UC Davis
UC Davis Electronic Theses and Dissertations

Title

Representation Theory, Algebraic Geometry and Supersymmetric Field Theories in Low
Dimensions

Permalink
https://escholarship.org/uc/item/Owm040p3
Author

Niu, Wenjun

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/0wm040p3
https://escholarship.org
http://www.cdlib.org/

Representation Theory, Algebraic Geometry and Supersymmetric Field Theories in
Low Dimensions

By WENJUN NIU
DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY
in
MATHEMATICS
in the
OFFICE OF GRADUATE STUDIES
of the
UNIVERSITY OF CALIFORNIA
DAVIS

Approved:

Evgeny Gorsky

Tudor Dimofte

Erik Carlsson
Committee in Charge

2023



(© Wenjun Niu, 2023. All rights reserved.



I dedicate this paper to my best friend Don Manuel.

ii



Contents

[Abstraci] v
|Acknowledgments| vii
[Chapter 1. Introduction] 1
[1.1.  Quantum Field Theory and Mathematics| 1
[1.2. Line Operators and Local Operators| 2
[1.3.  Line Operators in 3d N =4 Gauge Theories| 5
[1.4.  Line Operators in 4d N = 2 Gauge Theories| 8
[1.5.  Organizations and Results| 9
[Chapter 2. The Twisted Theories, Dualities and Their Mathematical Significance 12
2.1. 3d N =4 Theories, Boundary VOA and Braided Tensor Categories| 12
[2.2. 4d N = 2 Theories, Poisson Vertex Algebra and the Category ot Line Operators| 31
[Chapter 3.  From Vertex Operator Algebra to Geometry ot Branches in 3d N = 4 Abelian |
| Gauge Theories | 39
[3.1. Vertex Operator Algebra on the Boundary of T'wisted Abelian Gauge Theories| 40
[3.2. Braided Tensor Category via Intertwining Operators| 65
13.3.  Hypertoric Varieties and Vertex Operator Algebras| 81

[Chapter 4. Category of Line Operators in the Holomorphic T'wists of 4d N' = 2 Theories| 108

[4.1. The Category of Line Operators and the Poisson Vertex Algebral 108
|4.2.  Geometric Computation of the Poisson Algebral 117
[Appendix A. Free Field Vertex Algebras and BRST Cohomology | 142

[Appendix B. Representation Theory of Affine Lie Superalgebra V (g.(p)) | 154

iii



164

v



Wenjun Niu 915599033
Representation Theory, Algebraic Geometry and Supersymmetric Field Theories in Low

Dimensions

Wenjun Niu

Supervisor: Tudor Dimofte, Eugene Gorsky

Abstract

We study the category of line operators in specific topological, or holomorphic-topological
twists of supersymmetric quantum field theories in dimension 3 and 4. More specifically, we focus
on topological A and B twist of 3d N' = 4 gauge theories and holomorphic-topological twists of
4d N = 2 theories. We use geometric and representation-theoretic tools to define and study these
categories, and prove physical conjectures about these cartegories and their relations.

We study the category of line operators in the topological twist of a 3d A/ = 4 abelian gauge
theory 7,. We complete the analysis of the boundary vertex operator algebras of Costello-Gaiotto,
which results in boundary VOAs V4, and Vg ,. We obtain explicit free field realizations of these
boundary VOAs and use the free field realizations to prove the isomorphism Vy , = Vg ,v, which
we interpret as the mirror symmetry statement in terms of the boundary VOAs. We then use the
theory of logarithmic intertwining operators to define braided tensor categories L4, and Lp , of
modules of V4 , and Vg, (as derived categories). We propose that these are the categories of line
operators for the A and B twist of the 3d N/ = 4 theory 7,. Using the isomorphism of VOAs,
we prove equivalence of braided tensor categories L4, ~ Lp ,v, which we interpret as the mirror
symmetry statement in terms of the category of line operators. Finally, we show that Vp , admit a
sheafification over the Higgs branch My ,, whose construction is related to the tangent Lie algebra.

We study the category of line operators in the holomorphic-topological twist of a 4d N = 2 gauge
theory Tyr|G, V]. This category is given a geometric description by Cautis-Williams, following the
work of Kapustin, as Coh(G(O) \ Rg,v). Using the idea of formal geometry, we compute the
derived endomorphism of the unit object 1 and show that it is quasi-isomorphic to the Poisson

vertex algebra of Oh-Yagi, and that its graded super-trace reproduces the Schur index. Using

v



the same method, we compute the derived homomorphism between line bundles supported on the
miniscule orbits of Grg, in the case when G = PSL(2). We compare the graded super-trace of the

results with the defect Schur indices of Cordova-Gaiotto-Shao.
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CHAPTER 1

Introduction

1.1. Quantum Field Theory and Mathematics

The theme of this thesis is the study of mathematical structures rising from topological or
holomorphic topological quantum field theories (QFT) in 3 and 4 dimensions. The goal is to use
representation theory and algebraic geometry to pin down the precise mathematical structure of
line operators and local operators, and via the study of these line and local operators, with the
help of physical intuitions, gain new insights into the representation theory and algebraic geometry
involved.

Historically, the advancement of mathematics informs and leads to advancements in physics,
and in this sense, the flow of information had been one-sided. In the past few decades, however,
the mathematical community have seen a surge of information flowing in from the study of physics.
Constructions from quantum field theories and string theories have led to very deep conjectures
and results in mathematics.

One of the most fruitful area of such connections is that of topological quantum field the-
ories (TQFT). Since the ground-breaking work of Witten [Wit82], there has been an intensive
development in the study of such theories, and their relations to topology, geometry and represen-
tation theory. In this context, the physics intuition leads to the precise mathematical definition
of TQFT [Ati88], which becomes an essential tool for the study of low-dimensional topology. On
the other hand, the mathematical definition of TQFT allows one to express physical quantities
(correlation functions, Hilbert spaces, etc) very precisely [RT91].

Another beautiful feature of quantum field theory is the existence of dualities, which is a complex
network of relations (and many times equivalences) between different quantum field theories. One
of the first of such examples is the Electric-Magnetic duality [MO77]. Although these dualities are

usually proved in physics using non-rigorous methods (e.g., Feymann integrals, SUSY localization,



etc), they suggest corresponding relations between the rigorous mathematical structures that one
can extract from them, which in most cases are far beyond reach without the intuition of physics.

Some such examples include:

e T-duality of 2d CFT |Bus88| and mirror symmetry [SYZ96].
e 3d mirror symmetry [IS96| and symplectic duality [BLPW16].

e S-duality of 4d N = 4 theories [MO77| and geometric Langlands program [KWO06].

It is only expected that connections as such will be more and more fruitful and benefit both
mathematicians and physicists. This thesis serves as a small drop of contribution into the ocean of
works and ideas devoted to this area of research. We now come to introduce the central object of
study of this thesis: line observables in topological or holomorphic-topological field theories. Since
this is a mathematics thesis, a complete review of the theory of observables in QFT is beyond the
scope of this work. Instead, we will give a rather heuristic introduction to them, focusing on the

physical intuitions involved.

1.2. Line Operators and Local Operators

A TQFT T whose space-times manifold M is d-dimensional gives rise to a series of algebraic
structures on the set of observables in 7. These algebraic structures come in different layers. The
set of local observables Ops(m) at a point m € M will possess the structure of an algebra, whose

multiplication map is given by collision of points:

A A
O1 (@ 01 % O
— <—e A\ °

Since the theory T is topological, such an operation is well-defined, and defines an algebra structure
on Ops(m). Physics in fact remembers more than the multiplication, it also remembers that there
are d different directions in which the two local operators can collide. The structure of such d
different multiplications that behave coherently with respect to each other leads to the definition of
an [E; algebra. In a word, local observables in a TQFT has the structure of an E; algebra. When

the ground field is C, such an algebra is shown to be equivalent to a commutative shifted Poisson
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algebra with a degree 1 — d Poisson bracket. If d is odd and one only consider the underlying
algebra, then this is a Poisson algebra that is the central object in the study of symplectic algebraic
geometry.

For higher-dimensional defects, the structure of collision still exists, although there will be
less directions of collision. On the other hand, higher-dimensional observables will have higher
categorical structure. The Hom between two k-dimensional observable is the set of k—1 dimensional

observables at the intersection:

Hom(O1, O3)

In general, if S C M is a k-dimensional subspace of M, then the set of observables Ops(.S) supported
on S will have the structure of a k-category, and a compatible E;_; multiplication, which leads to
the mathematical definition of a E;_j k-category.

For example, when d = 2 and k = 1, the set Ops(S) is the category of line operators £ in a 2d

TQFT. The Hom between two line operators is given by adjunctions of local operators:

Loy
q HomL(Ll, Lg)

Ly

Composition of morphisms is given by collision of local operators on the line:

Ls Ls

Lo A"AAS  @Oaxb

Ly Ly




The E; structure, which is a monoidal structure, comes from collision:

Ly Ly~ Ly x Lo

—

When d = 3 and k£ = 1, the category of line operators will not only have a monoidal structure,
but multiplication in two different directions. The mathematical equivalence of this structure is a

braided tensor category (BTC), where the braiding comes from interchanging the location of lines:

L Lo L L1

In this thesis, we will consider also holomorphic-topological (HT) theories defined on M x C where
the theory is topological on M and holomorphic on C. The observables Ops(S x {z}) supported
on S C M and point-like along C will have its usual E4_j; k-category structure, but also a chiral
structure from C, which is a multiplication depending holomorphically on insertions on C, with
possible singularities forming as the insertions collide. When M is zero-dimensional, this is the
structure of a vertex operator algebra (VOA), and is the central object for a conformal field theory.

These observables of different dimensions can be related to each other. For each k, the category
Ops(R¥) has a distinguished object 1, which is the trivial k-dimensional observable put on R¥. The
interface between two trivial k-dimensional observables is simply the set of observables supported

on R¥~1. In a word, we have:

(1.2.0.1) Hom ey (Lk, 1) ~ Ops(RF).



Therefore, one can obtain structures of lower dimensional observables from higher dimensional ones,
and in principle, for a d-dimensional TQFT, the entire quantum field theory will be encoded in a d
category. However, it is in general difficult to determine the correct d category. On the other hand, if
we understand the k—1 dimensional observables, then we can recover part of the higher dimensional
data since the functor Homggw)(1k, —) gives an equivalence between the subcategory of Ops(RF)
generated by 1; with Ops(R¥~!)—~Mod. This however is usually not enough. For example, in
3d Chern-Simons theory, the category of line operators is Rep,(G), and when G is reductive, the
category generated by the identity line operator is a category of vector spaces, and does not contain
other Wilson line operators in the theory. There are examples in which this functor gives rise to
interesting representations of the set of lower-dimensional observables, which lead to the bottom-up
approach of TQFT outlined in [But21]. In this thesis, we will take a top-down approach, namely
we will use the category of line operators to compute the space of local operators.
In this thesis, we consider the following two class of theories:
(1) A and B twist of 3d N' = 4 theories, which are TQFT whose category of line operators
form a BTC.
(2) Kapustin (HT) twist of 4d N/ = 2 theories, which are HT QFT whose category of line
operators form a monoidal chiral category.
We now proceeed to introduce these theories and the approach we will take in studying the

category of line operators in them.

1.3. Line Operators in 3d N/ = 4 Gauge Theories

Given a complex group G and a complex representation V' of GG, physicists have defined a 3
dimensional quantum field theory with A/ = 4 supersymmetry, which will be denoted by T|G, V].
The theory has an HT twist, which require the spacetime manifold to be locally of the form
R x C. The HT twisted theory Trr[G, V] can be further deformed to two topological theories, the

topological A twist T4[G, V] and the B twist Tp[G, V], also called the Rozansky-Witten twist.

Tur|G, V]

(1.3.0.1) / \

TalG, V] TG, V]



These topological theories do not yet admit a full TQFT description, but some part of their struc-
tures has now been unveiled and many beautiful mathematical statements followed.

The space of local operators in both T4[G, V] and Tp[G, V] form (—2)-shifted Poisson algebras.
For the B-twist, this algebra is the algebra of functions on a Poisson variety called the Higgs branch,
which will be denoted by My g,vv. This variety is defined as the symplectic reduction of T*V by
G. For the A-twist, the space of local operators is the algebra of functions on another Poisson
variety called the Coulomb branch, denoted by M¢ g . For a long time, physicists have predicted
much of its properties, for example, [GMN13a,GMN13b, BDGH16,BDG17, DGGH20|, but
not a precise mathematical definition, since the non-perturbative analysis is difficult. Recently, this
space has been given a precise definition in [Nak16,BFN18| using the Borel-Moore homology of an
infinite-dimensional variety, and the result there is inspired by the physical analysis of [DGGH20)|.

The idea of [DGGH20] is to derive the space of local operators from the category of line
operators. Let us denote by L4[G, V] and Lp[G, V] the category of line operators for the two
topological theories. In each twisted theory, there is a distinguished object 1, the tensor identity

of L. The space of local operators, namely C[M], can be realized as the endomorphism:
(1.3.0.2) CIM] = End(1).

It was argued based on physical ground [DGGH20| that:
(1) L4[G,V] ~D-Mod (V(K)/G(K)) = Coh(Maps(D*,V/G)ar).
(2) Lp[G,V] ~ Coh(Maps(D¥,, V/G)).

Here X4r denotes the de-Rham stack of X, which can be thought of as the algebra of algebraic
de-Rham complex of X. Un-packing the above definitions, the category L£[G, V] is the category
of strongly G(K)-equivariant modules of the algebra of differential operators on V(K), or perverse
sheaves on V(K)/G(K), while the category Lg[G,V] is the category of coherent sheaves on the
moduli space of G-local systems on D* with a section on the associated V-bundle. The problem
is that it is difficult to utilize these definitions as the spaces involved are infinite-dimensional, and
that it is almost impossible to understand the braided-tensor structure of the categories, which is

something very crucial to the Poisson geometry of the branches M.



In this thesis, we focus on the case when G = (C*)" a torus, and V is a representation defined
by a charge matrix p : Z" — Z". The approach in this thesis uses holomorphic boundary conditions
of [CG19]. In this work, the authors defined boundary conditions of 3d N = 4 gauge theories that
are compatible with the topological A and B twists, such that the twisted theory on the boundary
is holomorphic. In this case, local operators on the boundary form a VOA.

The way to use the boundary VOA to access the category of line operators is as follows. Given
a 3d topological QFT on C, x R;>¢ with a holomorphic boundary condition B at ¢t = 0, supporting

a VOA Vg, and a line operator L of the bulk theory, positioned perpendicular to the plane ¢t = 0

L

and supported at z = 0. A picture is as follows:

B
L
—e F5(L)
.V]B

Let Fg(L) be the space of local operators that can be inserted at the junction of L and the
boundary condition B. It is acted upon by other boundary local operators, and thus is a module
for V. Collision and braiding of line operators in the bulk are expected to be compatible with
collision and braiding of modules of the boundary VOA, which are given by intertwining operators.

Thus, one expects there to be a functor of BTC:
(1.3.0.3) Fi : £ — D°(V-Mod).

This basic setup arises in Chern-Simons theory, with a holomorphic boundary condition supporting
the WZW VOA [Wit89, EMSS89|. In good cases, it is expected that this is an equivalence of
categories. According to the computations in [CCG19), it is expected that the boundary conditions
of |[CG19] are good in this sense so that one can describe line operators using the boundary VOA
modules.

In this thesis, we will carefully define and study the boundary VOA Vg supported on the

holomorphic boundary conditions of [CG19]. We will define a category of modules that has the



structure of a braided tensor category via logarithmic intertwining operators. This will lead to the

definition of the category L4, and Lp , as braided tensor categories.

1.4. Line Operators in 4d N/ = 2 Gauge Theories

The set-up is similar to 3d N = 4 theories. Let G be a complex Lie group and V a rep-
resentation of G. Associated to this data is a 4 dimensional quantum field theory T'[G, V] with
N = 2 supersymmetry. In [Kap06a], the author introduced a holomorphic-topological (HT) twist,
which requires spacetime to locally take the form R? x C, and depends topologically on R? and
holomorphically on C. The HT twisted theory Ty7[G, V] is related to the 3d theory Tyr[G, V] via
dimensional reduction. More precisely, if one put the theory Ty [G, V] on a spacetime of the form
R x S! x C and treat the theory as a 3d theory on R x C, then it is equivalent to Tyr[G, V].

The vacuum of the theory Tyr[G, V] goes by the name of K-theoretic Coulomb branch, and is
very important to the study of representations of affine Yangians [BFMO05/BFN19,CW19.FT19|.
The space of local operators in Ty [G, V] is a Poisson vertex algebra [OY20,But21], and in special
cases, can be further deformed to a VOA [BLL'15|.

In this thesis, we derive this Poisson algebra using the category of line operators. This category
is given a precise mathematical definition in [CW19)] for pure gauge theory (V' = 0) and [CWar| for
general V, following the physical predictions of [Kap06a,Kap06b]. It is shown in [CW19,CWar|
that the category of line operators of Ty[G, V] has the structure of a chiral monoidal category.

We will show that the derived endomorphism algebra:
(1.4.0.1) End (1)

is quasi-isomorphic to the Poisson vertex algebra of [OY20,But21] as an algebra. The main tool
in this computation is formal geometry in the derived setting, which was established in the work
of |GR14,|GR19,|GR17]. The same method allows us to also compute the derived endomorphism
between objects supported on other miniscule orbits of Grg, and we will give one example of this

for G = PGL(2).



1.5. Organizations and Results

1.5.1. Overview of Chapter 2. In Chapter 2, we will recall known facts, and results to be
studied about the two class of twisted theories that are considered in this thesis. For 3d N/ = 4
theories, we will focus on abelian gauge theories, and in particular, we will recall the content of 3d
mirror symmetry for abelian A” = 4 gauge theories. We will also recall known facts about Kapustin
(HT) twist of 4d N/ = 2 theories, and the algebro-geometric formulation of the category of line
operators. The content of this chapter is based on [BCDN23, Niu21]|.

1.5.2. Overview of Chapter 3. In Chapter [3| we will define boundary VOA Vy , and Vg,
for both A and B twist of 3d A/ = 4 abelian gauge theory defined by a charge matrix p. They are
roughly defined as following:

e The VOA V4 , is a BRST reduction of many copies of symplectic bosons Vg?y".

e The VOA Vg, is an extension of an affine Lie superalgebra V (g.(p)).

We construct free field realizations of the above VOAs, namely embeddings of them into exten-

sion of Heisenberg VOA by Fock modules. Using such free field realization, we show:

THEOREM 1.5.1 (Theorem [3.1.10). When p and p" define 3d mirror dual gauge theories, then

there are isomorphisms of VOA:
(1.5.2.1) Vap = Vp v VB, = Va,v.

We will then define categories of modules of V4 , and Vp ,, which will be denoted by C4, , and
Cg,p- The bounded derived categories DC A,p and DbC B,p Will be proposed as the category of line
operators. A feature of these categories is that they are highly non-semisimple, and therefore hard to
deal with in VOA theory. We apply the idea of simple current extensions of [CKM17|/CMY 22a] to
show that C4 , and Cp , have the structure of braided tensor categories via the theory of logarithmic

intertwining operators. We prove:

THEOREM 1.5.2 (Theorem [3.2.10). When p and p¥ define 3d mirror dual gauge theories, then

there are equivalences of braided tensor categories:

(1.5.2.2) Cap~Cppv, Cp=Capv



Analyzing the content of the category Cp, via simple current extensions, we will derive a
quantum group Ug(g«(p)), whose representation theory is equivalent to Cp,. We show that
Uq(9+(p))—Modsy, the category of finite-dimensional modules, has the structure of a braided tensor

category, and present the following conjecture:

CONJECTURE 1.5.3 (Conjecture [3.2.12)). There is an equivalence of braided tensor categories:
(1.5.2.3) Ci,p =~ Uqy(9+(p))—Modgy.

Using this quantum group, we show that we can obtain the correct algebra of local operators

from DbCva:

THEOREM 1.5.4 (Theorem [3.3.1)). Let 1 be the identity object in Cp p, then there is a quasi-

isomorphism of algebras:
(1.5.2.4) End*Dchvp(]l) = CMmp,p).

Finally, we show that the VOA Vg , (and V4 ,) admits filtered version Vg’ o which is naturally
a sheaf of VOA on the symplectic quotient 7%V /G. The parameter h is interpreted as the coho-
mological grading in the category QCoh(7T*V//G). The limit A — 0 of Vg” p» Or in other words,
VE’; p / hVE’; P 18 the boundary vertex algebra for the Dirichlet boundary condition for the HT twist
Tur,p, and VX, 0 / th’ 18 the boundary vertex algebra for the Neumann boundary condition for the
HT twist Tgr,. The sheaf of VOA unveils the Lie superalgebra g.(p) as the shifted tangent Lie
algebra of T*V J/G. Combined with the work of [Kuw21|, we prove the following:

THEOREM 1.5.5 (Theorem [3.3.23). The h-adic VOA Vgp is naturally a sheaf over the product:
(1.5.2.5) Mp, X My v 2 My, x Mc,p.

The content of this chapter is partially based on [BCDN23|.

1.5.3. Overview of Chapter 4. In Chapter [d we will compute the algebra of local operators
of HT twist of 4d A/ = 2 gauge theory defined by G and V using the category of line operators.

The category of line operators in this theory is the category of G(Q) equivariant coherent sheaves

10



on Rg,v, a space defined by the following Cartesian diagram:

Ray —— V(0)

(1.5.3.1) l f

G(K) x¢o) V(0) —= V(K)

The category Cohgoy(Re,v) is a chiral monoidal category, whose chiral structure follows from the
famous Beillinson-Drinfeld grassmannian [BD]|, and whose monoidal structure is defined via some
convolution diagrams (see equation ) The space of local operators in this case has been
computed based on physical arguments by [OY20,But21]. It is a Poisson vertex algebra Vg v built
from BRST cohomology of copies of degenerate symplectic bosons, and can be alternatively defined
as functions on the infinite jet space JT*VJ/G. Using derived algebraic geometry, especially the

relation between formal groups and Lie algebras |GR14,/GR19,GR17|, we prove:

THEOREM 1.5.6 (Theorem [4.2.16)). Let 1 be the identity object in Cohgo)(Ra,v), then there

18 a quasi-isomorphism of algebras:

(1.5.3.2) End*COhG(O)(RG’,V)(]]_) = VGJ/.

Using the same method, we consider the computation of derived Hom between more general line
operators. We will focus on the case when G = PGL(2) and compute the derived endomorphism
of the structure sheaf of the miniscule orbit of Grg, and compare it to the physical computation

of |[CGS16]. This chapter is based on [Niu21].

11



CHAPTER 2

The Twisted Theories, Dualities and Their Mathematical

Significance

In this chapter, we introduce the mathematical structures in the twisted QFT that will be the

focus of the rest of the thesis. The structure of this chapter is as follows.

e In Section we focus on the topological twists of T[G, V]. We will introduce the Higgs
and Coulomb branches as algebraic varieties, whose space of functions are the algebra of
local operators in the topological twists. We then introduce the braided tensor category
of line operators, and the boundary VOA approach that we will take to define them
mathematically. Finally, we will introduce certain well-known VOAs that are building
blocks of the VOAs in this thesis.

e In Section [2.2] we focus on the HT twist of 4d A" = 2 theory Tgr|G, V]. We will introduce
the category of line operators and the space of local operators, as suggested from physical

analysis.

2.1. 3d N = 4 Theories, Boundary VOA and Braided Tensor Categories

2.1.1. Higgs and Coulomb Branches. Let G be a complex Lie group and V a complex
finite dimensional representation of G. As we have discussed in the introduction, associated to this
data is a 3d N = 4 supersymmetric field theory, whose gauge group is GG, and whose matter fields
valued in the representation T*V of G. This theory has an HT twist, and can be further deformed

to two topological twists, as represented by the following picture:

Tur|G, V]

(2.1.1.1) / \

TalG,V] T8[G, V]

12



The space of local operators Ops4[G, V] and Opsg[G, V] are E3 algebras, or (—2)-shifted Poisson
algebras. Forgetting the grading, these are commutative Poisson algebras, and give rise to two

(singular) Poisson varieties:
(2.1.1.2) Mec.gv = Spec(Ops4[G, V]), Mu v = Spec(Opsg[G, V]).

The variety M¢ g,v is called the Coulomb branch and My g v is called the Higgs branch. These
varieties, especially My ¢y and its resolutions, have been on the radar of mathematicians for a
long time, and by now, their precise definitions as complex varieties are known. We will present
their definitions in the following, and then focus on examples when G = (C*)" is a torus.

The space My g v is more easily defined. The variety T*V =V @ V* is symplectic with the
standard symplectic form. The action of G on T*V preserves the symplectic form, and there is a

moment map:

(2.1.1.3) p:T*V — g*
such that:
(2.1.1.4) (v, v*)(X) = (Xv,v%), forall X, v,v".

The map p is a G-equivariant and generically flat, but in general not smooth. The zero fibre =1(0)

is a G-invariant subspace.
DEFINITION 2.1.1. The Higgs branch Mg v is defined by:
(2.1.1.5) Mucy = 0))G,

where 1~1(0) )G denotes the geometric-invariant-theory (GIT) quotient. We also denote the above
quotient by T*V )G, called the hyper-Kdhler quotient.

REMARK 2.1.2. In other words, Opsg[G, V] = C[u~1(0)]% is a Poisson algebra. Physics imposes
some extra gradings on C[u=1(0)]¢ so that this Poisson structure is (—2)-shifted under this grading.

As we will see in Section |3.5.1), it is natural that linear functions on T*V are in degree 1, and the
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Poisson structure will be (—2)-shifted. Since we have no use for this grading in this thesis, we will

not mention this grading again.

Example. Consider the case when G = C* and V = C? with weights 1 and 1. Denote by x1 and

xo functions on C? and y; the dual coordinates, then the map p: T*V — g* is defined by:

(2.1.1.6) w(z,y) = szyz

Thus the subspace u~'(0) is the spectrum of the following ring:

(2.1.1.7) A =Clai,yi] /O wiyi).

The GIT quotient is the spectrum of AC™, the invariant part of A. The invariant part is clearly
generated by x;y; subjected to the condition ) x;y; = 0. Thus the ring is generated by e; =

T1Y2, €2 = xay1 and ez = ix1y; subjected to:

(2.1.1.8) e1es = T1Y1T2Ys = —T1Y; = €3,

and no other conditions. The spectrum of this ring is recognized as the GIT quotient C? /7y, where
the Zso action on C? is given by (z,y) — (—x, —y). Indeed, under this isomorphism, ey is identified

with ©2, ey with y? and es with xy, all of which are Zo invariant.

The space My v has a Poisson structure inherited from T*V. However, the space My g v
is usually not smooth. One usually defines a variantion of this space via the choice of a stability
condition, and under certain conditions, the variation will be smooth. More precisely, let £ € g* be

a character of GG, namely:
(2.1.1.9) ¢ € Hom(G,C),

A point p € T*V is called é-semistable if there exists m € Zsg and a function f € C[T*V]%™¢
such that f(p) # 0. Here f € C[T*V]%™¢ means that f transforms under the action of G' as mé.

Denote by (T *V)gs the subset of all semi-stable points, which is an open subvariety of T*V. Now
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for any subset S C T*V, we define an equivalence relation on S by declaring that p ~ g:

(2.1.1.10) G-p(1G-q[)S#0.

DEFINITION 2.1.3. We define the hypertoric variety M% v associated to the stability condition

& by the quotient:
(2.1.1.11) Mgy = (@ 0) N (T*V)E) [ ~.

REMARK 2.1.4. We can alternatively define MEJ,G,V as the following projective variety, which
is much more user-friendly:

(2.1.1.12) M5y v = Proj(@D Clu=(0)]%™).

n>0

Localization of global sections give a map M%G v = Mumuayv. Again, there is a Poisson structure

on MELG,V that is induced from T*V .

Example. In our previous example, let us choose € = 1. In this case, the graded algebra
(2.1.1.13) Pl ()4
n>0

is generated in degree 0 and degree 1 by:
(2.1.1.14) x;y; in degree 0, x; in degree 1.

The graded algebra generated by x; is the graded algebra defining the projective variety P', and
one can show using local charts that the above projective variety is nothing but the variety T*P".
The elements x;y; are the global linear functions on T*P, or global sections of O(2). From the

SS

perspective of semi-stability, we can see that (T*V)5 consists of points where x; # 0 for some 1,

and so:

(2.1.1.15) pH0) N (T*V)E = = '(0) \ {a; = 0}
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The action of C* is free on this and the corresponding quotient is nothing but T*P'. This is a
minimal resolution of singularities of C?/Z2.

The variety ./\/l%Gy has conical symplectic singularities, and is therefore a nice variety to study
from the point of view of symplectic geometry. In this case, one can completely characterize its
deformation quantizations, and use it to study representation theory of non-commutative algebras.
See for example, [BPW16,BLPW16|Los16]. When G = T is a torus, the following result also
characterizes in which situation M%G’V is a smooth variety. Define (T*V); the subset of (TV)g*
where the stabilizer of p is a finite subgroup. Then there is a cone A(G,T*V) in g* defined by
the property that for any £ € A(G, T*V), (T *V)Zs = (T*V)z, namely, stability and semi-stability

agree.

THEOREM 2.1.5 ( [HSO02| Proposition 6.2; see also [BK12| Corollary 4.13). If £ is in the
interior of A(G,T*V') and the action of G on T*V is defined by a unimodular matriz over Z, then

M%G v 18 smooth. In this case, the map M%G v — Mua,yv is a resolution of singularities.

The definition of the Coulomb branch M¢ g v is more involved. Its existence was predicted by
physics, and physicists have predicted much of its properties, for example, [GMN13a,|GMN13b),
BDGH16,BDG17,DGGH20|. Its mathematically precise definition is given in [Nak16,BFN18|.
Let us recall the definitions here. Denote by O the ring of power series C[z] and K the field of
Laurent series C((z)). We will denote by V(K) (respectively V(O)) the space of Laurent series (re-
spectively, power series) valued in V. Similarly, we can define G(K) and G(O). The spaces V(O)
and G(O) are affine schemes of infinite dimensions, and are called pro-schemes (see |[Ras20]), and
the space V(K) and G(K) are ind-pro-schemes. The action of G on V naturally extends to an

action on the loop spaces. We define the BFN space R,y by the following Cartesian diagram:

Ray — V(0)

(2.1.1.16) l L

Namely, Rq,v is defined as the derived subscheme of G(K) x g0y V(O) subjected to the relation
that g(z) - v[z] € V(O). The space Rq,v can be alternatively described as the moduli space of

triples (P, ¢, s) where P is a principal G torsor over D, ¢ is a trivialization of P over D*, and s is
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a section of the associated V bundle over I that is sent, under ¢, to a regular section of the trivial
V bundle. It is an indscheme and a G(O)-equivariant fiber bundle over Grg. Roughly speaking,
the Coulomb branch Mc ¢,y is defined as the spectrum of the equivariant Borel-Moore homology
H g%) (Rg,v). This is only rough because the space R¢,v is infinite-dimensional and so is the group
G(O). The authors of [Nak16,BFN18| use the properties of Borel-Moore homology to essentially

cut the space into finite-dimensional ones. More precisely, for each n > 0, we have a compatible

diagram whose limit is the diagram in equation (2.1.1.16|):

Rayn —— V(0)

(2.1.1.17) l l’

G(K)n xa0) V(O) —"= V(K),

Here the subspace with integer n are defined by requiring the orders of poles to be at most n. For

each n, we can find m large enough that this diagram factors through the following;:

RG,V,n,m ” V(O/Zm)

(2.1.1.18) l l’

G(K)n XG(o):m) V(0/2") —= V(K)p /2™ "V (O)

Moreover, the action of G(O) on Rg vnm factors through a quotient Gy, := G(O/zF0). The
Borel-Moore homology is defined as the injective limit:
(2.1.1.19) HEG) (Rey) = lim HEM (R,vnm)-

n,m.k
Here the first limit of k stabilizes as the kernel Gy — Gj_1 is unipotent. The limit over m uses
the pullback functor of Borel-Moore homology and the limit over n uses the push-forward. For
a precise definition of these functors, see for example, the beautiful book [CG97]. The Borel-
Moore homology defined above has the structure of an associative algebra, defined by the following
convolution diagram (and its finite cut-off):
(2.1.1.20)

RG,V X 'RQV # G(’C) X 'RQV XV(IC) V(O) L) G(/C) Xg(@) RQV XV(IC) V(O) . RG,V
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Here the space G(K) x Ra,v Xy (k) V(O) is the (derived) subspace of G(K) x R,y consisting of
(9(2),1¢'(2),v[z]]) such that gg'v € V(O). The maps in the above diagram is given by:

(2.1.1.21)

9(2), ' (2)v[z]] x [9'(2), v(2)] «—— (9(2),19'(2), v[2]]) — [9(2),[¢'(2), v[z]l] — l9(2)g'(2), vl=]] -

The finite cut-off of this diagram induces an algebra structure on the Borel-Moore homology
Hg(]‘é) (Rg,v). For the precise definition and computation, see [BFN18|. It turns out that this
algebra structure is commutative, and the Coulomb branch is defined to be the spectrum of this

algebra.

DEFINITION 2.1.6 ( [BFN18|). The Coulomb branch Mc v is defined to be an affine variety:
(2.1.1.22) Me,c.yv = Spec (Hggg) (Rg,v)) .

In the case G = T is a torus, the (reduced scheme of the) affine grassmannian 7'(KC)/T(O) is
nothing but a set of points, labelled by the cocharacters of T'. The Coulomb branch in this case is
computed explicitly in [BFN18|. Assume the action of 7" on V is defined by a set of characters
{&}1<i<n- Denote by t the Lie algebra of T" and t* the dual, and let A be the set of co-characters,
which is a lattice whose rank is equal to the dimension of T'. Define, in addition, a function d(m,n)
on integers by:

0 if m, n have the same sign
(2.1.1.23) d(m,n) =

min(|m/|,|n|)  otherwise
THEOREM 2.1.7 ( [BFN18|, Theorem 4.1). The Coulomb branch Mc 1,y is the spectrum of an
algebra over Sym(t*) generated by symbols > for X € A with relations:
n
i=1
For quiver gauge theories, the Coulomb branches has been identified with slices in the affine
Grassmannian of G [BFN19|. For general G and V, the algebra structure of C[M¢ g v] is com-

plicated. However, the geometric construction implies some immediate structures of C[M¢ g v].
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For example, when G is a reductive Lie group and 7' the maximal torus, then there is a localiza-
tion map from C[Mc¢ ¢ v] to a localization of C[M¢ 7y ]. Moreover, this localization maps to the
Weyl-invariant part of the abelian Coulomb branch. This in particular can be used to show that
the Borel-Moore homology is a commutative algebra.

