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A Bayesian Framework for Learning Words From Multiword Utterances
Stephan C. Meylan (smeylan@berkeley.edu)

Thomas L. Griffiths (tom griffiths@berkeley.edu)
Department of Psychology, University of California, Berkeley, CA 94720 USA

Abstract
Current computational models of word learning make use of
correspondences between words and observed referents, but as
of yet cannot—as human learners do—leverage information
regarding the meaning of other words in the lexicon. Here we
develop a Bayesian framework for word learning that learns
a lexicon from multiword utterances. In a set of three sim-
ulations we demonstrate this framework’s functionality, con-
sistency with experimental work, and superior performance in
certain learning tasks with respect to a Bayesian word lean-
ing model that treats word learning as inferring the meaning of
each word independently. This framework represents the first
step in modeling the potential synergies between referential
and distributional cues in word learning.
Keywords: word learning; Bayesian inference; artificial lan-
guage learning; distributional learning

Introduction
Among the many feats that comprise first language learning,
discovering the meaning of many tens of thousands of words
is among the most impressive. Indeed the size and richness of
human vocabularies is one of the major points of distinction
between the linguistic capacities of humans and those of non-
human primates (Pinker & Jackendoff, 2005). Learners start
early on this task: long before they utter their first words, tod-
dlers develop a substantive receptive vocabulary (Bergelson
& Swingley, 2012). How precisely young learners assemble
this knowledge so quickly remains an active area of investi-
gation.

One possibility is that learners are able to concurrently use
both correspondences between 1) words and referents and 2)
words and other words in order to formulate and assess hy-
potheses regarding word meaning. For example, consider the
two scenes and utterances with five novel words presented in
Figure 1. In this example, a learner could use the reliable co-
occurrence of garp and a particular referent (the depicted ani-
mal) across the two scenes to infer its meaning. Having a rea-
sonable hypothesis regarding the meaning of garp in turn en-
ables several consequent inferences on the basis of structural
regularities in English. Establishing that garp is a referential
entity (a noun within the adult syntactic system, though the
child learner may have somewhat different provisional lexi-
cal categories) means that both utterances are consistent with

the wub garp is leebing the zeb garp is slepping

Figure 1: Referential word learning (in this case “garp”) helps
the learner identify additional regularities, which in turn sup-
port further word learning.

the pattern <referential entity> is X-ing, in which X describes
some activity for that referential entity. Another regularity in
English suggests that in the Y <referential entity>, Y is prob-
ably a word that describes that following referential entity;
hence, the color of the animal in each scene is a good candi-
date for the meanings of the words wub and zek. In this way,
learning the meaning of a single word may result in a cascade
of further word learning.

Existing word learning models are well-suited to explain
how a learner might infer the meaning of the word “garp” in
the above scenes. Learners may use hypothesis elimination
(Siskind, 1996) or more graded co-occurrence information
(Smith & Yu, 2008) to discover the regular mapping from
word to referent or concept. Bayesian models are particu-
larly powerful in that they can use implicit negative evidence
for this purpose. For example, Xu and Tenenbaum (2007)
showed that kids can learn words related by a taxonomic hi-
erarchy in which a hypernym like “animal” is never incorrect
for referring to a category member like a cat. Such models
also provide a formal framework for the integration of non-
linguistic cues in word learning (Frank, Goodman, & Tenen-
baum, 2008), as well as additional category information (e.g.
a property-vs.-kind distinction) that learners may bring to the
problem (Gagliardi, Bennett, Lidz, & Feldman, 2012).

In contrast with the above models, distributional models
are naive as to the correspondence between a word like “garp”
and entities or states in the world, and instead proceed from
the observation that the co-occurrence statistics of words—
even in absence of referents—can encode rich information
about latent structure in language. As implicated in the above
example, a word’s immediate context (previous word and fol-
lowing word) constitutes strong evidence of its grammatical
category (Mintz, 2003). Other models such as the connec-
tionist network of Elman (1990) and the technique of Latent
Semantic Analysis in Landauer and Dumais (1997) show how
relationships of synonymy can be extracted from large cor-
pora by means of dimensionality reduction.

