lη2

k

2
E
[∥∥∥ 1

M

∑
m∈M

∇`(θk−τkm ; ξk−τ
k
m

m )
∥∥∥2]

:=I2

. (4.44)

With δkm := ∇`(θk; ξkm)−∇`(θk−τkm ; ξ
k−τkm
m ) denoting the stochastic gradient innovation,

we decompose I1 as

I1 =− E
[
〈∇L(θk),

1

M

∑
m∈M

∇`(θk; ξkm)〉
]

+
1

M

∑
m∈M

E
[
〈∇L(θk), δkm〉

]
:=H1

=− E
[
〈∇L(θk),

1

M

∑
m∈M

E
[
∇`(θk; ξkm)

∣∣Θk
]
〉
]

+H1

=− E
[
‖∇L(θk)‖2

]
+H1 (4.45)

and likewise decompose I2 as

I2 =E
[∥∥∥ 1

M

∑
m∈M

∇`(θk−τkm ; ξk−τ
k
m

m )−∇L(θk) +∇L(θk)
∥∥∥2]

=E
[∥∥∥ 1

M

∑
m∈M

∇`(θk−τkm ; ξk−τ
k
m

m )−∇L(θk)
∥∥∥2]

:=H2

+E
[
‖∇L(θk)‖2

]
−2E

[
〈∇L(θk),

1

M

∑
m∈M

∇`(θk; ξkm)〉
]

+ 2E
[
〈∇L(θk),

1

M

∑
m∈M

∇`(θk−τkm ; ξk−τ
k
m

m )〉
]

=H2 + E
[
‖∇L(θk)‖2

]
− 2H1. (4.46)
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We obtain Lemma 11 by plugging (4.45) and (4.46) into (4.44).

4.5.5 Proof of Lemma 12

We next bound H1 defined in (4.45) separately for different LASG rules. First for LASG-

WK1’s rule (4.9), we have

H1
(a)
=

1

M

∑
m∈M

E
[
〈∇L(θk), δ̃km − δ̃k−τ

k
m

m 〉
]

+
1

M

∑
m∈M

E
[
〈∇L(θk),∇`(θ̃; ξk)−∇`(θ̃, ξk−τkmm )〉

]
(b)

≤Lηk
2

E
[∥∥∇L(θk)

∥∥2
]

+
6DLηk

M
√
M

∑
m∈M

σ2
m

+
D∑
d=1

(
c

2Lηkdmax

+

√
ML

12ηk

)
E
[∥∥∆k−d∥∥2

]
where (a) is due to the definition of δkm, and (b) is obtained by (4.9), (4.36) with ε = 1

Lηk
, and

(4.39) with θl = θ̃. Note that the definition of θ̃ in Algorithm 4 implies l = b k
D
c ≤ k − τ km.

For LASG-WK2’s rule (4.12), we apply (4.36) with ε = 1
Lηk

and (4.39) with l = k − τ km,

which leads to

H1 =
1

M

∑
m∈M

E
[
〈∇L(θk),∇`(θk; ξkm)−∇`(θk−τkm ; ξkm)〉

]
+ E

[
〈∇L(θk),∇`(θk−τkm ; ξkm)−∇`(θk−τkm ; ξk−τ

k
m

m )〉
]

≤Lηk
2

E
[
‖∇L(θk)‖2

]
+

6DLηk

M
√
M

∑
m∈M

σ2
m

+
D∑
d=1

(
c

2Lηkdmax

+

√
ML

12ηk

)
E
[
‖∆k−d‖2

]
.
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For LASG-PS’s rule (4.14), applying E
[
∇`(θk; ξkm)

∣∣Θk
]

= ∇Lm(θk), we get

H1 =
1

M

∑
m∈M

E
[
〈∇L(θk),∇Lm(θk)−∇Lm(θk−τ

k
m)〉
]

+
1

M

∑
m∈M

E
[
〈∇L(θk),∇Lm(θk−τ

k
m)−∇`(θk−τkm ; ξk−τ

k
m

m )〉
]

(c)

≤Lηk
2

E
[
‖∇L(θk)‖2

]
+

6DLηk

2M
√
M

∑
m∈M

σ2
m

+
D∑
d=1

(
c

2Lηkdmax

+

√
ML

12ηk

)
E
[
‖∆k−d‖2

]
where (c) uses (4.36) with ε = 1

Lηk
and (4.40) with l = k − τ km.

4.5.6 Proof of Lemma 13

We next bound H2 defined in (4.46) separately for different LASG rules. For LASG-WK1,

using (4.38), we first have

H2 ≤ 3E
[∥∥ 1

M

∑
m∈M

δ̃km − δ̃k−τ
k
m

m

∥∥2
]

+ 3E
[∥∥ 1

M

∑
m∈M

∇`(θk, ξkm)−∇L(θk))
∥∥2
]

+ 3E
[∥∥∥ 1

M

∑
m∈M

(∇`(θ̃; ξkm)−∇Lm(θ̃)) +
1

M

∑
m∈M

(∇Lm(θ̃)−∇`(θ̃; ξk−τkmm ))
∥∥∥2]

(a)

≤ 3c

dmax

dmax∑
d=1

E
[
‖∆k−d‖2

]
+

9

M2

∑
m∈M

σ2
m

where (a) follows from (4.9), (4.20b), and (4.35).

For LASG-WK2, using (4.38), we have

H2 ≤2E
[∥∥ 1

M

∑
m∈M

(
∇`(θk−τkm , ξk−τkmm )−∇`(θk; ξkm)

)∥∥2
]

+ 2E
[∥∥ 1

M

∑
m∈M

(
∇`(θk; ξkm)−∇Lm(θk)

)∥∥2
]

(b)

≤ 2c

dmax

dmax∑
d=1

E
[
‖∆k−d‖2

]
+

2

M2

∑
m∈M

σ2
m

where (b) uses (4.12), (4.20b) and (4.35).
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For LASG-PS, using (4.38), we have

H2 ≤2E
[∥∥ ∑

m∈M

(
∇`(θk−τkm , ξk−τkmm )−∇Lm(θk−τ

k
m)
)∥∥∥2]

+ 2E
[∥∥ ∑

m∈M

(
∇Lm(θk−τ

k
m)−∇Lm(θk)

)∥∥2
]

(c)

≤ 2c

dmax

dmax∑
d=1

E
[
‖∆k−d‖2

]
+

2

M2

∑
m∈M

σ2
m

≤ 3c

dmax

dmax∑
d=1

E‖∆k−d‖2 +
9

M2

∑
m∈M

σ2
m

where (c) holds due to (4.14), (4.20b), and (4.35).

4.5.7 Proof of Lemma 14

Plugging Lemmas 12 and 13 into Lemma 11 leads to

E
[
L(θk+1)

]
− E

[
L(θk)

]
≤−

(
ηk − Lη2

k +
L2η3

k

2

)
E
[
‖∇L(θk)‖2

]
+

D∑
d=1

((
3ηk

2dmax

+
1− Lηk
2Ldmax

)
c+

√
ML

12

)
E
[
‖∆k−d‖2

]
+ Lη2

k

(
9

2
+ 6
√
MD

)
1

M2

∑
m∈M

σ2
m (4.47)

where we use the fact that Lηk ≤ 1.

By definition of E[V k], it follows that (with γD+1 = 0)

E[V k+1]− E[V k] = E
[
L(θk+1)

]
− E

[
L(θk)

]
+ γ1E

[
‖∆k‖2

]
+

D∑
d=1

(γd+1 − γd)E
[
‖∆k−d‖2

]
.
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First we decompose E
[
‖∆k‖2

]
as

1

η2
k

E
[
‖∆k‖2

]
=E
[∥∥∥ 1

M

∑
m∈M
∇`(θk−τkm ; ξk−τ

k
m

m )−∇L(θk) +∇L(θk)
∥∥∥2]

≤2E
[
‖∇L(θk)‖2

]
+2E

[∥∥∥ 1

M

∑
m∈M
∇`(θk−τkm ; ξk−τ

k
m

m )−∇L(θk)
∥∥∥2]

(a)

≤2E
[
‖∇L(θk)‖2

]
+

6c

dmax

D∑
d=1

E
[
‖∆k−d‖2

]
+

18

M2

∑
m∈M

σ2
m

where (a) uses Lemma 13.

Together with (4.47), it follows that

E[V k+1]− E[V k] ≤ −
(
ηk − (L+ 2γ1)η2

k

)
:=Bk0

E
[
‖∇L(θk)‖2

]

+
D∑
d=1

((
ηk +

1

2L

) c

dmax
+

√
ML

12
+

6cγ1η
2
k

dmax
+γd+1−γd

)
:=Akd

E
[
‖∆k−d‖2

]

+

((9

2
+ 6
√
MD

)
L+ 18γ1

)
:=Bk1

η2
k

M2

∑
m∈M

σ2
m (4.48)

from which the proof is complete.

4.5.8 Proof of Theorem 4

To ensure Akd ≤ 0 in (4.48) of Lemma 14, it is sufficient to choose {γd} satisfying (with

γD+1 = 0) (
ηk +

1

2L

) c

dmax

+

√
ML

12
+

6cγ1η
2
k

dmax

+ γd+1 − γd ≤ 0, 0 ≤ d ≤ D

where the stepsize is chosen as ηk = η, k = 1, · · · , K.

Solve the linear equations above and get

γ1 =
(η + 1

2L
)cD/dmax +

√
MDL
12

1− 6cDη2/dmax

. (4.49)
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Select c ≤ min{ dmax

12Dη2
, dmax

√
ML2

18
} such that γ1 ≤

√
MDL

3
. If we further select η ≤

1
2L+ 4

3

√
MDL

≤ 1
2L+4γ1

and then

Bk
0 = ηk − (L+ 2γ1)η2

k ≥
η

2
. (4.50)

Summation up (4.33) over k = 0, · · · , K − 1, it follows that

K−1∑
k=0

ηk
2
E
[
‖∇L(θk)‖2

]
≤ L(θ0)− L(θ∗) +

K−1∑
k=0

(
9

2
+ 12
√
MD

)
Lη2

k

M2

∑
m∈M

σ2
m. (4.51)

Specifically, if we choose a constant stepsize

ηk = η := min

{
1

2L+ 4
3

√
MDL

,
cη√
K

}
(4.52)

where cη > 0 is a constant, then

1

K

K−1∑
k=0

E
[
‖∇L(θk)‖2

]
≤ 2

Kη

(
L(θ0)− L(θ∗) +K

(
9

2
+ 12
√
MD

)
Lη2

M2

∑
m∈M

σ2
m

)

≤
(

4L+ 8
3

√
MDL

K
+

2

cη
√
K

)
(L(θ0)− L(θ∗))

+
cη√
K

(
9 + 24

√
MD

) L

M2

∑
m∈M

σ2
m. (4.53)

Choosing cη = O(M
3
4 (
∑

m∈M σ2
m)−

1
2 ) leads to the theorem.