Just as the case of the Higgs branch, the Coulomb branch is a Poisson variety, though the
Poisson structure is less explicit. In [BFN18]|, the authors constructed a filtered deformation of
C[Mc¢,g,v], which from the point of view of R¢ v, is constructed by considering the loop group
equivariant Borel-Moore homology. More precisely, consider the C* action on R¢,y given by loop
rotation. The homology group H 5(%”@ (Rg,v) has the structure of a non-commutative algebra,
and the C* equivariants parameter exhibits Hg(]\(g)xcx(RGvV) as a filtered deformation, whose

associated graded is HGB(%) (Ra,v)-
(2.1.1.25) T HE Gy wex (Raw) =" HES (Rav)

This induces a Poisson structure on HGB(%) (Ra,v) by {n(a),n(b)} = ma,b], or limy_,; [Z’fb]f where
q is the C*-equivariant parameter. The Poisson variety M¢ ¢, is not smooth in general, but one
can also construct resolutions of M¢ ¢ v using Borel-Moore homology. Suppose the action of G' on

V' can be extended to a group G that fits into a short exact sequence:

~
—_

(2.1.1.26) 1 > G > G » Tp

where TF is a torus, usually called the flavor group. Choose a character Ap of Tr. Let Ra v be

the BFN space associated to G. Since this is a fiber bundle over Grg, there is a map:
(2.1.1.27) ™ Reay — Grrg,

where Grr,, is isomorphic to the cocharacter lattice of Tr. Denote by R%’\; the preimage of

71 (nAFr), then one can define the partially-resolved Coulomb branch:

AR L . . BM nAp
(2.1.1.28) Mgy = Proj (}llg% HG(O)(R&V)> .
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Since R(g‘i = Raq,v, there is a morphism:
(2.1.1.29) My — Mo

2.1.2. The Category of Line Operators. As mentioned in the introduction, the categories
of line operators L4[G,V] and Lp[G,V] in the topological twists should have the structure of

braided tensor categories, and can be used to obtain the corresponding algebras of local operators:
(2.1.2.1) Endy gy (1) 2 CMecy),  Endg, gy, (1) 2 CiMacy),

such that the Poisson structure is induced from the braided tensor structure. In [DGGH20], the
authors argued on physical ground that these categories should have the following form:

(1) LA]G,V] ~ D-Mod (V(K)/G(K)) = Coh(Maps(D*, V/G)ar)-

(2) Lp[G,V] ~ Coh(Maps(D},, V/G)).

Here D* := Spec(K) is the formal punctured disk, and D := Spec(O) the formal disk. Let us try
to un-pack these definitions. The space Maps(D*, V/G) can be thought of as the space V(K)/G(K).
Coherent sheaves on the de-Rham stack of V(K)/G(K) is also known as the category of D-modules,
modules for the algebra of differential operators on V' (K)/G(K). Therefore, the expectation is that
L4[G,V] is the category D—Mod(V(K)/G(CK)).

The space Maps(D,,V/G) is the space of G-integrable systems on D* with an associated
section. A G-integrable system is the choice of a connection, namely an element A(z) € g(K), and
a section of the associated V' system is an element v(z) € V(K) such that (9, + A(z))v(z) = 0.

Therefore, the space Maps(D?, V/G) is given by the following Cartesian product:

Maps(D}p, V/G) —— G(K)\ 0

(2.1.2.2) l l

G(K)\ (9(K) x V(K)) —— G(K)\ V(K)

Therefore, the expectation is that Lg[G, V] is the category Cohg(x ((a(K) x V(K)) xvx) {0}).
The above definitions are not mathematically rigorous, partly due to a lack of technological tools

for inifnite-dimensional quotient spaces. There are, however, alternative definitions and specific
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examples in which these categories are given a rigorous definition. Before reviewing them, let us
comment on how these two categories are used to derive the Higgs and Coulomb branches.

The derivation of Coulomb branch is more straight-forward. With the identification £4[G, V] ~
D—Mod(V(K)/G(K)), the identity line operator is the structure sheaf of V(0)/G(0O), and we would

like to compute:

(2.1.2.3) End_yoa(vx)/60)) (Ovio)/60)) -

Let Y be a finite-dimensional smooth variety and ¢ : X — Y a morphism, then the work of [CG97|

establishes the following;:
If we assume that this holds in the infinite-dimensional setting, then there will be a quasi-isomorphism:

(21.25)  Endp_yoavioy/aik) (Ovioya) = Hiy (V(0)/G(O) xvx)yaic) V(0)/G(0O)) .

We recognize that the fibre product V(0)/G(O) xv(x)/a(c)V (O)/G(O) can be defined alternatively
as G(O) \ Reg,v, which leads to Definition

It is less obvious how Lp[G, V] leads to the symplectic reduction. It becomes more obvious if
we replace DY, by S L. This is related to two different ways of understanding local systems: the de-
Rham point-of-view and the Betti point-of-view. In de-Rham setting, one remembers the connection
modulo gauge transformations, while in the Betti setting, one only remembers the monodromy. The
algebraic space Maps(D, V/G) is from the de-Rham perspective. In Betti prespective, one replace
Maps(Dj 5, V/G) by Maps(St, V/G) = L14,V/G, where Ly, is the topological loop space [BZN12].
This leads to the expectation Lg[G, V] ~ Coh (L,V/G). Koszul duality implies an equivalence
Coh (L,pV/G) ~ Coh (T*[2]V/G) [Riel9|, under which the identity line operator is simply the
structure sheaf of 7*[2]V/G. The endomorphism is simply the derived global section of the structure
sheaf of T*[2]V/G, otherwise known as the G.I.T quotient:

(2.1.2.6) Endg.v) (Or+vye) = T (T*[2]V/G) = Clu~ ' (0)]%,

which leads to Definition 2.1.1]
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It is possible to understand the resolution and deformation quantization from the perspective
of line operators as well. The choice of a co-characters for Coulomb side (or a characters for Higgs
side) gives rise to a set of objects {A,} in the category of line operators L labelled by Z such that

Ay = 1, and isomorphisms:
(2.1.2.7) Ap X A 2 Apim € L

that makes € A, into a commutative algebra object in £. With this algebra object, one can

construct a projective variety via:

(2.1.2.8) Proj @Hom(]l, Ap)

n>0

Here the algebra structure on @ Hom(1, A4,,) is defined using the multiplication structure on the
n>0
second factor. This is commutative thanks to the commutative algebra structure, which states that

the following diagram commute:

Ap % Ay =" Aprin

ml A

(2.1.2.9) cap,
A, x A,

Here m is the multiplication map and c is the braiding. This will be a projective variety with a
morphism onto M = Spec(End(Ap)) . The resolutions in equation and equation
arise from this manner. In this construction, it is essential to have a braided monoidal category
structure on £, in order for the algebra object and proj to make sense.

The Poisson structure and quantization of M can also be deduced from L. A braided tensor
category has a natural action of the homotopy group S', or in other words, a morphism S' —
Aut(L), from the homotopy group S' to the category of automorphisms of £. The equivariant
category £5" is naturally a category fibred over the formal disk D, since Ogg1 = C[z] for = a
commutative variable of homological degree 2 [Prell]. The fibre of this category at 0 is the

original category £ and the fibre over D* is the category of equivariant objects. This gives rise to
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the deformation family

(2.1.2.10) End*,q (1)

of End}(1). The fact that this deformation is related to the Poisson structure can be seen from
the Higgs side through the work of [Riel9], who showed that the S! action on Coh(T*[2]X) for a
smooth X is given by the exponential of the Poisson bivector, and the work of [BZN12| suggests
that the deformation upon taking S'-equivariants deforms C[T*[2]X] to differential operators on
X. Although in the present case X = V/G is not smooth, it is still plausible that such a statement
generalizes.

It is also possible to obtain the Poisson structure and quantization of the partial resolutions
from the S'-equivariant category. However, this requires much more explanation and is beyond the
scope of this thesis. We wish to take on this part of the property in a future work. Nevertheless,
these observations suggest that the knowledge of L is a great advantage in the study of M and
its symplectic geometry. Another advantage of the knowledge of £ is that it helps understand the
statement of mirror symmetry, which we now recall.

2.1.2.1. 8d Mirror Symmetry and Line Operators. 3d mirror symmetry is the statement that 3d
quantum field theories can come in pair (7,7 ), such that the two theories are equivalent, but with
a non-trivial equivalence that swaps certain sets of observables. In the context of 3d N' = 4 theories
and these associated varieties, it is the statement that for certain (G, V), there is a (GV, V") such

that:

(21.2.11)  Tur[G, V] ~ Tur[GY, VY],  TalG, V] ~Ts[GY. VY],  Ts[G.V]~TalGY,VV].
This leads to the following remarkable property of Higgs and Coulomb branches:

(2.1.2.12) Mcayv = Mpavyvy, Maayv = Mcogagvvv.

Namely, the Coulomb branch, which was originally defined using Borel-Moore homology, is equal

to Higgs branch of a dual theory, defined by sympletic reduction. This is known in many cases

already, some of which include quiver gauge theories and abelian gauge theories. Let us recall here

the full detail of abelian gauge theories. For more examples, see [TGGH20|. Let T'= (C*)" be a
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torus acting on V' = C", whose action is defined by a charge matrix p. We view p as a map:
(2.1.2.13) zr —L zn

We will assume that p defines an embedding and can be completed into a short exact sequence:

(2.1.2.14) 0 y ZT —L s I T T 5 0

Let p¥ = 77 be the transpose. Denote by T the torus (C*)"~" which has an action on V' via the

matrix p¥. It is predicted that the following two theories are mirror:

(2.1.2.15) TIT,V] +——— T[TV,V]

If we denote the Higgs and Coulomb branch of T[T, V] by My, , and Mc,,, then this leads to the

following identification:
(21216) Mva = MC,PV7 MC?:D = MH’p\/’

namely, the Coulomb branch defined using Borel-Moore homology of the BEN space R,y is identi-
fied as a hypertoric variety. This identification is proved in [BFN18]|, Proposition 3.18. Moreover,

since we have a short exact sequence of groups:

(2.1.2.17) 1 T y (CX)" — T —— 1

the data of a stability parameter for My ,, namely ¢ € Hom(7', C*) is in one-to-one correspondence

with a flavor parameter. There is an isomorphism:
(2.1.2.18) M, =2 ME

: ' : H7p C’p
and vice versa.

Example. Consider the case when T = C* and V = C such that the weight of V under T is 1.
The dual theory has TV =1 and VV = C. The Higgs branch for (T,V) is trivial:

(2.1.2.19) Mur,v = pt
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and so is the Coulomb branch for (TV, V) since the Borel-Moore homology of a vector space is
trivial. On the other hand, from Theorem we can compute the Coulomb branch of (T, V). It

is generated over Sym(t*) = C[E] by r! and r~=! with relation:
(2.1.2.20) rir ! = E.

In the meanwhile, the Higgs branch of (TV,VV) is simply T*C, whose algebra of functions is C[z, y].

We can identify the two via identifying ' with  and r— with y, and E is identified with xy.

The advantage of the isomorphism as in equation is that one can pass from one
description to another when studying the properties of these spaces. For example, if one would
like to study the Poisson geometry of M, it is easier to go to the equivalent space My since
the Higgs branch is defined by Hamiltonian reduction. On the other hand, if one would like to
study the quantization of My, then one can move to the description of M, and consider the
C*-equivariant homology, where the C* acts by loop rotation z — ¢z. This coincides with the
canonical quantization of My under mirror symmetry. Moreover, one can then construct modules
of the quantization by constructing Borel-Moore homology of spaces with an action of Rq,1y. This
is the BEN Springer theory [HKW20], which is analogous to the usual Springer theory.

In terms of the category of line operators, 3d mirror symmetry would imply an equivalence of

braided tensor categories:
(2.1.2.21) LA[G, V] ~ Lp[GY, VY], LG, V]~ LA[GY,VY].

The isomorphisms from equation (2.1.2.12)) is then a consequence of the equivalence of the category
of line operators. In this thesis, we focus on G = T a torus with a representation V' defined by a
charge matrix p. Denote by L4, and Lp , the corresponding category of line operators, we would

like to define them as braided tensor cateogries and prove equivalences:
(2.1.2.22) ﬁA’pﬁﬁB’pv, LB ﬁﬁA,pV-

Many mathematically rigorous approaches exist for the definition of this category of line op-

erators. In [HR22], the authors rigorously defined the categories for abelian gauge theories, and
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proved mirror symmetry statement as an equivalence of derived categories. A more combina-
torial approach of the A side categories was worked out in [Web19, Web22|, directly inspired
by [DGGH20,BFN18§|. This combinatorial approach was used in [Web16| to understand mirror
symmetry from the point of view of symplectic duality [BPW16, BLPW16|. A similar con-
struction was contained in [HKW20]. The B side categories can be defined by viewing the B
twist as a Rozansky-Witten theory on the stack 7*(V/G), which leads to the category of coherent
sheaves on Poisson varieties Mg gy and M%@V, whose Eo structure is related to the Poisson
geometry of the Higgs branch [KRS09, KR10, BZFN10,[RW10, Riel9|. Recently, the work
of [GHMG22,|GH22| used a 2-categorical approach to derive both the A and B side categories
for abelian gauge theories.

The approach using combinatorics [Web19,Web22| is easy to work with, but lacks braided
tensor structure. The approach using derived geometry [KRS09,BZFN10, RW10, GH22| gives
an 9 structure, but it is very abstract and difficult to work with. The de-Rham approach of [HR22]
is very impressive and most directly relates to [DGGH20|, but it is unlikely any Ey structure exists
in this context. In the following, we will describe an algebraic approach to this problem for abelian
gauge theories, where both the categorical content and braided tensor structure can be expressed

explicitly. We hope to compare this approach to other approaches in a future work.

2.1.3. Boundary Conditions and VOA. The approach we will take for this problem uses
holomorphic boundary conditions of [CG19]. In this work, the authors defined boundary conditions
of 3d N' = 4 gauge theories that are compatible with the topological A and B twists, such that the
twisted theory on the boundary is holomorphic. In this case, local operators on the boundary form
a vertex operator algebra. The work of [CG19| then partially analyzed these boundary VOAs, and
in [CCG19], they were used to derive the Higgs and Coulomb branch algebras.

For a 3d N/ = 4 gauge theory defined by G and V, [CG19] considered two types of boundary

conditions, one compatible with each twist.

(1) There is a Neumann-like boundary condition N which can be deformed to be compatible
with the bulk A twist. In order to cancel a boundary gauge anomaly, the Neumann
boundary condition must be enriched with extra boundary matter. There may be multiple
ways to do this One canonical choice is to add 2d complex, chiral fermions transforming
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in the representation V. The corresponding boundary VOA for the A-twisted 74[G, V] is
then described as the BRST reduction of a beta-gamma system valued in V' tensored with

a V-valued bc system. Schematically,

(2.1.3.1) Vév = Higsr (8, (B7)v @ (be)v) = H*((B7)v @ (be)y © (be)g, @BrsT) -

(2) There is a Dirichlet-like boundary condition D which can be deformed to be compatible
with the topological B twist. The corresponding VOA has a perturbative description as
an affine Kac-Moody algebra

—

(2.1.3.2) VT = gow

based on a Lie superalgebra gg v whose even part is 7*g and whose odd part is 7*V'. There
is no boundary gauge anomaly to worry about, since the Dirichlet boundary condition
breaks gauge symmetry to a global symmetry. There is instead a boundary ’t Hooft
anomaly [DGP18]|, which plays a role in determining the level of the Kac-Moody algebra
(2.1.3.2)) (see [Gar22] for a derivation).

This description is only perturbative, because it does not take into account the con-
tribution of boundary monopole operators. It is still not known how monopole operators
modify the boundary VOA in general, but in the case of abelian gauge theories, we will
show that it amounts to a simple current extension of the affine Lie superalgebra gg v .
We will justify this by comparing the index of the extended VOA with the index formula
found in [DGP18].

As stated in the introduction, a boundary condition of this form gives rise to a functor:

(2.1.3.3) Fi : £ — D°(Vg-Mod).

This basic setup arises in Chern-Simons theory, with a holomorphic boundary condition sup-
porting the WZW VOA [Wit89, EMSS89|. In that case, the functor (2.1.3.3) is known to be an
equivalence of braided tensor categories. (Moreover, since the categories involved are semisimple,

it is not necessary to take the derived category on the RHS.)
27



It is expected that the holomorphic boundary conditions of [CG19| in 3d A = 4 gauge theories
are also rich enough for the functor to be an equivalence. However, making sense of such
a statement requires being more precise about what models of bulk line operator categories one
intends to consider, as well as what categories of VOA modules one intends to consider. In the
following sections, we will specify the later, namely, we will define the vertex operator algebra
explicitly and define a category of modules for the boundary VOA which will have the structure
of a braided tensor category via intertwining operators. We will give a quick comment on what
physical line operators the objects in this category corresponds to, thus partially justifying our
definition using boundary VOAs. We will justify our definition further by showing that the derived
endomorphisms of objects in this category correctly reproduces the Higgs and Coulomb branch
algebras.

2.1.3.1. Braided Tensor Categories from VOA Representations. Let us begin by recalling the
definition of a vertex algebra [FBZ04]. A vertex algebra is a %Z—graded (called conformal grading)

vector space V together with the following set of data:
o A wacuum vector Q € V.
e A state-operator correspondence Y : V ® V' — V((z)) that respects conformal grading.
e A translation operator T : V — V of degree 1.
that satisfies the following conditions:
(1) The vacuum acts as identity Y (€, z)v = v.

(2) Locality condition, which is the statement that for vy, v, v3 € V, the series:
(2.1.3.4) Y (v1,2)Y (v2, w)vs — Y (v2, w)Y (v1, 2)v3

is a linear combination of derivatives of §(z — w). Alternatively, this is usually expressed

in terms of operator product expansion (OPE):

Y (up, w)

(2.1.3.5) Y (v1,2)Y (vg,w) ~ Y Goor

n>—N

(3) The translation operator 1" acts as derivatives on Y

(2.1.3.6) [T,Y (v1,2)|ve = 0,Y (v1, 2)va.
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A vertex algebra is a wvertex operator algebra (VOA) if it has a conformal element w € V,
such that ¢dzY (w,z) is the translation operator T and § dzzY (w, z) acts as multiplication by
conformal grading. Here and in what follows, the notation § dzA(z) of a formal Laurent series
A(z) = > Apz~ 1 is equal to the residue Res,—gA(z) = Ag. We usually denote Y (w, z) by L(z).

This in particular means the following OPE:

N deg(v)v(w) N ov(w) N

(2.1.3.7) L(z)v(w) 5

(z —w) z—w

where deg(v) is the conformal degree of v.

Let V be a VOA. A module (usually called a generalized module) of V is a vector space M
together with a map Yy : VM — M((2)) that satisfies locality with Y and compatibility condition
with the action of Ly and L_;. We will not repeat it here. A more down-to-earth way to think
about this is as follows. Given a VOA V, one can define an algebra U(V') called the universal
enveloping algebra of V', that is generated by Fourier modes of Y (v, z) (namely v,, € End(V') such
that Y (v,2) = Y v,27""1) whose commutation relation is determined by the OPE (see [FBZ04]
for details). One can show that a module of the VOA is the same as a smooth module of the
algebra U(V'), where by smooth we mean that for every m € M there eixsts N € N such that the
larger than N Fourier modes act trivially on m.

Let V be a VOA and C be an abelian category of generalized modules of V. By the work
of Huang-Lepowsky-Zhang [HLZ14, HLZ10a, HLZ10b, HLZ10c, HLZ10d, HLZ10e, HLZ114a,
HLZ11b|, summarized nicely in [ALSW21], that under certain conditions on V" and C, there is a
“tensor-product” structure on C, where tensor product of two modules is defined as the universal
object of logarithmic intertwining operators. A logarithmic intertwining operator from M ® N to

P is a map:
(2.1.3.8) YV:M®N — P{z}[log z],

where P{z}[log 2] is the space of formal series of the form » ¢ ¢ pst2~ 5" tlog(z)!, such that Y
satisfies roughly the same set of properties as the state-operator correspondence Y. The logarithmic
terms are usually a sign that the category of modules of V' is non-semisimple, and the action of

the conformal element Lo has Jordan blocks. The fusion product M xy N is a (unique, if exists)
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module of V', together with a universal intertwining operator ) : M @ N — M ®y N{z}[log z] such
that for any logarithmic intertwiner as above, there is a module map M xy N — P such that the

diagram commutes:

M®N —— M xy N{z}[log ]

(2.1.3.9) \ l

P{z}[log 2]

The following is an important theorem of HLZ regarding the braided tensor category structure

from intertwining operators.

THEOREM 2.1.8 (See Proposition 2.1 of [ALSW21]|). Let V' be a VOA and C be an abelian

category of modules of V' containing V. Suppose the following conditions hold:

(1) For any two objects M, N in C, a universal object M Xy N exists in C, with intertwining
operator Yy, N -
(2) For any three objects M, N and P, the following two expressions converge in |z1| > |zo| >

’21 — 2:2‘ >0
(2.1.3.10) Y Nxyp(m, z1)YN.p(n, 22)p, Yrixy NP (VN (m, 21 — 22)n, 22)p

regardless of the choice of branch-cuts for log(z1),log(z2) in the completion of (M Xy
N) xy P and M xy (N xy P) respectively, and either one of them can be extended to the

domain of the other.
Then C has the structure of a braided tensor category, such that:

e The vacuum module V is the unit object, and M xy N is the monoidal product.
o The braiding is given by the map cyyn : M Xy N — N xy M induced from the following

correspondence of intertwining operators:
(2.1.3.11) V(m, 2)n — Y'(n,z)m = eL-1Y(m, e 2)n.

e There is a twist given by § = e*™Lo,
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e The associativity morphism is given by a uniquely defined Aﬁf, p such that:
(2.1.3.12) Aﬁ}[’j\%pyM,NxVP(m, 21)VN,p(1, 22)p = Yvrxy N, (Vs n (M, 21 — 22)1, 22)p.

In general, it is very hard to verify that a category C satisfies the above two properties. However,
many stronger properties have been established such that if a category of VOA modules satisfies
them then it satisfies the properties of HLZ. We mention the following criterion from |[CY 21|, that

is relevant for the discussion of this paper.

THEOREM 2.1.9 (See [CY21| Theorem 3.3.4). Let C the category of generalized modules of V
that are of finite length. Assume that:
(1) Ewvery object in C is C1 co-finite (see [CY21], Definition 2.1.5).
(2) C is closed under taking restricted-dual (see [CY21], Remark 2.1.3 and the following

discussions).

Then C has the structure of a braided tensor category.

This is a powerful theorem that ensures a large class of VOA representation theories have the
structure of braided tensor categories. This will include the affine Lie superalgebra V(g.(p)) that
we will introduce in Chapter [3, However, in practice, especially in the applications considered in
this thesis, the category C will not satisfy the above, especially the first item. To resolve this issue,
we will use the idea of vertex operator algebra extensions [CKM17,CMY22a|. We will recall the
idea in Chapter Roughly speaking, in many cases, the VOA V contains a subVOA W whose
category of modules satisfies the above properties and therefore has the structure of a BTC. If we
can realize V' as an algebra object in the category W —Mod, then we obtain a category of modules
of V', namely V—Mod(W—Maod), that has the structure of a braided tensor category. We will apply

this on V4 , and Vp ,, and use this VOA machinery to define BTC of line operators.

2.2. 4d N = 2 Theories, Poisson Vertex Algebra and the Category of Line Operators

2.2.1. 4d N = 2 Theories and K-theoretic Coulomb Branch. Let G be a reductive Lie
group and V a finite-dimensional representation of G. Associated to this data is a 4 dimensional

N =2 theory TG, V]. In [Kap06a], the author introduced a holomorphic-topological (HT) twist,
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which requires spacetime to locally take the form R? x C, and depends topologically on R? and
holomorphically on C. The twisted theory Ty |G, V] can be further deformed to a fully topological
A twist (also called the Donaldson twist). This theory is closely related to the 3d ANV = 4 theory
T|G, V] through dimensional-reduction, which we will give a quick comment later.

The theory Tyr[G, V] has many beautiful connections to mathematics, including representation
theory of affine algebras, topology, integrable systems and enumerative geometry. In this thesis,
we focus on the aspect of representation theory. The space of vacua of the HT twist of Tgr[G, V]
is known mathematically as the K-theoretic Coulomb branch, an object defined very similarly to
the Coulomb branch M¢ ¢ v, and studied in [BFMO05,BFN19,CW19,[FT19] and many others.
As the nomenclature suggests, the K-theoretic Coulomb branch Mc g,y is defined as the G(O)-
equivariant K theory of Rg . More precisely, let R, v,m» and Gj, be as in Section@ which are
finite-dimensional derived schemes and finite type affine group schemes. Denote by Kq, (Ra,v,m.n)
the vector space of Ky group of the category of coherent sheaves Coh(Rg,v,mn/Gr). Since the
maps connecting the spaces R, v,m,n are flat morphisms or closed embeddings, the corresponding
maps (pullback for m, push-forward for n, and restriction functor for k) all preserves coherence
and are in fact exact. One obtain the K group K¢ (o) (Ra,v) as the colimit:

(2.2.1.1) Koy (Rav) = hg Ka,(Ravmn)-

mnk
The same convolution diagram in equation can be applied to Kg(0)(Ra,v), giving the
K group Kg(o) (Re,v) the structure of a commutative algebra. The K-theoretic Coulomb branch

Mc q,v is defined as the spectrum of this ring:
(2.2.1.2) C[Ma@y] = KG(O) (RG7\/).

This variety as a Kdhler manifold was first studied in [SW94] and goes under the name of “Seiberg-
Witten curve”, and the algebraic formulation above uses a specific complex structure compatible
with the HT twist. The Coulomb branch M¢ ¢y admits a family of deformation by considering the
C*-equivariant K theory .Aqu = Kg(o)xcx (Re,v), where ¢ is the parameter keeping track of C*-

equivariance. These are associative algebras and when g = 1, the algebra AqG vlg=1 is commutative

32



and is C[M¢ g, v]. The deformation to Aqu corresponds to, in physical languages, turning on the
symmetry for the rotation in the complex plane.
When G =T is a torus and V = 0, the ring .AqG,V = A%O is easy to describe. It is generated

by D;t and A?E for 1 <4 < dim(7T) with commtuation relation:
(2213) DZAJ = qéijAjDZ'.

This is called the algebra of abelian difference operators. Here Dii corresponds to structure sheaf
of the T'(O) orbits in T(K)/T(O) which are labelled by co-characters Hom(C*,T'), and A; are
characters of T', labelling representations of 7. When ¢ = 1, the above becomes commutative and
the algebra A%’O /(q — 1) is the algebra of functions on the variety T' x TV, where TV is the dual
group of T'. Note that in this case the Coulomb branch for the 3d theory Mc¢ 7 is the variety
tx TV =T*(T"). The algebra A7 is thus a universal deformation of the Poisson variety 7' x T".
When G is a reductive Lie group and 7" the maximal torus, just like the case of M¢ gy, there is
a localization map:

(2.2.1.4) ALy — (A%,)

loc

where (-’43‘,0)

e is the localization of .AqT70 along root hyperplanes of G. This in particular implies
that .Aqu /(¢ — 1) is commutative. For classical groups, the map above is explicitly described
in [FT19].

For a general reductive group G, the non-commutative ring AqG’V is called a shifted affine
Yangian, whose representation theory is closely related to representations of quantum groups and
affine Lie algebras. Just as in the case of 3d Coulomb branch, one can construct modules of .AqG,V
by constructing spaces with an action by the convolution space G(O) \ R¢,v. This is an analog of

BFN Springer theory [HKW20] in the K-theory setting. We hope to exploit this more in future

works.

2.2.2. Poisson Vertex Algebra and Line Operators. Let Opsgy denote the space of

local operators in the HT twist Tyr[G,V]. It is physically defined as the cohomology of the
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HT supercharge acting on the full space of local operators in the untwisted theory. It has a Z-

valued cohomological grading ‘F’, and an additional non-cohomological %Z—valued grading ‘J’,

corresponding to rotation in the holomorphic plane (mixed with an SU(2) R-symmetry). This

space has been well studied from other perspectives. In particular:

(2.2.2.1)

(2.2.2.2)

Its graded Euler character is the “Schur index” of Tq v,

Xq OpSG,V = TrOpsG,V(_l)FqJ = ISchur[TG’,V] .

The Schur index, introduced in [GRR 11, GRRY 13|, is a particular specialization of the
4d N = 2 superconformal index [KMMRO7, R6mO06[; though it makes sense even when
a 4d N = 2 theory is not conformal. Here and what follows, we will use ¢ as a formal
variable counting the weight of the loop rotation.

The space Opsg y itself is the vacuum module of a Poisson vertex algebra Vg y. This
Poisson vertex algebra was constructed for general 4d N' = 2 theories from a more physical
perspective by Oh and Yagi [OY20|, and from a mathematical perspective by Dylan
Butson [But21], as a BRST reduction of classical beta-gamma algebras valued in TV
When Tg v is superconformal — meaning quadratic indices satisfy Co(N) = Ca(g) — the
vertex algebra can be further quantized by introducing an Omega background, yielding a
VOA ng. These VOA'’s were first introduced in superconformal theories by Beem-Lemos-
Liendo-Peelaers-Rastelli-Rees [BLL™15|. However, the work of [BLL™"15| did not define
this vertex algebra from the point of view of local operators in T,1,. The fact that the two
pictures coincide is a nontrivial result, and can be explained using a ” cigar-like” reduction.
This is explained in [OY19] and [Jeol9] from a physical perspective and [But21] from
a mathematical perspective. This deformation does not alter the underlying vector space

of the vacuum module, so

h
Opsgv = Vav =V -

34



In essence, the Poisson vertex algebra Vg v is the algebra of functions on the jet space Joo (T*(V/G)),

and the Poisson structure of the jet space induces the Poisson structure on Vg . The relation be-
tween this Poisson vertex algebra and the Poisson geometry of T*V/G is explained by the “cigar-
reduction” mentioned above: that the cigar reduction of Tyr|[G, V] is Tyr|[G, V] with the Neumann
boundary condition, and that under the HT twist, the space of boundary local operators is the
Poisson vertex algebra of Jo(T*(V/G)). This is of course non-rigorous mathematically as it is diffi-
cult to analyze the jet space Jo(T*(V/G)). Nevertheless, these relations between physical theories
give guidance to the study of the Poisson vertex algebra Vg v .

We would like to understand this algebra of local operators Vg y from the point of view of
the category of line operators in the HT twist of a 4d N' = 2 theory. Physically, the objects of
this category are line operators supported on a line in the topological R? plane and the origin of
the holomorphic C plane. The category contains half-BPS Wilson-’t Hooft lines, as well as more
general quarter-BPS line operators. The category was given a geometric description by Cautis and
Williams, in [CW19] for pure gauge theory (V = 0) and [CWar| for general V, following the
physical predictions of [Kap06a,Kap06b|. This category is described as the category of G(O)-
equivariant coherent sheaves on R¢, v, denoted by Coh(Go \ R v). As we have seen before, the K
theory of this category, together with its convolution product, gives the algebra of functions on the
Coulomb branch of TfIdT [G, V]. The multiplication on the K group should be the de-categorification
of a monoidal structure on Coh(Go \ R¢,v), defined again using the convolution diagram of Rq v,

such that if 1 is the tensor identity of this category, then:

(2.2.2.3) Opse,v =~ Endcon(Go\re ) (1) -

This expectation is in fact not easy to work with. It is of course not too complicated to describe
the limit of the K group as in equation , since one only concerns with the limit as a vector
space. On the other hand, if one wants to replace the entries in equation by categories:
(2.2.2.4) Coh(Go \ Rgv) == hgn Coh(Gr \ Re,vmn)

mnk
then one needs to specify in which sense the limit is taken. Over the last few decades, much effort has

been made towards using the techniques of derived algebraic geometry to rigorously define aspects
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of the physical quantum field theories, and this is one example of this. The analysis is made possible
with the invention of co-categories and derived algebraic geometry |[Lur04} Lur09|. This is not
a work in which we could give the full definitions of a oco-category and algebraic geometry in this
context, and we are nowhere close to being an expert at this subject. We will simply comment
that the rough idea of oco-category as in |Lur09] is to view a category with all the higher data
(functors and natural transformations, etc.) as a topological space built out of simplices. Objects
are understood as points, morphisms as lines (1-simplex), natural transformation of morphisms as
triangles (2-simplex) and so on. Then a functor between infinity categories is simply a functor
between these simplices, and a continuous functor is a functor that is continuous as a map between
spaces. In this context, one can simply define the limit of categories as limit of spaces, thus
encompassing all the higher structures in one go. Limit in this sense behave much better than the
limit of triangulated categories or abelian categories. One can recover the abelian or triangulated
category by taking the heart with respect to a t structure.

The space R,y and the quotient G(O)\ Rg,v are examples of DG ind-schemes: namely stacks
that can be represented by a colimit of schemes. Using derived geometry, one can define the category
of sheaves as a colimit. The structure of a DG indscheme and its category of sheaves are studied
in [GR14,|GR19, GR17| for locally almost finite type, and [Ras20| in general. In Chapter
we will use the machinery of [GR14,GR19,GR17,Ras20] to define the category of ind-coherent
sheaves on R¢ v /G(O). The monoidal structure is carefully defined in [CW19,|CWar]|, which will
indicates to us the identity object 1 in Coh(G(O) \ R¢g,v). We will then compute explicitly the
space Endcon(go\Re 1) (1) and show that it coincides with Vg v as a commutative algebra.

In [But21], the author showed that the category of line operators in HT twist has the structure
of a factorization Eq-category ( [But21, Section 5.11]). This structure should give rise to the
structure of an Eg factorization algebra to Opsg y, which is the aforementioned Poisson vertex
algebra structure. We hope that the explicit computation done in this thesis, together with the
procedure outlined in [But21] can help rigorously produce factorization algebras from the category

of line operators.

2.2.3. Line Operators and Schur Index. The relation between local operators and line

operators goes beyond the unit object in Coh(G(O) \ Rq,v). It is expected that for any pair of
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objects Ly, Ly in Coh(G(O) \ Rg,v), there is a graded vector space Homg, |, /g(0)(L1, L2), graded
by F' and J with finite-dimensional graded pieces, that is quasi-isomorphic to the space of local

operators at the junction between the two line operators L; and Ls. Namely, we expect:

(2.2.3.1) OpSG,V (Ll, Lg) = Hong,v/G((’)) (Ll, Lz)

such that the natural morphism Homp,, |, /(o) (L1, L2)®Homz, |, /q(0) (L2, Ls) — Homp,, |, /a(0)(L1, L3)
corresponds to collision of line operators Ops¢ v (L1, L2) ® Opsg v (L2, L3) — Opsg v (L1, L3).
Although the space of local operators Ops¢ v (L1, L2) is generally not known, physicists have
computed its graded Euler character using supersymmetric localization technique [CGS16]|. More
specifically, let G be a reductive Lie group with maximal torus T. As we have seen, there is a
localization map Kgoyucx (Ra,v) — Kpo)yxcx (Grr)iee, which is an algebra embedding. Recall
here subscript “loc” denotes the localization along root hyperplanes. The idea of the computation
in [CGS16] is that there exists a specific function I1(q, s, m) called the half indez, which is a formal
series in ¢ and s that depends on m, where s is a coordinate on T and m is a co-character of T.
Moreover, the localized ring Kp(o)xcx (Gr7)i0c, and therefore K¢ o)xcx (Ra,v), acts on I(g, s,m)
as abelian difference operators. Using this action, one obtain a half index of a line operator L as
(LIT)(q,s,m). The defect Schur index, namely the graded Euler character of Opsg y (L1, L2), is

computed as follows:

(2232) Xq(le L2) = T‘rOpsG7V(L1,L2)(_1)FqJ = Z /T[ds}m(LIH)(q: S, _m)(LQH)(qa S, m)

Here on the RHS, the integral measure [ds],, is a certain shifted Haar measure w.r.t the co-character
m. Unfortunately the mathematical origin of this formula is unknown to the author, we therefore
leave the precise definition of the above formula, as well as its mathematical explanation, to a
future work. In the present work however, we apply the method that we developed to a special
class of line operators.