In the present work we examine how learners may use in-
formation regarding other words in the lexicon to guide the
learning of word-to-referent mappings. We begin by outlin-
ing a word learning model that learns the referent of a single
word, then show how this procedure can be generalized for
learning the referents of many different words concurrently
from multiword utterances.

Modeling Framework
To introduce our modeling framework, we first summarize a
previous Bayesian word learning model and then generalize
it to multiword utterances.
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Bayesian Word Learning
The Bayesian word learning model introduced by Xu and
Tenenbaum (2007) focused on the learning of nouns. The
learner observes a particular object x being given a word la-
bel w, and considers hypotheses h that correspond to the sets
of objects that could be given that label. The posterior proba-
bility of each h is given by

P(h|x,w) = p(x|h,w)p(h)
∑h′∈H p(x|h,w)p(h′)

, (1)

corresponding to the normalized product of the likelihood
p(x|h,w) and the prior p(h).

The likelihood term p(x|h,w) reflects whether the observed
concept x is in the set S(h)w identified by word w given hypoth-
esis h,

p(x|h,w) =


1∣∣∣S(h)w

∣∣∣ if x ∈ S(h)w

0 otherwise
. (2)

The model’s likelihood employs the reciprocal of the set
size picked out by the current word – the size principle – cor-
responding to assuming that objects are sampled uniformly
at random. The model can accommodate multiple indepen-
dent observations, in this case an ordered set of objects X and
an ordered set of words W, by modifying the likelihood to
become

P(X|h,W) = ∏
i=1

p(xi|h,wi). (3)

The prior reflects the expectations of the learner about
which hypotheses are more likely to be true. The simplest
prior is one in which each hypothesis regarding the word-to-
concept mapping (the power set of concepts) is considered
equally likely, p(h) = 1/2s, where s is the size of the hypoth-
esis space which that word could refer to.

Putting these pieces together, the probability that the word
applies to a new object is given by

P(y ∈ Sw|x) = ∑
h:y∈S(h)w

p(h|x,u), (4)

being the sum of the posterior probabilities of those hypothe-
ses under which y would be a member of the corresponding
set of objects.

Multiword Utterances
We now generalize this model for learning the individ-
ual word-to-referent mappings for nouns to learning several
word-to-referent mappings for different classes of words con-
currently from a set of utterances. This requires changing two
features of the modeling approach. First, rather than individ-
ual words referring to sets of objects, we treat each word as
referring to a subset of possible states of the world, or world-
states. In a world in which there is an object that is 1) ei-
ther red or black and 2) either round or square, there would
be exactly four possible world-states. Second, we treat the
referential content of an utterance as the set of world-states
picked out by some compositional function operating over
the relevant word-to-referent mappings in the lexicon. By de-
lineating both word and utterance meaning in terms of sets,

the model supports unintuitive—though logically possible—
meanings for both. The framework then treats the problem of
word learning as one in which the learner must find the best
lexicon to explain a set of observed world-states and corre-
sponding utterances.

A lexicon H consists of one or more word-level hypotheses
{h1, . . . ,hn}, each of which is a mapping from a word w to a
set of world-states {xn, . . . ,xm}. The posterior probability of
a lexicon given a set of utterances U and a set of observed
scenes X can be calculated according to Bayes’ rule:

p(H|X,U) = p(X|H,U)p(H)

∑H′∈H p(X|H′,U)p(H′)
. (5)

An observation from the above language consists of an ut-
terance u and a world-state x. Assuming the conditional in-
dependence of the observed utterance/world-state pairs, the
likelihood for a lexicon is the product of the probabilities of
observing the world-state xi for the corresponding utterance
ui for a given hypothesized lexicon H:

p(X|H,U) = ∏
i=1

p(xi|H,ui). (6)