4.5.9 Proof of Theorem 5

Let EQ and EQ,ξm denote the expectation with respect to the stochastic quantization Q and

both the stochastic quantization Q and the datum ξm, respectively.

As a result of [2, Lemma 3.1] and Assumption 4, b-bit quantized gradients have the

following unbiasedness property

EQ [Q(θ; ξm)] = ∇`(θ; ξm) (4.54)
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and the bounded variance (with B defined in Assumption 4)

EQ,ξm
[
‖Q(θ; ξm)−∇`(θ; ξm)‖2

]
≤ min

{ d

(2b−1 − 1)2
,

√
d

2b−1 − 1

}
B =: σ2

Q. (4.55)

Analogous to the proof of Lemma 11, we can get

E
[
L(θk+1)

]
− E

[
L(θk)

]
≤−

(
ηk −

Lη2
k

2

)
E
[
‖∇L(θk)‖2

]
+
(
ηk − Lη2

k

)
H3 +

Lη2
k

2
H4

where H3 and H4 are defined similar to H1 and H2 in (4.44).

We first bound H3 as

H3 :=
1

M

∑
m∈M

E
[
〈∇L(θk),∇`(θk; ξkm)−Q(θk−τ

k
m ; ξk−τ

k
m

m )〉
]

=H1+
1

M

∑
m∈M

E
[
〈∇L(θk),∇`(θk−τkm ; ξk−τ

k
m

m )−Q(θk−τ
k
m ; ξk−τ

k
m

m )〉
]

(a)

≤ H1 +

√
ML

12ηk

D∑
d=1

E
[
‖∆k−d‖2

]
+

6DLηk

2M
√
M
σ2
Q (4.56)

where (a) is obtained by steps similar to those of (4.39).

Plugging the bound on H1 in Lemma 12 into (4.56), we have

H3 ≤
Lηk

2
E
[
‖∇L(θk)‖2

]
+

D∑
d=1

(
c/dmax

2Lηk
+

√
ML

6ηk

)
E
[
‖∆k−d‖2

]
+

6DLηk√
M

∑
m∈M

(
σ2
m +

σ2
Q

2

)
.

Likewise, H4 can be bounded as

H4 =E
[∥∥∇L(θk)− 1

M

∑
m∈M

Q(θk−τ
k
m ; ξk−τ

k
m

m )
∥∥2
]

(b)

≤4E
[∥∥∥ 1

M

∑
m∈M
∇`(θk−τkm ; ξk−τ

k
m

m )−Q(θk−τ
k
m ; ξk−τ

k
m

m )
∥∥∥2]

+
4

3
H2

(c)

≤ 4c

dmax

dmax∑
d=1

E‖∆k−d‖2 +
12

M2

∑
m∈M

(
σ2
m +

σ2
Q

2

)
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where (b) uses (4.37) with ε = 3, and (c) uses Lemma 13.

The remaining steps follow those of Theorem 4 with σ2
m replaced with σ2

m +
σ2
Q

2
.

4.5.10 Proof of Theorem 6

Using the PL-condition of L(θ), (4.33) can be rewritten as

E[V k+1]− E[V k] ≤− 2µBk
0E[L(θk)− L(θ∗)]+Bk

1

∑
m∈M

σ2
m

+
D∑
d=1

AkdE
[
‖∆k−d‖2

]
. (4.57)

If we choose γd such that Akd ≤ −2µBk
0γd for d = 1, 2 . . . , D, then we have

E[V k+1] ≤(1− 2µBk
0 )E[V k] +Bk

1

1

M2

∑
m∈M

σ2
m (4.58)

≤
k∏
j=0

(1− 2µBj
0)V 0+

k∑
j=0

Bj
1

k∏
i=j+1

1− 2µBi
0

M2

∑
m∈M

σ2
m.

To ensure Akd≤−2µBk
0γd, note that if ηk ≤ η ≤ 1

L+2γ1
, then

Bk
0 = ηk − (L+ 2γ1)η2

k ∈ [0, ηk]. (4.59)

Hence, it is sufficient to choose γd satisfying (γD+1 = 0)(
ηk +

1

2L

) c

dmax

+

√
ML

12
+

6cγ1η
2
k

dmax

+ γd+1 − γd ≤ −2µηγ1, ∀d.

Solve the linear equations above and get

γ1 =
(η + 1

2L
)cD/dmax +

√
MDL/12

1− 6cDη2/dmax − 2µDη
. (4.60)

Let ηk = 2
µ(k+K0)

with K0 = max{2(L+ 2
3

√
MDL)

µ
, 16D}, which ensures that

ηk ≤ η := min

{
1

L+ 2γ1

,
1

8µD

}
. (4.61)
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Together with the selection c ≤ min{ dmax

24Dη2
, dmax

√
ML2

18
}, this ensures that γ1 ≤

√
MDL

3
.

Plugging into (4.58) leads to

E[V k+1] ≤ (1− µηk)E[V k]+

(
9

2
+ 12
√
MD

)
L

M2

∑
m∈M

σ2
mη

2
k

:=R

.

Multiplying over k = 0, · · · , K − 1, it follows that

E[V K ] ≤
K−1∏
k=0

(1− µηk)V 0 +R
K−1∑
k=0

η2
k

K−1∏
j=k+1

(1− µηj)

≤ (K0 − 2)(K0 − 1)

(K +K0 − 2)(K +K0 − 1)
V 0

+
R

µ2

K−1∑
k=0

4

(k +K0)2

(k +K0 − 1)(k +K0)

(K +K0 − 2)(K +K0 − 1)

≤ (K0 − 1)2

(K +K0 − 1)2
V 0 +

4RK

µ2(K +K0 − 1)2
. (4.62)

Using the definition of V 0 and the initialization θ−D = · · · = θ−1 = θ0, we complete the

proof.
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CHAPTER 5

CADA: Communication-Adaptive Distributed Adam

5.1 Introduction

Stochastic gradient descent (SGD) method [93] is prevalent in solving large-scale machine

learning problems during the last decades. Although simple to use, the plain-vanilla SGD

is often sensitive to the choice of hyper-parameters and sometimes suffer from the slow

convergence. Among various efforts to improve SGD, adaptive methods such as AdaGrad

[22], Adam [55] and AMSGrad [97] have well-documented empirical performance, especially

in training deep neural networks.

In this chapter, we aim to develop a fully adaptive SGD algorithm tailored for the

distributed learning. We consider the setting composed of a central server and a set of M

workers in M := {1, . . . ,M}, where each worker m has its local data ξm from a distribution

Ξm. Workers may have different data distributions {Ξm}, and they collaboratively solve the

following problem

min
θ∈Rp

L(θ) =
1

M

∑
m∈M

Lm(θ) with Lm(θ) :=Eξm [`(θ; ξm)] , m ∈M (5.1)

where θ ∈ Rp is the sought variable and {Lm,m∈M} are smooth (but not necessarily convex)

functions. We focus on the setting where local data ξm at each worker m can not be uploaded

to the server, and collaboration is needed through communication between the server and

workers. This setting often emerges due to the data privacy concerns [73, 49].

To solve (5.1), we can in principle apply the single-node version of the adaptive SGD

methods such as Adam [55]: At iteration k, the server broadcasts θk to all the workers;
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each worker m computes ∇`(θk; ξkm) using a randomly selected sample or a minibatch of

samples {ξkm} ∼ Ξm, and then uploads it to the server; and once receiving stochastic

gradients from all workers, the server can simply use the aggregated stochastic gradient

∇̄k = 1
M

∑
m∈M∇`(θk; ξkm) to update the parameter via the plain-vanilla single-node Adam.

When ∇`(θk; ξkm) is an unbiased gradient of Lm(θ), the convergence of this distributed

implementation of Adam follows from the original ones [97, 13]. To implement this, however,

all the workers have to upload the fresh {∇`(θk; ξkm)} at each iteration. This prevents the

efficient implementation of Adam in scenarios where the communication uplink and downlink

are not symmetric, and communication especially upload from workers and the server is

costly; e.g., cellular networks [84]. Therefore, our goal is to endow an additional dimension of

adaptivity to Adam for solving the distributed problem (5.1). In short, on top of its adaptive

learning rate and update direction, we want Adam to be communication-adaptive.

5.1.1 Related work

To put our work in context, we review prior contributions that we group in two categories.

5.1.1.1 SGD with adaptive gradients

A variety of SGD variants have been developed recently, including momentum and acceleration

[86, 80, 31]. However, these methods are relatively sensitive to the hyper-parameters such as

stepsizes, and require significant efforts on finding the optimal parameters.

Adaptive learning rate. One limitation of SGD is that it scales the gradient uniformly

in all directions by a pre-determined constant or a sequence of constants (a.k.a. learning

rates). This may lead to poor performance when the training data are sparse [22]. To address

this issue, adaptive learning rate methods have been developed that scale the gradient in

an entry-wise manner by using past gradients, which include AdaGrad [22, 120], AdaDelta

[128] and other variants [61]. This simple technique has improved the performance of SGD in

some scenarios.
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Adaptive SGD. Adaptive SGD methods achieve the best of both worlds, which update

the search directions and the learning rates simultaneously using past gradients. Adam

[55] and AMSGrad [97] are the representative ones in this category. While these methods

are simple-to-use, analyzing their convergence is challenging [97, 113]. Their convergence

in the nonconvex setting has been settled only recently [13, 19]. However, most adaptive

SGD methods are studied in the single-node setting where data and computation are both

centralized. Very recently, adaptive SGD has been studied in the shared memory setting

[123], where data is still centralized and communication is not adaptive.

5.1.1.2 Communication-efficient distributed optimization

Popular communication-efficient distributed learning methods belong to two categories:

c1) reduce the number of bits per communication round; and, c2) save the number of

communication rounds.

For c1), methods are centered around the ideas of quantization and sparsification.

Reducing communication bits. Quantization has been successfully applied to distributed

machine learning. The 1-bit and multi-bits quantization methods have been developed in

[98, 2, 110]. More recently, signSGD with majority vote has been developed in [4]. Other

advances of quantized gradient schemes include error compensation [122, 53], variance-reduced

quantization [129, 38], and quantization to a ternary vector [121, 92]. All of them reduce

a significant number of communication bits. Sparsification amounts to transmitting only

gradient coordinates with large enough magnitudes exceeding a certain threshold [107, 1].

To avoid losing information of skipping communication, small gradient components will

be accumulated and transmitted when they are large enough [66, 105, 3, 119, 45]. Other

compression methods also include low-rank approximation [112] and sketching [41]. However,

all these methods aim to resolve c1). In some cases, other latencies dominate the bandwidth-

dependent transmission latency. This motivates c2).