More specifically, when G is semi-simple, the affine grassmannian Grg is reduced, and its
connected components are labelled by the miniscule dominant coweights of G (see Section for
more details). For each miniscule co-weight u, the connected component Gr’é has a unique closed
smooth G(O) orbit, which we denote by Grg,,. This is called the miniscule orbit corresponding
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to p. The method developed in this thesis allows us to compute Hom(L1, Lo) when L; and Ly are
vector bundles over the miniscule orbit Grg,. In Section we will focus on the case when
G = PSL(2) and p the unique non-zero miniscule orbit, and compute the Hom space Hom(Lq, Ls)

for specific line bundles L; and Ly. We compare our results to the results of [CGS16|.
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CHAPTER 3

From Vertex Operator Algebra to Geometry of Branches in 3d
N = 4 Abelian Gauge Theories

In this chapter, we study the category of line operators for A and B twist of 3d A/ = 4 abelian
gauge theories, using boundary VOA approach. For a charge matrix p : Z" — Z™ which we assume
throughout to induce a short exact sequence as in equation . We will denote by 7, the 3d
N = 4 theory T[T, V] defined by p, and by Ta, and Tp, the topological twists. The structure of

this chapter is as follows:

e In Section we give mathematically-rigorous definition of V4 , and Vg ,, and provide
free-field realizations of them, i.e., embeddings of these VOAs into lattice VOAs. We also
define Morita-equivalent VOAs 17,47,) and 17va. We prove the isomorphism V4 , = Vp ,v
and VA,p = 1~/vav which is the mirror symmetry statement for the boundary VOAs.

e In Section we give a definition of abelian categories C4 , and Cp , which are full sub-
categories of generalized modules of V4 , and Vg ,. We show that they have the structure
of braided tensor categories with exact fusion. The bounded derived category D°C A,p and
DC B,p are proposed as the category of line operators for T4 , and Tp , respectively. We
prove an equivalence of BTC C4, ~ Cp ,v, which is the mirror symmetry statement for
the category of line operators. We also derive a quantum group U,(g«(p)) whose rep-
resentation theory is equivalent to Cp, as an abelian category, and conjecture that this
equivalence upgrades to the equivalence of BTCs.

e In Section we show that derived extension group in D’C B,p correctly reproduces the
space My ,, and that the resolution of qu , can be constructed in D°C B,p by choosing
an algebra object determined by {. We show that the VOA Vp , admit a h-adic version

Vg , which is naturally a sheaf over the stack pw=1(0)/T where p : T*V — t* is the moment
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map. We show that the localization of Vg p to M% p is the affine Lie algebra associated

to the shifted tangent Lie algebra of ./\/l% o

3.1. Vertex Operator Algebra on the Boundary of Twisted Abelian Gauge Theories

3.1.1. Charge Lattice and its Decompositions. This section serves a technical purpose
for the study of these boundary VOAs. Denote now by A the sublattice of Z™ defined by the image
of p. As in equation ([2.1.2.14)), we will assume that p is faithful, namely there exists 7 : Z"" — Z"

such that the following is a short exact sequence:

(3.1.1.1) 0 7Lz Tzt —— 0

We denote by p¥ = 77. Since p'p may not be invertible over Z, A may not have an orthogonal
complement. The orthogonal set of A in Z", which we denote by AL, is simply Im(p"), since the

matrix (p, p") is full rank. The sublattice
(3.1.1.2) Ao At

is full rank in Z" and therefore the quotient Z"/(A @ A') is torsion with index (or cardinality)
det(pTp). Denote by A’ the linear dual of A, which is defined as the Z submodule of A ®7 Q that

has integer inner product with A. Similarly, we can define (A+)’. By orthogonality, we can write:

(3.1.1.3) Q' =A2zQPH A ®2Q.
This will give us natural maps:
(3.1.1.4) Zr — N, 7" — (A

given by orthogonal projections. We will denote the projection maps as Q valued matrices II :
Z" — Q" and IIV : Z™ — Q™" such that plI is the projection onto A and p"IIV is the projection

onto AV. These matrices will satisfy:

(3.1.1.5) p =1d,, IVpY =1d,_,, pY =11Yp = 0, pll + pVIIY = Id,,.
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One can write IT = p(pTp)~' and IV = 77 (777)~L. Since Z" is self dual, the above maps induce
isomorphisms:
(3.1.1.6) N =7m/(AY), Z'/A = (ALY,

This leads to the isomorphisms:

(3.1.1.7) AN/A=Z0 (A e AY) =AY /(AY).
We denote the above quotient group by H. The natural embedding;:
(3.1.1.8) Zr — N o) cqQr

maps Z" to the subgroup of A’ @ (A+)" whose image under the quotient by A @ A+ lives in the

diagonal subgroup H. Namely, we have the following base-change diagram:

7" —— H

(3.1.1.9) l JA

AeAt — S Na@y 2 Hen

This leads to the following decomposition of Z":

(3.1.1.10) AR U A+ A1)
XeA, Me(ALy
A=AleH

When considering gauging operations, we will repeatedly use equation (3.1.1.10]) to decompose and
simplify the lattice VOA.

Example. Consider the case:
(3.1.1.11) p=

Namely the gauge group is U(1) and the representation is C? with weight 1,1. In this case, p" is

given by (1,—1)T. The lattice A’ is generated by %p while the lattice (A1)’ is generated by %pv,
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and H = Zy. For any element v = (a,b)" € Z2, we can write:

11 11
(3.1.1.12) v=a(zp+ =p”’) + b(5p - —pY) =

a+b +a—b v
2 2 2 '

2 Py

Notice that “T‘H’ and ‘IT_Z’ differ by an integer, so they descend to the same element in H = Zo.

We will use this to decompose a Fock module of a Heisenberg VOA into tensor products of
Fock modules of Heisenberg subVOAs. Let us exhibit an example here to illustrate the point.
Given lattices A and A+ as above, defined by matrices p and pV. Let Hy be the Heisenberg VOA
generated by d¢' with OPE:

8%
(z —w)*

(3.1.1.13) 09" (2)0¢/ (w) ~

It is clear that the Heisenberg VOA H, decomposes nicely (using the short-exact sequence in

equation (2.1.2.14])):
(31114) Hy :HpT¢®HT¢.

Here we will understand H,r4 as the Heisenberg VOA generated by 3 pia0¢t. Similarly for H.y.
Given X\ € Z", if we rewrite A = pu + p' where u € A’ and pu € AL, then the Fock module Fro

admits a similar decomposition into modules of the Heisenberg subVOAs:
(3.1.1.15) }—)\-¢>:~’ru-¢®fui~¢-

Here we understand F,.; as the Fock module of Hr,. Technically speaking, we should write S it
as > fiqapi®®’ and write Fr,p7e as the Fock module. We write p - ¢ for simplicity.
We will also use the following splitting of the exact sequence (2.1.2.14)):

(3.1.1.16) 0 sz &= n s 77 — 50
P T

namely we choose matrices p such that 7p = Id,_,, and choose the co-splitting 7. Note that this

is always possible over Z. More concretely, such splitting means that the matrix:

(3.1.1.17) (o ‘ 5 )
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is invertible with inverse:

N

(3.1.1.18)

In other words, the following equations are satisfied:
(3.1.1.19) T-p=0,7-p=1d,, 7T-p=0, 7-p=1dy_,.

Consequently p7+p7r = Id,,. This will be used in the following sections to perform field redefinitions

in order to identify different free field realizations.

3.1.2. The A Side Boundary VOA.

3.1.2.1. Definition of A Side Boundary VOA. As we have stated in Section the VOA
living on the Neumann boundary condition is the BRST reduction of symplectic bosons. We will
use the relative BRST cohomology introduced in Appendix [A]

More specifically, consider n copies of symplectic bosons, also known as the Sy VOA:
(3.1.2.1) 4548
This has gl(1)” symmetry generated by the currents:
(3.1.2.2) — B 1<i<n.

Neumann boundary conditions for the vector multiplets will introduce ghosts valued in the Lie
algebra gl(1)" together with a BRST operator that gauges the following subset of currents, which

are generators of the gl(1)" action on the symplectic bosons:
(3.1.2.3) Th="—pia: By
7

However, this BRST operation will not be correct because the gl(1)" currents have nonzero anomaly
[CDG20]. This is reflected in the fact that the gl(1)" currents J, satisfy the relation of an affine
Kac-Moody algebra of gl(1) at level — 3, piap's:

/ / -2 ﬂmpib
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The computation of the boundary anomaly for general Lie group was listed in [CDG20|. These
are simply the matrix elements of —p'p. In order to cancel this anomaly, we need to couple this
VOA with a boundary CFT with level given by the opposite of the above anomaly [CDG20|. To

do so, we first tensor Vﬁan with a set of bc ghosts:

(3.1.2.5) Vi@ vian.

This VOA now has gl(1)?® symmetry, whose currents are given by:

(3.1.2.6) — B, bich.

Instead of the J/, we will consider the gl(1)" currents given by:

(3.1.2.7) Jo =Y pia (=7 4:00c), 1<i<r
i

This gl(1)" action will be anomaly free, which is reflected by the fact that .J; satisfy the relation of
an affine Kac-Moody at level 0. We can now consider the Neumann boundary condition for vector
multiplets, which introduces another set of bc ghosts valued in the Lie algebra gl(1)" (whose fields
are denoted by b* and ¢?):

(3.1.2.8) Vet eVt e Ve
with a BRST differential given by:

(3.1.2.9) QBRsT = Z%dz A J,.

Q? = 0 since now the JJ OPE is trivial. We now arrive at the boundary VOA for the A twist as
suggested in [CG19|:

DEFINITION 3.1.1. The boundary VOA on a Neumann boundary condition in Ta,, is defined

by:

rel
(3.1.2.10) Va, = Hprsr (g[(l)T, Vet V,,‘?") =H" ((Vﬁn VI ® V,,‘?’“) ,QBRST) :

44



REMARK 3.1.2. One can obtain a conformal element for Va, by starting with a conformal
element |w) in the BRST complex such that the conformal degree of ¢* is 0 and that wicfJ, —1]|0) = 0.

In that case, we have:
QY (w,w) = Z}Igd(z —w)e(2)Jo(2)Y (w,w) = Z}I{d(z —w)Y (w,w)c*(2)Jq(2)
5 fut- D, b0,

w)? w—z

(3.1.2.11)

Thus the class of |w) in the cohomology is a conformal element.

3.1.2.2. Free Field Realization of V4 ,. In this section, we will derive a free field realization of
Va,p, which is an embedding of Vy , into a lattice VOA. To begin with, let us consider the following
free field realization of the symplectic boson VOA Vs, [AW22|. Let Hy be the Heisenberg VOA
generated by d¢ for 1 < i < n with OPE:

5

(3.1.2.12) 09" (2)0¢/ (w) ~

Similarly, let H, be the Heisenberg VOA generated by dv* for 1 <i < n with OPE:

U
5

(2 —w)

(3.1.2.13) 0P ()04 (w) ~

Consider the lattice VOA extension Vy, of Hy ® Hy by the lattice L spanned by |¢? 4 ¢%). There

is an embedding VB‘%" — V1, given by:
(3.1.2.14) Bi(z) s 1e?' )T, Vi(2) 5 —: 8¢ (z)e ¢ YR

For each linear combination p = ) a;¢" + bj)* where a; — b; € Z for all i, the Fock module F of
Hy ® Hy can be lifted to a module of Vi, which we call Vy, ,. When a; € Z, we define operator
S": Vi = Vi e by:

(3.1.2.15) St = j{dz:exp (¢'(2)):
It is well-known that the following is true:

(3.1.2.16) VEr = (] Ker(S': VL — Vig).

1<i<n
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Let us use the notation of Fock modules to express Vﬁ%". For each vector of integers A = (A1,..., An),
we denote by Fy.4 the Fock module coresponding to ) \;¢'. Similarly we denote by F. A the Fock

module coresponding to > A;1b*. The module:

(3.1.2.17) [Ker (S": Frg = Frgpior)

K3
will be denoted by M).5. One can quickly recognizes that this is a simple module of the singlet
VOA M (2)®" and is simply given by:

(3.1.2.18) My = ®MAZ..
[

PROPOSITION 3.1.3. The VOA Vg?;" is a simple current extension of M(2)*" ® Hy, and de-

composes as:

(3.1.2.19) Vet = P May @ Fay.
AEZ™

One can write explicitly how currents from both sides correspond to each other. We will write

some of them out:

i i i Lo i Lo 1 Qa0 Lo i
(3.1.2.20) —: B = O, —:ﬂf)’y:»—>§:a¢)8¢:—§8¢ —§:3¢8¢:+§81/1.
The conformal element we will choose will be:

1 i i
(3.1.2.21) Lgy(2) = 3 Z:aﬁm c— B,
which can be expressed in the above free field algebra as:
(3.1.2.22) L (2) L > 0409 Lorgi — L. oyiay
I /N zZ) = = . s — = - = 3.
ot 2 2 2

Let us also introduce Heisenberg VOA H 3 with OPE

5
(z —w)*

(3.1.2.23) 0¢' (2)0¢ (w) ~

The Bose-Fermi correspondence [FBZ04] gives an isomorphism of Vb@fn with the extension of
Heisenberg VOA by the complete lattice spanned by gg’ In other words, there is an isomorphism
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of VOAs:

(3.1.2.24) Vit = P Fog
AEZ™

In this correspondence, we will choose the following conformal element:
(3.1.2.25) L :12'8b-ci'+'8c~bi‘:12-8&65--
A2, be 5 :0b;c + :0c;b: 5 : il
In the BRST complex Vgi" ® Vlff” ® V,ffr, if we uses the following conformal element:
(3.1.2.26) L(2) = Ly + Lo + Y _ :9cab™,

then this is a conformal element under which the conformal degree of ¢*J, is 1 and that L;|c*J,) = 0.
Thus, L(z) descends to cohomology and is a conformal element for V4 ,.
Now we are ready to compute the BRST cohomology of VB%” ® V}f”. Using the free field

realization, we can write:

& dn _
(3.1.2.27) VEr@VEt = D Myg® Fay©F, 5.
A, peZ™

We will use the decomposition of Section to decompose the above as:

(3.1.2.28) VEreVet = @ Mpane@Fag @ Fuy®F, s0F, 3
A peN
AL,,U,LE(AL)/
A=2L=pt

In the language of the free field realizations above, the currents J, are given by:

(3.1.2.29) Ja(2) = pia(—00'(2) — 94 (2)),
and so it only acts on the part:

(3.1.2.30) Frap ®.7:u.$,
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since (A1)’ is orthogonal to A. This makes the computation of BRST cohomology straightforward
since the BRST cohomology of Fock modules are very simple (see Section [A.0.5]).

(3.1.2.31) Hprsr(gl(1)", Fay @ F,, 5) = 0xulX) @ 1),
one can compute the BRST cohomology easily:

(3.1.2.32) Hprsr(al(1)", Vi @ V") = @D Mpiaiye® Fary ®F, 1 5.
AeN
AL,MLE(AL)/
A=al=pl
Let us write this in the following way. Let V, be the extension of the Heisenberg VOA Hy ® Hry ®

HT$ by the Fock modules:
(3.1.2.33) Forgatye ® Faty ®.FMJ_'$

satisfying A € A/, A5t € (ALY and X = AL = pL. For each linear combination o = 3 0;¢'
where o € Z for all i, the Fock module Fo.¢ can be lifted to a module of V,, which we denote by

V)0.¢- The screening operators SU Vo — V,o-¢+¢i 18 defined by the same formula as in equation

B1.2.15).

THEOREM 3.1.4. There is an embedding V4 , — V, whose image is the kernel of the screening

operators:

(3.1.2.34) Va,=[)Ker (S :V, >V, ).

(2

The VOA V4 , is thus a simple current extension of the following VOA:
(3.1.2.35) M(2)*" ® Hyy ® H 3.

The VOA H is generated by 90, := 3 T0i0%" with OPE:

- Z TaiT'Bi
i

(3.1.2.36) 904(2)005(w) ~ 5

(z —w)
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and the VOA HT(; is generated by 0n,, := ZTM({)& with OPE:

Z TociTBi
i

(- w)?

(3.1.2.37) Ona(z)0ng(w) ~

To write the conformal element, we need to use the matrix II and IIV in equation (3.1.1.5)). For

each 1 < i < n, we can write:

(3.1.2.38) Y= Tt + Y (1Y) T,
a?j a’]

since pn + p'n" = Id,. Using these, we can rewrite:

(3.1.2.39) S oyiow =y TP JP )+ (V) (1Y) 00007

i7a‘7b i7a?18

here J27 = Z p;20¢7 is the generator of the U(1)" Kac-Moody algebra in V/B(%". In the cohomology,

J
the first term is @) exact, and so the remaining part of the cohomology is:
(3.1.2.40) > (@Y)¥(IY)P: 06%06” .
i’a7ﬁ
Similarly, the remaining part for H 3 is:
(3.1.2.41) > @) mY) i onon” .
i7a7ﬁ
In conclusion, the conformal element of V4 , can be written in the free field realization as:
(3.1.2.42)

1 ; 1 ;1 ; 1 ,
L(z) = 5 > :0¢'0¢i: = 50°¢" — 5 ) (L) (1) 3:00°00%: + o 3~ (1Y) (1Y) oo’
o, 8,8 o, B,

REMARK 3.1.5. There is a family of conformal elements for V4 ,, defined by adding to the above

L(z) elements of the form:

(3.1.2.43) Y mad’0% + 1,0,
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which will change the conformal degree of the Fock modules. The choice that is made here is in
conformity with physics [DGP18), so that before taking BRST cohomology, |5'| = 7| = |b| =

Ic'| = %, and [b*| = 1,|c*| =0, and so that Q has conformal degree 0.

3.1.3. The B Side Boundary VOA.

3.1.3.1. The Perturbative VOA. Let us now turn to the definition of Vg ,. Let T" be the torus
(C*)" and t its Lie algebra. In [CG19|, the authors suggested that one should start with an affine
Kac-Moody superalgebra of the Lie superalgebra g.(p) = T*[—2](t® V[—1]), and then extend by

monopole operators. More explicitly, the Lie superalgebra is the following vector space:
(3.1.3.1) 0] @ V[-1] ® V*[-1] ® t*[-2] > (N, ¥, 4>, EY)

such that the commutator [N, —| is given by the action of t on T*V defined by p, and adjoint
action on t* (which is trivial for our case), and the supercommutator between V and V* is the

moment map valued in t*[—2]. Namely, the commutation relation is given by:
(3.1.3.2) [Na, 5] = p'ap™™, {9,907} =69 " p'y B
a

To define the Kac-Moody Lie superalgebra, we need to choose an even nondegenerate bilinear
pairing and a level. There are many choices of pairings on g.(p), and for the setting of 3d N = 4
theories, such a choice is determined by bulk correlation functions, and is computed explicitly

in [Gar22|.
(3.1.3.3) K(Nay Ny) = plapiv, £(Na, B?) =00, k(g 47 7) = 6.

We fix the level k = 1, since just as for the case of g[/(1|\1) [CMY 22c|, any other choice of k # 0 gives

isomorphic vertex operator superalgebras. We denote by V j\ the resulting vertex operator
p P p g y gx(p g p
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superalgebra associated to k at level K = 1. This VOA has the following generators and OPEs:

b i
N(2)E0) ~ s, N2 Nofw) ~ (Zj’uf)’b
(3.13.4) Na(2pirt(w) ~ 2 N i () o 2

(z —w)

. A 5% 8 3,
A ()~ oy el el

(z — w)

This VOA has the following conformal element;:
1 . a. | .pa . oyt — ol — ol
(3.1.3.5) L(z) =3 (Za:.NaE 4+ E Na.—z.¢ W; '+Z'¢i¢ >

which can be constructed using a modified Sugawara construction as in [RS92], namely, it is the
quadratic Casimir associated to the bilinear form xg where ro(N,, Ep) = 8ap and ko(ypF, 95 7) =
5. The VOA V(gj(;)) is the perturbative boundary VOA of the B twisted gauge theory. As
suggested in [CG19|, one needs to take a suitable extension of V(g:\(p)) by some modules that
correspond to monopole operators on the boundary. In the following, we will introduce a free
field realization of V(g/*(\p)) and construct its extensions. We will compare their indices with the
calculation of indices in [DGP18] to identify the correct extension.

3.1.3.2. Free Field Realizations and Monopole Operators. Let us now introduce a free field

realization of V(g/*\(p)) For this, consider the Heisenberg VOA Hy y, z generated by 0.X,,0Y* for
1<a<randdZ for 1 <i<n, with OPE:

dab 0ij

1.3. X,0Y) ~ : 207 ~ —I
(3.1.3.6) 0X,0Y, 5 0L0Z~

(z —w)

Let Vz be the lattice VOA extension of Hy y,z by the lattice generated by Z. The assignment:

No = 0Xo+ Y piadZ,

7

E*— 9Y?,
(3.1.3.7) | |
¢”+(2) el

wi’_ — :ZpiaﬁYae_Zi i+ 9e= 2"
i
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defines an embedding of V(g«(p)) into the lattice VOA Vz. One can verify that the conformal

element of V(gj\(p)) is mapped to:

(3.1.3.8) % (:Z(axaaya +OYU9X,) + Z(azi)(azi) :> + %Z ( a2 — 8221-) .

a 7

For each linear combination p =3 ai M Xa+n Y +1,2 ¢ we denote by F,, the corresponding Fock

module of the Heisenberg VOA Hy y 7 generated by the vacuum vector |u), then by definition:

(3.1.3.9) Vz =P Fiz,
tezn
as a module of the Heisenberg VOA. Moreover, for each linear combination p = )" m*X, +n.Y*,

the module F, can be lifted to a module of V7, which we call Vz ,.

Let i = p— Y., p'aY® Define intertwiners S*(z) : Vz,, — Vz;((2)) by the following formula:
(3.1.3.10) Si(z) = 17 B EaplaY(2)
The screening operators are defined as the residue:

(3.1.3.11) St = fsi(z)dz

—

PROPOSITION 3.1.6. The embedding V (g«(p)) — Vz identifies the image as the kernel of the

screening operators:

(3.1.3.12) V(g.(p)) = [\ Ker (Si Ve = Vs s piaya(z)) .

—

PROOF. First of all, the map V(g«(p)) — Vz is clearly contained in the kernel of S* for all i.
We will show in Appendix |Bfthat V(g/*(\p)) is simple, and therefore this is an embedding. To show

that this is an isomorphism, we will compare indices:

(3.1.3.13) Tr <H séva‘oq%) .
a

Here s* and ¢ are formal variables. This index is clearly positive and so if both sides have the same

index, then they are isomorphic as vector spaces.
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One can easily compute the index of V(g«(p)):

H (_q ]._[a ngaa —q Ha S;p’a; Q)oo
(3.1.3.14) =1

(¢:9)3%
Here the Pochhammer symbols (a,b;q)oc means (a;q)oo(b;q)oo. To compute the symbol of the

kernel of S?, we note that the mode algebra U(Vy) of Vz is a filtered algebra by assigning
(3.1.3.15) FnU(Vz) = Span{@a, k, - Tapn kyYsZs }-

Here the z, . (y; and 2§, resp.) are the modes of X, (z) (Y*(z) and Z*(z), resp.). The associated

graded:
(3.1.3.16) Gr, FU(Vz) = Claas, yi] @ U(V;E").

Here the Fourier modes of X, and 9Y* are set to be commutative, and U (Vb‘?") is the mode
algebra of n-copies of Vj.. For each p = > m,Y“, the module Vz,u as an U(Vz) module is also

filtered with a similar filtration. In the associated graded, we have:
(3.1.3.17) Gr.FVy, = Gr,.FVy = Clza g, Yilko ® VE",

and it is clear that the natural map Vz, — Gr.F'Vz , is an isomorphism of vector spaces. Let

wi = > piaY®. Since S? clearly preserves the filtration, the diagram:

Si
Vg ———— V7,

(3.1.3.18) i l

GI“*FVZ GI‘*FVZ
can be completed to the diagram:

Si
Vg ——— V7 _4,

(3.1.3.19) i l

Gr.FVy —— Gr.FVy
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One easily verifies that S has the expression:
(3.1.3.20) 5 = fdze 2iptaY" o7

except that the modes of Y are now commuting with modes of X. By snake lemma, the induced

map:
(3.1.3.21) (M Ker(5%) — (| Ker(S")

is an isomorphism of vector spaces. The process of taking associated graded behaves well with

the conformal grading and the grading by N, g since the embedding FyVz, C Fn11Vz, is one of

graded vector spaces. The kernel (JKer(S") can be identified easily:
i
(3.1.3.22) Claar Yplk<o © VS,

since the kernel of §° can be easily identified with the kernel of § dz:e?":. The piece e 2 pla¥®
in the definition of S° commutes with everything in the associated graded. The character of this

coincides with equation (3.1.3.14]). This completes the proof. O

Now we can turn to the question of identifying monopole operators and constructing the correct
extension of V(g«(p)). This now comes down to finding extensions of Vi, which are determined by
sublattices in the lattice spanned by X,,Y“. Inspired by the work of [DGP18|, we would like to

identify the monopole operators as:

(3.1.3.23) cexp (/ ZmaNa> :

for m® € Z. In terms of the free field realization, this means that we would like to extend by the

Fock modules corresponding to

(3.1.3.24) > mXy+ > mpidZ.
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Consider now the VOA W, which is the extension of Vz by the Fock modules as in equation

(3-1.3.24). As a module of Hx y,z, we have:

(3.1.3.25) Wo= P Foxsrz
teEL™ ,SELT

For each o € Z", the Fock module F,.y can be lifted to a module of W, which we call W, ,.y. The

screening operators S? extend to a map:
(3.1.3.26) SW, = Wo- 5 piave:
DEFINITION 3.1.7. The boundary VOA on a Dirichlet boundary condition in Tp , is defined by:
(3.1.3.27) Vi, = (| Ker <SZ’ W, — W,,,_Zpiaya) :
; a
Note that W, is a direct sum of simple Fock modules of Vy:

(3.1.3.28) W, = P Vzsx.
sEL"

Thus Vg, is a direct sum of modules of V(gji?)):

(3.1.3.29) Vs, = €D [ Ker (SZ’ Vzex — VZ7S,X_ZPZ-GW> .

sELT i
Each of the direct summands represents a monopole operator on the boundary. We will show in
Appendix [Bf that each of the direct summands is a simple module of V(g/*\(p)) If we assume it for
now, it is easy to write down a generator of each of the direct summands:

a

(3.1.3.30) SET

We will compare this with the monopole operator studied in [DGP18], and show that this generator
does give the correct physical indices, justifying the definition of Vp ,.

—

REMARK 3.1.8. The VOA V(g.(p)) has the following Z" x C" lattice of automorphisms:

a Aa . Na .
(3.1.3.31) oxpu(Na) = N, — “7 oan(Ba) = Ba =70 onu't = ZF L paiX it

95



Here A € C" and p € C" such that p(A\) € Z". One can identify the module generated by Y, s*(Xq+

> piaZ') as the spectral flow O 5T psV (8:(p))-

3.1.3.3. Indices of the Boundary VOA. We compute the index of Vp ,, taking into account the
parity/fermion number, conformal weight, and global symmetry grading. This quantity is defined

by the formula
(3.1.3.32) Iy, , == Try,, ((=1)"¢"s™)

where V0 ;= | S(IIV 0. Below we jot down the mode expansions of these grading operators in the
free-field realization for later use:

n
(3.1.3.33) NG =a+ ) piazh
=1

m=1

. 1 a, a a,..a G a a a a
(3.1.3.34) Lo= ) lz(aroyo +ygag) + > (2% + ymxm)]

n

>

i=1

1 n ' r
+ 52 [%‘ZPM?JS] :

i=1 a=1

1 o0

SR+
m=1

To compute the index, we compute the Verma modules generated by

Z s (Xa + Z piaZi) > - 522:1 Sa(Xa"rZ;L:l PiaZi> ’0>

a=1 =1

(3.1.3.35) |s) ==

for each s € Z". In the rest of this section, whenever we write a mode belonging to the Lie algebra
associated to V(gj(;)), the image of this mode under the free-field realization should be
implicitly understood. Thus we see that N and E}! act freely on |s) for k < 0 and act as (possibly
vanishing) scalars for k¥ > 0. Note that this parabolic decomposition is the same that we would
obtain if we were analyzing the action on the vacuum |0); the same will not be quite true for 1)"*(z2),
but the difference manifests itself as a sort of spectral flow depending on s and the charge matrix

pia- Note that

i+ B i _ 1, —k — Lo,k _
wz (w)\s) — Slezerk<0 kAW 62k>0 kAW 522:1 Sa(Xa+Z;L:1 pjaZJ)|0>
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T a,. _1 4, —k
(3.1.3.36) = SZ”FZ;:lSa(XaJrZ?:lmej)wZa:ls Piagdik<o "KW |0).

When comparing the mode expansions of the LHS and RHS, the factor w2-i%iai effectively shifts
which modes of ¥ *(w) act freely vs. act as scalars, as compared to mode splitting when acting
on |0). Defining L; := Y| _; $"piq, we find that w,i’+ acts freely for k < —L; and as a scalar for
k > —L;. A similar analysis reveals that 1/),1’_ acts freely for k < L; and otherwise acts as a scalar.

Thus the Verma module built upon |s) has PBW basis

n

31330 Q|| & CacyHle| ® (Cacy)

=1 k<—-L;—1 k<L;—1
2X | QR [ Pecemme PcEn™ || Is)
a=1 [k<—1 \m>0 m2>0

The contribution of this sector of Vp 4 to the index solely from the mode algebra is thus, after some

straightforward algebraic manipulation,

T '
! 11 <q [T qa [T (%) 7 q)
a=1 a=1

n
2
()3 )

(3.1.3.38)

o0
But we cannot forget that |s) itself has non-trivial grading under Ly and Ny. Properly taking
this into account when computing the index will yield an expression equal to equation (3.1.3.38|)
multiplied by an overall factor consisting of the fugacities of |s). Let us now calculate this factor.
The conformal weight of |s) is given by:

n

1 : N b
Lols) = 9 Z (20)% + 2 — Z pivYo| Syr_ s*(X+30L ) piaZ?) 0)

1 W
(3.1.3.39) =3 azjj(s Pla)’s)

1
= 55" 0" psls)
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The weight under Ny is given by:

n
a 7
Ty + E PiaZQ
i=1

(3.1.3.40) = pjapipspls)
a”j

Ngls) = S5t s+, ppz)|0)

= (p" ps)als)
and the parity is given by:
(=1)F|s) = (—1) a1 8" X Ty pia 2. Eioy sv(XPHET0 0 27)) | )
= (—1)E e T p)g)
= (1" 7" *ls).

The missing factor is therefore
,
(3.1.3.41) <_1)STprsq%sTprs H SngpS)a.
a=1
Summing over monopole sectors (i.e. Verma modules built upon each |s)), we finally obtain the

index

1 T
(3.1.3.42) ]IVB,p = . Z(_l)sTprsq%sTprs [H S((lprs)a]

((:I)OO SGZT a:l

n T T
<1 (q [T’ e a [ [ (%) 7 q)
=1 a=1 a=1

As a check, this is precisely of the form derived in [DGP18|.

o0

REMARK 3.1.9. The computation above reveals that the conformal degree of ‘Xa +>, piaZi> 18

given by 55 piap™®.

2,0
3.1.4. Mirror Symmetry of Boundary VOAs. We have defined in the previous sections
boundary VOAs V4 , for Neumann boundary condition of 74, and Vg, for Dirichlet boundary
condition of Tp ,. Recall the short exact sequence (2.1.2.14). The statement of 3d abelian mirror

symmetry asserts that 7, and 7T,v are mirror to each other, where p¥ = 7T, It is hinted in
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[CG19,CCG19] that these two boundary conditions are mirror dual to each other. In this section,

we prove this statement:

THEOREM 3.1.10. There is an isomorphism of VOAs:

(3.1.4.1) Vap = Vp,v.

PROOF. Our strategy is to use the free field realizations of Section [3.1.2.2) and [3.1.3.2 More

specifically, we will perform a field redefinition to the free field realizations to show that the two
VOA are isomorphic.
Recall in the free field realization of Section [3.1.3.2] (associated to p" instead of p) we have

generators X, 0Y® for 1 < a<n —r and 0Z° for 1 < i < n such that:

af ) ) (]
(3.1.4.2) oxeovt ~ 2 azigzi o
(z —w)? (z —w)?

We perform a field redefinition:

Y =
(3.1.4.3) ~ ¢ | ‘ |
0% — _ X 4 Z(pV)ia(p\/)lﬁyﬁ _ Z(pV)iaZz.
1:76

7

They have OPE:

~ o~ ] -~ (VY. ,ViB
(3.1.4.4) 0507 ~ 0 ieop? o gt = il )"0
(z —w)? z—w)?

Since 77 = pY, the Heisenberg VOA Hy,y,z (for pV) is nothing but Hy ® H,y ® H_ s, where we

identify E with ¢, 0 with 0 and n with . The VOA W,v is the extension of this Heisenberg VOA

by the Fock modules corresponding to Z¢ and X% + > (p¥)?Z%. In terms of the new generators,
i

the second factor is nothing but 7*. To write the first generator, let us use the projection maps

in equation (3.1.1.5)), in particular the matrix n¥ which is projection onto A*. Since 0~ + ne =

Zi,ﬁ(p\/)ia(Pv)iﬁYﬁ, we have:

(3.1.4.5)
D A)as(0*+7%) = > (M)ai(p¥);%(0") Y = Y ()ai(p”);* (0 Y 5Y P+ Taip; (0" ) 5Y 7
a a8 o8 a,6.j

99



Here we add the last term, which does not change the final result because 7p = 0. Now we can use

pIl + pVIIY = 1d,, to conclude:

(3.1.4.6) D (IY)ai (0 +7%) =D (P )iaY ™.

