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Abstract

We study the category of line operators in specific topological, or holomorphic-topological

twists of supersymmetric quantum field theories in dimension 3 and 4. More specifically, we focus

on topological A and B twist of 3d N = 4 gauge theories and holomorphic-topological twists of

4d N = 2 theories. We use geometric and representation-theoretic tools to define and study these

categories, and prove physical conjectures about these cartegories and their relations.

We study the category of line operators in the topological twist of a 3d N = 4 abelian gauge

theory Tρ. We complete the analysis of the boundary vertex operator algebras of Costello-Gaiotto,

which results in boundary VOAs VA,ρ and VB,ρ. We obtain explicit free field realizations of these

boundary VOAs and use the free field realizations to prove the isomorphism VA,ρ ∼= VB,ρ∨ , which

we interpret as the mirror symmetry statement in terms of the boundary VOAs. We then use the

theory of logarithmic intertwining operators to define braided tensor categories LA,ρ and LB,ρ of

modules of VA,ρ and VB,ρ (as derived categories). We propose that these are the categories of line

operators for the A and B twist of the 3d N = 4 theory Tρ. Using the isomorphism of VOAs,

we prove equivalence of braided tensor categories LA,ρ ' LB,ρ∨ , which we interpret as the mirror

symmetry statement in terms of the category of line operators. Finally, we show that VB,ρ admit a

sheafification over the Higgs branchMH,ρ, whose construction is related to the tangent Lie algebra.

We study the category of line operators in the holomorphic-topological twist of a 4dN = 2 gauge

theory THT [G,V ]. This category is given a geometric description by Cautis-Williams, following the

work of Kapustin, as Coh(G(O) \ RG,V ). Using the idea of formal geometry, we compute the

derived endomorphism of the unit object 1 and show that it is quasi-isomorphic to the Poisson

vertex algebra of Oh-Yagi, and that its graded super-trace reproduces the Schur index. Using

v



the same method, we compute the derived homomorphism between line bundles supported on the

miniscule orbits of GrG, in the case when G = PSL(2). We compare the graded super-trace of the

results with the defect Schur indices of Cordova-Gaiotto-Shao.
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CHAPTER 1

Introduction

1.1. Quantum Field Theory and Mathematics

The theme of this thesis is the study of mathematical structures rising from topological or

holomorphic topological quantum field theories (QFT) in 3 and 4 dimensions. The goal is to use

representation theory and algebraic geometry to pin down the precise mathematical structure of

line operators and local operators, and via the study of these line and local operators, with the

help of physical intuitions, gain new insights into the representation theory and algebraic geometry

involved.

Historically, the advancement of mathematics informs and leads to advancements in physics,

and in this sense, the flow of information had been one-sided. In the past few decades, however,

the mathematical community have seen a surge of information flowing in from the study of physics.

Constructions from quantum field theories and string theories have led to very deep conjectures

and results in mathematics.

One of the most fruitful area of such connections is that of topological quantum field the-

ories (TQFT). Since the ground-breaking work of Witten [Wit82], there has been an intensive

development in the study of such theories, and their relations to topology, geometry and represen-

tation theory. In this context, the physics intuition leads to the precise mathematical definition

of TQFT [Ati88], which becomes an essential tool for the study of low-dimensional topology. On

the other hand, the mathematical definition of TQFT allows one to express physical quantities

(correlation functions, Hilbert spaces, etc) very precisely [RT91].

Another beautiful feature of quantum field theory is the existence of dualities, which is a complex

network of relations (and many times equivalences) between different quantum field theories. One

of the first of such examples is the Electric-Magnetic duality [MO77]. Although these dualities are

usually proved in physics using non-rigorous methods (e.g., Feymann integrals, SUSY localization,
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etc), they suggest corresponding relations between the rigorous mathematical structures that one

can extract from them, which in most cases are far beyond reach without the intuition of physics.

Some such examples include:

• T-duality of 2d CFT [Bus88] and mirror symmetry [SYZ96].

• 3d mirror symmetry [IS96] and symplectic duality [BLPW16].

• S-duality of 4d N = 4 theories [MO77] and geometric Langlands program [KW06].

It is only expected that connections as such will be more and more fruitful and benefit both

mathematicians and physicists. This thesis serves as a small drop of contribution into the ocean of

works and ideas devoted to this area of research. We now come to introduce the central object of

study of this thesis: line observables in topological or holomorphic-topological field theories. Since

this is a mathematics thesis, a complete review of the theory of observables in QFT is beyond the

scope of this work. Instead, we will give a rather heuristic introduction to them, focusing on the

physical intuitions involved.

1.2. Line Operators and Local Operators

A TQFT T whose space-times manifold M is d-dimensional gives rise to a series of algebraic

structures on the set of observables in T . These algebraic structures come in different layers. The

set of local observables Ops(m) at a point m ∈ M will possess the structure of an algebra, whose

multiplication map is given by collision of points:

O1 O2 O1 ∗ O2

Since the theory T is topological, such an operation is well-defined, and defines an algebra structure

on Ops(m). Physics in fact remembers more than the multiplication, it also remembers that there

are d different directions in which the two local operators can collide. The structure of such d

different multiplications that behave coherently with respect to each other leads to the definition of

an Ed algebra. In a word, local observables in a TQFT has the structure of an Ed algebra. When

the ground field is C, such an algebra is shown to be equivalent to a commutative shifted Poisson

2



algebra with a degree 1 − d Poisson bracket. If d is odd and one only consider the underlying

algebra, then this is a Poisson algebra that is the central object in the study of symplectic algebraic

geometry.

For higher-dimensional defects, the structure of collision still exists, although there will be

less directions of collision. On the other hand, higher-dimensional observables will have higher

categorical structure. The Hom between two k-dimensional observable is the set of k−1 dimensional

observables at the intersection:

O1 O2

Hom(O1,O2)

In general, if S ⊂M is a k-dimensional subspace of M , then the set of observables Ops(S) supported

on S will have the structure of a k-category, and a compatible Ed−k multiplication, which leads to

the mathematical definition of a Ed−k k-category.

For example, when d = 2 and k = 1, the set Ops(S) is the category of line operators L in a 2d

TQFT. The Hom between two line operators is given by adjunctions of local operators:

L2

HomL(L1, L2)

L1

Composition of morphisms is given by collision of local operators on the line:

L3

L2

L1

b

a

L3

L1

a ∗ b
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The E1 structure, which is a monoidal structure, comes from collision:

L1 L2 L1 ∗ L2

When d = 3 and k = 1, the category of line operators will not only have a monoidal structure,

but multiplication in two different directions. The mathematical equivalence of this structure is a

braided tensor category (BTC), where the braiding comes from interchanging the location of lines:

L1 L2

RL1,L2

L2 L1

In this thesis, we will consider also holomorphic-topological (HT) theories defined on M ×C where

the theory is topological on M and holomorphic on C. The observables Ops(S × {z}) supported

on S ⊆ M and point-like along C will have its usual Ed−k k-category structure, but also a chiral

structure from C, which is a multiplication depending holomorphically on insertions on C, with

possible singularities forming as the insertions collide. When M is zero-dimensional, this is the

structure of a vertex operator algebra (VOA), and is the central object for a conformal field theory.

These observables of different dimensions can be related to each other. For each k, the category

Ops(Rk) has a distinguished object 1k, which is the trivial k-dimensional observable put on Rk. The

interface between two trivial k-dimensional observables is simply the set of observables supported

on Rk−1. In a word, we have:

(1.2.0.1) HomOps(Rk)(1k,1k) ' Ops(Rk−1).

4



Therefore, one can obtain structures of lower dimensional observables from higher dimensional ones,

and in principle, for a d-dimensional TQFT, the entire quantum field theory will be encoded in a d

category. However, it is in general difficult to determine the correct d category. On the other hand, if

we understand the k−1 dimensional observables, then we can recover part of the higher dimensional

data since the functor HomOps(Rk)(1k,−) gives an equivalence between the subcategory of Ops(Rk)

generated by 1k with Ops(Rk−1)−Mod. This however is usually not enough. For example, in

3d Chern-Simons theory, the category of line operators is Repq(G), and when G is reductive, the

category generated by the identity line operator is a category of vector spaces, and does not contain

other Wilson line operators in the theory. There are examples in which this functor gives rise to

interesting representations of the set of lower-dimensional observables, which lead to the bottom-up

approach of TQFT outlined in [But21]. In this thesis, we will take a top-down approach, namely

we will use the category of line operators to compute the space of local operators.

In this thesis, we consider the following two class of theories:

(1) A and B twist of 3d N = 4 theories, which are TQFT whose category of line operators

form a BTC.

(2) Kapustin (HT) twist of 4d N = 2 theories, which are HT QFT whose category of line

operators form a monoidal chiral category.

We now proceeed to introduce these theories and the approach we will take in studying the

category of line operators in them.

1.3. Line Operators in 3d N = 4 Gauge Theories

Given a complex group G and a complex representation V of G, physicists have defined a 3

dimensional quantum field theory with N = 4 supersymmetry, which will be denoted by T [G,V ].

The theory has an HT twist, which require the spacetime manifold to be locally of the form

R×C. The HT twisted theory THT [G,V ] can be further deformed to two topological theories, the

topological A twist TA[G,V ] and the B twist TB[G,V ], also called the Rozansky-Witten twist.

(1.3.0.1)

THT [G,V ]

TA[G,V ] TB[G,V ]

5



These topological theories do not yet admit a full TQFT description, but some part of their struc-

tures has now been unveiled and many beautiful mathematical statements followed.

The space of local operators in both TA[G,V ] and TB[G,V ] form (−2)-shifted Poisson algebras.

For the B-twist, this algebra is the algebra of functions on a Poisson variety called the Higgs branch,

which will be denoted by MH,G,V . This variety is defined as the symplectic reduction of T ∗V by

G. For the A-twist, the space of local operators is the algebra of functions on another Poisson

variety called the Coulomb branch, denoted byMC,G,V . For a long time, physicists have predicted

much of its properties, for example, [GMN13a,GMN13b,BDGH16,BDG17,DGGH20], but

not a precise mathematical definition, since the non-perturbative analysis is difficult. Recently, this

space has been given a precise definition in [Nak16,BFN18] using the Borel-Moore homology of an

infinite-dimensional variety, and the result there is inspired by the physical analysis of [DGGH20].

The idea of [DGGH20] is to derive the space of local operators from the category of line

operators. Let us denote by LA[G,V ] and LB[G,V ] the category of line operators for the two

topological theories. In each twisted theory, there is a distinguished object 1, the tensor identity

of L. The space of local operators, namely C[M], can be realized as the endomorphism:

(1.3.0.2) C[M] ∼= EndL(1).

It was argued based on physical ground [DGGH20] that:

(1) LA[G,V ] ∼ D-Mod (V (K)/G(K)) = Coh(Maps(D∗, V/G)dR).

(2) LB[G,V ] ∼ Coh(Maps(D∗dR, V/G)).

Here XdR denotes the de-Rham stack of X, which can be thought of as the algebra of algebraic

de-Rham complex of X. Un-packing the above definitions, the category LA[G,V ] is the category

of strongly G(K)-equivariant modules of the algebra of differential operators on V (K), or perverse

sheaves on V (K)/G(K), while the category LB[G,V ] is the category of coherent sheaves on the

moduli space of G-local systems on D∗ with a section on the associated V -bundle. The problem

is that it is difficult to utilize these definitions as the spaces involved are infinite-dimensional, and

that it is almost impossible to understand the braided-tensor structure of the categories, which is

something very crucial to the Poisson geometry of the branches M.
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In this thesis, we focus on the case when G = (C×)r a torus, and V is a representation defined

by a charge matrix ρ : Zr → Zn. The approach in this thesis uses holomorphic boundary conditions

of [CG19]. In this work, the authors defined boundary conditions of 3d N = 4 gauge theories that

are compatible with the topological A and B twists, such that the twisted theory on the boundary

is holomorphic. In this case, local operators on the boundary form a VOA.

The way to use the boundary VOA to access the category of line operators is as follows. Given

a 3d topological QFT on Cz ×Rt≥0 with a holomorphic boundary condition B at t = 0, supporting

a VOA VB, and a line operator L of the bulk theory, positioned perpendicular to the plane t = 0

and supported at z = 0. A picture is as follows:

B

L FB(L)

VB

Let FB(L) be the space of local operators that can be inserted at the junction of L and the

boundary condition B. It is acted upon by other boundary local operators, and thus is a module

for VB. Collision and braiding of line operators in the bulk are expected to be compatible with

collision and braiding of modules of the boundary VOA, which are given by intertwining operators.

Thus, one expects there to be a functor of BTC:

(1.3.0.3) FB : L → Db(VB-Mod).

This basic setup arises in Chern-Simons theory, with a holomorphic boundary condition supporting

the WZW VOA [Wit89, EMSS89]. In good cases, it is expected that this is an equivalence of

categories. According to the computations in [CCG19], it is expected that the boundary conditions

of [CG19] are good in this sense so that one can describe line operators using the boundary VOA

modules.

In this thesis, we will carefully define and study the boundary VOA VB supported on the

holomorphic boundary conditions of [CG19]. We will define a category of modules that has the

7



structure of a braided tensor category via logarithmic intertwining operators. This will lead to the

definition of the category LA,ρ and LB,ρ as braided tensor categories.

1.4. Line Operators in 4d N = 2 Gauge Theories

The set-up is similar to 3d N = 4 theories. Let G be a complex Lie group and V a rep-

resentation of G. Associated to this data is a 4 dimensional quantum field theory T [G,V ] with

N = 2 supersymmetry. In [Kap06a], the author introduced a holomorphic-topological (HT) twist,

which requires spacetime to locally take the form R2 × C, and depends topologically on R2 and

holomorphically on C. The HT twisted theory THT [G,V ] is related to the 3d theory THT [G,V ] via

dimensional reduction. More precisely, if one put the theory THT [G,V ] on a spacetime of the form

R× S1 × C and treat the theory as a 3d theory on R× C, then it is equivalent to THT [G,V ].

The vacuum of the theory THT [G,V ] goes by the name of K-theoretic Coulomb branch, and is

very important to the study of representations of affine Yangians [BFM05,BFN19,CW19,FT19].

The space of local operators in THT [G,V ] is a Poisson vertex algebra [OY20,But21], and in special

cases, can be further deformed to a VOA [BLL+15].

In this thesis, we derive this Poisson algebra using the category of line operators. This category

is given a precise mathematical definition in [CW19] for pure gauge theory (V = 0) and [CWar] for

general V , following the physical predictions of [Kap06a,Kap06b]. It is shown in [CW19,CWar]

that the category of line operators of THT [G,V ] has the structure of a chiral monoidal category.

We will show that the derived endomorphism algebra:

(1.4.0.1) End (1)

is quasi-isomorphic to the Poisson vertex algebra of [OY20,But21] as an algebra. The main tool

in this computation is formal geometry in the derived setting, which was established in the work

of [GR14,GR19,GR17]. The same method allows us to also compute the derived endomorphism

between objects supported on other miniscule orbits of GrG, and we will give one example of this

for G = PGL(2).
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1.5. Organizations and Results

1.5.1. Overview of Chapter 2. In Chapter 2, we will recall known facts, and results to be

studied about the two class of twisted theories that are considered in this thesis. For 3d N = 4

theories, we will focus on abelian gauge theories, and in particular, we will recall the content of 3d

mirror symmetry for abelian N = 4 gauge theories. We will also recall known facts about Kapustin

(HT) twist of 4d N = 2 theories, and the algebro-geometric formulation of the category of line

operators. The content of this chapter is based on [BCDN23,Niu21].

1.5.2. Overview of Chapter 3. In Chapter 3, we will define boundary VOA VA,ρ and VB,ρ

for both A and B twist of 3d N = 4 abelian gauge theory defined by a charge matrix ρ. They are

roughly defined as following:

• The VOA VA,ρ is a BRST reduction of many copies of symplectic bosons V ⊗nβγ .

• The VOA VB,ρ is an extension of an affine Lie superalgebra V (g∗(ρ)).

We construct free field realizations of the above VOAs, namely embeddings of them into exten-

sion of Heisenberg VOA by Fock modules. Using such free field realization, we show:

Theorem 1.5.1 (Theorem 3.1.10). When ρ and ρ∨ define 3d mirror dual gauge theories, then

there are isomorphisms of VOA:

(1.5.2.1) VA,ρ ∼= VB,ρ∨ VB,ρ ∼= VA,ρ∨ .

We will then define categories of modules of VA,ρ and VB,ρ, which will be denoted by CA,ρ and

CB,ρ. The bounded derived categories DbCA,ρ and DbCB,ρ will be proposed as the category of line

operators. A feature of these categories is that they are highly non-semisimple, and therefore hard to

deal with in VOA theory. We apply the idea of simple current extensions of [CKM17,CMY22a] to

show that CA,ρ and CB,ρ have the structure of braided tensor categories via the theory of logarithmic

intertwining operators. We prove:

Theorem 1.5.2 (Theorem 3.2.10). When ρ and ρ∨ define 3d mirror dual gauge theories, then

there are equivalences of braided tensor categories:

(1.5.2.2) CA,ρ ' CB,ρ∨ , CB,ρ ' CA,ρ∨

9



Analyzing the content of the category CB,ρ via simple current extensions, we will derive a

quantum group Uq(g∗(ρ)), whose representation theory is equivalent to CB,ρ. We show that

Uq(g∗(ρ))−Modfin, the category of finite-dimensional modules, has the structure of a braided tensor

category, and present the following conjecture:

Conjecture 1.5.3 (Conjecture 3.2.12). There is an equivalence of braided tensor categories:

(1.5.2.3) CB,ρ ' Uq(g∗(ρ))−Modfin.

Using this quantum group, we show that we can obtain the correct algebra of local operators

from DbCB,ρ:

Theorem 1.5.4 (Theorem 3.3.1). Let 1 be the identity object in CB,ρ, then there is a quasi-

isomorphism of algebras:

(1.5.2.4) End∗DbCB,ρ(1) ∼= C[MH,ρ].

Finally, we show that the VOA VB,ρ (and VA,ρ) admits filtered version V ~
B,ρ, which is naturally

a sheaf of VOA on the symplectic quotient T ∗V///G. The parameter ~ is interpreted as the coho-

mological grading in the category QCoh(T ∗V///G). The limit ~ → 0 of V ~
B,ρ, or in other words,

V ~
B,ρ/~V ~

B,ρ, is the boundary vertex algebra for the Dirichlet boundary condition for the HT twist

THT,ρ, and V ~
A,ρ/~V ~

A,ρ is the boundary vertex algebra for the Neumann boundary condition for the

HT twist THT,ρ. The sheaf of VOA unveils the Lie superalgebra g∗(ρ) as the shifted tangent Lie

algebra of T ∗V///G. Combined with the work of [Kuw21], we prove the following:

Theorem 1.5.5 (Theorem 3.3.23). The ~-adic VOA V ~
B,ρ is naturally a sheaf over the product:

(1.5.2.5) MH,ρ ×MH,ρ∨
∼=MH,ρ ×MC,ρ.

The content of this chapter is partially based on [BCDN23].

1.5.3. Overview of Chapter 4. In Chapter 4, we will compute the algebra of local operators

of HT twist of 4d N = 2 gauge theory defined by G and V using the category of line operators.

The category of line operators in this theory is the category of G(O) equivariant coherent sheaves

10



on RG,V , a space defined by the following Cartesian diagram:

(1.5.3.1)

RG,V V (O)

G(K)×G(O) V (O) V (K)

i

m

The category CohG(O)(RG,V ) is a chiral monoidal category, whose chiral structure follows from the

famous Beillinson-Drinfeld grassmannian [BD], and whose monoidal structure is defined via some

convolution diagrams (see equation (2.1.1.20)). The space of local operators in this case has been

computed based on physical arguments by [OY20,But21]. It is a Poisson vertex algebra VG,V built

from BRST cohomology of copies of degenerate symplectic bosons, and can be alternatively defined

as functions on the infinite jet space J∞T
∗V///G. Using derived algebraic geometry, especially the

relation between formal groups and Lie algebras [GR14,GR19,GR17], we prove:

Theorem 1.5.6 (Theorem 4.2.16). Let 1 be the identity object in CohG(O)(RG,V ), then there

is a quasi-isomorphism of algebras:

(1.5.3.2) End∗CohG(O)(RG,V )(1) ∼= VG,V .

Using the same method, we consider the computation of derived Hom between more general line

operators. We will focus on the case when G = PGL(2) and compute the derived endomorphism

of the structure sheaf of the miniscule orbit of GrG, and compare it to the physical computation

of [CGS16]. This chapter is based on [Niu21].
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CHAPTER 2

The Twisted Theories, Dualities and Their Mathematical

Significance

In this chapter, we introduce the mathematical structures in the twisted QFT that will be the

focus of the rest of the thesis. The structure of this chapter is as follows.

• In Section 2.1, we focus on the topological twists of T [G,V ]. We will introduce the Higgs

and Coulomb branches as algebraic varieties, whose space of functions are the algebra of

local operators in the topological twists. We then introduce the braided tensor category

of line operators, and the boundary VOA approach that we will take to define them

mathematically. Finally, we will introduce certain well-known VOAs that are building

blocks of the VOAs in this thesis.

• In Section 2.2, we focus on the HT twist of 4d N = 2 theory THT [G,V ]. We will introduce

the category of line operators and the space of local operators, as suggested from physical

analysis.

2.1. 3d N = 4 Theories, Boundary VOA and Braided Tensor Categories

2.1.1. Higgs and Coulomb Branches. Let G be a complex Lie group and V a complex

finite dimensional representation of G. As we have discussed in the introduction, associated to this

data is a 3d N = 4 supersymmetric field theory, whose gauge group is G, and whose matter fields

valued in the representation T ∗V of G. This theory has an HT twist, and can be further deformed

to two topological twists, as represented by the following picture:

(2.1.1.1)

THT [G,V ]

TA[G,V ] TB[G,V ]

12



The space of local operators OpsA[G,V ] and OpsB[G,V ] are E3 algebras, or (−2)-shifted Poisson

algebras. Forgetting the grading, these are commutative Poisson algebras, and give rise to two

(singular) Poisson varieties:

(2.1.1.2) MC,G,V := Spec(OpsA[G,V ]), MH,G,V := Spec(OpsB[G,V ]).

The variety MC,G,V is called the Coulomb branch and MH,G,V is called the Higgs branch. These

varieties, especially MH,G,V and its resolutions, have been on the radar of mathematicians for a

long time, and by now, their precise definitions as complex varieties are known. We will present

their definitions in the following, and then focus on examples when G = (C×)r is a torus.

The space MH,G,V is more easily defined. The variety T ∗V = V ⊕ V ∗ is symplectic with the

standard symplectic form. The action of G on T ∗V preserves the symplectic form, and there is a

moment map:

(2.1.1.3) µ : T ∗V → g∗

such that:

(2.1.1.4) µ(v, v∗)(X) = (Xv, v∗), for all X, v, v∗.

The map µ is a G-equivariant and generically flat, but in general not smooth. The zero fibre µ−1(0)

is a G-invariant subspace.

Definition 2.1.1. The Higgs branch MH,G,V is defined by:

(2.1.1.5) MH,G,V := µ−1(0)//G,

where µ−1(0)//G denotes the geometric-invariant-theory (GIT) quotient. We also denote the above

quotient by T ∗V///G, called the hyper-Kähler quotient.

Remark 2.1.2. In other words, OpsB[G,V ] = C[µ−1(0)]G is a Poisson algebra. Physics imposes

some extra gradings on C[µ−1(0)]G so that this Poisson structure is (−2)-shifted under this grading.

As we will see in Section 3.3.1, it is natural that linear functions on T ∗V are in degree 1, and the
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Poisson structure will be (−2)-shifted. Since we have no use for this grading in this thesis, we will

not mention this grading again.

Example. Consider the case when G = C× and V = C2 with weights 1 and 1. Denote by x1 and

x2 functions on C2 and yi the dual coordinates, then the map µ : T ∗V → g∗ is defined by:

(2.1.1.6) µ(x, y) =
∑

xiyi.

Thus the subspace µ−1(0) is the spectrum of the following ring:

(2.1.1.7) A = C[xi, yi]/(
∑

xiyi).

The GIT quotient is the spectrum of AC×, the invariant part of A. The invariant part is clearly

generated by xiyj subjected to the condition
∑
xiyi = 0. Thus the ring is generated by e1 =

x1y2, e2 = x2y1 and e3 = ix1y1 subjected to:

(2.1.1.8) e1e2 = x1y1x2y2 = −x2
1y

2
1 = e2

3,

and no other conditions. The spectrum of this ring is recognized as the GIT quotient C2/Z2, where

the Z2 action on C2 is given by (x, y)→ (−x,−y). Indeed, under this isomorphism, e1 is identified

with x2, e2 with y2 and e3 with xy, all of which are Z2 invariant.

The space MH,G.V has a Poisson structure inherited from T ∗V . However, the space MH,G,V

is usually not smooth. One usually defines a variantion of this space via the choice of a stability

condition, and under certain conditions, the variation will be smooth. More precisely, let ξ ∈ g∗ be

a character of G, namely:

(2.1.1.9) ξ ∈ Hom(G,C×),

A point p ∈ T ∗V is called ξ-semistable if there exists m ∈ Z>0 and a function f ∈ C[T ∗V ]G,mξ

such that f(p) 6= 0. Here f ∈ C[T ∗V ]G,mξ means that f transforms under the action of G as mξ.

Denote by (T ∗V )ssξ the subset of all semi-stable points, which is an open subvariety of T ∗V . Now
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for any subset S ⊆ T ∗V , we define an equivalence relation on S by declaring that p ∼ q:

(2.1.1.10) G · p
⋂
G · q

⋂
S 6= ∅.

Definition 2.1.3. We define the hypertoric varietyMξ
H,G,V associated to the stability condition

ξ by the quotient:

(2.1.1.11) Mξ
H,G,V :=

(
µ−1(0) ∩ (T ∗V )ssξ

)
/ ∼ .

Remark 2.1.4. We can alternatively define Mξ
H,G,V as the following projective variety, which

is much more user-friendly:

(2.1.1.12) Mξ
H,G,V := Proj(

⊕
n≥0

C[µ−1(0)]G,mξ).

Localization of global sections give a map Mξ
H,G,V →MH,G,V . Again, there is a Poisson structure

on Mξ
H,G,V that is induced from T ∗V .

Example. In our previous example, let us choose ξ = 1. In this case, the graded algebra

(2.1.1.13)
⊕
n≥0

C[µ−1(0)]G,mξ

is generated in degree 0 and degree 1 by:

(2.1.1.14) xiyj in degree 0, xi in degree 1.

The graded algebra generated by xi is the graded algebra defining the projective variety P1, and

one can show using local charts that the above projective variety is nothing but the variety T ∗P1.

The elements xiyj are the global linear functions on T ∗P1, or global sections of O(2). From the

perspective of semi-stability, we can see that (T ∗V )ssξ consists of points where xi 6= 0 for some i,

and so:

(2.1.1.15) µ−1(0) ∩ (T ∗V )ssξ = µ−1(0) \ {xi = 0}.
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The action of C∗ is free on this and the corresponding quotient is nothing but T ∗P1. This is a

minimal resolution of singularities of C2/Z2.

The varietyMξ
H,G,V has conical symplectic singularities, and is therefore a nice variety to study

from the point of view of symplectic geometry. In this case, one can completely characterize its

deformation quantizations, and use it to study representation theory of non-commutative algebras.

See for example, [BPW16, BLPW16, Los16]. When G = T is a torus, the following result also

characterizes in which situation Mξ
H,G,V is a smooth variety. Define (T ∗V )sξ the subset of (T ∗V )ssξ

where the stabilizer of p is a finite subgroup. Then there is a cone ∆(G,T ∗V ) in g∗ defined by

the property that for any ξ ∈ ∆(G,T ∗V ), (T ∗V )ssξ = (T ∗V )sξ, namely, stability and semi-stability

agree.

Theorem 2.1.5 ( [HS02] Proposition 6.2; see also [BK12] Corollary 4.13). If ξ is in the

interior of ∆(G,T ∗V ) and the action of G on T ∗V is defined by a unimodular matrix over Z, then

Mξ
H,G,V is smooth. In this case, the map Mξ

H,G,V →MH,G,V is a resolution of singularities.

The definition of the Coulomb branchMC,G,V is more involved. Its existence was predicted by

physics, and physicists have predicted much of its properties, for example, [GMN13a,GMN13b,

BDGH16,BDG17,DGGH20]. Its mathematically precise definition is given in [Nak16,BFN18].

Let us recall the definitions here. Denote by O the ring of power series C[[z]] and K the field of

Laurent series C((z)). We will denote by V (K) (respectively V (O)) the space of Laurent series (re-

spectively, power series) valued in V . Similarly, we can define G(K) and G(O). The spaces V (O)

and G(O) are affine schemes of infinite dimensions, and are called pro-schemes (see [Ras20]), and

the space V (K) and G(K) are ind-pro-schemes. The action of G on V naturally extends to an

action on the loop spaces. We define the BFN space RG,V by the following Cartesian diagram:

(2.1.1.16)

RG,V V (O)

G(K)×G(O) V (O) V (K)

i

m

Namely, RG,V is defined as the derived subscheme of G(K) ×G(O) V (O) subjected to the relation

that g(z) · v[z] ∈ V (O). The space RG,V can be alternatively described as the moduli space of

triples (P, ϕ, s) where P is a principal G torsor over D, ϕ is a trivialization of P over D∗, and s is
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a section of the associated V bundle over D that is sent, under ϕ, to a regular section of the trivial

V bundle. It is an indscheme and a G(O)-equivariant fiber bundle over GrG. Roughly speaking,

the Coulomb branch MC,G,V is defined as the spectrum of the equivariant Borel-Moore homology

HBM
G(O)(RG,V ). This is only rough because the space RG,V is infinite-dimensional and so is the group

G(O). The authors of [Nak16,BFN18] use the properties of Borel-Moore homology to essentially

cut the space into finite-dimensional ones. More precisely, for each n > 0, we have a compatible

diagram whose limit is the diagram in equation (2.1.1.16):

(2.1.1.17)

RG,V,n V (O)

G(K)n ×G(O) V (O) V (K)n

i

m

Here the subspace with integer n are defined by requiring the orders of poles to be at most n. For

each n, we can find m large enough that this diagram factors through the following:

(2.1.1.18)

RG,V,n,m V (O/zm)

G(K)n ×G(O/zm) V (O/zm) V (K)n/z
m−nV (O)

i

m

Moreover, the action of G(O) on RG,V,n,m factors through a quotient Gk := G(O/zkO). The

Borel-Moore homology is defined as the injective limit:

(2.1.1.19) HBM
G(O) (RG,V ) := lim−→

n,m,k

HBM
Gk

(RG,V,n,m).

Here the first limit of k stabilizes as the kernel Gk → Gk−1 is unipotent. The limit over m uses

the pullback functor of Borel-Moore homology and the limit over n uses the push-forward. For

a precise definition of these functors, see for example, the beautiful book [CG97]. The Borel-

Moore homology defined above has the structure of an associative algebra, defined by the following

convolution diagram (and its finite cut-off):

(2.1.1.20)

RG,V ×RG,V G(K)×RG,V ×V (K) V (O) G(K)×G(O) RG,V ×V (K) V (O) RG,V
p q m
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Here the space G(K) ×RG,V ×V (K) V (O) is the (derived) subspace of G(K) ×RG,V consisting of

(g(z), [g′(z), v[z]]) such that gg′v ∈ V (O). The maps in the above diagram is given by:

(2.1.1.21)

[g(z), g′(z)v[z]]× [g′(z), v(z)] (g(z), [g′(z), v[z]]) [g(z), [g′(z), v[z]]] [g(z)g′(z), v[z]] .

The finite cut-off of this diagram induces an algebra structure on the Borel-Moore homology

HBM
G(O) (RG,V ). For the precise definition and computation, see [BFN18]. It turns out that this

algebra structure is commutative, and the Coulomb branch is defined to be the spectrum of this

algebra.

Definition 2.1.6 ( [BFN18]). The Coulomb branch MC,G,V is defined to be an affine variety:

(2.1.1.22) MC,G,V := Spec
(
HBM
G(O) (RG,V )

)
.

In the case G = T is a torus, the (reduced scheme of the) affine grassmannian T (K)/T (O) is

nothing but a set of points, labelled by the cocharacters of T . The Coulomb branch in this case is

computed explicitly in [BFN18]. Assume the action of T on V is defined by a set of characters

{ξi}1≤i≤n. Denote by t the Lie algebra of T and t∗ the dual, and let Λ be the set of co-characters,

which is a lattice whose rank is equal to the dimension of T . Define, in addition, a function d(m,n)

on integers by:

(2.1.1.23) d(m,n) =


0 if m,n have the same sign

min(|m|, |n|) otherwise

Theorem 2.1.7 ( [BFN18], Theorem 4.1). The Coulomb branch MC,T,V is the spectrum of an

algebra over Sym(t∗) generated by symbols rλ for λ ∈ Λ with relations:

(2.1.1.24) rλrµ =
n∏
i=1

ξ
d(ξi(λ),ξi(µ))
i rλ+µ.

For quiver gauge theories, the Coulomb branches has been identified with slices in the affine

Grassmannian of G [BFN19]. For general G and V , the algebra structure of C[MC,G,V ] is com-

plicated. However, the geometric construction implies some immediate structures of C[MC,G,V ].
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For example, when G is a reductive Lie group and T the maximal torus, then there is a localiza-

tion map from C[MC,G,V ] to a localization of C[MC,T,V ]. Moreover, this localization maps to the

Weyl-invariant part of the abelian Coulomb branch. This in particular can be used to show that

the Borel-Moore homology is a commutative algebra.

Just as the case of the Higgs branch, the Coulomb branch is a Poisson variety, though the

Poisson structure is less explicit. In [BFN18], the authors constructed a filtered deformation of

C[MC,G,V ], which from the point of view of RG,V , is constructed by considering the loop group

equivariant Borel-Moore homology. More precisely, consider the C× action on RG,V given by loop

rotation. The homology group HBM
G(O)oC×(RG,V ) has the structure of a non-commutative algebra,

and the C× equivariants parameter exhibits HBM
G(O)oC×(RG,V ) as a filtered deformation, whose

associated graded is HBM
G(O)(RG,V ).

(2.1.1.25) π : HBM
G(O)oC×(RG,V )

assoc. gr.−→ HBM
G(O)(RG,V )

This induces a Poisson structure on HBM
G(O)(RG,V ) by {π(a), π(b)} = π[a, b], or limq→1

[a,b]q
q−1 where

q is the C×-equivariant parameter. The Poisson variety MC,G,V is not smooth in general, but one

can also construct resolutions ofMC,G,V using Borel-Moore homology. Suppose the action of G on

V can be extended to a group G̃ that fits into a short exact sequence:

(2.1.1.26) 1 G G̃ TF 1

where TF is a torus, usually called the flavor group. Choose a character λF of TF . Let R
G̃,V

be

the BFN space associated to G̃. Since this is a fiber bundle over Gr
G̃

, there is a map:

(2.1.1.27) π;R
G̃,V
−→ GrTF ,

where GrTF is isomorphic to the cocharacter lattice of TF . Denote by RnλF
G̃,V

the preimage of

π−1(nλF ), then one can define the partially-resolved Coulomb branch:

(2.1.1.28) MλF
C,G,V := Proj

(
lim
n≥0

HBM
G(O)(R

nλF
G̃,V

)

)
.
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Since R0λF
G̃,V

= RG,V , there is a morphism:

(2.1.1.29) MλF
C,G,V −→MC,G,V .

2.1.2. The Category of Line Operators. As mentioned in the introduction, the categories

of line operators LA[G,V ] and LB[G,V ] in the topological twists should have the structure of

braided tensor categories, and can be used to obtain the corresponding algebras of local operators:

(2.1.2.1) End∗LA[G,V ] (1) ∼= C[MC,G,V ], End∗LB [G,V ] (1) ∼= C[MH,G,V ],

such that the Poisson structure is induced from the braided tensor structure. In [DGGH20], the

authors argued on physical ground that these categories should have the following form:

(1) LA[G,V ] ∼ D-Mod (V (K)/G(K)) = Coh(Maps(D∗, V/G)dR).

(2) LB[G,V ] ∼ Coh(Maps(D∗dR, V/G)).

Here D∗ := Spec(K) is the formal punctured disk, and D := Spec(O) the formal disk. Let us try

to un-pack these definitions. The space Maps(D∗, V/G) can be thought of as the space V (K)/G(K).

Coherent sheaves on the de-Rham stack of V (K)/G(K) is also known as the category of D-modules,

modules for the algebra of differential operators on V (K)/G(K). Therefore, the expectation is that

LA[G,V ] is the category D−Mod(V (K)/G(CK)).

The space Maps(D∗dR, V/G) is the space of G-integrable systems on D∗ with an associated

section. A G-integrable system is the choice of a connection, namely an element A(z) ∈ g(K), and

a section of the associated V system is an element v(z) ∈ V (K) such that (∂z + A(z))v(z) = 0.

Therefore, the space Maps(D∗dR, V/G) is given by the following Cartesian product:

(2.1.2.2)

Maps(D∗dR, V/G) G(K) \ 0

G(K) \ (g(K)× V (K)) G(K) \ V (K)

Therefore, the expectation is that LB[G,V ] is the category CohG(K)

(
(g(K)× V (K))×V (K) {0}

)
.

The above definitions are not mathematically rigorous, partly due to a lack of technological tools

for inifnite-dimensional quotient spaces. There are, however, alternative definitions and specific
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examples in which these categories are given a rigorous definition. Before reviewing them, let us

comment on how these two categories are used to derive the Higgs and Coulomb branches.

The derivation of Coulomb branch is more straight-forward. With the identification LA[G,V ] ∼

D−Mod(V (K)/G(K)), the identity line operator is the structure sheaf of V (O)/G(O), and we would

like to compute:

(2.1.2.3) End∗D−Mod(V (K)/G(K))

(
OV (O)/G(O)

)
.

Let Y be a finite-dimensional smooth variety and i : X → Y a morphism, then the work of [CG97]

establishes the following:

(2.1.2.4) End∗D−Mod(Y ) (i∗OX) ∼= H∗BM (X ×Y X) .

If we assume that this holds in the infinite-dimensional setting, then there will be a quasi-isomorphism:

(2.1.2.5) End∗D−Mod(V (K)/G(K))

(
OV (O)/G(O)

) ∼= H∗BM
(
V (O)/G(O)×V (K)/G(K) V (O)/G(O)

)
.

We recognize that the fibre product V (O)/G(O)×V (K)/G(K)V (O)/G(O) can be defined alternatively

as G(O) \ RG,V , which leads to Definition 2.1.6.

It is less obvious how LB[G,V ] leads to the symplectic reduction. It becomes more obvious if

we replace D∗dR by S1. This is related to two different ways of understanding local systems: the de-

Rham point-of-view and the Betti point-of-view. In de-Rham setting, one remembers the connection

modulo gauge transformations, while in the Betti setting, one only remembers the monodromy. The

algebraic space Maps(D∗dR, V/G) is from the de-Rham perspective. In Betti prespective, one replace

Maps(D∗dR, V/G) by Maps(S1, V/G) = LtopV/G, where Ltop is the topological loop space [BZN12].

This leads to the expectation LB[G,V ] ∼ Coh (LtopV/G). Koszul duality implies an equivalence

Coh (LtopV/G) ' Coh (T ∗[2]V/G) [Rie19], under which the identity line operator is simply the

structure sheaf of T ∗[2]V/G. The endomorphism is simply the derived global section of the structure

sheaf of T ∗[2]V/G, otherwise known as the G.I.T quotient:

(2.1.2.6) EndLB [G,V ]

(
OT ∗[2]V/G

) ∼= Γ (T ∗[2]V/G) ∼= C[µ−1(0)]G,

which leads to Definition 2.1.1.
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It is possible to understand the resolution and deformation quantization from the perspective

of line operators as well. The choice of a co-characters for Coulomb side (or a characters for Higgs

side) gives rise to a set of objects {An} in the category of line operators L labelled by Z such that

A0 = 1, and isomorphisms:

(2.1.2.7) An ×Am ∼= An+m ∈ L

that makes
⊕
An into a commutative algebra object in L. With this algebra object, one can

construct a projective variety via:

(2.1.2.8) Proj

⊕
n≥0

Hom(1, An)

 .