The likelihood term reflects whether the world-state xi can
be referred to by utterance ui under the lexicon H. If the
world-state x is in with the set of world-states picked out by
the utterance give the current lexicon, the likelihood is calcu-
lated as the reciprocal of the number of world-states that are
picked out. Otherwise, the likelihood term is near zero. To
prevent overfitting, a small portion of the probability mass (ε)
is spread evenly across all hypotheses, yielding

p(xi|H,ui) =

(1− ε) 1∣∣∣S(H)
ui

∣∣∣ + ε
1
|S| if any xi ∈ S(H)

ui

ε
1
|S| otherwise

, (7)

where S(H)
ui is the set of world-states picked out by the utter-

ance given the current lexicon. The framework is itself agnos-
tic as to how the utterances and the lexicon pick out a partic-
ular set of world-states; depending on the assumptions about
the semantics, the lexicon may specify different sets of world-
states given an utterance. In Simulation 1 we describe one
such function that picks out a particular set of world-states
given an utterance and a lexicon. Rather that the exact form
of this compositional function, the critical contribution of this
framework is that of casting the problem of word learning as
one in which all hypothesized word meanings that comprise
a lexicon can be used in the assessment of the likelihood or
prior for a particular word-to-referent mapping.

The prior probability of the lexicon, p(H) is the product of
the prior probabilities of the hypotheses h that comprise the
lexicon H, ∏h∈H p(h). In the current case, the prior is unin-
formative: each mapping from a word to a set of world-states
is equally likely. Here the prior p(H) = 1/2s×n, where s is the
number of world-states and n is the number of words in the
lexicon. A more informative prior, such as a preference for
cluster distinctiveness in taxonomic hierarchies (Xu & Tenen-
baum, 2007) or a concept prior reflecting higher-level knowl-
edge of word categories (Gagliardi et al., 2012), could also be
implemented within this same framework.

1584



The probability that a novel world-state y can be referred
to by utterance u (consisting of one or more words) can be
computed by generalizing Equation 4,

p(y ∈ Su|u) = ∑
H:y∈S(H)

u

p(H|X,u), (8)

being the sum of the posterior probabilities p(H|X,U) for all
lexicons in which y is in the set of world-states picked out for
utterance u.

Simulations
We present three simulations to demonstrate the function and
utility of the new modeling framework. In Simulation 1, we
show how the model finds the optimal lexicon in a toy world
in which an utterance specifies a set of world-states via a sim-
ple compositional function. In Simulation 2, we show that the
framework generates predictions that are consistent with ex-
perimental work in which adults learn the meaning of words
from multiword utterances (Kersten & Earles, 2001). Finally,
in Simulation 3 we describe a word learning task in which the
new framework significantly outperforms the basic Bayesian
word learning model.

Simulation 1: Word learning in a simple toy world
First, we demonstrate how the above framework allows us
to learn the best lexicon for a simple toy language under the
assumption of intersective semantics. Whereas the likelihood
function in the simple Bayesian word learner only depends
on whether a world-state is in the set picked out by a word,
some compositional function is needed to pick out the set of
world-states given an utterance. Here we assume that this set
is specified by the intersection of world-states selected by the
words that comprise that utterance:

S(H)
ui =

⋂
w∈ui

S(h)w . (9)

Other, more elaborate semantic functions may be substituted
(e.g. a fully compositional semantics) within the framework;
in the current case we use intersective semantics as the ba-
sis for a simple demonstration of the framework that can
nonetheless capture aspects of previous work on artificial lan-
guage learning.

In the toy world, world-states vary along three binary di-
mensions: an object is either a square or a circle (pu or du),
which is either filled or unfilled (li or ri), and which moves
either side-to-side or up and down (wag or div). There are
thus eight possible states of the depicted in the scene, and
eight utterances of three words length (e.g. the utterance pu
li wag would be accompanied by a world-state of a black
square moving side-to-side). A complete set of utterances
and world-states are shown in Figure 2 along the vertical and
horizontal axes respectively.

To demonstrate the operation of the model, consider the
posterior probability of three different lexicons, each of
which maps the word wag to a different set of world-states,
after seeing eight sentences and corresponding world-states.
While each lexicon has the same prior probability under the
model, they are distinguished by their likelihood. The lexicon

that posits that wag refers to objects that move up and down
has a likelihood of 0 because that world-state is not seen con-
sistently with that utterance. The lexicon that posits that wag
refers to things that move side to side and those that are black
receives a higher probability than the first lexicon because it
is consistent with the observed data, but the likelihood is rel-
atively low in that the hypothesis picks out a larger number
of world-states. The lexicon that posits that wag refers to
objects that move side to side receives the highest posterior
probability, in that it is the most specific hypothesis that is
consistent with the observed data. Probabilities of general-
ization for each utterance to each world-state are presented in
Figure 2.