« «

As a consequence:
(3.1.4.7) 70 =y (M)ai(6 +71%).
[e%
The VOA W,v is the extension of Hx y,7 given by:
(3.1.4.8) Wo= P  Frzrsx,
teZn seZn—"
and it can be alternatively given by, in terms of Hy ® H,y ® HT(; Fock modules:
(3.1.4.9) Wo = B Frs®Foveo ® Fispnviyn
tezZn s€Zn"

Now let us decompose t as A\ + A\ using equation ([3.1.1.10)). Then it is clear that:
(3.1.4.10) A=pllt, A =p'IVt

and so Fpvi.g is nothing but Fy. .. Similarly, Fspve)g = }"#L(; such that AL = ,uT € H since
sn € A+ and does not change the image of p in H. We have found that there is an isomorphism

of Hy @ Hry ® HTEE modules:

(3.1.4.11) W= B Fomne®Fags®F,.

AeN
X te(nty

A= I=pL

Now the VOA Vg ,v is defined as the kernel of the following screening operators in W,v:

(3.1.4.12) fdz:exp (Zi - Z(pv)iaYa> D= j{dz:exp (¢"(2)) 1

«
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which implies that we can identify Vg ,v as an extension of M(2)*" @ H., ® H s

(3.1.4.13) Ve = B Mujans®Fary ©F, 5
AeN’
AL,MLG(AL)/
A=al=pl
Comparing this with equation (3.1.2.32)), one immediately see that there is an isomorphism of

M(2)®" ® Hy ® H_5 modules:
(3.1.4.14) Vv = Vi,

Note that this is an isomorphism of a lattice of modules of the singlet and Heisenberg VOA, but
not necessarily an isomorphism of VOA itself. However, since all direct summands involved are
simple current extensions and Fock modules, the work of [CR22| implies that this isomorphism

upgrades to an isomorphism of VOAs. This completes the proof.

REMARK 3.1.11. Let us rewrite X, Y, and Z* using ¢, 6, and Na as follows:

Zi — ¢z + Z(H\/)M(ea _|_77a)

(3.1.4.15) Xo==0"=> (p")iad'
Yo = S0 (I1)5(607 + )
i8

With some tedious but conceptually simple work, we can use this to write the conformal element in

equation (3.1.3.8) as:

(3.1.4.16) % Z L0 Db —% > a%i% D (11Y)ai (1Y) 5" 0n O :—% D (11Y)ai(I1Y)57: 00067 :

7

This, of course, coincides with the conformal element in equation (3.1.2.42)).

3.1.5. Morita Equivalent Constructions. In this section we will define VOAs that will be
Morita equivalent to V4 , and Vp ,. In particular, we will define XN/A,p and 1737/) whose construction

are inspired by physics.

61



3.1.5.1. Definition of 1~/A7p. Let us start with 17A7p . Consider the VOA Vﬁgn, which is the

boundary VOA for the Neumann boundary condition of the free theory. This VOA has a Z" lattice
of automorphism called the spectral flow, which are generated by o; whose action on the VOA is

given by:

Using these automorphisms, one can twist the vacuum module Vgi". For each A € Z", we denote
by VB%"’)‘ the module Vgin’)‘ = (]Z[ ai’\i)ng”. These are simple currents of Vﬁ%”, and have the very

simple fusion rule (which is derived, for instance, in [AW22]):

®TL,)\ ®TL,/.L ~ ®TL,)\+/L
(3.1.5.2) VA s Vi e yEmAtE,
In particular, the object:

(3.1.5.3) P v
AEA

has a unique structure of a vertex operator algebra extending VB%".

DEFINITION 3.1.12. The vertex operator algebra ‘7A,p is defined as the VOA:
17 — ®TL,)\
(3.1.5.4) Va, =P Vs
AEA

Using the free field realization of Vj3,, we can give a free field realization of ‘N/Am. Indeed,
consider the free field realization of VBQ?Y" using the Heisenberg VOA Hy ® Hy, and the lattice VOA

V. For each A € Z™, there is an identification of Vﬂ%” modules:
(3.1.5.5) Vet e (\Ker (S*: Via = Vi a_gi)
i

Thus, if we consider the extension V7, A := @ Vi, which is a lattice VOA extending Hy® Hy, then
AEA

there is an embedding VA,p — Vra of VOAs, whose image is the kernel of the screening operators

S?. We can also write the free field realization in terms of modules of the VOA M (2)®" @ H, as

62



follows

(3.1.5.6) Va,p = @ Mxtpy¢ © Fruy-
BEL™ NEA

3.1.5.2. Definition of IN/B,p. Let us consider the symplectic fermion VOA VX%” and the following
free field realization. Recall that Bose-Fermi correspondence identifies Vf" with the complete
lattice VOA extension of Hy by the lattice spanned by all ¢'. There is an embedding VX%” — Vb(?”

given by:
(3.1.5.7) X = ce? XL - :9e % .

The image of this is identified as the kernel of the screening operators S* := ¢ dz:e? :. In other

words, we can identify:
(3.1.5.8) VI D My
INSYAL

as a module of the singlet VOA M (2)®". There is a (C*)" symmetry action on V%" such that the
subspace M).4 has weight Z \ip'q under the a-th copy of the gauge group. As is different from Vi,
this action is not inner. Thzis action becomes inner when embedded into Vb‘fn, with currents given
by 3_ pia0¢'. On the other hand, denote by V,n the complete lattice VOA extension of Hy, by the

lattice spanned by 1. This also has a (C*)" action, which is inner and is generated by > p; 0.

DEFINITION 3.1.13. Define 1737,, to be the orbifold:

- (cxyr
(3.1.5.9) Vi, = (Vﬁ" ® V‘n)

9

where the (C*)" denotes the diagonal (C*)" on the tensor product.

From this definition, we immediately obtain a free field realization. We can write:

(3.1.5.10) V@ Vy = @ Mig® Fuy.
A WEZ™
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Taking (C*)" invariant subspace, we require that p' (A — p) = 0, or in other words, A — u € A+,

Consequently, we have:

(3.1.5.11) Vep= P Mrp® Fpuy.
A\, UEZP
A—peAt

Now we can compare this free field realization with that in equation (3.1.5.6). We recognize the

following;:

PROPOSITION 3.1.14. There is an isomorphism of VOAs:
(3.1.5.12) Va2 Vi v

3.1.5.3. An identification of ‘7A,p with Vp ,v. This small section is devoted to a quick and

undetailed proof of the following;:

THEOREM 3.1.15. There is an isomorphism of VOAs:
(3.1.5.13) Va,®VE" = Vp v @ Vi y.

Here the VOA Vyy is a complete lattice VOA of a self-dual lattice and hence is Morita trivial.

The idea is field redefinition. From the above, we have seen that ‘7A,p has a free field realization
using the Heisenberg VOA Hy ® H,. Via Bose-Fermi correspondence, fo” can be realized as an

extension of H P This extension is given by the following Fock modules:
(3.1.5.14) Frg @ Fpuap @ .7:”.(;, for \, p,v € Z", X\ — p € A.

Recall the splitting of the short exact sequence in equation (3.1.1.16)). We perform the following

field re-definition:

(31515) Z'=¢'+ > m' B (W + ), Xa=-D 7ail@' +0), Yo=Y fia(¥’'+¢)

a?j

as well as:

(3.1.5.16) Xo= Tty Vo= pald’ +¢)),
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These will have OPE:
(3.1.5.17)

o . 5 . sy
829077 ~ = OX, T, ~ 0 X.0%, ~ 2iTa T
z w

X0V ~ ,
0XadYs (z —w)? (z —w)?

_Oap__
(z —w)*’
The Heisenberg Hx v,z generated by 0Z7,0X, and X 5 has been used in the free field realization
of Vg, and we denote by Hy y the Heisenberg generated by 0X, and 0Y,. Since the field re-
definition above is invertible, Hy @ Hy @ H 3 is identified with Hx y,z ® Hyy. The extension by
Fock modules in (3.1.5.14)) can be identified, in the new set of generators, as the lattice spanned by
7', X% X, and Y,. The first two variables will extend H X,v,z into W,v, and the second two sets
of variables extends Hyy into a complete lattice VOA, which we call Vyy. This means that we

have embeddings:
(3.1.5.18) Vap @ ViE" —— Wy @ Vg p ¢ Vpv ® Vi y

To finish the proof, we just need to comment that under the field re-definition, the screening

operator matches:
(3.1.5.19) ¢~ 7' — ZTMW.
(0%

This finishes the proof.

o —

COROLLARY 3.1.16. The VOA V(g*/(\pv)) ®Vxy is a simple current extension of V(gl(1]1))*™.

Proor. This follows from the relation between Vs, and V(g[/(ll\l))(@” in the work of [CR13b],
and their free field realizations [BN22]. O

3.2. Braided Tensor Category via Intertwining Operators

3.2.1. VOA Extensions and Braided Tensor Categories. The following is explained
in [CKM17|]: given a vertex operator superalgebra extension A in a VOA module category C
where P(z)-intertwiners define a symmetric monoidal structure on C, the category of local modules
of A in C coincides with the category of generalized modules of the VOA A as braided tensor
supercategories. However, in our situation, as well as in many other cases, the object A does not

live in C but in a suitable completion of C. Thus one needs to take a completion of C to allow
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infinite direct sums. This is explained in [CMY22a, Theorem 1.1]: under suitable circumstances,
one can extend the braided monoidal structure from C to a completion called Ind(C), such that
the object A is now contained in Ind(C). The authors then showed |[CMY 22al, Theorem 1.4] that
the category of generalized local A-modules in C also has a braided tensor supercategory structure
defined via P(z)-intertwiners. We denote this category by A—Modje.(Ind(C)).

For any M € Ind(C), the object A x M has the structure of an A module, however it is not
necessarily local. It was explained in [CKL20, CMY22a| that an object M in Ind(C) gives rise
to a local module in the above manner if and only if the monodromy acts trivially, namely the

composition:

Ryra

(3.2.1.1) A M 24N e A BA 4

is identity. Thus, let Ind(C)[?) be the subcategory of Ind(C) whose objects have trivial monodromy

with A, the assignment:

(3.2.1.2) L(M):=AxM

gives a functor:

(3.2.1.3) £ :1nd(C)” — A—Mody,c(Ind(C))

THEOREM 3.2.1. The functor L is a braided tensor functor (CMY22a, Theore, 1.4]. If A
happen to be a simple current extension, C has exact fusion rule, and is fixed-point free, then L

preserves the composition series and maps simple to simple [CMY22b, Proposition 3.2].

Here C is fixed point free means that the action of the simple currents defining A does not fix
any single module M. We comment that in [BN22], this is used to establish a relation between
the Kazhdan-Lusztig category KL of V( m)) with a category of modules of the VOA Vg, which
is denoted by Cg, in loc.cit. More precisely, the VOA Vg, ® Vj is a simple current extension of
V(g[/(ﬁ)), and so if we denote by K LI the subcategory of K L consisting of objects having trivial

monodromy with Vg, ® Vi, then one can identify Cg, with the image of K LI under the above
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lifting functor. This is used in [BN22] to show that Cg, has the structure of a braided tensor
category. Before moving forward, let us review the data of KL and Cay.

3.2.1.1. The Kazhdan-Lusztig category of V(m)) In this section, we introduce the category
KL, the Kazhdan-Lusztig category for the affine Lie superalgebra V(g[/(i]\l)) This category is
characterized by satisfying certain weight constraint. For a generalized V(g[/(1|\1)) module W, it is
called finite-length if it has a finite composition series of irreducible V(W)) modules. W is called
grading restricted if it is graded by generalized conformal weights (the generalized eigenvalues of Ly)
and the generalized conformal weights are bounded from below. For more details, see [CKM17].

DEFINITION 3.2.2. The Kazhdan-Lusztig category KL is defined as the category of finite-length

—

grading-restricted generalized V (gl(1|1)) modules.

We will denote by G the category of finite-dimensional representations of gl(1|1). Just like in

the case of ordinary Lie algebras, there is an induction functor:
(3.2.1.4) Ind:C — KL

such that Ind(M) is defined as the induced module

o —

(3.2.1.5) U(el(11) ®y ity ) M

—_—

where U (m)zo) is the enveloping algebra generated by the non-negative part of gl(1|1), and
M is viewed as a module where the positive part acts trivially. Such modules are called Verma
modules. Since any simple module in KL is generated by the lowest conformal weight space, which
is a module of gl(1]1), any such module is a quotient of Ind(M) for some simple gl(1]1) module M.

The finite-dimensional algebra gl(1]1) has the following set of simple modules:

(1) A, o, where N acts with weight n and all other modes act as zero. This module is one-
dimensional.

(2) Ve where N acts with weight n + %, and E acts with weight e. This module is two-
dimensional.

From the above, any simple module in KL is a quotient of Ind(A, ) or Ind(V;,.). We will

denote by M the induced module Ind(M) for simplicity. The following is shown in [CR13a):
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o V. is irreducible iff e ¢ Z.

e When e € Z but e # 0, ‘Afme is reducible, and fits into the following short exact sequence:

0 —— ﬁnJrLe —_— IA/M —_— Xme — 0 (e >0)
(3.2.1.6)
0o —— ﬁn,Le — XA/n,e — ﬁn,e —— 0 (e <0)

The modules En,e are simple currents of V(gm\\l)) as they can be defined as the image of the

following spectral flow automorphisms o7 »:

A l
(3.2.1.7) aA(N) =N — - aAE)=FE — ; oa(s) = 2Tl

Introduce a function €(l) on Z given by:

~1 ifi<o,
(3.2.1.8) )= 0 ifl=0,
1ifr>o0.

Define €(1,1") = €(l) +€(') —e(l+1"). The simple currents A\n,e has the following simple fusion rules:
(3219) A\n,l X A\n’,l’ = A\n+n’76(l,l’),l+l"

The category C and KL are both decomposed into blocks labelled by the generalized eigenvalues
of Eo:

(3.2.1.10) c=EPc. KL=PKL..

Of course, the induction functors maps C, into K L., and moreover, it is proven in [BN22| that
the induction functor Ind : C. — KL, is an equivalence iff e ¢ Z or e = 0. When e € Z \ {0},
the category K L. are all equivalent to K Ly, with equivalences induced by fusion product with a

simple current:
(3.2.1.11) Apex —: KLy — KL,

The category KL is moreover shown to be a rigid braided tensor category [CMY 22c]|.
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3.2.1.2. The category Cg. The mode algebra of Vg, is identified as the algebra of differential
operators on K, the Laurent loop space of C. Denote by x, the n-th coordinate of the Laurent

space I, and by 0,, the differential of x,,. We can write its mode algebra as a big tensor product:

(3.2.1.12)
U(Vsy) o ® Clre,0z] ® Clz1,05] ® Clrg,0sy) ® Clz—1,0, ,] ® Clr_9,0, ,] ®
Vs, o ® Clzg) ® Clz] ® Cldg ©® Cloe,] ® Clop,] ®

The second line here is the vacuum module. For each [A] € C/Z, there is a module Wy of Vj,, that

is defined using the column picture as follows:

(3.2.1.13)
U(Vgy) o ®@ Clxe,04] ® Clz1,0:] ® Clzo, Ox,) ® Clz_1,0,,] ® Clr_2,0, ,] ®
Wiy e ® Clx2] ® Clxq] ® (‘9;\0@[8360, 3;01] ® C[0x_,] ® Cl0z_,] ®

The VOA Vg, has a spectral flow automorphism o such that:
(3.2.1.14) ofB = zf, oy =z"1n.

The category Cg, is defined to be the abelian category of finite-length modules of V3, generated
by ¢"Vg, and o"W/y. This category was studied in IBN22| and shown to have a braided tensor
category structure. The way of the study is to use the relation of Vs, and V(gm]\l)) derived

in [CR13b|. More specifically, there is an embedding V' (gl(1]1)) — Vs, ® V. such that V3, ®@ Vi,

is decomposed into a direct sum of simple currents:

(32115) Vﬁy ® Ve = @ A\—m/2+e(m),m'

The lifting procedure as we have recalled in Section [3.2.1] allows one to relate KL and Cg,, which
was the main work of [BN22|. Let KL% be the subcategory of KL whose monodromy with

A\—m/2+e(m),m is trivial, then there is a lifting functor:
(3.2.1.16) Lo: KLY — ¢g,

that is surjective and full. This functor identifies Cg, with the Z quotient K L[O]/Z, or the de-

equivariantization in the sense of [EGNO16|. This immediately give Cg, the structure of a braided
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tensor category. The category KL% can be identified with the category of modules where Ny acts
semi-simply with integer eigenvalues, and the quotient identifies an object M with A\_m J24¢(m),m ¥

M. The category Cg, also decomposes into blocks:
(3.2.1.17) Co= B Covpy
[AleC/z
labelled by the generalized eigenvalue of Jo = :37:y. The lifting functor maps K L, into Cg, |¢2nie]-

For each \ € C/Z and for each k > 0, the module Wiy has an iterated self-extension W[’X}, and

it is shown in [BN22| that any module of V3, is a quotient of a finite direct sum of W[’;}.

3.2.2. Definition of the Category of Line Operators.

3.2.2.1. Definition of line operators in T4 ,. Since we have a Morita equivalence between V4 ,
and T~/A7 p» we will use the more convenient \N/A p to define the category of line operators. By definition,
‘7,47,) is a simple current extension of Vg?y”, and the category CE’? is a braided tensor category of
ng" modules via P(z)-intertwining operators. By definition, C?;“ is the smallest abelian category

of Vﬂ%” modules containing elements of the form:

(3.2.2.1) Wi®- - Wy, W; € Cgy for 1 <i < n.

As commented from Section this gives a braided tensor category of ‘7,47,; modules:
(3.2.2.2) Va,,—Modio. (Ind(C5™)),

as well as a functor:

(3.2.2.3) L4 Ind(CFMO — Vi ,~Modjoc (Ind(C5™))

Denote by C?: 20 the subcategory of C?W" whose objects have trivial monodromy with 17,47/).

DEFINITION 3.2.3. We define the category C4 , to be the image of C?;Z’p’[o} under L:

Xn,p,[0
(3.2.2.4) Capi=La (Cm Pl ]) .

This is a braided tensor category of ‘N/Aw modules via P(z)-intertwiners. The category of line

operators L4 , of the theory Ta,, is defined to be the bounded derived category L4, := DbCA,p.
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The following proposition gives an easy criteria for an object to be in C?;L 2101,

PROPOSITION 3.2.4. An object M € C?,’; belongs to C?:’p’[o] if and only ipriaJé acts semi-

)

vt

simply with integer eigenvalues, where J' = : 3

The proof of this will be presented in Appendix [B] Let us examine what this means to simple
objects. A simple object in Cgy [y is of the form O'ZW[/\] for some | € Z and A ¢ Z. When X € Z,

then the simples in Cg, o] are of the form UZVM. With these, we see that a simple module in:
(3.2.2.5) X1 Cay,n]

can be lifted to C4 , if and only if > pia A" are integers for all a. These give all the simple modules
of C4,p. In particular, any simple module in X2, Cg, o) can be lifted to C4 ,. There is a Z™ lattice of
such simple modules, and upon the lift, a Z" sub-lattice (the image of p) will be identified. These
are the atypical simple modules. In conclusion, atypical simple modules in C4 , are labelled by
7"]7" = 7" (by the property of p), and the quotient can be identified with the co-character
lattice of the flavor symmetry group (C*)"~". These atypical simples can be identified with the
simple vortex lines in physical context [BDGT18, DGGH20|. We will show later that under
mirror symmetry, these modules can be identified with the Wilson lines in the dual theory.
Moreover, the above decomposition of C?;‘ gives a decomposition of C4 ,, and consequently,
L4,,- We have seen that an object in X' ;Cg, [5,] can be lifted to Y7A7p only when Y pia\! € Z. If
we view p' as inducing a map (C/Z)" — (C/Z)", then [\] must be in the kernel of this map, which

is identified with the image of p¥ = 7'. In particular, we have a decomposition:

(3.2.2.6) Cap= B Capp
Me(c/zynr

Here C4 [y are lifts of objects from X' 1Cg. v~ 1, ae]- These blocks behave well with fusion rules:

(3.2.2.7) Cap N X Capfu) = Caprp)-

Consequently, we have a decomposition:

(3.2.2.8) Lap= B Lapw
e(c/zym—
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3.2.2.2. Definition of line operators in Tp,. Here we will use the fact that Vg, is a simple
current extension of an affine Lie superalgebra V(gj\(p)) Denote by KL, the Kazhdan-Lusztig
category for V(g:(;)) We need the following two statements to be able to apply the machinery of
simple current extensions. The first of course shows that KL, itself has a braided tensor structure,

and the second states that the monopole operators generate simple currents of V(g.(p)). The proof

of these two statements are somewhat lengthy and will be presented in the Appendix

THEOREM 3.2.5. KL, is a braided tensor category defined by logarithmic intertwining operators,

and tensor product is an exact functor on KL,.

PROPOSITION 3.2.6. Let Uy be the direct summand of Vg , corresponding to A € Z", namely the
summand containing the monopole operator corresponding to X. Then Uy are simple as V(g.«(p))

modules and belong to KL,, and satisfy the simple fusion rules:
(3.2.2.9) Uy x Uy Z Upyx
which can be realized by the state-operator correspondence of Vg ,.

The proof of these two statements, especially Theorem will reveal the following statement,
which is important for the proof of the mirror symmetry statement. Recall in Corollary
we have shown that the VOA V(gj\(p)) ® Vg y is a simple current extension of V(g[/(ZH\l))®”. Let
K L¥mr 0 be the full subcategory of KL¥" that have trivial monodromy with V(gj\(p)) ®Vxy.

There is a lifting functor of braided tensor categories:
(3.2.2.10) Lungauge : KL¥9 — V(g,(p)) @ Vg y—Modioe (Ind(KL=")) .
The proof of Theorem implies the following:

THEOREM 3.2.7. The image of K LXp. 00 ynder Lungauge lies in KL,, and this functor is sur-

jective onto KL,. Consequently, the category KL, is equivalent to the de-equivariantization of

K LB 0 by the lattice of simple currents defining V(g:\(p)) ® Vxy-

We now come back to defining the category of line operators. Since Vg, is a simple current

extension of V(gj\(p)), we have the category Vg ,—Modi,. (Ind(KL,)) as well as a lifting functor
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Lp:
(3.2.2.11) Lp:d(KL,)% — Vg ,—Mody, (Ind(KL,)).

Let K LEO] be the subcategory of objects having trivial monodromy with Vg ,. We give the following

definition:

DEFINITION 3.2.8. The category Cp,, is defined to be the image of KL[pO] under the lifting functor
Lp:

(3.2.2.12) Cp,=Lp (KLLO]) .
The category of line operators of Tp,, is defined as the derived category L, := DbCBW.

Similar to Proposition we have the following proposition, whose proof will be presented
in Appendix [B]

PROPOSITION 3.2.9. An object M of KL, belong to KLE)] if and only if N§ acts semi-simply

with integer eigenvalues.

Recall the spectral flow automorphisms introduced in Section [3.1.3.2l The above proposition

]

implies that the spectral flows UA#V(gj\(p)) are objects in K L,[(? precisely when p € Z". These

are Z" x Z" copies of simple modules, and under the lift, one identifies the sublattice given by
{(\, pTpA)}, and the quotient lattice is isomorphic to Z". The module corresponding to g,V (g«(p))
can be identified with the Wilson line associated to the representation defined by u, as this object

is generated by:

(3.2.2.13) l/zuaEa>.

on which N, has weight 1,. Namely, these corresponds to representations of the gauge group (C*)".
These will be identified with the vortex lines under mirror symmetry.

Similar to Cg., the category KL, also decomposes into blocks:

(3.2.2.14) KL,= @ KL,
AeCr
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where KL, denotes the subcategory where the generalized eigenlvaue of Ef is A®. Under the

above lift, objects in KLO ])\ will be identified with K LU

pAi for any p € Z. Thus, the category Lp ,

is decomposed into blocks:

(3.2.2.15) Lpp,= P Lo
Ne(C/z)

This decomposition will be equivalent to the decomposition of £, , under mirror symmetry.

3.2.3. Mirror Symmetry of the Category of Line Operators. The main goal of this

section is to give a short and un-detailed proof of the following theorem:
THEOREM 3.2.10. There is an equivalence of braided tensor categories:

(3.2.3.1) Cap>~Cppv.

Consequently, La, ~ Lp ,.

ProOOF. The idea is to use the relation between 1~/A7p and Vp ,v derived in Theorem (3.1.15, We

have the following diagram of VOA extensions:

‘7AP®%§” =Vp @ Vxy
[(1]1
and the corresponding lifting functors:

Cap Cgp

Xn
¢ o
k Aauge

KL@n

(3.2.3.3)
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Thus to show that C4 , and Cp , are the same, one needs only show that they are the image of the
same lifting functor from the same subcategory of K L¥". The commutativity of the lifting functor
follows from the uniqueness of VOA structure from simple current extension [CR22|. The fact
that they are lifts from the same category simply follows from definition: the subcategory of local
modules with respect to the lattice defining the extended VOA VA,p ® Vb(?" . Thus Cq,, ~Cp,, as

desired. 0
We can now prove Proposition [3.2.9]

PROOF OF PROPOSITION [3.2.0l Let KL¥™r:0 be the subcategory of KL®" that has trivial
monodromy with ‘N/A,p ® Vb‘fn. The proof of Theorem [3.2.10[ shows that the lifting functor is

essentially surjective:
(3234) CA’P = CB,P ~Lpo Eungauge (KL‘X’n’p’[O]) .

By Proposition an object belong to Lungauge (K an,p,[o]) if and only if the zero-mode of
> i Pia’ B4t is semi-simple with integer eigenvalues, and this is the same as > pia By acting semi-
simply with integer eigenvalues. Since the objects that can be lifted to CE? requires that N acts
semi-simply with integer eigenvalues, we deduce that an object in K L¥" belongs to K L0 if and
only if both N} and > meé acts semi-simply with integer eigenvalues. Note that fields >, pia B’
and 3" 7,; N belong to Vv and ) pi, N ¢ are identified with N in V(gj(_p\v)) Therefore, the image
of K L¥:,0 consists of precisely those objects in K L, where the action of N§ is semi-simple with

integer eigenvalues. This completes the proof.

0

Since the fields E, are identified with the image of ), 7a;: Biyt:in Va,p, we find that the above

equivalence induces an equivalence:

(3235) L‘A%w ~ ﬁB,pV,[)\}7 for any P\] S (C/Z)nir
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Let us now identify the image of the Wilson lines. The Wilson line corresponding to p € Z"™" is

generated by:

(3.2.3.6) |/ZMQEQ>.

Using the field re-definition in the proof of Theorem [3.1.15] this is the same as the module generated
by:

(3.2.3.7) D Hapia(t + 5i)> :

a,t

Since in defining 17,4”0, we are extending by the entire lattice of 5", the lift of this module is

isomorphic to the lift of the Fock module generated by:

(3.2.3.8) Zuaﬁmw> .

a,t

Comparing this with the free field realization of the simple modules of Vg, |[AW22], and using the
definition of p, we see that such module precisely corresponds to (], JZZ“ K “ﬁm)VM, which is lifted
to the vortex line operator in £, ,. We have thus shown that vortex lines in £4 , correspond to

Wilson lines in Lp ,v.

3.2.4. A Quantum Group Description and Kazhdan-Lusztig Correspondence. We
have succeeded in defining the braided tensor categories L4, and Lp, whose objects are line
operators in T4 , and Tp , respectively. They have the right kind of simple objects, and these objects
are matched under mirror symmetry. Moreover, one can compute fusion rules using the relation
of these categories to the Kazhdan-Lusztig category of V(g[/(1|\1)), and the work of [CMY22c].
However, the theory of intertwining operators are not the easiest to work with, especially due to the
fact that the associator is highly non-trivial. In this section, we would like to find a quantum group
whose category of modules is equivalent to Lp ,, and conjecture that this induces an equivalence of

braided tensor categories. This gives a Kazhdan-Lusztig correspondence for Vg ,. The main result

of this section is the following:
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THEOREM 3.2.11. There exists a Hopf algebra Uy(g«(p)) and an equivalence of abelian cate-

gories:
(3.24.1) Uq(g+(p))—Modgn ~ Cp,.

Moreover, the category on the left has the structure of a braided tensor category. Consequently,

there is an equivalence:
(3.2.4.2) DU, (g+(p))—Modgin ~ L .

Our proof will use the extension procedure and the equivalence in the work of [BN22|. Let U

be the algebra generated by N, * and K subjected to the following relations:
(3243) [N7 ¢i] = iwiv {¢+7¢_} =K -1

Moreover, we impose the condition 2™V =1 on all modules of U. With these condition, there is

an equivalence of abelian categories:
(3.2.4.4) Cpy ~ U-Modgy,

under which Cg,, [y corresponds to U-Modg,, .2xix, the subcategory where the generalized eigenvalue
of K is €™, Since the category £ A,pv is related to CE’?’ we will apply the procedure of lifting

using the above equivalence. Let us start with the equivalence
(3.2.4.5) Ch' ~ U®"-Modgy,.

The subcategory of modules having trivial monodromy with V4 ,v is equal to the subcategory where

e2mi piady = 1, and translating this to U®", this amounts to requiring:
\
(3.2.4.6) HKZ'-D“‘ =1, for all a.
i
On the other hand, the lifting will identify an object with a spectral flow:

(3.2.4.7) M o ([[ o),
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and under the equivalence to U®™, this amounts to identifying M with M[>". p N|, where the
shifting means the shifts of weights of N;, namely, the action of N; is shifted by N; — N; + py.,. In

conclusion, the lifting procedure has the following two effects:

(1) Taking a quotient of U®™ by the ideal generated by [], Kf o _ 1 for all a. We call this
quotient U®n,
(2) Identifying modules whose action differ only by the shift N; — N; + py..

To understand the second effect, let us use the split sequence to write:
(3.2.4.8) No=> piaN',  No=)Y_ pilN'.
i i

Let us consider shifting the action of N; by py,, on ]vﬁ, this amounts to:

(2

(3.2.4.9) N> isN* + 5ig(p")'a = Y hipN' + Sap.
i
Here we used the fact that 7 - p = Id,,_,. On the other hand, on the generators N,, we have:

(3'2'4'1()) Na = ZpiaNi + pz’a(pv)ia = ZpiaNi = Nay
i i

)

and so the shift does not change N,. Now let us define U,(g.(p)) to be the subalgebra of U®"

generated by the image of N, 9™ and K*. With these definition, the restriction functor:
(3.2.4.11) Res : U®"-Modg, — Uq(g4(p))-Modsgn

coincides with the lifting functor, identifying an object with its spectral flow. In conclusion, we

have arrived at an equivalence:
(3.2.4.12) Uq(g*(p))—Modﬁn ~ CA,pv ~ CB,p'

Define K, =[] Kf % then from the exact sequence, the algebra U, (g.(p)) is generated by Ng, 1™

and K,. Moreover, we have commutation relation:

(32413)  [No, 0] = dpia™i, {4} = Iy = [ K0T 50 e TR

Vi a
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Here, the second equation for K; follows from p7+ pr = Id,, and the third follows from the quotient.

The above commutation relation is a quantization of g.(p):

(3.2.4.14) (Pt = = p Bt e (i = [ Ko

and we understand K, as e*™F“. Note that we also impose the condition €™« = 1 on all
finite-dimensional modules.
Let us now show that U, (g«(p)) is a Hopf algebra. Let UqN’E(g[(1|1)) be the unrolled-restricted

quantum gl(1|1) generated by N, E, ¥* with commutator;

" —q "
(3.2.4.15) [N, 0] = +0F, (ot o =21
q—4q
There is an embedding of U into UéV’E(g[(l\l)) given by:
(3.2.4.16) N — N, T = U, V=g P = U, K q %8,

This does not induce a Hopf structure on U however, since the bi-algebra map and antipode of
UéV’E(g[(Hl)) involves ¢% rather than ¢F. More specifically:

(3.2.4.17)

AT =0FT@l+qg Pout, AWT) =0 @¢+10u™,  SWT) =—-¢vt  SW)=—¢gFu-

which will induce the following structure for the subalgebra U:

(3.2.4.18)
AT =yTeltq Poyt,  AWT)=¢ ol+q Foy, ST =-¢"¢T,  SET) ="y~

To fix this problem, we can first conjugate the bialgebra structure of Uév ’E(g[(1|1)) by ¢V | since:
(3.2.4.19) dPENAWN ) EN =yt o1+ 19T,

where the equation follows from the commutation relation [E ® N, f(E) @ | = Ef(E) @ ¢+ for
any power series f(E). Similarly, the conjugation of A(x)~) becomes ¢~ ® 1 + ¢ 2F @ ¢)~. Since

we conjugated the co-algebra structure, we need to conjugate the antipode as well, and it is easily
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seen that it is given by:
(3.2.4.20) S =—¢t,  S@T)=—-*Fy .

These structures thus makes the embedding U — Uév F(gI(1]1)) into one of Hopf algebras. Since
all the functors above preserve the Hopf structure, we conclude that Uy(g«(p)) is a Hopf algebra.
Let us now show that Ug(g.«(p))-Modg, is braided. We start by showing that U-Modg, is

briaded. Consider the restriction functor:
(3.2.4.21) Res : U (gl(1]1))-Modg), — U-Modgy,

from modules of Uév F(g1(1]1)) where N acts with integer eigenvalues, which is clearly a tensor
functor. If we can show that the kernel of this functor is in the Drinfeld center, then we are done
because this functor is clearly surjective, and we can transport the braided tensor structure on
U-Modg,. Choose k = 2log(q). The kernel of this tensor functor is given by the tensor subcategory
whose objects are direct sums of C,, /. for n € Z, where C,, ;. is the one-dimensional module where
N, U+ acts as zero and F acts as n/k. Here ¢ = ™ "/k = (—1)". This is true since for a module
to be trivial after restriction, K = ¢~2F = 1 and so E acts with weight n /k. We need to show that
C,,/k have trivial monodromy with modules of UqN ’E(g[(1|1)) where N acts with integer eigenvalues.
The monodromy is given by the following conjugated R matrix:

(3.2.4.22)

gNOFGNEFTEEN (1 4 some factor - U @ W )q PEN = ¢*MOF(1 4+ some other factor - U @ W),

The reason we omit the factors here is that these will not contribute to the monodromy as it will

act trivially on C,, /.. The monodromy of M with C,,;, is easily computed from this to be:

which is equal to ¢2N®/k = mik2N/k — g2minN — 1 by the assumption on M. Thus C,, /k 18 in the
Drinfeld center and U indeed has a braided tensor structure. Now we can transport this structure

to Uqy(g+(p))-Modsy, again due to the fact that the kernel of the restriction functor from U®" to
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Uq(9+(p)) is in the Drinfeld center, a computation that is done very easily and in a similar way as

above. This completes the proof of the above theorem. We now give the following conjecture:
CONJECTURE 3.2.12 (Kazhdan-Lusztig correspondence for Vg ,). The equivalence:

(3.2.4.24) Cr,p ~ Uy(9+(p))—Modgy,

is one of braided tensor categories.

With this conjecture, we come to the conclusion that B twist of 3d N/ = 4 abelian gauge theory
TB,p is controlled by a quantum supergroup, and thus is related to a super-group Chern-Simons
theory, which was first extensively studied in [Mik15]. The recent work |Gar22||GN23| explores

this idea further in many examples.