Here the algebra structure on
⊕
n≥0

Hom(1, An) is defined using the multiplication structure on the

second factor. This is commutative thanks to the commutative algebra structure, which states that

the following diagram commute:

(2.1.2.9)

An ∗Am Am+n

Am ∗An

m

cAn,Am m

Here m is the multiplication map and c is the braiding. This will be a projective variety with a

morphism ontoM = Spec(End(A0)) . The resolutions in equation (2.1.1.12) and equation (2.1.1.28)

arise from this manner. In this construction, it is essential to have a braided monoidal category

structure on L, in order for the algebra object and proj to make sense.

The Poisson structure and quantization of M can also be deduced from L. A braided tensor

category has a natural action of the homotopy group S1, or in other words, a morphism S1 →

Aut(L), from the homotopy group S1 to the category of automorphisms of L. The equivariant

category LS1
is naturally a category fibred over the formal disk D, since OBS1

∼= C[[x]] for x a

commutative variable of homological degree 2 [Pre11]. The fibre of this category at 0 is the

original category L and the fibre over D∗ is the category of equivariant objects. This gives rise to
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the deformation family

(2.1.2.10) End∗LS1 (1)

of End∗L(1). The fact that this deformation is related to the Poisson structure can be seen from

the Higgs side through the work of [Rie19], who showed that the S1 action on Coh(T ∗[2]X) for a

smooth X is given by the exponential of the Poisson bivector, and the work of [BZN12] suggests

that the deformation upon taking S1-equivariants deforms C[T ∗[2]X] to differential operators on

X. Although in the present case X = V/G is not smooth, it is still plausible that such a statement

generalizes.

It is also possible to obtain the Poisson structure and quantization of the partial resolutions

from the S1-equivariant category. However, this requires much more explanation and is beyond the

scope of this thesis. We wish to take on this part of the property in a future work. Nevertheless,

these observations suggest that the knowledge of L is a great advantage in the study of M and

its symplectic geometry. Another advantage of the knowledge of L is that it helps understand the

statement of mirror symmetry, which we now recall.

2.1.2.1. 3d Mirror Symmetry and Line Operators. 3d mirror symmetry is the statement that 3d

quantum field theories can come in pair (T , T ∨), such that the two theories are equivalent, but with

a non-trivial equivalence that swaps certain sets of observables. In the context of 3d N = 4 theories

and these associated varieties, it is the statement that for certain (G,V ), there is a (G∨, V ∨) such

that:

(2.1.2.11) THT [G,V ] ' THT [G∨, V ∨], TA[G,V ] ' TB[G∨, V ∨], TB[G,V ] ' TA[G∨, V ∨].

This leads to the following remarkable property of Higgs and Coulomb branches:

(2.1.2.12) MC,G,V
∼=MH,G∨,V ∨ , MH,G,V

∼=MC,G∨,V ∨ .

Namely, the Coulomb branch, which was originally defined using Borel-Moore homology, is equal

to Higgs branch of a dual theory, defined by sympletic reduction. This is known in many cases

already, some of which include quiver gauge theories and abelian gauge theories. Let us recall here

the full detail of abelian gauge theories. For more examples, see [TGGH20]. Let T = (C×)r be a
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torus acting on V = Cn, whose action is defined by a charge matrix ρ. We view ρ as a map:

(2.1.2.13) Zr Znρ

We will assume that ρ defines an embedding and can be completed into a short exact sequence:

(2.1.2.14) 0 Zr Zn Zn−r 0
ρ τ

Let ρ∨ = τT be the transpose. Denote by T∨ the torus (C×)n−r which has an action on V via the

matrix ρ∨. It is predicted that the following two theories are mirror:

(2.1.2.15)
T [T, V ] T [T∨, V ]

If we denote the Higgs and Coulomb branch of T [T, V ] by MH,ρ and MC,ρ, then this leads to the

following identification:

(2.1.2.16) MH,ρ
∼=MC,ρ∨ , MC,ρ

∼=MH,ρ∨ ,

namely, the Coulomb branch defined using Borel-Moore homology of the BFN space RT,V is identi-

fied as a hypertoric variety. This identification is proved in [BFN18], Proposition 3.18. Moreover,

since we have a short exact sequence of groups:

(2.1.2.17) 1 T∨ (C×)n T 1

the data of a stability parameter forMH,ρ, namely ξ ∈ Hom(T,C×) is in one-to-one correspondence

with a flavor parameter. There is an isomorphism:

(2.1.2.18) Mξ
H,ρ
∼=Mξ

C,ρ

and vice versa.

Example. Consider the case when T = C× and V = C such that the weight of V under T is 1.

The dual theory has T∨ = 1 and V ∨ = C. The Higgs branch for (T, V ) is trivial:

(2.1.2.19) MH,T,V = pt
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and so is the Coulomb branch for (T∨, V ∨) since the Borel-Moore homology of a vector space is

trivial. On the other hand, from Theorem 2.1.7 we can compute the Coulomb branch of (T, V ). It

is generated over Sym(t∗) = C[E] by r1 and r−1 with relation:

(2.1.2.20) r1r−1 = E.

In the meanwhile, the Higgs branch of (T∨, V ∨) is simply T ∗C, whose algebra of functions is C[x, y].

We can identify the two via identifying r1 with x and r−1 with y, and E is identified with xy.

The advantage of the isomorphism as in equation (2.1.2.16) is that one can pass from one

description to another when studying the properties of these spaces. For example, if one would

like to study the Poisson geometry of MC , it is easier to go to the equivalent space MH since

the Higgs branch is defined by Hamiltonian reduction. On the other hand, if one would like to

study the quantization of MH , then one can move to the description of MC , and consider the

C×-equivariant homology, where the C× acts by loop rotation z 7→ qz. This coincides with the

canonical quantization ofMH under mirror symmetry. Moreover, one can then construct modules

of the quantization by constructing Borel-Moore homology of spaces with an action of RG,V . This

is the BFN Springer theory [HKW20], which is analogous to the usual Springer theory.

In terms of the category of line operators, 3d mirror symmetry would imply an equivalence of

braided tensor categories:

(2.1.2.21) LA[G,V ] ' LB[G∨, V ∨], LB[G,V ] ' LA[G∨, V ∨].

The isomorphisms from equation (2.1.2.12) is then a consequence of the equivalence of the category

of line operators. In this thesis, we focus on G = T a torus with a representation V defined by a

charge matrix ρ. Denote by LA,ρ and LB,ρ the corresponding category of line operators, we would

like to define them as braided tensor cateogries and prove equivalences:

(2.1.2.22) LA,ρ ' LB,ρ∨ , LB,ρ ' LA,ρ∨ .

Many mathematically rigorous approaches exist for the definition of this category of line op-

erators. In [HR22], the authors rigorously defined the categories for abelian gauge theories, and
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proved mirror symmetry statement as an equivalence of derived categories. A more combina-

torial approach of the A side categories was worked out in [Web19, Web22], directly inspired

by [DGGH20,BFN18]. This combinatorial approach was used in [Web16] to understand mirror

symmetry from the point of view of symplectic duality [BPW16, BLPW16]. A similar con-

struction was contained in [HKW20]. The B side categories can be defined by viewing the B

twist as a Rozansky-Witten theory on the stack T ∗(V/G), which leads to the category of coherent

sheaves on Poisson varieties MH,G,V and Mξ
H,G,V , whose E2 structure is related to the Poisson

geometry of the Higgs branch [KRS09, KR10, BZFN10, RW10, Rie19]. Recently, the work

of [GHMG22, GH22] used a 2-categorical approach to derive both the A and B side categories

for abelian gauge theories.

The approach using combinatorics [Web19, Web22] is easy to work with, but lacks braided

tensor structure. The approach using derived geometry [KRS09,BZFN10,RW10,GH22] gives

an E2 structure, but it is very abstract and difficult to work with. The de-Rham approach of [HR22]

is very impressive and most directly relates to [DGGH20], but it is unlikely any E2 structure exists

in this context. In the following, we will describe an algebraic approach to this problem for abelian

gauge theories, where both the categorical content and braided tensor structure can be expressed

explicitly. We hope to compare this approach to other approaches in a future work.

2.1.3. Boundary Conditions and VOA. The approach we will take for this problem uses

holomorphic boundary conditions of [CG19]. In this work, the authors defined boundary conditions

of 3d N = 4 gauge theories that are compatible with the topological A and B twists, such that the

twisted theory on the boundary is holomorphic. In this case, local operators on the boundary form

a vertex operator algebra. The work of [CG19] then partially analyzed these boundary VOAs, and

in [CCG19], they were used to derive the Higgs and Coulomb branch algebras.

For a 3d N = 4 gauge theory defined by G and V , [CG19] considered two types of boundary

conditions, one compatible with each twist.

(1) There is a Neumann-like boundary condition N which can be deformed to be compatible

with the bulk A twist. In order to cancel a boundary gauge anomaly, the Neumann

boundary condition must be enriched with extra boundary matter. There may be multiple

ways to do this One canonical choice is to add 2d complex, chiral fermions transforming
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in the representation V . The corresponding boundary VOA for the A-twisted TA[G,V ] is

then described as the BRST reduction of a beta-gamma system valued in V tensored with

a V -valued bc system. Schematically,

(2.1.3.1) VAG,V := H∗BRST

(
g, (βγ)V ⊗ (bc)V

)
= H∗

(
(βγ)V ⊗ (bc)V ⊗ (bc)g, QBRST

)
.

(2) There is a Dirichlet-like boundary condition D which can be deformed to be compatible

with the topological B twist. The corresponding VOA has a perturbative description as

an affine Kac-Moody algebra

(2.1.3.2) VB,pert
G,V := ĝG,V

based on a Lie superalgebra gG,V whose even part is T ∗g and whose odd part is T ∗V . There

is no boundary gauge anomaly to worry about, since the Dirichlet boundary condition

breaks gauge symmetry to a global symmetry. There is instead a boundary ’t Hooft

anomaly [DGP18], which plays a role in determining the level of the Kac-Moody algebra

(2.1.3.2) (see [Gar22] for a derivation).

This description is only perturbative, because it does not take into account the con-

tribution of boundary monopole operators. It is still not known how monopole operators

modify the boundary VOA in general, but in the case of abelian gauge theories, we will

show that it amounts to a simple current extension of the affine Lie superalgebra ĝG,V .

We will justify this by comparing the index of the extended VOA with the index formula

found in [DGP18].

As stated in the introduction, a boundary condition of this form gives rise to a functor:

(2.1.3.3) FB : L → Db(VB-Mod).

This basic setup arises in Chern-Simons theory, with a holomorphic boundary condition sup-

porting the WZW VOA [Wit89,EMSS89]. In that case, the functor (2.1.3.3) is known to be an

equivalence of braided tensor categories. (Moreover, since the categories involved are semisimple,

it is not necessary to take the derived category on the RHS.)
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It is expected that the holomorphic boundary conditions of [CG19] in 3d N = 4 gauge theories

are also rich enough for the functor (2.1.3.3) to be an equivalence. However, making sense of such

a statement requires being more precise about what models of bulk line operator categories one

intends to consider, as well as what categories of VOA modules one intends to consider. In the

following sections, we will specify the later, namely, we will define the vertex operator algebra

explicitly and define a category of modules for the boundary VOA which will have the structure

of a braided tensor category via intertwining operators. We will give a quick comment on what

physical line operators the objects in this category corresponds to, thus partially justifying our

definition using boundary VOAs. We will justify our definition further by showing that the derived

endomorphisms of objects in this category correctly reproduces the Higgs and Coulomb branch

algebras.

2.1.3.1. Braided Tensor Categories from VOA Representations. Let us begin by recalling the

definition of a vertex algebra [FBZ04]. A vertex algebra is a 1
2Z-graded (called conformal grading)

vector space V together with the following set of data:

• A vacuum vector Ω ∈ V .

• A state-operator correspondence Y : V ⊗ V → V ((z)) that respects conformal grading.

• A translation operator T : V → V of degree 1.

that satisfies the following conditions:

(1) The vacuum acts as identity Y (Ω, z)v = v.

(2) Locality condition, which is the statement that for v1, v2, v3 ∈ V , the series:

(2.1.3.4) Y (v1, z)Y (v2, w)v3 − Y (v2, w)Y (v1, z)v3

is a linear combination of derivatives of δ(z − w). Alternatively, this is usually expressed

in terms of operator product expansion (OPE):

(2.1.3.5) Y (v1, z)Y (v2, w) ∼
∑
n≥−N

Y (un, w)

(z − w)n
.

(3) The translation operator T acts as derivatives on Y :

(2.1.3.6) [T, Y (v1, z)]v2 = ∂zY (v1, z)v2.
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A vertex algebra is a vertex operator algebra (VOA) if it has a conformal element ω ∈ V ,

such that
∮

dzY (ω, z) is the translation operator T and
∮

dzzY (ω, z) acts as multiplication by

conformal grading. Here and in what follows, the notation
∮

dzA(z) of a formal Laurent series

A(z) =
∑
Anz

−n−1 is equal to the residue Resz=0A(z) = A0. We usually denote Y (ω, z) by L(z).

This in particular means the following OPE:

(2.1.3.7) L(z)v(w) ∼ deg(v)v(w)

(z − w)2
+
∂v(w)

z − w
+ · · ·

where deg(v) is the conformal degree of v.

Let V be a VOA. A module (usually called a generalized module) of V is a vector space M

together with a map YM : V ⊗M →M((z)) that satisfies locality with Y and compatibility condition

with the action of L0 and L−1. We will not repeat it here. A more down-to-earth way to think

about this is as follows. Given a VOA V , one can define an algebra U(V ) called the universal

enveloping algebra of V , that is generated by Fourier modes of Y (v, z) (namely vn ∈ End(V ) such

that Y (v, z) =
∑
vnz
−n−1) whose commutation relation is determined by the OPE (see [FBZ04]

for details). One can show that a module of the VOA is the same as a smooth module of the

algebra U(V ), where by smooth we mean that for every m ∈ M there eixsts N ∈ N such that the

larger than N Fourier modes act trivially on m.

Let V be a VOA and C be an abelian category of generalized modules of V . By the work

of Huang-Lepowsky-Zhang [HLZ14, HLZ10a, HLZ10b, HLZ10c, HLZ10d, HLZ10e, HLZ11a,

HLZ11b], summarized nicely in [ALSW21], that under certain conditions on V and C, there is a

“tensor-product” structure on C, where tensor product of two modules is defined as the universal

object of logarithmic intertwining operators. A logarithmic intertwining operator from M ⊗N to

P is a map:

(2.1.3.8) Y : M ⊗N → P{z}[log z],

where P{z}[log z] is the space of formal series of the form
∑

s∈C,t≥0 ps,tz
−s−1 log(z)t, such that Y

satisfies roughly the same set of properties as the state-operator correspondence Y . The logarithmic

terms are usually a sign that the category of modules of V is non-semisimple, and the action of

the conformal element L0 has Jordan blocks. The fusion product M ×V N is a (unique, if exists)
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module of V , together with a universal intertwining operator Y : M ⊗N →M ⊗V N{z}[log z] such

that for any logarithmic intertwiner as above, there is a module map M ×V N → P such that the

diagram commutes:

(2.1.3.9)

M ⊗N M ×V N{z}[log z]

P{z}[log z]

The following is an important theorem of HLZ regarding the braided tensor category structure

from intertwining operators.

Theorem 2.1.8 (See Proposition 2.1 of [ALSW21]). Let V be a VOA and C be an abelian

category of modules of V containing V . Suppose the following conditions hold:

(1) For any two objects M,N in C, a universal object M ×V N exists in C, with intertwining

operator YM,N .

(2) For any three objects M,N and P , the following two expressions converge in |z1| > |z2| >

|z1 − z2| > 0

(2.1.3.10) YM,N×V P (m, z1)YN,P (n, z2)p, YM×V N,P (YM,N (m, z1 − z2)n, z2)p

regardless of the choice of branch-cuts for log(z1), log(z2) in the completion of (M ×V

N)×V P and M ×V (N ×V P ) respectively, and either one of them can be extended to the

domain of the other.

Then C has the structure of a braided tensor category, such that:

• The vacuum module V is the unit object, and M ×V N is the monoidal product.

• The braiding is given by the map cM,N : M ×V N → N ×V M induced from the following

correspondence of intertwining operators:

(2.1.3.11) Y(m, z)n 7→ Y ′(n, z)m := ezL−1Y(m, eπiz)n.

• There is a twist given by θ = e2πiL0.
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• The associativity morphism is given by a uniquely defined Az1,z2M,N,P such that:

(2.1.3.12) Az1,z2M,N,PYM,N×V P (m, z1)YN,P (n, z2)p = YM×V N,P (YM,N (m, z1 − z2)n, z2)p.

In general, it is very hard to verify that a category C satisfies the above two properties. However,

many stronger properties have been established such that if a category of VOA modules satisfies

them then it satisfies the properties of HLZ. We mention the following criterion from [CY21], that

is relevant for the discussion of this paper.

Theorem 2.1.9 (See [CY21] Theorem 3.3.4). Let C the category of generalized modules of V

that are of finite length. Assume that:

(1) Every object in C is C1 co-finite (see [CY21], Definition 2.1.5).

(2) C is closed under taking restricted-dual (see [CY21], Remark 2.1.3 and the following

discussions).

Then C has the structure of a braided tensor category.

This is a powerful theorem that ensures a large class of VOA representation theories have the

structure of braided tensor categories. This will include the affine Lie superalgebra V (g∗(ρ)) that

we will introduce in Chapter 3. However, in practice, especially in the applications considered in

this thesis, the category C will not satisfy the above, especially the first item. To resolve this issue,

we will use the idea of vertex operator algebra extensions [CKM17,CMY22a]. We will recall the

idea in Chapter 3. Roughly speaking, in many cases, the VOA V contains a subVOA W whose

category of modules satisfies the above properties and therefore has the structure of a BTC. If we

can realize V as an algebra object in the category W−Mod, then we obtain a category of modules

of V , namely V−Mod(W−Mod), that has the structure of a braided tensor category. We will apply

this on VA,ρ and VB,ρ, and use this VOA machinery to define BTC of line operators.

2.2. 4d N = 2 Theories, Poisson Vertex Algebra and the Category of Line Operators

2.2.1. 4d N = 2 Theories and K-theoretic Coulomb Branch. Let G be a reductive Lie

group and V a finite-dimensional representation of G. Associated to this data is a 4 dimensional

N = 2 theory T [G,V ]. In [Kap06a], the author introduced a holomorphic-topological (HT) twist,
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which requires spacetime to locally take the form R2 × C, and depends topologically on R2 and

holomorphically on C. The twisted theory THT [G,V ] can be further deformed to a fully topological

A twist (also called the Donaldson twist). This theory is closely related to the 3d N = 4 theory

T [G,V ] through dimensional-reduction, which we will give a quick comment later.

The theory THT [G,V ] has many beautiful connections to mathematics, including representation

theory of affine algebras, topology, integrable systems and enumerative geometry. In this thesis,

we focus on the aspect of representation theory. The space of vacua of the HT twist of THT [G,V ]

is known mathematically as the K-theoretic Coulomb branch, an object defined very similarly to

the Coulomb branch MC,G,V , and studied in [BFM05,BFN19,CW19,FT19] and many others.

As the nomenclature suggests, the K-theoretic Coulomb branch MC,G,V is defined as the G(O)-

equivariant K theory of RG,V . More precisely, let RG,V,m,n and Gk be as in Section 2.1.1, which are

finite-dimensional derived schemes and finite type affine group schemes. Denote by KGk(RG,V,m,n)

the vector space of K0 group of the category of coherent sheaves Coh(RG,V,m,n/Gk). Since the

maps connecting the spaces RG,V,m,n are flat morphisms or closed embeddings, the corresponding

maps (pullback for m, push-forward for n, and restriction functor for k) all preserves coherence

and are in fact exact. One obtain the K group KG(O)(RG,V ) as the colimit:

(2.2.1.1) KG(O)(RG,V ) := lim−→
m,n,k

KGk(RG,V,m,n).

The same convolution diagram in equation (2.1.1.20) can be applied to KG(O)(RG,V ), giving the

K group KG(O)(RG,V ) the structure of a commutative algebra. The K-theoretic Coulomb branch

MC,G,V is defined as the spectrum of this ring:

(2.2.1.2) C[MC,G,V ] ∼= KG(O)(RG,V ).

This variety as a Kähler manifold was first studied in [SW94] and goes under the name of “Seiberg-

Witten curve”, and the algebraic formulation above uses a specific complex structure compatible

with the HT twist. The Coulomb branch MC,G,V admits a family of deformation by considering the

C×-equivariant K theory AqG,V := KG(O)oC×(RG,V ), where q is the parameter keeping track of C×-

equivariance. These are associative algebras and when q = 1, the algebra AqG,V |q=1 is commutative
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and is C[MC,G,V ]. The deformation to AqG,V corresponds to, in physical languages, turning on the

symmetry for the rotation in the complex plane.

When G = T is a torus and V = 0, the ring AqG,V = AqT,0 is easy to describe. It is generated

by D±i and Λ±i for 1 ≤ i ≤ dim(T ) with commtuation relation:

(2.2.1.3) DiΛj = qδijΛjDi.

This is called the algebra of abelian difference operators. Here D±i corresponds to structure sheaf

of the T (O) orbits in T (K)/T (O) which are labelled by co-characters Hom(C×, T ), and Λi are

characters of T , labelling representations of T . When q = 1, the above becomes commutative and

the algebra AqT,0/(q − 1) is the algebra of functions on the variety T × T∨, where T∨ is the dual

group of T . Note that in this case the Coulomb branch for the 3d theory MC,T,0 is the variety

t× T∨ = T ∗(T∨). The algebra AqT,0 is thus a universal deformation of the Poisson variety T × T∨.

When G is a reductive Lie group and T the maximal torus, just like the case of MC,G,V , there is

a localization map:

(2.2.1.4) AqG,V −→
(
AqT,0

)
loc

where
(
AqT,0

)
loc

is the localization of AqT,0 along root hyperplanes of G. This in particular implies

that AqG,V /(q − 1) is commutative. For classical groups, the map above is explicitly described

in [FT19].

For a general reductive group G, the non-commutative ring AqG,V is called a shifted affine

Yangian, whose representation theory is closely related to representations of quantum groups and

affine Lie algebras. Just as in the case of 3d Coulomb branch, one can construct modules of AqG,V
by constructing spaces with an action by the convolution space G(O) \ RG,V . This is an analog of

BFN Springer theory [HKW20] in the K-theory setting. We hope to exploit this more in future

works.

2.2.2. Poisson Vertex Algebra and Line Operators. Let OpsG,V denote the space of

local operators in the HT twist THT [G,V ]. It is physically defined as the cohomology of the
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HT supercharge acting on the full space of local operators in the untwisted theory. It has a Z-

valued cohomological grading ‘F ’, and an additional non-cohomological 1
2Z-valued grading ‘J ’,

corresponding to rotation in the holomorphic plane (mixed with an SU(2) R-symmetry). This

space has been well studied from other perspectives. In particular:

• Its graded Euler character is the “Schur index” of TG,V ,

(2.2.2.1) χq OpsG,V := TrOpsG,V (−1)F qJ = ISchur[TG,V ] .

The Schur index, introduced in [GRR+11,GRRY13], is a particular specialization of the

4d N = 2 superconformal index [KMMR07,Röm06]; though it makes sense even when

a 4d N = 2 theory is not conformal. Here and what follows, we will use q as a formal

variable counting the weight of the loop rotation.

• The space OpsG,V itself is the vacuum module of a Poisson vertex algebra VG,V . This

Poisson vertex algebra was constructed for general 4d N = 2 theories from a more physical

perspective by Oh and Yagi [OY20], and from a mathematical perspective by Dylan

Butson [But21], as a BRST reduction of classical beta-gamma algebras valued in T ∗V .

When TG,V is superconformal — meaning quadratic indices satisfy C2(N) = C2(g) — the

vertex algebra can be further quantized by introducing an Omega background, yielding a

VOA V~G,V . These VOA’s were first introduced in superconformal theories by Beem-Lemos-

Liendo-Peelaers-Rastelli-Rees [BLL+15]. However, the work of [BLL+15] did not define

this vertex algebra from the point of view of local operators in TG,V . The fact that the two

pictures coincide is a nontrivial result, and can be explained using a ”cigar-like” reduction.

This is explained in [OY19] and [Jeo19] from a physical perspective and [But21] from

a mathematical perspective. This deformation does not alter the underlying vector space

of the vacuum module, so

(2.2.2.2) OpsG,V ' VG,V ' V~G,V .

34



In essence, the Poisson vertex algebra VG,V is the algebra of functions on the jet space J∞(T ∗(V/G)),

and the Poisson structure of the jet space induces the Poisson structure on VG,V . The relation be-

tween this Poisson vertex algebra and the Poisson geometry of T ∗V/G is explained by the “cigar-

reduction” mentioned above: that the cigar reduction of THT [G,V ] is THT [G,V ] with the Neumann

boundary condition, and that under the HT twist, the space of boundary local operators is the

Poisson vertex algebra of J∞(T ∗(V/G)). This is of course non-rigorous mathematically as it is diffi-

cult to analyze the jet space J∞(T ∗(V/G)). Nevertheless, these relations between physical theories

give guidance to the study of the Poisson vertex algebra VG,V .

We would like to understand this algebra of local operators VG,V from the point of view of

the category of line operators in the HT twist of a 4d N = 2 theory. Physically, the objects of

this category are line operators supported on a line in the topological R2 plane and the origin of

the holomorphic C plane. The category contains half-BPS Wilson-’t Hooft lines, as well as more

general quarter-BPS line operators. The category was given a geometric description by Cautis and

Williams, in [CW19] for pure gauge theory (V = 0) and [CWar] for general V , following the

physical predictions of [Kap06a, Kap06b]. This category is described as the category of G(O)-

equivariant coherent sheaves on RG,V , denoted by Coh(GO \RG,V ). As we have seen before, the K

theory of this category, together with its convolution product, gives the algebra of functions on the

Coulomb branch of T 4d
HT [G,V ]. The multiplication on the K group should be the de-categorification

of a monoidal structure on Coh(GO \RG,V ), defined again using the convolution diagram of RG,V ,

such that if 1 is the tensor identity of this category, then:

(2.2.2.3) OpsG,V ' EndCoh(GO\RG,V )(1) .

This expectation is in fact not easy to work with. It is of course not too complicated to describe

the limit of the K group as in equation (2.2.1.1), since one only concerns with the limit as a vector

space. On the other hand, if one wants to replace the entries in equation (2.2.1.1) by categories:

(2.2.2.4) Coh(GO \ RG,V ) := lim−→
m,n,k

Coh(Gk \ RG,V,m,n)

then one needs to specify in which sense the limit is taken. Over the last few decades, much effort has

been made towards using the techniques of derived algebraic geometry to rigorously define aspects
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of the physical quantum field theories, and this is one example of this. The analysis is made possible

with the invention of ∞-categories and derived algebraic geometry [Lur04, Lur09]. This is not

a work in which we could give the full definitions of a ∞-category and algebraic geometry in this

context, and we are nowhere close to being an expert at this subject. We will simply comment

that the rough idea of ∞-category as in [Lur09] is to view a category with all the higher data

(functors and natural transformations, etc.) as a topological space built out of simplices. Objects

are understood as points, morphisms as lines (1-simplex), natural transformation of morphisms as

triangles (2-simplex) and so on. Then a functor between infinity categories is simply a functor

between these simplices, and a continuous functor is a functor that is continuous as a map between

spaces. In this context, one can simply define the limit of categories as limit of spaces, thus

encompassing all the higher structures in one go. Limit in this sense behave much better than the

limit of triangulated categories or abelian categories. One can recover the abelian or triangulated

category by taking the heart with respect to a t structure.

The space RG,V and the quotient G(O)\RG,V are examples of DG ind-schemes: namely stacks

that can be represented by a colimit of schemes. Using derived geometry, one can define the category

of sheaves as a colimit. The structure of a DG indscheme and its category of sheaves are studied

in [GR14, GR19, GR17] for locally almost finite type, and [Ras20] in general. In Chapter 4,

we will use the machinery of [GR14,GR19,GR17,Ras20] to define the category of ind-coherent

sheaves on RG,V /G(O). The monoidal structure is carefully defined in [CW19,CWar], which will

indicates to us the identity object 1 in Coh(G(O) \ RG,V ). We will then compute explicitly the

space EndCoh(GO\RG,V )(1) and show that it coincides with VG,V as a commutative algebra.

In [But21], the author showed that the category of line operators in HT twist has the structure

of a factorization E1-category ( [But21, Section 5.11]). This structure should give rise to the

structure of an E2 factorization algebra to OpsG,V , which is the aforementioned Poisson vertex

algebra structure. We hope that the explicit computation done in this thesis, together with the

procedure outlined in [But21] can help rigorously produce factorization algebras from the category

of line operators.

2.2.3. Line Operators and Schur Index. The relation between local operators and line

operators goes beyond the unit object in Coh(G(O) \ RG,V ). It is expected that for any pair of
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objects L1, L2 in Coh(G(O) \RG,V ), there is a graded vector space HomRG,V /G(O)(L1, L2), graded

by F and J with finite-dimensional graded pieces, that is quasi-isomorphic to the space of local

operators at the junction between the two line operators L1 and L2. Namely, we expect:

(2.2.3.1) OpsG,V (L1, L2) ∼= HomRG,V /G(O)(L1, L2)

such that the natural morphism HomRG,V /G(O)(L1, L2)⊗HomRG,V /G(O)(L2, L3)→ HomRG,V /G(O)(L1, L3)

corresponds to collision of line operators OpsG,V (L1, L2)⊗OpsG,V (L2, L3)→ OpsG,V (L1, L3).

Although the space of local operators OpsG,V (L1, L2) is generally not known, physicists have

computed its graded Euler character using supersymmetric localization technique [CGS16]. More

specifically, let G be a reductive Lie group with maximal torus T . As we have seen, there is a

localization map KG(O)oC×(RG,V ) → KT (O)oC×(GrT )loc, which is an algebra embedding. Recall

here subscript “loc” denotes the localization along root hyperplanes. The idea of the computation

in [CGS16] is that there exists a specific function Π(q, s,m) called the half index, which is a formal

series in q and s that depends on m, where s is a coordinate on T and m is a co-character of T .

Moreover, the localized ring KT (O)oC×(GrT )loc, and therefore KG(O)oC×(RG,V ), acts on Π(q, s,m)

as abelian difference operators. Using this action, one obtain a half index of a line operator L as

(LΠ)(q, s,m). The defect Schur index, namely the graded Euler character of OpsG,V (L1, L2), is

computed as follows:

(2.2.3.2) χq(L1, L2) := TrOpsG,V (L1,L2)(−1)F qJ =
∑
m

∫
T

[ds]m(L1Π)(q, s,−m)(L2Π)(q, s,m).

Here on the RHS, the integral measure [ds]m is a certain shifted Haar measure w.r.t the co-character

m. Unfortunately the mathematical origin of this formula is unknown to the author, we therefore

leave the precise definition of the above formula, as well as its mathematical explanation, to a

future work. In the present work however, we apply the method that we developed to a special

class of line operators.

More specifically, when G is semi-simple, the affine grassmannian GrG is reduced, and its

connected components are labelled by the miniscule dominant coweights of G (see Section 4.1.1 for

more details). For each miniscule co-weight µ, the connected component GrµG has a unique closed

smooth G(O) orbit, which we denote by GrG,µ. This is called the miniscule orbit corresponding
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to µ. The method developed in this thesis allows us to compute Hom(L1, L2) when L1 and L2 are

vector bundles over the miniscule orbit GrG,µ. In Section 4.2.3, we will focus on the case when

G = PSL(2) and µ the unique non-zero miniscule orbit, and compute the Hom space Hom(L1, L2)

for specific line bundles L1 and L2. We compare our results to the results of [CGS16].
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CHAPTER 3

From Vertex Operator Algebra to Geometry of Branches in 3d

N = 4 Abelian Gauge Theories

In this chapter, we study the category of line operators for A and B twist of 3d N = 4 abelian

gauge theories, using boundary VOA approach. For a charge matrix ρ : Zr → Zn which we assume

throughout to induce a short exact sequence as in equation (2.1.2.14). We will denote by Tρ the 3d

N = 4 theory T [T, V ] defined by ρ, and by TA,ρ and TB,ρ the topological twists. The structure of

this chapter is as follows:

• In Section 3.1, we give mathematically-rigorous definition of VA,ρ and VB,ρ, and provide

free-field realizations of them, i.e., embeddings of these VOAs into lattice VOAs. We also

define Morita-equivalent VOAs ṼA,ρ and ṼB,ρ. We prove the isomorphism VA,ρ ∼= VB,ρ∨

and ṼA,ρ ∼= ṼB,ρ∨ which is the mirror symmetry statement for the boundary VOAs.

• In Section 3.2, we give a definition of abelian categories CA,ρ and CB,ρ which are full sub-

categories of generalized modules of VA,ρ and VB,ρ. We show that they have the structure

of braided tensor categories with exact fusion. The bounded derived category DbCA,ρ and

DbCB,ρ are proposed as the category of line operators for TA,ρ and TB,ρ respectively. We

prove an equivalence of BTC CA,ρ ' CB,ρ∨ , which is the mirror symmetry statement for

the category of line operators. We also derive a quantum group Uq(g∗(ρ)) whose rep-

resentation theory is equivalent to CB,ρ as an abelian category, and conjecture that this

equivalence upgrades to the equivalence of BTCs.

• In Section 3.3, we show that derived extension group in DbCB,ρ correctly reproduces the

space MH,ρ, and that the resolution of Mξ
H,ρ can be constructed in DbCB,ρ by choosing

an algebra object determined by ξ. We show that the VOA VB,ρ admit a ~-adic version

V ~
B,ρ which is naturally a sheaf over the stack µ−1(0)/T where µ : T ∗V → t∗ is the moment
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map. We show that the localization of V ~
B,ρ to Mξ

H,ρ is the affine Lie algebra associated

to the shifted tangent Lie algebra of Mξ
H,ρ.

3.1. Vertex Operator Algebra on the Boundary of Twisted Abelian Gauge Theories

3.1.1. Charge Lattice and its Decompositions. This section serves a technical purpose

for the study of these boundary VOAs. Denote now by Λ the sublattice of Zn defined by the image

of ρ. As in equation (2.1.2.14), we will assume that ρ is faithful, namely there exists τ : Zn−r → Zn

such that the following is a short exact sequence:

(3.1.1.1) 0 Zr Zn Zn−r 0
ρ τ

We denote by ρ∨ = τT. Since ρTρ may not be invertible over Z, Λ may not have an orthogonal

complement. The orthogonal set of Λ in Zn, which we denote by Λ⊥, is simply Im(ρ∨), since the

matrix (ρ, ρ∨) is full rank. The sublattice

(3.1.1.2) Λ⊕ Λ⊥

is full rank in Zn and therefore the quotient Zn/(Λ ⊕ Λ⊥) is torsion with index (or cardinality)

det(ρTρ). Denote by Λ′ the linear dual of Λ, which is defined as the Z submodule of Λ⊗Z Q that

has integer inner product with Λ. Similarly, we can define (Λ⊥)′. By orthogonality, we can write:

(3.1.1.3) Qn = Λ⊗Z Q
⊕

Λ⊥ ⊗Z Q.

This will give us natural maps:

(3.1.1.4) Zn −→ Λ′, Zn −→ (Λ⊥)′

given by orthogonal projections. We will denote the projection maps as Q valued matrices Π :

Zn → Qr and Π∨ : Zn → Qn−r, such that ρΠ is the projection onto Λ and ρ∨Π∨ is the projection

onto Λ∨. These matrices will satisfy:

(3.1.1.5) Πρ = Idr, Π∨ρ∨ = Idn−r, Πρ∨ = Π∨ρ = 0, ρΠ + ρ∨Π∨ = Idn.
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One can write Π = ρ(ρTρ)−1 and Π∨ = τT(ττT)−1. Since Zn is self dual, the above maps induce

isomorphisms:

(3.1.1.6) Λ′ ∼= Zn/(Λ⊥), Zn/Λ ∼= (Λ⊥)′.

This leads to the isomorphisms:

(3.1.1.7) Λ′/Λ ∼= Zn/(Λ⊕ Λ⊥) ∼= (Λ⊥)′/(Λ⊥).

We denote the above quotient group by H. The natural embedding:

(3.1.1.8) Zn → Λ′ ⊕ (Λ⊥)′ ⊆ Qn

maps Zn to the subgroup of Λ′ ⊕ (Λ⊥)′ whose image under the quotient by Λ ⊕ Λ⊥ lives in the

diagonal subgroup H. Namely, we have the following base-change diagram:

(3.1.1.9)

Zn H

Λ⊕ Λ⊥ Λ′ ⊕ (Λ⊥)′ H ⊕H

∆

proj

This leads to the following decomposition of Zn:

(3.1.1.10) Zn =
⋃

λ∈Λ′, λ⊥∈(Λ⊥)′

λ=λ⊥∈H

{λ+ λ⊥}.

When considering gauging operations, we will repeatedly use equation (3.1.1.10) to decompose and

simplify the lattice VOA.

Example. Consider the case:

(3.1.1.11) ρ =

 1

1

 .

Namely the gauge group is U(1) and the representation is C2 with weight 1, 1. In this case, ρ∨ is

given by (1,−1)T. The lattice Λ′ is generated by 1
2ρ while the lattice (Λ⊥)′ is generated by 1

2ρ
∨,
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and H = Z2. For any element v = (a, b)T ∈ Z2, we can write:

(3.1.1.12) v = a(
1

2
ρ+

1

2
ρ∨) + b(

1

2
ρ− 1

2
ρ∨) =

a+ b

2
ρ+

a− b
2

ρ∨.

Notice that a+b
2 and a−b

2 differ by an integer, so they descend to the same element in H = Z2.

We will use this to decompose a Fock module of a Heisenberg VOA into tensor products of

Fock modules of Heisenberg subVOAs. Let us exhibit an example here to illustrate the point.

Given lattices Λ and Λ⊥ as above, defined by matrices ρ and ρ∨. Let Hφ be the Heisenberg VOA

generated by ∂φi with OPE:

(3.1.1.13) ∂φi(z)∂φj(w) ∼ δij

(z − w)2
.

It is clear that the Heisenberg VOA Hφ decomposes nicely (using the short-exact sequence in

equation (2.1.2.14)):

(3.1.1.14) Hφ = HρTφ ⊗Hτφ.

Here we will understand HρTφ as the Heisenberg VOA generated by
∑
ρia∂φ

i. Similarly for Hτφ.

Given λ ∈ Zn, if we rewrite λ = µ + µ⊥ where µ ∈ Λ′ and µ⊥ ∈ Λ⊥, then the Fock module Fλ·φ

admits a similar decomposition into modules of the Heisenberg subVOAs:

(3.1.1.15) Fλ·φ = Fµ·φ ⊗Fµ⊥·φ.

Here we understand Fµ·φ as the Fock module of HρTφ. Technically speaking, we should write
∑
µiφ

i

as
∑
µ̃aρi

aφi and write Fµ̃ρTφ as the Fock module. We write µ · φ for simplicity.

We will also use the following splitting of the exact sequence (2.1.2.14):

(3.1.1.16) 0 Zr Zn Zn−r 0
ρ̃

τ

τ

ρ̃

namely we choose matrices ρ̃ such that τ ρ̃ = Idn−r, and choose the co-splitting τ̃ . Note that this

is always possible over Z. More concretely, such splitting means that the matrix:

(3.1.1.17)
(
ρ ρ̃

)
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is invertible with inverse:

(3.1.1.18)

 τ̃

τ

 .

In other words, the following equations are satisfied:

(3.1.1.19) τ · ρ = 0, τ̃ · ρ = Idr, τ̃ · ρ̃ = 0, τ · ρ̃ = Idn−r.

Consequently ρτ̃+ρ̃τ = Idn. This will be used in the following sections to perform field redefinitions

in order to identify different free field realizations.

3.1.2. The A Side Boundary VOA.

3.1.2.1. Definition of A Side Boundary VOA. As we have stated in Section 2.1.3, the VOA

living on the Neumann boundary condition is the BRST reduction of symplectic bosons. We will

use the relative BRST cohomology introduced in Appendix A.

More specifically, consider n copies of symplectic bosons, also known as the βγ VOA:

(3.1.2.1) V ⊗nβγ .

This has gl(1)n symmetry generated by the currents:

(3.1.2.2) − :βiγi :, 1 ≤ i ≤ n.

Neumann boundary conditions for the vector multiplets will introduce ghosts valued in the Lie

algebra gl(1)r together with a BRST operator that gauges the following subset of currents, which

are generators of the gl(1)r action on the symplectic bosons:

(3.1.2.3) J ′a =
∑
i

−ρia:βiγi :.