Reducing communication rounds. One of the most popular techniques in this category
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is the periodic averaging, e.g., elastic averaging SGD [132], local SGD (a.k.a. FedAvg)

[74, 64, 50, 106, 115, 52, 36] or local momentum SGD [125, 116]. In local SGD, workers perform

local model updates independently and the models are averaged periodically. Therefore,

communication frequency is reduced. However, except [50, 115, 36], most of local SGD

methods follow a pre-determined communication schedule that is nonadaptive. Some of them

are tailored for the homogeneous settings, where the data are independent and identically

distributed over all workers. To tackle the heterogeneous case, FedProx has been developed

in [60] by solving local subproblems. For learning tasks where the loss function is convex

and its conjugate dual is expressible, the dual coordinate ascent-based approaches have been

demonstrated to yield impressive empirical performance [42, 70]. Higher-order methods have

also been considered [100, 133]. Roughly speaking, algorithms in [60, 42, 70, 100, 133] reduce

communication by increasing local gradient computation.

The most related line of work to this chapter is the lazily aggregated gradient (LAG)

approach [8, 109]. In contrast to periodic communication, the communication in LAG is

adaptive and tailored for the heterogeneous settings. Parameters in LAG are updated at the

server, and workers only adaptively upload information that is determined to be informative

enough. Unfortunately, while LAG has good performance in the deterministic settings

(e.g., with full gradient), its performance will be significantly degraded in the stochastic

settings. Very recently, FedAvg with local adaptive SGD update has been proposed in

[91], which sets a strong benchmark for communication-efficient learning. When the new

algorithm in [91] achieves the sweet spot between local SGD and adaptive momentum SGD,

the proposed algorithm is very different from ours, and the averaging period and the selection

of participating workers are nonadaptive.

5.1.2 Our approach

We develop a new adaptive SGD algorithm for distributed learning, called Communication-

Adaptive Distributed Adam (CADA). Akin to the dynamic scaling of every gradient
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coordinate in Adam, the key motivation of adaptive communication is that during distributed

learning, not all communication rounds between the server and workers are equally important.

So a natural solution is to use a condition that decides whether the communication is

important or not, and then adjust the frequency of communication between a worker and

the server. If some workers are not communicating, the server uses their stale information

instead of the fresh ones. We will show that this adaptive communication technique can

reduce the less informative communication of distributed Adam.

Analogous to the original Adam [55] and its modified version AMSGrad [97], our new

CADA approach also uses the exponentially weighted stochastic gradient hk+1 as the up-

date direction of θk+1, and leverages the weighted stochastic gradient magnitude vk+1

to inversely scale the update direction hk+1. Different from the direct distributed im-

plementation of Adam that incorporates the fresh (thus unbiased) stochastic gradients

∇̄k = 1
M

∑
m∈M∇`(θk; ξkm), CADA exponentially combines the aggregated stale stochastic

gradients ∇k = 1
M

∑
m∈M∇`(θ̂km; ξ̂km), where ∇`(θ̂km; ξ̂km) is either the fresh stochastic gradient

∇`(θk; ξkm), or an old copy when θ̂km 6= θk; ξ̂km 6= ξkm. Informally, with αk > 0 denoting the

stepsize at iteration k, CADA has the following update

hk+1 =β1h
k+(1−β1)∇k, with ∇k=

1

M

∑
m∈M

∇`(θ̂km; ξ̂km) (5.2a)

vk+1 = β2v̂
k + (1− β2)(∇k)2 (5.2b)

θk+1 = θk − αk(εI + V̂ k+1)−
1
2hk+1 (5.2c)

where β1, β2 > 0 are the momentum weights, V̂ k+1 := diag(v̂k+1) is a diagonal matrix whose

diagonal vector is v̂k+1 := max{vk+1, v̂k}, the constant is ε > 0, and I is an identity matrix.

To reduce the memory requirement of storing all the stale stochastic gradients {∇`(θk; ξkm)},
we can obtain ∇k by refining the previous aggregated stochastic gradients ∇k−1 stored in

the server via

∇k = ∇k−1 +
1

M

∑
m∈Mk

δkm (5.3)

122



where δkm := ∇`(θk; ξkm)−∇`(θ̂km; ξ̂km) is the stochastic gradient innovation, andMk is the set

of workers that upload the stochastic gradient to the server at iteration k. Henceforth, θ̂km =

θk; ξ̂km = ξkm, ∀m ∈ Mk and θ̂km = θ̂k−1
m ; ξ̂km = ξ̂k−1

m , ∀m /∈ Mk. See CADA’s implementation

in Figure 5.1.

Clearly, the selection of subset Mk is both critical and challenging. It is critical because

it adaptively determines the number of communication rounds per iteration |Mk|. However,

it is challenging since 1) the staleness introduced in the Adam update will propagate not

only through the momentum gradients but also the adaptive learning rate; 2) the importance

of each communication round is dynamic, thus a fixed or nonadaptive condition is ineffective;

and 3) the condition needs to be checked efficiently without extra overhead. To overcome

these challenges, we develop two adaptive conditions to select Mk in CADA.

With details deferred to Section 5.2, the contributions of this chapter are listed as follows.

c1) We introduce a novel communication-adaptive distributed Adam (CADA) approach

that reuses stale stochastic gradients to reduce communication for distributed implementation

of Adam.

c2) We develop a new Lyapunov function to establish convergence of CADA under both

the nonconvex and Polyak- Lojasiewicz (PL) conditions even when the datasets are non-i.i.d.

across workers. The convergence rate matches that of the original Adam.

c3) We confirm that our novel fully-adaptive CADA algorithms achieve at least 60%

performance gains in terms of communication upload over some popular alternatives using

numerical tests on logistic regression and neural network training.

5.2 CADA: Communication-Adaptive Distributed Adam

In this section, we develop our communication-adaptive distributed Adam approach. To

be more precise in our notations, we henceforth use τ km ≥ 0 for the staleness or age of
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Figure 5.1: The CADA implementation.

information from worker m used by the server at iteration k, e.g., θ̂km = θk−τ
k
m . An age of 0

means “fresh.”

5.2.1 Algorithm development of CADA

In this section, we formally develop our CADA method, and present the intuition behind its

design.

The key of the CADA design is to reduce the variance of the innovation measure in the

adaptive condition. We introduce two CADA variants, both of which follow the update (5.2),

but they differ in the variance-reduced communication rules.

The first one termed CADA1 will calculate two stochastic gradient innovations with

one δ̃km := ∇`(θk; ξkm) − ∇`(θ̃; ξkm) at the sample ξkm, and one δ̃
k−τkm
m := ∇`(θk−τkm ; ξ

k−τkm
m ) −

∇`(θ̃; ξk−τkmm ) at the sample ξ
k−τkm
m , where θ̃ is a snapshot of the previous iterate θ that will

be updated every D iterations. As we will show in (5.5), δ̃km − δ̃k−τ
k
m

m can be viewed as the

difference of two variance-reduced gradients calculated at θk and θk−τ
k
m . Using δ̃km − δ̃k−τ

k
m

m

as the error induced by using stale information, CADA1 will exclude worker m from Mk if

worker m finds ∥∥∥δ̃km − δ̃k−τkmm

∥∥∥2

≤ c

dmax

dmax∑
d=1

∥∥θk+1−d − θk−d
∥∥2
. (5.4)

In (5.4), we use the change of parameter θk averaged over the past dmax consecutive iterations

to measure the progress of algorithm. Intuitively, if (5.4) is satisfied, the error induced by
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using stale information will not large affect the learning algorithm. In this case, worker m

does not upload, and the staleness of information from worker m increases by τ k+1
m = τ km + 1;

otherwise, worker m belongs toMk, uploads the stochastic gradient innovation δkm, and resets

τ k+1
m = 1.

The rationale of CADA1. In contrast to the non-vanishing variance in LAG rule, the

CADA1 rule (5.4) reduces its inherent variance. To see this, we can decompose the LHS of

(5.4) as the difference of two variance reduced stochastic gradients at iteration k and k − τ km.

Using the stochastic gradient in SVRG as an example [47], the innovation can be written as

δ̃km − δ̃k−τ
k
m

m =
(
∇`(θk; ξkm)−∇`(θ̃; ξkm) +∇Lm(θ̃)

)
−
(
∇`(θk−τkm ; ξk−τ

k
m

m )−∇`(θ̃; ξk−τkmm ) +∇Lm(θ̃)
)
. (5.5)

Define the minimizer of (5.1) as θ?. With derivations given in the supplementary document,

the expectation of the LHS of (5.4) can be upper-bounded by

E
[∥∥δ̃km − δ̃k−τkmm

∥∥2
]

= O
(
E[L(θk)]− L(θ?) + E[L(θk−τ

k
m)]− L(θ?) + E[L(θ̃)]− L(θ?)

)
.

(5.6)

If θk converges, e.g., θk, θk−τ
k
m , θ̃ → θ∗, the RHS of (5.6) diminishes, and thus the LHS of

(5.4) diminishes. This is in contrast to the LAG rule lower-bounded by a non-vanishing value.

Notice that while enjoying the benefit of variance reduction, our communication rule does

not need to repeatedly calculate the full gradient ∇Lm(θ̃).

In addition to (5.4), the second rule is termed CADA2. The key difference relative to

CADA1 is that CADA2 uses ∇`(θk; ξkm)−∇`(θk−τkmm ; ξkm) to estimate the error of using stale

information. CADA2 will reuse the stale stochastic gradient ∇`(θk−τkmm ; ξ
k−τkm
m ) or exclude

worker m from Mk if worker m finds∥∥∇`(θk; ξkm)−∇`(θk−τkmm ; ξkm)
∥∥2 ≤ c

dmax

dmax∑
d=1

∥∥θk+1−d − θk−d
∥∥2
. (5.7)

If (5.7) is satisfied, then worker m does not upload, and the staleness increases by τ k+1
m = τ km+1;

otherwise, worker m uploads the gradient innovation δkm, and resets the staleness as τ k+1
m = 1.
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Algorithm 8 Pseudo-code of CADA; red lines are run only by CADA1; blue lines are

implemented only by CADA2; not both at the same time.

1: Input: delay counter {τ 0
m}, stepsize αk, constant threshold c, max delay D.

2: for k = 0, 1, . . . , K − 1 do

3: Server broadcasts θk to all workers.

4: All workers set θ̃ = θk if k modD=0.

5: for Worker m = 1, 2, . . . ,M do in parallel

6: Compute ∇`(θk; ξkm) and ∇`(θ̃; ξkm).

7: Check condition (5.4) with stored δ̃
k−τkm
m .