3.3. Hypertoric Varieties and Vertex Operator Algebras

3.3.1. Higgs and Coulomb Branches from Vertex Operator Algebras. In the previous
sections, we have constructed abelian categories C4 , and Cp ,, and the derived category L4 , and
Lp . As was predicted in [CCG19], these categories can be used to realize the Higgs and Coulomb

branches. We start with proving the following:

THEOREM 3.3.1. Let 1 be the identity object in Lp ,, then there is an algebra isomorphism.:
(3.3.1.1) Ext*(1) = C[Mgu,].

By mirror symmetry statement of Theorem we also have:
(3.3.1.2) Ext*LAyp(]l) ~ EXtZB,pV (1) = C[Mp ] = ClMc,,).

Thus, the Coulomb branch algebra can be obtained from the category L4 ,.
Let us prove Theorem Since the identity object is in the subcategory Lp , o), we will use

the equivalence:

(3.3.1.3) L p0) =~ D'Uy(g+(p))—Mod 1,
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where the right hand side is the category where K, — 1 acts nilpotently for all «. Furthermore, one

can show that there is an equivalence:
(3.3.1.4) Uy(g+(p))—Mod§, " =~ g.(p)—ModF,

where the right hand side is the category of modules of g.(p) where E, acts nilpotently for all a and
e?™Na — 1. This equivalence uses the fact that the power series f(z) = (€2™® — 1)/z is invertible
locally near 2 = 0, which gives a way to go between E, and K, = e*™*Fe when K, — 1 is nilpotent.

We now treat N, as inducing an action of T'= (C*)". Let g.(p)>o be the subalgebra of g.(p)
generated by ¥»* and E,. Then it is clear that:

(3.3.1.5) g:+(p)—Mod¥,, ~ g.(p)>0—Mod};”

fin>

the T equivariant modules of g.(p)so where E, acts nilpotently. We will do this computation using

the more convenient g.(p)so. Consider the following complex of g.(p)so modules:

(3.3.1.6) C = U(g«(p)>0) ® Sym(g«(p)>0[1]),

together with a differential d = Y ((z;) r+ 5 [2i, —]) ®s,, where z; is a set of basis for g.(p)>0, (2;)r
means right multiplication on U(g.(p)>0) and [x;, —] means the conjugation action on Sym(g.(p)so[1]),

and 0, is a set of dual basis. We have:

1
(3.3.1.7) @ =3 (@)r(@i)r ® 0000, + 5 D (21)r @ 00i([2j,—] @ Or,)
,J 2¥)

The first term here is given by:

(3.3.1.8) > fE(@r) R © 0,04,
i<jk
while in the second term, we have d,,[zj, —] = >, f;kawk, and we obtain:

(3.3.1.9) % S (@) 5 © O (25, © 0y,) = % S @R ® 000y = — 3 FE@1)R ® D0,

i,J 1,5,k i<j,k
Thus, d> = 0 and this is a cochain complex. Since left multiplication on the left of C' commutes

with the right multiplication, we see that C' is a differential complex of g.(p)~¢ modules. In fact,
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the complex C' is the Chevalley-Eilenberg complex of the Lie superalgebra g.(p)>o, and it resolves

the trivial representation C of g.

LEMMA 3.3.2. The complex C' is a projective resolution of the trivial module C in the category

of g«(p)>0 modules. Moreover, this resolution is equiviariant with respect to T

PROOF. The morphism U(g«(p)so) — C induces a map C — C that is trivial on all other
homological degrees. To show that this induces a quasi-isomorphism, we comment that by PBW
theorem of g.(p)s>o, C is a filtered complex C = U;F;C whose associated graded GrC is the
Koszul complex Sym(g«(p)s0) ® Sym(g«(p)>o[l]), and thus is quasi-isomorphic to C. Now the
standard spectral sequence argument shows that the cohomology of C is quasi-isomorphic to C.

This completes the proof.

Now we need the following lemma about resolutions that are T-equivariant:

LEMMA 3.3.3. Let P* be a T-equivariant free U(g.«(p)so) resolution of C. Let Vi be any other

T-equivariant resolution, then there exists a T -equivariant map from P* to V.

The proof of this is rudimentary and can be found in any standard algebra textbook, for
instance [Lan12|. As a consequence, let V. be any T-equivariant finite resolution of C using finite
dimensional modules, then there is a T-equivariant map C' — V,. We may assume that E, acts
nilpotently on all V. Of course this map needs to factor through Cs_y, the cut-off of C' at degree
—N, which is by definition the complex Ker(C_y) — C_nx — --- — Cp. Moreover, there exists
an integer M such that it factors through Cs_y/(EM), since there exists such M such that EM
is zero on V, for all a. This is good because by definition, one can see that Cs_y/(EM) is in
fact a finite complex of finite-dimensional modules of g.(p)~o. This implies in particular that the
projective system Cx s := C>_n/(EM) is a final object in the category DbCB,p/(C, the category
of bounded complexes over C. By the definition of Yoneda extension group, we have:

(3.3.1.10)
Extz,,(C.C) = Home, (lim Cy s, C) = lim Home,,  (Cvar, C) = (€ ® Sym(g.(p)%o[1)) -
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We can show that this is actually an isomorphism of algebras, by comparing the multiplication
of the generators on both sides. Let us now write Sym(g.(p)%,[1]) explicitly. It is given by the

following DG algebra:

(3.3.1.11) Sym(g«(p)>o[1]) = Cli, yi, bal

with a differential given by d = 3" paix'y’ @ 9b,. By definition, the cohomology of this complex is

nothing but C[~1(0)]. Taking T invariant part, we arrive at:
(3.3.1.12) Extz, (C,C)=Clp'(0)]" = ClMgp,),
as desired. We have now completed the proof of Theorem [3.3.1

COROLLARY 3.3.4. Let £ € T™ be a character of T. Let Vy¢ be the Wilson lines in Lp,

corresponding to the character n§ for n € Z, then there exists isomorphism of C[Mp | modules:
(3.3.1.13) Hom(1, Vye) = Clu~t(0)] "¢
where the right hand side is the subspace of functions that transform like n& under the action of T'.

Proor. The proof follows the same method as above, once one identify the Wilson line V,,¢ as
the trivial module C,¢, the trivial module C of g.(p)>o with equivariant structure shifted by n§.
O

In the category Lp , o), one has the fusion rule Ve X Vipe & V(5 yp)e, which corresponds to,

under the equivalence to the category g*(p)>o—Mod?z?f, the simple tensor product rule C,,s ®C,,,¢ =

C(m+n)e- The fusion product induces maps:
(3.3.1.14) Hom(1, V;,¢) ® Hom(1L, Viye) — Hom (L, Vippine)-
The following space:

(3.3.1.15) A = @) Hom(1, Viye)

n>0
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has the structure of a Z-graded commutative algebra. The algebra structure comes from the above
fusion map, and the commutativity comes from the fact that Lp , is a braided tensor category.

Following Corollary we arrive at the following statement.
COROLLARY 3.3.5. The projective variety Proj(A¢) is isomorphic to ./\/l%p.

We have finally derived the desired statement, that one can obtain the Higgs and Coulomb
branches of abelian gauge theories and their resolutions using boundary vertex operator algebras.
We expect that this approach can give explicit understanding of the braided tensor structure on

Coh(M%’ ,), but will leave this for a future work.

3.3.2. Sheaf of Vertex Algebras on Hypertoric Varieties.

3.3.2.1. Kuwabara’s Sheaf of Vertex Algebras. Fix p and a parameter £, and consider the Higgs
branch qu o Following Theorem we will assume that p is unimodular and £ is generic so
that ./\/lfq , is smooth. In [Kuw21], following the construction of [AKM15|, the author defined a
sheaf of vertex operator algebras V4 ,¢ on M% o such that over any local chart, the sheaf localizes
to symplectic bosons.

More specifically, their definition of V4 ,¢ is extremely similar to the definition of V4 ,. One
start with the h-adic version of the VOA Vg?y” ® V,2", which denote by Vgin’h ® V,2". This is the

vertex algebra over the ring C[A] whose OPE is:

(3.3.2.1) VDB W) ~ O ) (w) ~ —

Z—w z—w

The formal variable 7 allow Vg{n’h %4 V,f" to localize well on T*C":

THEOREM 3.3.6 ( [AKM15| ). There is a sheaf of h-adic VOA VI, whose global sections is
®n,h ®n
VB“/ B Voo

The idea of [Kuw21]| is then to consider the BRST complex:
(3.3.2.2) Vrst, =V ' @ VE" @ V;E"

whose differential is defined in the same way as equation (3.1.2.9)), except that the coefficient in

front of :bic’: will be multiplied by h. Note that the difference of the definition here and the
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one in [Kuw21] is that we extended the Heisenberg VOA to the full free fermion algebra, and

eliminated the & coefficients in the fermionic OPE. Define:

(3.3.2.3) Vi, = H(Vsrsr,p QBRST),
which is a sheaf of VOA on T*V.

THEOREM 3.3.7 ( [Kuw21| ). The cohomology sheaf VZP is supported on p~1(0). Moreover,
the sheaf restricted to u=1(0)N (T*V)§* descends to a sheaf on M%p, or in other words, there exists
a sheaf Va pe on M%p such that:

(3.3.2.4) TVape =V,

on u=1(0)N (T*V)¢®. Over each local chart of MS pr the VOA Vg ¢ is a localization of Vgin_r’h ®

®n,h
‘/bc :

Let us now consider applying this statement to Theorem The VOA Vg ,v also admits
h-adic version from the theorem, and we denote it by Vg oV where the OPE of the affine Lie

superalgebra V' (g.(p)) becomes:

b oy
No(2)EP(w) ~ (f;w)? Na(2)Np(w) ~ m
(3.3.2.5) Na(2)$"" (w) ~ é)zai:) Na(2)u" (w) ~ _(,fiww)_

hov U Za piaEa
5 T .

N O P e
Moreover, the OPE of monopole operators with the fields here follow from the realization of mono-
pole operators as exp [ N,. Note that this OPE can simply be derived from VB,pv by rescaling
E, — hE, and ¢** — h'/2¢"%  which through the isomorphism of Theorem simply be-

comes 3,7 — hY/28, hi}/2~, and we recover exactly the h-adic OPE of V/Bg”’h. This argument implies:

COROLLARY 3.3.8. The h-adic VOA Vg’pv is a sheaf of vertex operater algebra on T*V supported

on pu~1(0), and that it descends to a sheaf on ./\/l%p =S M%pv. For each r x r minor of p, say A,
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localization gives a map of VOAs:

(3.3.2.6) A:VE v — VET e vEn,
Example. Let p = (1,1,---,1)T, then p¥ = 77 where 7 is the matrix:
1 -1 0 0
0O 1 -1 0
(3.3.2.7) =
0 O 1 -1

The VOA Vg oV has an affine Lie superalgebra generated by N, E, and ¥»*. For each 1 <i < n,

we have an embedding:
(3.3.2.8) Ai Vo — VT e vEn,

Let us write out the embedding A explicitly:

No > 1airb’c’s, bl bl b o +) (187 — hbic’ )t
(3.3.2.9) | o B | A">1 N
Yot s B, T s A, for i > 1, By = Z Byt — b
>

In conclusion, the VOA ij 18 the global section of a G-equivariant sheaf of vertex algebra
on T*V and Kuwabara’s sheaf of VOA on M% , 18 its localization to semi-stable points. In the
following section, we will show that the VOA VE , can be made into a sheaf of VOA object on the
Coulomb branch, and in this context, the formal parameter & is the cohomological grading. But
before that, let us recall the idea of shifted tangent complex.

3.3.2.2. Shifted Tangent Complex. Since the work of [Kap99|, it is known that the shifted
tangent complex T'x[—1] of a smooth complex variety X has the structure of a Lie algebra in the
symmetric monoidal category Coh(X). The Lie algebra structure is given by the Atiyah class. Let
A: X — X x X be the diagonal embedding and let I be the sheaf of ideals defining the diagonal

in X x X. Since X is smooth, the coherent sheaf I/I? is a free module, and can be identified with
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the cotangent bundle Lx of X. By definition, there is an exact sequence of coherent sheaves on X:
(3.3.2.10) Lx &2 I/I? — Oxxx/I? — Ox.

Dualizing this complex gives:

(3.3.2.11) Ox —— (Oxxx/I?)* —— Tx.

Given any coherent sheaf M, tensoring with the above complex gives a short exact sequence:
(3.3.2.12) M —— (Oxxx/I*)*®@M —— Tx ® M,

and thus an element in Ext!(Tx ® M, M) = Hom(Tx[—1]® M, M), which is called the Atiyah class
of M, denoted by ap;. When M = Tx[—1], this map arp,[_; becomes a morphism: Tx[-1] ®
Tx[—1] — T'x[—1] and satisfies the graded anti-symmetry and Jacobi identity, making Tx[—1] a
Lie algebra object on X. Moreover, the Atiyah class aps gives a canonical module structure of M

as a Tx[—1] module. This in fact gives a fully-faithful functor:
(3.3.2.13) Coh(X) — Tx[—1]-Mod(Coh(X)).

In particular, any hom is a hom of Tx[—1] modules.

When X is smooth affine, the short exact sequence in equation splits for any free
module M, and in particular, Tx[—1] is a trivial Lie algebra, in that there is no Lie bracket.
Suppose M is a complex of free modules M* with differential d viewed as a matrix, the morphism
Tx[—1] ® M — M can be described as follows. For any section v of T'x, view v as a vector field
on X, then we can use it to differentiate the matrix d to obtain v(d). Since d*> = 0, we have
0 = v(d?) = [d,v(d)], and so v(d) is a closed degree 1 morphism. The assignment v — v(d) gives
the action of Tx[—1] on M. One may worry that this definition might not satisfy the bracket of

T'x[—1], but this is guaranteed by the following:

(3.3.2.14) [v(d),u(d)] = v[d,u(d)] £ [d,vu(d)] = £[d, vu(d)]
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and [d,vu(d)] is trivial in the cohomology. Here the term v[d, u(d)] vanish because [d,u(d)] = 0
which follows from d? = 0.

When X is not affine, then the short exact sequence in equation does not split
anymore. In this case, the Atiyah class is better captured by a class in Cech cohomology. Let
{U4} be an affine covering of X, then locally, a splitting of the exact sequence amounts
to the choice of a set of local coordinates, say z;' for U,, since in that case the tangent complex is

generated by free modules dyo. There is a transition matrix:

J— a76
(3.3.2.15) Ope =Y G320y,
such that the matrix Gj; is the gradient matrix of the local change of coordinate xf = giaﬁ (:U;)‘) and
G%B = gzii;. These transition functions allow one to interprete the short exact sequence in equation

(13.3.2.11]) as a class in the Cech complex:

oGS
(3.3.2.16) > daf @ o € T @ Ox(Uyng) =2 Lx (Uqp),
[2¥} J

and this class can be used then to induce a class in Ext!(Tx ® M, M) for any coherent sheaf M.

Extending this definition of tangent complex from smooth varieties to arbitrary varieties and
especially stacks is not straightforward, and is done in [Henl18| for derived Artin stacks, and
in [GR17| for general pre-stacks locally almost of finite type. The definition of these can be found
in [Lur04] and [GR19]. The central idea of the definition is that every nilpotent extension (formal
moduli problem) of X is controlled by a Lie algebra, the relative tangent Lie algebra, and that the
shifted tangent Lie algebra corresponds to the formal completion of the diagonal.

More precisely, given a stack X, denote by Liey the category of DG Lie algebras in IndCoh(X),
and by PSt§( the category of pointed formal stacks over X. By this we mean the category whose

objects are:
(3.3.2.17) T:Y < X:s

where 7 is an inf-schematic nil-isomorphism, namely the restriction of m on the reduced stack Y4

is an isomorphism, and s is a section of 7 such that m o s = Id. Denote by Grg( the category of
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formal groups over X, namely the category of group objects in PStg(. The first important result

in [GR17] is that there is a continuous functor Qx : PStg( — Grg( given by:
(33218) QXy =X Xy X,

the derived intersection of X in Y. This functor is an equivalence of categories, with inverse
given by the Bar-complex of a group. Moreover, there is a functor Ly : Grﬁ} — Liex, which is
essentially taking the Lie algebra of the formal group. It is proven that this is also an equivalence
of categories whose inverse Expy is given by the formal completion of the Lie algebra at 0, and
whose Lie group structure is given by Baker—Campbell-Hausdorff formula. The shifted tangent
Lie algebra of X is defined by Ix[—1] := LxQx((X x X)/), the image of the formal completion of
X x X along the diagonal morphism. One can show that the underlying sheaf of [x[—1] is indeed
the tangent complex, which follows from the definition of the cotangent complex as the universal
object classifying derivations of X in X x X. In general, the underlying sheaf of LxQxY is the
relative tangent complex T'x/y. This definition is very abstract, but it is proven in [Hen18| that
when X is smooth, this definition coincides with the definition using Atiyah class, and moreover,
this definition behaves well under pullback of open substacks.

Coming back to the hypertoric varieties, denote by 7T the complex torus and t its Lie algebra.

Let us consider the following complex of free modules over T*V:
(3.3.2.19) T=0®t— 0TV[-1] — O ® t"[-2]

in which the first differential is given by the map from g to the tangent space of 7*V and the second
differential is given by push-forward of the tangent vector by the moment map. Suggestively, we
will denote by N, basis of O @ t, ¥»* basis of O ® T*V and E, basis of O ® t*, then the differential
is given by dN, = >, pia(@i™™ — yp®), dy= = > play' B, dyptt =Y, pler'E,. We think
of N, as basis of the Lie algebra, ¥~ = 0,,,¢¥%" = §,, and E, = dy,. This is a G-equivariant
complex of free modules, if we give ¥»T the opposite charge of y; and 1%~ opposite charge to z;.

We claim:
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LEMMA 3.3.9. The Lie bracket in equation (3.1.3.2) makes T into a DG Lie algebra object in
Cohp(T*V).

PRrROOF. Let us first comment that the differential on T is given by the following inner mor-
phism d = Y, z;["~, =] 4+ v;[¢*", —]. This immediately implies that the bracket is closed under
differential, due to Jacobi identity. Moreover, d* = 3. p;a@[E®, —] = 0 because E, are central.
The Lie bracket is equivariant due to the grading condition, and so 7 is a DG Lie algebra object.

]

The main theorem of this section is the following:

THEOREM 3.3.10. Let i¢ : p=(€) = T*V be the embedding and i¢ be the corresponding embed-
ding of T-quotient stack. Then the restriction E*T is the shifted tangent Lie algebra of p=1(€)/T.

We will prove this theorem in two steps. First, let us focus on the tangent complex of u~1(€).

LEMMmA 3.3.11. Let i27->0 be the sub-complex of positive degrees. Then i27'>0 is the shifted

tangent Lie algebra of ' (€).

PROOF. Since p~1(€) is affine, so is = 1(&) x p~1(€). Therefore, the scheme p=1(€) x p=1(€) as

an object in PSt{L is represented by the Chevalley-Eilenberg cochain complex CE*(7),-1¢)[—1]).

~10)
Since by [Hen18]|, the functor between PStfi 1) and Lie, -1 is an equivalence, we only need to
show that the Chevalley-Eilenberg cochain complex of ig 7~ also represents pHE) x p(6).
This can be computed very explicitly. Denote by X;,Y; the (shifted) dual of 1" and %~
respectively, and by ¢, the dual of E,. The Chevalley-Eilenberg cochain complex of 7<¢ is the

following DG commutative algebra over C[T*V]:
(3.3.2.20) C[T*V] ® C[X;, Y:, ca
with a differential acting on the generators as:

(3.3.2.21) deg =Y pla(Xiyi + 2:Yi + X;Y5).

91



We can rewrite the above into:
(3.3.2.22) dea =Y pla((Xi+ 23)(yi + Vi) — ziy).

Therefore, if we define the coordinates Z; = x; + X; and y; = y; + Y;, then the above is the ring of
functions on the subspace of T*V x T*V defined by u(z,y) = u(Z,y). Pulling back to u~1(£), this

becomes the subspace of T*V x T*V such that:

(3.3.2.23) w(z,y) = w@,y) =&,

namely (&) x p~1(€). Consequently, the Chevalley-Eilenberg cochain complex of ig T>o represents
p=t(€) x =€), and the proof is complete.
]

We now come to the part of adding the group quotient, and do so in a more general setting. Let
X be an affine variety whose shifted tangent Lie algebra is a perfect complex T'x[—1] concentrated
in positve degrees. Assume that there is an action of G on X that induces an action of G (as well
as the Lie algebra g) on Tx[—1], and a map Ox ® g — Tx that is G-equivariant. It is a standard
result that in this case, the shifted tangent complex of X/G (as an object in IndCoh(X/QG)) is

represented by the complex Ox ® g — Tx[—1], namely the cone of the above map.

PROPOSITION 3.3.12. The Lie bracket of Tx;q|—1] is given on Ox ® g — Tx[~1] by the com-
bination of:
(1) The Lie bracket of Tx[—1].
(2) The Lie bracket of g.
(3) The action of g on Tx[—1].

PROOF. Let us denote by X the quotient stack X/G, and 7 : X — X the projection. Let Ty
be the complex Ox ® g — Tx[—1] with the Lie bracket defined as in the proposition. We would

like to show that T[—1] = Tx as Lie algebra objects. By definition, the loop space QYY x X is
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G \ H where H is defined by the following diagram:

H—— X

(3.3.2.24) l |a

Gox X 0 XX

Here @e is the formal completion of G at identity e and X x X is the formal completion of X x X
at X. Let I. be the ideal of G defining e and let G7' be the n-th formal neighborhood of e in G, or
in other words, G7 = Spec(C[G]/1}"). This is a formal group such that lim G¢ = G, by definition.
Let Hy be the product G¢ x X X X, then G\ H = ligG \ H,. Each H,, is represented by a
G-equivariant affine scheme, since both X and G7 are aﬂing, and moreover, this is a limit of formal
group objects over X/G. Therefore, we need to compute the Lie algebra of H,, and the limit.

By definition as in [GR17], the tangent Lie algebra is the relative tangent complex Tx H,,
and the Lie bracket is induced from the morphism H,, x x H,, — H,, intuitively given by (g,h) —
ghg~'h~!. We must compute H,, and the formal group structure explicitly.

Since X is affine, the diagonal X x X can be represented by CE*(T'x[—1]), the Chevalley-
Eilenberg cochain complex. The diagonal embedding X — X x X is of course represented by the
quotient map CE*(Tx[—1]) — C[X], setting Ty to zero. In this context, there is a very explicit
dg resolution of C[X] using complexes of CE*(T'x[—1]) (as in the case of ordinary Lie algebras,
see [Hen1§|):

(3.3.2.25) CE*(Tx[-1]) ®oy Sym(Tx[-1]") = C[X]

where we identify Sym(Tx[—1]") as the dual of U(Tx[—1]), and the above takes the Chevalley-
Eilenberg cochain complex of Sym(T'x[—1]Y) as a module of Tx[—1] (under conjugation action).
On the other hand, the affine scheme G x X can be represented by the algebra Clg,,] ® C[X| where
gn is the Lie algebra of G7'. This is true because exponential map gives an isomorphism g, = G7
as G is formal. The map G} x X — X x X is represented by the composition of the following

morphisms of algebras:

(3.3.2.26) CE*(Tx[-1]) — C[X] — C[gn] ® C[X].
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Consequently, the affine scheme H,, is represented by the following very explicit DG scheme:
(3.3.2.27) C[H,] = C[gn] ® Sym(Tx[-1]"),

with a differential given by the differential on T'x[—1]Y together with the following explicit mor-

phism:
(3.3.2.28) d:Tx[-1]Y — Tx[-1]Y ® Clg.],

induced from the action G7 x X — X x X. It is clear that the relative tangent complex T'x Hy,
is given by O ® g, — T'x[—1], and using the above explicit DG algebra, the induced Lie bracket
on Tx H, can be identified with the one in the statement of the proposition. For example, the Lie
bracket of g, is given by the differential of the Lie group structure on G2, and the commutator of
g, with T'x[—1] is given by the differential of the action of G? on Tx[—1].
Taking a limit as n — oo, we obtain Tx H = hgqn Tx H, = Tx, as desired.
O

Note that theorem is a consequence of this proposition and Lemma We have thus
derived that the DG Lie algebra 7 built from the Lie superalgebra g.(p) is the shifted tangent Lie
algebra of p~1(€)/T, and in particular, io T is the shifted tangent complex of the stacky quotient
p~1(0)/T. The work of [Hen18] also implies that the shifted tangent Lie algebra behave well under
open pull-back, namely when U — X is open, then Tx[—1]|y = Ty[—1] as a Lie algebra. We thus

obtain the following:

COROLLARY 3.3.13. Let j : M%p — 1~1(0)/G be the open embedding, then jg’T 1s the shifted
tangent Lie algebra of the smooth variety M%p, namely the localization of the Lie algebra structure

is given by the Atiyah class.

Example. Consider the case p = (1,1,..., 1)T and £ = 1. In this case, M%p = T*P"! and there
are n embeddings A; : T*C"~! — 1=1(0)/G covering T*P"~!. The pull-back of the complex T

over each A; is free and generated in cohomological degree 1 by (i # j):

1 . x4 . * s .
(3.3.2.29) vij = Ewﬁ N LA PR T
K]
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The Lie algebra structure is trivial over each chart since:
. .
I xz

The element representing the bracket {v; ;, v} j} in Cech cohomology is simply _%W,j in U; NU;.

One can verify that this coincides with the Atiyah class evaluated on v;; ® v; ;.

We consider the non-degenerate bilinear form kg on g.(p) defined by:
(3.3.2.31) K0(Nay Ep) = 0ap, ~ So(p"T 97 7) = 6%,

This induces, by linearity, a metric on T: T ®cp«y] T — C[T*V][-2], which of course is invariant
under T and the left action by 7. For each & € g*, the pullback %7' is thus a metric Lie algebra in

Coh(p~1(€)/T), and in particular, the pullback i$7 is a metric Lie algebra with metric ifrq.
LEMMA 3.3.14. The form ijko is the symplectic form on M%,p-

Proor. This follows from definition. Indeed, kg restricted to degree 1 is the standard sym-
plectic form on T*V, and so the induced form on the cohomology is the symplectic form on M% o

0

We have now seen that the Lie superalgebra g.(p) together with its metric k¢ controls the
symplectic geometry of M% o Let us use this to construct the sheaf of VOA on hypertoric varieties.

3.3.2.3. Sheaf of Vertex Algebras Associated to Hypertoric Varieties. Let us start with a general
statement. Let X be a smooth symplectic variety, then T'x[—1] is a Lie algebra object in Coh(X)
with a non-degenerate invariant bilinear form w : Tx[—1] ®o, Tx[—1] — Ox[—2]. These are the
ingredients we need to define an affine Lie superalgebra. The only problem here is that w is an
element of homological degree 2, and so we can’t define this sheaf in the usual derived category
Coh(X). The solution, as in [RW10], is to consider the h-adic version Coh(X)". In [RW10], this
category is defined as having the same objects as Coh(X), but Hom spaces between two objects

become:

(3.3.2.32) Homg,pxyn (M, N) = €D A Ext™™ (M, N).
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This definition is somewhat ad-hoc. To avoid this, and to be able to include monopole operators
(see Lemma and the discussion prior), we comment that it is more natural to define this using
2-periodic complexes. Roughly speaking, the category Coh(X)” has the same objects as Coh(X),
but we view an object (M,,d) as a 2-periodic complex Meven = @, M2; and Mygq = D, Mait1,
such that the hom between M and N is the Hom:

(3.3.2.33) B W Hom(M;, N;).
i=7 mod 2

The more geometric (co-categorical) definition of this can be found in the work of [Prell]. The
idea is to consider the Cartesian product X x¢ 0 where 0 € C is the origin, and the map f : X — C
is a function (which for our context, is zero). Then the category Coh(X x¢ 0) has an action of
Coh(0 x¢ 0) via convolution, and by the equivalence Coh(0 x¢ 0) ~ C[h]—Mod, a C[Ah]-linear
structure, where £ is in homological degree 2. The 2-periodic category (or the category of matrix

factorizations) is defined by:
(3.3.2.34) MF(X, f) := Coh(X x¢ 0) ®cn) C(R))

or in other words, one invert the element 7. When f = 0, we will denote this category by Coh(X)"
and QCoh(X)" the ind-completion. Heuristically, an object in Coh(X)" is a complex of coherent
sheaves (M,,d) on X together with an invertible isomorphism & : M, — M, o of homological
degree 2, namely M, is 2-periodic. The above definition makes such a definition compatible in an
oo-coherent manner. Note that these two categories have symmetric monoidal structure induced
from the symmetric monoidal structure of the Z-graded counterpart.

Note that we don’t need (and will in fact avoid) the full co content of this category, since it
is not clear to the author how to define VOA in a homotopical setting, i.e., how to deal with the
higher structures, or even what they are. In the following, we only deal with the degree 0 piece of
the structure, namely we really only consider the homotopy category moCoh(X)" and myQCoh(X)",
where the Hom between two objects is the degree 0 part of the Hom, which by definition is equation
. In a word, we do not claim to define a VOA object in the full DG category, but rather
the homotopy category. For simplicity however, we will still write Coh(X)" and QCoh(X)" and

drop my from all the discussion below.
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With the category already set-up, let us view T'x[—1] as an object in Coh(X)" and since
Tx[-1]®o, Tx[-1] = Ox is a genuine Hom in this category, T'x[—1] becomes a metric Lie algebra

with metric iw € Hom(T'x[—1]®0, Tx[—1], Ox). Let us define the following object T in QCoh(X)":

(3.3.2.35) T =P "Tx[-1] & Ox.
nez

Here 2™ is a formal variable. There is a morphism @& : T ®oy T—T given by:

(33236) OéTX[1}(—,—)@hfdzw(az_a_)>

where we extend a1 to a Clz, 2~ !]-linear morphism. In other words, the restriction of @ to
2™Tx[—1] ® 2"Tx[—1] maps to 2™ " Tx[—1] & Ox, and the map to Ox is non-zero only when

m = —n, in which case it is given by mw.

LEMMA 3.3.15. The morphism & gives T the structure of a Lie algebra. We call this the affine

Lie algebra associated to the symplectic variety X.

PRrOOF. The proof follows exactly the same way as the extension of affine Lie superalgebras.
The fact that & satisfies graded skew-symmetry follows from the corresponding statement for
ary[-1) and the fact that w is graded-symmetric, and so § dzw(d,—, —) is graded skew-symmetric.
The fact that o satisfy graded Jacobi identity follows from the fact that ap,_q) satisfy graded
Jacobi identity and that w is invariant and graded symmetric with respect to the action of Tx[—1].

0

We can define the vacuum module in the same way. The object fzo = @D,0 2" Tx[-1] ® Ox
is a Lie algebra object and the canonical morphism % : fzo — T is an embedding of Lie algebra
objects. Moreover, there is a quotient morphism T\zo — T'x[—1], so that for each coherent sheaf M
viewed as a T'x[—1] module, we obtain a T >0 module via this morphism. We define a module of T

by induction:

(3.3.2.37) M :=TInd} (M)

>0
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which is by definition the left adjoint to the restriction functor from T to T\zo- Let U (f) be the
universal enveloping algebra of T in QCoh(X)" which is by definition the universal algebra object
with a monomorphism T — U(T) of Lie algebras. Also let U (T\zo) be the universal enveloping
algebra for T >0. By definition, U is the left-adjoint to the restriction functor from associative

algebras to Lie algebras. We can thus construct M by M= U(f ) M, and the adjointness

DU (Tsp)
of this functor with restriction follows from tensor-hom adjunction.

Let T = P z"T'x[—1], then as an Ox module, T = T\zo @ T, and the left adjoint action of
n<0

T <0 on T induces an action on 7. So. Similarly, there is an action of T S0 on T <0- The Lie algebra
structure on 7T is totally derermined by the two subalgebra f<0 and fzo, and their actions on each
other. More precisely, denote by A>g : fzo R0y f<0 — f<o the induced action on f<o and A
vice versa, then the Lie bracket of fzo R0y T — T is given by ([—, —]@O + Ao 7') ® A, where
T T\zo ®ox f<0 — T\<0 R0y T\zo is the canonical isomorphism. MoreOV;r, the data of a Lie algebra
morphism T — g to another Lie algebra object g is the datum of Lie algebra homomorphisms
I ’fzo — gand g : f<0 — g such that the induced bracket fzo R0y f<o — g coincides with
goAso+ foAcgor. The work of [GR17| has proved many general results about these Lie algebra

objects and their universal enveloping algebras, and much of what is used here is proved in this

work. We need the following;:

LEMMA 3.3.16. U(T) is a filtered algebra. Denote by Ugr(f) the associated graded algebra, then

there is a functorial isomorphism Sym(j’\) = Ugr(f). This is similarly true for T\ZO and f<0.

As a consequence, the morphism U(To) @ U (fzo) — U(T) is an isomorphism of objects in
QCoh(X)", since it is an isomorphism in the associated symmetric algebra. In fact, it is possible
to define the algebra structure of U (JA“ ) using this isomorphism: that U (f) is the crossed product
U(To) »e U(fzo) as defined in [Kas12]. This implies that M as a module over Oy can be
identified with U(To) ®oy M, since U(T) is a free right U(fzo) module, and by PBW theorem,
this can be identified with Sym(f<0) ®oy M. One can describe the action of T on U(f<0) ®oy M as
follows. The action of f<0 is the left multiplication. The action of fzo is given by the conjugation

action of T\zo on U(f<g) and the action of fzo on M. Here the conjugation action is given by the
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following composition:
(3.3.2.38)
Ts0 @0y U(T<g) —— Tso @0y U(T) —— U(T) = U(T<o) @ U(Tsq) —— U(T<o)

The first map is the canonical embedding, the second map is left multiplication, and the third
map is the canonical morphism U (Tzo) — Ox coming from adjunction of the trivial Lie algebra
morphism fzo — Ox. This gives a well-defined action of T by the definition of the Lie bracket of
T.

LEMMA 3.3.17. There is a filtration of U(f<0) such that the action of T\zo on each filtered piece

factors through a quotient T\zo/z" for some large n.

ProoF. The Lie algebra Tisa graded Lie algebra such that the degree n part is 2" Tx[—1] when
n# 0 and Tx[—1] ® Ox when n = 0. Thus U(T) is canonically a graded algebra, and similarly,
U(fzo) and U(To) are graded algebra as well. Let us denote by U(T<o)s; = € U(f<0)j, this gives

j>i
a filtration to U(T<o). Let n > —i, we show that the action of 2"Tx[—1] o]n>U(T\<0)>,- is trivial.
Indeed, by degree consideration, the action of 2"Tx[—1] will map U(ZA“)>Z~ to U(f)>i+n - U(f)>0,

which is zero after composing with the grading-preserving map U (f) - U (f<0).