However, this BRST operation will not be correct because the gl(1)r currents have nonzero anomaly

[CDG20]. This is reflected in the fact that the gl(1)r currents J ′a satisfy the relation of an affine

Kac-Moody algebra of gl(1) at level −
∑

i ρiaρ
i
b:

(3.1.2.4) J ′a(z)J
′
b(w) ∼

−
∑

i ρiaρ
i
b

(z − w)2
.
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The computation of the boundary anomaly for general Lie group was listed in [CDG20]. These

are simply the matrix elements of −ρTρ. In order to cancel this anomaly, we need to couple this

VOA with a boundary CFT with level given by the opposite of the above anomaly [CDG20]. To

do so, we first tensor V ⊗nβγ with a set of bc ghosts:

(3.1.2.5) V ⊗nβγ ⊗ V
⊗n
bc .

This VOA now has gl(1)2n symmetry, whose currents are given by:

(3.1.2.6) − :βiγi :, :bici :.

Instead of the J ′a, we will consider the gl(1)r currents given by:

(3.1.2.7) Ja =
∑
i

ρia
(
−:βiγi : + :bici :

)
, 1 ≤ i ≤ r.

This gl(1)r action will be anomaly free, which is reflected by the fact that Ji satisfy the relation of

an affine Kac-Moody at level 0. We can now consider the Neumann boundary condition for vector

multiplets, which introduces another set of bc ghosts valued in the Lie algebra gl(1)r (whose fields

are denoted by ba and ca):

(3.1.2.8) V ⊗nβγ ⊗ V
⊗n
bc ⊗ V

⊗r
bc

with a BRST differential given by:

(3.1.2.9) QBRST =
∑
a

∮
dz caJa.

Q2 = 0 since now the JJ OPE is trivial. We now arrive at the boundary VOA for the A twist as

suggested in [CG19]:

Definition 3.1.1. The boundary VOA on a Neumann boundary condition in TA,ρ is defined

by:

(3.1.2.10) VA,ρ := HBRST

(
gl(1)r, V ⊗nβγ ⊗ V

⊗n
bc

)
= H∗

((
V ⊗nβγ ⊗ V

⊗n
bc ⊗ V

⊗r
bc

)rel
, QBRST

)
.
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Remark 3.1.2. One can obtain a conformal element for VA,ρ by starting with a conformal

element |ω〉 in the BRST complex such that the conformal degree of ca is 0 and that ω1c
a
0Ja,−1|0〉 = 0.

In that case, we have:

(3.1.2.11)

QY (ω,w) =
∑∮

d(z − w)ca(z)Ja(z)Y (ω,w) =
∑∮

d(z − w)Y (ω,w)ca(z)Ja(z)

=
∑∮

d(z − w)
ca(z)Ja(z)

(z − w)2
+
∂z(c

a(z)Ja(z))

w − z
= 0.

Thus the class of |ω〉 in the cohomology is a conformal element.

3.1.2.2. Free Field Realization of VA,ρ. In this section, we will derive a free field realization of

VA,ρ, which is an embedding of VA,ρ into a lattice VOA. To begin with, let us consider the following

free field realization of the symplectic boson VOA Vβγ [AW22]. Let Hφ be the Heisenberg VOA

generated by ∂φi for 1 ≤ i ≤ n with OPE:

(3.1.2.12) ∂φi(z)∂φj(w) ∼ δij

(z − w)2
.

Similarly, let Hψ be the Heisenberg VOA generated by ∂ψi for 1 ≤ i ≤ n with OPE:

(3.1.2.13) ∂ψi(z)∂ψj(w) ∼ −δij

(z − w)2
.

Consider the lattice VOA extension VL of Hφ ⊗Hψ by the lattice L spanned by |φi + ψi〉. There

is an embedding V ⊗nβγ ↪→ VL given by:

(3.1.2.14) βi(z) 7→ :eφ
i(z)+ψi(z) : , γi(z) 7→ −:∂φi(z)e−φ

i(z)−ψi(z) : .

For each linear combination µ =
∑
aiφ

i + biψ
i where ai − bi ∈ Z for all i, the Fock module Fµ of

Hφ ⊗ Hψ can be lifted to a module of VL, which we call VL,µ. When ai ∈ Z, we define operator

Si : VL,µ → VL,µ+φi by:

(3.1.2.15) Si =

∮
dz: exp

(
φi(z)

)
:

It is well-known that the following is true:

(3.1.2.16) V ⊗nβγ =
⋂

1≤i≤n
Ker

(
Si : VL → VL,φi

)
.
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Let us use the notation of Fock modules to express V ⊗nβγ . For each vector of integers λ = (λ1, . . . , λn),

we denote by Fλ·φ the Fock module coresponding to
∑
λiφ

i. Similarly we denote by Fλ·ψ the Fock

module coresponding to
∑
λiψ

i. The module:

(3.1.2.17)
⋂
i

Ker
(
Si : Fλ·φ → Fλ·φ+φi

)
will be denoted by Mλ·φ. One can quickly recognizes that this is a simple module of the singlet

VOA M(2)⊗n, and is simply given by:

(3.1.2.18) Mλ·φ =
⊗
i

Mλi .

Proposition 3.1.3. The VOA V ⊗nβγ is a simple current extension of M(2)⊗n ⊗ Hψ, and de-

composes as:

(3.1.2.19) V ⊗nβγ =
⊕
λ∈Zn

Mλ·φ ⊗Fλ·ψ.

One can write explicitly how currents from both sides correspond to each other. We will write

some of them out:

(3.1.2.20) − :βiγi : 7→ ∂ψi, −:βi∂γi : 7→ 1

2
:∂φi∂φi :− 1

2
∂2φi − 1

2
:∂ψi∂ψi : +

1

2
∂2ψi.

The conformal element we will choose will be:

(3.1.2.21) Lβγ(z) =
1

2

∑
:∂βiγ

i :− :βi∂γ
i :,

which can be expressed in the above free field algebra as:

(3.1.2.22) Lβγ(z) =
1

2

∑
:∂φi∂φi :−

1

2
∂2φi − 1

2
:∂ψi∂ψi :.

Let us also introduce Heisenberg VOA H
φ̃

with OPE

(3.1.2.23) ∂φ̃i(z)∂φ̃j(w) ∼ δij

(z − w)2
.

The Bose-Fermi correspondence [FBZ04] gives an isomorphism of V ⊗nbc with the extension of

Heisenberg VOA by the complete lattice spanned by φ̃i. In other words, there is an isomorphism
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of VOAs:

(3.1.2.24) V ⊗nbc =
⊕
λ∈Zn

F
λ·φ̃.

In this correspondence, we will choose the following conformal element:

(3.1.2.25) Lbc =
1

2

∑
:∂bic

i : + :∂cib
i : =

1

2

∑
:∂φ̃i∂φ̃i :.

In the BRST complex V ⊗nβγ ⊗ V
⊗n
bc ⊗ V

⊗r
bc , if we uses the following conformal element:

(3.1.2.26) L(z) = Lβγ + Lbc +
∑

:∂cab
a :,

then this is a conformal element under which the conformal degree of caJa is 1 and that L1|caJa〉 = 0.

Thus, L(z) descends to cohomology and is a conformal element for VA,ρ.

Now we are ready to compute the BRST cohomology of V ⊗nβγ ⊗ V ⊗nbc . Using the free field

realization, we can write:

(3.1.2.27) V ⊗nβγ ⊗ V
⊗n
bc =

⊕
λ,µ∈Zn

Mλ·φ ⊗Fλ·ψ ⊗Fµ·φ̃.

We will use the decomposition of Section 3.1.1 to decompose the above as:

(3.1.2.28) V ⊗nβγ ⊗ V
⊗n
bc =

⊕
λ,µ∈Λ′

λ⊥,µ⊥∈(Λ⊥)′

λ=λ⊥,µ=µ⊥

M(λ+λ⊥)·φ ⊗Fλ·ψ ⊗Fλ⊥·ψ ⊗Fµ·φ̃ ⊗Fµ⊥·φ̃.

In the language of the free field realizations above, the currents Ja are given by:

(3.1.2.29) Ja(z) =
∑

ρia(−∂ψi(z)− ∂φ̃i(z)),

and so it only acts on the part:

(3.1.2.30) Fλ·ψ ⊗Fµ·φ̃,
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since (Λ⊥)′ is orthogonal to Λ. This makes the computation of BRST cohomology straightforward

since the BRST cohomology of Fock modules are very simple (see Section A.0.5).

(3.1.2.31) HBRST (gl(1)r,Fλ·ψ ⊗Fµ·φ̃) = δλ,µ|λ〉 ⊗ |µ〉,

one can compute the BRST cohomology easily:

(3.1.2.32) HBRST (gl(1)r, V ⊗nβγ ⊗ V
⊗n
bc ) =

⊕
λ∈Λ′

λ⊥,µ⊥∈(Λ⊥)′

λ=λ⊥=µ⊥

M(λ+λ⊥)·φ ⊗Fλ⊥·ψ ⊗Fµ⊥·φ̃.

Let us write this in the following way. Let Vρ be the extension of the Heisenberg VOA Hφ⊗Hτψ⊗

H
τφ̃

by the Fock modules:

(3.1.2.33) F(λ+λ⊥)·φ ⊗Fλ⊥·ψ ⊗Fµ⊥·φ̃

satisfying λ ∈ Λ′, λ⊥, µ⊥ ∈ (Λ⊥)′ and λ = λ⊥ = µ⊥. For each linear combination σ =
∑
σiφ

i

where σi ∈ Z for all i, the Fock module Fσ·φ can be lifted to a module of Vρ, which we denote by

Vρ,σ·φ. The screening operators Si : Vρ,σ → Vρ,σ·φ+φi is defined by the same formula as in equation

(3.1.2.15).

Theorem 3.1.4. There is an embedding VA,ρ ↪→ Vρ whose image is the kernel of the screening

operators:

(3.1.2.34) VA,ρ =
⋂
i

Ker
(
Si : Vρ 7→ Vρ,φi

)
.

The VOA VA,ρ is thus a simple current extension of the following VOA:

(3.1.2.35) M(2)⊗n ⊗Hτψ ⊗Hτφ̃
.

The VOA Hτψ is generated by ∂θα :=
∑
ταi∂ψ

i with OPE:

(3.1.2.36) ∂θα(z)∂θβ(w) ∼
−
∑
i
ταiτ

β
i

(z − w)2
,
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and the VOA H
τφ̃

is generated by ∂ηα :=
∑
ταi∂φ̃

i with OPE:

(3.1.2.37) ∂ηα(z)∂ηβ(w) ∼

∑
i
ταiτ

β
i

(z − w)2
.

To write the conformal element, we need to use the matrix Π and Π∨ in equation (3.1.1.5). For

each 1 ≤ i ≤ n, we can write:

(3.1.2.38) ψi =
∑
a,j

Πa
iρj

aψj +
∑
α,j

(Π∨)α
iταjψ

j ,

since ρn+ ρ∨n∨ = Idn. Using these, we can rewrite:

(3.1.2.39)
∑
i

:∂ψi∂ψi : =
∑
i,a,b

ΠaiΠb
i:J

βγ
a Jβγb : +

∑
i,α,β

(Π∨)αi(Π∨)βi:∂θ
α∂θβ :,

here Jβγa =
∑
j
ρj
a∂ψj is the generator of the U(1)r Kac-Moody algebra in V ⊗nβγ . In the cohomology,

the first term is Q exact, and so the remaining part of the cohomology is:

(3.1.2.40)
∑
i,α,β

(Π∨)αi(Π∨)βi:∂θ
α∂θβ :.

Similarly, the remaining part for H
φ̃

is:

(3.1.2.41)
∑
i,α,β

(Π∨)αi(Π∨)βi:∂η
α∂ηβ :.

In conclusion, the conformal element of VA,ρ can be written in the free field realization as:

(3.1.2.42)

L(z) =
1

2

∑
:∂φi∂φi :−

1

2
∂2φi − 1

2

∑
α,β,i

(Π∨)αi(Π∨)βi:∂θ
α∂θβ : +

1

2

∑
α,β,i

(Π∨)αi(Π∨)βi:∂η
α∂ηβ :

Remark 3.1.5. There is a family of conformal elements for VA,ρ, defined by adding to the above

L(z) elements of the form:

(3.1.2.43)
∑
α

mα∂
2θα + nα∂

2ηα,
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which will change the conformal degree of the Fock modules. The choice that is made here is in

conformity with physics [DGP18], so that before taking BRST cohomology, |βi| = |γi| = |bi| =

|ci| = 1
2 , and |ba| = 1, |ca| = 0, and so that Q has conformal degree 0.

3.1.3. The B Side Boundary VOA.

3.1.3.1. The Perturbative VOA. Let us now turn to the definition of VB,ρ. Let T be the torus

(C×)r and t its Lie algebra. In [CG19], the authors suggested that one should start with an affine

Kac-Moody superalgebra of the Lie superalgebra g∗(ρ) = T ∗[−2](t ⊕ V [−1]), and then extend by

monopole operators. More explicitly, the Lie superalgebra is the following vector space:

(3.1.3.1) t[0]⊕ V [−1]⊕ V ∗[−1]⊕ t∗[−2] 3 (Na, ψ
i,+, ψi,−, Ea)

such that the commutator [Na,−] is given by the action of t on T ∗V defined by ρ, and adjoint

action on t∗ (which is trivial for our case), and the supercommutator between V and V ∗ is the

moment map valued in t∗[−2]. Namely, the commutation relation is given by:

(3.1.3.2) [Na, ψ
i,±] = ±ρiaψi,±, {ψi,+, ψj,−} = δij

∑
a

ρiaE
a.

To define the Kac-Moody Lie superalgebra, we need to choose an even nondegenerate bilinear

pairing and a level. There are many choices of pairings on g∗(ρ), and for the setting of 3d N = 4

theories, such a choice is determined by bulk correlation functions, and is computed explicitly

in [Gar22].

(3.1.3.3) κ(Na, Nb) =
∑
i

ρiaρib, κ(Na, E
b) = δba, κ(ψi,+, ψj,−) = δij .

We fix the level k = 1, since just as for the case of ĝl(1|1) [CMY22c], any other choice of k 6= 0 gives

isomorphic vertex operator superalgebras. We denote by V (ĝ∗(ρ)) the resulting vertex operator
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superalgebra associated to κ at level k = 1. This VOA has the following generators and OPEs:

(3.1.3.4)

Na(z)E
b(w) ∼ δba

(z − w)2
, Na(z)Nb(w) ∼

∑
i ρ
i
aρib

(z − w)2

Na(z)ψ
i,+(w) ∼ ρiaψ

i,+

(z − w)
, Na(z)ψ

i,−(w) ∼ −ρ
i
aψ

i,−

(z − w)

ψi,+(z)ψj,−(w) ∼ δij

(z − w)2
+
δij
∑

a ρ
i
aE

a

z − w
.

This VOA has the following conformal element:

(3.1.3.5) L(z) =
1

2

(∑
a

:NaE
a : + :EaNa :−

∑
i

:ψi,+ψ−i : +
∑
i

:ψ−i ψ
i,+ :

)

which can be constructed using a modified Sugawara construction as in [RS92], namely, it is the

quadratic Casimir associated to the bilinear form κ0 where κ0(Na, Eb) = δab and κ0(ψi,+, ψj,−) =

δij . The VOA V (ĝ∗(ρ)) is the perturbative boundary VOA of the B twisted gauge theory. As

suggested in [CG19], one needs to take a suitable extension of V (ĝ∗(ρ)) by some modules that

correspond to monopole operators on the boundary. In the following, we will introduce a free

field realization of V (ĝ∗(ρ)) and construct its extensions. We will compare their indices with the

calculation of indices in [DGP18] to identify the correct extension.

3.1.3.2. Free Field Realizations and Monopole Operators. Let us now introduce a free field

realization of V (ĝ∗(ρ)). For this, consider the Heisenberg VOA HX,Y,Z generated by ∂Xa, ∂Y
a for

1 ≤ a ≤ r and ∂Zi for 1 ≤ i ≤ n, with OPE:

(3.1.3.6) ∂Xa∂Yb ∼
δab

(z − w)2
, ∂Zi∂Zj ∼

δij
(z − w)2

.

Let VZ be the lattice VOA extension of HX,Y,Z by the lattice generated by Z. The assignment:

(3.1.3.7)

Na 7→ ∂Xa +
∑
i

ρia∂Z
i,

Ea 7→ ∂Y a,

ψi,+(z) 7→ :eZ
i
:

ψi,− 7→ :
∑
i

ρia∂Y
ae−Z

i
: + :∂e−Z

i
:
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defines an embedding of V (ĝ∗(ρ)) into the lattice VOA VZ . One can verify that the conformal

element of V (ĝ∗(ρ)) is mapped to:

(3.1.3.8)
1

2

(
:
∑
a

(∂Xa∂Y
a + ∂Y a∂Xa) +

∑
i

(∂Zi)(∂Zi) :

)
+

1

2

∑
i

(∑
a

ρia∂
2Y a − ∂2Zi

)
.

For each linear combination µ =
∑

a,im
aXa+naY

a+tiZ
i, we denote by Fµ the corresponding Fock

module of the Heisenberg VOA HX,Y,Z generated by the vacuum vector |µ〉, then by definition:

(3.1.3.9) VZ =
⊕
t∈Zn
Ft·Z ,

as a module of the Heisenberg VOA. Moreover, for each linear combination µ =
∑

am
aXa +naY

a,

the module Fµ can be lifted to a module of VZ , which we call VZ,µ.

Let µ̃ = µ−
∑

a ρ
i
aY

a. Define intertwiners Si(z) : VZ,µ → VZ,µ̃((z)) by the following formula:

(3.1.3.10) Si(z) = :eZ
i(z)−

∑
a ρ

i
aY a(z) :.

The screening operators are defined as the residue:

(3.1.3.11) Si =

∮
Si(z)dz

Proposition 3.1.6. The embedding V (ĝ∗(ρ)) → VZ identifies the image as the kernel of the

screening operators:

(3.1.3.12) V (ĝ∗(ρ)) ∼=
⋂
i

Ker
(
Si : VZ → VZ,−

∑
a ρ

i
aY a(z)

)
.

Proof. First of all, the map V (ĝ∗(ρ)) → VZ is clearly contained in the kernel of Si for all i.

We will show in Appendix B that V (ĝ∗(ρ)) is simple, and therefore this is an embedding. To show

that this is an isomorphism, we will compare indices:

(3.1.3.13) Tr

(∏
a

s
Na,0
a qL0

)
.

Here sa and q are formal variables. This index is clearly positive and so if both sides have the same

index, then they are isomorphic as vector spaces.
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One can easily compute the index of V (ĝ∗(ρ)):

(3.1.3.14)

n∏
i=1

(−q
∏
a s

ρia
a ,−q

∏
a s
−ρia
a ; q)∞

(q; q)2r
∞

Here the Pochhammer symbols (a, b; q)∞ means (a; q)∞(b; q)∞. To compute the symbol of the

kernel of Si, we note that the mode algebra U(VZ) of VZ is a filtered algebra by assigning

(3.1.3.15) FNU(VZ) = Span{xa1,k1 · · ·xaN ,kN y
∗
∗z
∗
∗}.

Here the x∗,∗ (y∗∗ and z∗∗ , resp.) are the modes of X∗(z) (Y ∗(z) and Z∗(z), resp.). The associated

graded:

(3.1.3.16) Gr∗FU(VZ) = C[xa,k, y
a
k ]⊗ U(V ⊗nbc ).

Here the Fourier modes of ∂Xa and ∂Y a are set to be commutative, and U(V ⊗nbc ) is the mode

algebra of n-copies of Vbc. For each µ =
∑
maY

a, the module VZ,µ as an U(VZ) module is also

filtered with a similar filtration. In the associated graded, we have:

(3.1.3.17) Gr∗FVZ,µ ∼= Gr∗FVZ = C[xa,k, y
a
k ]k<0 ⊗ V ⊗nbc ,

and it is clear that the natural map VZ,µ → Gr∗FVZ,µ is an isomorphism of vector spaces. Let

µi =
∑
ρiaY

a. Since Si clearly preserves the filtration, the diagram:

(3.1.3.18)

VZ VZ,−µi

Gr∗FVZ Gr∗FVZ

Si

can be completed to the diagram:

(3.1.3.19)

VZ VZ,−µa

Gr∗FVZ Gr∗FVZ

Si

S
i
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One easily verifies that S
i

has the expression:

(3.1.3.20) S
i

=

∮
dze−

∑
i ρ
i
aY a :eZ

i
:

except that the modes of Y are now commuting with modes of X. By snake lemma, the induced

map:

(3.1.3.21)
⋂
i

Ker(Si)→
⋂
i

Ker(S
i
)

is an isomorphism of vector spaces. The process of taking associated graded behaves well with

the conformal grading and the grading by Na,0 since the embedding FNVZ,µ ⊆ FN+1VZ,µ is one of

graded vector spaces. The kernel
⋂
i

Ker(S
i
) can be identified easily:

(3.1.3.22) C[xa,k, y
a
k ]k<0 ⊗ V ⊗nSF ,

since the kernel of S
i

can be easily identified with the kernel of
∮

dz:eZ
i
:. The piece e−

∑
i ρ
i
aY a

in the definition of S
i

commutes with everything in the associated graded. The character of this

coincides with equation (3.1.3.14). This completes the proof. �

Now we can turn to the question of identifying monopole operators and constructing the correct

extension of V (ĝ∗(ρ)). This now comes down to finding extensions of VZ , which are determined by

sublattices in the lattice spanned by Xa, Y
a. Inspired by the work of [DGP18], we would like to

identify the monopole operators as:

(3.1.3.23) :exp

(∫ ∑
maNa

)
:

for ma ∈ Z. In terms of the free field realization, this means that we would like to extend by the

Fock modules corresponding to

(3.1.3.24)
∑
a

maXa +
∑
i,a

maρia∂Z
i.
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Consider now the VOA Wρ which is the extension of VZ by the Fock modules as in equation

(3.1.3.24). As a module of HX,Y,Z , we have:

(3.1.3.25) Wρ =
⊕

t∈Zn,s∈Zr
Fs·X+t·Z .

For each σ ∈ Zr, the Fock module Fσ·Y can be lifted to a module of Wρ which we call Wρ,σ·Y . The

screening operators Si extend to a map:

(3.1.3.26) Si :Wρ →Wρ,−
∑
a
ρiaY a .

Definition 3.1.7. The boundary VOA on a Dirichlet boundary condition in TB,ρ is defined by:

(3.1.3.27) VB,ρ :=
⋂
i

Ker

(
Si :Wρ →Wρ,−

∑
a
ρiaY a

)
.

Note that Wρ is a direct sum of simple Fock modules of VZ :

(3.1.3.28) Wρ
∼=
⊕
s∈Zr

VZ,s·X .

Thus VB,ρ is a direct sum of modules of V (ĝ∗(ρ)):

(3.1.3.29) VB,ρ ∼=
⊕
s∈Zr

⋂
i

Ker

(
Si : VZ,s·X → VZ,s·X−

∑
a
ρiaY a

)
.

Each of the direct summands represents a monopole operator on the boundary. We will show in

Appendix B that each of the direct summands is a simple module of V (ĝ∗(ρ)). If we assume it for

now, it is easy to write down a generator of each of the direct summands:

(3.1.3.30) s ∈ Zr ↔

∣∣∣∣∣∑
a

sa

(
Xa +

∑
i

ρiaZ
i

)〉
7→ :e

∑
a s

a(Xa+
∑
i ρiaZ

i) :.

We will compare this with the monopole operator studied in [DGP18], and show that this generator

does give the correct physical indices, justifying the definition of VB,ρ.

Remark 3.1.8. The VOA V (ĝ∗(ρ)) has the following Zr × Cr lattice of automorphisms:

(3.1.3.31) σλ,µ(Na) = Na −
µa
z
, σλ,µ(Ea) = Ea −

λa
z
, σλ,µψ

i,± = z∓
∑
ρaiλ

a
ψi,±.
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Here λ ∈ Cr and µ ∈ Cr such that ρ(λ) ∈ Zr. One can identify the module generated by
∑

a s
a(Xa+∑

i ρiaZ
i) as the spectral flow σs,ρTρsV (ĝ∗(ρ)).

3.1.3.3. Indices of the Boundary VOA. We compute the index of VB,ρ, taking into account the

parity/fermion number, conformal weight, and global symmetry grading. This quantity is defined

by the formula

(3.1.3.32) IVB,q := TrVB,q
(
(−1)F qL0sN0

)
where sN0 :=

∏r
a=1 s

Na
0

a . Below we jot down the mode expansions of these grading operators in the

free-field realization for later use:

(3.1.3.33) Na
0 = xa0 +

n∑
i=1

ρiaz
i
0

(3.1.3.34) L0 =
r∑

a=1

[
1

2
(xa0y

a
0 + ya0x

a
0) +

∞∑
m=1

(xa−my
a
m + ya−mx

a
m)

]

+

n∑
i=1

[
1

2
(zi0)2 +

∞∑
m=1

zi−mz
i
m

]
+

1

2

n∑
i=1

[
zi0 −

r∑
a=1

ρiay
a
0

]
.

To compute the index, we compute the Verma modules generated by

(3.1.3.35) |s〉 :=

∣∣∣∣∣
r∑

a=1

sa

(
Xa +

n∑
i=1

ρiaZ
i

)〉
= S∑r

a=1 s
a(Xa+

∑n
i=1 ρiaZ

i)|0〉

for each s ∈ Zr. In the rest of this section, whenever we write a mode belonging to the Lie algebra

associated to V (ĝ∗(q)), the image of this mode under the free-field realization (3.1.3.7) should be

implicitly understood. Thus we see that Na
k and Eak act freely on |s〉 for k < 0 and act as (possibly

vanishing) scalars for k > 0. Note that this parabolic decomposition is the same that we would

obtain if we were analyzing the action on the vacuum |0〉; the same will not be quite true for ψi,±(z),

but the difference manifests itself as a sort of spectral flow depending on s and the charge matrix

ρia. Note that

ψi,+(w)|s〉 = SZiw
zi0e

∑
k<0−

1
k
zikw

−k
e
∑
k>0−

1
k
zikw

−k
S∑r

a=1 s
a(Xa+

∑n
j=1 ρjaZ

j)|0〉
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= SZi+
∑r
a=1 s

a(Xa+
∑n
j=1 ρjaZ

j)w
∑r
a=1 s

aρiae
∑
k<0−

1
k
zikw

−k |0〉.(3.1.3.36)

When comparing the mode expansions of the LHS and RHS, the factor w
∑
i siqai effectively shifts

which modes of ψi,+(w) act freely vs. act as scalars, as compared to mode splitting when acting

on |0〉. Defining Li :=
∑r

a=1 s
aρia, we find that ψi,+k acts freely for k < −Li and as a scalar for

k ≥ −Li. A similar analysis reveals that ψi,−k acts freely for k < Li and otherwise acts as a scalar.

Thus the Verma module built upon |s〉 has PBW basis

(3.1.3.37)
n⊗
i=1

 ⊗
k≤−Li−1

(C⊕ Cψi,+k )

⊗
 ⊗
k≤Li−1

(C⊕ Cψi,−k )


⊗

r⊗
a=1

⊗
k≤−1

⊕
m≥0

C(Na
k )m ⊗

⊕
m≥0

C(Eak)m

 |s).
The contribution of this sector of VB,q to the index solely from the mode algebra is thus, after some

straightforward algebraic manipulation,

(3.1.3.38)
1

(q)2r
∞

n∏
i=1

(
q

r∏
a=1

(saqs
a
)ρia , q

r∏
a=1

(saqs
a
)−ρia ; q

)
∞

.

But we cannot forget that |s〉 itself has non-trivial grading under L0 and N0. Properly taking

this into account when computing the index will yield an expression equal to equation (3.1.3.38)

multiplied by an overall factor consisting of the fugacities of |s〉. Let us now calculate this factor.

The conformal weight of |s〉 is given by:

(3.1.3.39)

L0|s〉 =
1

2

n∑
j=1

[
(zj0)2 + zj0 −

r∑
b=1

ρjby
b
0

]
S∑r

a=1 s
a(Xa+

∑n
i=1 ρiaZ

i)|0〉

=
1

2

∑
a,j

(saρja)
2|s〉

=
1

2
sTρTρs|s〉
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The weight under N0 is given by:

(3.1.3.40)

Na
0 |s〉 =

[
xa0 +

n∑
i=1

ρiaz
i
0

]
S∑r

b=1 sb(X
b+

∑n
j=1 ρjbZ

j)|0〉

=
∑
a,j

ρjaρjbsb|s〉

= (ρTρs)a|s〉

and the parity is given by:

(−1)F |s〉 = (−1)(
∑r
a=1 s

a(Xa+
∑n
i=1 ρiaZ

i),
∑r
b=1 sb(X

b+
∑n
j=1 ρjbZ

j))|s〉

= (−1)
∑
i,a,b s

aρiaρibsb |s〉

= (−1)s
T ρT ρs|s〉.

The missing factor is therefore

(3.1.3.41) (−1)s
T ρT ρsq

1
2
sT ρT ρs

r∏
a=1

s(ρT ρs)a
a .

Summing over monopole sectors (i.e. Verma modules built upon each |s〉), we finally obtain the

index

(3.1.3.42) IVB,ρ =
1

(q)2r
∞

∑
s∈Zr

(−1)s
T ρT ρsq

1
2
sT ρT ρs

[
r∏

a=1

s(ρT ρs)a
a

]

×
n∏
i=1

(
q

r∏
a=1

(saq
sa)ρia , q

r∏
a=1

(saqs
a
)−ρia ; q

)
∞

.

As a check, this is precisely of the form derived in [DGP18].

Remark 3.1.9. The computation above reveals that the conformal degree of
∣∣Xa +

∑
i ρiaZ

i
〉

is

given by 1
2

∑
i,a
ρiaρ

ia.

3.1.4. Mirror Symmetry of Boundary VOAs. We have defined in the previous sections

boundary VOAs VA,ρ for Neumann boundary condition of TA,ρ and VB,ρ for Dirichlet boundary

condition of TB,ρ. Recall the short exact sequence (2.1.2.14). The statement of 3d abelian mirror

symmetry asserts that Tρ and Tρ∨ are mirror to each other, where ρ∨ = τT. It is hinted in
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[CG19,CCG19] that these two boundary conditions are mirror dual to each other. In this section,

we prove this statement:

Theorem 3.1.10. There is an isomorphism of VOAs:

(3.1.4.1) VA,ρ ∼= VB,ρ∨ .

Proof. Our strategy is to use the free field realizations of Section 3.1.2.2 and 3.1.3.2. More

specifically, we will perform a field redefinition to the free field realizations to show that the two

VOA are isomorphic.

Recall in the free field realization of Section 3.1.3.2 (associated to ρ∨ instead of ρ) we have

generators ∂Xα, ∂Y α for 1 ≤ α ≤ n− r and ∂Zi for 1 ≤ i ≤ n such that:

(3.1.4.2) ∂Xα∂Y β ∼ δαβ

(z − w)2
, ∂Zi∂Zj ∼ δij

(z − w)2
.

We perform a field redefinition:

(3.1.4.3)

ζ̃i = Zi −
∑
α

(ρ∨)iαY
α, η̃α = Xα +

∑
i

(ρ∨)i
αZi,

θ̃α = −Xα +
∑
i,β

(ρ∨)i
α(ρ∨)iβY

β −
∑
i

(ρ∨)i
αZi.

They have OPE:

(3.1.4.4) ∂ζ̃i∂ζ̃j ∼ δij

(z − w)2
, ∂θ̃α∂θ̃β ∼ −∂η̃α∂η̃β = −

∑
i(ρ
∨)i

α(ρ∨)iβ

(z − w)2
.

Since τT = ρ∨, the Heisenberg VOA HX,Y,Z (for ρ∨) is nothing but Hφ ⊗ Hτψ ⊗ Hτφ̃
, where we

identify ζ̃ with φ, θ̃ with θ and η̃ with η. The VOA Wρ∨ is the extension of this Heisenberg VOA

by the Fock modules corresponding to Zi and Xα +
∑
i

(ρ∨)αi Z
i. In terms of the new generators,

the second factor is nothing but η̃α. To write the first generator, let us use the projection maps

in equation (3.1.1.5), in particular the matrix n∨ which is projection onto Λ⊥. Since θ̃α + η̃α =∑
i,β(ρ∨)i

α(ρ∨)iβY
β, we have:

(3.1.4.5)∑
α

(Π∨)αi(θ̃
α+η̃α) =

∑
α,β,j

(Π∨)αi(ρ
∨)j

α(ρ∨)jβY
β =

∑
α,β,j

(Π∨)αi(ρ
∨)j

α(ρ∨)jβY
β+
∑
a,β,j

Πaiρj
a(ρ∨)jβY

β
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Here we add the last term, which does not change the final result because τρ = 0. Now we can use

ρΠ + ρ∨Π∨ = Idn to conclude:

(3.1.4.6)
∑
α

(Π∨)αi(θ̃
α + η̃α) =

∑
α

(ρ∨)iαY
α.

As a consequence:

(3.1.4.7) Zi = ζ̃i +
∑
α

(Π∨)αi(θ̃
α + η̃α).

The VOA Wρ∨ is the extension of HX,Y,Z given by:

(3.1.4.8) Wρ∨ =
⊕

t∈Zn,s∈Zn−r
Ft·Z+s·X ,

and it can be alternatively given by, in terms of Hφ ⊗Hτψ ⊗Hτφ̃
Fock modules:

(3.1.4.9) Wρ∨ =
⊕

t∈Zn,s∈Zn−r
Ft·φ ⊗Fn∨t·θ ⊗F(s+n∨t)·η

Now let us decompose t as λ+ λ⊥ using equation (3.1.1.10). Then it is clear that:

(3.1.4.10) λ = ρΠt, λ⊥ = ρ∨Π∨t

and so Fn∨t·θ is nothing but Fλ⊥·ψ. Similarly, F(s+n∨t)·η = F
µ⊥φ̃

such that λ⊥ = µ⊥ ∈ H since

sη ∈ Λ⊥ and does not change the image of µ⊥ in H. We have found that there is an isomorphism

of Hφ ⊗Hτψ ⊗Hτφ̃
modules:

(3.1.4.11) Wρ∨ =
⊕
λ∈Λ′

λ⊥,µ⊥∈(Λ⊥)′

λ=λ⊥=µ⊥

F(λ+λ⊥)·φ ⊗Fλ⊥·ψ ⊗Fµ⊥·φ̃.

Now the VOA VB,ρ∨ is defined as the kernel of the following screening operators in Wρ∨ :

(3.1.4.12)

∮
dz: exp

(
Zi −

∑
α

(ρ∨)iαY
α

)
: =

∮
dz: exp

(
φi(z)

)
:,
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which implies that we can identify VB,ρ∨ as an extension of M(2)⊗n ⊗Hτψ ⊗Hτφ̃
:

(3.1.4.13) VB,ρ∨ =
⊕
λ∈Λ′

λ⊥,µ⊥∈(Λ⊥)′

λ=λ⊥=µ⊥

M(λ+λ⊥)·φ ⊗Fλ⊥·ψ ⊗Fµ⊥·φ̃.

Comparing this with equation (3.1.2.32), one immediately see that there is an isomorphism of

M(2)⊗n ⊗Hτψ ⊗Hτφ̃
modules:

(3.1.4.14) VB,ρ∨ ∼= VA,ρ.

Note that this is an isomorphism of a lattice of modules of the singlet and Heisenberg VOA, but

not necessarily an isomorphism of VOA itself. However, since all direct summands involved are

simple current extensions and Fock modules, the work of [CR22] implies that this isomorphism

upgrades to an isomorphism of VOAs. This completes the proof.

�

Remark 3.1.11. Let us rewrite Xα, Yα and Zi using φi, θα and ηα as follows:

(3.1.4.15)

Zi = φi +
∑
α

(Π∨)αi(θ
α + ηα)

Xα = −θα −
∑

(ρ∨)iαφ
i

Yα =
∑
i,β

(Π∨)αi(Π
∨)β

i(θβ + ηβ)

With some tedious but conceptually simple work, we can use this to write the conformal element in

equation (3.1.3.8) as:

(3.1.4.16)
1

2

∑
i

:∂φi∂φi :−
1

2

∑
i

∂2φi+
1

2

∑
(Π∨)αi(Π

∨)β
i:∂ηα∂ηβ :− 1

2

∑
(Π∨)αi(Π

∨)β
i:∂θα∂θβ :

This, of course, coincides with the conformal element in equation (3.1.2.42).

3.1.5. Morita Equivalent Constructions. In this section we will define VOAs that will be

Morita equivalent to VA,ρ and VB,ρ. In particular, we will define ṼA,ρ and ṼB,ρ whose construction

are inspired by physics.
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3.1.5.1. Definition of ṼA,ρ. Let us start with ṼA,ρ . Consider the VOA V ⊗nβγ , which is the

boundary VOA for the Neumann boundary condition of the free theory. This VOA has a Zn lattice

of automorphism called the spectral flow, which are generated by σi whose action on the VOA is

given by:

(3.1.5.1) σi(βj) = zδijβj , σi(γj) = z−δijγj .

Using these automorphisms, one can twist the vacuum module V ⊗nβγ . For each λ ∈ Zn, we denote

by V ⊗n,λβγ the module V ⊗n,λβγ := (
∏
i
σλii )V ⊗nβγ . These are simple currents of V ⊗nβγ , and have the very

simple fusion rule (which is derived, for instance, in [AW22]):

(3.1.5.2) V ⊗n,λβγ × V ⊗n,µβγ
∼= V ⊗n,λ+µ

βγ .

In particular, the object:

(3.1.5.3)
⊕
λ∈Λ

V ⊗n,λβγ

has a unique structure of a vertex operator algebra extending V ⊗nβγ .

Definition 3.1.12. The vertex operator algebra ṼA,ρ is defined as the VOA:

(3.1.5.4) ṼA,ρ :=
⊕
λ∈Λ

V ⊗n,λβγ

Using the free field realization of Vβγ , we can give a free field realization of ṼA,ρ. Indeed,

consider the free field realization of V ⊗nβγ using the Heisenberg VOA Hφ⊗Hψ and the lattice VOA

VL. For each λ ∈ Zn, there is an identification of V ⊗nβγ modules:

(3.1.5.5) V ⊗n,λβγ
∼=
⋂
i

Ker
(
Si : VL,λ → VL,λ−φi

)
Thus, if we consider the extension VL,Λ :=

⊕
λ∈Λ

VL,λ, which is a lattice VOA extending Hφ⊗Hψ, then

there is an embedding ṼA,ρ ↪→ VL,Λ of VOAs, whose image is the kernel of the screening operators

Si. We can also write the free field realization in terms of modules of the VOA M(2)⊗n ⊗Hψ as
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follows

(3.1.5.6) ṼA,ρ =
⊕

µ∈Zn,λ∈Λ

M(λ+µ)·φ ⊗Fµ·ψ.

3.1.5.2. Definition of ṼB,ρ. Let us consider the symplectic fermion VOA V ⊗nχ± and the following

free field realization. Recall that Bose-Fermi correspondence identifies V ⊗nbc with the complete

lattice VOA extension of Hφ by the lattice spanned by all φi. There is an embedding V ⊗nχ± ↪→ V ⊗nbc

given by:

(3.1.5.7) χi+ 7→ :eφ
i
:, χi− 7→ :∂e−φ

i
:.

The image of this is identified as the kernel of the screening operators Si :=
∮

dz:eφ
i
:. In other

words, we can identify:

(3.1.5.8) V ⊗nχ±
∼=
⊕
λ∈Zn

Mλ·φ

as a module of the singlet VOA M(2)⊗n. There is a (C×)r symmetry action on V ⊗nχ± such that the

subspace Mλ·φ has weight
∑
i
λiρ

i
a under the a-th copy of the gauge group. As is different from Vβγ ,

this action is not inner. This action becomes inner when embedded into V ⊗nbc , with currents given

by
∑
ρia∂φ

i. On the other hand, denote by V −Zn the complete lattice VOA extension of Hψ by the

lattice spanned by ψi. This also has a (C×)r action, which is inner and is generated by
∑
ρia∂ψ

i.

Definition 3.1.13. Define ṼB,ρ to be the orbifold:

(3.1.5.9) ṼB,ρ :=
(
V ⊗nχ± ⊗ V

−
Zn
)(C×)r

,

where the (C×)r denotes the diagonal (C×)r on the tensor product.