Simulation 2: Kersten and Earles (2001)
In the second simulation, we show how a model developed
within the framework presented here is capable of learn-
ing word meanings in an existing artificial language learn-
ing paradigm. Kersten and Earles (2001) describe a set of
experiments in which participants are presented with one-
to three-word utterances coupled with simple visual scenes.
Utterances encode some variable aspects of the scenes (e.g.
the type and manner of motion of insects depicted in the
scene), while many other aspects of each scene vary ran-
domly. To investigate the effects of hearing only partial ut-
terances on language learning, participants in one condition
heard a complete set of 72 three-word utterances, while those
in the other condition heard 24 single-word utterances, then
24 two-word utterances, and ultimately 24 three-word utter-
ances. All words were marked with a consistent morphologi-
cal marker, corresponding with the sentence position (e.g. all
sentence-final words, which describe the manner of motion,
terminate in the particle –tig).

After a training period of 72 utterances and scenes, a bat-
tery of two alternative forced-choice tests was used to assess
the degree to which participants had learned the meanings of
words and utterances. In the 12 isolated test trials, each par-
ticipant chose between two scenes which was the better ex-
ample of the single-word utterance test item. In 12 embedded
test trials, each participant chose between two scenes which
was the better example of a three-word utterance.

This study is an appealing task to model within our new
framework for two reasons. First, it involves learning corre-
spondences between words and many possible candidate fea-
tures in each scene. For example, participants must infer that
the background of a scene is not encoded by any words in the
lexicon. Second, Kersten and Earles assumed an intersective
semantics for their artificial language, making their experi-
ment straightforward to model.

Memory Noise We use a noise model to simulate a
learner’s imperfect memory or limited attention in observing
which words were said. Each word in the set of observed ut-
terances U is switched with an alternative word that appears
in the same sentence position at rate η, between 0 and 1. Ed-
its can be attributed to any mixture of attentional deficit (the
learner did not attend to a feature, resulting in an edit) or noisy
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Figure 2: Probability that each single word utterance (left) or multiword utterance (right) can refer to each of eight world-states
given the lexicon learned by the model in Simulation 2. Colors represent the probability of generalization, or the probability
that a given world-state can referred to by an utterance.

memory. Inference then proceeds over the set of utterances
with noise imposed, U′.
Inference To provide for maximum generality in possible
word meanings, the framework specifies that any word in the
model can refer to the power set of world-states. The hypoth-
esis space for the lexicon is thus a very large discrete space
even for the small language presented in Kersten and Earles
(2001): there are 26×8192 possible lexicons (a binary can re-
fer/can’t refer indicator for 8,192 possible world-states, for
each of 6 words.) We use a hybrid approximation strategy
to approximate the posterior in this large space by both sam-
pling from a subset of “structured” hypotheses using Gibbs
sampling as well as taking likelihood-weighted samples from
the full space.

Structured hypotheses are those that consistently refer to a
feature that is shared across states of the world (e.g. all in-
sects that have square bodies). Unstructured hypotheses ad-
ditionally include heterogenous combinations of world states
as potential word meanings, including complex meanings like
“bugs traveling upwards so long as the legs move back and
forth, and also bugs with oval bodies.” Treating meaning as
denotation—a mapping from a word to a set of states of the
world—permits the representation of both kinds of hypothe-
ses within the same formalism.

Even the structured set alone contains 26×26 hypotheses.
Consequently we use Gibbs sampling (Gelman et al., 2013)
to approximate the posterior on the structured set by sampling
from the full conditional distribution according to a Markov
chain on hypotheses. We use a burn-in period of 2500 sam-

ples, then collect 5000 samples and thin to every fifth sample.
Convergence was assessed by assessing the log likelihood on
repeated simulations. The posterior over the full hypothesis
space was estimated using likelihood-weighted samples from
the prior. Likelihood weighting is a special case of impor-
tance sampling in which the importance distribution is the
prior. To compensate for sampling from the prior distribution
rather than the posterior, probabilities are adjusted by weight-
ing by the likelihood and normalizing.