0

Let V{ be the module Ox, the module of T associated to the trivial module of Tx[—1]. We

prove the following main theorem of this section:

THEOREM 3.3.18. The object V)’} has the structure of a vertex algebra. We call this the vertex

algebra associated to the symplectic variety X with Poisson form w.

Recall from [FBZ04]|, we need the following structures for a vertex algebra:

(1) A vacuum element, which is a morphism Q : Ox — V{.

2) A state operator correspondence Y : VI @0, V& — VI((t) such that Y(Q—,¢) = Id.
x Wox Vx X

(3) A conformal grading and an element 7 : V2 — VI such that [T, Y (—,t)] = Y (—,1).

h o~

In the following steps, we will use the fact that as an Ox module, Vi = Sym(f<o) to construct

the state operator correspondence. We will proceed in steps as laid out in the above.
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Step 1. The vacuum element is the morphism Q : Ox — Sym(f<0), that maps as identity to
Sym" = Ox.
Step 2. This is the difficult step. To start, we define Y : Symo(f<o) ®oy VI — VI to be identity.

For Sym!,we need to define
(3.3.2.39) Y 1 Sym! (Two) @0y VE = Teo @0y VE = VE((1).

Let us denote by J, the shifts by 2" of the identity morphism J, : z™Tx[—1] — 2™ Tx|[-1],
and by m,, the action morphism m,, : 2"Tx[~1] ® V{ — V. There is a morphism z~!Tx[-1] —

[12"Tx[-1] by [] Junt1, we define the restriction of Y on 2~ 1Tx[~1] to be:
n

Mn —n—1
(3.3.2.40) T[] @0y VE — s Ty [-1] @ vE L2200 v )

where the first morphism is [] J,+1 and the second one is the action of T on V)}}. The fact that the
image is in VZ((t)) as supposed to [], V2" follows from the fact that the action of T >0 is locally

nilpotent. We define the restriction of Y to z~"Tx[—1] for n > 1 to be the composition:

07"/ (n-1)
—_

In— _ !
(3.3.2.41) 2 "Tx[-1] @0, VE 5 2 1Tx[-1] @0, VE —— V(1) VE(().

We must show that the morphisms thus defined satisfy locality. By [FBZO04|, we only need to

check locality for the restriction of Y on z='Tx[—1], or in other words, we need to understand:
(3.3.2.42) Z Mt ms T £ Z mt ™" mys TR
Now since V;} is a module of T , commutation relation of T implies:

E mpt " mys R £ E mt” " s L

= Z Z Mg (e [_1})75_"_15_]“_1 + Z nhwt "1

k m4n=k
(3.3.2.43)

= ka(aTX[_l]) <Z t_”_ls"> s 4 hw Z nt—nlgnl
k n n

= milagg_1)s F 6t — 5) + hwdid(t — s).
k
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This is the locality condition. As a consequence, we can define Y on Sym” (f <o) by :Y®: the
normal-ordered product. This is well-defined thanks to locality, namely that : Y®*: is symmetric.
We have thus found the state-operator correspondence Y, and clearly by definition Y (Q,¢) = Id.

Step 3. The conformal degree of VI is defined by deg(2~"Tx[—1]) = n and the degree is defined
multiplicatively on rest of Sym* (f<o). For the definition of T', first define a derivation 0 on T whose

restriction on z"Tx[—1] is —nJ_;. This derivation induces a derivation on U(T). We define T by:

(3.3.2.44) T:U(Te) ®0, Ox — U(T) ®0, Ox 2% U(T) ®0, VI —— VI

where the third map is the action morphism. We need to show that [T,Y(—,t)] = 0,Y (—,t), and
by [FBZO04], we only need to show this is true when restricted to z=!Tx[—1]. This is clear then
since the action of f<0 is by left multiplication and the action of fzo is given by conjugation, both

of which will commute with 7" into the action of 9 on f, and so:
(3.3.2.45) [T, Z mnt_”_l] = Zmn(a)t_”_l = Z —nm,_t " = 9, Z mpt "t
n n n

This completes the construction of the vertex algebra V)’}. Since in the definition of the structure
maps of V;é, all morphisms behave well under pullback of flat morphisms, namely the pullback of
the morphism is the morphism of the pullback, we have the following corollary of the localization
of V)’}.

COROLLARY 3.3.19. Let j : U — X be an affine open subvariety. Then j*V)’} = Vg‘ s a
symplectic fermion system.

PROOF. Since Ty [—1] is a free module generated by 9; for 1 <i < dim(U), the Atiyah class is
trivial and the commutator comes from the symplectic form. The OPE of VJ” thus becomes:

fw(0;, 0;)
(t—s)?

This is a symplectic fermion system restricted at each point z € U.

(3.3.2.46) Y (2710, )Y (27105, 8) ~

0

We can now apply this construction to hypertoric varieties. Let M% p be the hypertoric variety

with symplectic form coming from symplectic reduction. By Theorem [3.3.18], we obtain a sheaf of
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vertex algebras Vg‘. On the other hand, consider the sheaf of vertex algebra V(g/*(\p))h =C[T*V]®
V(gj\(p))h, whose differential is defined in a similar way as 7: d = §dz >, 2057 (2) + y; > (2).
Note that d? = $dz>", EaE* = 0 since E§ acts as zero on the vacuum module. This is obviously
a T-equivariant VOA object. From the definition of ng and Theorem we arrive at the

following theorem:

THEOREM 3.3.20. The pullback E*V(gj\(p))h coincides with ng as a vertex algebra object over
the variety M%p. Consequently, the sheaf of vertex algebra Véh has a conformal element given by

the Poisson bivector associated to a shifted bilinear form of ijko.

Proor. If we do a field redefinition:

1Y piap’
(3.3.2.47) N, s N, — hZ’);"“prb

then the VOA V(gj(;))h is the affine Lie algebra associated to g.(p) and the bilinear form kg, which
localize to the symplectic form. This means that the localizatoin is the affine Lie algebra of the
shifted tangent Lie algebra. This completes the proof.

O

Over each point z € M% » localization of Vgh gives a symplectic fermion system, and by a
change of basis, we may always assume that we have the standard symplectic form. On the other
hand, localization of V(g.(p))" simply evaluates x;,y;. Theorem [3.3.20] combined with Corollary

3.3.19| gives the following result:

COROLLARY 3.3.21. For each z € u~*(0) N(T*V)g*, there is a differential d, on V(gj\(p))h such
that:

(3:3.2.43) H(V (g (0))) da) = V.
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Moreover, the action of g € T on = (0) and V(g.(p))" induces a commutative diagram of isomor-

phisms of VOAs:

—

H*(V(g+(p)) d) —— V"
(3.3.2.49) p l

—

H*(V(g+(p))" dge) —— V"""

Namely T acts trivially on the cohomology.

PROOF. It is clear that the above are isomorphisms of vertex algebras. To show that the
conformal element agrees, we comment that the conformal element of V(g.(p)) is defined by the
quadratic Casimir associated to a shift of kg, and so the image of this is the quadratic Casimir
associated to the descent of the shift of kg on the cohomology over each chart. However, since over
each affine local chart the tangent complex is a free module concentrated in degree 1, the shift of kg
also localize to the symplectic form restricted at x and can be made into the standard symplectic

form by a change of basis.

O

When & # 0, the sheaf igV(g*(p))h is the best one can do, and it is not clear how to include
monopole operators to the sheaf, since on those modules, d*> = > &LE§ is not zero. It is zero
however, when £ = 0. Therefore, for M ,» one can try to include those modules. Recall that

as a module of V(g.«(p)), the monopole operator corresponding to s € Z" is the spectral flow

05 ,7psV (8:(p)), where o is defined as in Remark Again, this spectral flow has an fi-adic

5,p"ps

version, where the flow of E, is E, — 2. Let us denote by Vg} , the sheaf of VOA C[T"V]® Vg, o

z
whose differential is defined in the same way as V(g«(p))". This is not a complex of quasi-coherent

sheaves since d?> # 0. However, the pullback iE‘)Vg p s a well-defined sheaf of VOA, and is T-

equivariant.

LEMMA 3.3.22. Working over C[h, h~Y]. For each xz € p=1(0)N (T*V)g*, the induced differential

—

on oy 7,6V (9x
b

H*(V(g.(p))"

~

p))" = U! has trivial cohomology, unless s = 0. In other words, H*(Vg’p,dx) =

(
d.) as modules of C[h, h™1].
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PROOF. Denote by o, the spectral flow o On this module, the action of the central element

s,pTps
E, is given by hs,, and there must be a such that s, # 0. In this case, let m € USV(gj\(p)) be
closed under d,, and let F,, be an element in the universal enveloping algebra of V(g/*(\p)) such that
dyFoy = Eq, then hsgm = E,om = (d, F,)m = dy(Fym) + Fodym = dy(Fym), namely m is also

exact. Thus the cohomology must be trivial.

0

Since in the category QCOh(M%y p)h, the element % is invertible (as we are working with 2-
periodic complexes), the above Lemma means that the monopole operators are absent when consid-
ering the resolved smooth Higgs branch, and can only be accessed at the singular point O € p~1(0).
Consequently, the sheaf of VOA z‘;gvg p restricted to ./\/l% o coincides with the vertex algebra Vgl.
Recall from Section that Vfi, p is a sheaf of VOA on the Higgs branch M% o and the iso-
morphism VZ o = Vg pv means that VZ , can be made into a vertex algebra object on the Higgs

branch M%v vz which is isomorphic to the Coulomb branch /\/lgcv pr We arrive at the following:

THEOREM 3.3.23. The sheaf of VOA Vf}‘,p on /\/l%p can be made into a sheaf of VOA in
QCoh(M%p) (QCoh(./\/lfcv’p)h» namely, it is a sheaf of VOA on M%’p valued in the symmetric
monoidal category QCOh(Mgp)h.

REMARK 3.3.24. The computation of the cohomology above is valid only over C((h)), and it is
not sure to the author how to compute it over C[h]. The proof of Lemma shows however
that h has to act trivially, and so one can first quotient out h and then compute the cohomology.
As we will see the next section, taking h = 0 is related to going from the topological twists to HT

twist of 3d N' = 4 theories.

3.3.3. HT twist and boundary Vertex Algebra. The h-adic VOA VX p 18 defined in
[AKM15| without natural motivation: it is rather a tool to localize chiral differential operators on
smooth varieties (to render OPE finite after inverting fields in the VOA). The isomorphism of The-
orem [3.1.10|in fact reveals the role of A through the realization of Vg’ oV that A is the homological

shift in QCoh(Mc¢ ). There is another natural interpretation of the A-adic VOA: the deformation
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from HT twist to topological twists. The following two flat deformations:
(3.3.3.1) Vi, Vi,

are the boundary VOA representation of the deformation:

(3.3.3.2) Tap < Tar,p, — TByp

More specifically, the theory Ty7, admits both Neumann and Dirichlet boundary conditions
[CDG20]. The Neumann boundary condition (with extra degree of freedom to cancel anomaly),
which we denote by N, is compatible with the A twist, and gives the Neumann boundary condition
for 7a,,. Similarly, the Dirichlet boundary condition, which we denote by D, is compatible with
the B twist, and gives the Dirichlet boundary condition for 7p ,. If we denote the two boundary

vertex algebra by Vi , and Vp ,, then one expects:
(3.3.3.3) Ve 2 VAL /(h), Vb, =VE,/(h).

Instead of proving these statements, we take these as the definition of VN, and Vp ,. The justifi-
cation of these definitions can be seen from the index computation of Section [3.1.3.2l The mirror
symmetry statement of Theorem [3.1.10] immediately implies the mirror symmetry statement for

these vertex algebras:

COROLLARY 3.3.25. There are isomorphisms of vertex algebras:
(3.3.3.4) W, =Vpps Vb= VN

Let us look at the vertex algebra Vp , more closely. By definition, this is an extension of

—

the affine Lie superalgebra Vy(g«(p)), at level 0. The extension essentially uses the spectral flow

automorphism o which is associated to the action of N%(z). Therefore, the associated vertex

5,07 ps>

operator is:

(3.3.3.5) Uy(2) == exp < / ;. N(z)> .
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The OPE of this vertex operator with fields in Vy(g«(p)) is given by:
(3.3.3.6)
P p(5)a it tp(s) it
No(2)Us(w) ~ ———=, Eqo(2)Us(w) ~ 0, YU (2)Us(w) ~ (2 — w) =t (w)Us (w) :

Z—w

Under the equivalence Vp , = VN ,v, the operators U,(z) is mapped to the image of:

i:p(s); >0 i:p(s);<0

under BRST cohomology, and the element E, are mapped to:
(3.3.3.8) Eors =Y Tait By
i

Note that at & = 0, the fields 4° and 4* are commutative, and generate functions on the infinite jet

space J®Mpy ,v = J°Mc,,. We have the following corollary:

COROLLARY 3.3.26. There is an embedding:
(3.3.3.9) (C[Joo./\/lap] — VD,p'

For the remainder of this section, we will spell out this in more detail. The idea is the identifi-

cation:
(3.3.3.10) LSS L Yo A
The space C[JoMc,,] is generated by the following fields:

(3.3.3.11) rz)= [ )Y ] ()", xew

p(A)i>0 p(N)i<0

then ry(z) survives the BRST cohomology and gives well-defined elements in Vi ,v. They have the

following OPE:

(3.3.3.12) ra(2)ru(2) = [[(=: Bini )Mty ().

)
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Due to the splitting of the short exact sequence in equation (3.1.1.16f), we have that p7 + p7 = Id.

Applying this to —: %y*: we find:
(3.3.3.13) — Bt = — me?“j:ﬂjfyj: — ZﬁmTo‘j:ﬁj’yj i

Note that the second term on the right hand side is exact in the cohomology (recall p¥ = 77), and
consequently in the cohomology, —5;vi = > pio E*. Therefore, we have the following OPE in the
cohomology:
d(p(N)irp(1)i)

(3.3.3.14) rz)rz) = [ (Z mea(z)) Pin(2).

i
This perfectly matches the formula of C[M¢ ] in Theorem if we identify E, as basis elements
of t*, and ) p;ie B as &. In terms of Vp ,, we can identify:

mz) =+ ] 7{ (zi — 2)P NI 1d(z — 2): (0 (20)) PV

p(A)i>0

(3.3.3.15)
-1 7{ (2 = 2)P M1z — 2): (07 (20)) PV U (2),
(N)i<0

Here the extra + sign is to account for the sign change in the ordering of ¥“*. To see how the
formula is true, consider trying to obtain powers of 4% in ry. We need the powers of 1%+ because
ot = B, which will contribute extra powers of b*. These contribution of b will cancel out nicely

with U_,(z) under residue because:
(3.3.3.16) 7{ (2 — W)™ Ld(z — w):bi(2)" s es(w)s = 1.

In next chapter, we will see that the vacuum module of Vp , is related to the Hochschild homology
of the category Coh(G(O)\Rq,v). Of course, there is much more to study about the representation
theory of VN, and Vp ,, as well as its relation to the Higgs and Coulomb branches. Unfortunately,

such an endeavor is beyond the scope of this thesis, and will be left for a future work.
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CHAPTER 4

Category of Line Operators in the Holomorphic Twists of 4d
N = 2 Theories

In this chapter, we study the category of line operators and the algebra of local operators in the
Kapustin twist of 4d N/ = 2 gauge theory Ty [G,V]. As has been mentioned in Section the
space of local operators is computed in physics to be a Poisson vertex algebra, and the category of
line operators is proposed to be Coh(G(O) \ Rg,v). The central statement of this chapter is that
the Poisson vertex algebra can be obtained from the category Coh(G(O) \ Rg,v), as the derived
endomorphism of the unit object. The structure of this chapter is as follows:

e In Section we recall the geometry of the BEN space Rq v, especially its stratification,
and the definition of the category of coherent sheaves. We will also introduce the Poisson
vertex algebra Vg as BRST cohomology.

e In Section we compute the derived endomorphism of the uni object in Coh(G(O) \
Re,v), and prove that it is quasi-isomorphic to Vg v as an algebra. This statement will
be the content of Theorem and Theorem We also compute the derived
endomorphism between line bundles supported on the miniscule orbits, focusing on the
case when G = PSL(2) and V = 0. We compare our results with the physical results

computed from supersymmetric localization.

4.1. The Category of Line Operators and the Poisson Vertex Algebra

4.1.1. Geometry of the BFN Spaces. Let G be a reductive Lie group. The affine Grass-

mannian of GG is the quotient:

(4.1.1.1) GI‘G = RG70 = G(’C)/G(O)

108



It turns out that Grg is a classical ind-scheme; its geometry is well studied in the literature. We
will in this section recall some basic facts about this space. For details, see [Zhul6|. In particular,
we note that the study of the geometry of this space has two complications, one is that it is an
ind-scheme; the other is that it is not always reduced.

4.1.1.1. The Affine Grassmannian of GL,. Let us first consider the case when G = GL,,. The
affine Grassmannian Grgr,, can be defined alternatively as the moduli space of lattices in K.
More precisely, if R is an algebra over C, then an R family of lattices in K™ is a finitely-generated
projective R[z]-submodule A of R((2))" such that A®pgp.1 R((2)) = R((2))". The affine Grassmannian
Grg,, can be defined as the presheaf assigning to R the set of R families of lattices in ™. We

have:

PROPOSITION 4.1.1. Grgy,, is represented by a classical ind-projective ind-scheme. Namely, it

can be written as a colimit of classical projective schemes under closed embeddings.
Moreover, Grgr,, is formally smooth in the following sense:

DEFINITION 4.1.2. An ind-scheme X = liﬂXn is formally smooth if for any algebra R and
nilpotent ideal I C R, the map X (R) — X (R/I) is surjective.

4.1.1.2. The Affine Grassmannian of General G. Let now G be an arbitrary smooth affine
reductive group. Choosing a faithful representation G — GL,, one obtains a closed embedding
Grg — Grgr,, and from Proposition 4.1.1 one concludes that Grg is an ind-projective ind-scheme,
and moreover, one can show that it is formally smooth. There is a canonical isomorphism 7o (Grg) =
7m1(G), and the connected components of Grg are labeled by the fundamental group of G, which is
also the quotient of the co-weight lattice of G by its co-root lattice. All connected components are
isomorphic to each other, with an isomorphism given by left multiplication by an element in G(K).

It turns out, however, this space is not always reduced, as can be seen from the following example.

Example. Consider T'= C*. Then Grp = K*/O*. The C points of this space is a disjoint union

of infinitely many copies of Spec(C). They can be represented by {z"|n € Z}, since any nonzero

element in K is of the form z"g[z] for some g[z] € O*. However, if we evaluate Grg on the algebra

Cle] with €2 = 0, then an element in C[e] ® K is invertible iff its image under the map Cle] @ K — K
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setting € — 0 is invertible. This means that the set of invertible elements in Cle] ® K is K* @ ek,
while the set of invertible elements in O is O* @ €. The quotient is not a discrete set anymore,
but rather an infinite-dimensional vector bundle over Grr(C). The fibre of this bundle at a point
2" is K/z™O, and should be interpreted as the tangent space of Gry at 2™. This presents difficulty
in considering the category of coherent sheaves, as in this case, the category of sheaves on Grrp
is different from the category of sheaves on its C points, even though the Ky groups of the two

categories are isomorphic.

In the case when G is semi-simple, Grg is in fact reduced. In general, we denote by Grg req the
reduced ind-scheme of Grg. In the following, we will present a different stratification of Grg from
the one obtained through an embedding Grg — Grgr,,-

4.1.1.3. A Stratification for Grg req- Let T be a maximal torus of G and B a Borel subgroup of
G containing T'. Denote the associated weight lattice by X*(7) and coweight lattice by X,(7"). The
choice of a Borel subgroup determines a set of dominant weights X*(7")+ and dominant coweights
X.(T)4. Each AV € X,(T) determines an element in T'(K) given by t*". The assignment \Y —
GO is a bijection between X, (T)4 and G(O) orbits of G(K)/G(O). Denoting by Gryv the
associated orbit, then it is a smooth quasi-projective variety since it is the quotient of an affine

algebraic group by an algebraic subgroup. The reduced locus Grg req has a stratification:

(4.1.1.2) Grgrea= | J Grav
AVEX.(T) 4

Let Gryv be the Zariski closure of Gryv. Then for \Y < uV in X,(T)4, Gryv is a closed subscheme
of @Mv. This gives Grg req an ind-scheme structure:

(4.1.1.3) Grg red = hﬂ Gr)yv.
AVEXL(T)+

Each Gryv is a projective variety, though usually it’s very singular. In general, Gryv is a normal
projective variety, and it is smooth if and only if AV is miniscule, in which case Gryv = Gryv. These
are called miniscule orbits, and are in one-to-one correspondence with the fundamental group of
G, as well as with the number of connected components of Grg. Note that when G is semi-simple,

Grg = Grg req- Thus in this case, equation (4.1.1.3) gives an explicit stratification of Grg.
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4.1.1.4. The BFN space Rg,v. Now fix a finite dimensional representation V' of G, and denote
by CNJO the extended group G(O) x C*, where C* is the two-fold cover of the group acting as loop
rotationH The Cartesian diagram in equation defines Rq,v as a derived stack. In contrast
to the affine Grassmannian, Rq v is not a classical ind-scheme, but a DG-indscheme. This means
that it is not determined solely by its value on classical rings. Now fix an ind-scheme structure of
Grg, say Grg = ligiGrG,n such that each Grg,, is a projective scheme closed under the action of
Go. Let G(K)y be the pre-image of Grg , under the projection G(K) — Grg. For each n, choose
N (that depends on n) large enough so that the action of G(K), maps V(O) to 2~ NV (0). We

have the following base-change diagram:

Raym —— V(0)

(4.1.1.4) l l

G(K)n xgo) V(O) —— 2 NV(0)

Since the bottom line of the Cartesian square in equation (2.1.1.16)) is an inductive limit of the

bottom line from equation (4.1.1.4)), R,y has the following presentation as an ind-scheme:

(4.1.1.5) Rayv = thG,V,n-

Each Rq,v, is a coconnective DG scheme, as V(O) is a finite codimensional vector subspace in
2~NV(0), and for n < m, the map Rg v, — Ra.vm is a closed embedding.

We will also need a local description of Rg,y. Let L™G be the group ind-scheme associating
to an algebra R the set L~ G(R) = G(R[27!]), and let L<°G be the kernel of L~G — G sending
z~1+ 0. Then according to [BL94,Zhu16|, the map:

(4.1.1.6) LG x G(0) = G(K)

is an open embedding. Thus L<G is an open neighborhood of identity coset in Grg. Over L<°G,
the vector bundle G(K) X (o) V(O) trivializes to L<°G x V(0O), and so over this local chart,
Ra,v can be represented by a pro-DG-algebra whose underlying pro-algebra is the pro-algebra of

1We will use the two fold cover of the group of loop rotations here, since this will allow us to shift gradings by ¢*/2,
which is necessary for matching with the physical Schur indices.
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functions on the following ind-scheme:

(4.1.1.7) LG x V(0) x V(K)/V(0)][-1],
and whose differential D is induced from the action map:

(4.1.1.8) LG x V(0) = V(K) = V(K)/V(0).

4.1.2. Poisson Vertex Algebra. As explained in [OY20] and [But21], the algebra of local
operators of the HT twist of a 4d N/ = 2 gauge theory has the structure of a Poisson vertex algebra,
which we denote by V¢ . Here we will recall their construction. Consider the commutative Poisson
vertex algebra Vg, _p. generated by bosonic fields (3, y) with conformal weight % and cohomological
degree 0, valued in the representations V' and V*, as well as fermionic fields (b, ¢) with conformal
weight (1,0) and cohomological degree (—1,1), valued in the Lie algebra g of G. The nontrivial

Poisson brackets are given by:

(4.1.2.1) {B,7} xidy, {b,c} x Ca(g).

There is a BRST operator ) defined by the current:
(4.1.2.2) JersT = Tr(bec) — Bey.

The action of Q is given by @ = {JprsT, —} and satisfies Q% = 0. The Poisson algebra Va,v is
defined as the Q-cohomology of Vg, _y.

Let us now describe the vacuum module of the vertex algebra Vg 1 in more detail. In fact, we
will describe the vacuum module of the DG Poisson vertex algebra (Vy—pc, @). The vacuum module
of (Vgy—pe, @) is generated by a vacuum vector |0) such that the positive modes acts trivially, and

non-positive modes act freely. This means that, as a vector space, Vgy_y. is given by:

(4.1.2.3) Viy—be = ClBr—1/2, Ye—1/2 bk—1, cklk<0l0),
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with the differential @) given as above. If we shift the loop weight of V(O) by ¢*/2, then the above

can be identified as the following vector space:

(4.1.2.4) CV (o) ecv o) e Nak )@ [\'a(K)/29(0

To understand the differential, we identify the Lie algebra of g with its dual using a killing form,

and view c as valued in g(K)*; then we have the following vector space:
(4.1.2.5) Cv(o)]eclv:(O)]e NaK)/s0) e N (90

such that the Scy part of the differential is induced by the moment map, and Tr(bce) part of the
differential is identified with the Chevalley-Eilenberg differential. The vacuum module Vg v as a
DG algebra is then identified with equation together with a differential coming from a
combination of derived symplectic reduction and Chevalley-Eilenberg differential. Here A* (g(O))"
should be understood as the direct limit of the Chevalley-Eilenberg complex of g(0)/2"g(O).

If we consider pure gauge theory, then the only differential is the Chevalley-Eilenberg differen-

tial, and we obtain the vector space:

(4.1.2.6) No(K)/a(0) & /" (a(O

with the CE differential.

Physically, the space of local operators is not simply the cohomology of (Vg,—p., Q). This is due
to the fact that when computing correlation functions, the ghosts should not appear as initial or final
states. Mathematically, this amounts to, after taking cohomology, projecting to co-ghost-number
zero. This is the same as taking invariants with respect to the Lie group G (the constant gauge
transformations) by hand, instead of derived invariants of its Lie algebra, and is in essence what
the relative BRST cohomology is achieving. The relative BRST complex V/rfvl pe 18 the subcomplex

on which the action of {.Jy, —} and {bp, —} are trivial. The Poisson vertex algebra, or the space of

local operators Vg v, is the cohomology of this:

(4.1.2.7) Vo = H*(VE e, Q).
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The subset V/rfvl_bc annihilated by {Jo, —} and {bp, —} is precisely the g-invariant subset where the
degree of ¢ is zero, therefore it is not difficult to recognize that this is therefore the same as taking

ordinary G invariants as supposed to g invariants:

(4.1.2.8) Ve = [CIV(0)] @ CVH(0)] ® /\'a(K)/8(0) @ A*(ZQ(O))*]G-

Note that g(K)/g(O) and (z2g(O))* contribute the same factor to the Euler character. However,
their roles are not symmetric, since one of them is used for symplectic reduction and the other is
for derived group invariants. This difference will show up in the geometric computation as well.
The Poisson vertex algebra Vg exists for any gauge theory. However, when the gauge theory
is super-conformal, which happens when Cy (V) = C2(G), this algebra has a deformation through
the work of [OY19| and [But21], and the deformed algebra is identified with the conformal vertex
algebra (VOA) first studied in [BLL™15]. Their construction is as follows: the algebra Vg,_p. has
a deformation quantization into the VOA Vﬁhwfbc generated by bosonic fields 5,y and fermionic

fields b, ¢ with OPE:

hidy hCs(@Q)
4.1.2. ~ b ~—,
(41.2.9) 1)Bw) ~ o bz)e(w) ~ 2
The action of () is promoted to the action of QQprsr via:
(4.1.2.10) QBRSTO(Z) = f JBRST(Z + w)(’)(z)

It squares to zero precisely when Cy(V) = Co(G), and the cohomology of Qprsr gives the defor-
mation quantization of Vg /. In this case, it is expected that in the category of line operators, the
Schur functor is trivial, or in other words, the left dual of a line operator is isomorphic to its right
dual, which is one direct consequence of superconformal symmetry in the category of line operators.

We will, however, not prove it here.

4.1.3. Algebro-geometric formulation of the Category of Line Operators.
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4.1.3.1. Equivariant Coherent Sheaves. A reasonable DG ind-scheme, as defined in |[Ras20,
Definition 6.8.1], is a convergent prestack X such that X = ligXi such that each X; is quasi-
compact, quasi-separated and eventually coconnective, and that X; — X; is almost finitely-
presented closed embeddings. Grg and Rg,y are examples of such reasonable DG ind-schemes.
Let H be a classical affine group scheme that acts on X. Then the quotient stack X/H is called
a weakly renormalizable pre-stack following [Ras20, Definition 6.28.1], and one can define the
category IndCoh™(X/H) via a right Kan extension:

4.1.3.1 IndCoh*(X/H) := li IndCoh*(S
( ) ndCol™(X/H) := lim . dCo(S),

where the limit is taken over all reasonable DG ind-schemes flat over X/H, using the functoriality

of f*mdCoh We have the following equivalence:

(4.1.3.2)  IndCoh*(X/H) = IndCoh* (X ) "¢ .— Homp_ 04 Vect, IndCoh* (X)),

weak,naive(

where the right hand side is the naive weakly equivariant category with respect to the action of H
as defined in [Ras20| Section 5. This in particular, may not be equivalent to the ind-completion
of its compact object. This category may seem abstract, but one can unpack it using flat descent.

Recall that given a flat cover T'— S, one can consider the associated Cech nerve:

*+1

(4.1.3.3) 775",
Applying this to the flat cover X — X/H, the Cech nerve is:
*+1
(4.1.3.4) XN — XS X HES X xHx H---
By [Ras20, Theorem 6.25.1]:
*—41
(4.1.3.5) IndCol*(X/H) 2 Totsems (IndCoh(X *X/H)).

The right hand side is a semi-simplicial set of categories that only involve categories of sheaves on

ind-schemes. Suppose further that H acts on each X; such that X/H = ligXi /H, we can write:

*+1 *+1
(4.1.3.6) Tot semi (IndCoh (X ™ X/#)) = Totsem:( lim IndCoh(X; x x/p X X/H)).

upper-!
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Commuting the limit on the right hand side using [Ras20|, Lemma 6.17.2], noticing that X; X y /H
*+1
X*x/m) is the Cech nerve of X; — X;/H, we get:

(4.1.3.7) Totsemi(IndCoh(X X/#)) = lim IndCoh(X;/H).

upper-!

By [Gail2, Lemma 1.3.3], we may change the limit over upper-! to the colimit over lower-x:
(4.1.3.8) IndCoh™(X/H) & h_n} IndCoh*(X;/H).
lower-x

Now we specialize this story to the BFN space. Let C* act as the two-fold cover of the loop
rotation. Both Grg and Rgy have an action of G(O) x C*H We will denote this group by
Go. From the above discussion, we can define categories IndCoh(éo \ Grg) and more generally,
IndCoh(é@ \ Rq,v). Moreover, if we fix a stratification {Rq,v,n} of Rg,y as in Section
then:

(4.1.3.9) ndCoh(Go \ Re,v) = lim IndCoh(Go \ Ra,v,n)-

For each n, the category of coherent sheaves Coh(é@\RG,Vm) is the full subcategory of IndCoh(éo\
Ra,vn) consisting of objects whose pull-back to Rg v, is coherent. The category of equivariant
coherent sheaves on Rq v, Coh(éo \ Rqg,v), is defined as the full subcategory of IndCoh(é@ \
Re,v) whose objects are the images of Coh(é@ \ R, v.n) under the above colimit. This category
Coh(é(g \ Rqg,v) is expected to be the category of line operators for the theory Ty, and the
derived Hom between objects in this category is expected to be the space of local operators at the
junction of two lines.

4.1.3.2. Hom Spaces. Before proceeding to the computation, we give a comment about the use
of Hom spaces. To obtain the space of local operators at the junction of two line operators, we
need to take the Hom space between two line operators as a DG vector space, which, intuitively
speaking, is the derived Hom spaces between two coherent sheaves. Let us briefly introduce the
setting in which this enriched Hom can be taken.

2We will use the two fold cover of the group of loop rotations here, since this will allow us to shift gradings by ql/ 2
which is necessary for matching with the physical Schur indices.
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Let C be a presentable monoidal DG category and M be a presentable DG module category
of C. For any pair of objects (M, M) in M, the object

(4.1.3.10) Hom® (M, My) € C
is defined by the following adjunction property:
(4.1.3.11) Hom (— ® My, Ms) = Home (—, Hom® (M, My)).

Let X be a reasonable DG indscheme acted on by a smooth affine group scheme H (See [Ras20] for
a definition). Then IndCoh(X/H) is a module category over the monoidal category IndCoh(BH ) =
QCoh(BH), where BH = pt/H is the classifying stack of H. We thus obtain a Hom functor:

(4.1.3.12) Hom®CehBH)(_ ) : IndCoh(X/H) x IndCoh(X/H) — QCoh(BH).

We will abbreviate this by HomP#. Specify this to our setting, we have the Hom functor:

Hom®®: IndCoh*(Go \ Ra.v)? x IndCoh*(Go \ Ra.v)
(4.1.3.13)
— QCoh(BC™*) = IndCoh(BC™).
This will be the main player of this section for many of the computations. We will write End®C" if

the two arguments of Hom are identical.

REMARK 4.1.3. This definition of Hom spaces seem to be abstract, but in our example it is a
concrete one: first of all, it will be given by a colimit of Hom spaces computed on each closed orbit
of G(O); secondly, on each orbit, it is the usual dg vector space of Hom, which can be computed by

choosing an injective resolution of the second argument.

4.2. Geometric Computation of the Poisson Algebra

4.2.1. Computation of Opsg . Let us start with a computation for Opsg o, namely when
first consider pure gauge theory. In this case, the category of line operators is Coh(éo\Grg). This

category is a monoidal category, with monoidal unit given by (’)[ the structure sheaf of the

el/Go’

117



identity coset [e] with the trivial 6’@ equivariant structure. Our goal is to compute the space:

BC* _
(4.2.1.1) End®® (0, ¢,)

as a C*-DG vector space. The remainder of this section is devoted to the computation of this space,

up to quasi-isomorphism. The idea of the computation is the following:
e First, one can factor the computation into two steps: computing End®Go (O[e] /éo); then
taking the (derived-)invariant subspace with respect to the G(Q) action.
e Computing the derived G(O) invariants using the Chevalley-Eilenberg cochain complex.
e Computing End®Go ((9[6] /éo) using formal completion.
4.2.1.1. Decomposing the Hom Functor. Let H be a smooth affine group scheme that can be

written as:
(4.2.1.2) H=HyxT

for two smooth affine group schemes Hg and T'. Assume also that T is of finite type. Let Y, be
finite-type classical H-schemes such that Y;, — Y41 are closed embeddings of H-schemes. Denote
by Y = @Yn and Y = hﬂYn/H Let X be a finite-type classical H-scheme together with a
closed-embedding of H-schemes i : X — Y. Denote by X = X/H. Let (F,G) be a pair of objects
in Coh(X). We would like to understand

(4213) Hompt/T (i*,lndCoh‘Fv i*,Il’ldCOhg)-

Denote by 7 the natural projection Y — pt/H = BH, the classifying stack of H, and by 7 the
natural map BH — BT'. Since IndCoh()) is a module category of IndCoh(BH), we have an object:

(4.2.1.4) Hom® (4, 1ndconF, ix mdconG) € IndCoh(pt/H).