8: Compute ∇`(θk; ξkm) and ∇`(θk−τkmm ; ξkm).

9: Check condition (5.7).

10: if (5.4) or (5.7) is violated or τ km ≥ D then

11: Upload δkm. . τ k+1
m = 1

12: else

13: Upload nothing. . τ k+1
m = τ km + 1

14: end if

15: end for

16: Server updates {hk, vk} via (5.2a)-(5.2b).

17: Server updates θk via (5.2c).

18: end for

The rationale of CADA2. Similar to CADA1, the CADA2 rule (5.7) also reduces its

inherent variance, since the LHS of (5.7) can be written as the difference between a variance

reduced stochastic gradient and a deterministic gradient, that is

∇`(θk; ξkm)−∇`(θk−τkm ; ξkm) =
(
∇`(θk; ξkm)−∇`(θk−τkm ; ξkm) +∇Lm(θk−τ

k
m)
)
∇Lm(θk−τ

k
m).

(5.8)

With derivations deferred to the supplementary document, similar to (5.6) we also have that

E[‖∇`(θk; ξkm)−∇`(θk−τkm ; ξkm)‖2]→ 0 as the iterate θk → θ?.
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For either (5.4) or (5.7), worker m can check it locally with small memory cost by

recursively updating the RHS of (5.4) or (5.7). In addition, worker m will update the

stochastic gradient if the staleness satisfies τ km ≥ D. We summarize CADA in Algorithm 8.

Computational and memory cost of CADA. In CADA, checking (5.4) and (5.7)

will double the computational cost (gradient evaluation) per iteration. Aware of this fact, we

have compared the number of iterations and gradient evaluations in simulations (see Figures

5.2-5.5), which will demonstrate that CADA requires fewer iterations and also fewer gradient

queries to achieve a target accuracy. Thus the extra computation is small. In addition, the

extra memory for large dmax is low. To compute the RHS of (5.4) or (5.7), each worker only

stores the norm of model changes (dmax scalars).

5.3 Convergence Analysis of CADA

We present the convergence results of CADA. For all the results, we make some basic

assumptions.

Assumption 6 The loss function L(θ) is smooth with the constant L.

Assumption 7 Samples ξ1
m, ξ

2
m, . . . are independent, and the stochastic gradient ∇`(θ; ξkm)

satisfies Eξkm [∇`(θ; ξkm)] = ∇Lm(θ) and ‖∇`(θ; ξkm)‖ ≤ σm.

Note that Assumptions 6-7 are standard in analyzing Adam and its variants [55, 97, 13, 123].

5.3.1 Key steps of Lyapunov analysis

The convergence results of CADA critically builds on the subsequent Lyapunov analysis. We

will start with analyzing the expected descent in terms of L(θk) by applying one step CADA

update.
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Lemma 16 Under Assumptions 6 and 7, if αk+1 ≤ αk, then {θk} generated by CADA satisfy

E[L(θk+1)]− E[L(θk)] ≤ −αk(1− β1)E
[
〈∇L(θk), (εI + V̂ k−D)−

1
2∇k〉

]
− αkβ1E

[
〈∇L(θk−1), (εI + V̂ k)−

1
2hk〉

]
+

(
L

2
+ β1L

)
E
[
‖θk+1 − θk‖2

]
+ αk(2−β1)σ2E

[ p∑
i=1

(
(ε+v̂k−Di )−

1
2 − (ε+v̂k+1

i )−
1
2

)]
(5.9)

where p is the dimension of θ, σ is defined as σ := 1
M

∑
m∈M σm, and β1, ε are in (5.2).

Lemma 16 contains four terms in the RHS of (5.9): the first two terms quantify the

correlations between the gradient direction ∇L(θk) and the stale stochastic gradient ∇k as

well as the state momentum stochastic gradient hk; the third term captures the drift of two

consecutive iterates; and, the last term estimates the maximum drift of the adaptive stepsizes

over D + 1 iterations.

From Lemma 16, analyzing the progress of L(θk) under CADA is challenging especially

when the effects of staleness and the momentum couple with each other. Because the the

state momentum gradient hk is recursively updated by ∇k, we will first need the following

lemma to characterize the regularity of the stale aggregated stochastic gradients ∇k, which

lays the theoretical foundation for incorporating the properly controlled staleness into the

Adam’s momentum update.

Lemma 17 Under Assumptions 6 and 7, if the stepsizes satisfy αk+1 ≤ αk ≤ 1/L, then we

have

−αkE
[
〈∇L(θk), (εI + V̂ k−D)−

1
2∇k〉

]
≤ −αk

2
E
[∥∥∇L(θk)

∥∥2

(εI+V̂ k−D)−
1
2

]
+

6DLα2
kε
− 1

2

M

∑
m∈M

σ2
m

+ ε−
1
2

(
L

12
+

c

2Ldmax

) D∑
d=1

E
[
‖θk+1−d − θk−d‖2

]
.

(5.10)

Lemma 17 justifies the relevance of the stale yet properly selected stochastic gradients.

Intuitively, the first term in the RHS of (5.10) resembles the descent of using SGD with the
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unbiased stochastic gradient, and the second and third terms will diminish if the stepsizes

are diminishing since E
[
‖θk − θk−1‖2

]
= O(α2

k).

In view of Lemmas 16 and 17, we introduce the following Lyapunov function:

Vk :=L(θk)− L(θ?)−
∞∑
j=k

αjβ
j−k+1
1

〈
∇L(θk−1), (εI + V̂ k)−

1
2hk
〉

+ bk

D∑
d=0

p∑
i=1

(ε+ v̂k−di )−
1
2 +

D∑
d=1

ρd‖θk+1−d − θk−d‖2 (5.11)

where θ? is the solution of (5.1), {bk}Kk=1 and {ρd}Dd=1 are constants specified in the proof.

The design of Lyapunov function in (5.11) is motivated by the progress of L(θk) in

Lemmas 16-17, and also coupled with our communication rules (5.4) and (5.7) that contain

the parameter difference term. We find this new Lyapunov function can lead to a much

simple proof of Adam and AMSGrad, which is of independent interest. The following lemma

captures the progress of the Lyapunov function.

Lemma 18 Under Assumptions 6-7, if {bk}Kk=1 and {ρd}Dd=1 in (5.11) are chosen properly,

we have

E[Vk+1]− E[Vk] ≤ −αk(1− β1)

2

(
ε+

σ2

1− β2

)− 1
2

E
[∥∥∇L(θk)

∥∥2
]

+ α2
kC0 (5.12)

where the constant C0 depends on the parameters c, β1, β2, ε,D, and L, {σ2
m}.

The first term in the RHS of (5.12) is strictly negative, and the second term is positive

but potentially small since it is O(α2
k) with αk → 0. This implies that the function Vk will

eventually converge if we choose the stepsizes appropriately. Lemma 18 is a generalization of

SGD’s descent lemma. If we set β1 = β2 = 0 in (5.2) and bk = 0, ρd = 0, ∀d, k in (5.11), then

Lemma 18 reduces to that of SGD in terms of L(θk); see e.g., [7, Lemma 4.4].

5.3.2 Main convergence results

Building upon our Lyapunov analysis, we first present the convergence in nonconvex case.
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Theorem 7 (nonconvex) Under Assumptions 6, 7, if we choose αk = α = O( 1√
K

) and

β1 <
√
β2 < 1, then the iterates {θk} generated by CADA satisfy

1

K

K−1∑
k=0

E
[
‖∇L(θk)‖2

]
= O

(
1√
K

)
. (5.13)

From Theorem 7, the convergence rate of CADA in terms of the average gradient norms is

O(1/
√
K), which matches that of the plain-vanilla Adam [97, 13]. Unfortunately, due to the

complicated nature of Adam-type analysis, the bound in (5.13) does not achieve the linear

speed-up as analyzed for asynchronous nonadaptive SGD such as [63]. However, our analysis

is tailored for adaptive SGD and does not make any assumption on the asynchrony, e.g., the

set of uploading workers are independent from the past or even independent and identically

distributed.

Next we present the convergence results under a slightly stronger assumption.

Assumption 8 The loss function L(θ) satisfies the Polyak- Lojasiewicz (PL) condition with

the constant µ > 0, that is L(θ)− L(θ∗) ≤ 1
2µ
‖L(θ)‖2.

The PL condition is weaker than the strongly convexity, which does not even require

convexity [51]. And it is satisfied by a wider range of problems such as least squares for

underdetermined linear systems, logistic regression, and also certain types of neural networks.

We next establish the convergence of CADA under this condition.

Theorem 8 (PL-condition) Under Assumptions 6-8, if we choose the stepsize as αk =

2
µ(k+K0)

for a given constant K0, then θK generated by Algorithm 8 satisfies

E
[
L(θK)

]
− L(θ?) = O

(
1

K

)
. (5.14)

Theorem 8 implies that under the PL-condition of the loss function, the CADA algorithm

can achieve the global convergence in terms of the loss function, with a fast rate O(1/K).

Compared with the previous analysis for LAG [8], as we highlighted in Section 5.3.1, the
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Figure 5.2: Logistic regression loss on covtype dataset averaged over 10 Monte Carlo runs.
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Figure 5.3: Logistic regression loss on ijcnn1 dataset averaged over 10 Monte Carlo runs.

analysis for CADA is more involved, since it needs to deal with not only the outdated

gradients but also the stochastic momentum gradients and the adaptive matrix learning rates.

We tackle this issue by i) considering a new set of communication rules (5.4) and (5.7) with

reduced variance; and, ii) incorporating the effect of momentum gradients and the drift of

adaptive learning rates in the new Lyapunov function (5.11).

5.4 Numerical Tests

In order to verify our analysis and show the empirical performance of CADA, we conduct

experiments in the logistic regression and training neural network tasks, respectively.

In logistic regression, we tested the covtype and ijcnn1 in the main context, and

MNIST in the appendix. In training neural networks, we tested MNIST dataset in the

main context, and CIFAR10 in the appendix. To benchmark CADA, we compared it with
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Figure 5.4: Training Neural network for classification on mnist dataset.
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Figure 5.5: Training Neural network for classification on cifar10 dataset.

some state-of-the-art algorithms, namely ADAM [55], stochastic LAG, local momentum

[125, 116] and FedAdam [91]. For local momentum and FedAdam, workers perform model

update independently, which are averaged over all workers every H iterations. In simulations,

critical parameters are optimized for each algorithm by a grid-search.

All experiments are run on a workstation with an Intel i9-9960x CPU with 128GB memory

and four NVIDIA RTX 2080Ti GPUs each with 11GB memory using Python 3.6.

Logistic regression. For CADA, the maximal delay is D = 100 and dmax = 10. For local

momentum and FedAdam, we manually optimize the averaging period as H = 10 for ijcnn1

and H = 20 for covtype. Results are averaged over 10 Monte Carlo runs.