From this definition, we immediately obtain a free field realization. We can write:

(3.1.5.10) V ⊗nχ± ⊗ V
−
Zn =

⊕
λ,µ∈Zn

Mλ·φ ⊗Fµ·ψ.
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Taking (C×)r invariant subspace, we require that ρT(λ − µ) = 0, or in other words, λ − µ ∈ Λ⊥.

Consequently, we have:

(3.1.5.11) ṼB,ρ =
⊕

λ,µ∈Zn
λ−µ∈Λ⊥

Mλ·φ ⊗Fµ·ψ.

Now we can compare this free field realization with that in equation (3.1.5.6). We recognize the

following:

Proposition 3.1.14. There is an isomorphism of VOAs:

(3.1.5.12) ṼA,ρ ∼= ṼB,ρ∨ .

3.1.5.3. An identification of ṼA,ρ with VB,ρ∨. This small section is devoted to a quick and

undetailed proof of the following:

Theorem 3.1.15. There is an isomorphism of VOAs:

(3.1.5.13) ṼA,ρ ⊗ V ⊗nbc
∼= VB,ρ∨ ⊗ VX,Y .

Here the VOA VX,Y is a complete lattice VOA of a self-dual lattice and hence is Morita trivial.

The idea is field redefinition. From the above, we have seen that ṼA,ρ has a free field realization

using the Heisenberg VOA Hφ ⊗Hψ. Via Bose-Fermi correspondence, V ⊗nbc can be realized as an

extension of H
φ̃
. This extension is given by the following Fock modules:

(3.1.5.14) Fλ·φ ⊗Fµ·ψ ⊗Fν·φ̃, for λ, µ, ν ∈ Zn, λ− µ ∈ Λ.

Recall the splitting of the short exact sequence in equation (3.1.1.16). We perform the following

field re-definition:

(3.1.5.15) Zi = φi +
∑
α,j

τα
iρ̃j

α(ψj + φ̃j), Xα = −
∑
i

ταi(φ
i + ψi), Yα =

∑
i

ρ̃iα(ψi + φ̃i)

as well as:

(3.1.5.16) Xa :=
∑
i

τ̃aiφ̃
i, Y a :=

∑
i

ρia(φ̃
i + ψi).
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These will have OPE:

(3.1.5.17)

∂Zj∂Zj ∼ δij

(z − w)2
, ∂Xα∂Yβ ∼

δαβ
(z − w)2

, ∂Xa∂Y b ∼
δab

(z − w)2
, Xa∂Xb ∼

∑
i τ̃a

iτ̃bi
(z − w)2

The Heisenberg HX,Y,Z generated by ∂Zj , ∂Xα and ∂Xβ has been used in the free field realization

of VB,ρ, and we denote by HX,Y the Heisenberg generated by ∂Xa and ∂Y a. Since the field re-

definition above is invertible, Hφ ⊗Hψ ⊗Hφ̃
is identified with HX,Y,Z ⊗HX,Y . The extension by

Fock modules in (3.1.5.14) can be identified, in the new set of generators, as the lattice spanned by

Zi, Xα, Xa and Y a. The first two variables will extend HX,Y,Z into Wρ∨ , and the second two sets

of variables extends HX,Y into a complete lattice VOA, which we call VX,Y . This means that we

have embeddings:

(3.1.5.18) ṼA,ρ ⊗ V ⊗nbc Wρ∨ ⊗ VX,Y VB,ρ∨ ⊗ VX,Y

To finish the proof, we just need to comment that under the field re-definition, the screening

operator matches:

(3.1.5.19) φi ↔ Zi −
∑
α

ταiY
α.

This finishes the proof.

Corollary 3.1.16. The VOA V (ĝ∗(ρ∨))⊗VX,Y is a simple current extension of V (ĝl(1|1))⊗n.

Proof. This follows from the relation between Vβγ and V (ĝl(1|1))⊗n in the work of [CR13b],

and their free field realizations [BN22]. �

3.2. Braided Tensor Category via Intertwining Operators

3.2.1. VOA Extensions and Braided Tensor Categories. The following is explained

in [CKM17]: given a vertex operator superalgebra extension A in a VOA module category C

where P (z)-intertwiners define a symmetric monoidal structure on C, the category of local modules

of A in C coincides with the category of generalized modules of the VOA A as braided tensor

supercategories. However, in our situation, as well as in many other cases, the object A does not

live in C but in a suitable completion of C. Thus one needs to take a completion of C to allow
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infinite direct sums. This is explained in [CMY22a, Theorem 1.1]: under suitable circumstances,

one can extend the braided monoidal structure from C to a completion called Ind(C), such that

the object A is now contained in Ind(C). The authors then showed [CMY22a, Theorem 1.4] that

the category of generalized local A-modules in C also has a braided tensor supercategory structure

defined via P (z)-intertwiners. We denote this category by A−Modloc(Ind(C)).

For any M ∈ Ind(C), the object A ×M has the structure of an A module, however it is not

necessarily local. It was explained in [CKL20, CMY22a] that an object M in Ind(C) gives rise

to a local module in the above manner if and only if the monodromy acts trivially, namely the

composition:

(3.2.1.1) A×M M ×A A×M
RA,M RM,A

is identity. Thus, let Ind(C)[0] be the subcategory of Ind(C) whose objects have trivial monodromy

with A, the assignment:

(3.2.1.2) L(M) := A×M

gives a functor:

(3.2.1.3) L : Ind(C)[0] −→ A−Modloc(Ind(C))

Theorem 3.2.1. The functor L is a braided tensor functor [CMY22a, Theore, 1.4]. If A

happen to be a simple current extension, C has exact fusion rule, and is fixed-point free, then L

preserves the composition series and maps simple to simple [CMY22b, Proposition 3.2].

Here C is fixed point free means that the action of the simple currents defining A does not fix

any single module M . We comment that in [BN22], this is used to establish a relation between

the Kazhdan-Lusztig category KL of V (ĝl(1|1)) with a category of modules of the VOA Vβγ , which

is denoted by Cβγ in loc.cit. More precisely, the VOA Vβγ ⊗ Vbc is a simple current extension of

V (ĝl(1|1)), and so if we denote by KL[0] the subcategory of KL consisting of objects having trivial

monodromy with Vβγ ⊗ Vbc, then one can identify Cβγ with the image of KL[0] under the above
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lifting functor. This is used in [BN22] to show that Cβγ has the structure of a braided tensor

category. Before moving forward, let us review the data of KL[0] and Cβγ .

3.2.1.1. The Kazhdan-Lusztig category of V (ĝl(1|1)). In this section, we introduce the category

KL, the Kazhdan-Lusztig category for the affine Lie superalgebra V (ĝl(1|1)). This category is

characterized by satisfying certain weight constraint. For a generalized V (ĝl(1|1)) module W , it is

called finite-length if it has a finite composition series of irreducible V (ĝl(1|1)) modules. W is called

grading restricted if it is graded by generalized conformal weights (the generalized eigenvalues of L0)

and the generalized conformal weights are bounded from below. For more details, see [CKM17].

Definition 3.2.2. The Kazhdan-Lusztig category KL is defined as the category of finite-length

grading-restricted generalized V (ĝl(1|1)) modules.

We will denote by G the category of finite-dimensional representations of gl(1|1). Just like in

the case of ordinary Lie algebras, there is an induction functor:

(3.2.1.4) Ind : C −→ KL

such that Ind(M) is defined as the induced module

(3.2.1.5) U(ĝl(1|1))⊗
U(ĝl(1|1)≥0)

M

where U(ĝl(1|1)≥0) is the enveloping algebra generated by the non-negative part of ĝl(1|1), and

M is viewed as a module where the positive part acts trivially. Such modules are called Verma

modules. Since any simple module in KL is generated by the lowest conformal weight space, which

is a module of gl(1|1), any such module is a quotient of Ind(M) for some simple gl(1|1) module M .

The finite-dimensional algebra gl(1|1) has the following set of simple modules:

(1) An,0, where N acts with weight n and all other modes act as zero. This module is one-

dimensional.

(2) Vn,e where N acts with weight n ± 1
2 , and E acts with weight e. This module is two-

dimensional.

From the above, any simple module in KL is a quotient of Ind(An,0) or Ind(Vn,e). We will

denote by M̂ the induced module Ind(M) for simplicity. The following is shown in [CR13a]:
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• V̂n,e is irreducible iff e /∈ Z.

• When e ∈ Z but e 6= 0, V̂n,e is reducible, and fits into the following short exact sequence:

(3.2.1.6)

0 Ân+1,e V̂n,e Ân,e 0 (e > 0)

0 Ân−1,e V̂n,e Ân,e 0 (e < 0)

The modules Ân,e are simple currents of V (ĝl(1|1)) as they can be defined as the image of the

following spectral flow automorphisms σl,λ:

(3.2.1.7) σl,λ(N) = N − λ

z
σl,λ(E) = E − l

z
σl,λ(ψ±) = z∓lψ±.

Introduce a function ε(l) on Z given by:

(3.2.1.8) ε(l) =


−1

2 if l < 0,

0 if l = 0,

1
2 if l > 0.

Define ε(l, l′) = ε(l)+ ε(l′)− ε(l+ l′). The simple currents Ân,e has the following simple fusion rules:

(3.2.1.9) Ân,l × Ân′,l′ ∼= Ân+n′−ε(l,l′),l+l′ .

The category C and KL are both decomposed into blocks labelled by the generalized eigenvalues

of E0:

(3.2.1.10) C =
⊕
e

Ce, KL =
⊕
e

KLe.

Of course, the induction functors maps Ce into KLe, and moreover, it is proven in [BN22] that

the induction functor Ind : Ce → KLe is an equivalence iff e /∈ Z or e = 0. When e ∈ Z \ {0},

the category KLe are all equivalent to KL0, with equivalences induced by fusion product with a

simple current:

(3.2.1.11) Ân,e ×− : KL0 → KLe.

The category KL is moreover shown to be a rigid braided tensor category [CMY22c].
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3.2.1.2. The category Cβγ. The mode algebra of Vβγ is identified as the algebra of differential

operators on K, the Laurent loop space of C. Denote by xn the n-th coordinate of the Laurent

space K, and by ∂xn the differential of xn. We can write its mode algebra as a big tensor product:

(3.2.1.12)

U(Vβγ) · · · ⊗ C[x2, ∂x2 ] ⊗ C[x1, ∂x1 ] ⊗ C[x0, ∂x0 ] ⊗ C[x−1, ∂x−1 ] ⊗ C[x−2, ∂x−2 ] ⊗ · · ·

Vβγ · · · ⊗ C[x2] ⊗ C[x1] ⊗ C[∂x0 ] ⊗ C[∂x−1 ] ⊗ C[∂x−2 ] ⊗ · · ·

The second line here is the vacuum module. For each [λ] ∈ C/Z, there is a module W[λ] of Vβγ that

is defined using the column picture as follows:

(3.2.1.13)

U(Vβγ) · · · ⊗ C[x2, ∂x2 ] ⊗ C[x1, ∂x1 ] ⊗ C[x0, ∂x0 ] ⊗ C[x−1, ∂x−1 ] ⊗ C[x−2, ∂x−2 ] ⊗ · · ·

W[λ] · · · ⊗ C[x2] ⊗ C[x1] ⊗ ∂λx0C[∂x0 , ∂
−1
x0 ] ⊗ C[∂x−1 ] ⊗ C[∂x−2 ] ⊗ · · ·

The VOA Vβγ has a spectral flow automorphism σ such that:

(3.2.1.14) σβ = zβ, σγ = z−1γ.

The category Cβγ is defined to be the abelian category of finite-length modules of Vβγ generated

by σnVβγ and σnW[λ]. This category was studied in [BN22] and shown to have a braided tensor

category structure. The way of the study is to use the relation of Vβγ and V (ĝl(1|1)) derived

in [CR13b]. More specifically, there is an embedding V (ĝl(1|1)) ↪→ Vβγ ⊗ Vbc such that Vβγ ⊗ Vbc

is decomposed into a direct sum of simple currents:

(3.2.1.15) Vβγ ⊗ Vbc =
⊕
m

Â−m/2+ε(m),m.

The lifting procedure as we have recalled in Section 3.2.1 allows one to relate KL and Cβγ , which

was the main work of [BN22]. Let KL[0] be the subcategory of KL whose monodromy with

Â−m/2+ε(m),m is trivial, then there is a lifting functor:

(3.2.1.16) L0 : KL[0] −→ Cβγ

that is surjective and full. This functor identifies Cβγ with the Z quotient KL[0]/Z, or the de-

equivariantization in the sense of [EGNO16]. This immediately give Cβγ the structure of a braided
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tensor category. The category KL[0] can be identified with the category of modules where N0 acts

semi-simply with integer eigenvalues, and the quotient identifies an object M with Â−m/2+ε(m),m×

M . The category Cβγ also decomposes into blocks:

(3.2.1.17) Cβγ =
⊕

[λ]∈C/Z

Cβγ,[λ]

labelled by the generalized eigenvalue of J0 = :βγ :0. The lifting functor maps KLe into Cβγ,[e2πie].

For each λ ∈ C/Z and for each k > 0, the module W[λ] has an iterated self-extension W k
[λ], and

it is shown in [BN22] that any module of Vβγ is a quotient of a finite direct sum of W k
[λ].

3.2.2. Definition of the Category of Line Operators.

3.2.2.1. Definition of line operators in TA,ρ. Since we have a Morita equivalence between VA,ρ

and ṼA,ρ, we will use the more convenient ṼA,ρ to define the category of line operators. By definition,

ṼA,ρ is a simple current extension of V ⊗nβγ , and the category C�nβγ is a braided tensor category of

V ⊗nβγ modules via P (z)-intertwining operators. By definition, C�nβγ is the smallest abelian category

of V ⊗nβγ modules containing elements of the form:

(3.2.2.1) W1 ⊗ · · · ⊗Wn, Wi ∈ Cβγ for 1 ≤ i ≤ n.

As commented from Section 3.2.1, this gives a braided tensor category of ṼA,ρ modules:

(3.2.2.2) ṼA,ρ−Modloc(Ind(C�nβγ )),

as well as a functor:

(3.2.2.3) LA : Ind(C�nβγ )[0] −→ ṼA,ρ−Modloc(Ind(C�nβγ ))

Denote by C�n,ρ,[0]
βγ the subcategory of C�nβγ whose objects have trivial monodromy with ṼA,ρ.

Definition 3.2.3. We define the category CA,ρ to be the image of C�n,ρ,[0]
βγ under LA:

(3.2.2.4) CA,ρ := LA
(
C�n,ρ,[0]
βγ

)
.

This is a braided tensor category of ṼA,ρ modules via P (z)-intertwiners. The category of line

operators LA,ρ of the theory TA,ρ is defined to be the bounded derived category LA,ρ := DbCA,ρ.
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The following proposition gives an easy criteria for an object to be in C�n,ρ,[0]
βγ :

Proposition 3.2.4. An object M ∈ C�nβγ belongs to C�n,ρ,[0]
βγ if and only if

∑
ρiaJ

i
0 acts semi-

simply with integer eigenvalues, where J i = :βiγi :.

The proof of this will be presented in Appendix B. Let us examine what this means to simple

objects. A simple object in Cβγ,[λ] is of the form σlW[λ] for some l ∈ Z and λ /∈ Z. When λ ∈ Z,

then the simples in Cβγ,[0] are of the form σlVβγ . With these, we see that a simple module in:

(3.2.2.5) �ni=1 Cβγ,[λi]

can be lifted to CA,ρ if and only if
∑
ρiaλ

i are integers for all a. These give all the simple modules

of CA,ρ. In particular, any simple module in �ni=1Cβγ,[0] can be lifted to CA,ρ. There is a Zn lattice of

such simple modules, and upon the lift, a Zr sub-lattice (the image of ρ) will be identified. These

are the atypical simple modules. In conclusion, atypical simple modules in CA,ρ are labelled by

Zn/Zr ∼= Zn−r (by the property of ρ), and the quotient can be identified with the co-character

lattice of the flavor symmetry group (C×)n−r. These atypical simples can be identified with the

simple vortex lines in physical context [BDG+18, DGGH20]. We will show later that under

mirror symmetry, these modules can be identified with the Wilson lines in the dual theory.

Moreover, the above decomposition of C�nβγ gives a decomposition of CA,ρ, and consequently,

LA,ρ. We have seen that an object in �ni=1Cβγ,[λi] can be lifted to ṼA,ρ only when
∑
ρiaλ

i ∈ Z. If

we view ρT as inducing a map (C/Z)n → (C/Z)r, then [λ] must be in the kernel of this map, which

is identified with the image of ρ∨ = τT. In particular, we have a decomposition:

(3.2.2.6) CA,ρ =
⊕

[λ]∈(C/Z)n−r

CA,ρ,[λ].

Here CA,ρ,[λ] are lifts of objects from �ni=1Cβγ,[∑α τiαλ
α]. These blocks behave well with fusion rules:

(3.2.2.7) CA,ρ,[λ] × CA,ρ,[µ] −→ CA,ρ,[λ+µ].

Consequently, we have a decomposition:

(3.2.2.8) LA,ρ =
⊕

[λ]∈(C/Z)n−r

LA,ρ,[λ].
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3.2.2.2. Definition of line operators in TB,ρ. Here we will use the fact that VB,ρ is a simple

current extension of an affine Lie superalgebra V (ĝ∗(ρ)). Denote by KLρ the Kazhdan-Lusztig

category for V (ĝ∗(ρ)). We need the following two statements to be able to apply the machinery of

simple current extensions. The first of course shows that KLρ itself has a braided tensor structure,

and the second states that the monopole operators generate simple currents of V (ĝ∗(ρ)). The proof

of these two statements are somewhat lengthy and will be presented in the Appendix B.

Theorem 3.2.5. KLρ is a braided tensor category defined by logarithmic intertwining operators,

and tensor product is an exact functor on KLρ.

Proposition 3.2.6. Let Uλ be the direct summand of VB,ρ corresponding to λ ∈ Zr, namely the

summand containing the monopole operator corresponding to λ. Then Uλ are simple as V (ĝ∗(ρ))

modules and belong to KLρ, and satisfy the simple fusion rules:

(3.2.2.9) Uλ × Uλ′ ∼= Uλ+λ′

which can be realized by the state-operator correspondence of VB,ρ.

The proof of these two statements, especially Theorem 3.2.5, will reveal the following statement,

which is important for the proof of the mirror symmetry statement. Recall in Corollary 3.1.16,

we have shown that the VOA V (ĝ∗(ρ)) ⊗ VX,Y is a simple current extension of V (ĝl(1|1))⊗n. Let

KL�n,ρ,[0] be the full subcategory of KL�n that have trivial monodromy with V (ĝ∗(ρ)) ⊗ VX,Y .

There is a lifting functor of braided tensor categories:

(3.2.2.10) Lungauge : KL�n,ρ,[0] −→ V (ĝ∗(ρ))⊗ VX,Y−Modloc

(
Ind(KL�n)

)
.

The proof of Theorem 3.2.5 implies the following:

Theorem 3.2.7. The image of KL�n,ρ,[0] under Lungauge lies in KLρ, and this functor is sur-

jective onto KLρ. Consequently, the category KLρ is equivalent to the de-equivariantization of

KL�n,ρ,[0] by the lattice of simple currents defining V (ĝ∗(ρ))⊗ VX,Y .

We now come back to defining the category of line operators. Since VB,ρ is a simple current

extension of V (ĝ∗(ρ)), we have the category VB,ρ−Modloc (Ind(KLρ)) as well as a lifting functor
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LB:

(3.2.2.11) LB : Ind(KLρ)
[0] −→ VB,ρ−Modloc (Ind(KLρ)) .

Let KL
[0]
ρ be the subcategory of objects having trivial monodromy with VB,ρ. We give the following

definition:

Definition 3.2.8. The category CB,ρ is defined to be the image of KL
[0]
ρ under the lifting functor

LB:

(3.2.2.12) CB,ρ := LB
(
KL[0]

ρ

)
.

The category of line operators of TB,ρ is defined as the derived category LB,ρ := DbCB,ρ.

Similar to Proposition 3.2.4, we have the following proposition, whose proof will be presented

in Appendix B.

Proposition 3.2.9. An object M of KLρ belong to KL
[0]
ρ if and only if Na

0 acts semi-simply

with integer eigenvalues.

Recall the spectral flow automorphisms introduced in Section 3.1.3.2. The above proposition

implies that the spectral flows σλ,µV (ĝ∗(ρ)) are objects in KL
[0]
ρ precisely when µ ∈ Zr. These

are Zr × Zr copies of simple modules, and under the lift, one identifies the sublattice given by

{(λ, ρTρλ)}, and the quotient lattice is isomorphic to Zr. The module corresponding to σ0,µV (ĝ∗(ρ))

can be identified with the Wilson line associated to the representation defined by µ, as this object

is generated by:

(3.2.2.13)

∣∣∣∣∣
∫ ∑

a

µaE
a

〉
.

on which Na has weight µa. Namely, these corresponds to representations of the gauge group (C×)r.

These will be identified with the vortex lines under mirror symmetry.

Similar to Cβγ , the category KLρ also decomposes into blocks:

(3.2.2.14) KLρ =
⊕
λ∈Cr

KLρ,λ
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where KLρ,λ denotes the subcategory where the generalized eigenlvaue of Ea0 is λa. Under the

above lift, objects in KL
[0]
ρ,λ will be identified with KL

[0]
ρ,λ+µ for any µ ∈ Z. Thus, the category LB,ρ

is decomposed into blocks:

(3.2.2.15) LB,ρ =
⊕

[λ]∈(C/Z)r

LB,ρ,[λ].

This decomposition will be equivalent to the decomposition of LA,ρ under mirror symmetry.

3.2.3. Mirror Symmetry of the Category of Line Operators. The main goal of this

section is to give a short and un-detailed proof of the following theorem:

Theorem 3.2.10. There is an equivalence of braided tensor categories:

(3.2.3.1) CA,ρ ' CB,ρ∨ .

Consequently, LA,ρ ' LB,ρ.

Proof. The idea is to use the relation between ṼA,ρ and VB,ρ∨ derived in Theorem 3.1.15. We

have the following diagram of VOA extensions:

(3.2.3.2)

ṼA,ρ ⊗ V ⊗nbc
∼= VB,ρ∨ ⊗ VX,Y

V ⊗nβγ ⊗ V
⊗n
bc V (ĝ∗(ρ∨))⊗ VX,Y

V (ĝl(1|1))⊗n

and the corresponding lifting functors:

(3.2.3.3)

CA,ρ CB,ρ∨

C�nβγ KLρ

KL�n

LA LB

L0 Lungauge
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Thus to show that CA,ρ and CB,ρ are the same, one needs only show that they are the image of the

same lifting functor from the same subcategory of KL�n. The commutativity of the lifting functor

follows from the uniqueness of VOA structure from simple current extension [CR22]. The fact

that they are lifts from the same category simply follows from definition: the subcategory of local

modules with respect to the lattice defining the extended VOA ṼA,ρ ⊗ V ⊗nbc . Thus CA,ρ ' CB,ρ as

desired. �

We can now prove Proposition 3.2.9.

Proof of Proposition 3.2.9. Let KL�n,ρ,[0] be the subcategory of KL�n that has trivial

monodromy with ṼA,ρ ⊗ V ⊗nbc . The proof of Theorem 3.2.10 shows that the lifting functor is

essentially surjective:

(3.2.3.4) CA,ρ ' CB,ρ ' LB ◦ Lungauge

(
KL�n,ρ,[0]

)
.

By Proposition 3.2.4, an object belong to Lungauge

(
KL�n,ρ,[0]

)
if and only if the zero-mode of∑

i ρia:β
iγi : is semi-simple with integer eigenvalues, and this is the same as

∑
i ρiaE

i
0 acting semi-

simply with integer eigenvalues. Since the objects that can be lifted to C�nβγ requires that N i
0 acts

semi-simply with integer eigenvalues, we deduce that an object in KL�n belongs to KL�n,ρ,[0] if and

only if both N i
0 and

∑
i ρiaE

i
0 acts semi-simply with integer eigenvalues. Note that fields

∑
i ρiaE

i

and
∑
τ̃aiN

i belong to VX,Y and
∑
ρ∨iαN

i are identified with Nα in V (ĝ∗(ρ∨)). Therefore, the image

of KL�n,ρ,[0] consists of precisely those objects in KLρ where the action of Nα
0 is semi-simple with

integer eigenvalues. This completes the proof.

�

Since the fields Eα are identified with the image of
∑

i ταi:β
iγi : in VA,ρ, we find that the above

equivalence induces an equivalence:

(3.2.3.5) LA,ρ,[λ] ' LB,ρ∨,[λ], for any [λ] ∈ (C/Z)n−r.
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Let us now identify the image of the Wilson lines. The Wilson line corresponding to µ ∈ Zn−r is

generated by:

(3.2.3.6)

∣∣∣∣∣
∫ ∑

α

µαE
α

〉
.

Using the field re-definition in the proof of Theorem 3.1.15, this is the same as the module generated

by:

(3.2.3.7)

∣∣∣∣∣∣
∑
α,i

µαρ̃iα(ψi + φ̃i)

〉
.

Since in defining ṼA,ρ, we are extending by the entire lattice of φ̃i, the lift of this module is

isomorphic to the lift of the Fock module generated by:

(3.2.3.8)

∣∣∣∣∣∣
∑
α,i

µαρ̃iαψ
i

〉
.

Comparing this with the free field realization of the simple modules of Vβγ [AW22], and using the

definition of ρ̃, we see that such module precisely corresponds to (
∏
i σ

∑
α µαρ̃iα

i )Vβγ , which is lifted

to the vortex line operator in LA,ρ. We have thus shown that vortex lines in LA,ρ correspond to

Wilson lines in LB,ρ∨ .

3.2.4. A Quantum Group Description and Kazhdan-Lusztig Correspondence. We

have succeeded in defining the braided tensor categories LA,ρ and LB,ρ whose objects are line

operators in TA,ρ and TB,ρ respectively. They have the right kind of simple objects, and these objects

are matched under mirror symmetry. Moreover, one can compute fusion rules using the relation

of these categories to the Kazhdan-Lusztig category of V (ĝl(1|1)), and the work of [CMY22c].

However, the theory of intertwining operators are not the easiest to work with, especially due to the

fact that the associator is highly non-trivial. In this section, we would like to find a quantum group

whose category of modules is equivalent to LB,ρ, and conjecture that this induces an equivalence of

braided tensor categories. This gives a Kazhdan-Lusztig correspondence for VB,ρ. The main result

of this section is the following:
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Theorem 3.2.11. There exists a Hopf algebra Uq(g∗(ρ)) and an equivalence of abelian cate-

gories:

(3.2.4.1) Uq(g∗(ρ))−Modfin ' CB,ρ.

Moreover, the category on the left has the structure of a braided tensor category. Consequently,

there is an equivalence:

(3.2.4.2) DbUq(g∗(ρ))−Modfin ' LB,ρ.

Our proof will use the extension procedure and the equivalence in the work of [BN22]. Let U

be the algebra generated by N,ψ± and K subjected to the following relations:

(3.2.4.3) [N,ψ±] = ±ψ±, {ψ+, ψ−} = K − 1.

Moreover, we impose the condition e2πiN = 1 on all modules of U . With these condition, there is

an equivalence of abelian categories:

(3.2.4.4) Cβγ ' U -Modfin,

under which Cβγ,[λ] corresponds to U -Modfin,e2πiλ , the subcategory where the generalized eigenvalue

of K is e2πiλ. Since the category LA,ρ∨ is related to C�nβγ , we will apply the procedure of lifting

using the above equivalence. Let us start with the equivalence

(3.2.4.5) C�nβγ ' U⊗n-Modfin.

The subcategory of modules having trivial monodromy with VA,ρ∨ is equal to the subcategory where

e2πi
∑
ρ∨iαJ

i
0 = 1, and translating this to U⊗n, this amounts to requiring:

(3.2.4.6)
∏
i

K
ρ∨iα
i = 1, for all α.

On the other hand, the lifting will identify an object with a spectral flow:

(3.2.4.7) M ↔ (
∏
i

σ
ρ∨iα
i )M,
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and under the equivalence to U⊗n, this amounts to identifying M with M [
∑

i ρ
∨
iαN

∗
i ], where the

shifting means the shifts of weights of Ni, namely, the action of Ni is shifted by Ni 7→ Ni + ρ∨iα. In

conclusion, the lifting procedure has the following two effects:

(1) Taking a quotient of U⊗n by the ideal generated by
∏
iK

ρ∨iα
i − 1 for all α. We call this

quotient U⊗n.

(2) Identifying modules whose action differ only by the shift Ni 7→ Ni + ρ∨iα.

To understand the second effect, let us use the split sequence to write:

(3.2.4.8) Ñα =
∑
i

ρ̃iαN
i, Na =

∑
i

ρiaN
i.

Let us consider shifting the action of Ni by ρ∨iα, on Ñβ, this amounts to:

(3.2.4.9) Ñβ 7→
∑
i

ρ̃iβN
i + ρ̃iβ(ρ∨)iα =

∑
i

ρ̃iβN
i + δαβ.

Here we used the fact that τ · ρ̃ = Idn−r. On the other hand, on the generators Na, we have:

(3.2.4.10) Na 7→
∑
i

ρiaN
i + ρia(ρ

∨)iα =
∑
i

ρiaN
i = Na,

and so the shift does not change Na. Now let us define Uq(g∗(ρ)) to be the subalgebra of U⊗n

generated by the image of Na, ψ
±,i and Ki. With these definition, the restriction functor:

(3.2.4.11) Res : U⊗n-Modfin −→ Uq(g∗(ρ))-Modfin

coincides with the lifting functor, identifying an object with its spectral flow. In conclusion, we

have arrived at an equivalence:

(3.2.4.12) Uq(g∗(ρ))-Modfin ' CA,ρ∨ ' CB,ρ.

Define Ka :=
∏
K τ̃ai
i , then from the exact sequence, the algebra Uq(g∗(ρ)) is generated by Na, ψ

±,i

and Ka. Moreover, we have commutation relation:

(3.2.4.13) [Na, ψ
±,i] = ±ρiaψ±,i, {ψ+,i, ψ−,i} = Ki =

∏
j

K
∑
a ρiaτ̃

a
j+

∑
α ρ̃iατ

α
j

j =
∏
a

K
ρia
a .
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Here, the second equation for Ki follows from ρτ̃+ ρ̃τ = Idn and the third follows from the quotient.

The above commutation relation is a quantization of g∗(ρ):

(3.2.4.14) {ψ+,i, ψ−,i} =
∑

ρiaE
a 7→ {ψ+,i, ψ−,i} =

∏
a

K
ρia
a ,

and we understand Ka as e2πiEa . Note that we also impose the condition e2πiNa = 1 on all

finite-dimensional modules.

Let us now show that Uq(g∗(ρ)) is a Hopf algebra. Let UN,Eq (gl(1|1)) be the unrolled-restricted

quantum gl(1|1) generated by N,E,Ψ± with commutator;

(3.2.4.15) [N,Ψ±] = ±Ψ±, {Ψ+,Ψ−} =
qE − q−E

q − q−1
.

There is an embedding of U into UN,Eq (gl(1|1)) given by:

(3.2.4.16) N 7→ N, ψ+ 7→ Ψ+, ψ− 7→ q−E(q−1 − q)Ψ−, K 7→ q−2E .

This does not induce a Hopf structure on U however, since the bi-algebra map and antipode of

UN,Eq (gl(1|1)) involves qE rather than q2E . More specifically:

(3.2.4.17)

∆(Ψ+) = Ψ+⊗1+q−E⊗Ψ+, ∆(Ψ−) = Ψ−⊗qE+1⊗Ψ−, S(Ψ+) = −qEΨ+, S(Ψ−) = −q−EΨ−

which will induce the following structure for the subalgebra U :

(3.2.4.18)

∆(ψ+) = ψ+⊗1+q−E⊗ψ+, ∆(ψ−) = ψ−⊗1+q−E⊗ψ−, S(ψ+) = −qEψ+, S(ψ−) = −qEψ−

To fix this problem, we can first conjugate the bialgebra structure of UN,Eq (gl(1|1)) by qE⊗N , since:

(3.2.4.19) qE⊗N∆(ψ+)q−E⊗N = ψ+ ⊗ 1 + 1⊗ ψ+,

where the equation follows from the commutation relation [E ⊗N, f(E)⊗ ψ+] = Ef(E)⊗ ψ+ for

any power series f(E). Similarly, the conjugation of ∆(ψ−) becomes ψ− ⊗ 1 + q−2E ⊗ ψ−. Since

we conjugated the co-algebra structure, we need to conjugate the antipode as well, and it is easily
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seen that it is given by:

(3.2.4.20) S(ψ+) = −ψ+, S(ψ−) = −q2Eψ−.

These structures thus makes the embedding U → UN,Eq (gl(1|1)) into one of Hopf algebras. Since

all the functors above preserve the Hopf structure, we conclude that Uq(g∗(ρ)) is a Hopf algebra.

Let us now show that Uq(g∗(ρ))-Modfin is braided. We start by showing that U -Modfin is

briaded. Consider the restriction functor:

(3.2.4.21) Res : UN,Eq (gl(1|1))-ModNfin → U -Modfin

from modules of UN,Eq (gl(1|1)) where N acts with integer eigenvalues, which is clearly a tensor

functor. If we can show that the kernel of this functor is in the Drinfeld center, then we are done

because this functor is clearly surjective, and we can transport the braided tensor structure on

U -Modfin. Choose k = 2 log(q). The kernel of this tensor functor is given by the tensor subcategory

whose objects are direct sums of Cn/k for n ∈ Z, where Cn/k is the one-dimensional module where

N,Ψ± acts as zero and E acts as n/k. Here qE = eπikn/k = (−1)n. This is true since for a module

to be trivial after restriction, K = q−2E = 1 and so E acts with weight n/k. We need to show that

Cn/k have trivial monodromy with modules of UN,Eq (gl(1|1)) where N acts with integer eigenvalues.

The monodromy is given by the following conjugated R matrix:

(3.2.4.22)

qN⊗EqN⊗E+E⊗N (1 + some factor ·Ψ+⊗Ψ−)q−E⊗N = q2N⊗E(1 + some other factor ·Ψ+⊗Ψ−).

The reason we omit the factors here is that these will not contribute to the monodromy as it will

act trivially on Cn/k. The monodromy of M with Cn/k is easily computed from this to be:

(3.2.4.23) q2N⊗E : M ⊗ Cn/k →M ⊗ Cn/k

which is equal to q2N⊗n/k = eπik·2N/k = e2πinN = 1 by the assumption on M . Thus Cn/k is in the

Drinfeld center and U indeed has a braided tensor structure. Now we can transport this structure

to Uq(g∗(ρ))-Modfin, again due to the fact that the kernel of the restriction functor from U⊗n to
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Uq(g∗(ρ)) is in the Drinfeld center, a computation that is done very easily and in a similar way as

above. This completes the proof of the above theorem. We now give the following conjecture:

Conjecture 3.2.12 (Kazhdan-Lusztig correspondence for VB,ρ). The equivalence:

(3.2.4.24) CB,ρ ' Uq(g∗(ρ))−Modfin

is one of braided tensor categories.

With this conjecture, we come to the conclusion that B twist of 3d N = 4 abelian gauge theory

TB,ρ is controlled by a quantum supergroup, and thus is related to a super-group Chern-Simons

theory, which was first extensively studied in [Mik15]. The recent work [Gar22,GN23] explores

this idea further in many examples.

3.3. Hypertoric Varieties and Vertex Operator Algebras

3.3.1. Higgs and Coulomb Branches from Vertex Operator Algebras. In the previous

sections, we have constructed abelian categories CA,ρ and CB,ρ, and the derived category LA,ρ and

LB,ρ. As was predicted in [CCG19], these categories can be used to realize the Higgs and Coulomb

branches. We start with proving the following:

Theorem 3.3.1. Let 1 be the identity object in LB,ρ, then there is an algebra isomorphism:

(3.3.1.1) Ext∗(1) ∼= C[MH,ρ].

By mirror symmetry statement of Theorem 3.2.10, we also have:

(3.3.1.2) Ext∗LA,ρ(1) ∼= Ext∗LB,ρ∨ (1) ∼= C[MH,ρ∨ ] ∼= C[MC,ρ].

Thus, the Coulomb branch algebra can be obtained from the category LA,ρ.

Let us prove Theorem 3.3.1. Since the identity object is in the subcategory LB,ρ,[0], we will use

the equivalence:

(3.3.1.3) LB,ρ,[0] ' DbUq(g∗(ρ))−ModK−1
fin ,
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where the right hand side is the category where Ka− 1 acts nilpotently for all α. Furthermore, one

can show that there is an equivalence:

(3.3.1.4) Uq(g∗(ρ))−ModK−1
fin ' g∗(ρ)−ModEfin

where the right hand side is the category of modules of g∗(ρ) where Ea acts nilpotently for all a and

e2πiNa = 1. This equivalence uses the fact that the power series f(x) = (e2πix − 1)/x is invertible

locally near x = 0, which gives a way to go between Ea and Ka = e2πiEa when Ka− 1 is nilpotent.

We now treat Na as inducing an action of T = (C×)r. Let g∗(ρ)>0 be the subalgebra of g∗(ρ)

generated by ψi,± and Ea. Then it is clear that:

(3.3.1.5) g∗(ρ)−ModEfin ' g∗(ρ)>0−ModT,Efin ,

the T equivariant modules of g∗(ρ)>0 where Ea acts nilpotently. We will do this computation using

the more convenient g∗(ρ)>0. Consider the following complex of g∗(ρ)>0 modules:

(3.3.1.6) C := U(g∗(ρ)>0)⊗ Sym(g∗(ρ)>0[1]),

together with a differential d =
∑

((xi)R+ 1
2 [xi,−])⊗∂xi , where xi is a set of basis for g∗(ρ)>0, (xi)R

means right multiplication on U(g∗(ρ)>0) and [xi,−] means the conjugation action on Sym(g∗(ρ)>0[1]),

and ∂xi is a set of dual basis. We have:

(3.3.1.7) d2 =
∑
i,j

(xi)R(xj)R ⊗ ∂xi∂xj +
1

2

∑
i,j

(xi)R ⊗ ∂xi([xj ,−]⊗ ∂xj )

The first term here is given by:

(3.3.1.8)
∑
i<j,k

fkij(xk)R ⊗ ∂xi∂xj ,

while in the second term, we have ∂xi [xj ,−] =
∑

k f
i
jk∂xk , and we obtain:

(3.3.1.9)
1

2

∑
i,j

(xi)R ⊗ ∂xi([xj ,−]⊗ ∂xj ) =
1

2

∑
i,j,k

(xi)R ⊗ f ijk∂xk∂xj = −
∑
i<j,k

fkij(xk)R ⊗ ∂xi∂xj .

Thus, d2 = 0 and this is a cochain complex. Since left multiplication on the left of C commutes

with the right multiplication, we see that C is a differential complex of g∗(ρ)>0 modules. In fact,
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the complex C is the Chevalley-Eilenberg complex of the Lie superalgebra g∗(ρ)>0, and it resolves

the trivial representation C of g.

Lemma 3.3.2. The complex C is a projective resolution of the trivial module C in the category

of g∗(ρ)>0 modules. Moreover, this resolution is equiviariant with respect to T .

Proof. The morphism U(g∗(ρ)>0) → C induces a map C → C that is trivial on all other

homological degrees. To show that this induces a quasi-isomorphism, we comment that by PBW

theorem of g∗(ρ)>0, C is a filtered complex C = ∪iFiC whose associated graded GrC is the

Koszul complex Sym(g∗(ρ)>0) ⊗ Sym(g∗(ρ)>0[1]), and thus is quasi-isomorphic to C. Now the

standard spectral sequence argument shows that the cohomology of C is quasi-isomorphic to C.

This completes the proof.

�

Now we need the following lemma about resolutions that are T -equivariant:

Lemma 3.3.3. Let P ∗ be a T -equivariant free U(g∗(ρ)>0) resolution of C. Let V∗ be any other

T -equivariant resolution, then there exists a T -equivariant map from P ∗ to V∗.