The two sampling techniques outlined above have com-
plementary weaknesses: Markov chain Monte Carlo over
the structured hypotheses omits the unstructured hypotheses,
while the likelihood weighting—in that is sampled from the
prior—finds relatively few high-value hypotheses. We mix
samples from the two distribution with weights 1−α and α.
Including the inference procedure, the model for Simulation
2 thus has three free parameters: the per-word error rate η

for the stored utterances, noise in the likelihood function ε,
and mixing weight α. For the simulations reported here, we
take 1000 samples from the prior and set α to .1 and under
the assumption that these hypotheses constitute a relatively
small proportion of the overall mass, ε to .05, and test a range
of η values between 0 and 1 and intervals of .01. We ran-
domly generate 50 experimental setups of the sort described
in Kersten and Earles (e.g. different training data and test data
in each case) for each level of noise, collect 2 sets of samples
using MCMC and likelihood weighting for each setup, and
assess each set of samples against 10 instances of the testing
battery.

Table 1: Example utterances and scene descriptions from the artificial language learning paradigm in Kersten and Earles (2001),
modeled in Simulation 2. Scene vary randomly along five additional dimensions.

Utterance Body and Legs (“Object”) Path of Movement Manner of Movement
“geseju elnugop doochatig” light oval towards stationary character legs angled forward and back
“mogaju ontigop neematig” dark rectangle away from stationary character side-to-side movement
“geseju elnugop neematig” light oval towards stationary character side-to-side movement
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Figure 3: Model performance at four levels of noise compared with adult performance found in Experiment 1 of Kersten
and Earles (2001). Participants/models choose between two scenes for a given word (isolated test trials) or a given utterance
(embedded test trials). Error bars indicate standard error of the mean.

Results Test scores from Simulation 2 (Figure 3) indicate
that the Bayesian word learning model presented here, like
human participants, is fully capable of learning correspon-
dences between words and world-states from multiword ut-
terances. The model performs at or near ceiling at low levels
of memory noise (η = 0 to η = .1), while it demonstrates
levels of performance in the range achieved by human partic-
ipants at moderate levels (η = .1 to η = .3). Memory noise
levels beyond η = .3 result in performance near chance.

To further explore the effects of staged vs. full exposure,
memory noise, word type, and test trial type we constructed
a logistic regression model to predict the outcome of indi-
vidual forced-choice trials (predicting correct vs. incorrect
choices). Manner words, embedded trials, and complete ex-
posure are treated as the reference levels for the categori-
cal predictors. The model scores consistently higher on the
testing battery when trained on the partial training utterances
(β = .118; z < 0.001; intercept = 7.04). Furthermore there is
an interaction with memory noise such that the model’s per-
formance given partial exposure is higher at higher levels of
noise (β= 5.584; z < 0.001). Like participants in Experiment
1 in Kersten and Earles (2001), the Bayesian word learning
model presented here performs better when trained on staged
exposure. This result, like Kersten and Earles’s observation
of the empirical phenomenon, is intriguing in that a partici-
pant/model in the full exposure condition should be able to
achieve the same results as one in the partial exposure con-
dition by selectively attending to just a subset of the data. It
appears that the model entertains more inclusive hypotheses
for individual words and two-word phrases than three-word
phrases, which consequently helps the model to avoid over-
fitting the lexical hypotheses. In effect, memory noise leads
the model to prefer lower-complexity lexicons, which then
generalize better upon exposure to novel test data. This con-
clusion leads to the empirically-testable prediction that the
same higher performance for partial exposure would be ob-
served among human participants if the order of staged pre-
sentation were reversed—starting with three-word utterances

and ending with single word utterances.
The model performance diverges from human behavior in

two notable ways. The model performs substantially better
on isolated test trials—in which utterances consist of a sin-
gle word—than on embedded ones (β = .774, SE = .032,
z < .001). At higher levels of noise, isolated test trials ex-
hibit higher levels of performance than embedded test trials,
as evinced by the trial type × memory noise interaction term
in the model (β = 0.918, z < .001). In contrast, Kersten
and Earles found no significant difference in people’s perfor-
mance on the two test trial types (p > .1). The model also
predicts only minor differences in performance across word
types (object, manner, and path), whereas Kersten and Ear-
les found that participants who saw staged input learned ob-
ject and path words significantly better (74.5% and 77% for
those who saw partial input, and 60% and 69.5% for those
who saw complete) than manner words (55% for partial and
49.5% for complete exposure). The explanation for this dis-
sociation is straightforward: the model presented here has no
information that would substantively distinguish word types
from one another. Performance for manner and path are lower
under staged exposure because the model observes a manner
word in 2/3 of cases and a path word in just 1/3 of cases.