Tests on logistic regression are reported in Figures 5.2-5.3. In our tests, two CADA

variants achieve the similar iteration complexity as the original Adam and outperform all

other baselines in most cases. Since our CADA requires two gradient evaluations per iteration,
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the gradient complexity (e.g., computational complexity) of CADA is higher than Adam, but

still smaller than that of other baselines. For logistic regression task, CADA1 and CADA2

save the number of communication uploads by at least one order of magnitude.

Training neural networks. We train a neural network with two convolution-ELU-maxpooling

layers followed by two fully-connected layers for 10 classes classification on mnist. We use

the popular ResNet20 model on CIFAR10 dataset, which has 20 and roughly 0.27 million

parameters. We searched the best values of H from the grid {1, 4, 6, 8, 16} to optimize the

testing accuracy vs communication rounds for each algorithm. In CADA, the maximum delay

is D = 50 and the average interval dmax = 10.

Tests on training neural networks are reported in Figures 5.4-5.5. In mnist, CADA1 and

CADA2 save the number of communication uploads by roughly 60% than local momentum

and slightly more than FedAdam. In cifar10, CADA1 and CADA2 achieve competitive

performance relative to the state-of-the-art algorithms FedAdam and local momentum. We

found that if we further enlarge H, FedAdam and local momentum converge fast at the

beginning, but reached worse test accuracy (e.g., 5%-15%). It is also evident that the CADA1

and CADA2 rules achieve more communication reduction than the stochastic version of LAG.

5.5 Appendix

We first present some basic inequalities that will be used frequently in this document, and

then present the missing derivations of some claims, as well as the proofs of all the lemmas

and theorems in the paper, which is followed by details on our experiments. The content of

this supplementary document is summarized as follows.

5.5.1 Supporting Lemmas

Define the σ-algebra Θk = {θl, 1 ≤ l ≤ k}. For convenience, we also initialize parameters as

θ−D, θ−D+1, . . . , θ−1 = θ0. Some basic facts used in the proof are reviewed as follows.
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Fact 1. Assume that X1, X2, . . . , Xn ∈ Rp are independent random variables, and EX1 =

· · · = EXn = 0. Then

E

[∥∥∥ n∑
i=1

Xi

∥∥∥2
]

=
n∑
i=1

E
[
‖Xi‖2

]
. (5.15)

Fact 2. (Young’s inequality) For any θ1, θ2 ∈ Rp, ε > 0,

〈θ1, θ2〉 ≤
‖θ1‖2

2ε
+
ε‖θ2‖2

2
. (5.16)

As a consequence, we have

‖θ1 + θ2‖2 ≤
(

1 +
1

ε

)
‖θ1‖2 + (1 + ε)‖θ2‖2. (5.17)

Fact 3. (Cauchy-Schwarz inequality) For any θ1, θ2, . . . , θn ∈ Rp, we have∥∥∥ n∑
i=1

θi

∥∥∥2

≤ n
n∑
i=1

‖θi‖2. (5.18)

Lemma 19 For k − τmax ≤ l ≤ k −D, if {θk} are the iterates generated by CADA, we have

E
[
〈∇L(θk), (εI + V̂ k−D)−

1
2

(
∇`(θl; ξkm)−∇`(θl; ξk−τkmm )

)
〉
]

≤Lε
− 1

2

12αk

D∑
d=1

E
[
‖θk+1−d − θk−d‖2

]
+6DLαkε

− 1
2σ2

m (5.19)

and similarly, we have

E
[
〈∇L(θk), (εI + V̂ k−D)−

1
2

(
∇Lm(θl)−∇`(θl; θk−τkm

)
〉
]

≤Lε
− 1

2

12αk

D∑
d=1

E
[
‖θk+1−d − θk−d‖2

]
+ 3DLαkε

− 1
2σ2

m. (5.20)

Proof: We first show the following holds.

E
[
〈∇L(θl), (εI + V̂ k−D)−

1
2

(
∇`(θl; ξkm)−∇`(θl; ξk−τkmm )

)
〉
]

(a)
=E

[
E
[
〈∇L(θl), (εI + V̂ k−D)−

1
2

(
∇`(θl; ξkm)−∇`(θl; ξk−τkmm )

)
〉
∣∣∣Θl
]]

(b)
=E

[
〈∇L(θl), (εI + V̂ k−D)−

1
2E
[
∇`(θl; ξkm)−∇`(θl; ξk−τkmm )

∣∣Θl
]
〉
]

=E
[
〈∇L(θl), (εI + V̂ k−D)−

1
2

(
∇Lm(θl)−∇Lm(θl)

)
〉
]

= 0 (5.21)
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where (a) follows from the law of total probability, and (b) holds because V̂ k−D is deterministic

conditioned on Θl when k −D ≤ l.

We first prove (5.19) by decomposing it as

E
[
〈∇L(θk), (εI + V̂ k−D)−

1
2

(
∇`(θl; ξkm)−∇`(θl; ξk−τkmm )

)
〉
]

(c)
=E

[
〈∇L(θk)−∇L(θl), (εI + V̂ k−D)−

1
2

(
∇`(θl; ξkm)−∇`(θl; ξk−τkmm )

)
〉
]

(d)

≤LE
[∥∥∥(εI + V̂ k−D)−

1
4

∥∥∥∥∥∥θk − θl∥∥∥∥∥∥(εI + V̂ k−D)−
1
4

(
∇`(θl; ξkm)−∇`(θl; ξk−τkmm )

)∥∥∥]
(e)

≤ Lε−
1
2

12Dαk
E
[
‖θk − θl‖2

]
I1

+
6DLαkε

− 1
2

2
E
[
‖∇`(θl; ξkm)−∇`(θl; ξk−τkmm )‖2

]
I2

(5.22)

where (c) holds due to (5.21), (d) uses Assumption 6, and (e) applies the Young’s inequality.

Applying the Cauchy-Schwarz inequality to I1, we have

I1 =E
[∥∥∥ k−l∑

d=1

(θk+1−d − θk−d)
∥∥∥2]

≤(k − l)
k−l∑
d=1

E
[
‖θk+1−d − θk−d‖2

]
≤ D

D∑
d=1

E
[
‖θk+1−d − θk−d‖2

]
. (5.23)

Applying Assumption 7 to I2, we have

I2 =E
[∥∥∇`(θl; ξkm)−∇`(θl; ξk−τkmm )

∥∥2
]

=E
[∥∥∇`(θl; ξkm)

∥∥2
]

+ E
[∥∥∇`(θl; ξk−τkmm )

∥∥2
]
≤ 2σ2

m (5.24)

where the last inequality uses Assumption 7. Plugging (5.23) and (5.24) into (5.22), it leads

to (5.19). Likewise, following the steps to (5.22), it can be verified that (5.20) also holds

true.

Lemma 20 Under Assumption 7, the parameters {hk, v̂k} of CADA in Algorithm 8 satisfy

‖hk‖ ≤ σ, ∀k; v̂ki ≤ σ2, ∀k, i (5.25)

where σ := 1
M

∑
m∈M σm.
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Proof: Using Assumption 2, it follows that

‖∇k‖ =

∥∥∥∥∥ 1

M

∑
m∈M

∇`(θk−τkm ; ξk−τ
k
m

m )

∥∥∥∥∥ ≤ 1

M

∑
m∈M

∥∥∥∇`(θk−τkm ; ξk−τ
k
m

m )
∥∥∥ ≤ 1

M

∑
m∈M

σm = σ.

(5.26)

Therefore, from the update (5.2a), we have

‖hk+1‖ ≤ β1‖hk‖+ (1− β1)‖∇k‖ ≤ β1‖hk‖+ (1− β1)σ.

Since ‖h1‖ ≤ σ, if follows by induction that ‖hk+1‖ ≤ σ, ∀k.

Using Assumption 2, it follows that

(∇k
i )

2 =

(
1

M

∑
m∈M

∇i`(θ
k−τkm ; ξk−τ

k
m

m )

)2

≤ 1

M

∑
m∈M

(
∇i`(θ

k−τkm ; ξk−τ
k
m

m )
)2

≤ 1

M

∑
m∈M

∥∥∥∇`(θk−τkm ; ξk−τ
k
m

m )
∥∥∥2

=
1

M

∑
m∈M

σ2
m ≤ σ2. (5.27)

Similarly, from the update (5.2b), we have

v̂k+1
i ≤ max{v̂ki , β2v̂

k
i + (1− β2)(∇k

i )
2} ≤ max{v̂ki , β2v̂

k
i + (1− β2)σ2}.

Since v1
i = v̂1

i ≤ σ2, if follows by induction that v̂k+1
i ≤ σ2.

Lemma 21 Under Assumption 7, the iterates {θk} of CADA in Algorithm 8 satisfy

∥∥θk+1 − θk
∥∥2 ≤ α2

kp(1− β2)−1(1− β3)−1 (5.28)

where p is the dimension of θ, β1 <
√
β2 < 1, and β3 := β2

1/β2.
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Proof: Choosing β1 < 1 and defining β3 := β2
1/β2, it can be verified that

|hk+1
i | =

∣∣β1h
k
i + (1− β1)∇k

i

∣∣ β1|hki |+ |∇k
i |

≤ β1

(
β1|hk−1

i |+ |∇k−1
i |

)
+ |∇k

i |

≤
k∑
l=0

βk−l1 |∇l
i| =

k∑
l=0

√
β3

k−l√
β2

k−l|∇l
i|

(a)

≤
(

k∑
l=0

βk−l3

) 1
2
(

k∑
l=0

βk−l2 (∇l
i)

2

) 1
2

≤ (1− β3)−
1
2

(
k∑
l=0

βk−l2 (∇l
i)

2

) 1
2

(5.29)

where (a) follows from the Cauchy-Schwartz inequality.

For v̂ki , first we have that v̂1
i ≥ (1− β2)(∇1

i )
2. Then since

v̂k+1
i ≥ β2v̂

k
i + (1− β2)(∇k

i )
2

by induction we have

v̂k+1
i ≥ (1− β2)

k∑
l=0

βk−l2 (∇l
i)

2. (5.30)

Using (5.29) and (5.30), we have

|hk+1
i |2 ≤(1− β3)−1

(
k∑
l=0

βk−l2 (∇l
i)

2

)
≤(1− β2)−1(1− β3)−1v̂k+1

i .