The proof of this is rudimentary and can be found in any standard algebra textbook, for

instance [Lan12]. As a consequence, let V∗ be any T -equivariant finite resolution of C using finite

dimensional modules, then there is a T -equivariant map C → V∗. We may assume that Ea acts

nilpotently on all V∗. Of course this map needs to factor through C≥−N , the cut-off of C at degree

−N , which is by definition the complex Ker(C−N ) → C−N → · · · → C0. Moreover, there exists

an integer M such that it factors through C≥−N/(E
M
a ), since there exists such M such that EMa

is zero on V∗ for all a. This is good because by definition, one can see that C≥−N/(E
M
a ) is in

fact a finite complex of finite-dimensional modules of g∗(ρ)>0. This implies in particular that the

projective system CN,M := C≥−N/(E
M
a ) is a final object in the category DbCB,ρ/C, the category

of bounded complexes over C. By the definition of Yoneda extension group, we have:

(3.3.1.10)

ExtLB,ρ(C,C) ∼= HomCB,ρ(lim←−CN,M ,C) ∼= lim−→HomCB,ρ(CN,M ,C) ∼= (C⊗ Sym(g∗(ρ)∗>0[1]))T .
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We can show that this is actually an isomorphism of algebras, by comparing the multiplication

of the generators on both sides. Let us now write Sym(g∗(ρ)∗>0[1]) explicitly. It is given by the

following DG algebra:

(3.3.1.11) Sym(g∗(ρ)∗>0[1]) = C[xi, yi, ba]

with a differential given by d =
∑
ρaix

iyi ⊗ ∂ba. By definition, the cohomology of this complex is

nothing but C[µ−1(0)]. Taking T invariant part, we arrive at:

(3.3.1.12) Ext∗LB,ρ(C,C) ∼= C[µ−1(0)]T = C[MH,ρ],

as desired. We have now completed the proof of Theorem 3.3.1.

Corollary 3.3.4. Let ξ ∈ T ∗ be a character of T . Let Vnξ be the Wilson lines in LB,ρ

corresponding to the character nξ for n ∈ Z, then there exists isomorphism of C[MH,ρ] modules:

(3.3.1.13) Hom(1, Vnξ) ∼= C[µ−1(0)]T,nξ

where the right hand side is the subspace of functions that transform like nξ under the action of T .

Proof. The proof follows the same method as above, once one identify the Wilson line Vnξ as

the trivial module Cnξ, the trivial module C of g∗(ρ)>0 with equivariant structure shifted by nξ.

�

In the category LB,ρ,[0], one has the fusion rule Vnξ × Vmξ ∼= V(m+n)ξ, which corresponds to,

under the equivalence to the category g∗(ρ)>0−ModT,Efin , the simple tensor product rule Cnξ⊗Cmξ ∼=

C(m+n)ξ. The fusion product induces maps:

(3.3.1.14) Hom(1, Vnξ)⊗Hom(1, Vmξ) −→ Hom(1, V(m+n)ξ).

The following space:

(3.3.1.15) Aξ =
⊕
n≥0

Hom(1, Vnξ)
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has the structure of a Z-graded commutative algebra. The algebra structure comes from the above

fusion map, and the commutativity comes from the fact that LB,ρ is a braided tensor category.

Following Corollary 3.3.4, we arrive at the following statement.

Corollary 3.3.5. The projective variety Proj(Aξ) is isomorphic to Mξ
H,ρ.

We have finally derived the desired statement, that one can obtain the Higgs and Coulomb

branches of abelian gauge theories and their resolutions using boundary vertex operator algebras.

We expect that this approach can give explicit understanding of the braided tensor structure on

Coh(Mξ
H,ρ), but will leave this for a future work.

3.3.2. Sheaf of Vertex Algebras on Hypertoric Varieties.

3.3.2.1. Kuwabara’s Sheaf of Vertex Algebras. Fix ρ and a parameter ξ, and consider the Higgs

branch Mξ
H,ρ. Following Theorem 2.1.5, we will assume that ρ is unimodular and ξ is generic so

that Mξ
H,ρ is smooth. In [Kuw21], following the construction of [AKM15], the author defined a

sheaf of vertex operator algebras VA,ρ,ξ onMξ
H,ρ, such that over any local chart, the sheaf localizes

to symplectic bosons.

More specifically, their definition of VA,ρ,ξ is extremely similar to the definition of VA,ρ. One

start with the ~-adic version of the VOA V ⊗nβγ ⊗ V
⊗n
bc , which denote by V ⊗n,~βγ ⊗ V ⊗nbc . This is the

vertex algebra over the ring C[[~]] whose OPE is:

(3.3.2.1) γi(z)βj(w) ∼ ~δij

z − w
, bi(z)cj(w) ∼ δij

z − w
.

The formal variable ~ allow V ⊗n,~βγ ⊗ V ⊗nbc to localize well on T ∗Cn:

Theorem 3.3.6 ( [AKM15] ). There is a sheaf of ~-adic VOA V~T ∗V whose global sections is

V ⊗n,~βγ ⊗ V ⊗nbc .

The idea of [Kuw21] is then to consider the BRST complex:

(3.3.2.2) VBRST,ρ := V ⊗n,~βγ ⊗ V ⊗nbc ⊗ V
⊗r
bc

whose differential is defined in the same way as equation (3.1.2.9), except that the coefficient in

front of :bici : will be multiplied by ~. Note that the difference of the definition here and the
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one in [Kuw21] is that we extended the Heisenberg VOA to the full free fermion algebra, and

eliminated the ~ coefficients in the fermionic OPE. Define:

(3.3.2.3) V~A,ρ := H0(VBRST,ρ, QBRST ),

which is a sheaf of VOA on T ∗V .

Theorem 3.3.7 ( [Kuw21] ). The cohomology sheaf V~A,ρ is supported on µ−1(0). Moreover,

the sheaf restricted to µ−1(0)∩(T ∗V )ssξ descends to a sheaf onMξ
H,ρ, or in other words, there exists

a sheaf VA,ρ,ξ on Mξ
H,ρ such that:

(3.3.2.4) π∗VA,ρ,ξ ∼= V~A,ρ

on µ−1(0)∩ (T ∗V )ssξ . Over each local chart of Mξ
H,ρ, the VOA VA,ρ,ξ is a localization of V ⊗n−r,~βγ ⊗

V ⊗n,~bc .

Let us now consider applying this statement to Theorem 3.1.10. The VOA VB,ρ∨ also admits

~-adic version from the theorem, and we denote it by V~B,ρ∨ , where the OPE of the affine Lie

superalgebra V (g∗(ρ)) becomes:

(3.3.2.5)

Na(z)E
b(w) ∼ ~δba

(z − w)2
, Na(z)Nb(w) ∼

∑
i ρ
i
aρib

(z − w)2

Na(z)ψ
i,+(w) ∼ ρiaψ

i,+

(z − w)
, Na(z)ψ

i,−(w) ∼ −ρ
i
aψ

i,−

(z − w)

ψi,+(z)ψj,−(w) ∼ ~δij

(z − w)2
+
δij
∑

a ρ
i
aE

a

z − w
.

Moreover, the OPE of monopole operators with the fields here follow from the realization of mono-

pole operators as exp
∫
Na. Note that this OPE can simply be derived from VB,ρ∨ by rescaling

Ea 7→ ~Ea and ψi,± 7→ ~1/2ψi,±, which through the isomorphism of Theorem 3.1.10, simply be-

comes β, γ 7→ ~1/2β, ~1/2γ, and we recover exactly the ~-adic OPE of V ⊗n,~βγ . This argument implies:

Corollary 3.3.8. The ~-adic VOA V~B,ρ∨ is a sheaf of vertex operater algebra on T ∗V supported

on µ−1(0), and that it descends to a sheaf on Mξ
H,ρ
∼=Mξ

C,ρ∨. For each r × r minor of ρ, say ∆,

86



localization gives a map of VOAs:

(3.3.2.6) ∆ : V~B,ρ∨ −→ V ⊗n−r,~βγ ⊗ V ⊗nbc .

Example. Let ρ = (1, 1, · · · , 1)T, then ρ∨ = τT where τ is the matrix:

(3.3.2.7) τ =


1 −1 0 · · · 0

0 1 −1 · · · 0
... · · ·

...
...

...

0 0 · · · 1 −1


The VOA V~B,ρ∨ has an affine Lie superalgebra generated by Nα, Eα and ψi,±. For each 1 ≤ i ≤ n,

we have an embedding:

(3.3.2.8) ∆i : V~B,ρ∨ −→ V ⊗n−1,~
βγ ⊗ V ⊗nbc .

Let us write out the embedding ∆1 explicitly:

(3.3.2.9)

Nα 7→
∑

ταi:b
ici :, ψ+,1 7→ b1, ψ−,1 7→ ~∂c1 +

∑
i>1

(:βiγi − ~bici :)c1,

ψi,+ 7→ βibi, ψi,− 7→ γici, for i > 1, Eα =
∑
i>α

:βiγi − ~bici :

In conclusion, the VOA V ~
A,ρ is the global section of a G-equivariant sheaf of vertex algebra

on T ∗V and Kuwabara’s sheaf of VOA on Mξ
H,ρ is its localization to semi-stable points. In the

following section, we will show that the VOA V~B,ρ can be made into a sheaf of VOA object on the

Coulomb branch, and in this context, the formal parameter ~ is the cohomological grading. But

before that, let us recall the idea of shifted tangent complex.

3.3.2.2. Shifted Tangent Complex. Since the work of [Kap99], it is known that the shifted

tangent complex TX [−1] of a smooth complex variety X has the structure of a Lie algebra in the

symmetric monoidal category Coh(X). The Lie algebra structure is given by the Atiyah class. Let

∆ : X → X ×X be the diagonal embedding and let I be the sheaf of ideals defining the diagonal

in X ×X. Since X is smooth, the coherent sheaf I/I2 is a free module, and can be identified with
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the cotangent bundle LX of X. By definition, there is an exact sequence of coherent sheaves on X:

(3.3.2.10) LX ∼= I/I2 OX×X/I2 OX .

Dualizing this complex gives:

(3.3.2.11) OX (OX×X/I2)∗ TX .

Given any coherent sheaf M , tensoring with the above complex gives a short exact sequence:

(3.3.2.12) M (OX×X/I2)∗ ⊗M TX ⊗M,

and thus an element in Ext1(TX ⊗M,M) = Hom(TX [−1]⊗M,M), which is called the Atiyah class

of M , denoted by αM . When M = TX [−1], this map αTX [−1] becomes a morphism: TX [−1] ⊗

TX [−1] → TX [−1] and satisfies the graded anti-symmetry and Jacobi identity, making TX [−1] a

Lie algebra object on X. Moreover, the Atiyah class αM gives a canonical module structure of M

as a TX [−1] module. This in fact gives a fully-faithful functor:

(3.3.2.13) Coh(X)→ TX [−1]-Mod(Coh(X)).

In particular, any hom is a hom of TX [−1] modules.

When X is smooth affine, the short exact sequence in equation (3.3.2.11) splits for any free

module M , and in particular, TX [−1] is a trivial Lie algebra, in that there is no Lie bracket.

Suppose M is a complex of free modules M∗ with differential d viewed as a matrix, the morphism

TX [−1] ⊗M → M can be described as follows. For any section v of TX , view v as a vector field

on X, then we can use it to differentiate the matrix d to obtain v(d). Since d2 = 0, we have

0 = v(d2) = [d, v(d)], and so v(d) is a closed degree 1 morphism. The assignment v → v(d) gives

the action of TX [−1] on M . One may worry that this definition might not satisfy the bracket of

TX [−1], but this is guaranteed by the following:

(3.3.2.14) [v(d), u(d)] = v[d, u(d)]± [d, vu(d)] = ±[d, vu(d)]
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and [d, vu(d)] is trivial in the cohomology. Here the term v[d, u(d)] vanish because [d, u(d)] = 0

which follows from d2 = 0.

When X is not affine, then the short exact sequence in equation (3.3.2.11) does not split

anymore. In this case, the Atiyah class is better captured by a class in Cech cohomology. Let

{Uα} be an affine covering of X, then locally, a splitting of the exact sequence (3.3.2.11) amounts

to the choice of a set of local coordinates, say xαi for Uα, since in that case the tangent complex is

generated by free modules ∂xαi . There is a transition matrix:

(3.3.2.15) ∂xαi =
∑

Gα,βij ∂xj,β ,

such that the matrix Gij is the gradient matrix of the local change of coordinate xβi = gαβi (xαj ) and

Gαβij =
∂gj
∂xαi

. These transition functions allow one to interprete the short exact sequence in equation

(3.3.2.11) as a class in the Cech complex:

(3.3.2.16)
∑
i,j

dxαi ⊗
∂Gαβij

∂xβj
∈ T ∗X ⊗OX(Uαβ) ∼= LX(Uαβ),

and this class can be used then to induce a class in Ext1(TX ⊗M,M) for any coherent sheaf M .

Extending this definition of tangent complex from smooth varieties to arbitrary varieties and

especially stacks is not straightforward, and is done in [Hen18] for derived Artin stacks, and

in [GR17] for general pre-stacks locally almost of finite type. The definition of these can be found

in [Lur04] and [GR19]. The central idea of the definition is that every nilpotent extension (formal

moduli problem) of X is controlled by a Lie algebra, the relative tangent Lie algebra, and that the

shifted tangent Lie algebra corresponds to the formal completion of the diagonal.

More precisely, given a stack X, denote by LieX the category of DG Lie algebras in IndCoh(X),

and by PStfX the category of pointed formal stacks over X. By this we mean the category whose

objects are:

(3.3.2.17) π : Y ↔ X : s

where π is an inf-schematic nil-isomorphism, namely the restriction of π on the reduced stack Y red

is an isomorphism, and s is a section of π such that π ◦ s = Id. Denote by GrfX the category of
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formal groups over X, namely the category of group objects in PStfX . The first important result

in [GR17] is that there is a continuous functor ΩX : PStfX → GrfX given by:

(3.3.2.18) ΩXY = X ×Y X,

the derived intersection of X in Y . This functor is an equivalence of categories, with inverse

given by the Bar-complex of a group. Moreover, there is a functor LX : GrfX → LieX , which is

essentially taking the Lie algebra of the formal group. It is proven that this is also an equivalence

of categories whose inverse ExpX is given by the formal completion of the Lie algebra at 0, and

whose Lie group structure is given by Baker–Campbell–Hausdorff formula. The shifted tangent

Lie algebra of X is defined by lX [−1] := LXΩX((X ×X)f ), the image of the formal completion of

X ×X along the diagonal morphism. One can show that the underlying sheaf of lX [−1] is indeed

the tangent complex, which follows from the definition of the cotangent complex as the universal

object classifying derivations of X in X × X. In general, the underlying sheaf of LXΩXY is the

relative tangent complex TX/Y . This definition is very abstract, but it is proven in [Hen18] that

when X is smooth, this definition coincides with the definition using Atiyah class, and moreover,

this definition behaves well under pullback of open substacks.

Coming back to the hypertoric varieties, denote by T the complex torus and t its Lie algebra.

Let us consider the following complex of free modules over T ∗V :

(3.3.2.19) T := O ⊗ t O ⊗ T ∗V [−1] O ⊗ t∗[−2]

in which the first differential is given by the map from g to the tangent space of T ∗V and the second

differential is given by push-forward of the tangent vector by the moment map. Suggestively, we

will denote by Na basis of O⊗ t, ψi,± basis of O⊗T ∗V and Ea basis of O⊗ t∗, then the differential

is given by dNa =
∑

i ρia(xiψ
i,− − yiψi,+), dψi,− =

∑
a ρ

i
ay
iEa, dψi,+ =

∑
a ρ

i
ax

iEa. We think

of Na as basis of the Lie algebra, ψi,− = ∂xi , ψ
i,+ = ∂yi and Ea = ∂Na . This is a G-equivariant

complex of free modules, if we give ψi,+ the opposite charge of yi and ψi,− opposite charge to xi.

We claim:
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Lemma 3.3.9. The Lie bracket in equation (3.1.3.2) makes T into a DG Lie algebra object in

CohT (T ∗V ).

Proof. Let us first comment that the differential on T is given by the following inner mor-

phism d =
∑

i xi[ψ
i,−,−] + yi[ψ

i,+,−]. This immediately implies that the bracket is closed under

differential, due to Jacobi identity. Moreover, d2 =
∑

i ρiax
i[Ea,−] = 0 because Ea are central.

The Lie bracket is equivariant due to the grading condition, and so T is a DG Lie algebra object.

�

The main theorem of this section is the following:

Theorem 3.3.10. Let iξ : µ−1(ξ)→ T ∗V be the embedding and iξ be the corresponding embed-

ding of T -quotient stack. Then the restriction iξ
∗T is the shifted tangent Lie algebra of µ−1(ξ)/T .

We will prove this theorem in two steps. First, let us focus on the tangent complex of µ−1(ξ).

Lemma 3.3.11. Let i∗ξT>0 be the sub-complex of positive degrees. Then i∗ξT>0 is the shifted

tangent Lie algebra of µ−1(ξ).

Proof. Since µ−1(ξ) is affine, so is µ−1(ξ)×µ−1(ξ). Therefore, the scheme µ−1(ξ)×µ−1(ξ) as

an object in PStf
µ−1(0)

is represented by the Chevalley-Eilenberg cochain complex CE∗(Tµ−1(ξ)[−1]).

Since by [Hen18], the functor between PStf
µ−1(ξ)

and Lieµ−1(ξ) is an equivalence, we only need to

show that the Chevalley-Eilenberg cochain complex of i∗ξT>0 also represents µ−1(ξ)× µ−1(ξ).

This can be computed very explicitly. Denote by Xi, Yi the (shifted) dual of ψi,+ and ψi,−

respectively, and by ca the dual of Ea. The Chevalley-Eilenberg cochain complex of T>0 is the

following DG commutative algebra over C[T ∗V ]:

(3.3.2.20) C[T ∗V ]⊗ C[Xi, Yi, ca]

with a differential acting on the generators as:

(3.3.2.21) dca =
∑

ρia(Xiyi + xiYi +XiYi).
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We can rewrite the above into:

(3.3.2.22) dca =
∑

ρia((Xi + xi)(yi + Yi)− xiyi).

Therefore, if we define the coordinates x̃i = xi +Xi and ỹi = yi + Yi, then the above is the ring of

functions on the subspace of T ∗V × T ∗V defined by µ(x, y) = µ(x̃, ỹ). Pulling back to µ−1(ξ), this

becomes the subspace of T ∗V × T ∗V such that:

(3.3.2.23) µ(x, y) = µ(x̃, ỹ) = ξ,

namely µ−1(ξ)×µ−1(ξ). Consequently, the Chevalley-Eilenberg cochain complex of i∗ξT>0 represents

µ−1(ξ)× µ−1(ξ), and the proof is complete.

�

We now come to the part of adding the group quotient, and do so in a more general setting. Let

X be an affine variety whose shifted tangent Lie algebra is a perfect complex TX [−1] concentrated

in positve degrees. Assume that there is an action of G on X that induces an action of G (as well

as the Lie algebra g) on TX [−1], and a map OX ⊗ g→ TX that is G-equivariant. It is a standard

result that in this case, the shifted tangent complex of X/G (as an object in IndCoh(X/G)) is

represented by the complex OX ⊗ g→ TX [−1], namely the cone of the above map.

Proposition 3.3.12. The Lie bracket of TX/G[−1] is given on OX ⊗ g→ TX [−1] by the com-

bination of:

(1) The Lie bracket of TX [−1].

(2) The Lie bracket of g.

(3) The action of g on TX [−1].

Proof. Let us denote by X the quotient stack X/G, and π : X → X the projection. Let TX

be the complex OX ⊗ g → TX [−1] with the Lie bracket defined as in the proposition. We would

like to show that TX [−1] ∼= TX as Lie algebra objects. By definition, the loop space ΩXX ×X is
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G \H where H is defined by the following diagram:

(3.3.2.24)

H X

Ĝe ×X X̂ ×X

∆

id×m

Here Ĝe is the formal completion of G at identity e and X̂ ×X is the formal completion of X ×X

at X. Let Ie be the ideal of G defining e and let Gne be the n-th formal neighborhood of e in G, or

in other words, Gne = Spec(C[G]/Ine ). This is a formal group such that lim−→n
Gne = Ĝe by definition.

Let Hn be the product Gne ×X ×X̂×X X, then G \H = lim−→
n

G \Hn. Each Hn is represented by a

G-equivariant affine scheme, since both X and Gne are affine, and moreover, this is a limit of formal

group objects over X/G. Therefore, we need to compute the Lie algebra of Hn and the limit.

By definition as in [GR17], the tangent Lie algebra is the relative tangent complex TXHn,

and the Lie bracket is induced from the morphism Hn ×X Hn → Hn, intuitively given by (g, h)→

ghg−1h−1. We must compute Hn and the formal group structure explicitly.

Since X is affine, the diagonal X̂ ×X can be represented by CE∗(TX [−1]), the Chevalley-

Eilenberg cochain complex. The diagonal embedding X → X̂ ×X is of course represented by the

quotient map CE∗(TX [−1]) → C[X], setting T∨X to zero. In this context, there is a very explicit

dg resolution of C[X] using complexes of CE∗(TX [−1]) (as in the case of ordinary Lie algebras,

see [Hen18]):

(3.3.2.25) CE∗(TX [−1])⊗OX Sym(TX [−1]∨) ∼= C[X]

where we identify Sym(TX [−1]∨) as the dual of U(TX [−1]), and the above takes the Chevalley-

Eilenberg cochain complex of Sym(TX [−1]∨) as a module of TX [−1] (under conjugation action).

On the other hand, the affine scheme Gne ×X can be represented by the algebra C[gn]⊗C[X] where

gn is the Lie algebra of Gne . This is true because exponential map gives an isomorphism gn ∼= Gne

as Gne is formal. The map Gne × X → X̂ ×X is represented by the composition of the following

morphisms of algebras:

(3.3.2.26) CE∗(TX [−1]) −→ C[X] −→ C[gn]⊗ C[X].
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Consequently, the affine scheme Hn is represented by the following very explicit DG scheme:

(3.3.2.27) C[Hn] ∼= C[gn]⊗ Sym(TX [−1]∨),

with a differential given by the differential on TX [−1]∨ together with the following explicit mor-

phism:

(3.3.2.28) d : TX [−1]∨ → TX [−1]∨ ⊗ C[gn],

induced from the action Gne × X → X × X. It is clear that the relative tangent complex TXHn

is given by O ⊗ gn → TX [−1], and using the above explicit DG algebra, the induced Lie bracket

on TXHn can be identified with the one in the statement of the proposition. For example, the Lie

bracket of gn is given by the differential of the Lie group structure on Gne , and the commutator of

gn with TX [−1] is given by the differential of the action of Gne on TX [−1].

Taking a limit as n→∞, we obtain TXH = lim−→n
TXHn = TX , as desired.

�

Note that theorem 3.3.10 is a consequence of this proposition and Lemma 3.3.11. We have thus

derived that the DG Lie algebra T built from the Lie superalgebra g∗(ρ) is the shifted tangent Lie

algebra of µ−1(ξ)/T , and in particular, i0
∗T is the shifted tangent complex of the stacky quotient

µ−1(0)/T . The work of [Hen18] also implies that the shifted tangent Lie algebra behave well under

open pull-back, namely when U → X is open, then TX [−1]|U ∼= TU [−1] as a Lie algebra. We thus

obtain the following:

Corollary 3.3.13. Let jξ :Mξ
H,ρ → µ−1(0)/G be the open embedding, then j∗ξT is the shifted

tangent Lie algebra of the smooth varietyMξ
H,ρ, namely the localization of the Lie algebra structure

is given by the Atiyah class.

Example. Consider the case ρ = (1, 1, . . . , 1)T and ξ = 1. In this case,Mξ
H,ρ = T ∗Pn−1, and there

are n embeddings ∆i : T ∗Cn−1 → µ−1(0)/G covering T ∗Pn−1. The pull-back of the complex T

over each ∆i is free and generated in cohomological degree 1 by (i 6= j):

(3.3.2.29) vi,j =
1

xi
ψj,+ − xj

x2
i

ψi,+, v∗i,j := xjψ
j,− − yjψj,+.
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The Lie algebra structure is trivial over each chart since:

(3.3.2.30) {vi,j , v∗i,j} = E =
1

xi
dψi,+.

The element representing the bracket {vi,j , v∗i,j} in Cech cohomology is simply − xi
xj
vi,j in Ui ∩ Uj .

One can verify that this coincides with the Atiyah class evaluated on vi,j ⊗ v∗i,j .

We consider the non-degenerate bilinear form κ0 on g∗(ρ) defined by:

(3.3.2.31) κ0(Na, Eb) = δab, δ0(ψi,+, ψj,−) = δij .

This induces, by linearity, a metric on T : T ⊗C[T ∗V ] T → C[T ∗V ][−2], which of course is invariant

under T and the left action by T . For each ξ ∈ g∗, the pullback i∗ξT is thus a metric Lie algebra in

Coh(µ−1(ξ)/T ), and in particular, the pullback i∗0T is a metric Lie algebra with metric i∗0κ0.

Lemma 3.3.14. The form i∗0κ0 is the symplectic form on Mξ
H,ρ.

Proof. This follows from definition. Indeed, κ0 restricted to degree 1 is the standard sym-

plectic form on T ∗V , and so the induced form on the cohomology is the symplectic form onMξ
H,ρ.

�

We have now seen that the Lie superalgebra g∗(ρ) together with its metric κ0 controls the

symplectic geometry ofMξ
H,ρ. Let us use this to construct the sheaf of VOA on hypertoric varieties.

3.3.2.3. Sheaf of Vertex Algebras Associated to Hypertoric Varieties. Let us start with a general

statement. Let X be a smooth symplectic variety, then TX [−1] is a Lie algebra object in Coh(X)

with a non-degenerate invariant bilinear form ω : TX [−1] ⊗OX TX [−1] → OX [−2]. These are the

ingredients we need to define an affine Lie superalgebra. The only problem here is that ω is an

element of homological degree 2, and so we can’t define this sheaf in the usual derived category

Coh(X). The solution, as in [RW10], is to consider the ~-adic version Coh(X)~. In [RW10], this

category is defined as having the same objects as Coh(X), but Hom spaces between two objects

become:

(3.3.2.32) HomCoh(X)~(M,N) =
⊕
n

~nExt2n(M,N).
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This definition is somewhat ad-hoc. To avoid this, and to be able to include monopole operators

(see Lemma 3.3.22 and the discussion prior), we comment that it is more natural to define this using

2-periodic complexes. Roughly speaking, the category Coh(X)~ has the same objects as Coh(X),

but we view an object (M∗, d) as a 2-periodic complex Meven =
⊕

iM2i and Modd =
⊕

iM2i+1,

such that the hom between M and N is the Hom:

(3.3.2.33)
⊕

i=j mod 2

~j−iHom(Mi, Nj).

The more geometric (∞-categorical) definition of this can be found in the work of [Pre11]. The

idea is to consider the Cartesian product X×C 0 where 0 ∈ C is the origin, and the map f : X → C

is a function (which for our context, is zero). Then the category Coh(X ×C 0) has an action of

Coh(0 ×C 0) via convolution, and by the equivalence Coh(0 ×C 0) ' C[[~]]−Mod, a C[[~]]-linear

structure, where ~ is in homological degree 2. The 2-periodic category (or the category of matrix

factorizations) is defined by:

(3.3.2.34) MF(X, f) := Coh(X ×C 0)⊗C[[~]] C((~))

or in other words, one invert the element ~. When f = 0, we will denote this category by Coh(X)~

and QCoh(X)~ the ind-completion. Heuristically, an object in Coh(X)~ is a complex of coherent

sheaves (M∗, d) on X together with an invertible isomorphism ~ : M∗ → M∗+2 of homological

degree 2, namely M∗ is 2-periodic. The above definition makes such a definition compatible in an

∞-coherent manner. Note that these two categories have symmetric monoidal structure induced

from the symmetric monoidal structure of the Z-graded counterpart.

Note that we don’t need (and will in fact avoid) the full ∞ content of this category, since it

is not clear to the author how to define VOA in a homotopical setting, i.e., how to deal with the

higher structures, or even what they are. In the following, we only deal with the degree 0 piece of

the structure, namely we really only consider the homotopy category π0Coh(X)~ and π0QCoh(X)~,

where the Hom between two objects is the degree 0 part of the Hom, which by definition is equation

(3.3.2.32). In a word, we do not claim to define a VOA object in the full DG category, but rather

the homotopy category. For simplicity however, we will still write Coh(X)~ and QCoh(X)~ and

drop π0 from all the discussion below.
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With the category already set-up, let us view TX [−1] as an object in Coh(X)~, and since

TX [−1]⊗OX TX [−1]→ OX is a genuine Hom in this category, TX [−1] becomes a metric Lie algebra

with metric ~ω ∈ Hom(TX [−1]⊗OXTX [−1],OX). Let us define the following object T̂ in QCoh(X)~:

(3.3.2.35) T̂ :=
⊕
n∈Z

znTX [−1]⊕OX .

Here zn is a formal variable. There is a morphism α̂ : T̂ ⊗OX T̂ → T̂ given by:

(3.3.2.36) αTX [−1](−,−)
⊕

~
∮

dzω(∂z−,−),

where we extend αTX [−1] to a C[z, z−1]-linear morphism. In other words, the restriction of α̂ to

zmTX [−1] ⊗ znTX [−1] maps to zm+nTX [−1] ⊕ OX , and the map to OX is non-zero only when

m = −n, in which case it is given by mω.

Lemma 3.3.15. The morphism α̂ gives T̂ the structure of a Lie algebra. We call this the affine

Lie algebra associated to the symplectic variety X.

Proof. The proof follows exactly the same way as the extension of affine Lie superalgebras.

The fact that α̂ satisfies graded skew-symmetry follows from the corresponding statement for

αTX [−1] and the fact that ω is graded-symmetric, and so
∮

dzω(∂z−,−) is graded skew-symmetric.

The fact that α̂ satisfy graded Jacobi identity follows from the fact that αTX [−1] satisfy graded

Jacobi identity and that ω is invariant and graded symmetric with respect to the action of TX [−1].

�

We can define the vacuum module in the same way. The object T̂≥0 :=
⊕

n≥0 z
nTX [−1]⊕OX

is a Lie algebra object and the canonical morphism i : T̂≥0 → T̂ is an embedding of Lie algebra

objects. Moreover, there is a quotient morphism T̂≥0 → TX [−1], so that for each coherent sheaf M

viewed as a TX [−1] module, we obtain a T̂≥0 module via this morphism. We define a module of T̂

by induction:

(3.3.2.37) M̂ := IndT̂
T̂≥0

(M)
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which is by definition the left adjoint to the restriction functor from T̂ to T̂≥0. Let U(T̂ ) be the

universal enveloping algebra of T̂ in QCoh(X)~, which is by definition the universal algebra object

with a monomorphism T̂ → U(T̂ ) of Lie algebras. Also let U(T̂≥0) be the universal enveloping

algebra for T̂≥0. By definition, U is the left-adjoint to the restriction functor from associative

algebras to Lie algebras. We can thus construct M̂ by M̂ = U(T̂ )⊗
U(T̂≥0)

M , and the adjointness

of this functor with restriction follows from tensor-hom adjunction.

Let T̂<0 =
⊕
n<0

znTX [−1], then as an OX module, T̂ = T̂≥0 ⊕ T̂<0, and the left adjoint action of

T̂<0 on T̂ induces an action on T̂≥0. Similarly, there is an action of T̂≥0 on T̂<0. The Lie algebra

structure on T̂ is totally derermined by the two subalgebra T̂<0 and T̂≥0, and their actions on each

other. More precisely, denote by A≥0 : T̂≥0 ⊗OX T̂<0 → T̂<0 the induced action on T̂<0 and A<0

vice versa, then the Lie bracket of T̂≥0⊗OX T̂ → T̂ is given by
(

[−,−]
T̂≥0

+A<0 ◦ τ
)
⊕A≥0, where

τ : T̂≥0⊗OX T̂<0 → T̂<0⊗OX T̂≥0 is the canonical isomorphism. Moreover, the data of a Lie algebra

morphism T̂ → g to another Lie algebra object g is the datum of Lie algebra homomorphisms

f : T̂≥0 → g and g : T̂<0 → g such that the induced bracket T̂≥0 ⊗OX T̂<0 → g coincides with

g ◦A≥0 +f ◦A<0 ◦ τ . The work of [GR17] has proved many general results about these Lie algebra

objects and their universal enveloping algebras, and much of what is used here is proved in this

work. We need the following:

Lemma 3.3.16. U(T̂ ) is a filtered algebra. Denote by Ugr(T̂ ) the associated graded algebra, then

there is a functorial isomorphism Sym(T̂ ) ∼= Ugr(T̂ ). This is similarly true for T̂≥0 and T̂<0.

As a consequence, the morphism U(T̂<0) ⊗ U(T̂≥0) → U(T̂ ) is an isomorphism of objects in

QCoh(X)~, since it is an isomorphism in the associated symmetric algebra. In fact, it is possible

to define the algebra structure of U(T̂ ) using this isomorphism: that U(T̂ ) is the crossed product

U(T̂<0) IJ U(T̂≥0) as defined in [Kas12]. This implies that M̂ as a module over OX can be

identified with U(T̂<0) ⊗OX M , since U(T̂ ) is a free right U(T̂≥0) module, and by PBW theorem,

this can be identified with Sym(T̂<0)⊗OXM . One can describe the action of T̂ on U(T̂<0)⊗OXM as

follows. The action of T̂<0 is the left multiplication. The action of T̂≥0 is given by the conjugation

action of T̂≥0 on U(T̂<0) and the action of T̂≥0 on M . Here the conjugation action is given by the
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following composition:

(3.3.2.38)

T̂≥0 ⊗OX U(T̂<0) T̂≥0 ⊗OX U(T̂ ) U(T̂ ) = U(T̂<0)⊗ U(T̂≥0) U(T̂<0)

The first map is the canonical embedding, the second map is left multiplication, and the third

map is the canonical morphism U(T̂≥0) → OX coming from adjunction of the trivial Lie algebra

morphism T̂≥0 → OX . This gives a well-defined action of T̂ by the definition of the Lie bracket of

T̂ .

Lemma 3.3.17. There is a filtration of U(T̂<0) such that the action of T̂≥0 on each filtered piece

factors through a quotient T̂≥0/z
n for some large n.

Proof. The Lie algebra T̂ is a graded Lie algebra such that the degree n part is znTX [−1] when

n 6= 0 and TX [−1] ⊕ OX when n = 0. Thus U(T̂ ) is canonically a graded algebra, and similarly,

U(T̂≥0) and U(T̂<0) are graded algebra as well. Let us denote by U(T̂<0)>i =
⊕
j>i

U(T̂<0)j , this gives

a filtration to U(T̂<0). Let n > −i, we show that the action of znTX [−1] on U(T̂<0)>i is trivial.

Indeed, by degree consideration, the action of znTX [−1] will map U(T̂ )>i to U(T̂ )>i+n ⊆ U(T̂ )>0,

which is zero after composing with the grading-preserving map U(T̂ )→ U(T̂<0).

�

Let V ~
X be the module ÔX , the module of T̂ associated to the trivial module of TX [−1]. We

prove the following main theorem of this section:

Theorem 3.3.18. The object V ~
X has the structure of a vertex algebra. We call this the vertex

algebra associated to the symplectic variety X with Poisson form ω.

Recall from [FBZ04], we need the following structures for a vertex algebra:

(1) A vacuum element, which is a morphism Ω : OX → V ~
X .

(2) A state operator correspondence Y : V ~
X ⊗OX V ~

X → V ~
X((t)) such that Y (Ω−, t) = Id.

(3) A conformal grading and an element T : V ~
X → V ~

X such that [T, Y (−, t)] = ∂Y (−, t).

In the following steps, we will use the fact that as an OX module, V ~
X
∼= Sym(T̂<0) to construct

the state operator correspondence. We will proceed in steps as laid out in the above.
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Step 1. The vacuum element is the morphism Ω : OX → Sym(T̂<0), that maps as identity to

Sym0 = OX .

Step 2. This is the difficult step. To start, we define Y : Sym0(T̂<0)⊗OX V ~
X → V ~

X to be identity.

For Sym1,we need to define

(3.3.2.39) Y : Sym1(T̂<0)⊗OX V
~
X = T̂<0 ⊗OX V

~
X → V ~

X((t)).

Let us denote by Jn the shifts by zn of the identity morphism Jn : zmTX [−1] → zm+nTX [−1],

and by mn the action morphism mn : znTX [−1] ⊗ V ~
X → V ~

X . There is a morphism z−1TX [−1] →∏
n
znTX [−1] by

∏
Jn+1, we define the restriction of Y on z−1TX [−1] to be:

(3.3.2.40) z−1TX [−1]⊗OX V ~
X

∏
n
znTX [−1]⊗ V ~

X V ~
X((t))

∏
Jn+1

∏
mnt−n−1

where the first morphism is
∏
Jn+1 and the second one is the action of T̂ on V ~

X . The fact that the

image is in V ~
X((t)) as supposed to

∏
n V

~
Xt

n follows from the fact that the action of T̂≥0 is locally

nilpotent. We define the restriction of Y to z−nTX [−1] for n > 1 to be the composition:

(3.3.2.41) z−nTX [−1]⊗OX V ~
X z−1TX [−1]⊗OX V ~

X V ~
X((t)) V ~

X((t)).
Jn−1 Y ∂n−1

t /(n−1)!

We must show that the morphisms thus defined satisfy locality. By [FBZ04], we only need to

check locality for the restriction of Y on z−1TX [−1], or in other words, we need to understand:

(3.3.2.42)
∑

mnt
−n−1 ·mks

−k−1 ±
∑

mkt
−n−1 ·mns

−k−1.

Now since V ~
X is a module of T̂ , commutation relation of T̂ implies:

(3.3.2.43)

∑
mnt

−n−1 ·mks
−k−1 ±

∑
mkt

−n−1 ·mns
−k−1

=
∑
k

∑
m+n=k

mk+n(αTX [−1])t
−n−1s−k−1 +

∑
n

n~ωt−n−1sn−1

=
∑
k

mk(αTX [−1])

(∑
n

t−n−1sn

)
s−k−1 + ~ω

∑
n

nt−n−1sn−1

=
∑
k

mk(αTX [−1])s
−k−1δ(t− s) + ~ω∂sδ(t− s).
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This is the locality condition. As a consequence, we can define Y on Symk(T̂<0) by :Y ⊗k :, the

normal-ordered product. This is well-defined thanks to locality, namely that :Y ⊗k : is symmetric.

We have thus found the state-operator correspondence Y , and clearly by definition Y (Ω, t) = Id.

Step 3. The conformal degree of V ~
X is defined by deg(z−nTX [−1]) = n and the degree is defined

multiplicatively on rest of Sym∗(T̂<0). For the definition of T , first define a derivation ∂ on T̂ whose

restriction on znTX [−1] is −nJ−1. This derivation induces a derivation on U(T̂ ). We define T by:

(3.3.2.44) T : U(T̂<0)⊗OX OX U(T̂ )⊗OX OX U(T̂ )⊗OX V ~
X V ~

X
∂⊗Ω

where the third map is the action morphism. We need to show that [T, Y (−, t)] = ∂tY (−, t), and

by [FBZ04], we only need to show this is true when restricted to z−1TX [−1]. This is clear then

since the action of T̂<0 is by left multiplication and the action of T̂≥0 is given by conjugation, both

of which will commute with T into the action of ∂ on T̂ , and so:

(3.3.2.45) [T,
∑

mnt
−n−1] =

∑
n

mn(∂)t−n−1 =
∑
n

−nmn−1t
−n−1 = ∂t

∑
n

mnt
−n−1

This completes the construction of the vertex algebra V ~
X . Since in the definition of the structure

maps of V ~
X , all morphisms behave well under pullback of flat morphisms, namely the pullback of

the morphism is the morphism of the pullback, we have the following corollary of the localization

of V ~
X .

Corollary 3.3.19. Let j : U → X be an affine open subvariety. Then j∗V ~
X = V ~

U is a

symplectic fermion system.

Proof. Since TU [−1] is a free module generated by ∂i for 1 ≤ i ≤ dim(U), the Atiyah class is

trivial and the commutator comes from the symplectic form. The OPE of V ~
U thus becomes:

(3.3.2.46) Y (z−1∂i, t)Y (z−1∂j , s) ∼
~ω(∂i, ∂j)

(t− s)2
,

This is a symplectic fermion system restricted at each point x ∈ U .

�

We can now apply this construction to hypertoric varieties. LetMξ
H,ρ be the hypertoric variety

with symplectic form coming from symplectic reduction. By Theorem 3.3.18, we obtain a sheaf of
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vertex algebras V ~
ξ . On the other hand, consider the sheaf of vertex algebra V(ĝ∗(ρ))~ := C[T ∗V ]⊗

V (ĝ∗(ρ))~, whose differential is defined in a similar way as T : d =
∮

dz
∑

i xiψ
i,−(z) + yiψ

i,+(z).