Now if we view IndCoh(BH) as a module category of IndCoh(BT") via the functor 75, we will have

an object:

(4.2.1.5) Hom®" (OBH7 Hom"™ (i tnaconF, i*,Indcohg)> .
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LEMMA 4.2.1. The following is a quasi-isomorphism of T modules:
(4.2.1.6) Hom®™ (i 1naconF, ix mdconG) = Hom®" (OIBHa Hom™ (i, tnaconF, i*,IndCth)) .

PROOF. Let V be an object of IndCoh(BT'), then:

Homyygcon(sr) (V, Hom®™" (OBH, Hom™ (i tnaconF, i ndCohG )))

= Homyyqcon(sh) (W oV, Hom®™ (i, tmaconF , ix, ndconG ))
(4.2.1.7)

= Homyyqcoh(y) (V' @ ix,IndCohF s I, IndCohF)
~H V, Hom"" (i F,i 9)
= nommdconmr) | vV, Hom ?x,IndCoh"  2x,IndCoh .

This proves the claim.

0

This statement says that we can first compute the endomorphism of i, thaconF and i macond
as an H-module, and then compute invariants with respect to Hy. However, this is not the best
way to understand this Hom space, since IndCoh(BH) is not compactly generated. In |[Ras20),
Section 5.11], the author defined another category that is compactly generated. Denote by Rep(H )¢
the monoidal subcategory of IndCoh(BH) consisting of objects whose images under the forgetful
functor IndCoh(BH ) — Vect are compact, and Rep(H) = Ind(Rep(H)¢), the ind-completion. This
category is compactly generated, and if H is a smooth affine algebraic group, then it is equivalent
to IndCoh(H). In particular, IndCoh(BT") = Rep(T).

Moreover, by |[Ras20, Lemma 5.16.2], if H = lim H; for H; finite dimensional smooth algebraic
groups, then Rep(H) = @Rep(Hi), and so the understanding of Rep(H) can be reduced to
understanding representations of finite-dimensional algebraic groups.

Since the action of Rep(7") on both IndCoh(BH) and IndCoh(Y) factors through an action of
Rep(H), we can modify Lemma into the following:

LEMMA 4.2.2. The following is a quasi-isomorphism of T modules:
(4.2.1.8)  Hom™ (i, naconF, ix ndconG) = Hom®” (C’)Mu Hom®PH) (i, 1 qconF, i*,lndcohg)) .

The object HomReP(H) (4s,IndCohF s %%, IndCon¥) behaves better with colimit:
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PROPOSITION 4.2.3. Denote by Fi and Gy the pushforward of F and G to Yy /H. There is a

qausi-isomorphism in Rep(H):
(4.2.1.9) Hom®PUH) (i, 1 4conF, v mdconG) = @HomRep(H) (Fi» GOr)-

PrOOF. Given V € Rep(H )¢, we have:

HomRep(H) (V7 HomRep(H) (i*,IndCoh]:a i*,IndCth))
= Homp,qcon(y) (V @ s, IndCohF s ix,IndCoh )

(4.2.1.10) (by equation (£.1.3.8)) = lim Hompyacon(vy/a)(V @ Fk, Gi)
> lim Hommpey, (17 (V, Hom® () (7, gk))
(since V' is compact) = Hompep () (V, ligHomRep(H) (Fes gk))
Since Rep(H) is compactly generated, this proves the claim. ]

The object HomRer(H) (Fk, G) may seem to be abstract at first, but we can show that this is a
familiar object: the underlying vector space of this object is the derived Hom between Fj; and Gy,
as sheaves over Y. Denote by Oblv the forgetful functor Rep(H) — Vect. This is the composition
of U : Rep(H) — IndCoh(BH) with the forgetful functor IndCoh(BH ) — Vect. Denote also by pg

the projection Xy — Xj/H. We claim:
PROPOSITION 4.2.4. There is a quasi-isomorphism:

(4.2.1.11) OblvHom P (F,. Gr) = Hom "V (p} Fi, piGr).-

Here the left hand side of the above equation is the underlying DG vector space of Hom®eP(H) (Fk, Gk)-
We need the following Lemma:

LEMMA 4.2.5. Let pg : pt — BH be the projection, then:

(4.2.1.12) poHom™ (Fy., Gr.) = HomV**! (p}; Fi, G-
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PROOF. Denote by 7y, the projection Y;,/H — BH. We know that IndCoh(Y;/H) is a module

category of QCoh(Yy/H), and this is compatible with the monoidal functor:
(4.2.1.13) 7}, : IndCoh(BH) = QCoh(BH) — QCoh(Yy/H).

Using adjunction property, we have:

(4.2.1.14) Hom® (F;,, G,) = Hom®? (Oyk/H,HomQCOh(Y’“/H)(]:k, Qk)> :
The right hand side of the above equation can be identified with:

(4.2.1.15) (73,)« Hom QCoh Y/ H) (7, G,

We are thus interested in pfj (7))« HomQChXR/H) (7, G, Consider now the Cartesian diagram:

X — 5 pt
(4.2.1.16) lpk lpo
X, /H —"5 pt/H

Using base-change property of QCoh, we obtain:

(4.2.1.17) p(mi) «Hom QMR H) (7, Gy 2 (7). pj Hom QPR D (Fy Gy,
Now by |[Lurl8| Proposition 9.5.3.3]:

(4.2.1.18) pZHomQCOh(X’“/H) (Fr, Gr) = HomQCoh(Xk) (prFk, PrGk)-

Putting this into equation (4.2.1.17]) we obtain the desired result.

ProoF oF PRoOPOSITION [£.2.4] By adjunction property, there is a quasi-isomorphism:

(4.2.1.19) Hom®P(H) (F,.. G,) = HomReP(H) ((’)BH, Hom®H (7, gk)) .
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Since Y} is a classical finite-type scheme and Fi and G are coherent, by Lemma the Hom

space Hom®H (F, Gy.) is an object in IndCoh(BH)*, which is equivalent to Rep(H)* via . Thus:

(4.2.1.20) UHom" P H) (F,.. Gr) = Hom® (Fy, Gr).
Since Oblv = pj o U, this and Lemma [4.2.5] gives the desired result. O

REMARK 4.2.6. The above discussions suggest that the sheaf HomQCoPrVe/H) (Fk, Gk) is the usual
Hom sheaf between Fy, and Gy, on Yy, with the canonical H equivariant structure. The (derived) global
section of this sheaf over Yy as an H module is identified with HomRep(H)(]:k, Gr). The H module

HomRep(H)(Z'*Jndcth’ ’L'*Jndcohg) is the colimit Of HomRep(H) (./Tk, gk)

We will apply this to the affine Grassmannian Grg. Fix a stratification Grg = hgnGer such
that Grg,, is a projective scheme closed under the action of éo. Take F and G to be objects in

Coh(Go \ Grg,pn), viewed as objects in Coh(Go \ Grg). Lemma implies:

(4.2.1.21) Hom®C" (F, G) = Hom®C" (O HomReP(Co) (F, g)) .

Béo’

Proposition m shows that the 5’@ module HomRep(éO)(}" ,G) is a colimit of Hom spaces on
finite-dimensional strata Grg r, namely HoaneP(é@)(]:k7 Gr). These are bounded from below in-
dependent of k£ by Proposition and so can be identified with HomBGo (Fk, Gr). The func-
tor HomBC*((’)BéO, —) thus computes the derived invariants of these C:’o modules with respect
to the normal subgroup G(O). Let Gs, be the normal subgroup defined by G(1 + 2"O), then
Go limé@/G>n, and so by |Ras20, Lemma 5.16.2], Rep(é@) ~ liﬂRep(éo/ng), and so
taking G(0) invariants of modules in Rep(Go) can be calculated by analyzing invariants of finite
algebraic groups. This is what we turn to next.

4.2.1.2. Equivariance with Respect to G(O). Let us now deal with the second item, namely

equivariance with respect to G(O). Let V be an algebraic representation of é@, there is an

associated Chevalley-Eilenberg cochain complex:
(4.2.1.22) V @ Sym®((zg (0))" [-1]),

in which the differential V' — V ® (2g(O))* is induced by the action of zg(O) on V. We claim:
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PROPOSITION 4.2.7. Let V be an algebraic é@ representation, there is a quasi-isomorphism:

(4.2.1.23) Hom®® (0~ ,V) 2 [V ® Sym*((zg (0))* [-1])]° .

Béo’

Here [~ means taking the G invariant part of a representation.

PRrROOF. We have a short exact sequence of groups:
(4.2.1.24) 1=-Gs0—GO) =G —1,
which gives a natural equivalence of functors:

(4.2.1.25) Hom®C (0, ~ V)= HomBC*<OB(GX@), Hom®*( @O, V))

Béo’

Since G is reductive, the category of algebraic representations of G is semi-simple, which implies

that:
* X . G
(4.2.1.26) Hom®C (OB(GXc*),HomB(GXC )(OBGO’V)> = [HomB(GXC )(OBG‘@’V)} )

where [] is taking ordinary G invariants. Thus we only need to understand Hom®(@*¢") (Ops.» V),
o

which is the( derived) G~¢ invariants of V. To understand this, we need the following lemma:

LEMMA 4.2.8. Let K be a finite-dimensional simply-connected unipotent Lie group and V be
an algebraic representation of K, then RHom(C, V) = H* (V ® Sym®*(¢*[—1])) =: H*(¢,V), where

V ® Sym®*(¢*[—1]) is the Chevalley Eilenberg cochain complex of V' as a € module.

Let us assume this for now and apply it to Gso. From Rep(Gs¢) = hﬂk Rep(Gso/2*), we see

that for any finite-dimensional representation V:
(4.2.1.27) RHomg._,(C, V) = lim RHomg_, /.« (C, V).
k

Now the Lie group Gsg/z" is unipotent simply-connected, whose Lie algebra is zg(Q)/2*g(0), so

for finite-dimensional V', one has:
(4.2.1.28) RHomg_,/.+(C,V) 2V @ Sym'((zg(@) /zkg(O)) [—1])
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Taking co-limit over k, one obtain, for any finite-dimensional(and more generally algebraic) repre-

sentation V:
(4.2.1.29) RHomg.,(C,V) =V ® Sym®((2g (0))" [-1]).

This completes the proof.

For completeness, we present the proof of Lemma, here:

ProOF oF LEMMA 2.8 Clearly H° = Homg(C,V), so by the usual idea of homological
algebra(for instance, in [LT02]), we need only show that the functors H® are erasable for i > 0.
This is done by induction and a use of the function ring Ox. We claim that H'(¥, O) is zero for
i > 0. When ¢ = C and K = C, Og = C[x] and the action of ¢ is given by taking derivatives. Thus
H!(C,Clx]) = 0 since taking derivative is a surjective map.

Now for general £, by nilpotency, we have a short exact sequence of Lie algebras 0 — h —
£ — C — 0. This must split since C is one dimensional and so we have a covering map H x
C — K where H is simply connected. By assumption K is simply connected so the map is an
isomorphism. Thus we have an exact sequence of Lie groups 0 - H — K — C — 0. Let us
consider H*(¢, O ). By Hochschild-Serre spectral sequence [HS53|, there is a spectral sequence
whose second term is given by Ey" = H*(C,H*(h,Ok)), that converges to EX = H*(t,Ok).
Since C is one dimensional, Fs is supported on two columns, the spectral sequence terminates and
H" (¢, Ok) = Bptrq=nHF(C, HI(h,OK)). Consider HI(h, Ok), we need to understand the module
structure of Og as an H module. From the isomorphism H x C & K of Lie groups, we see that

there is an isomorphism of algebras
(4.2.1.30) Ok = Oy ® C[z],

which is described by the following: for g € K, we write g = hycy with hy € H and ¢4 € C, then
the map is given by mapping function f on K to f(hgcy) on H x C. Now to understand the module
structure, if we take an object f1 ® fo where fi; € Oy and fy € Clz], for any h € H, h(f1 ® f2)(g) =
fi® fa(h7lg) = fi ® fa(h hgey) = fi(h™'hy) @ facy) = ((hf1) © f2)(g). All the equations
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use the fact that the decomposition of g = hgcy is unique. Thus under the above isomorphism
(4.2.1.30) , Ok as an H module is nothing but a direct sum of Op, hence H%(h, Ox) = 0 for ¢ > 0,
and H°(h, Ok) = (’)2(, the invariant part of Og. Again from the identification this is
isomorphic to C[z]. But what is the module structure? Let f = f; ® fo where f1 is H invariant(it
is a constant function in this case), let ¢ € C, then cf(g) = f(c thyey) = f(c thee te,), now
since H is a normal subgroup(h is an ideal), ¢ 'hc € H, and so by the uniqueness of the above
decomposition, c¢f(g) = fi(c 7 he) fa(ctey) = fi(h)(cf2)(cq), where we used that f; is a constant
function on H. Thus the action on Clz] is taking derivative and we already see that the cohomology
is zero for positive degree. This completes the inductive hypothesis.

Since every K module has an injective resolution by O, we conclude that H’ are indeed

erasable for 7 > 0.

By Proposition there is a quasi-isomorphism of algebras:

G

(4.2.1.31) End™ (0,,,) = [End® (0, 5,) @ Sym*(2g (0))" [-1])

[el/Go

We are thus left to understand the algebra End®Co (O[e] /50) as a Go-equivariant module. This is
the last step and uses the idea of formal completion and formal geometry of [GR17].

4.2.1.3. Formal Completion. We are left with computing EndRep(éO)(O[e]/éo) as an algebraic
representation of é@. Before going into any details, we would like to comment that this computation
may seem complicated, but it is rooted on this simple observation: if R is smooth and I is a complete
intersection ideal, then R/I is quasi-isomorphic to its Koszul resolution, and Endg_nioq(R/I) is an
exterior algebra over R/I generated by (I/I?)*. This is not quite obvious when we replace R by a
formally smooth indscheme, since each of the strata may be very singular. In this section, we will
introduce formal completion introduced in [GR14] to render the situation amenable.

Let X be a prestack; then its de-Rham stack is defined by:

(4.2.1.32) Xar(S) = X (Sred)
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where S,.q is the reduced scheme of S. Given a morphism of prestacks X — ), the formal

completion is defined by( [GR14} Section 6.1)):
(4.2.1.33) Vr =Y Xy, Xar.

This operation behaves well with filtered colimit as explained in [GR14] 6.1.3]: if X = lim &, and

Y= liﬂ)ﬂn such that the map X — Y comes from a system of maps X, — V,, then:
(4.2.1.34) Vx = lim Yy, .

Now assume that X is a locally almost finite type DG scheme and Y an almost finite type
DG indscheme, and an embedding i : X — Y, then by [GR14, Proposition 6.3.1], }7)\( is a DG

indscheme. More-over, from the above we see that:

(4.2.1.35) Yy = hgﬁ;{,

which in particular means that:

(4.2.1.36) IndCoh(Yx) = lim IndCoh (Y, x).

Denote by i the embedding Yx — Y, and by i, the embedding of ¥, x — Y, then by [GR14,

~1~

Proposition 7.4.5], the adjunction Id — 45 iy, macon s an equivalence. Taking colimit, we see that

Id — #"%4 mdcon is an equivalence. If we now consider the sequence of maps:

(4.2.1.37) X 2o ¥y 1y,

then i =7 o j, and so we have an equivalence of continuous endo-functors of IndCoh(X):

(4.2.1.38) "1 IndCoh = §'Jx IndCoh-

Now let us take Y = Grg and X a miniscule orbit, denote by X = X/ Go and ) = Y/ Go. The

formal completion 37;\( is a DG-indscheme with an CNJO action, we denote by 37/’\’ the quotient stack
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3//)\( / éo. We have the following diagram of maps:

>~.<

Xj>}//)\(

b

XYy — Yy

(4.2.1.39)

bS]

B

LEMMA 4.2.9. There is an equivalence of continuous endo-functors of IndCoh(X):

<= =l=

(4.2.1.40) U %x,IndCoh = J Jx IndCoh-

PROOF. Since p is conservative and t-exact, we need only show that:

T'* *.'*.

(4.2.1.41) P i, IndCoh = P*J J 4 IndCoh-

By definition of IndCoh* as well as the definition of functors involved, we have p*i!g*’lndcoh =

o . 7.'7. . . .
’L!Z*Jndcohp*, as well as p*j J4 IndCoh = j! JxndCohP™- These two functors are equivalent as seen from

the above discussion. This completes the proof. O

Recall that we would like to compute EndRep(éo)@*JndCOh(’)X). By adjunction:
(4.2.1.42) EndRep(éO)(g*’IndcohO;’() = HomRep(éO)((’)X,E!L?Indcf,h(’)/y).

By Lemma we have:
(4.2.1.43) Hom®P(E0) (O, 77, 1naconOx) = HomPPE0) (O 5 J s 1ndCoh O )-

Thus we have transfered the computation onto the formal completion. In the next section, we will
specialize to the case when X = [e¢] and Y = Grg, and explicitly understand this formal completion
using the idea of formal geometry studied in [GR17].

4.2.1.4. Formal Groups and Lie Algebras. In [GR17, Chapter 7|, the authors studied formal
groups, and showed that the category of formal groups over a prestack X is equivalent to that of
Lie algebra objects in IndCoh(X). In Chapter 3, Section we have used this idea to compute
the tangent Lie algebra of a Hamiltonian reduction. Let us recall the important notations here.
Denote by FormMod x the category of locally almost finite type stacks Z over X’ such that the

map Z — X is inf-schematic and induces an equivalence Z,..q = X,.q ( [GR17, Chapter 5, 1.1.1]).
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A formal group over X is a group object in FormMod,y. This category is denoted by Ger. On
the other hand, consider the category of Lie algebra objects in IndCoh(X), which we denote by
Liexy. The result of [GR17, Chapter 7], more specifically Theorem 3.1.4, states that there is an

equivalence:
(4.2.1.44) Grl, ~ Liey.

The idea of this is that given a formal group ) over X, the object 7, mdacon(wy), the pushforward
of the dualizing sheaf, has the structure of a cocommutative Hopf algebra. This is the universal
enveloping algebra of the Lie algebra associated to V.

When X' = pt, then the category LieAlg(IndCoh(pt)) is the category of DG Lie algebras in Vect
studied in [Lurll|. In the special case when g is a Lie algebra concentrated in degree 0, the formal
moduli problem is simply gg, the formal completion of g at 0( [Lur11, Construction 2.2.13.]). The
formal group structure is given by the Baker—Campbell-Hausdorff formula.

Let us now apply this to the case when X = [¢] and Y = Grg, we have:

1

LEMMA 4.2.10. The formal completion }//)\( is a formal group whose Lie algebra is z~'g[z~1].

PROOF. From the discussion of Section the group ind-scheme L<YG is an open neighbor-
hood of X in Y, and so }//)\( = LZ]EX. Now LZ)EX is a formal group whose associated Lie algebra
is 27 tg[z7 1.

O

Denote by L<g the Lie algebra of L<°G. By [GR17, Chapter 7, Theorem 3.1.4], we see that
}//)\( is equivalent to I?O\go, the formal completion of L<Yg at 0. The action of Go is given by
conjugation on L<g = g(K)/g(0). Again denote by X = X/Gp and Y = Y/Go. Recall the

morphism j : X — Yy and i: X — V. We claim:

PROPOSITION 4.2.11. There is an equivalence of continuous endofunctors on IndCoh(X)

(4.2.1.45) i s macon = Sym*(L<%g[-1]) @ —

where L<Yg is understood as a G(O) module under conjugation action.
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PROOF. By Lemma we can replace the left hand side of equation (4.2.1.45) by jlj*,lndCoh'

Consider the following diagram:

(4.2.1.46) X~ Go\ LV, —— G(0)\ L

Denote by i, the inclusion X — G(0) \ L<"g, Lemma again implies:
7.'7.

(4.2.1.47) Vi ]*,IndCoh = Zgzg,*,IndCOh'

The latter can be computed explicitly using a Koszul resolution, and the result follows.

We can now prove:

COROLLARY 4.2.12. There is a quasi-isomorphism of C:'o vector spaces:
(4.2.1.48) End®P(Co)(0,, = ) 2 Sym*(g(K)/a(0)[-1])
PROOF. By Proposition

(4.2.1.49)  End™P(@0)(O = )= Hom™P(Co) (O[e] 1Go Sym*(a(K)/g(0)[-1]) @ O[e]/éo> :

Since (’)[e] /Go is simply the trivial representation of éo, the right hand side of equation (4.2.1.49)
can be identified as the right hand side of equation (4.2.1.48]). This completes the proof. O

Using Proposition and Corollary we obtain the following theorem:
THEOREM 4.2.13. There is a quasi-isomorphism of C* wvector spaces:
* ~ . * G
(4:2.1.50) End®C (0, 6,) = [Sym*(a(K)/a(0) & (29(0))") [-1])]°

where [~ is taking ordinary G invariants. This space coincides with moVa,0 of equation (4.1.2.6))
after shifting the degree of g(K)/g(O) to —1.

REMARK 4.2.14. As remarked in [OY 20/, the character of the above space is given by:

2mis
« roots « roots

(4.2.1.51) IY;/!%T L a-s @z [T a2,
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which reproduces Schur index of a pure gauge theory.

4.2.1.5. Other Miniscule Orbits. We can in fact use this technique for other miniscule orbits of
Grg. Let us now take X to be a miniscule orbit and Y = Grg. Denote by X and ) the quotients
of X and Y by Go. Choose [g] a point in X, let P be the stabilizer of [g] in Go, then the there is

an equivalence of prestacks:

(4.2.1.52) X ~Go\Go/P=BP.

Under this, the map 7 : X — ) corresponds to the map of schemes:

(4.2.1.53) P\pt —L» P\ Grg —" Go \ Gre

where the map j is the embedding of pt as [¢7!]. Let V be the P module given by:

(4.2.1.54) 8(K)/(9(0) + gg(O)g™).

We prove:

PROPOSITION 4.2.15. There is a quasi-isomorphism of objects in IndCoh(X):

(4.2.1.55) 71 nacon(Ox) = Go x 5 Sym*(V[-1)).

PRrROOF. Using the presentation of X in equation (4.2.1.53]), we would like to show that:
(42156) j!m!m*,lndCohj*,IndCoh(OX) = Sym'(V[—l])

as a module of P. Let us understand the composition m!m*,lndCohj*,IndCOh(OX)a consider the

following Cartesian diagram:
P\Go/P —™— P\ pt
(4.2.1.57) f l

P\ Grg —"— Go \ CGrg
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Here m is the projection of éo/]3 to a point, and i is induced by the embedding X — Grg. By

base-change property [GR14) Proposition 2.9.2], we have:

1= ~ ~
(42158) M %% IndCoh = %,IndCoh" -

Thus the object mlg*Jndcoh((’)X) IS ix Idcohwx, where wx is the dualizing sheaf of X with the
canonical ]S—equivariant structure. In our case, since X = éo / ]5, wx is the line bundle over X

associated to the one dimensional P representation:
(4.2.1.59) Liop = Sym*(go/p[1])

Here go/p[l] is a finite dimensional vector space in cohomological degree —1, and so the exterior
algebra has finite cohomological degree. The representation Lo, is the top degree part of the
exterior algebra, and is in cohomological degree —dim(X). Let us now employ the idea of formal
completion. Consider the Cartesian diagram:

P\ Xy — P\CGo/P
(4.2.1.60) l l

P\Y,, —— P\ Gig

—

By base-change property [GR14, Proposition 2.9.2], the shriek pullback of E*,IndCohWX to Y|y is
the pushforward of the dualizing sheaf of )?@ to ?@. The advantage is that these local completions
have very explicit descriptions. Indeed, by [GR17, Chapter 7, Theorem 3.1.4], the space )/(@ is

equivalent to the completion of go/p at 0. Similarly, the space l//[g\] is equivalent to the completion

of L<%g at 0. The map )/(Q — }/’@ corresponds to the embedding of the following P modules:
(4.2.1.61) ¥ :go/p — 8(K)/9(0), H— gHg™".
We can thus transfer to the following diagram:

P\ Xy —— P\go/p

(4.2.1.62) ﬁ P’

P\pt —L— P\ Yy, —= P\ g(K)/8(0)
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with which we can derive:

e ~ 17
(42163) ]!Z*,IndCoth = ]'(b w*,lndCoh(wg@/p)'

Here the sheaf wy,, , is the structure sheaf of go/p tensored with the representation Liop. We now

have:

(4'2'1'64) 3!$¢*,Ind00h (wgo/p) = HomBP ((}'\o gb\)*,lndCoh(OBﬁ)7 w*,lndCoh (wgo/p)> :

The right hand side can be computed using a Koszul resolution of (3 o qAS)*?IndCOh(O and the

55);

result is the following complex:

(4.2.1.65) Sym*(g(K)/e(0)[-1]) ® Clgo/p] © Liop,

together with a differential induced from the Koszul resolution. Here C[gp/p] denotes the algebra

of functions on go/p. The nonzero part of the Koszul differential lies in:

(4.2.1.66) Sym*(g(0)/p[-1]) ® Clgo/p] ® Liop = Sym*((9(0)/p)" [1]) ® Clgo/p].

The quasi-isomorphism is due to tensoring with Lip, which makes this into a usual Koszul complex.
The cohomology of this complex is C in degree 0, and so the cohomology of the complex in equation

(4.2.1.65) is thus identified with Sym®*V[—1]). This completes the proof. O

4.2.2. Computation of Opsg , for General V. In this section, we will generalize the com-
putation above to Opsg y for General V. Let V' be a representation of G. Recall that the BEN

space is defined by the base change diagram:

Ray —— V(0)

(4.2.2.1) l l

G(K) xgo) V(0) —— V(K)
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We add to this another base-change diagram:

Z » Ry —— V(0)

(4.2.2.2) l l l

e x V(0) —— G(K) xgo) V(0) —— V(K)

Here Z = V(O) xy(x) V(O) can be described as V(O) x V(K)/V(O)[-1]. The identity line is the
pushforward of structure sheaf of V(O) along the embedding i : V(O) — Rq,y. Note that this is

a classical scheme embedded into a derived scheme. We will label the maps:

V(0) N4 m y Ray ——— V(0)

(4.2.2.3) lpl lm l

e x V(0) —— G(K) x o) V(0) — V(K)

The Schur index is then the graded Euler character of:

BC* [,
(4224) End (l*,IndCoh(Ov(o)/éo)) :

In the following, we will write X for the quotient stack X/ é@, in order to avoid clustering of
notations. We will also omit the IndCoh for all the push-forward functors. To do this computation,
fix again an ind-scheme structure of Grg and R,y that are compatible with the action of éo. We

make use of the following diagram:

V(O) —" s z, mn Revm ————— V(O)

(4.2.2.5) lpl lPQ l

e x V(0) =2 G(K)n x o) V(O) — 2~ NV(0)

such that m,, ol, = i,. Since Rq,v is a colimit of Rg, v, by equation (4.2.1.9):

(4.2.2.6) End5C” (i*(om)) = limy End®®’ (in,*(om)) .

Lemma [4.2.2| implies that End®® (zm*((’)m)) this is the G(O) invariants of:

(4.2.2.7) EndRer(Co) (in,*(om)) .
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Let us compute this vector space using adjunctions. Since i, = m,, o l,,, from the adjunction pair

(M «,m},), one has:
(4.2.2.8) EndRer(Go) (z’n,*(O—V(O))) ~ HomRer(Go) (ln,*(Om), mzin,*(om)) :

As Z, is a very explicit DG scheme with a very explicit action of éo, one can write an explicit

projective resolution of ln,*((’)m) given by the Koszul complex:
(4.2.2.9) ln,+(Opay) = O @ Sym™((=MV(0)/V(0))*[2]) -

together with the differential given by the usual Koszul differential. This is a quasi-isomorphism of
éo equivariant sheaves. Substituting the resolution of equation (4.2.2.9)) into the above equation,

one has:

HOmRep(GO) (lm* (Om): mizin,* (Om)>

(4.2.2.10)

~ HomRep(Go) (OZ, m;z‘n,*(om)) @ Sym*(=~ NV (0)/V(0)[-2]) .

By definition, Oz = (pl)*(’)m, using push-pull adjunction, one has:

(4.2.2.11)  HomRer(Go) (OZ, m!nin,*(OV(o))) 2 Hom"?(“0) (Oivw)» (pl)*m’,pn,*((?—v(o))) :

We then apply the base-change property established in [Ras20] Lemma 6.16.1, namely that

(p1)«m}, = 4! (p2)«, which implies:

(4.2.2.12)  HomRer(Go) (om, (pl)*m;lin,*(om)) > HomPReP(Go) (Om7 j;jn,*(om)) .
To make contact with the affine Grassmannian, we now consider the following Cartesian diagram:

e x V(0) LN G(K)n xgo) V(0)
(4.2.2.13) lql lqz

kn,
e Grg,p.

Since OW =q) OE’ by pull-push adjunction:

(4.2.2.14) Hom®er(Go) (Om, j;jn,*(om)) = Hom"'?(¢0) (O@’ (QI)*j;j”’*(Om» '
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By base-change formula again, (q1)«jh, = k. (q2)«, we obtain:

(4.2.2.15) HomRer(Go) (Og, (ql)*jijn,*(om)) = End(Co) (k, .0) @ C[V(0)].

Here V(0O) is in cohomological degree 0. By taking the colimit and applying Proposition we

find that the underlying Go representation of EndRep(éO)(i*((’)v)) can be identified with:

(4.2.2.16) CIV(0)] @ Sym (V(K)/V(0)) @ End*¥(C) (0.

Here EndRep(G@)(OH) is computed in equation (4.2.1.48|).

As far as the character is concerned, the above computation thus gives us the desired CNJO
module. However, the differential is kept obscured in this computation. To analyze the differential,

we will use formal completion. Recall the following diagram:

Ray — V(0)

(4.2.2.17) l l

Denote by 7 the formal completion of G(K) Xq0)V(0O) along [e] x V(O). This is a Go-equivariant
formal scheme over V(O). It is clear that it is isomorphic to @] x V(O) where @] is the
formal completion of Grg along [e]. As already discussed in Lemma the space G/r(;} is
a formal group, and thus by |GR17, Theorem 3.1.4], it is isomorphic, as a formal group, to the

formal completion of its Lie algebra at 0, namely L/<0\go. We define R by the following diagram:

» Ra,y — V(0)

R
(4.2.2.18) l l l

L<0gy x V(0) —— G(K) x¢go) V(0) —— V(K)

By |GR14| Section 6.1.3 (iv)], R can be identified as the formal completion of Reg,v along
V(O) xy(x) V(O). Let i be the embedding V(O) — R, then just as in Lemma we have:

(42219) HomRep(éO) (OW,’Z'%*OW> = HOHlRep(éO) (OW,Z'Z*OW) .
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The advantage of this construction is the following: the space R is an explicit DG ind-scheme whose

underlying pro-algebra is represented by the pro-algebra of functions on the following ind-scheme:
(4.2.2.20) L9, x V(0) x V(K)/V(O)[-1],

and has a differential D as described in Section induced by the formal group action. We will
denote by A the pro-algebra defining this DG ind-scheme. It is worth writing down this differential

explicitly here. Choose a basis v* for V, let pzj be the matrix elements of g action on V', namely:

(4.2.2.21) Xvl =" pl(X)'.

Denote by pfn the corresponding linear function on L<Cg, by v}, the corresponding linear functions
on V(0), and by w,, the linear functions on V(K)/V(O)[-1]. Note that w;, are odd variables.
The differential D can be expressed as:

i . i 1 . .
1222 Dul= X dpeits Y e

2
Jm+k=n J1,J2,m1+ma+k=n

We comment that this comes from exponentiating the action of X, and the first term vanish because
functions on V(K)/V(O) is zero on V(0O). This differential should be understood in the pro-algebra
otherwise the summation would be infinite.

The identity line is the structure sheaf of e x V(Q), and we would like to use a Koszul resolution:
(4.2.2.23) C[V(0)] = Sym*((L<"g)*[1]) ® A ® Sym*(V(K)/V(0))* [2]) .

We comment that this should be understood as a projective system of resolutions. To make this
a DG resolution, we need to include the usual Koszul differential d; coming from the pair I?O\go
and (L<"g)*, as well as dy coming from the pair V(K)/V(O) and (V(K)/V(0))*. However, these

are not enough, since {D,ds} # 0. One can in fact compute this commutator explicitly: let u}, be

the linear function on V/(K)/V (O) corresponding to w;,, in the Koszul resolution, then:

(4.2'2'24) {D7 dQ}U;n = Dw:n = Z p‘;m ® U;7k + Z p‘ljylmlp:;?7m2 ® U;ka + B
jm+k=n J1,42,m1+me+k=n
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And this commutator acts trivially on other generators of the pro-algebra. To make this into a
DG resolution, we need to include another differential D: let EZ ,, be the linear function on L<0g
corresponding to p{n in the Koszul resolution. Then we define D by:

- ‘ 1 . .
* J * J1 72 *
(4.2.2.25) Du;,, = E € m @V + 5 g € Py @ U
jm+k=n J1,J2,m1+ma+k=n

This differential is of course éo invariant, since ezn transforms in the same way as pg’n, and u;,
transforms in the same way as w;,. After introducing this new differential, {D,d2} = {D,d;}
and the combination of the four differentials will be a differential, and the above indeed becomes a
projective system of free resolutions. Now if we take endomorphism with C[V(O)], we obtain the

space:
(4.2.2.26) Sym*(L<%g[—1]) ® C[V(0)] ® Sym*(V (K)/V (0)[-2]),

and the only nonzero differential is that induced from D. Examining the definition of 5, we
find that the higher order terms all drop off, and the linear term maps L<g to C[V(0)] ®
Sym*(V(K)/V(0)[-2]), and is identified with the differential induced by the moment map.

Combining the above steps, we obtain the following:

THEOREM 4.2.16. There is a quasi-isomorphism of DG-C* modules:

(4.2.2.27)
End®*“{i.(Opay)) = [C[V(0)] @ Sym*(V(K)/V (0)[-2]) @ Sym*((a(K)/9(0) @ (28(0))*) [-1])]° .

If we shift the loop grading of V (K) by ¢/, the cohomological degree of V(K)/V(O) to 0, and the
cohomological degree of g(IC)/g(O) to —1, then the cohomology of this space coincides with Vg v in

equation (4.1.2.7)).

PRrROOF. After the grading shift, Sym®*(V (K)/V(O)) can be identified with C[V*(O)]. Since

Va,v restricts to taking the Lie group invariants, comparing equation (4.2.2.27) with (4.1.2.7)), we

conclude that Vg = End® (Z*(Om))
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REMARK 4.2.17. The character of the space in equation (4.2.2.27)) is given by:

[T (as*9)%

1 dS 2 k(G « roots
4.2.2.28 — : (1= 5%) | (g2
(42229 w1, 2 =)@ I (aP% 0

B weights of NN *

This is the Schur index for the gauge theory with matter as stated in [OY20).