Simulation 3: Multiple Objects Per Scene
A simple Bayesian word learning model that learns the mean-
ing of words independently performs equally well on the
first two simulations. In the final simulation, we demon-
strate a case in which a model using intersective semantics
within the new framework significantly outperforms the sim-
ple Bayesian model. Inference, testing procedure, and set of
observed utterances are the same as Simulation 2, though we
set η = 0 for simplicity. The critical change is that rather than
a single world-state, the model observes four different world-
states along with each utterance. The likelihood functions
in Equations 2 and 7 are altered such that they assess whether
any of the observed world-states is in the set picked out by the
utterance, following from the possibility the utterance could
refer to any of the world-states depicted. Additionally, the
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Figure 4: Model performance for the language learning ex-
periment presented in Simulation 3.

four world-states presented in each learning trial are chosen
to be very similar to one another: instead of being drawn at
random from the entire set of world-states, an observation
consists of a world-state and a corresponding veridical utter-
ance in the language, as well as three world-states that are
consistent with utterances that differ by only one word from
the veridical utterance.

Results In this case, the intersective model significantly
outperforms the base model. In the standard Bayesian model,
the set of world-states consistent with a given utterance are
those that are identified by each independent word-level hy-
pothesis. The intersective learner is more choosy: it only
considers world-states that are picked out as the intersection
of all word-level hypotheses. In this way, the intersective
learner leverages information about other words in the lexi-
con to identify a single world-state consistent with the entire
utterance. Both models perform well if the objects in a scene
are highly dissimilar because alternative word-level hypothe-
ses receive little support from the data. However, if the set
of observed world-states in each scene are all very similar to
one another, the base model entertains many hypotheses as
consistent with the data that the intersective model avoids be-
cause they do not describe any one world-state in the scene.
Performance drops to near chance on the test set for the sim-
ple model, while the intersective word learner is still able to
infer much of the lexicon (Figure 4).

Discussion
We demonstrate a powerful, extensible, and versatile
Bayesian framework for learning word-to-referent mappings
from multiword utterances. By assuming an underlying sim-
ple compositional semantics, an utterance can be treated as
more than a collection of words with independent denota-
tions. Instead, as we demonstrate in Simulation 3, the rich
information contained in multiword utterances can be lever-
aged to guide the word learning process.

The model presented here makes use of strong simplifying
assumptions regarding the nature of word meanings and the
formalism underlying semantic composition. Word meaning
is treated here as denotation, or the selection of world-states,
and leaves the matter of connotation unaddressed. For En-
glish, this is analogous to saying that word “cat” means the
set of things in the world that are cats, whereas criteria like
“four-legged,” “predatory,” and “mammal” are taken as im-

plicitly defining this set. We make the additional simplifying
assumption of intersective semantics: “black cats” would re-
fer to the set of things in the intersection of things that are
cats and things that are black. Rich compositional semantics,
rather than intersective semantics as demonstrated here, will
better approximate real-world word meanings.

Despite the shortcomings, we believe that this work is an
essential first step in understanding how learners flexibly use
information form the entire lexicon in the process of word
learning. Future work will require 1) a more elaborate model
of semantics 2) the formulation of priors that constrain the
space of preferred lexicons 3) the development of inference
methods that operate over this large hypothesis space. Fully
integrating lexical distributional information will require non-
trivial formal machinery for identifying structural categories
of words and relating them to dimensions of similarity among
world-states. However, by recasting the problem of word
learning as one of lexicon inference–and one in which the
whole utterance can be used—we take the necessary first
steps in bridging the gap between referential and distribu-
tional models of word learning.
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