Note that d2 =
∮

dz
∑

a ξaE
a = 0 since Ea0 acts as zero on the vacuum module. This is obviously

a T -equivariant VOA object. From the definition of V ~
ξ and Theorem 3.3.10, we arrive at the

following theorem:

Theorem 3.3.20. The pullback iξ
∗V(ĝ∗(ρ))~ coincides with V ~

ξ as a vertex algebra object over

the variety Mξ
H,ρ. Consequently, the sheaf of vertex algebra V ~

ξ has a conformal element given by

the Poisson bivector associated to a shifted bilinear form of i∗0κ0.

Proof. If we do a field redefinition:

(3.3.2.47) Na 7→ Na −
1

~

∑
ρiaρ

i
b

2
Eb

then the VOA V(ĝ∗(ρ))~ is the affine Lie algebra associated to g∗(ρ) and the bilinear form κ0, which

localize to the symplectic form. This means that the localizatoin is the affine Lie algebra of the

shifted tangent Lie algebra. This completes the proof.

�

Over each point x ∈ Mξ
H,ρ, localization of V ~

ξ gives a symplectic fermion system, and by a

change of basis, we may always assume that we have the standard symplectic form. On the other

hand, localization of V(ĝ∗(ρ))~ simply evaluates xi, yi. Theorem 3.3.20 combined with Corollary

3.3.19 gives the following result:

Corollary 3.3.21. For each x ∈ µ−1(0)∩(T ∗V )ssξ , there is a differential dx on V (ĝ∗(ρ))~ such

that:

(3.3.2.48) H∗(V (ĝ∗(ρ))~, dx) ∼= V ⊗n−r,~χ± .
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Moreover, the action of g ∈ T on µ−1(0) and V (ĝ∗(ρ))~ induces a commutative diagram of isomor-

phisms of VOAs:

(3.3.2.49)

H∗(V (ĝ∗(ρ))~, dx) V ⊗n−r,~χ±

H∗(V (ĝ∗(ρ))~, dgx) V ⊗n−r,~χ±

g

Namely T acts trivially on the cohomology.

Proof. It is clear that the above are isomorphisms of vertex algebras. To show that the

conformal element agrees, we comment that the conformal element of V (g∗(ρ)) is defined by the

quadratic Casimir associated to a shift of κ0, and so the image of this is the quadratic Casimir

associated to the descent of the shift of κ0 on the cohomology over each chart. However, since over

each affine local chart the tangent complex is a free module concentrated in degree 1, the shift of κ0

also localize to the symplectic form restricted at x and can be made into the standard symplectic

form by a change of basis.

�

When ξ 6= 0, the sheaf i∗ξV(ĝ∗(ρ))~ is the best one can do, and it is not clear how to include

monopole operators to the sheaf, since on those modules, d2 =
∑
ξaE

a
0 is not zero. It is zero

however, when ξ = 0. Therefore, for Mξ
H,ρ, one can try to include those modules. Recall that

as a module of V (g∗(ρ)), the monopole operator corresponding to s ∈ Zr is the spectral flow

σs,ρTρsV (g∗(ρ)), where σs,ρTρs is defined as in Remark 3.1.8. Again, this spectral flow has an ~-adic

version, where the flow of Ea is Ea − ~sa
z . Let us denote by V~B,ρ the sheaf of VOA C[T ∗V ]⊗ V ~

B,ρ,

whose differential is defined in the same way as V(ĝ∗(ρ))~. This is not a complex of quasi-coherent

sheaves since d2 6= 0. However, the pullback i∗0V~B,ρ is a well-defined sheaf of VOA, and is T -

equivariant.

Lemma 3.3.22. Working over C[~, ~−1]. For each x ∈ µ−1(0)∩(T ∗V )ssξ , the induced differential

on σs,ρTρsV (ĝ∗(ρ))~ = U~
s has trivial cohomology, unless s = 0. In other words, H∗(V ~

B,ρ, dx) ∼=

H∗(V (ĝ∗(ρ))~, dx) as modules of C[~, ~−1].
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Proof. Denote by σs the spectral flow σs,ρTρs. On this module, the action of the central element

Ea,0 is given by ~sa, and there must be a such that sa 6= 0. In this case, let m ∈ σsV (ĝ∗(ρ)) be

closed under dx, and let Fa be an element in the universal enveloping algebra of V (ĝ∗(ρ)) such that

dxFa = Ea,0, then ~sam = Ea,0m = (dxFa)m = dx(Fam) ± Fadxm = dx(Fam), namely m is also

exact. Thus the cohomology must be trivial.

�

Since in the category QCoh(Mξ
H,ρ)

~, the element ~ is invertible (as we are working with 2-

periodic complexes), the above Lemma means that the monopole operators are absent when consid-

ering the resolved smooth Higgs branch, and can only be accessed at the singular point O ∈ µ−1(0).

Consequently, the sheaf of VOA i∗0V~B,ρ restricted to Mξ
H,ρ coincides with the vertex algebra V ~

ξ .

Recall from Section 3.3.2.1 that V~A,ρ is a sheaf of VOA on the Higgs branch Mξ
H,ρ, and the iso-

morphism V~A,ρ ∼= V~B,ρ∨ means that V~A,ρ can be made into a vertex algebra object on the Higgs

branch Mξ∨

H,ρ∨ , which is isomorphic to the Coulomb branch Mξ∨

C,ρ, we arrive at the following:

Theorem 3.3.23. The sheaf of VOA V~A,ρ on Mξ
H,ρ can be made into a sheaf of VOA in

QCoh(Mξ
H,ρ)

(
QCoh(Mξ∨

C,ρ)
~
)

, namely, it is a sheaf of VOA on Mξ
H,ρ valued in the symmetric

monoidal category QCoh(Mξ∨

C,ρ)
~.

Remark 3.3.24. The computation of the cohomology above is valid only over C((~)), and it is

not sure to the author how to compute it over C[[~]]. The proof of Lemma 3.3.22 shows however

that ~ has to act trivially, and so one can first quotient out ~ and then compute the cohomology.

As we will see the next section, taking ~ = 0 is related to going from the topological twists to HT

twist of 3d N = 4 theories.

3.3.3. HT twist and boundary Vertex Algebra. The ~-adic VOA V ~
A,ρ is defined in

[AKM15] without natural motivation: it is rather a tool to localize chiral differential operators on

smooth varieties (to render OPE finite after inverting fields in the VOA). The isomorphism of The-

orem 3.1.10 in fact reveals the role of ~ through the realization of V ~
B,ρ∨ : that ~ is the homological

shift in QCoh(MC,ρ). There is another natural interpretation of the ~-adic VOA: the deformation
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from HT twist to topological twists. The following two flat deformations:

(3.3.3.1) V ~
A,ρ, V ~

B,ρ

are the boundary VOA representation of the deformation:

(3.3.3.2) TA,ρ THT,ρ TB,ρ

More specifically, the theory THT,ρ admits both Neumann and Dirichlet boundary conditions

[CDG20]. The Neumann boundary condition (with extra degree of freedom to cancel anomaly),

which we denote by N, is compatible with the A twist, and gives the Neumann boundary condition

for TA,ρ. Similarly, the Dirichlet boundary condition, which we denote by D, is compatible with

the B twist, and gives the Dirichlet boundary condition for TB,ρ. If we denote the two boundary

vertex algebra by VN,ρ and VD,ρ, then one expects:

(3.3.3.3) VN,ρ ∼= V ~
A,ρ/(~), VD,ρ ∼= V ~

B,ρ/(~).

Instead of proving these statements, we take these as the definition of VN,ρ and VD,ρ. The justifi-

cation of these definitions can be seen from the index computation of Section 3.1.3.2. The mirror

symmetry statement of Theorem 3.1.10 immediately implies the mirror symmetry statement for

these vertex algebras:

Corollary 3.3.25. There are isomorphisms of vertex algebras:

(3.3.3.4) VN,ρ ∼= VD,ρ∨ , VD,ρ ∼= VN,ρ∨ .

Let us look at the vertex algebra VD,ρ more closely. By definition, this is an extension of

the affine Lie superalgebra V0(ĝ∗(ρ)), at level 0. The extension essentially uses the spectral flow

automorphism σs,ρTρs, which is associated to the action of Na(z). Therefore, the associated vertex

operator is:

(3.3.3.5) Us(z) := exp

(∫
s ·N(z)

)
.
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The OPE of this vertex operator with fields in V0(ĝ∗(ρ)) is given by:

(3.3.3.6)

Na(z)Us(w) ∼ ρTρ(s)a
z − w

, Ea(z)Us(w) ∼ 0, ψi,±(z)Us(w) ∼ (z − w)±ρ(s)i :ψi,±(w)Us(w) :

Under the equivalence VD,ρ ∼= VN,ρ∨ , the operators Us(z) is mapped to the image of:

(3.3.3.7) Us(z) 7→ :
∏

i:ρ(s)i>0

b
ρ(s)i
i

∏
i:ρ(s)i<0

c
−ρ(s)i
i :

under BRST cohomology, and the element Ea are mapped to:

(3.3.3.8) Ea 7→ −
∑
i

τ̃ai:β
iγi :.

Note that at ~ = 0, the fields βi and γi are commutative, and generate functions on the infinite jet

space J∞MH,ρ∨
∼= J∞MC,ρ. We have the following corollary:

Corollary 3.3.26. There is an embedding:

(3.3.3.9) C[J∞MC,ρ] ↪→ VD,ρ.

For the remainder of this section, we will spell out this in more detail. The idea is the identifi-

cation:

(3.3.3.10) ψi,+ 7→ :βibi :, ψi,− 7→ :γici :.

The space C[J∞MC,ρ] is generated by the following fields:

(3.3.3.11) rλ(z) =
∏

ρ(λ)i>0

(βi)ρ(λ)i
∏

ρ(λ)i<0

(−γi)−ρ(λ)i , λ ∈ Zr

then rλ(z) survives the BRST cohomology and gives well-defined elements in VN,ρ∨ . They have the

following OPE:

(3.3.3.12) rλ(z)rµ(z) =
∏
i

(−:βiγi :)
d(ρ(λ)i,ρ(µ)i)rλ+µ(z).
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Due to the splitting of the short exact sequence in equation (3.1.1.16), we have that ρτ̃ + ρ̃τ = Id.

Applying this to −:βiγi : we find:

(3.3.3.13) − :βiγi : = −
∑

ρiaτ̃
a
j :β

jγj :−
∑

ρ̃iατ
α
j :β

jγj :.

Note that the second term on the right hand side is exact in the cohomology (recall ρ∨ = τT), and

consequently in the cohomology, −βiγi =
∑
ρiaE

a. Therefore, we have the following OPE in the

cohomology:

(3.3.3.14) rλ(z)rµ(z) =
∏
i

(∑
ρiaE

a(z)
)d(ρ(λ)i,ρ(µ)i)

rλ+µ(z).

This perfectly matches the formula of C[MC,ρ] in Theorem 2.1.7, if we identify Ea as basis elements

of t∗, and
∑
ρiaE

a as ξi. In terms of VD,ρ, we can identify:

(3.3.3.15)

rλ(z) = ±
∏

ρ(λ)i>0

∮
(zi − z)ρ(λ)2i−1d(zi − z): (ψi,+(zi))

ρ(λ)i :

·
∏

ρ(λ)i<0

∮
(zi − z)ρ(λ)2i−1d(zi − z): (ψi,−(zi))

−ρ(λ)i : U−λ(z),

Here the extra ± sign is to account for the sign change in the ordering of ψi,±. To see how the

formula is true, consider trying to obtain powers of βi in rλ. We need the powers of ψi,+ because

ψi,+ = βibi, which will contribute extra powers of bi. These contribution of bi will cancel out nicely

with U−λ(z) under residue because:

(3.3.3.16)

∮
(z − w)n

2−1d(z − w):bi(z)
n ::ci(w)n : = 1.

In next chapter, we will see that the vacuum module of VD,ρ is related to the Hochschild homology

of the category Coh(G(O)\RG,V ). Of course, there is much more to study about the representation

theory of VN,ρ and VD,ρ, as well as its relation to the Higgs and Coulomb branches. Unfortunately,

such an endeavor is beyond the scope of this thesis, and will be left for a future work.
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CHAPTER 4

Category of Line Operators in the Holomorphic Twists of 4d

N = 2 Theories

In this chapter, we study the category of line operators and the algebra of local operators in the

Kapustin twist of 4d N = 2 gauge theory THT [G,V ]. As has been mentioned in Section 2.2, the

space of local operators is computed in physics to be a Poisson vertex algebra, and the category of

line operators is proposed to be Coh(G(O) \ RG,V ). The central statement of this chapter is that

the Poisson vertex algebra can be obtained from the category Coh(G(O) \ RG,V ), as the derived

endomorphism of the unit object. The structure of this chapter is as follows:

• In Section 4.1, we recall the geometry of the BFN space RG,V , especially its stratification,

and the definition of the category of coherent sheaves. We will also introduce the Poisson

vertex algebra VG,V as BRST cohomology.

• In Section 4.2, we compute the derived endomorphism of the uni object in Coh(G(O) \

RG,V ), and prove that it is quasi-isomorphic to VG,V as an algebra. This statement will

be the content of Theorem 4.2.13 and Theorem 4.2.16. We also compute the derived

endomorphism between line bundles supported on the miniscule orbits, focusing on the

case when G = PSL(2) and V = 0. We compare our results with the physical results

computed from supersymmetric localization.

4.1. The Category of Line Operators and the Poisson Vertex Algebra

4.1.1. Geometry of the BFN Spaces. Let G be a reductive Lie group. The affine Grass-

mannian of G is the quotient:

(4.1.1.1) GrG := RG,0 = G(K)/G(O).
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It turns out that GrG is a classical ind-scheme; its geometry is well studied in the literature. We

will in this section recall some basic facts about this space. For details, see [Zhu16]. In particular,

we note that the study of the geometry of this space has two complications, one is that it is an

ind-scheme; the other is that it is not always reduced.

4.1.1.1. The Affine Grassmannian of GLn. Let us first consider the case when G = GLn. The

affine Grassmannian GrGLn can be defined alternatively as the moduli space of lattices in Kn.

More precisely, if R is an algebra over C, then an R family of lattices in Kn is a finitely-generated

projective R[[z]]-submodule Λ of R((z))n such that Λ⊗R[[z]]R((z)) = R((z))n. The affine Grassmannian

GrGLn can be defined as the presheaf assigning to R the set of R families of lattices in Kn. We

have:

Proposition 4.1.1. GrGLn is represented by a classical ind-projective ind-scheme. Namely, it

can be written as a colimit of classical projective schemes under closed embeddings.

Moreover, GrGLn is formally smooth in the following sense:

Definition 4.1.2. An ind-scheme X = lim−→Xn is formally smooth if for any algebra R and

nilpotent ideal I ⊆ R, the map X(R)→ X(R/I) is surjective.

4.1.1.2. The Affine Grassmannian of General G. Let now G be an arbitrary smooth affine

reductive group. Choosing a faithful representation G → GLn one obtains a closed embedding

GrG ↪→ GrGLn , and from Proposition 4.1.1 one concludes that GrG is an ind-projective ind-scheme,

and moreover, one can show that it is formally smooth. There is a canonical isomorphism π0(GrG) ∼=

π1(G), and the connected components of GrG are labeled by the fundamental group of G, which is

also the quotient of the co-weight lattice of G by its co-root lattice. All connected components are

isomorphic to each other, with an isomorphism given by left multiplication by an element in G(K).

It turns out, however, this space is not always reduced, as can be seen from the following example.

Example. Consider T = C∗. Then GrT = K∗/O∗. The C points of this space is a disjoint union

of infinitely many copies of Spec(C). They can be represented by {zn|n ∈ Z}, since any nonzero

element in K is of the form zng[z] for some g[z] ∈ O∗. However, if we evaluate GrG on the algebra

C[ε] with ε2 = 0, then an element in C[ε]⊗K is invertible iff its image under the map C[ε]⊗K → K
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setting ε 7→ 0 is invertible. This means that the set of invertible elements in C[ε] ⊗ K is K∗ ⊕ εK,

while the set of invertible elements in O is O∗ ⊕ εO. The quotient is not a discrete set anymore,

but rather an infinite-dimensional vector bundle over GrT (C). The fibre of this bundle at a point

zn is K/znO, and should be interpreted as the tangent space of GrT at zn. This presents difficulty

in considering the category of coherent sheaves, as in this case, the category of sheaves on GrT

is different from the category of sheaves on its C points, even though the K0 groups of the two

categories are isomorphic.

In the case when G is semi-simple, GrG is in fact reduced. In general, we denote by GrG,red the

reduced ind-scheme of GrG. In the following, we will present a different stratification of GrG from

the one obtained through an embedding GrG ↪→ GrGLn .

4.1.1.3. A Stratification for GrG,red. Let T be a maximal torus of G and B a Borel subgroup of

G containing T . Denote the associated weight lattice by X∗(T ) and coweight lattice by X∗(T ). The

choice of a Borel subgroup determines a set of dominant weights X∗(T )+ and dominant coweights

X∗(T )+. Each λ∨ ∈ X∗(T ) determines an element in T (K) given by tλ
∨
. The assignment λ∨ →

G(O)tλ
∨

is a bijection between X∗(T )+ and G(O) orbits of G(K)/G(O). Denoting by Grλ∨ the

associated orbit, then it is a smooth quasi-projective variety since it is the quotient of an affine

algebraic group by an algebraic subgroup. The reduced locus GrG,red has a stratification:

(4.1.1.2) GrG,red =
⋃

λ∨∈X∗(T )+

Grλ∨

Let Grλ∨ be the Zariski closure of Grλ∨ . Then for λ∨ ≤ µ∨ in X∗(T )+, Grλ∨ is a closed subscheme

of Grµ∨ . This gives GrG,red an ind-scheme structure:

(4.1.1.3) GrG,red = lim−→
λ∨∈X∗(T )+

Grλ∨ .

Each Grλ∨ is a projective variety, though usually it’s very singular. In general, Grλ∨ is a normal

projective variety, and it is smooth if and only if λ∨ is miniscule, in which case Grλ∨ = Grλ∨ . These

are called miniscule orbits, and are in one-to-one correspondence with the fundamental group of

G, as well as with the number of connected components of GrG. Note that when G is semi-simple,

GrG = GrG,red. Thus in this case, equation (4.1.1.3) gives an explicit stratification of GrG.
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4.1.1.4. The BFN space RG,V . Now fix a finite dimensional representation V of G, and denote

by G̃O the extended group G(O) nC×, where C× is the two-fold cover of the group acting as loop

rotation.1 The Cartesian diagram in equation (2.1.1.16) definesRG,V as a derived stack. In contrast

to the affine Grassmannian, RG,V is not a classical ind-scheme, but a DG-indscheme. This means

that it is not determined solely by its value on classical rings. Now fix an ind-scheme structure of

GrG, say GrG = lim−→GrG,n such that each GrG,n is a projective scheme closed under the action of

G̃O. Let G(K)n be the pre-image of GrG,n under the projection G(K)→ GrG. For each n, choose

N (that depends on n) large enough so that the action of G(K)n maps V (O) to z−NV (O). We

have the following base-change diagram:

(4.1.1.4)

RG,V,n V (O)

G(K)n ×G(O) V (O) z−NV (O)

Since the bottom line of the Cartesian square in equation (2.1.1.16) is an inductive limit of the

bottom line from equation (4.1.1.4), RG,V has the following presentation as an ind-scheme:

(4.1.1.5) RG,V = lim−→RG,V,n.

Each RG,V,n is a coconnective DG scheme, as V (O) is a finite codimensional vector subspace in

z−NV (O), and for n ≤ m, the map RG,V,n → RG,V,m is a closed embedding.

We will also need a local description of RG,V . Let L−G be the group ind-scheme associating

to an algebra R the set L−G(R) = G(R[z−1]), and let L<0G be the kernel of L−G → G sending

z−1 7→ 0. Then according to [BL94,Zhu16], the map:

(4.1.1.6) L<0G×G(O)→ G(K)

is an open embedding. Thus L<0G is an open neighborhood of identity coset in GrG. Over L<0G,

the vector bundle G(K) ×G(O) V (O) trivializes to L<0G × V (O), and so over this local chart,

RG,V can be represented by a pro-DG-algebra whose underlying pro-algebra is the pro-algebra of

1We will use the two fold cover of the group of loop rotations here, since this will allow us to shift gradings by q1/2,
which is necessary for matching with the physical Schur indices.
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functions on the following ind-scheme:

(4.1.1.7) L<0G× V (O)× V (K)/V (O)[−1],

and whose differential D is induced from the action map:

(4.1.1.8) L<0G× V (O)→ V (K)→ V (K)/V (O).

4.1.2. Poisson Vertex Algebra. As explained in [OY20] and [But21], the algebra of local

operators of the HT twist of a 4d N = 2 gauge theory has the structure of a Poisson vertex algebra,

which we denote by VG,V . Here we will recall their construction. Consider the commutative Poisson

vertex algebra Vβγ−bc generated by bosonic fields (β, γ) with conformal weight 1
2 and cohomological

degree 0, valued in the representations V and V ∗, as well as fermionic fields (b, c) with conformal

weight (1, 0) and cohomological degree (−1, 1), valued in the Lie algebra g of G. The nontrivial

Poisson brackets are given by:

(4.1.2.1) {β, γ} ∝ idV , {b, c} ∝ C2(g).

There is a BRST operator Q defined by the current:

(4.1.2.2) JBRST = Tr(bcc)− βcγ.

The action of Q is given by Q = {JBRST ,−} and satisfies Q2 = 0. The Poisson algebra VG,V is

defined as the Q-cohomology of Vβγ−bc.

Let us now describe the vacuum module of the vertex algebra VG,V in more detail. In fact, we

will describe the vacuum module of the DG Poisson vertex algebra (Vβγ−bc, Q). The vacuum module

of (Vβγ−bc, Q) is generated by a vacuum vector |0〉 such that the positive modes acts trivially, and

non-positive modes act freely. This means that, as a vector space, Vβγ−bc is given by:

(4.1.2.3) Vβγ−bc = C[βk−1/2, γk−1/2, bk−1, ck]k≤0|0〉,
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with the differential Q given as above. If we shift the loop weight of V (O) by q1/2, then the above

can be identified as the following vector space:

(4.1.2.4) C[V (O)]⊗ C[V ∗(O)]⊗
∧
∗g(K)/g(O)⊗

∧
∗g(K)/zg(O).

To understand the differential, we identify the Lie algebra of g with its dual using a killing form,

and view c as valued in g(K)∗; then we have the following vector space:

(4.1.2.5) C[V (O)]⊗ C[V ∗(O)]⊗
∧
∗g(K)/g(O)⊗

∧
∗ (g(O))∗ ,

such that the βcγ part of the differential is induced by the moment map, and Tr(bcc) part of the

differential is identified with the Chevalley-Eilenberg differential. The vacuum module VG,V as a

DG algebra is then identified with equation (4.1.2.5) together with a differential coming from a

combination of derived symplectic reduction and Chevalley-Eilenberg differential. Here
∧∗ (g(O))∗

should be understood as the direct limit of the Chevalley-Eilenberg complex of g(O)/zmg(O).

If we consider pure gauge theory, then the only differential is the Chevalley-Eilenberg differen-

tial, and we obtain the vector space:

(4.1.2.6)
∧
∗g(K)/g(O)⊗

∧
∗ (g(O))∗

with the CE differential.

Physically, the space of local operators is not simply the cohomology of (Vβγ−bc, Q). This is due

to the fact that when computing correlation functions, the ghosts should not appear as initial or final

states. Mathematically, this amounts to, after taking cohomology, projecting to c0-ghost-number

zero. This is the same as taking invariants with respect to the Lie group G (the constant gauge

transformations) by hand, instead of derived invariants of its Lie algebra, and is in essence what

the relative BRST cohomology is achieving. The relative BRST complex Vrel
βγ−bc is the subcomplex

on which the action of {J0,−} and {b0,−} are trivial. The Poisson vertex algebra, or the space of

local operators VG,V , is the cohomology of this:

(4.1.2.7) VG,V := H∗(Vrel
βγ−bc, Q).
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The subset Vrel
βγ−bc annihilated by {J0,−} and {b0,−} is precisely the g-invariant subset where the

degree of c0 is zero, therefore it is not difficult to recognize that this is therefore the same as taking

ordinary G invariants as supposed to g invariants:

(4.1.2.8) VG,V ∼=
[
C[V (O)]⊗ C[V ∗(O)]⊗

∧
∗g(K)/g(O)⊗

∧
∗(zg(O))∗

]G
.

Note that g(K)/g(O) and (zg(O))∗ contribute the same factor to the Euler character. However,

their roles are not symmetric, since one of them is used for symplectic reduction and the other is

for derived group invariants. This difference will show up in the geometric computation as well.

The Poisson vertex algebra VG,V exists for any gauge theory. However, when the gauge theory

is super-conformal, which happens when C2(V ) = C2(G), this algebra has a deformation through

the work of [OY19] and [But21], and the deformed algebra is identified with the conformal vertex

algebra (VOA) first studied in [BLL+15]. Their construction is as follows: the algebra Vβγ−bc has

a deformation quantization into the VOA V ~
βγ−bc generated by bosonic fields β, γ and fermionic

fields b, c with OPE:

(4.1.2.9) γ(z)β(w) ∼ ~idV
z − w

, b(z)c(w) ∼ ~C2(G)

z − w
.

The action of Q is promoted to the action of QBRST via:

(4.1.2.10) QBRSTO(z) =

∮
w
JBRST (z + w)O(z).

It squares to zero precisely when C2(V ) = C2(G), and the cohomology of QBRST gives the defor-

mation quantization of VG,V . In this case, it is expected that in the category of line operators, the

Schur functor is trivial, or in other words, the left dual of a line operator is isomorphic to its right

dual, which is one direct consequence of superconformal symmetry in the category of line operators.

We will, however, not prove it here.

4.1.3. Algebro-geometric formulation of the Category of Line Operators.
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4.1.3.1. Equivariant Coherent Sheaves. A reasonable DG ind-scheme, as defined in [Ras20,

Definition 6.8.1], is a convergent prestack X such that X = lim−→Xi such that each Xi is quasi-

compact, quasi-separated and eventually coconnective, and that Xi → Xj is almost finitely-

presented closed embeddings. GrG and RG,V are examples of such reasonable DG ind-schemes.

Let H be a classical affine group scheme that acts on X. Then the quotient stack X/H is called

a weakly renormalizable pre-stack following [Ras20, Definition 6.28.1], and one can define the

category IndCoh∗(X/H) via a right Kan extension:

(4.1.3.1) IndCoh∗(X/H) := lim
f :S→X/H flat

IndCoh∗(S),

where the limit is taken over all reasonable DG ind-schemes flat over X/H, using the functoriality

of f∗,IndCoh. We have the following equivalence:

(4.1.3.2) IndCoh∗(X/H) ∼= IndCoh∗(X)H,w,naive := HomH−modweak,naive(Vect, IndCoh∗(X)),

where the right hand side is the naive weakly equivariant category with respect to the action of H

as defined in [Ras20] Section 5. This in particular, may not be equivalent to the ind-completion

of its compact object. This category may seem abstract, but one can unpack it using flat descent.

Recall that given a flat cover T → S, one can consider the associated Cech nerve:

(4.1.3.3) T×
∗+1
S .

Applying this to the flat cover X → X/H, the Cech nerve is:

(4.1.3.4) X
×∗+1
X/H = X X ×H X ×H ×H · · ·

By [Ras20, Theorem 6.25.1]:

(4.1.3.5) IndCoh∗(X/H) ∼= Totsemi(IndCoh(X
×∗+1
X/H )).

The right hand side is a semi-simplicial set of categories that only involve categories of sheaves on

ind-schemes. Suppose further that H acts on each Xi such that X/H = lim−→Xi/H, we can write:

(4.1.3.6) Totsemi(IndCoh(X
×∗+1
X/H )) = Totsemi( lim

upper-!
IndCoh(Xi ×X/H X

×∗+1
X/H )).
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Commuting the limit on the right hand side using [Ras20, Lemma 6.17.2], noticing that Xi ×X/H

X
×∗+1
X/H ) is the Cech nerve of Xi → Xi/H, we get:

(4.1.3.7) Totsemi(IndCoh(X
×∗+1
X/H )) = lim

upper-!
IndCoh(Xi/H).

By [Gai12, Lemma 1.3.3], we may change the limit over upper-! to the colimit over lower-∗:

(4.1.3.8) IndCoh∗(X/H) ∼= lim−→
lower-∗

IndCoh∗(Xi/H).

Now we specialize this story to the BFN space. Let C∗ act as the two-fold cover of the loop

rotation. Both GrG and RG,V have an action of G(O) o C∗.2 We will denote this group by

G̃O. From the above discussion, we can define categories IndCoh(G̃O \ GrG) and more generally,

IndCoh(G̃O \ RG,V ). Moreover, if we fix a stratification {RG,V,n} of RG,V as in Section 4.1.1.4,

then:

(4.1.3.9) IndCoh(G̃O \ RG,V ) ∼= lim−→ IndCoh(G̃O \ RG,V,n).

For each n, the category of coherent sheaves Coh(G̃O\RG,V,n) is the full subcategory of IndCoh(G̃O\

RG,V,n) consisting of objects whose pull-back to RG,V,n is coherent. The category of equivariant

coherent sheaves on RG,V , Coh(G̃O \ RG,V ), is defined as the full subcategory of IndCoh(G̃O \

RG,V ) whose objects are the images of Coh(G̃O \ RG,V,n) under the above colimit. This category

Coh(G̃O \ RG,V ) is expected to be the category of line operators for the theory TG,V , and the

derived Hom between objects in this category is expected to be the space of local operators at the

junction of two lines.

4.1.3.2. Hom Spaces. Before proceeding to the computation, we give a comment about the use

of Hom spaces. To obtain the space of local operators at the junction of two line operators, we

need to take the Hom space between two line operators as a DG vector space, which, intuitively

speaking, is the derived Hom spaces between two coherent sheaves. Let us briefly introduce the

setting in which this enriched Hom can be taken.

2We will use the two fold cover of the group of loop rotations here, since this will allow us to shift gradings by q1/2,
which is necessary for matching with the physical Schur indices.
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Let C be a presentable monoidal DG category and M be a presentable DG module category

of C. For any pair of objects (M1,M2) in M, the object

(4.1.3.10) HomC(M1,M2) ∈ C

is defined by the following adjunction property:

(4.1.3.11) HomM(−⊗M1,M2) = HomC(−,HomC(M1,M2)).

Let X be a reasonable DG indscheme acted on by a smooth affine group scheme H (See [Ras20] for

a definition). Then IndCoh(X/H) is a module category over the monoidal category IndCoh(BH) ∼=

QCoh(BH), where BH = pt/H is the classifying stack of H. We thus obtain a Hom functor:

(4.1.3.12) HomQCoh(BH)(−,−) : IndCoh(X/H)op × IndCoh(X/H)→ QCoh(BH).

We will abbreviate this by HomBH . Specify this to our setting, we have the Hom functor:

(4.1.3.13)
HomBC∗: IndCoh∗(G̃O \ RG,V )op × IndCoh∗(G̃O \ RG,V )

−→ QCoh(BC∗) ∼= IndCoh(BC∗).

This will be the main player of this section for many of the computations. We will write EndBC∗ if

the two arguments of Hom are identical.

Remark 4.1.3. This definition of Hom spaces seem to be abstract, but in our example it is a

concrete one: first of all, it will be given by a colimit of Hom spaces computed on each closed orbit

of G(O); secondly, on each orbit, it is the usual dg vector space of Hom, which can be computed by

choosing an injective resolution of the second argument.

4.2. Geometric Computation of the Poisson Algebra

4.2.1. Computation of OpsG,0. Let us start with a computation for OpsG,0, namely when

first consider pure gauge theory. In this case, the category of line operators is Coh(G̃O \GrG). This

category is a monoidal category, with monoidal unit given by O
[e]/G̃O

, the structure sheaf of the

117



identity coset [e] with the trivial G̃O equivariant structure. Our goal is to compute the space:

(4.2.1.1) EndBC∗(O
[e]/G̃O

)

as a C∗-DG vector space. The remainder of this section is devoted to the computation of this space,

up to quasi-isomorphism. The idea of the computation is the following:

• First, one can factor the computation into two steps: computing EndBG̃O(O
[e]/G̃O

); then

taking the (derived-)invariant subspace with respect to the G(O) action.

• Computing the derived G(O) invariants using the Chevalley-Eilenberg cochain complex.

• Computing EndBG̃O(O
[e]/G̃O

) using formal completion.

4.2.1.1. Decomposing the Hom Functor. Let H be a smooth affine group scheme that can be

written as:

(4.2.1.2) H = H0 o T

for two smooth affine group schemes H0 and T . Assume also that T is of finite type. Let Yn be

finite-type classical H-schemes such that Yn → Yn+1 are closed embeddings of H-schemes. Denote

by Y = lim−→Yn and Y = lim−→Yn/H. Let X be a finite-type classical H-scheme together with a

closed-embedding of H-schemes i : X → Y . Denote by X = X/H. Let (F ,G) be a pair of objects

in Coh(X ). We would like to understand

(4.2.1.3) Hompt/T (i∗,IndCohF , i∗,IndCohG).

Denote by π the natural projection Y → pt/H = BH, the classifying stack of H, and by π0 the

natural map BH → BT . Since IndCoh(Y) is a module category of IndCoh(BH), we have an object:

(4.2.1.4) HomBH(i∗,IndCohF , i∗,IndCohG) ∈ IndCoh(pt/H).

Now if we view IndCoh(BH) as a module category of IndCoh(BT ) via the functor π∗0, we will have

an object:

(4.2.1.5) HomBT
(
OBH ,HomBH(i∗,IndCohF , i∗,IndCohG)

)
.
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Lemma 4.2.1. The following is a quasi-isomorphism of T modules:

(4.2.1.6) HomBT (i∗,IndCohF , i∗,IndCohG) ∼= HomBT
(
OBH ,HomBH(i∗,IndCohF , i∗,IndCohG)

)
.

Proof. Let V be an object of IndCoh(BT ), then:

(4.2.1.7)

HomIndCoh(BT )

(
V,HomBT

(
OBH ,HomBH(i∗,IndCohF , i∗,IndCohG)

))
∼= HomIndCoh(BH)

(
π∗0V,HomBH(i∗,IndCohF , i∗,IndCohG)

)
∼= HomIndCoh(Y) (V ⊗ i∗,IndCohF , i∗,IndCohG)

∼= HomIndCoh(BT )

(
V,HomBT (i∗,IndCohF , i∗,IndCohG)

)
.

This proves the claim.

�

This statement says that we can first compute the endomorphism of i∗,IndCohF and i∗,IndCohG

as an H-module, and then compute invariants with respect to H0. However, this is not the best

way to understand this Hom space, since IndCoh(BH) is not compactly generated. In [Ras20,

Section 5.11], the author defined another category that is compactly generated. Denote by Rep(H)c

the monoidal subcategory of IndCoh(BH) consisting of objects whose images under the forgetful

functor IndCoh(BH)→ Vect are compact, and Rep(H) = Ind(Rep(H)c), the ind-completion. This

category is compactly generated, and if H is a smooth affine algebraic group, then it is equivalent

to IndCoh(H). In particular, IndCoh(BT ) ∼= Rep(T ).

Moreover, by [Ras20, Lemma 5.16.2], if H = limHi for Hi finite dimensional smooth algebraic

groups, then Rep(H) = lim−→Rep(Hi), and so the understanding of Rep(H) can be reduced to

understanding representations of finite-dimensional algebraic groups.

Since the action of Rep(T ) on both IndCoh(BH) and IndCoh(Y) factors through an action of

Rep(H), we can modify Lemma 4.2.1 into the following:

Lemma 4.2.2. The following is a quasi-isomorphism of T modules:

(4.2.1.8) HomBT (i∗,IndCohF , i∗,IndCohG) ∼= HomBT
(
OBH ,HomRep(H)(i∗,IndCohF , i∗,IndCohG)

)
.

The object HomRep(H)(i∗,IndCohF , i∗,IndCohG) behaves better with colimit:
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Proposition 4.2.3. Denote by Fk and Gk the pushforward of F and G to Yk/H. There is a

qausi-isomorphism in Rep(H):

(4.2.1.9) HomRep(H)(i∗,IndCohF , i∗,IndCohG) ∼= lim−→HomRep(H)(Fk,Gk).

Proof. Given V ∈ Rep(H)c, we have:

(4.2.1.10)

HomRep(H)

(
V,HomRep(H)(i∗,IndCohF , i∗,IndCohG)

)
∼= HomIndCoh(Y)(V ⊗ i∗,IndCohF , i∗,IndCohG)

(by equation (4.1.3.8)) ∼= lim−→HomIndCoh(Yk/H)(V ⊗Fk,Gk)

∼= lim−→HomRep(H)

(
V,HomRep(H)(Fk,Gk)

)
(since V is compact) ∼= HomRep(H)

(
V, lim−→HomRep(H)(Fk,Gk)

)
Since Rep(H) is compactly generated, this proves the claim. �

The object HomRep(H)(Fk,Gk) may seem to be abstract at first, but we can show that this is a

familiar object: the underlying vector space of this object is the derived Hom between Fk and Gk

as sheaves over Yk. Denote by Oblv the forgetful functor Rep(H)→ Vect. This is the composition

of Ψ : Rep(H)→ IndCoh(BH) with the forgetful functor IndCoh(BH)→ Vect. Denote also by pk

the projection Xk → Xk/H. We claim:

Proposition 4.2.4. There is a quasi-isomorphism:

(4.2.1.11) OblvHomRep(H)(Fk,Gk) ∼= HomVect(p∗kFk, p∗kGk).

Here the left hand side of the above equation is the underlying DG vector space of HomRep(H)(Fk,Gk).

We need the following Lemma:

Lemma 4.2.5. Let p0 : pt→ BH be the projection, then:

(4.2.1.12) p∗0HomBH(Fk,Gk) ∼= HomVect(p∗kFk, p∗kGk).
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Proof. Denote by πk the projection Yk/H → BH. We know that IndCoh(Yk/H) is a module

category of QCoh(Yk/H), and this is compatible with the monoidal functor:

(4.2.1.13) π∗k : IndCoh(BH) ∼= QCoh(BH)→ QCoh(Yk/H).

Using adjunction property, we have:

(4.2.1.14) HomBH(Fk,Gk) = HomBH
(
OYk/H ,HomQCoh(Yk/H)(Fk,Gk)

)
.

The right hand side of the above equation can be identified with:

(4.2.1.15) (πk)∗HomQCoh(Yk/H)(Fk,Gk).

We are thus interested in p∗0(πk)∗HomQCoh(Xk/H)(Fk,Gk). Consider now the Cartesian diagram:

(4.2.1.16)

Xk pt

Xk/H pt/H

π̃k

pk p0

πk

Using base-change property of QCoh, we obtain:

(4.2.1.17) p∗0(πk)∗HomQCoh(Xk/H)(Fk,Gk) ∼= (π̃k)∗p
∗
kHomQCoh(Xk/H)(Fk,Gk).

Now by [Lur18, Proposition 9.5.3.3]:

(4.2.1.18) p∗kHomQCoh(Xk/H)(Fk,Gk) ∼= HomQCoh(Xk)(p∗kFk, p∗kGk).

Putting this into equation (4.2.1.17) we obtain the desired result.

�

Proof of Proposition 4.2.4. By adjunction property, there is a quasi-isomorphism:

(4.2.1.19) HomRep(H)(Fk,Gk) ∼= HomRep(H)
(
OBH ,HomBH(Fk,Gk)

)
.
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Since Yk is a classical finite-type scheme and Fk and Gk are coherent, by Lemma 4.2.5, the Hom

space HomBH(Fk,Gk) is an object in IndCoh(BH)+, which is equivalent to Rep(H)+ via Ψ. Thus:

(4.2.1.20) ΨHomRep(H)(Fk,Gk) ∼= HomBH(Fk,Gk).

Since Oblv = p∗0 ◦Ψ, this and Lemma 4.2.5 gives the desired result. �

Remark 4.2.6. The above discussions suggest that the sheaf HomQCoh(Yk/H)(Fk,Gk) is the usual

Hom sheaf between Fk and Gk on Yk with the canonical H equivariant structure. The (derived) global

section of this sheaf over Yk as an H module is identified with HomRep(H)(Fk,Gk). The H module

HomRep(H)(i∗,IndCohF , i∗,IndCohG) is the colimit of HomRep(H)(Fk,Gk).