From the update (5.2c), we have

‖θk+1 − θk‖2 = α2
k

p∑
i=1

(
ε+ v̂k+1

i

)−1 |hk+1
i |2

≤ α2
kp(1− β2)−1(1− β3)−1 (5.31)

which completes the proof.
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5.5.2 Proof of Lemma 16

Using the smoothness of L(θ) in Assumption 6, we have

L(θk+1) ≤L(θk) + 〈∇L(θk), θk+1 − θk〉+
L

2

∥∥θk+1 − θk
∥∥2

=L(θk)− αk〈∇L(θk), (εI + V̂ k+1)−
1
2hk+1〉+

L

2

∥∥θk+1 − θk
∥∥2
. (5.32)

We can further decompose the inner product as

− 〈∇L(θk), (εI + V̂ k+1)−
1
2hk+1〉

=− (1− β1)〈∇L(θk), (εI + V̂ k)−
1
2∇k〉−β1〈∇L(θk), (εI + V̂ k)−

1
2hk〉

Ik1

−〈∇L(θk),
(

(εI + V̂ k+1)−
1
2 − (εI + V̂ k)−

1
2

)
hk+1〉

Ik2

(5.33)

where we again decompose the first inner product as

−(1− β1)〈∇L(θk), (εI + V̂ k)−
1
2∇k〉 = −(1− β1)〈∇L(θk), (εI + V̂ k−D)−

1
2∇k〉

Ik3

−(1− β1)〈∇L(θk),
(

(εI + V̂ k)−
1
2 − (εI + V̂ k−D)−

1
2

)
∇k〉

Ik4

. (5.34)

Next, we bound the terms Ik1 , I
k
2 , I

k
3 , I

k
4 separately.

Taking expectation on Ik1 conditioned on Θk, we have

E[Ik1 | Θk] = −E
[
β1〈∇L(θk), (εI + V̂ k)−

1
2hk〉 | Θk

]
= −β1〈∇L(θk−1), (εI + V̂ k)−

1
2hk〉 − β1〈∇L(θk)−∇L(θk−1), (εI + V̂ k)−

1
2hk〉

(a)

≤ −β1〈∇L(θk−1), (εI + V̂ k)−
1
2hk〉+ α−1

k−1β1L
∥∥θk − θk−1

∥∥2

(b)

≤ β1

(
Ik−1

1 + Ik−1
2 + Ik−1

3 + Ik−1
4

)
+ α−1

k−1β1L
∥∥θk − θk−1

∥∥2
(5.35)

where follows from the L-smoothness of L(θ) implied by Assumption 6; and (b) uses again

the decomposition (5.33) and (5.34).
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Taking expectation on Ik2 over all the randomness, we have

E[Ik2 ] =E
[
− 〈∇L(θk),

(
(εI + V̂ k+1)−

1
2 − (εI + V̂ k)−

1
2

)
hk+1〉

]
=E
[ p∑
i=1

∇iL(θk)hk+1
i

(
(ε+ v̂ki )−

1
2 − (ε+ v̂k+1

i )−
1
2

)]
(d)

≤E
[
‖∇L(θk)‖‖hk+1‖

p∑
i=1

(
(ε+ v̂ki )−

1
2 − (ε+ v̂k+1

i )−
1
2

)]
(e)

≤σ2E
[ p∑
i=1

(
(ε+ v̂ki )−

1
2 − (ε+ v̂k+1

i )−
1
2

)]
(5.36)

where (d) follows from the Cauchy-Schwarz inequality and (e) is due to Assumption 7.

Regarding Ik3 , we will bound separately in Lemma 17.

Taking expectation on Ik4 over all the randomness, we have

E[Ik4 ] =E
[
− (1− β1)〈∇L(θk),

(
(εI + V̂ k)−

1
2 − (εI + V̂ k−D)−

1
2

)
∇k〉

]
=− (1− β1)E

[ p∑
i=1

∇iL(θk)∇k
i

(
(ε+ v̂ki )−

1
2 − (ε+ v̂k−Di )−

1
2

)]
≤(1− β1)E

[
‖∇L(θk)‖‖∇k‖

p∑
i=1

(
(ε+ v̂k−Di )−

1
2 − (ε+ v̂ki )−

1
2

)]
≤(1− β1)σ2E

[ p∑
i=1

(
(ε+ v̂k−Di )−

1
2 − (ε+ v̂ki )−

1
2

)]
. (5.37)

Taking expectation on (5.32) over all the randomness, and plugging (5.35), (5.36), and
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(5.37), we have

E[L(θk+1)]− E[L(θk)] ≤ − αkE
[
〈∇L(θk), (εI + V̂ k+1)−

1
2hk+1〉

]
+
L

2
E
[∥∥θk+1 − θk

∥∥2
]

=αkE
[
Ik1 + Ik2 + Ik3 + Ik4

]
+
L

2
E
[∥∥θk+1 − θk

∥∥2
]

≤− αk(1− β1)E
[
〈∇L(θk), (εI + V̂ k−D)−

1
2∇k〉

]
− αkβ1E

[
〈∇L(θk−1), (εI + V̂ k)−

1
2hk〉

]
+ αkσ

2E
[ p∑
i=1

(
(ε+ v̂ki )−

1
2 − (ε+ v̂k+1

i )−
1
2

)]
+ αk(1− β1)σ2E

[ p∑
i=1

(
(ε+ v̂k−Di )−

1
2 − (ε+ v̂ki )−

1
2

)]
+

(
L

2
+ αkα

−1
k−1β1L

)
E
[
‖θk+1 − θk‖2

]
. (5.38)

Since (ε+ v̂ki )−
1
2 ≤ (ε+ v̂k−1

i )−
1
2 , we have

σ2E
[ p∑
i=1

(
(ε+ v̂ki )−

1
2−(ε+ v̂k+1

i )−
1
2

)
+(1− β1)

p∑
i=1

(
(ε+ v̂k−Di )−

1
2−(ε+ v̂ki )−

1
2

)]
≤(2− β1)σ2E

[ p∑
i=1

(
(ε+ v̂k−Di )−

1
2 − (ε+ v̂k+1

i )−
1
2

)]
. (5.39)

Plugging (5.39) into (5.38) leads to the statement of Lemma 16.

5.5.3 Proof of Lemma 17

We first analyze the inner produce under CADA2 and then CADA1.

First recall that ∇̄k = 1
M

∑
m∈M∇`(θk; ξkm). Using the law of total probability implies that

E
[
〈∇L(θk), (εI + V̂ k−D)−

1
2∇̄k〉

]
= E

[
E
[
〈∇L(θk), (εI + V̂ k−D)−

1
2∇̄k〉 | Θk

]]
= E

[
〈∇L(θk), (εI + V̂ k−D)−

1
2E
[
∇̄k | Θk

]
〉
]

= E
[∥∥∇L(θk)

∥∥2

(εI+V̂ k−D)−
1
2

]
. (5.40)
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Taking expectation on 〈∇L(θk), (εI + V̂ k−D)−
1
2∇k〉 over all randomness, we have

− E
[
〈∇L(θk), (εI + V̂ k−D)−

1
2∇k〉

]
=− E

[
〈∇L(θk), (εI + V̂ k−D)−

1
2∇̄k〉

]
− E

[
〈∇L(θk), (εI + V̂ k−D)−

1
2

1

M

∑
m∈M

(
∇`(θk−τkm ; ξk−τ

k
m

m )−∇`(θk; ξkm)
)
〉
]

(a)
= − E

[∥∥∇L(θk)
∥∥2

(εI+V̂ k−D)−
1
2

]
− 1

M

∑
m∈M

E
[
〈∇L(θk), (εI + V̂ k−D)−

1
2

(
∇`(θk−τkm ; ξk−τ

k
m

m )−∇`(θk; ξkm)
)
〉
]

(5.41)

where (a) uses (5.40).

Decomposing the inner product, for the CADA2 rule (5.7), we have

− E
[
〈∇L(θk), (εI + V̂ k−D)−

1
2

(
∇`(θk−τkm ; ξk−τ

k
m

m )−∇`(θk; ξkm)
)
〉
]

=− E
[
〈∇L(θk), (εI + V̂ k−D)−

1
2

(
∇`(θk−τkm ; ξk−τ

k
m

m )−∇`(θk−τkm ; ξkm)
)
〉
]

− E
[
〈∇L(θk), (εI + V̂ k−D)−

1
2

(
∇`(θk−τkm ; ξkm)−∇`(θk; ξkm)

)
〉
]

(b)

≤Lε
− 1

2

12αk

D∑
d=1

E
[
‖θk+1−d − θk−d‖2

]
+ 6DLαkε

− 1
2σ2

m

− E
[
〈∇L(θk), (εI + V̂ k−D)−

1
2

(
∇`(θk−τkm ; ξkm)−∇`(θk; ξkm)

)
〉
]

(5.42)

where (b) follows from Lemma 19.

Using the Young’s inequality, we can bound the last inner product in (5.42) as

− E
[
〈∇L(θk), (εI + V̂ k−D)−

1
2

(
∇`(θk−τkm ; ξkm)−∇`(θk; ξkm)

)
〉
]

≤1

2
E
[∥∥∥∇L(θk)

∥∥∥2

(εI+V̂ k−D)−
1
2

]
+

1

2
E
[∥∥∥(εI + V̂ k−D)−

1
2

∥∥∥∥∥∥(∇`(θk−τkm ; ξkm)−∇`(θk; ξkm)
)∥∥∥2]

(g)

≤ 1

2
E
[∥∥∥∇L(θk)

∥∥∥2

(εI+V̂ k−D)−
1
2

]
+

1

2
E
[∥∥∥(εI + V̂ k−D)−

1
2

∥∥∥∥∥∥∇`(θk−τkm ; ξkm)−∇`(θk; ξkm)
∥∥∥2]

(h)

≤ 1

2
E
[∥∥∥∇L(θk)

∥∥∥2

(εI+V̂ k−D)−
1
2

]
+

c

2dmax

E
[∥∥∥(εI + V̂ k−D)−

1
2

∥∥∥ dmax∑
d=1

∥∥θk+1−d− θk−d
∥∥2
]

(i)

≤1

2
E
[∥∥∥∇L(θk)

∥∥∥2

(εI+V̂ k−D)−
1
2

]
+

cε−
1
2

2dmax

D∑
d=1

E
[ ∥∥θk+1−d− θk−d

∥∥2
]

(5.43)

141



where (g) follows from the Cauchy-Schwarz inequality, and (h) uses the adaptive communi-

cation condition (5.7) in CADA2, and (i) follows since V̂ k−D is entry-wise nonnegative and∥∥θk+1−d− θk−d
∥∥2

is nonnegative.