We will apply this to the affine Grassmannian GrG. Fix a stratification GrG = lim−→GrG,n such

that GrG,n is a projective scheme closed under the action of G̃O. Take F and G to be objects in

Coh(G̃O \GrG,n), viewed as objects in Coh(G̃O \GrG). Lemma 4.2.2 implies:

(4.2.1.21) HomBC∗(F ,G) ∼= HomBC∗
(
OBG̃O

,HomRep(G̃O)(F ,G)
)
.

Proposition 4.2.3 shows that the G̃O module HomRep(G̃O)(F ,G) is a colimit of Hom spaces on

finite-dimensional strata GrG,k, namely HomRep(G̃O)(Fk,Gk). These are bounded from below in-

dependent of k by Proposition 4.2.4, and so can be identified with HomBG̃O(Fk,Gk). The func-

tor HomBC∗(OBG̃O
,−) thus computes the derived invariants of these G̃O modules with respect

to the normal subgroup G(O). Let G>n be the normal subgroup defined by G(1 + znO), then

G̃O ∼= lim G̃O/G>n, and so by [Ras20, Lemma 5.16.2], Rep(G̃O) ∼= lim−→Rep(G̃O/G>n), and so

taking G(O) invariants of modules in Rep(G̃O) can be calculated by analyzing invariants of finite

algebraic groups. This is what we turn to next.

4.2.1.2. Equivariance with Respect to G(O). Let us now deal with the second item, namely

equivariance with respect to G(O). Let V be an algebraic representation of G̃O, there is an

associated Chevalley-Eilenberg cochain complex:

(4.2.1.22) V ⊗ Sym•((zg (O))∗ [−1]) ,

in which the differential V → V ⊗ (zg(O))∗ is induced by the action of zg(O) on V . We claim:
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Proposition 4.2.7. Let V be an algebraic G̃O representation, there is a quasi-isomorphism:

(4.2.1.23) HomBC∗(OBG̃O
, V ) ∼= [V ⊗ Sym•((zg (O))∗ [−1])]

G
.

Here [−]G means taking the G invariant part of a representation.

Proof. We have a short exact sequence of groups:

(4.2.1.24) 1→ G>0 → G(O)→ G→ 1,

which gives a natural equivalence of functors:

(4.2.1.25) HomBC∗(OBG̃O
, V ) ∼= HomBC∗

(
OB(G×C∗),HomB(G×C∗)(OBG̃O

, V )
)

Since G is reductive, the category of algebraic representations of G is semi-simple, which implies

that:

(4.2.1.26) HomBC∗
(
OB(G×C∗),HomB(G×C∗)(OBG̃O

, V )
)

=
[
HomB(G×C∗)(OBG̃O

, V )
]G
,

where [−]G is taking ordinaryG invariants. Thus we only need to understand HomB(G×C∗)(OBG̃O
, V ),

which is the( derived) G>0 invariants of V . To understand this, we need the following lemma:

Lemma 4.2.8. Let K be a finite-dimensional simply-connected unipotent Lie group and V be

an algebraic representation of K, then RHom(C, V ) ∼= H∗ (V ⊗ Sym•(k∗[−1])) =: H∗(k, V ), where

V ⊗ Sym•(k∗[−1]) is the Chevalley Eilenberg cochain complex of V as a k module.

Let us assume this for now and apply it to G>0. From Rep(G>0) = lim−→k
Rep(G>0/z

k), we see

that for any finite-dimensional representation V :

(4.2.1.27) RHomG>0(C, V ) = lim−→
k

RHomG>0/zk(C, V ).

Now the Lie group G>0/z
k is unipotent simply-connected, whose Lie algebra is zg(O)/zkg(O), so

for finite-dimensional V , one has:

(4.2.1.28) RHomG>0/zk(C, V ) ∼= V ⊗ Sym•
((
zg(O)/zkg(O)

)∗
[−1]

)
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Taking co-limit over k, one obtain, for any finite-dimensional(and more generally algebraic) repre-

sentation V :

(4.2.1.29) RHomG>0(C, V ) ∼= V ⊗ Sym•((zg (O))∗ [−1]) .

This completes the proof.

�

For completeness, we present the proof of Lemma 4.2.8 here:

Proof of Lemma 4.2.8. Clearly H0 = HomK(C, V ), so by the usual idea of homological

algebra(for instance, in [L+02]), we need only show that the functors Hi are erasable for i > 0.

This is done by induction and a use of the function ring OK . We claim that Hi(k,OK) is zero for

i > 0. When k = C and K = C, OK = C[x] and the action of k is given by taking derivatives. Thus

H1(C,C[x]) = 0 since taking derivative is a surjective map.

Now for general k, by nilpotency, we have a short exact sequence of Lie algebras 0 → h →

k → C → 0. This must split since C is one dimensional and so we have a covering map H o

C → K where H is simply connected. By assumption K is simply connected so the map is an

isomorphism. Thus we have an exact sequence of Lie groups 0 → H → K → C → 0. Let us

consider H∗(k,OK). By Hochschild-Serre spectral sequence [HS53], there is a spectral sequence

whose second term is given by E∗,∗2 = H∗(C,H∗(h,OK)), that converges to E∗∞ = H∗(k,OK).

Since C is one dimensional, E2 is supported on two columns, the spectral sequence terminates and

Hn(k,OK) = ⊕p+q=nHp(C,Hq(h,OK)). Consider Hq(h,OK), we need to understand the module

structure of OK as an H module. From the isomorphism H o C ∼= K of Lie groups, we see that

there is an isomorphism of algebras

(4.2.1.30) OK = OH ⊗ C[x],

which is described by the following: for g ∈ K, we write g = hgcg with hg ∈ H and cg ∈ C, then

the map is given by mapping function f on K to f(hgcg) on HoC. Now to understand the module

structure, if we take an object f1⊗f2 where f1 ∈ OH and f2 ∈ C[x], for any h ∈ H, h(f1⊗f2)(g) =

f1 ⊗ f2(h−1g) = f1 ⊗ f2(h−1hgcg) = f1(h−1hg) ⊗ f2(cg) = ((hf1) ⊗ f2)(g). All the equations
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use the fact that the decomposition of g = hgcg is unique. Thus under the above isomorphism

(4.2.1.30) , OK as an H module is nothing but a direct sum of OH , hence Hq(h,OK) = 0 for q > 0,

and H0(h,OK) = Oh
K , the invariant part of OK . Again from the identification (4.2.1.30) this is

isomorphic to C[x]. But what is the module structure? Let f = f1 ⊗ f2 where f1 is H invariant(it

is a constant function in this case), let c ∈ C, then cf(g) = f(c−1hgcg) = f(c−1hcc−1cg), now

since H is a normal subgroup(h is an ideal), c−1hc ∈ H, and so by the uniqueness of the above

decomposition, cf(g) = f1(c−1hc)f2(c−1cg) = f1(h)(cf2)(cg), where we used that f1 is a constant

function on H. Thus the action on C[x] is taking derivative and we already see that the cohomology

is zero for positive degree. This completes the inductive hypothesis.

Since every K module has an injective resolution by OK , we conclude that Hi are indeed

erasable for i > 0.

�

By Proposition 4.2.7, there is a quasi-isomorphism of algebras:

(4.2.1.31) EndBC∗(O
[e]/G̃O

) ∼=
[
EndBG̃O(O

[e]/G̃O
)⊗ Sym•((zg (O))∗ [−1])

]G
.

We are thus left to understand the algebra EndBG̃O(O
[e]/G̃O

) as a G̃O-equivariant module. This is

the last step and uses the idea of formal completion and formal geometry of [GR17].

4.2.1.3. Formal Completion. We are left with computing EndRep(G̃O)(O
[e]/G̃O

) as an algebraic

representation of G̃O. Before going into any details, we would like to comment that this computation

may seem complicated, but it is rooted on this simple observation: if R is smooth and I is a complete

intersection ideal, then R/I is quasi-isomorphic to its Koszul resolution, and EndR−Mod(R/I) is an

exterior algebra over R/I generated by (I/I2)∗. This is not quite obvious when we replace R by a

formally smooth indscheme, since each of the strata may be very singular. In this section, we will

introduce formal completion introduced in [GR14] to render the situation amenable.

Let X be a prestack; then its de-Rham stack is defined by:

(4.2.1.32) XdR(S) = X (Sred)
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where Sred is the reduced scheme of S. Given a morphism of prestacks X → Y, the formal

completion is defined by( [GR14, Section 6.1]):

(4.2.1.33) ŶX := Y ×YdR XdR.

This operation behaves well with filtered colimit as explained in [GR14, 6.1.3]: if X = lim−→Xn and

Y = lim−→Yn such that the map X → Y comes from a system of maps Xn → Yn, then:

(4.2.1.34) ŶX = lim−→ŶnXn .

Now assume that X is a locally almost finite type DG scheme and Y an almost finite type

DG indscheme, and an embedding i : X → Y , then by [GR14, Proposition 6.3.1], ŶX is a DG

indscheme. More-over, from the above we see that:

(4.2.1.35) ŶX ∼= lim−→ ŶnX ,

which in particular means that:

(4.2.1.36) IndCoh(ŶX) ∼= lim−→ IndCoh(ŶnX).

Denote by î the embedding ŶX → Y , and by în the embedding of ŶnX → Yn, then by [GR14,

Proposition 7.4.5], the adjunction Id→ în
!
în∗,IndCoh is an equivalence. Taking colimit, we see that

Id→ î!̂i∗,IndCoh is an equivalence. If we now consider the sequence of maps:

(4.2.1.37) X ŶX Y,
j î

then i = î ◦ j, and so we have an equivalence of continuous endo-functors of IndCoh(X):

(4.2.1.38) i!i∗,IndCoh
∼= j!j∗,IndCoh.

Now let us take Y = GrG and X a miniscule orbit, denote by X = X/G̃O and Y = Y/G̃O. The

formal completion ŶX is a DG-indscheme with an G̃O action, we denote by ŶX the quotient stack
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ŶX/G̃O. We have the following diagram of maps:

(4.2.1.39)

X ŶX Y

X ŶX Y

j

p

î

p p

j î

Lemma 4.2.9. There is an equivalence of continuous endo-functors of IndCoh(X ):

(4.2.1.40) i
!
i∗,IndCoh

∼= j
!
j∗,IndCoh.

Proof. Since p is conservative and t-exact, we need only show that:

(4.2.1.41) p∗i
!
i∗,IndCoh

∼= p∗j
!
j∗,IndCoh.

By definition of IndCoh∗ as well as the definition of functors involved, we have p∗i
!
i∗,IndCoh

∼=

i!i∗,IndCohp
∗, as well as p∗j

!
j∗,IndCoh = j!j∗,IndCohp

∗. These two functors are equivalent as seen from

the above discussion. This completes the proof. �

Recall that we would like to compute EndRep(G̃O)(i∗,IndCohOX ). By adjunction:

(4.2.1.42) EndRep(G̃O)(i∗,IndCohOX ) ∼= HomRep(G̃O)(OX , i
!
i∗,IndCohOX ).

By Lemma 4.2.9 we have:

(4.2.1.43) HomRep(G̃O)(OX , i
!
i∗,IndCohOX ) ∼= HomRep(G̃O)(OX , j

!
j∗,IndCohOX ).

Thus we have transfered the computation onto the formal completion. In the next section, we will

specialize to the case when X = [e] and Y = GrG, and explicitly understand this formal completion

using the idea of formal geometry studied in [GR17].

4.2.1.4. Formal Groups and Lie Algebras. In [GR17, Chapter 7], the authors studied formal

groups, and showed that the category of formal groups over a prestack X is equivalent to that of

Lie algebra objects in IndCoh(X ). In Chapter 3, Section 3.3.2, we have used this idea to compute

the tangent Lie algebra of a Hamiltonian reduction. Let us recall the important notations here.

Denote by FormMod/X the category of locally almost finite type stacks Z over X such that the

map Z → X is inf-schematic and induces an equivalence Zred ∼= Xred ( [GR17, Chapter 5, 1.1.1]).
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A formal group over X is a group object in FormMod/X . This category is denoted by GrfX . On

the other hand, consider the category of Lie algebra objects in IndCoh(X ), which we denote by

LieX . The result of [GR17, Chapter 7], more specifically Theorem 3.1.4, states that there is an

equivalence:

(4.2.1.44) GrfX ' LieX .

The idea of this is that given a formal group Y over X , the object π∗,IndCoh(ωY), the pushforward

of the dualizing sheaf, has the structure of a cocommutative Hopf algebra. This is the universal

enveloping algebra of the Lie algebra associated to Y.

When X = pt, then the category LieAlg(IndCoh(pt)) is the category of DG Lie algebras in Vect

studied in [Lur11]. In the special case when g is a Lie algebra concentrated in degree 0, the formal

moduli problem is simply ĝ0, the formal completion of g at 0( [Lur11, Construction 2.2.13.]). The

formal group structure is given by the Baker–Campbell–Hausdorff formula.

Let us now apply this to the case when X = [e] and Y = GrG, we have:

Lemma 4.2.10. The formal completion ŶX is a formal group whose Lie algebra is z−1g[z−1].

Proof. From the discussion of Section 4.1.1, the group ind-scheme L<0G is an open neighbor-

hood of X in Y , and so ŶX ∼= L̂<0GX . Now L̂<0GX is a formal group whose associated Lie algebra

is z−1g[z−1].

�

Denote by L<0g the Lie algebra of L<0G. By [GR17, Chapter 7, Theorem 3.1.4], we see that

ŶX is equivalent to L̂<0g0, the formal completion of L<0g at 0. The action of G̃O is given by

conjugation on L<0g ∼= g(K)/g(O). Again denote by X = X/G̃O and Y = Y/G̃O. Recall the

morphism j : X → ŶX and i : X → Y. We claim:

Proposition 4.2.11. There is an equivalence of continuous endofunctors on IndCoh(X )

(4.2.1.45) i
!
i∗,IndCoh

∼= Sym•
(
L<0g[−1]

)
⊗−

where L<0g is understood as a G(O) module under conjugation action.

128



Proof. By Lemma 4.2.9, we can replace the left hand side of equation (4.2.1.45) by j
!
j∗,IndCoh.

Consider the following diagram:

(4.2.1.46) X G̃O \ L̂<0g0 G(O) \ L<0g
j

Denote by ig the inclusion X → G(O) \ L<0g, Lemma 4.2.9 again implies:

(4.2.1.47) j
!
j∗,IndCoh

∼= i
!
gig,∗,IndCoh.

The latter can be computed explicitly using a Koszul resolution, and the result follows.

�

We can now prove:

Corollary 4.2.12. There is a quasi-isomorphism of G̃O vector spaces:

(4.2.1.48) EndRep(G̃O)(O
[e]/G̃O

) ∼= Sym•(g(K)/g(O)[−1]) .

Proof. By Proposition 4.2.11:

(4.2.1.49) EndRep(G̃O)(O
[e]/G̃O

) ∼= HomRep(G̃O)
(
O

[e]/G̃O
, Sym•(g(K)/g(O)[−1])⊗O

[e]/G̃O

)
.

Since O
[e]/G̃O

is simply the trivial representation of G̃O, the right hand side of equation (4.2.1.49)

can be identified as the right hand side of equation (4.2.1.48). This completes the proof. �

Using Proposition 4.2.7 and Corollary 4.2.12, we obtain the following theorem:

Theorem 4.2.13. There is a quasi-isomorphism of C∗ vector spaces:

(4.2.1.50) EndBC∗(O
[e]/G̃O

) ∼= [Sym•((g(K)/g(O)⊕ (zg(O))∗) [−1])]
G
,

where [−]G is taking ordinary G invariants. This space coincides with π0VG,0 of equation (4.1.2.6)

after shifting the degree of g(K)/g(O) to −1.

Remark 4.2.14. As remarked in [OY20], the character of the above space is given by:

(4.2.1.51)
1

|W |

∮
T

ds

2πis

∏
α roots

(1− sα)

[
(q)2rank(G)
∞

∏
α roots

(qsα; q)2
∞

]
,
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which reproduces Schur index of a pure gauge theory.

4.2.1.5. Other Miniscule Orbits. We can in fact use this technique for other miniscule orbits of

GrG. Let us now take X to be a miniscule orbit and Y = GrG. Denote by X and Y the quotients

of X and Y by G̃O. Choose [g] a point in X , let P̃ be the stabilizer of [g] in G̃O, then the there is

an equivalence of prestacks:

(4.2.1.52) X ∼= G̃O \ G̃O/P̃ ∼= BP̃ .

Under this, the map i : X → Y corresponds to the map of schemes:

(4.2.1.53) P̃ \ pt P̃ \GrG G̃O \GrG
j m

where the map j is the embedding of pt as [g−1]. Let V be the P̃ module given by:

(4.2.1.54) g(K)/(g(O) + gg(O)g−1).

We prove:

Proposition 4.2.15. There is a quasi-isomorphism of objects in IndCoh(X ):

(4.2.1.55) i
!
i∗,IndCoh(OX ) ∼= G̃O ×P̃ Sym•(V [−1]).

Proof. Using the presentation of X in equation (4.2.1.53), we would like to show that:

(4.2.1.56) j!m!m∗,IndCohj∗,IndCoh(OX ) = Sym•(V [−1])

as a module of P̃ . Let us understand the composition m!m∗,IndCohj∗,IndCoh(OX ), consider the

following Cartesian diagram:

(4.2.1.57)

P̃ \ G̃O/P̃ P̃ \ pt

P̃ \GrG G̃O \GrG

m̃

ĩ i

m
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Here m̃ is the projection of G̃O/P̃ to a point, and ĩ is induced by the embedding X → GrG. By

base-change property [GR14, Proposition 2.9.2], we have:

(4.2.1.58) m!i∗,IndCoh
∼= ĩ∗,IndCohm̃

!.

Thus the object m!i∗,IndCoh(OX ) is ĩ∗,IndCohωX , where ωX is the dualizing sheaf of X with the

canonical P̃−equivariant structure. In our case, since X = G̃O/P̃ , ωX is the line bundle over X

associated to the one dimensional P̃ representation:

(4.2.1.59) Ltop = Symtop(gO/p[1])

Here gO/p[1] is a finite dimensional vector space in cohomological degree −1, and so the exterior

algebra has finite cohomological degree. The representation Ltop is the top degree part of the

exterior algebra, and is in cohomological degree −dim(X). Let us now employ the idea of formal

completion. Consider the Cartesian diagram:

(4.2.1.60)

P̃ \ X̂[g] P̃ \ G̃O/P̃

P̃ \ Ŷ[g] P̃ \GrG

By base-change property [GR14, Proposition 2.9.2], the shriek pullback of ĩ∗,IndCohωX to Ŷ[g] is

the pushforward of the dualizing sheaf of X̂[g] to Ŷ[g]. The advantage is that these local completions

have very explicit descriptions. Indeed, by [GR17, Chapter 7, Theorem 3.1.4], the space X̂[g] is

equivalent to the completion of gO/p at 0. Similarly, the space Ŷ[g] is equivalent to the completion

of L<0g at 0. The map X̂[g] → Ŷ[g] corresponds to the embedding of the following P̃ modules:

(4.2.1.61) ψ : gO/p→ g(K)/g(O), H → gHg−1.

We can thus transfer to the following diagram:

(4.2.1.62)

P̃ \ X̂[g] P̃ \ gO/p

P̃ \ pt P̃ \ Ŷ[g] P̃ \ g(K)/g(O)

ϕ̂

ψ̂ ψ

ĵ φ̂
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with which we can derive:

(4.2.1.63) j !̃i∗,IndCohωX ∼= ĵ!φ̂!ψ∗,IndCoh(ωgO/p).

Here the sheaf ωgO/p is the structure sheaf of gO/p tensored with the representation Ltop. We now

have:

(4.2.1.64) ĵ!φ̂!ψ∗,IndCoh(ωgO/p)
∼= HomBP̃

(
(ĵ ◦ φ̂)∗,IndCoh(OBP̃ ), ψ∗,IndCoh(ωgO/p)

)
.

The right hand side can be computed using a Koszul resolution of (ĵ ◦ φ̂)∗,IndCoh(OBP̃ ), and the

result is the following complex:

(4.2.1.65) Sym•(g(K)/g(O)[−1])⊗ C[gO/p]⊗ Ltop,

together with a differential induced from the Koszul resolution. Here C[gO/p] denotes the algebra

of functions on gO/p. The nonzero part of the Koszul differential lies in:

(4.2.1.66) Sym•(g(O)/p[−1])⊗ C[gO/p]⊗ Ltop
∼= Sym•((g(O)/p)∗ [1])⊗ C[gO/p].

The quasi-isomorphism is due to tensoring with Ltop, which makes this into a usual Koszul complex.

The cohomology of this complex is C in degree 0, and so the cohomology of the complex in equation

(4.2.1.65) is thus identified with Sym•(V [−1]). This completes the proof. �

4.2.2. Computation of OpsG,V for General V . In this section, we will generalize the com-

putation above to OpsG,V for General V . Let V be a representation of G. Recall that the BFN

space is defined by the base change diagram:

(4.2.2.1)

RG,V V (O)

G(K)×G(O) V (O) V (K)

132



We add to this another base-change diagram:

(4.2.2.2)

Z RG,V V (O)

e× V (O) G(K)×G(O) V (O) V (K)

Here Z = V (O)×V (K) V (O) can be described as V (O)× V (K)/V (O)[−1]. The identity line is the

pushforward of structure sheaf of V (O) along the embedding i : V (O) → RG,V . Note that this is

a classical scheme embedded into a derived scheme. We will label the maps:

(4.2.2.3)

V (O) Z RG,V V (O)

e× V (O) G(K)×G(O) V (O) V (K)

l m

p1 p2

j

The Schur index is then the graded Euler character of:

(4.2.2.4) EndBC∗
(
i∗,IndCoh(O

V (O)/G̃O
)
)
.

In the following, we will write X for the quotient stack X/G̃O, in order to avoid clustering of

notations. We will also omit the IndCoh for all the push-forward functors. To do this computation,

fix again an ind-scheme structure of GrG and RG,V that are compatible with the action of G̃O. We

make use of the following diagram:

(4.2.2.5)

V (O) Zn RG,V,n V (O)

e× V (O) G(K)n ×G(O) V (O) z−NV (O)

ln mn

p1 p2

jn

such that mn ◦ ln = in. Since RG,V is a colimit of RG,V,n, by equation (4.2.1.9):

(4.2.2.6) EndBC∗
(
i∗(OV (O)

)
)

= lim−→
n

EndBC∗
(
in,∗(OV (O)

)
)
.

Lemma 4.2.2 implies that EndBC∗
(
in,∗(OV (O)

)
)

this is the G(O) invariants of:

(4.2.2.7) EndRep(G̃O)
(
in,∗(OV (O)

)
)
.
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Let us compute this vector space using adjunctions. Since in = mn ◦ ln, from the adjunction pair

(mn,∗,m
!
n), one has:

(4.2.2.8) EndRep(G̃O)
(
in,∗(OV (O)

)
)
∼= HomRep(G̃O)

(
ln,∗(OV (O)

),m!
nin,∗(OV (O)

)
)
.

As Zn is a very explicit DG scheme with a very explicit action of G̃O, one can write an explicit

projective resolution of ln,∗(OV (O)
) given by the Koszul complex:

(4.2.2.9) ln,∗(OV (O)
) ∼= OZn ⊗ Sym•

(
(z−NV (O)/V (O))∗[2]

)
.

together with the differential given by the usual Koszul differential. This is a quasi-isomorphism of

G̃O equivariant sheaves. Substituting the resolution of equation (4.2.2.9) into the above equation,

one has:

(4.2.2.10)
HomRep(G̃O)

(
ln,∗(OV (O)

),m!
nin,∗(OV (O)

)
)

∼= HomRep(G̃O)
(
OZn ,m

!
nin,∗(OV (O)

)
)
⊗ Sym•

(
z−NV (O)/V (O)[−2]

)
.

By definition, OZn = (p1)∗O
V (O)

, using push-pull adjunction, one has:

(4.2.2.11) HomRep(G̃O)
(
OZn ,m

!
nin,∗(OV (O)

)
)
∼= HomRep(G̃O)

(
O
V (O)

, (p1)∗m
!
nin,∗(OV (O)

)
)
.

We then apply the base-change property established in [Ras20] Lemma 6.16.1, namely that

(p1)∗m
!
n
∼= j!

n(p2)∗, which implies:

(4.2.2.12) HomRep(G̃O)
(
O
V (O)

, (p1)∗m
!
nin,∗(OV (O)

)
)
∼= HomRep(G̃O)

(
O
V (O)

, j!
njn,∗(OV (O)

)
)
.

To make contact with the affine Grassmannian, we now consider the following Cartesian diagram:

(4.2.2.13)

e× V (O) G(K)n ×G(O) V (O)

e GrG,n.

jn

q1 q2

kn

Since O
V (O)

∼= q∗1O[e]
, by pull-push adjunction:

(4.2.2.14) HomRep(G̃O)
(
O
V (O)

, j!
njn,∗(OV (O)

)
)
∼= HomRep(G̃O)

(
O

[e]
, (q1)∗j

!
njn,∗(OV (O)

)
)
.
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By base-change formula again, (q1)∗j
!
n
∼= k!

n(q2)∗, we obtain:

(4.2.2.15) HomRep(G̃O)
(
O

[e]
, (q1)∗j

!
njn,∗(OV (O)

)
)
∼= EndRep(G̃O)(kn,∗O[e]

)⊗ C[V (O)].

Here V (O) is in cohomological degree 0. By taking the colimit and applying Proposition 4.2.3, we

find that the underlying G̃O representation of EndRep(G̃O)(i∗(OV )) can be identified with:

(4.2.2.16) C[V (O)]⊗ Sym (V (K)/V (O))⊗ EndRep(G̃O)(O
[e]

).

Here EndRep(G̃O)(O
[e]

) is computed in equation (4.2.1.48).

As far as the character is concerned, the above computation thus gives us the desired G̃O

module. However, the differential is kept obscured in this computation. To analyze the differential,

we will use formal completion. Recall the following diagram:

(4.2.2.17)

RG,V V (O)

G(K)×G(O) V (O) V (K)

Denote by T̂ the formal completion of G(K)×G(O)V (O) along [e]×V (O). This is a G̃O-equivariant

formal scheme over V (O). It is clear that it is isomorphic to ĜrG,[e] × V (O) where ĜrG,[e] is the

formal completion of GrG along [e]. As already discussed in Lemma 4.2.10, the space ĜrG,[e] is

a formal group, and thus by [GR17, Theorem 3.1.4], it is isomorphic, as a formal group, to the

formal completion of its Lie algebra at 0, namely L̂<0g0. We define R̂ by the following diagram:

(4.2.2.18)

R̂ RG,V V (O)

L̂<0g0 × V (O) G(K)×G(O) V (O) V (K)

By [GR14, Section 6.1.3 (iv)], R̂ can be identified as the formal completion of RG,V along

V (O)×V (K) V (O). Let î be the embedding V (O)→ R̂, then just as in Lemma 4.2.9, we have:

(4.2.2.19) HomRep(G̃O)
(
O
V (O)

, î!î∗OV (O)

)
∼= HomRep(G̃O)

(
O
V (O)

, i!i∗OV (O)

)
.
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The advantage of this construction is the following: the space R̂ is an explicit DG ind-scheme whose

underlying pro-algebra is represented by the pro-algebra of functions on the following ind-scheme:

(4.2.2.20) L̂<0g0 × V (O)× V (K)/V (O)[−1],

and has a differential D as described in Section 4.1.1, induced by the formal group action. We will

denote by A the pro-algebra defining this DG ind-scheme. It is worth writing down this differential

explicitly here. Choose a basis vi for V , let ρji be the matrix elements of g action on V , namely:

(4.2.2.21) Xvj =
∑
i

ρji (X)vi.

Denote by ρji,n the corresponding linear function on L<0g, by v∗i,n the corresponding linear functions

on V (O), and by w∗i,n the linear functions on V (K)/V (O)[−1]. Note that w∗i,n are odd variables.

The differential D can be expressed as:

(4.2.2.22) Dw∗i,n =
∑

j,m+k=n

ρji,m ⊗ v
∗
j,k +

1

2

∑
j1,j2,m1+m2+k=n

ρj1i,m1
ρj2j1,m2

⊗ v∗j2,k + · · · .

We comment that this comes from exponentiating the action of X, and the first term vanish because

functions on V (K)/V (O) is zero on V (O). This differential should be understood in the pro-algebra

otherwise the summation would be infinite.

The identity line is the structure sheaf of e×V (O), and we would like to use a Koszul resolution:

(4.2.2.23) C[V (O)] ∼= Sym•
(
(L<0g)∗[1]

)
⊗A⊗ Sym•((V (K)/V (O))∗ [2]) .

We comment that this should be understood as a projective system of resolutions. To make this

a DG resolution, we need to include the usual Koszul differential d1 coming from the pair L̂<0g0

and (L<0g)∗, as well as d2 coming from the pair V (K)/V (O) and (V (K)/V (O))∗. However, these

are not enough, since {D, d2} 6= 0. One can in fact compute this commutator explicitly: let u∗i,n be

the linear function on V (K)/V (O) corresponding to w∗i,n in the Koszul resolution, then:

(4.2.2.24) {D, d2}u∗i,n = Dw∗i,n =
∑

j,m+k=n

ρji,m ⊗ v
∗
j,k +

∑
j1,j2,m1+m2+k=n

ρj1i,m1
ρj2j1,m2

⊗ v∗j2,k + · · · .
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And this commutator acts trivially on other generators of the pro-algebra. To make this into a

DG resolution, we need to include another differential D̃: let εji,n be the linear function on L<0g

corresponding to ρji,n in the Koszul resolution. Then we define D̃ by:

(4.2.2.25) D̃u∗i,n =
∑

j,m+k=n

εji,m ⊗ v
∗
j,k +

1

2

∑
j1,j2,m1+m2+k=n

εj1i,m1
ρj2j1,m2

⊗ v∗j2,k + · · · .

This differential is of course G̃O invariant, since εji,n transforms in the same way as ρji,n, and u∗i,n

transforms in the same way as w∗i,n. After introducing this new differential, {D, d2} = {D̃, d1}

and the combination of the four differentials will be a differential, and the above indeed becomes a

projective system of free resolutions. Now if we take endomorphism with C[V (O)], we obtain the

space:

(4.2.2.26) Sym•
(
L<0g[−1]

)
⊗ C[V (O)]⊗ Sym•(V (K)/V (O)[−2]) ,

and the only nonzero differential is that induced from D̃. Examining the definition of D̃, we

find that the higher order terms all drop off, and the linear term maps L<0g to C[V (O)] ⊗

Sym•(V (K)/V (O)[−2]), and is identified with the differential induced by the moment map.

Combining the above steps, we obtain the following:

Theorem 4.2.16. There is a quasi-isomorphism of DG-C∗ modules:

(4.2.2.27)

EndBC∗(i∗(OV (O)
)) ∼= [C[V (O)]⊗ Sym•(V (K)/V (O)[−2])⊗ Sym•((g(K)/g(O)⊕ (zg(O))∗) [−1])]G .

If we shift the loop grading of V (K) by q1/2, the cohomological degree of V (K)/V (O) to 0, and the

cohomological degree of g(K)/g(O) to −1, then the cohomology of this space coincides with VG,V in

equation (4.1.2.7).

Proof. After the grading shift, Sym•(V (K)/V (O)) can be identified with C[V ∗(O)]. Since

VG,V restricts to taking the Lie group invariants, comparing equation (4.2.2.27) with (4.1.2.7), we

conclude that VG,V ∼= EndBC∗(i∗(OV (O)
)).

�
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Remark 4.2.17. The character of the space in equation (4.2.2.27) is given by:

(4.2.2.28)
1

|W |

∮
T

ds

2πis

∏
α roots

(1− sα)

(q)2rank(G)
∞

∏
α roots

(qsα; q)2
∞∏

β weights of N⊕N∗
(−q1/2sβ, q)∞

 .
This is the Schur index for the gauge theory with matter as stated in [OY20].

4.2.3. The Insertion of Fundamental ’t Hooft Lines in Pure PSL(2). Using the tech-

nique developed in the previous sections, one can consider the space of local operators at the

junction of two half-BPS Wilson-’t Hooft line operators. As stated in the introduction, these oper-

ators correspond to vector bundles on the reduced G̃O orbits of RG,V . Among these, the ’t Hooft

line operators are certain line bundles on the G̃O orbits, and are labelled by the dominant coweight

of G. These Wilson-’t Hooft line operators are the perverse coherent sheaves appearing in the work

of [CW19, CWar]. For a full dictionary of correspondences between line operators and coherent

sheaves, see [Kap06a,CW19,CWar].

Given two line operators L1 and L2, the space of local operators at their adjunction is given

by:

(4.2.3.1) OpsG,V (L1, L2) = HomBC∗
Coh(G̃O\RG,V )

(L1, L2).

The space OpsG,V (L1, L2) should give rise to a module of the Poisson vertex algebra OpsG,V =

π0VG,V . Indeed, since 1 ∗ Li ∼= Li for i = 1, 2, the Poisson algebra OpsG,V acts on OpsG,V (L1, L2)

through convolution. By the work of [But21], this action is also compatible with the factorization

structure. The structure of these spaces as OpsG,V modules has not been carefully described in lit-

erature; however, the Euler character of these spaces χqOpsG,V (L1, L2) are computed in [CGS16].

We will look at the simplest non-trivial example: the space of local operators at the junction

of fundamental ’t Hooft lines and basic dyonic Wilson-’t Hooft lines in pure PSL(2) (PSU(2) in

physics notation) theory. The fundamental t’Hooft line here is the structure sheaf of the miniscule

orbit Gr1/2
∼= P1, corresponding to the minimal dominant coweight 1

2 of PSL(2). We wiil not try to

identify these as representations of OpsG,V , but only compute the vector spaces and their indices.

We will match the indices with the indices of [CGS16].
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We will keep using the notation X for the quotient stack X/G̃O. Consider now L1 = L2 =

OGr1/2
, we would like to compute:

(4.2.3.2) OpsG,V (L1, L2) = EndBC∗(OGr1/2
)

Proposition 4.2.15 reduces the computation of Endomorphism algebra to computing the global

sections of an associated vector bundle. In the computations below, we will drop all the quotients by

G̃O in order to simlify the notations, although all the discussions below is carried in the equivariant

settings. Fix a fixed point z1/2, let P̃ be the stabilizer. The module V is given by:

(4.2.3.3) g(K)/
(
z1/2g(O)z−1/2 + g(O)

)
The computation then requires that we understand the associated vector bundle as a bundle over

P1.

Since z1/2g(O)z−1/2 + g(O) = H(O)⊕ E(O)⊕ z−1F (O), the representation:

(4.2.3.4) g(K)/
(
z1/2g(O)z−1/2 + g(O)

)
falls into the following exact sequence:

(4.2.3.5) 0→ z−1b→ g(K)/
(
z1/2g(O)z−1/2 + g(O)

)
→ g(K)/z−1g(O)→ 0,

where b is the Lie algebra of B ⊆ G. This short exact sequence split as a representation of B, and

since G(O)/P̃ = G/B, we have an isomorphism of vector bundles:

(4.2.3.6) G̃O ×P̃ V ∼= G×B z−1b
⊕
OGr1/2 ⊗ g(K)/z−1g(O).

Taking exterior power on both sides, we have an isomorphism:

(4.2.3.7) G̃O ×P̃ Sym•(V [1]) ∼= G×B Sym•(z−1b[−1])⊗ Sym•
(
g(K)/z−1g(O)[−1]

)
.
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The global section of G×B Sym•(z−1b[−1]) can be computed easily:

(4.2.3.8)

H∗(G×B Sym0(z−1b[−1])) = C[0],

q−1H∗(G×B Sym1(z−1b[−1])) = C[−1]⊕ g[−1],

q−2H∗(G×B Sym2(z−1b[−1])) = g[−2].

The index of H∗(G ×B Sym•(z−1b[−1])) is equal to (1 − q)(1 − q − qs2 − qs−2). The index of

Sym•
(
g(K)/z−1g(O)[−1]

)
is given by:

(4.2.3.9)
(q)∞(q : qs2)∞(q : qs−2)∞
(1− q)(1− qs2)(1− qs−2)

,

so the index of EndRep(G̃O)(OGr1/2
) is given by:

(4.2.3.10)
1− q − qs2 − qs−2

(1− qs2)(1− qs−2)
(q)∞(q : qs2)∞(q : qs−2)∞.

In conclusion:

Theorem 4.2.1. The space EndBC∗(OGr1/2
) is quasi-isomorphic to:

(4.2.3.11)
[(
C⊕ qC[−1]⊕ qg[−1]⊕ q2g[−2]

)
⊗ Sym•

((
g(K)/z−1g(O)⊕ (zg(O))∗

)
[−1]

)]G
.

The character of this space is:

(4.2.3.12)
1

2
(q)2
∞

∮
s

ds(1− s2)(1− s−2)
(1− q − qs2 − qs−2)

(1− qs2)(1− qs−2)
(q : qs2)2

∞(q : qs−2)2
∞.

We expect (4.2.3.11) to be the space of local operators supported at a point on a single straight

’t Hooft line. The resulting character does not match the index obtained in [CGS16]. The

computation that matches their result is the following: consider now L1 = OGr1/2
the fundamental

’t Hooft line, and L2 = ΩGr1/2
a dyonic Wilson-’t Hooft line, where ΩGr1/2

is the dualizing sheaf of

Gr1/2. Physically, ΩGr1/2
corresponds to the dyonic Wilson-’t Hooft line with fundamental magnetic

charge and +1 electric charge. Consider the junction:

(4.2.3.13) OpsG,V (L1, L2) = HomBC∗(OGr1/2
,ΩGr1/2

),
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In this case, Proposition 4.2.15 still applies, with the associated bundle of V twisted by the canonical

sheaf of Gr1/2 = G/B. The cohomology of the twisted G×B z−1b⊗O(−2) is:

(4.2.3.14)

H∗(G×B Sym0(z−1b⊗O(−2)[−1])) = C[−1],

q−1H∗(G×B Sym1(z−1b⊗O(−2)[−1])) = C[−1]⊕ C[−2],

q−2H∗(G×B Sym2(z−1b⊗O(−2)[−1])) = C[−2].

This space has index −(1 − q)(1 + q). The contribution from g(K)/z−1g(O) remains the same.

Hence the space HomBC∗(OGr1/2
,ΩGr1/2

) has index:

(4.2.3.15) − 1

2
(q)2
∞

∮
s

ds(1− s2)(1− s−2)
(1 + q)

(1− qs2)(1− qs−2)
(q : qs2)2

∞(q : qs−2)2
∞,

Shifting by q1/2, this exactly matches the formula in [CGS16]. In this paper, the authors are

implicitly using a Serre functor to rotate the line operators, or in other words, they took the dual

of the line operators in the monoidal category. This subtle operation was described explicitly

in [CW19], and an important feature is that the left dual of a line operator is not necessarily

equivalent to the right dual, unless the theory is superconformal, cf. the end of Section 4.1.2.

As explained in [CW19], the difference between left dual and right dual is due to the fact that

the dualizing sheaf Ω of G̃O \ GrG is not isomorphic to its involution s∗Ω, where the involution

s : G̃O \GrG → G̃O \GrG is defined by s([g]) = [g−1]. Thus, after rotating by 2π, a line operator

receives contribution from the dualizing sheaf of GrG. In the case of the structure sheaf of a

miniscule orbit, this is simply the dualizing sheaf of the orbit. This explains the presence of ΩGr1/2

in the above formula.
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APPENDIX A

Free Field Vertex Algebras and BRST Cohomology

In this appendix we introduce the basic vertex algebras and their modules that appear in this

work. A free field algebra is a vertex algebra that is strongly generated by fields that have the

property that only the identity appears in their operator product algebra. There are four classes of

free field algebras that admit a Virasoro structure (stress tensor): the free boson/Heisenberg VOA,

the free fermion, the symplectic fermions, and the symplectic bosons. These algebras are related

in various way that we now recall.

A.0.1. Heisenberg VOA’s and Fock modules. The basic Heisenberg VOA HJ is generated

by a single even (bosonic) field J(z) =
∑
n∈Z

Jnz
−n−1 with OPE

(A.0.1.1) J(z)J(w) ∼ 1

(z − w)2
.