Similarly for CADA1’s condition (5.4), we have

− E
[
〈∇L(θk), (εI + V̂ k−D)−

1
2

(
∇`(θk−τkm ; ξk−τ

k
m

m )−∇`(θk; ξkm)
)
〉
]

=− E
[
〈∇L(θk), (εI + V̂ k−D)−

1
2

(
∇`(θ̃; ξk−τkmm )−∇`(θ̃; ξkm)

)
〉
]

− E
[
〈∇L(θk), (εI + V̂ k−D)−

1
2

(
δ̃k−τ

k
m

m − δ̃km)
)
〉
]

(j)

≤Lε
− 1

2

12αk

D∑
d=1

E
[
‖θk+1−d − θk−d‖2

]
+ 6DLαkε

− 1
2σ2

m− E
[
〈∇L(θk), (εI + V̂ k−D)−

1
2

(
δ̃k−τ

k
m

m − δ̃km
)
〉
]

(5.44)

where (j) follows from Lemma 19 since θ̃ is a snapshot among {θk, · · · , θk−D}.

And the last product in (5.44) is bounded by

− E
[
〈∇L(θk), (εI + V̂ k−D)−

1
2

(
δ̃k−τ

k
m

m − δ̃km
)
〉
]

≤1

2
E
[∥∥∥∇L(θk)

∥∥∥2

(εI+V̂ k−D)−
1
2

]
+
c

2
E
[∥∥∥(εI + V̂ k−D)−

1
2dmax

∥∥∥ dmax∑
d=1

∥∥θk+1−d− θk−d
∥∥2
]

(i)

≤1

2
E
[∥∥∥∇L(θk)

∥∥∥2

(εI+V̂ k−D)−
1
2

]
+

cε−
1
2

2dmax

D∑
d=1

E
[ ∥∥θk+1−d− θk−d

∥∥2
]
. (5.45)

Combining (5.41)-(5.45) leads to the desired statement for CADA1 and CADA2.

5.5.4 Proof of Lemma 18

For notational brevity, we re-write the Lyapunov function (5.11) as

Vk := L(θk)− L(θ?)− ck
〈
∇L(θk−1), (εI + V̂ k)−

1
2hk
〉

+ bk

D∑
d=0

p∑
i=1

(ε+ v̂k−di )−
1
2 +

D∑
d=1

ρd‖θk+1−d − θk−d‖2 (5.46)

where {ck} are some positive constants.
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Therefore, taking expectation on the difference of Vk and Vk+1 in (5.46), we have (with

ρD+1 = 0)

E[Vk+1]− E[Vk] =E[L(θk+1)]− E[L(θk)]− ck+1E
[〈
∇L(θk), (εI + V̂ k+1)−

1
2hk+1

〉]
+ ckE

[〈
∇L(θk−1), (εI + V̂ k)−

1
2hk
〉]

+ bk+1

D∑
d=0

p∑
i=1

(ε+ v̂k+1−d
i )−

1
2 − bk

D∑
d=0

p∑
i=1

(ε+ v̂k−di )−
1
2

+ ρ1E
[
‖θk+1 − θk‖2

]
+

D∑
d=1

(ρd+1 − ρd)E
[
‖θk+1−d − θk−d‖2

]
(a)

≤(αk + ck+1)E
[
Ik1 + Ik2 + Ik3 + Ik4

]
− ckE

[
Ik−1

1 + Ik−1
2 + Ik−1

3 + Ik−1
4

]
+ bk+1

p∑
i=1

E
[
(ε+ v̂k+1

i )−
1
2

]
− bk

p∑
i=1

E
[
(ε+ v̂k−Di )−

1
2

]
+

D∑
d=1

(bk+1 − bk)
p∑
i=1

E
[
(ε+ v̂k+1−d

i )−
1
2

]
+

(
L

2
+ ρ1

)
E
[
‖θk+1 − θk‖2

]
+

D∑
d=1

(ρd+1 − ρd)E
[
‖θk+1−d − θk−d‖2

]
(5.47)

where (a) uses the smoothness in Assumption 6 and the definition of Ik1 , I
k
2 , I

k
3 , I

k
4 in (5.33)

and (5.34).

Note that we can bound (αk + ck+1)E
[
Ik1 + Ik2 + Ik3 + Ik4

]
the same as (5.33) in the proof

of Lemma 16. In addition, Lemma 17 implies that

E[Ik3 ] ≤− 1− β1

2
E
[∥∥∇L(θk)

∥∥2

(εI+V̂ k−D)−
1
2

]
+ (1− β1)ε−

1
2

(
L

12αk
+

c

2dmax

) D∑
d=1

E
[
‖θk+1−d − θk−d‖2

]
+(1− β1)

6DLαkε
− 1

2

M

∑
m∈M

σ2
m.

(5.48)

Hence, plugging Lemma 16 with αk replaced by αk + ck+1 into (5.47), together with (5.48),
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leads to

E[Vk+1]− E[Vk] ≤− (αk + ck+1)

(
1− β1

2

)
E
[∥∥∇L(θk)

∥∥2

(εI+V̂ k−D)−
1
2

]
+ (αk + ck+1)(1− β1)ε−

1
2

(
L

12αk
+

c

2dmax

) D∑
d=1

E
[
‖θk+1−d − θk−d‖2

]
+ (αk + ck+1)(1− β1)

6DLαkε
− 1

2

M

∑
m∈M

σ2
m

+ ((αk + ck+1)β1 − ck)E
[
Ik−1

1 + Ik−1
2 + Ik−1

3 + Ik−1
4

]
+ (αk + ck+1)(2− β1)σ2E

[ p∑
i=1

(
(ε+ v̂k−Di )−

1
2 − (ε+ v̂k+1

i )−
1
2

)]
+ bk+1

p∑
i=1

E
[
(ε+ v̂k+1

i )−
1
2

]
− bk

p∑
i=1

E
[
(ε+ v̂k−Di )−

1
2

]
+

D∑
d=1

(bk+1 − bk)
p∑
i=1

E
[
(ε+ v̂k+1−d

i )−
1
2

]
+

D∑
d=1

(ρd+1 − ρd)E
[
‖θk+1−d − θk−d‖2

]
+

(
L

2
+ ρ1 + (αk + ck+1)α−1

k−1β1L

)
E
[
‖θk+1 − θk‖2

]
. (5.49)

Select αk ≤ αk−1 and ck :=
∞∑
j=k

αjβ
j−k+1
1 ≤ (1− β1)−1αk so that (αk + ck+1)β1 = ck and

(αk + ck+1)(1− β1) ≤ (αk + (1− β1)−1αk+1)(1− β1)

≤ αk(1 + (1− β1)−1)(1− β1) = αk(2− β1).
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In addition, select bk to ensure that bk+1 ≤ bk. Then it follows from (5.49) that

E[Vk+1]− E[Vk] ≤− αk(1− β1)

2
E
[∥∥∇L(θk)

∥∥2

(εI+V̂ k−D)−
1
2

]
+ (2− β1)α2

k

6DLε−
1
2

M

∑
m∈M

σ2
m

+ (2− β1)αkε
− 1

2

(
L

12αk
+

c

2dmax

) D∑
d=1

E
[
‖θk+1−d − θk−d‖2

]
+

(
(2− β1)2

(1− β1)
αkσ

2 − bk
)
E
[ p∑
i=1

(
(ε+ v̂k−Di )−

1
2 − (ε+ v̂k+1

i )−
1
2

)]
+

(
L

2
+ ρ1 + (1− β1)−1L

)
E
[
‖θk+1 − θk‖2

]
+

D∑
d=1

(ρd+1 − ρd)E
[
‖θk+1−d − θk−d‖2

]
(5.50)

where we have also used the fact that −(αk + ck+1)
(

1−β1
2

)
≤ −αk(1−β1)

2
since ck+1 ≥ 0.

If we choose αk ≤ 1
L

for k = 1, 2 . . . , K, then it follows from (5.50) that

E[Vk+1]− E[Vk]

≤− αk(1− β1)

2

(
ε+

σ2

1− β2

)− 1
2

E
[∥∥∇L(θk)

∥∥2
]

+ (2− β1)
6α2

kDLε
− 1

2

M

∑
m∈M

σ2
m

+

(
(2− β1)2

(1− β1)
αkσ

2 − bk
)

Ak

E
[ p∑
i=1

(
(ε+ v̂k−Di )−

1
2 − (ε+ v̂k+1

i )−
1
2

)]

+

(
L

2
+ ρ1 + (1− β1)−1L

)
E
[
‖θk+1 − θk‖2

]
+

D∑
d=1

(
(2− β1)ε−

1
2

(
L

12
+

cαk
2dmax

)
+ ρd+1 − ρd

)
Bkd

E
[
‖θk+1−d − θk−d‖2

]
. (5.51)

To ensure Ak ≤ 0 and Bk
d ≤ 0, it is sufficient to choose {bk} and {ρd} satisfying (with

ρD+1 = 0)

(2− β1)2

(1− β1)
αkσ

2 − bk ≤ 0, k = 1, · · · , K (5.52)

(2− β1)ε−
1
2

(
L

12
+

cαk
2dmax

)
+ ρd+1 − ρd ≤ 0, d = 1, · · · , D. (5.53)
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Solve this system of linear equations and get

bk =
(2− β1)2

(1− β1)L
σ2, k = 1, · · · , K (5.54)

ρd = (2− β1)ε−
1
2

(
L

12
+

c

2Ldmax

)
(D − d+ 1), d = 1, · · · , D (5.55)

plugging which into (5.51) leads to the conclusion of Lemma 18.

5.5.5 Proof of Theorem 7

From the definition of Vk, we have for any k, that

E[Vk] ≥ L(θk)− L(θ∗)− ck
〈
∇L(θk−1), (εI + V̂ k)−

1
2hk
〉

+
D∑
d=1

ρd‖θk+1−d − θk−d‖2

≥ −|ck|
∥∥∇L(θk−1)

∥∥∥∥∥(εI + V̂ k)−
1
2hk
∥∥∥

≥ −(1− β1)−1αkσ
2ε−

1
2 (5.56)

where we use Assumption 7 and Lemma 20.

By taking summation on (5.51) over k = 0, · · · , K − 1, it follows from that

α(1− β1)

2

(
ε+

σ2

1− β2

)− 1
2 1

K

K∑
k=1

E
[∥∥∇L(θk)

∥∥2
]

≤E[V1]− E[VK+1]

K
+ (2− β1)

6α2DLε−
1
2

M

∑
m∈M

σ2
m +

(2− β1)2

(1− β1)
σ2pDε−

1
2
α

K

+

(
L

2
+ ρ1 + (1− β1)−1L

)
1

K

K∑
k=1

E
[
‖θk+1 − θk‖2

]
(a)

≤E[V1]

K
+ (2− β1)

6α2DLε−
1
2

M

∑
m∈M

σ2
m + (1− β1)−1σ2ε−

1
2
α

K
+

(2− β1)2

(1− β1)
σ2pDε−

1
2
α

K

+

(
L

2
+ ρ1 + (1− β1)−1L

)
p(1− β2)−1(1− β3)−1α2 (5.57)

where (a) follows from (5.56) and Lemma 21.