Its simple modules are Fock modules Fλ of highest weight λ ∈ C. These are generated by a highest-

weight vector |λ 〉 on which J0 acts by multiplication with λ, the Jn for positive n annihilate |λ 〉,

and the negative modes act freely. We will denote vector space tensor products by the usual symbol

⊗; while the fusion product, i.e. the tensor product as modules of a VOA V, will be denoted by

the symbol ×V . The Fock modules of the Heisenberg VOA satisfy the fusion rules

(A.0.1.2) Fλ ×HJ Fµ = Fλ+µ .

The vertex operator associated to the highest-weight vector |λ 〉 is denoted by Y (|λ 〉, z), and the

fusion rules of the Fock modules are reflected in the following OPE of intertwining operators:

(A.0.1.3) Y (|λ 〉, z)Y (|µ 〉, w) ∼ (z − w)λµY (|λ+ µ 〉, w) + . . .

More generally, let V be a finite-dimensional complex vector space, say of dimension n, with

symmetric bilinear form B : V × V → C, and fix a basis {v1, . . . , vn} of V . Then the Heisenberg
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VOA associated to (V,B), which we denote compactly as H{vi}, is strongly and freely generated

by fields J i for i = 1, . . . , n with OPE

(A.0.1.4) H{vi} : J i(z)J j(w) ∼ B(vi, vj)

(z − w)2
.

We also introduce formal fields vi(z), obeying J i(z) = ∂vi(z), with a non-analytic OPE

(A.0.1.5) vi(z)vj(w) ∼ B(vi, vj) log(z − w) ,

which implies (A.0.1.4). The vi(z) themselves are not part of the Heisenberg VOA, but they provide

a useful way to describe modules.

Fock modules (a.k.a. Verma modules) for the generalized Heisenberg VOA H{vi} are in one-to-

one correspondence with linear maps V → C. In all applications in this paper, the bilinear form

B will be non-degenerate, and can thus be used to establish an isomorphism between linear maps

V → C and elements of V itself. We will mainly use the latter to describe Fock modules.

Given an element λ ∈ V , with associated map B(λ,−) : V → C, there is a unique Fock module

denoted

(A.0.1.6) Fλ or (for clarity) Fv
1,...,vn

λ ,

generated by a highest-weight state |λ〉 that satisfies

(A.0.1.7) J i0|λ〉 = B(λ, vi)|λ〉 , J in>0|λ〉 = 0 ,

and on which the J in<0 act freely. The vacuum module of the Heisenberg VOA is simply F0. If we

expand λ =
∑

i λiv
i and correspondingly set λ(z) :=

∑
i λiv

i(z), then we can formally express the

vertex operator corresponding to the highest-weight state |λ〉 as

(A.0.1.8) Y (|λ 〉, z) = :eλ(z) : .

The OPE between vertex operators follows from (A.0.1.5). In particular,

(A.0.1.9) :eλ(z) ::eη(w) : ∼ (z − w)B(λ,η):eλ(w)+η(w) : + . . . .
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Thus the fusion rules are Fλ ×Hvi Fη = Fλ+η.

We finally note that, fixing an orthogonal basis v1, ..., vn of V , there is a decomposition

(A.0.1.10) Hv1,...,vn
∼=
⊗
i

Hvi .

Correspondingly, letting λ =
∑

i λiv
i, there is a decomposition of Fock modules

(A.0.1.11) Fv
1,...,vn

λ
∼=
⊗
i

Fviλivi .

A.0.2. Lattice VOA and Free fermions. Let us choose the basis v1, ..., vn such thatB(vi, vj)

is real for all pairs (vi, vj), and consider the subcategory of those Fock modules Fλ that have the

property that all λi are real. This category is a braided tensor category [CKLR19]. Let L ⊂ V be

a lattice, meaning a Z-submodule of V , with the property that B restricted to L is integral. Then

(A.0.2.1) VL :=
⊕
λ∈L
Fλ

is itself a vertex superalgebra, the lattice VOA of the lattice L; and if L is even, then it is actually

a vertex algebra.

In particular, in rank one with V = C〈v〉 generated by a vector with B(v, v) = 1, choosing

L = Z〈v〉 ' Z gives rise to a vertex algebra

(A.0.2.2) VZ ' Vbc

strongly generated by a pair of free fermions. This is the classic bose-fermi correspondence. The

two fermionic generators may be chosen as

(A.0.2.3) b(z) = Y (|1〉, z) = :ev(z) : , c(z) = Y (| − 1〉, z) = :e−v(z) : ,

with OPE

(A.0.2.4) b(z)c(w) ∼ 1

(z − w)
.

The free fermions Vbc are a holomorphic VOA, in the sense that the VOA itself is the only

simple module and every module is completely reducible. Thus the module category of Vbc is
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isomorphic to the “trivial” category of vector spaces. (The terminology “holomorphic VOA,”

sometimes also called a “holomorphic CFT,” originates from the fact that all spaces of conformal

blocks are automatically one-dimensional, implying that the VOA itself has well-defined partition

functions in any genus, and carries the structure of a full CFT. For example, the free-fermion

VOA Vbc is equivalent to the well-defined physical CFT containing a free complex-valued 2d chiral

fermion.) In general, when L ⊂ V is a full-rank complete self-dual lattice, then by [DLM97], the

VOA VL is holomorphic, or it has trivial category of modules.

A.0.3. Symplectic fermions and the singlet VOA. The symplectic fermion vertex algebra

VSF may be defined as the vertex algebra strongly generated by two fermionic fields χ±(z) with

OPE

(A.0.3.1) VSF : χ+(z)χ−(w) ∼ 1

(z − w)2

More generally, given any complex vector space W with a non-degenerate anti-symmetric bilinear

form Ω : W ×W → C (a symplectic form), there is an asociated symplectic fermion VOA VWSF .

Given a basis {χi} for W , the VOA is generated by fermionic fields {χi(z)} with

(A.0.3.2) VWSF : χi(z)χj(w) ∼ Ω(χi, χj)

(z − w)2
.

Symplectic fermions can be embedded in free fermions (and thus in a lattice VOA), as the

kernel of certain screening charges. Define the screening operator S(z) : Vbc → Vbc((z)) by

(A.0.3.3) S(z) := b(z) ,

and the “screening charge” S0 : Vbc → Vbc by

(A.0.3.4) S0 :=
1

2πi

∮
S(z)dz = b0 .

In this case, this is just the zero-mode of the fermionic field b(z) =
∑

n∈Z bnz
−n−1. The kernel

of S0 is simply the subalgebra generated by b(z) and ∂c(z), since b0 commutes with all modes of

c(z) except its zero-mode. Letting χ+(z) = b(z) and χ−(z) = ∂c(z), we find that χ± satisfy the
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symplectic fermion OPE (A.0.3.1). Thus

(A.0.3.5) VSF ∼= ker(S0 : Vbc → Vbc) .

There is an action of C∗ on both free fermions and symplectic fermions, such that b, χ+ have

weight +1 and c, χ− have weight −1. This makes Vbc and VSF Z-graded vertex algebras. Decom-

posing symplectic fermions (as a vector space) into graded components

(A.0.3.6) VSF =
⊕
µ∈Z

Mµ ,

we find that the degree-zero subspace M := M0 (a.k.a. the C∗ orbifold of VSF ) is a vertex algebra

itself, while the other components Mn are simple modules for M . Conversely, VSF is an extension

of M by the modules {Mµ}µ∈Z.

The vertex algebra M = M0 is known as the p = 2 singlet algebra. It contains the fields with

equal numbers of χ+ and χ−, such as :χ+χ− :, :χ+∂aχ− :, : :χ+∂aχ+χ−∂bχ−, etc. The modules

Mµ that appear in the decomposition of symplectic fermions are simple currents with fusion rules

(A.0.3.7) Mµ ×M Mν = Mµ+ν .

The singlet algebra has many other modules, however; its full representation theory is rather

complicated and has only been completely understood in the past year [CMY21,CMY23].

Later in the paper we will encounter multiple copies of symplectic fermions and singlet al-

gebras/modules. We summarize some notation and relations. By combining the relation to free

fermions (A.0.3.5) with the bose-fermi correspondence (A.0.2.2), we find that n symplectic fermions

are embedded in a rank-n lattice VOA

(A.0.3.8) V⊗nSF ↪→ VZn , χi+ 7→ :ev
i
: , χi− 7→ −:∂vi e−v

i
: ,

where VZn is the extension of the Heisenberg algebra Hv1,...,vn with B(vi, vj) = δij by Fock modules

Fµ·v for all µ ∈ Zn. The embedding is the kernel of screening operators

(A.0.3.9) V⊗nSF =
n⋂
i=1

kerSi0
∣∣
VZn

, Si(z) =
1

2πi

∮
:ev

i(z) : .
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Furthermore, there is a (C∗)n action on V⊗nSF , induced from the (C∗)n action on VZn under which

:eµ·v : has charge µ ∈ Zn. (And so in particular χi± have charges (0, ..., 0,±1
i
, 0, ..., 0).) We denote

the weight spaces of this action M
{vi}
µ·v or simply Mµ·v, with

(A.0.3.10) V⊗nSF =
⊕
µ∈Zn

Mµ , Mµ·v =

n⋂
i=1

kerSi0
∣∣
Fµ·v .

Here M
{vi}
0
∼=
⊕n

i=1M
vi
0 is n copies of the singlet VOA, and each of the Mµ·v’s are simple currents

thereof.

A.0.4. Symplectic bosons. The basic symplectic boson VOA Vβγ , a.k.a. a beta-gamma

system, is strongly generated by two bosonic fields β(z), γ(z) with OPE

(A.0.4.1) Vβγ : β(z)γ(w) ∼ −1

z − w
.

More generally, given a symplectic vector space (W,Ω), there is an associated symplectic boson

VOA VWβγ . Given a basis {βi} for W , the VOA is generated by fields {βi(z)} with OPE

(A.0.4.2) Vβγ[W ] : βi(z)βj(w) ∼ Ω(βi, βj)

z − w
.

Symplectic bosons are closely related to the other free field VOA’s above, in several interesting

ways.

To begin, let V = C〈η〉 be the one-dimensional vector space with negative inner product

B(η, η) = −1, and let
√
−1Z := Z〈η〉 denote the integer lattice therein. Correspondingly, we have

a Heisenberg VOA Hη and its lattice extension

(A.0.4.3) V√−1Z =
⊕
n∈Z
Fn ,

where each Fock module Fn is generated by :enη :. Now consider the C∗ action on V√−1Z under

which the subspace Fn has weight −n. Also recall the C∗ action on symplectic fermions in (A.0.3.6).

The invariant part of the tensor-product VOA VSF ⊗ V√−1Z under the diagonal C∗ action is

(A.0.4.4) (VSF ⊗ V√−1Z)C
∗

=
⊕
n∈Z

Mn ⊗Fn ,
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and it is generated by fields

(A.0.4.5) β = χ+ ⊗ :eη : and γ = −χ− ⊗ :e−η :

precisely satisfying the symplectic boson OPE A.0.4.1. Thus

(A.0.4.6) (VSF ⊗ V√−1Z)C
∗ ' Vβγ .

Alternatively, by combining the embedding (A.0.3.5) of symplectic fermions in a lattice VOA

with (A.0.4.6), we obtain a well-known free field realization of symplectic bosons, cf. [AW22]. Let

Hφ,η be the rank-two Heisenberg algebra corresponding to a two-dimensional vector space with basis

{φ, η} and inner product B(φ, φ) = 1, B(η, η) = −1, B(φ, η) = 0. Consider the one-dimensional

lattice L = Z〈φ+ η〉 and the corresponding lattice VOA

(A.0.4.7) VL =
⊕
n∈Z
Fn(φ+η) .

There is an embedding Vβγ ↪→ VL given by

(A.0.4.8) β 7→ :eφ+η : , γ 7→ :∂φ e−φ−η : .

To characterize this as the kernel of a screening charge, we note that the lattice VOA VL has

modules VL,kφ defined by lifting the Fock modules Fkφ of the Heisenberg VOA to the lattice VL.

Explicitly,

(A.0.4.9) VL,kφ =
⊕
n∈Z
F(k+n)φ+nη .

Consider the intertwining operator S(z) : VL,kφ → VL,(k+1)φ((z)) defined by

(A.0.4.10) S(z) = :eφ(z) :

and corresponding screening charges S0 = 1
2πi

∮
S(z) dz : VL,kφ → VL,(k+1)φ. Then the embedding

of symplectic bosons in VL coincides with the kernel

(A.0.4.11) Vβγ = ker(S0 : VL → VL,φ) .
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This follows from decomposing Fn(φ+η) = Fnφ ⊗ Fnη in (A.0.4.7) as modules for two Heisenberg

VOA’s Hφ ⊗Hη, and combining the decomposition with (A.0.3.5) and (A.0.4.4).

A.0.5. BRST cohomology. Conversely, we may go back from symplectic bosons to sym-

plectic fermions using BRST cohomology. By BRST cohomology we mean relative semiinfinite Lie

algebra cohomology as in [FGZ86]; and the version that we need here is exactly the one used

in [CGNS22].

Let V be a vertex algebra with an internal C× Kac-Moody action at level zero. In other words, V

contains a field J(z) (the Kac-Moody current) that has non-singular OPE with itself, and generates

an action of the loop group C((z))× on V by sending:

(A.0.5.1) for α(z) ∈ C((z)), v 7→ 1

2πi

∮
α(z)J(z) · v .

Intuitively, BRST cohomology takes the symplectic quotient of V by the C((z))× action — setting

the current J(z) to zero and taking C((z))× invariants — in a derived way, i.e. by expressing

this quotient as the zeroth cohomology of a complex. Concretely, let Vbc be a free-fermion VOA,

Z-graded such that c has degree 1 and b has degree −1. The tensor product V ⊗ Vbc inherits this

grading, and has a differential

(A.0.5.2) QBRST :=
1

2πi

∮
c(z) J(z) dz

of degree +1. Let the relative complex (V ⊗ Vbc)rel be the subspace of V ⊗ Vbc annihilated by

the zero-modes b0 and J0. Then one defines BRST cohomology as the QBRST-cohomology of the

relative complex, denoted

(A.0.5.3) HBRST (V) := H•
(
(V ⊗ Vbc)rel, QBRST

)
.

Note that QBRST sends b(z) 7→ J(z) (whence J(z) is effectively set to zero in cohomology); it also

sends any element of V to its image under the GL
(
1,C((z))

)
action with generator c(z) (whence

cohomology also takes invariants for the action).

Similarly, if M is any module for V, its BRST cohomology is defined by

(A.0.5.4) HBRST (M) := H•
(
(M ⊗ Vbc)rel, QBRST

)
,
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where again (M ⊗ Vbc)rel denotes the subspace of M ⊗ Vbc annihilated by b0 and J0.

Going from symplectic bosons to symplectic fermions uses a particularly well-behaved instance

of BRST cohomology. Let Hφ,η be the rank-two Heisenberg algebra associated to vectors φ, η of

norms +1,−1, respectively. The field J(z) = ∂(φ + η) is a level-zero C∗ Kac-Moody current.

Consider the Fock module Fλφ+µη (here λ, η ∈ C). Its BRST cohomology has the property that

(A.0.5.5) H i
BRST (Fλφ+ηµ) = δi,0δλ−µ,0C[|λφ+ µη〉] .

In other words, the cohomology vanishes unless λ − µ = 0, in which case the cohomology is one-

dimensional and given by the class of the highest-weight vector.

Now, the symplectic boson VOA Vβγ has a current Jβγ = − :βγ : at level −1 (Jβγ generates

a Heisenberg subalgebra Hη with inner product −1). The free fermion VOA Vbc has a current

Jbc = :bc : at level 1 (generating a Heisenberg subalgebra Hφ with norm +1). Therefore, their

tensor product Vbc ⊗ Vβγ has a diagonal current J = Jβγ + Jbc at level zero. Using the bose-fermi

correspondence and (A.0.4.4), we know that as modules for Hφ,η = Hφ ⊗Hη we have

(A.0.5.6) Vbc ⊗ Vβγ =
⊕
m,n∈Z

Fφnφ ⊗F
η
mη ⊗Mm .

Taking BRST cohomology for the diagonal C∗ action, we get

HBRST(Vbc ⊗ Vβγ) =
⊕
n,m∈Z

HBRST

(
Fφnφ ⊗F

η
mη

)
⊗Mm

=
⊕
n,m∈Z

δn−m,0C⊗Mm

=
⊕
m∈Z

Mm

= VSF .

(A.0.5.7)

A.0.6. Affine gl(1|1). There is in fact one more player that we can introduce, the affine VOA

of gl(1|1). It is the diagonal C∗ orbifold of Vbc ⊗ Vβγ , that is

(A.0.6.1) V (gl(1|1)) ∼= (Vbc ⊗ Vβγ)C
∗

=
⊕
n∈Z
Fφnφ ⊗F

η
nη ⊗Mn
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Here the level k can be any non-zero number and in particular it can always be set to one. It is

generated by the fields N = :bc :, ψ+ = :βb :, ψ− = −:γc : and E = :bc :− :βγ :.

All the relations between the different free field algebras above have been explored in detail

in [CR09,CR13a]. The representation theory of Vβγ is worked out in [AW22]; the one for ĝl(1|1)

in [CMY22c], and the one for the singlet in [CMY21, CMY23]. All the module categories

are non-finite and non-semisimple ribbon (super)categories. Orbifolds, simple current extensions,

and BRST cohomologies provide nice functors between representation categories, as explained

in [CGNS22,CMY22b].

A.0.7. Spectral flow. In this final section on VOAs, we review the idea of spectral-flow

automorphisms, and spectral-flow modules of a VOA, which will play a central role in many of our

constructions. Spectral flow is associated with abelian Kac-Moody symmetries of VOA’s; loosely

speaking, it mixes the Kac-Moody symmetry with conformal symmetry. The basic idea appeared

in physics in the 80’s, in particular in the context of of worldsheet superstring theory. In the

mathematical theory of VOA’s, spectral flow is implemented by Haisheng Li’s ∆-operator [Li95].

Let V be a VOA that has a Heisenberg subVOA, say of rank n with associated bilinear form

B as in (A.0.1.4). (The Heisenberg subVOA is another name for an abelian current algebra, or

an abelian Kac-Moody symemtry.) The Heisenberg VOA has a huge group of automorphisms. In

particular, for any vector ` = (`1, . . . , `n) ∈ Cn, there is a spectral automorphism σ` that acts on

the modes of the Heisenberg VOA as

(A.0.7.1) σ`(J in) = J in + δn,0`i ,

doing nothing but shifting the zero-modes by a scalar. Not all of these automorphisms lift from

the Heisenberg subVOA to an automorphism of the mode algebra of the full VOA; this depends

on the way that V is graded by the J i0. The automorphisms that do lift are called spectral flows

automorphisms of V.

For example, if V is a lattice VOA VL, there are spectral-flow automorphism so long as ` lies in

the lattice L′ that is dual to L. If V is an affine VOA, then spectral-flow automorphisms correspond

to coweights. The example of sl(2) is instructive; it is discussed in detail in section 2 of [CKLR19].

151



If σ` is an automorphism of the algebra of modes of V, then to any V-module M one defines

the spectral-flow module σ`(M) as follows. The underlying vector space of σ`(M) is isomorphic to

M , the isomorphism mapping m ∈M to σ`(m) ∈ σ`(M); but an element x of the mode algebra of

V acts as

(A.0.7.2) x · σ`(m) = σ`(σ−`(x) ·m) .

Haisheng Li’s ∆-operator [Li95], implementing spectral flow in a mathematical context, has

several nice properties. By Proposition 2.11 of [Li95] together with skew-symmetry of intertwining

operators, spectral flow respects fusion:

(A.0.7.3) σ`(M)×V σ`
′
(M ′) ∼= σ`+`

′
(M ×V M ′).

In particular, the spectral flow image of the VOA itself, σ`(V) is always a simple current, with

fusion rules

(A.0.7.4) σ`(V)×V σ`
′
(V) ∼= σ`+`

′
(V), σ`(V)×V M ∼= σ`(M).

Another property is that spectral flow is exact, i.e., it maps simple to simples, non-split short exact

sequences to non-split short-exact sequences, Loewy diagrams to Loewy diagrmas and so on — see

Proposition 2.5 of [CKLR19].

Example A.0.1. When V itself is a Heisenberg VOA, spectral flow acts on its own Fock modules.

One has that σ−λ(Fµ) ∼= Fλ+µ in particular σ−λ(Hvi)
∼= Fλ and the well-known fusion rules

Fλ ×Hvi Fµ
∼= σ−λ(Hvi)×Hvi σ

−µ(Hvi)
∼= σ−λ−µ(Hvi)

∼= Fλ+µ

follow immediately.

Example A.0.2. The example of the affine VOA of gl(1|1) is found in section 3.2 of [CR09].

The spectral-flow automorphism acts on the modes as

σ`(Nr) = Nr, σ`(Er) = Er − `kδr,0, σ`(Ψ±r ) = ψ±r∓`.
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This illustrates that spectral flow changes the mode labels, i.e. it doesnot leave the horizontal sub-

algebra of ĝl(1|1) invariant.
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APPENDIX B

Representation Theory of Affine Lie Superalgebra V (g∗(ρ))

In this appendix, we study the representation theory of the affine Lie superalgebra V (g∗(ρ)),

and present proofs of many statements found in Section 3.2. An important part of the proof of

these statements will be the free field realization of V (g∗(ρ)).

B.0.1. Verma Modules. Recall the Kazhdan-Lusztig category KLρ, namely the category

of finite-length grading-restricted generalized modules of V (g∗(ρ)). Let W be a simple object in

KLρ, then it is generated by the lowest conformal-weight space W0, which is a finite-dimensional

(necessarily simple) module of g∗(ρ). Recall the induction functor Ind, which is given by:

(B.0.1.1) Ind(W0) := U(ĝ∗(ρ))⊗
U(ĝ∗(ρ))≥0

W0.

Here U(ĝ∗(ρ))≥0 is the universal enveloping algebra of the non-negative modes. By universal

property of induction functor, one obtain a morphism Ind(W0)→W , which is surjective. Therefore,

any simple module of KLρ is a quotient of Ind(W0) for a simple W0. Such modules are called the

Verma modules. Let Gρ be the category of finite-dimensional modules of g∗(ρ), then a consequence

of Theorem 2.1.9 is the following statement.

Corollary B.0.1. If the image of Gρ under Ind lies in KLρ, then the category KLρ has the

structure of a braided tensor category.

Our first main result is the following theorem.

Theorem B.0.2. The image of Gρ under Ind lies in KLρ. Consequently, KLρ has the structure

of a braided tensor category.

We will prove this statement in two steps. First, let us consider an object M ∈ Gρ,e, the

subcategory where Ea has generalized eigenvalue ea, and e = (ea).
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Proposition B.0.3. Assume that
∑

a ρiae
a /∈ Z or

∑
a ρiae

a = 0. If M is simple, then so is

Ind(M).

Proof. We only need to show that any w ∈ Ind(M) generates the entire module. Note that

an element in Ind(M) is always of the form:

(B.0.1.2)
∑

Na
∗ψ

i,+
∗ ψi,−∗ Ea∗v

where v is in the lowest conformal weight space of Ind(M), which is simply M . The subscripts are

all negative integers. We give a lexicographic order to Ind(M) such that N > ψ+ > ψ− > E, and

(B.0.1.3) Na
−n > Na

−n+1 > · · · > Na+1
−n > Na+1

−n+1

and similarly for ψ± and E. Given an w, let w = w0 + w′ where w0 = Na
∗ψ

i,+
∗ ψi,−∗ Ea∗v is a

homogeneous vector that is the biggest in the lexicographic order, such that w0 > w′. Denote by

W the sub-representation generated by w.

We perform the following procedure. If the expression of w0 involves (Na
−n)k, we will apply to

w (Ean)k. Since [Ean, N
a
−n] = n, the vector (Ean)kw0 will have no Na

−n in its expression. Moreover,

each time applying Ean, we obtain a non-zero vector. We repeate this process until all the Na
∗ in

the expression of w0 is killed.

The next step we apply ψi,−n until there is no ψi,+∗ in the expression of w0. Note that this step,

we need the assumption that
∑

i ρiaυ
a /∈ Z or equal to 0, since the commutator {ψi,−n , ψi,+−n} =

n +
∑

i ρa
iEa0 acts non-trivially on w0 when n +

∑
i ρa

iEa0 6= 0. By definition,
∑

i ρiaE
a
0 acts as∑

i ρiae
a, which is not an integer or equal to 0 by assumption. Therefore the action of ψi,−n is

nontrial on w0. We can now safely keep the procedure until all the ψi,+∗ in the expression of w0 is

annihilated.

We can repeat this process for all ψj,−∗ and Ea∗ , until all the negative modes in the expression

of w0 is annihilated. Since w0 > w′, this process must annihilate w′ entirely, and we are left with a

nonzero vector in the lowest conformal weight space. Consequently, W contains a nonzero vector v

in M . We can now conclude the proof since M is assumed to be simple, which means W contains

M , and consequently Ind(M).
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�

Remark B.0.4. In particular, the vacuum module V (g∗(ρ)) is simple, since the vacuum module

is defined as Ind(C) where C is the trivial (and therefore simple) g∗(ρ) module.

Corollary B.0.5. The monopole modules Us are simple, and can be identified with the spectral

flow σs,ρTρsV (g∗(ρ)).

Proof. The map σs,ρTρs|0〉 → |s·X+ρ(s)·Z〉 clearly extends to a map of modules σs,ρTρsV (g∗(ρ))→

Us. It is an embedding since σs,ρTρsV (g∗(ρ)) is simple, and it is surjective since by [Ada03,

CRW14], the module:

(B.0.1.4)
⋂
i

KerSi0
∣∣
VZ,s·X

is also a simple module of
⋂
i

KerSi0
∣∣
VZ

= V (g∗(ρ)). This completes the proof.

�

An immediate consequence of this is the fusion rule of monopole operators in Proposition 3.2.6,

which follows from the general theory of spectral flow automorphism in Appendix A.0.7.

We in fact have the following theorem, whose proof is a word-to-word translation of the proof

of [BN22, Proposition 3.2].

Theorem B.0.6. When e ∈ Cr satisfies that
∑

a ρiae
a /∈ Z or

∑
a ρiae

a = 0, then induction is

an equivalence of categories:

(B.0.1.5) Ind : Gρ,e ' KLρ,e

where KLρ,e is the subcategory where the generalized eigenvalue of Ea0 are ea.

How do we deal with KLρ,e when e does not satisfy the above? The answer is the spectral-flow

automorphism. Recall in Section 3.1.3, Remark 3.1.8, we have introduced the following spectral

flow automorphism:

(B.0.1.6) σλ,µ(Na) = Na −
µa
z
, σλ,µ(Ea) = Ea −

λa
z
, σλ,µψ

i,± = z∓
∑
ρaiλ

a
ψi,±.
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Here λ ∈ Cr and µ ∈ Cr such that ρ(λ) ∈ Zr. For any e such that ρ(e) does not satisfy the above,

there must be λ ∈ Cr with ρ(λ) ∈ Zr such that ρ(e+λ) satisfy the requirement
∑

a ρia(e
a+λa) /∈ Z

or
∑

a ρia(e
a + λa) = 0. We can now finish the proof of Theorem B.0.2.

Proof of Theorem B.0.2. Given any e and M and object in Gρ,e that is simple, choose

λ ∈ Cr such that ρ(λ) ∈ Zr, and that the entries of ρ(e+λ) are either zero or non-integers. We just

need to show that σλ,0Ind(M) is of finite-length, since σλ,0 preserves composition series. Choose

m ∈ M , let I be the subset of all i where
∑
ρaiλ

a > 0 and J where
∑
ρaiλ

a < 0. Consider the

sub-representation of σλ,0Ind(M) given by:

(B.0.1.7) N :=
⊕

i∈I,0≤n<ρaiλa
< ψi,−n m > ⊕

⊕
j∈J,0<n≤−ρajλa

< ψj,+n m > .

Here 〈v〉 for v ∈ Ind(M) denotes the submodule of V (g∗(ρ)) generated by the vector v. By the

definition of N , the quotient σλ,0Ind(M)/N is generated by a single element m (the image of

m in the quotient) and that all the positive modes of V (g∗(ρ)) acts trivially on m. Let M ′ be

the g∗(ρ) submodule of σλ,0Ind(M)/N generated by m, which must be finite-dimensional. By

universal property of the induction functor, we have a surjection Ind(M ′) → σλ,0Ind(M)/N , and

consequently, σλ,0Ind(M)/N is finite length.

We can now repeat this argument for all the summands in N , and this process must terminate

because there are only finitely many positive modes that act non-trivially. We therefore obtain a

finite filtration F∗σλ,0Ind(M) such that each associated graded piece is a quotient of a finite-length

Verma module. Therefore, σλ,0Ind(M) is finite-length, and so must be Ind(M). This completes

the proof.

�

We have now shown that the category KLρ has the structure of a braided tensor category, and

that the simple modules Us satisfies the fusion rule Us×Us′ ∼= Us+s′ . Of course this fusion rule can

be realized by the intertwining operator of the free field algebra as in Section 3.1.3. This justifies

the definition of CB,ρ as the de-equivariantization of KLρ by the simple currents Us. However, to

analyze the category CB,ρ, one needs to understand the sub-category consisting of objects whose
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monodromy with Us is trivial. The best way to do understand monodromy is through free-field

realizations. We now turn to the free-field realization of V (g∗(ρ)).

B.0.2. Free Field Realizations. Consider the free field realization of Section 3.1.3, where

we obtained a VOA embedding V (g∗(ρ)) ↪→ VZ such that the image is equal to the kernel of the

screening operators Si =
∮

dz:eZ
i−ρ(Y )i :. For each λ · X + µ · Y where λ, µ ∈ Cr, we have a VZ

module VZ,λ·X+µ·Y , which we can restrict to obtain a module of V (g∗(ρ)). We would like to first

understand what these modules are.

Consider a simple module M of g∗(ρ). Since Na and Ea commutes with each other, there must

be at least one simultaneous eigenvector for all of them. By acting on ψi,−, we may assume that

this eigenvector v is annihilated by ψi,− for all i. Let (na, ea) be its eigenvalues under Na and Ea.

It is clear then that the module M is spanned by vectors of the form:

(B.0.2.1) ψi1,+ · · ·ψik,+v, i1 < i2 < · · · < ik, k ≤ n.

Each of this vector is an eigenvector of Na, Ea with eigenvalues:

(B.0.2.2)

na +
∑

1≤s≤k
ρisa, ea

 .

Let us define module V(n,e) to be the module generated by vectors of the form in equation (B.0.2.1).

Then any simple module is a quotient of V(n,e) for some (n, e) ∈ Cr × Cr.

Coming back to the module VZ,λ·X+µ·Y , let bi(z) = :eZ
i(z) : and ci(z) = :e−Z

i(z) :, and consider

the following grading ∆ on VZ,λ·X+µ·Y by:

(B.0.2.3) ∆(v) = ∆(ci−1v) = 0, ∆(bi−1v) = ∆(Xa
−1v) = ∆(Y a

−1v) = 1.

Moreover, ∆(AnB) = ∆(A) + ∆(B) − n − 1. With this grading, VZ,λ·X+µ·Y is positively graded,

and the minimal degree part of this is spanned by vectors of the form:

(B.0.2.4)
∏

i1<i2<···<ik

ci1−1 . . . c
ik
−1v.
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The vector c1
−1c

2
−1 · · · cn−1v has weight (λa) under the action of Ea0 and weights:

(B.0.2.5) µa −
∑
i

ρia.

under the action of Na
0 . Moreover, this vector is annihilated by positive modes of V (g∗(ρ)) by

degree considerations as ∆(x) = 1 for x ∈ g∗(ρ), and it is killed by ψi,−0 by considering the

weights of N0. Therefore, this vector, under the action of ψi,+0 , generates a copy of V(µ−ρ,λ), where

µ− ρ = (µa −
∑

i ρia). By universal property of induction functor, there is an induced morphism:

(B.0.2.6) Ind(V(µ−ρ,λ)) −→ VZ,λ·X+µ·Y .

Proposition B.0.7. When
∑

i ρiaλ
a /∈ Z or

∑
i ρiaλ

a = 0 for all i, the morphism in equation

(B.0.2.6) is an isomorphism.

Proof. We first show that this is an embedding. To do so, by Theorem B.0.6, we only need

to show that it is non-zero on any submodule of V(µ−ρ,λ). In fact, the g∗(ρ) module V(µ−ρ,λ) has a

unique simple submodule generated by:

(B.0.2.7)
∏

i,
∑
ρiaλa=0

ψi,+0 v.

It is very clear then that the above map Ind(V(µ−ρ,λ))→ VZ,λ·X+µ·Y is nonzero when restricted to

this unique simple.

To show that this is an isomorphism, we just need to define a positive grading on Ind(V(µ−ρ,λ))

such that Ind(V(µ−ρ,λ)) → VZ,λ·X+µ·Y is graded and that they have the same grading. We define

the grading on Ind(V(µ−ρ,λ)) such that ∆(V(µ−ρ,λ)) = 0 and ∆(x−1v) = 1 for all x ∈ g∗(ρ), and that

∆(AnB) = ∆(A) + ∆(B)− n− 1. It is clear that the map Ind(V(µ−ρ,λ))→ VZ,λ·X+µ·Y is a map of

positively graded vector spaces. It is straightforward that the graded character Tr(q∆) agrees on

the two modules, and so they must be isomorphic.

�

As a consequence, the restriction of any free-field module is an object in KLρ.

Corollary B.0.8. For any λ, µ ∈ Cr, the module VZ,λ·X+µ·Y is an object in KLρ.
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Proof. We have shown this when entries of ρ(λ) are either zero or non-integer. When this is

not the case, choose ν such that ρ(λ+ν) satisfy this, and ρ(ν) ∈ Zn. This implies that VZ,(λ+ν)·X+µ·Y

is an object in KLρ. We now can finish the proof since there is clearly an isomorphism:

(B.0.2.8) VZ,λ·X+µ·Y ∼= σ−ν,−ρ⊥ρνVZ,(λ+ν)·X+µ·Y ,

given by mapping σ−ν,−ρ⊥ρν |(λ+ν) ·X+µ ·Y 〉 to |λ ·X+µ ·Y −ρ(ν) ·Z〉 (the free field realization).

Since the spectral flow σ preserves KLρ, the object VZ,λ·X+µ·Y is in KLρ, and the proof is complete.

�

Namely, when entries of ρ(λ) are either zero or non-integer, the module VZ,λ·X+µ·Y is identi-

fied with the induction of the lowest-weight module Ind(V(µ−ρ,λ)). Otherwise, choose ν as above,

VZ,λ·X+µ·Y can be identified with σ−ν,−ρ⊥ρνInd(V(µ−ρ,λ+ν)). Since any simple objects in Gρ is a quo-

tient of a lowest-weight module V(µ−ρ,λ), we see that any module in KLρ is a quotient of VZ,λ·X+µ·Y .

In fact, this goes beyond simple modules. For each λ, µ ∈ Cr, and each p, q ∈ Nr (namely vectors

with natural numbers entries), the module VZ,λ·X+µ·Y has a self-extension, which we denote by

V p,q
Z,λ·X+µ·Y , generated by the following free-field generator:

(B.0.2.9)
∏
a

Xpa
a Y

qa
a |λ ·X + µ · Y 〉.

This gives the action of Xa
0 and Y a

0 Jordan blocks since [Xa
0 , Y

b] = δab = [Y a
0 , X

b]. It is a self-

extension of VZ,λ·X+µ·Y in the sense that it has a filtration whose associated graded are all isomor-

phic to VZ,λ·X+µ·Y . It turns out that any object in KLρ is a subquotient of such modules restricted

to V (g∗(ρ)). The proof of this is similar to the appendix of [GN23], and we won’t repeat here

again.

Proposition B.0.9. Any object in KLρ is a quotient of a sub-module of a finite direct sum of

V p,q
Z,λ·X+µ·Y .

We use this to prove Theorem 3.2.7.

Proof of Theorem 3.2.7. Recall the field redefinition of equation (3.1.5.15) and (3.1.5.16).

For each λ, µ ∈ Cr, the module VZ,λ·X+µ·Y ⊗ VX,Y of V (g∗(ρ)) ⊗ VX,Y is clearly a lift of the
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V (gl(1|1))⊗n module restricted from the free-field algebra HX,Y,Z ⊗ HX,Y . This, together with

Proposition B.0.9 shows that the functor Lungauge
ρ is surjective.

We now show that Lungauge
ρ maps into KLρ. Let W be a simple module of V (gl(1|1))⊗n that

has trivial monodromy with V (g∗(ρ))⊗ VX,Y . By [BN22, Proposition 4.3], every such module W

embed uniquely into a module of the free-field algebra HX,Y,Z ⊗HX,Y , say Fλ for some λ that is a

linear combination of the Heisenberg generators X,Y and X,Y . Since monodromy acts semi-simply

on Fλ, W has trivial monodromy with V (g∗(ρ)) ⊗ VX,Y if and only if Fλ does, and this is true if

and only if λ(X), λ(Y ) ∈ Z, and the lift of such Fλ can be clearly identified with VZ,λ·X+µ·Y ⊗VX,Y .

Therefore, the lift of W must be in KLρ. This completes the proof.

�

B.0.3. Monodromy via Free Field Realization. In this last section of this appendix, we

use free-field realization to compute monodromy. Let W be an object in KLρ, we show:

Proposition B.0.10. The monodromy:

(B.0.3.1) Us ×W W × Us Us ×W

is given by Id× e2πi
∑
a saN

a
0 .

The idea of the proof is as follows. We first show that the above is true for any W = V p,q
Z,λ·X+µ·Y .

Then it will follow that this is true for all W since any W is a sub-quotient of V p,q
Z,λ·X+µ·Y and

monodromy is functorial with respect to sub-quotient. We present a proof of this here.

First of all, there is an embedding Us ↪→ VZ,s·X , and the free-field intertwining operator:

(B.0.3.2) Y : VZ,s·X ×VZ V
p,q
Z,λ·X+µ·Y → V p,q

Z,(λ+s)·X+µ·Y

induces the universal intertwining operator Us ×V (g∗(ρ)) V
p,q
Z,λ·X+µ·Y → V p,q

Z,(λ+s)·X+µ·Y . Therefore

we only need to compute the monodromy using this intertwining operator. By definition, Us is

generated by the vector v = |s ·X + ρ(s) ·Z〉, and V p,q
Z,(λ+s)·X+µ·Y generated by w =

∏
aX

pa
a Y

qa
a |λ ·

X + µ · Y 〉. The logarithmic intertwining operator Y is defined by the formula:

(B.0.3.3) Y(v, z)w = :exp
(∑

sa(X
a + ρi

aZi)
)

:w.
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In this formula, the logarithmic part comes from:

(B.0.3.4) e
∑
a sa(Xa

0 +ρi
aZi0)log(z)

∏
a

Xpa
a Y

qa
a |λ ·X + µ · Y 〉.

Since [Xa
0 , Y

b] = δab, the above is given by:

(B.0.3.5)
∏
a

(Xa)
pa(Ya + sa log(z))qae

∑
a sa(Xa

0 +ρi
aZi0)log(z)|λ ·X + µ · Y 〉.

To compute the monodromy, we rotate the z coordinate by z 7→ e2πiz, which results in log(z) 7→

log(z) + 2πi. The contribution of the above comes from two parts, where the first part is:

(B.0.3.6)
∏
a

(Xa)
pa(Ya + sa log(z) + 2πisa)

qa ,

and the second part is:

(B.0.3.7) e
∑
a sa(Xa

0 +ρi
aZi0)(log(z)+2πi)|λ ·X + µ · Y 〉.

The contribution of the first part can be compactly written as:

(B.0.3.8) e2πi
∑
a sa

∂
∂Y a ,

while the second part as:

(B.0.3.9) e2πi
∑
a saµ

a
= e2πi(s,µ).

One can verify that the morphism corresponding to:

(B.0.3.10) e2πi
∑
a sa

∂
∂Y a e2πi(s,µ)

is nothing but:

(B.0.3.11) e2πi
∑
a saN

a
0 .

We have, in conclusion

(B.0.3.12) Y(v, e2πiz)w = Y(v, z)e2πi
∑
a saN

a
0w,
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which is the desired statement that the monodromy is Id × e2πi
∑
a saN

a
0 . We comment that the

proof of Proposition 3.2.4 and Proposition 3.2.9 follows exactly in the same way as above, using

the explicit formula of the free-field intertwining operator.
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