Specifically, if we choose a constant stepsize α := η√
K

, where η > 0 is a constant, and

define

C̃1 := (2− β1)6DLε−
1
2 (5.58)
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and

C̃2 := (1− β1)−1ε−
1
2 +

(2− β1)2

(1− β1)
Dε−

1
2 (5.59)

and

C̃3 :=

(
L

2
+ ρ1 + (1− β1)−1L

)
(1− β2)−1(1− β3)−1 (5.60)

and

C̃4 :=
1

2
(1− β1)

(
ε+

σ2

1− β2

)− 1
2

(5.61)

we can obtain from (5.57) that

1

K

K−1∑
k=0

E
[
‖∇L(θk)‖2

]
≤
L(θ0)−L(θ∗)

K
+ C̃1

M

∑
m∈M σ2

mα
2 + C̃2pσ

2 α
K

+ C̃3pα
2

αC̃4

≤L(θ0)− L(θ∗)

KαC̃4

+
C̃1α

C̃4M

∑
m∈M

σ2
m + C̃2p

σ2

KC̃4

+
C̃3pα

C̃4

=
(L(θ0)− L(θ∗))C4√

Kη
+

C1η√
KM

∑
m∈M

σ2
m +

C2pσ
2

K
+
C3pη√
K

where we define C1 := C̃1/C̃4, C2 := C̃2/C̃4, C3 := C̃3/C̃4, and C4 := 1/C̃4.

5.5.6 Proof of Theorem 8

By the PL-condition of L(θ), we have

− αk(1− β1)

2

(
ε+

σ2

1− β2

)− 1
2

E
[∥∥∥∇L(θk)

∥∥∥2
]

≤− αkµ(1− β1)

(
ε+

σ2

1− β2

)− 1
2

E
[
L(θk)− L(θ?)

]
(a)

≤− 2αkµC̃4

(
E[Vk]+ck

〈
∇L(θk−1), (εI + V̂ k)−

1
2hk
〉
−bk

D∑
d=0

p∑
i=1

(ε+ v̂k−di )−
1
2 −

D∑
d=1

ρd‖θk+1−d − θk−d‖2
)

(b)

≤ − 2αkµC̃4E[Vk] + 2α2
kµC̃4(1− β1)−1σ2ε−

1
2 + 2αkµC̃4bk

D∑
d=0

p∑
i=1

E
[
(ε+ v̂k−di )−

1
2

]
+ 2αkµC̃4

D∑
d=1

ρdE[‖θk+1−d − θk−d‖2] (5.62)

where (a) uses the definition of C̃4 in (5.61), and (b) uses Assumption 7 and Lemma 20.
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Plugging (5.62) into (5.50), we have

E[Vk+1]− E[Vk] ≤ −2αkµC̃4E[Vk] + (2− β1)
6α2

kDLε
− 1

2

M

∑
m∈M

σ2
m (5.63)

+
(2− β1)2

(1− β1)
αkσ

2E
[ p∑
i=1

(
(ε+ v̂k−Di )−

1
2 − (ε+ v̂k+1

i )−
1
2

)]
+ bk+1

p∑
i=1

E
[
(ε+ v̂k+1

i )−
1
2

]
− (bk − 2αkµC̃4bk)

p∑
i=1

E
[
(ε+ v̂k−Di )−

1
2

]
+

D∑
d=1

(bk+1 − bk + 2αkµC̃4bk)

p∑
i=1

E
[
(ε+ v̂k+1−d

i )−
1
2

]
+

(
L

2
+ ρ1 + (1− β1)−1L

)
p(1− β2)−1(1− β3)−1α2

k + 2α2
kµC̃4(1− β1)−1σ2ε−

1
2

+
D∑
d=1

(
(2− β1)ε−

1
2

(
L

12
+

cαk
2dmax

)
+ ρd+1 − ρd + 2αkµC̃4ρd

)
E
[
‖θk+1−d − θk−d‖2

]
.

If we choose bk to ensure that bk+1 ≤ (1− 2αkµC̃4)bk, then we can obtain from (5.63) that

E[Vk+1]− E[Vk] (5.64)

≤− 2αkµC̃4E[Vk] +
C̃1

M

∑
m∈M

σ2
mα

2
k + C̃3pα

2
k + 2µC̃4(1− β1)−1σ2ε−

1
2α2

k

+

(
(2− β1)2

(1− β1)
αkσ

2 − (1− 2αkµC̃4)bk

)
E
[ p∑
i=1

(
(ε+ v̂k−Di )−

1
2 − (ε+ v̂k+1

i )−
1
2

)]
+

D∑
d=1

(
(2− β1)ε−

1
2

(
L

12
+

cαk
2dmax

)
+ ρd+1 − ρd + 2αkµC̃4ρd

)
E
[
‖θk+1−d − θk−d‖2

]
.

If αk ≤ 1
L

, we choose parameters {bk, ρd} to guarantee that

(2− β1)2

(1− β1)L
σ2 −

(
1− 2µC̃4

L

)
bk ≤ 0, ∀k (5.65)

(2− β1)

(
L

12
+

c

2Ldmax

)
ε−

1
2 + ρd+1 −

(
1− 2µC̃4

L

)
ρd ≤ 0, d = 1, · · · , D (5.66)

and choose β1, β2, ε to ensure that 1− 2µC̃4

L
≥ 0.
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Then we have

E[Vk+1] ≤
(

1− 2αkµC̃4

)
E[Vk] +

(
C̃1

M

∑
m∈M

σ2
m + C̃3p+ 2µC̃4(1− β1)−1σ2ε−

1
2

C̃5

)
α2
k

≤
k∏
j=0

(1− 2αjµC̃4)E[V0] +
k∑
j=0

α2
j

k∏
i=j+1

(1− 2αiµC̃4)C̃5. (5.67)

If we choose αk = 1
µ(k+K0)C̃4

≤ 1
L

, where K0 is a sufficiently large constant to ensure that

αk satisfies the aforementioned conditions, then we have

E[VK ] ≤E[V0]
K−1∏
k=0

(1− 2αkµC̃4) + C̃5
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k=0

α2
k
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k +K0 − 2

k +K0
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C̃5
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4
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k=0

1

(k +K0)2

K−1∏
j=k+1

j +K0 − 2

j +K0

≤ (K0 − 2)(K0 − 1)

(K +K0 − 2)(K +K0 − 1)
E[V0] +

C̃5

µ2C̃2
4

K−1∑
k=0

(k +K0 − 1)

(k +K0)(K +K0 − 2)(K +K0 − 2)
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4(K +K0 − 1)2

=
(K0 − 1)2

(K +K0 − 1)2
(L(θ0)− L(θ?)) +

C̃5K

µ2C̃2
4(K +K0 − 2)2

from which the proof is complete.
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CHAPTER 6

Summary

In this final chapter, we provide a summary of the main results discussed in this thesis.

6.1 Thesis summary

This thesis focuses on developing new stochastic optimization methods to tackle two fun-

damental classes of machine learning problems: C1) stochastic nested problems, where one

subproblem builds upon the solution of others; and, C2) stochastic distributed problems,

where the subproblems are coupled through sharing data and/or variables.

In the first part of the thesis, which contains Chapters 2 and 3, the aim was to develop

sample-efficient stochastic optimization methods amenable to solve stochastic nested problems

in C1. The key take-home message there is that for a class of stochastic nested problems, our

single-loop stochastic optimization methods can achieve the same sample complexity as the

stochastic gradient descent method for classic problems without stochastic nested structures.

In Chapter 2, we introduced a new method termed SCSC for solving the class of stochastic

compositional optimization problems. SCSC runs in a single-time scale with a single loop,

uses a fixed batch size. Remarkably, it converges at the same rate as the SGD method for

non-compositional stochastic optimization. This is achieved by making a careful improvement

to a popular stochastic compositional gradient method.

In Chapter 3, we developed a new stochastic gradient estimator for bilevel optimization

problems. When running SGD on top of this stochastic bilevel gradient, the resultant
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STABLE algorithm runs in a single loop fashion, and uses a single-timescale update. To

achieve an ε-stationary point in the nonconvex case, STABLE requires O(ε−2) samples, and to

achieve an ε-optimal solution in the strongly-convex case, STABLE requires O(ε−1) samples.

In both cases, STABLE matches the sample complexity of SGD for single-level problems.

In the second part of the thesis, which contains Chapters 4 and 5, the aim was to

develop communication-efficient distributed stochastic optimization methods amenable to

solve stochastic distributed problems in C2. The key take-home message there is that by

exploiting the gradient innovations, our new distributed stochastic optimization methods can

achieve the same convergence rate but save significantly communication overhead.

In Chapter 4, we developed a class of communication-efficient variants of SGD that we

term LASG. The LASG methods leverage a set of adaptive communication rules to detect and

then skip less informative or redundant communication rounds between the server and workers

during distributed learning. To further reduce communication bandwidth, the quantized

version of LASG is also presented. Both LASG and their quantized version are simple to

implement, and have convergence rate comparable to the original SGD.

In Chapter 5, we have developed a communication-adaptive distributed Adam method

that we term CADA, which endows an additional dimension of adaptivity to Adam tailored

for its distributed implementation. CADA method leverages a set of adaptive communication

rules to detect and then skip less informative communication rounds between the server and

workers during distributed learning. All CADA variants are simple to implement, and have

convergence rate comparable to the original Adam.

6.2 Future research directions

• Distributed stochastic nested optimization. With our promising results of stochastic

nested optimization in this thesis, we plan to tackle the decentralized formulation of (1.1). We

plan to answer the following questions: Whether the decentralized optimization algorithms
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for (1.1) can achieve the same order of sample complexity obtained by decentralized SGD

for the single-level problems? If the answer is yes, what are the complexities of it? Building

upon prior work on decentralized optimization for single-level problems, we will conduct a

thorough analysis in terms of the iteration, sample and communication complexities for the

decentralized stochastic bilevel and compositional algorithms.

• Accelerated stochastic nested optimization methods. Going beyond the SGD-

based stochastic nested optimization methods, we are motivated to develop accelerated

stochastic compositional methods that incorporate the momentum and acceleration techniques

[86, 80, 31] into the update of the outer variable θ.

Starting again from the two-layer compositional optimization case, we plan to develop

accelerated compositional gradient methods relying on the following ODE

θ̈(t) = −2
√
µθ̇(t)− α∇g2(θ(t))∇g1(y(t)) (6.1)

where µ > 0 is the strong convexity constant of F (θ). This is non-trivial considering their

non-compositional counterparts because the momentum update of θ is intertwined with the

tracking variables for the inner functions. Once we develop the accelerated methods in the

strongly convex case, we will then extend it to the convex and nonconvex cases.
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