4.2.3. The Insertion of Fundamental 't Hooft Lines in Pure PSL(2). Using the tech-
nique developed in the previous sections, one can consider the space of local operators at the
junction of two half-BPS Wilson-t Hooft line operators. As stated in the introduction, these oper-
ators correspond to vector bundles on the reduced G orbits of Ra,v. Among these, the 't Hooft
line operators are certain line bundles on the Go orbits, and are labelled by the dominant coweight
of G. These Wilson-'t Hooft line operators are the perverse coherent sheaves appearing in the work
of [CW19,CWar]|. For a full dictionary of correspondences between line operators and coherent
sheaves, see [Kap06a,|CW19,|CWar].

Given two line operators L; and Lo, the space of local operators at their adjunction is given

by:

(4.2.3.1) Opsgy (L1, Lg) = HomEEE(GO\RG’V)(Ll, Lo).

The space Opsg 1/ (L1, L2) should give rise to a module of the Poisson vertex algebra Opsgy =
moVa,v. Indeed, since 1% L; = L; for i = 1,2, the Poisson algebra Ops y acts on Opsg v (L1, L2)
through convolution. By the work of [But21], this action is also compatible with the factorization
structure. The structure of these spaces as Ops¢ ; modules has not been carefully described in lit-
erature; however, the Euler character of these spaces x,Ops¢ 1 (L1, L2) are computed in [CGS16].

We will look at the simplest non-trivial example: the space of local operators at the junction
of fundamental 't Hooft lines and basic dyonic Wilson-"t Hooft lines in pure PSL(2) (PSU(2) in
physics notation) theory. The fundamental t’Hooft line here is the structure sheaf of the miniscule
orbit Gry/y = P!, corresponding to the minimal dominant coweight % of PSL(2). We wiil not try to
identify these as representations of Opsg y,, but only compute the vector spaces and their indices.

We will match the indices with the indices of [CGS16).
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We will keep using the notation X for the quotient stack X/ Go. Consider now L; = Ly =

Om, we would like to compute:

(4.2.3.2) Opsgy (L1, L2) = End*™ (O )

Proposition reduces the computation of Endomorphism algebra to computing the global
sections of an associated vector bundle. In the computations below, we will drop all the quotients by
Go in order to simlify the notations, although all the discussions below is carried in the equivariant

settings. Fix a fixed point z'/2, let P be the stabilizer. The module V is given by:
(4.2.3.3) 8(K)/ (2123(0)=72 + 9(0))

The computation then requires that we understand the associated vector bundle as a bundle over
P
Since 2'/2g(0)z~2 4 g(0) = H(O) ® E(O) @ z~'F(0), the representation:

(4.2.3.4) a(K)/ (zl/2g(0)z*1/2 + g(@))
falls into the following exact sequence:
(4.2.3.5) 0— 20— g(K)/ (zl/Qg(O)z_l/Q + g((’))) — g(K)/z"1g(0) = 0,

where b is the Lie algebra of B C G. This short exact sequence split as a representation of B, and

since G(O)/P = G/B, we have an isomorphism of vector bundles:
(4.2.3.6) GoxpV=Gxpz 6@ 0a,,, ®a(K)/z""g(0).
Taking exterior power on both sides, we have an isomorphism:

(4.2.3.7) Go x5 Sym*(V[1]) 2 G x5 Sym®(z~'b[~1]) ® Sym*(g(K) /2" 'g(O)[-1]).
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The global section of G x g Sym*2~1b[—1]) can be computed easily:
H*(G xp Sym®(z~'b[-1])) = C[0],
(4.2.3.8) ¢ 'H*(G xp Sym'(z~'0[-1])) = C[-1] @ g[-1],
¢ 2H*(G x g Sym*(z~"b[-1])) = g[-2].
The index of H*(G xp Sym®(z~'b[—1])) is equal to (1 — ¢)(1 — g — gs*> — ¢s~2). The index of
Sym*(g(K) /=~ 'g(O)[~1]) is given by:

(0)oo(q 1 45%)o0(q: 45 %) oo

(4.2.3.9) (1—q)(1—g¢s?)(1—gs2)

so the index of EndReP(éO)((’)

Gr1/2) is given by:
2

—q—qs®—qs”
Sl ek Lk (@l 0570 057

(1—gs?)(1—qs2

(4.2.3.10)

In conclusion:

THEOREM 4.2.1. The space End]BC*(OGrm) s quasi-isomorphic to:
(42311)  [(C@qCl-1] @ qa[-1] @ ¢°a[-2]) ® Sym*((a(K)/='9(0) @ (20(0))*) [-1])]° .

The character of this space is:

g —as?— gs2
(4.2.3.12) %(q)go ?{ds(l — ) (1—572) ((11 _qqs?)q(1 — 53—2)) (q:95%)%(q: 575

We expect to be the space of local operators supported at a point on a single straight
't Hooft line. The resulting character does not match the index obtained in [CGS16]. The
computation that matches their result is the following: consider now L; = OTW the fundamental
is the dualizing sheaf of

't Hooft line, and Ly = Qm a dyonic Wilson-’t Hooft line, where QGr1/2

Gry/p. Physically, Qm corresponds to the dyonic Wilson-"t Hooft line with fundamental magnetic

charge and +1 electric charge. Consider the junction:

(4.2.3.13) Opsg, v (L1, L) = Hom®® (O Yar ),
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In this case, Proposition[4.2.15]still applies, with the associated bundle of V' twisted by the canonical
sheaf of Gr; /o = G/B. The cohomology of the twisted G x 27 ® O0(-2) is:

H*(G x5 Sym’(z"'b @ O(-2)[-1])) = C[-1],
(4.2.3.14) ¢ H*(G xp Sym'(z71b ® O(-2)[-1])) = C[-1] & C[-2],
¢ *H*(G xp Sym®(2~'b ® O(=2)[-1])) = C[-2].

This space has index —(1 — ¢)(1 + ¢q). The contribution from g(K)/z~1g(O) remains the same.

Cc* : .
Hence the space Hom® (O@’ Qm) has index:
1 - (1+9q) -
4.2.3.1 — ()%, pds(l —s*)(1—s2 tqs?)2 (g qs7%)2
(42:3.15) (0% st =)0 =7 T (a0t (a5

Shifting by ¢'/2, this exactly matches the formula in [CGS16|. In this paper, the authors are
implicitly using a Serre functor to rotate the line operators, or in other words, they took the dual
of the line operators in the monoidal category. This subtle operation was described explicitly
in [CW19|, and an important feature is that the left dual of a line operator is not necessarily
equivalent to the right dual, unless the theory is superconformal, cf. the end of Section
As explained in [CW19|, the difference between left dual and right dual is due to the fact that
the dualizing sheaf Q of Go \ Grg is not isomorphic to its involution s*(2, where the involution
s:Go \ Grg — Go \ Grg is defined by s([g]) = [¢g~"]. Thus, after rotating by 27, a line operator
receives contribution from the dualizing sheaf of Grg. In the case of the structure sheaf of a
miniscule orbit, this is simply the dualizing sheaf of the orbit. This explains the presence of QTM

in the above formula.
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APPENDIX A

Free Field Vertex Algebras and BRST Cohomology

In this appendix we introduce the basic vertex algebras and their modules that appear in this
work. A free field algebra is a vertex algebra that is strongly generated by fields that have the
property that only the identity appears in their operator product algebra. There are four classes of
free field algebras that admit a Virasoro structure (stress tensor): the free boson/Heisenberg VOA,
the free fermion, the symplectic fermions, and the symplectic bosons. These algebras are related

in various way that we now recall.

A.0.1. Heisenberg VOA’s and Fock modules. The basic Heisenberg VOA H; is generated

by a single even (bosonic) field J(z) = Y. J,z7 "~ with OPE
nez

1
3 -

(A.0.1.1) J(z)J(w) ~ Gow)y

Its simple modules are Fock modules F) of highest weight A € C. These are generated by a highest-
weight vector | \) on which Jy acts by multiplication with A, the J,, for positive n annihilate | A),
and the negative modes act freely. We will denote vector space tensor products by the usual symbol
®; while the fusion product, i.e. the tensor product as modules of a VOA V, will be denoted by

the symbol xy. The Fock modules of the Heisenberg VOA satisfy the fusion rules
(A.0.1.2) f)\ XH;y ‘FM :‘F)\‘HL’

The vertex operator associated to the highest-weight vector | A) is denoted by Y (| A), z), and the

fusion rules of the Fock modules are reflected in the following OPE of intertwining operators:
(A.0.1.3) Y(IA),2)Y(|u),w) ~ (2 —w)Y (| A4 p),w) + ...

More generally, let V' be a finite-dimensional complex vector space, say of dimension n, with
symmetric bilinear form B : V x V — C, and fix a basis {v!,...,v"} of V. Then the Heisenberg
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VOA associated to (V, B), which we denote compactly as H {vi}, 18 strongly and freely generated
by fields J? for i = 1,...,n with OPE

B(v',v7)

(A.0.1.4) Hyiy o J(2) 0 (w) ~ 5

(z = w)

We also introduce formal fields v%(z), obeying J%(z) = dv'(2), with a non-analytic OPE
(A.0.1.5) V()0 (w) ~ B(v',v7) log(z — w),

which implies . The v?(2) themselves are not part of the Heisenberg VOA, but they provide
a useful way to describe modules.

Fock modules (a.k.a. Verma modules) for the generalized Heisenberg VOA Hy,i, are in one-to-
one correspondence with linear maps V' — C. In all applications in this paper, the bilinear form
B will be non-degenerate, and can thus be used to establish an isomorphism between linear maps
V' — C and elements of V itself. We will mainly use the latter to describe Fock modules.

Given an element A € V| with associated map B(A,—) : V — C, there is a unique Fock module

denoted

1 n
(A.0.1.6) Fy or (for clarity) Fy ",
generated by a highest-weight state |\) that satisfies
(A.0.1.7) JoIA) = BOLW)IN), JaselA) =0,

and on which the J!_ act freely. The vacuum module of the Heisenberg VOA is simply Fo. If we
expand A = >, A\;v® and correspondingly set A(z) := Y, \jv’(2), then we can formally express the

vertex operator corresponding to the highest-weight state |\) as
(A.0.1.8) Y(|A),2) = :eX®):,
The OPE between vertex operators follows from (A.0.1.5). In particular,

(A.0.1.9) NE) W) (= ) BOM Al En(w)
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Thus the fusion rules are F) X H,; Fn = Fatn-

We finally note that, fixing an orthogonal basis v!,...,v™ of V, there is a decomposition
(A.0.1.10) Hy o 2 Q) Hyi
i
Correspondingly, letting A =) . \ivt, there is a decomposition of Fock modules
(A.0.1.11) Fot e Q) F
i

A.0.2. Lattice VOA and Free fermions. Let us choose the basis v, ..., v™ such that B(v?,v/)
is real for all pairs (v%,v7), and consider the subcategory of those Fock modules Fy that have the
property that all \; are real. This category is a braided tensor category [CKLR19|. Let L C V be
a lattice, meaning a Z-submodule of V', with the property that B restricted to L is integral. Then
(A.0.2.1) Vi =P Fa

el
is itself a vertex superalgebra, the lattice VOA of the lattice L; and if L is even, then it is actually
a vertex algebra.
In particular, in rank one with V' = C(v) generated by a vector with B(v,v) = 1, choosing

L = 7Z(v) ~ 7Z gives rise to a vertex algebra
(A.0.2.2) Vz > Vic

strongly generated by a pair of free fermions. This is the classic bose-fermi correspondence. The

two fermionic generators may be chosen as

(A023) b(z) = Y(‘1>’ Z) = :ev(z) ] C(Z) — Y(| _ 1>’ Z) _ :e—v(z) .
with OPE

1
(A.0.2.4) b(z)c(w) ~ o)

The free fermions V. are a holomorphic VOA, in the sense that the VOA itself is the only

simple module and every module is completely reducible. Thus the module category of V. is
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isomorphic to the “trivial” category of vector spaces. (The terminology “holomorphic VOA,”
sometimes also called a “holomorphic CFT,” originates from the fact that all spaces of conformal
blocks are automatically one-dimensional, implying that the VOA itself has well-defined partition
functions in any genus, and carries the structure of a full CFT. For example, the free-fermion
VOA V. is equivalent to the well-defined physical CFT containing a free complex-valued 2d chiral
fermion.) In general, when L C V is a full-rank complete self-dual lattice, then by [DLM97], the

VOA Vy, is holomorphic, or it has trivial category of modules.

A.0.3. Symplectic fermions and the singlet VOA. The symplectic fermion vertex algebra

Vsr may be defined as the vertex algebra strongly generated by two fermionic fields x*(z) with

OPE

(A.0.3.1) Vor: X" (2)x" (w) ~ (Z_lw)2

More generally, given any complex vector space W with a non-degenerate anti-symmetric bilinear
form Q : W x W — C (a symplectic form), there is an asociated symplectic fermion VOA Vg[}.

Given a basis {x'} for W, the VOA is generated by fermionic fields {x’(2)} with
(A.0.3.2) V% X2 (w) ~ Gowp

Symplectic fermions can be embedded in free fermions (and thus in a lattice VOA), as the

kernel of certain screening charges. Define the screening operator S(z) : Voe — Vie((2)) by
(A.0.3.3) S(z) :=b(z),
and the “screening charge” Sp : Vie — Ve by

(A.0.3.4) Sp 1= —

"~ 2mi

S(z)dz =bg .

In this case, this is just the zero-mode of the fermionic field b(z) = >, ., bpz~ ™" . The kernel
of Sy is simply the subalgebra generated by b(z) and Oc(z), since by commutes with all modes of

c(z) except its zero-mode. Letting x(z) = b(z) and x~(z) = dc(z), we find that y* satisfy the
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symplectic fermion OPE (A.0.3.1)). Thus
(A.0.3.5) Vsr = ker(So : Ve = Vie) -

There is an action of C* on both free fermions and symplectic fermions, such that b, y* have
weight +1 and ¢, x~ have weight —1. This makes V,. and Vgr Z-graded vertex algebras. Decom-

posing symplectic fermions (as a vector space) into graded components

(A.0.3.6) Vsr = P My,
WEZL

we find that the degree-zero subspace M := My (a.k.a. the C* orbifold of Vgr) is a vertex algebra
itself, while the other components M,, are simple modules for M. Conversely, Vgr is an extension
of M by the modules {M,,},cz.

The vertex algebra M = My is known as the p = 2 singlet algebra. It contains the fields with
equal numbers of x* and x~, such as :xTx ", :xT0% 1, 1 :xTOTx~0°x ", etc. The modules

M,, that appear in the decomposition of symplectic fermions are simple currents with fusion rules
(A.0.3.7) M, <y My, =M1, .

The singlet algebra has many other modules, however; its full representation theory is rather
complicated and has only been completely understood in the past year [CMY 21, CMY23|.
Later in the paper we will encounter multiple copies of symplectic fermions and singlet al-

gebras/modules. We summarize some notation and relations. By combining the relation to free

fermions (A.0.3.5) with the bose-fermi correspondence (A.0.2.2)), we find that n symplectic fermions
are embedded in a rank-n lattice VOA

(A.0.3.8) VER s Vg, e et X e —dvie

where Vzn is the extension of the Heisenberg algebra H,1__,» with B(v’,v7) = §% by Fock modules

Fuv for all p € Z". The embedding is the kernel of screening operators

n - % % 1 vi(z
(A.0.3.9) ViR = ﬂ ker SO‘Vzn , S'(z) = j{:e @)

! 2w
i=1
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Furthermore, there is a (C*)" action on VZy, induced from the (C*)" action on Vzn under which

;€M has charge u € Z". (And so in particular x% have charges (0, ...,0, +1,0,...,0).) We denote
(2

the weight spaces of this action M, ivvz} or simply M,,.,, with

(A.0.3.10) ViF =D My, Mo ={\kerSj|, .
WEZLT i=1

Here Mévl} =@pr, M{ji is n copies of the singlet VOA, and each of the M,.,’s are simple currents

thereof.

A.0.4. Symplectic bosons. The basic symplectic boson VOA Vg, a.k.a. a beta-gamma

system, is strongly generated by two bosonic fields 5(z), v(z) with OPE

(A.0.4.1) Vey: Bl2)v(w) ~

zZ—Ww

More generally, given a symplectic vector space (W, (), there is an associated symplectic boson

VOA V%. Given a basis {8%} for W, the VOA is generated by fields {3(z)} with OPE

(A.0.4.2) Voo B(2)B (w) ~ QLB

z—w
Symplectic bosons are closely related to the other free field VOA’s above, in several interesting
ways.

To begin, let V' = C(n) be the one-dimensional vector space with negative inner product
B(n,n) = —1, and let \/—1Z := Z(n) denote the integer lattice therein. Correspondingly, we have
a Heisenberg VOA H,, and its lattice extension
(A.0.4.3) V1, =P Fn,

nez
where each Fock module 7, is generated by :e":. Now consider the C* action on V 1 under
which the subspace F,, has weight —n. Also recall the C* action on symplectic fermions in .

The invariant part of the tensor-product VOA Vsrp @ V /=1z under the diagonal C* action is

(A.0.4.4) Vsr @ Vy=12)" =P My & Fu,
neZ
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and it is generated by fields

(A.0.4.5) B=xT®:": and y=-—x ®:e "
precisely satisfying the symplectic boson OPE Thus
(A.0.4.6) (Vsr @ Vy=iz)" = Vs, .

Alternatively, by combining the embedding of symplectic fermions in a lattice VOA
with , we obtain a well-known free field realization of symplectic bosons, cf. [AW22]. Let
Hgy ; be the rank-two Heisenberg algebra corresponding to a two-dimensional vector space with basis
{¢,n} and inner product B(¢,¢) = 1, B(n,n) = —1, B(¢,n) = 0. Consider the one-dimensional
lattice L = Z{¢ + 1) and the corresponding lattice VOA

(A.0.4.7) Vi =B Fuoin) -

nel

There is an embedding Vg, < Vp, given by
(A.0.4.8) B ety i0pe 0T

To characterize this as the kernel of a screening charge, we note that the lattice VOA Vr, has
modules Vr, ;4 defined by lifting the Fock modules Fj4 of the Heisenberg VOA to the lattice Vp,.

Explicitly,

(A.0.4.9) Viks = @‘F(k-l-n)(b—l—nn*
neL

Consider the intertwining operator S(z) : VL 1y — Vi (k+1)¢((2)) defined by
(A.0.4.10) S(z) = :e%):

and corresponding screening charges Sy = ﬁ $S(z)dz : Vi ke — VI, (k+1)¢- Then the embedding

of symplectic bosons in Vy, coincides with the kernel

(A.0.4.11) VB’Y = ker(Sg VL — VL7¢) .
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This follows from decomposing F,(g4ry) = Fnp @ Fny in (A.0.4.7) as modules for two Heisenberg
VOA’s Hy ® Hy;, and combining the decomposition with (A.0.3.5) and (A.0.4.4).

A.0.5. BRST cohomology. Conversely, we may go back from symplectic bosons to sym-
plectic fermions using BRST cohomology. By BRST cohomology we mean relative semiinfinite Lie
algebra cohomology as in [FGZ86[; and the version that we need here is exactly the one used
in [CGNS22].

Let V be a vertex algebra with an internal C* Kac-Moody action at level zero. In other words, V
contains a field J(z) (the Kac-Moody current) that has non-singular OPE with itself, and generates

X

an action of the loop group C((z))* on V by sending:

(A.0.5.1) for a(z) € C(2), v 17§a(z)J(z) .

21

Intuitively, BRST cohomology takes the symplectic quotient of V by the C((z))* action — setting
the current J(z) to zero and taking C((z))* invariants — in a derived way, i.e. by expressing
this quotient as the zeroth cohomology of a complex. Concretely, let V4. be a free-fermion VOA,
Z-graded such that c has degree 1 and b has degree —1. The tensor product V ® V. inherits this

grading, and has a differential
(A052) Qunsri= 5 f () J(2)d
U.o. BRST — i clz z)az

of degree +1. Let the relative complex (V ® Vy.)' be the subspace of V ® V. annihilated by
the zero-modes by and Jy. Then one defines BRST cohomology as the (Jgrst-cohomology of the

relative complex, denoted

(A.0.5.3) Hprsr(V) = H*((V @ Vo)™, QBRsT) -

Note that Qprsr sends b(z) — J(z) (whence J(z) is effectively set to zero in cohomology); it also
sends any element of V to its image under the GL(1,C((2))) action with generator c¢(z) (whence
cohomology also takes invariants for the action).

Similarly, if M is any module for V, its BRST cohomology is defined by

(A.0.5.4) Hpprsr(M) := H*((M ® Vo)™, QBRsT) »
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where again (M ® Vbc)rel denotes the subspace of M ® V. annihilated by by and Jy.

Going from symplectic bosons to symplectic fermions uses a particularly well-behaved instance
of BRST cohomology. Let Hg, be the rank-two Heisenberg algebra associated to vectors ¢,n of
norms +1,—1, respectively. The field J(z) = 9(¢ + n) is a level-zero C* Kac-Moody current.
Consider the Fock module Fy¢4,y (here A,n € C). Its BRST cohomology has the property that

(A.0.5.5) H}.BRST(JT_‘Mﬁ?w) = 51‘,05)\7#,0(:“)‘(1) + /“7>] .

In other words, the cohomology vanishes unless A — p = 0, in which case the cohomology is one-
dimensional and given by the class of the highest-weight vector.

Now, the symplectic boson VOA Vg, has a current Jg, = —:f3v: at level —1 (Jg, generates
a Heisenberg subalgebra H, with inner product —1). The free fermion VOA V,. has a current
Jpe = :bc: at level 1 (generating a Heisenberg subalgebra Hy with norm +1). Therefore, their
tensor product Vp. ® Vg, has a diagonal current J = Jg, + Jy. at level zero. Using the bose-fermi

correspondence and (A.0.4.4), we know that as modules for Hy, = Hy ® H, we have

(A.0.5.6) Vie @ Vay = €D Foy @ Fily ® My,

m,ne”
Taking BRST cohomology for the diagonal C* action, we get
HprsT(Vie ® Vs,) = H Fo @ F )@ M,
BRST(Vbe ® Vsy) BRST (g @ Foy | © M,
nme”Z

= @ (Sn—m,O(C & Mm
(A.0.5.7) n.meZ

:@Mm

meZ

= Vgp.

A.0.6. Affine gl(1|1). There is in fact one more player that we can introduce, the affine VOA
of gl(1]1). It is the diagonal C* orbifold of V}. ® Vg, that is

(A.0.6.1) V(gl(1]1)) = (Ve ® Vs,)© =P Fp, @ Flly © My,
NneZ
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Here the level k£ can be any non-zero number and in particular it can always be set to one. It is
generated by the fields N = :bc:, " = :8b:,9)” = —:yc: and E = :bc: — : Bv:.

All the relations between the different free field algebras above have been explored in detail
in [CRO9,[CR13a]. The representation theory of V3, is worked out in [AW22]; the one for g[/(l\\l)
in [CMY22c|, and the one for the singlet in [CMY21,/CMY23]. All the module categories
are non-finite and non-semisimple ribbon (super)categories. Orbifolds, simple current extensions,

and BRST cohomologies provide nice functors between representation categories, as explained

in [CGNS22,[CMY?22h)|.

A.0.7. Spectral flow. In this final section on VOAs, we review the idea of spectral-flow
automorphisms, and spectral-flow modules of a VOA, which will play a central role in many of our
constructions. Spectral flow is associated with abelian Kac-Moody symmetries of VOA’s; loosely
speaking, it mixes the Kac-Moody symmetry with conformal symmetry. The basic idea appeared
in physics in the 80’s, in particular in the context of of worldsheet superstring theory. In the
mathematical theory of VOA’s, spectral flow is implemented by Haisheng Li’s A-operator [Li95].

Let V be a VOA that has a Heisenberg subVOA, say of rank n with associated bilinear form
B as in (A.0.1.4). (The Heisenberg subVOA is another name for an abelian current algebra, or
an abelian Kac-Moody symemtry.) The Heisenberg VOA has a huge group of automorphisms. In
particular, for any vector £ = (f1,...,4,) € C", there is a spectral automorphism o’ that acts on

the modes of the Heisenberg VOA as
(A.0.7.1) o (J8) = JE + Onoli,

doing nothing but shifting the zero-modes by a scalar. Not all of these automorphisms lift from
the Heisenberg subVOA to an automorphism of the mode algebra of the full VOA; this depends
on the way that V is graded by the J¢. The automorphisms that do lift are called spectral flows
automorphisms of V.

For example, if V is a lattice VOA Vp, there are spectral-flow automorphism so long as ¢ lies in
the lattice L’ that is dual to L. If V is an affine VOA, then spectral-flow automorphisms correspond

to coweights. The example of s[(2) is instructive; it is discussed in detail in section 2 of [CKLR19).
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If of is an automorphism of the algebra of modes of V, then to any V-module M one defines
the spectral-flow module o*(M) as follows. The underlying vector space of of(M) is isomorphic to
M, the isomorphism mapping m € M to o‘(m) € o*(M); but an element 2 of the mode algebra of

V acts as
(A.0.7.2) z-o'(m) =o' (c™(x) -m).

Haisheng Li’s A-operator [Li95], implementing spectral flow in a mathematical context, has
several nice properties. By Proposition 2.11 of [Li95| together with skew-symmetry of intertwining

operators, spectral flow respects fusion:

/

(A.0.7.3) o' (M) xy o (M') = "' (M xy, M).

In particular, the spectral flow image of the VOA itself, ¢/(V) is always a simple current, with

fusion rules

!/

(A.0.7.4) V) xp ot V) =WV, (V) xy M 2 o'(M).

Another property is that spectral flow is exact, i.e., it maps simple to simples, non-split short exact
sequences to non-split short-exact sequences, Loewy diagrams to Loewy diagrmas and so on — see

Proposition 2.5 of [CKLR19|.

EXAMPLE A.0.1. WhenV itself is a Heisenberg VOA, spectral flow acts on its own Fock modules.

One has that 0=*(F,) = Fy, in particular o= (H,:) = Fy and the well-known fusion rules
F)\ XHvi Jru = Uﬁ)\(Hvi) XHvi UﬁM(H’U") = Uﬁ)\ﬁu(Hvi) = -FA-HL
follow immediately.

EXAMPLE A.0.2. The example of the affine VOA of gl(1|1) is found in section 3.2 of ([CR0OY.

The spectral-flow automorphism acts on the modes as

o'(N,) = N,, o' (E,) = B, — (kd,, o (W) = vy,
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This illustrates that spectral flow changes the mode labels, i.e. it doesnot leave the horizontal sub-

algebra of g[/(lﬁ) invariant.
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APPENDIX B

Representation Theory of Affine Lie Superalgebra V (g.(p))

In this appendix, we study the representation theory of the affine Lie superalgebra V(g.(p)),
and present proofs of many statements found in Section An important part of the proof of

these statements will be the free field realization of V(g.(p)).

B.0.1. Verma Modules. Recall the Kazhdan-Lusztig category KL,, namely the category
of finite-length grading-restricted generalized modules of V(g.(p)). Let W be a simple object in
KL,, then it is generated by the lowest conformal-weight space Wy, which is a finite-dimensional

(necessarily simple) module of g.(p). Recall the induction functor Ind, which is given by:

—

(B.0.1.1) Ind(Wo) := Ul(g«(p)) U)o Wo.

—

Here U(g«(p))>0 is the universal enveloping algebra of the non-negative modes. By universal
property of induction functor, one obtain a morphism Ind(Wy) — W, which is surjective. Therefore,
any simple module of KL, is a quotient of Ind(Wy) for a simple Wy. Such modules are called the
Verma modules. Let G, be the category of finite-dimensional modules of g.(p), then a consequence

of Theorem is the following statement.

COROLLARY B.0.1. If the image of G, under Ind lies in KL,, then the category KL, has the

structure of a braided tensor category.
Our first main result is the following theorem.

THEOREM B.0.2. The image of G, under Ind lies in K L,. Consequently, KL, has the structure

of a braided tensor category.

We will prove this statement in two steps. First, let us consider an object M € §,., the

subcategory where E, has generalized eigenvalue e,, and e = (e,).
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PROPOSITION B.0.3. Assume that ), piae® ¢ Z or Y, piae® = 0. If M is simple, then so is
Ind(M).

PROOF. We only need to show that any w € Ind(M) generates the entire module. Note that

an element in Ind(M) is always of the form:
(B.0.1.2) > NSty Bty

where v is in the lowest conformal weight space of Ind(M), which is simply M. The subscripts are

all negative integers. We give a lexicographic order to Ind(M) such that N > ™ > ¢~ > E, and

(B.0.1.3) N%, > N® . >--- >Nl > Notl

and similarly for ¥+ and E. Given an w, let w = wy + w’ where wy = Nf1/}i’+wi’_Efv is a
homogeneous vector that is the biggest in the lexicographic order, such that wg > w’. Denote by
W the sub-representation generated by w.

We perform the following procedure. If the expression of wy involves (N¢,)¥, we will apply to
w (E4)*. Since [E%, N%,] = n, the vector (E%)¥wg will have no N®

», 10 its expression. Moreover,

each time applying E?, we obtain a non-zero vector. We repeate this process until all the N in
the expression of wy is killed.

The next step we apply wf{_ until there is no 1/Ji’+ in the expression of wg. Note that this step,
we need the assumption that ), pj,v® ¢ Z or equal to 0, since the commutator {Mf,wij;} =
n+ >, pa' EY acts non-trivially on wy when n + >, p,'E§ # 0. By definition, >, pia E§ acts as
>, piae®, which is not an integer or equal to 0 by assumption. Therefore the action of 1/13{_ is
nontrial on wg. We can now safely keep the procedure until all the wi’+ in the expression of wq is
annihilated.

We can repeat this process for all wi’_ and E¢, until all the negative modes in the expression
of wy is annihilated. Since wy > w’, this process must annihilate w’ entirely, and we are left with a
nonzero vector in the lowest conformal weight space. Consequently, W contains a nonzero vector v

in M. We can now conclude the proof since M is assumed to be simple, which means W contains

M, and consequently Ind(M).
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O

REMARK B.0.4. In particular, the vacuum module V(gs«(p)) is simple, since the vacuum module

is defined as Ind(C) where C is the trivial (and therefore simple) g.(p) module.

COROLLARY B.0.5. The monopole modules Ug are simple, and can be identified with the spectral

flow Us,prsV(g* (,0)) .

PrOOF. The map o, ,7,,|0) — |s:X+p(s)-Z) clearly extends to a map of modules o 7,V (g+(p)) —

Us. Tt is an embedding since o V(g«(p)) is simple, and it is surjective since by [Ada03,

s,p1 ps
CRW14|, the module:

(B.0.1.4) (KerSl,, .
i ~

V(g«(p)). This completes the proof.

is also a simple module of ﬂKerSf)|VZ =
i

O

An immediate consequence of this is the fusion rule of monopole operators in Proposition [3.2.6
which follows from the general theory of spectral flow automorphism in Appendix
We in fact have the following theorem, whose proof is a word-to-word translation of the proof

of [BN22| Proposition 3.2].

THEOREM B.0.6. When e € C" satisfies that ), piae® ¢ Z or ), pia€® = 0, then induction is

an equivalence of categories:
(B.0.1.5) Ind:G,e~ KL,
where KL, . is the subcategory where the generalized eigenvalue of Ef are e®.

How do we deal with KL, . when e does not satisfy the above? The answer is the spectral-flow
automorphism. Recall in Section Remark we have introduced the following spectral

flow automorphism:

A . .
(B.0.1.6) oapu(Na) =Ny — B2 oy (Ba) = Ea— 22, oy = 27 Zpeid® ot
z z
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Here A € C" and p € C" such that p(\) € Z". For any e such that p(e) does not satisfy the above,
there must be A € C" with p(\) € Z" such that p(e+ ) satisfy the requirement ) pia(e*+A*) ¢ Z
or >, pia(€® + A*) = 0. We can now finish the proof of Theorem [B.0.2]

PRrROOF OF THEOREM [B.0.2l Given any e and M and object in G,. that is simple, choose
A € C" such that p(\) € Z", and that the entries of p(e+ \) are either zero or non-integers. We just
need to show that oy oInd(A/) is of finite-length, since o ¢ preserves composition series. Choose
m € M, let I be the subset of all ¢ where ) paA® > 0 and J where Y puA* < 0. Consider the

sub-representation of o oInd(M) given by:

(B.0.1.7) N= P <vim>a &b <itm >

1€1,0<n<paiA® J€J,0<n<—pa;A®

Here (v) for v € Ind(M) denotes the submodule of V(g.(p)) generated by the vector v. By the
definition of N, the quotient oy ¢Ind(M)/N is generated by a single element m (the image of
m in the quotient) and that all the positive modes of V(g.(p)) acts trivially on m. Let M’ be
the g.(p) submodule of oy ¢Ind(M)/N generated by 7, which must be finite-dimensional. By
universal property of the induction functor, we have a surjection Ind(M’) — o) ¢Ind(M)/N, and
consequently, oy oInd(M)/N is finite length.

We can now repeat this argument for all the summands in NV, and this process must terminate
because there are only finitely many positive modes that act non-trivially. We therefore obtain a
finite filtration F.o oInd(M) such that each associated graded piece is a quotient of a finite-length
Verma module. Therefore, oy oInd(M) is finite-length, and so must be Ind(M). This completes
the proof.

O

We have now shown that the category KL, has the structure of a braided tensor category, and
that the simple modules Uy satisfies the fusion rule Us x Uy = Ugyy. Of course this fusion rule can
be realized by the intertwining operator of the free field algebra as in Section This justifies
the definition of Cp , as the de-equivariantization of KL, by the simple currents U,. However, to

analyze the category Cp ,, one needs to understand the sub-category consisting of objects whose
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monodromy with Uy is trivial. The best way to do understand monodromy is through free-field

realizations. We now turn to the free-field realization of V' (g.(p)).

B.0.2. Free Field Realizations. Consider the free field realization of Section [3.1.3] where
we obtained a VOA embedding V' (g.(p)) — Vz such that the image is equal to the kernel of the
screening operators S° = fdz:ezi_p(y)i .. For each A\- X + p-Y where \,u € C", we have a Vz
module Vz x.x4,.y, which we can restrict to obtain a module of V(g.(p)). We would like to first
understand what these modules are.

Consider a simple module M of g.(p). Since N* and E* commutes with each other, there must
be at least one simultaneous eigenvector for all of them. By acting on ¥»~, we may assume that
this eigenvector v is annihilated by 1%~ for all i. Let (nq,e,) be its eigenvalues under N® and E°.

It is clear then that the module M is spanned by vectors of the form:
(B.0.2.1) ¢i17+ .. wik’+v, i <tg < - <ig, k<n.

Each of this vector is an eigenvector of N® E* with eigenvalues:

(B.0.2.2) Na+ D Piar €a
1<s<k

Let us define module V{;, .y to be the module generated by vectors of the form in equation (B.0.2.1)).
Then any simple module is a quotient of V{, o) for some (n,e) € C" x C".

—Z'(2)

Coming back to the module Vz x. x4y, let b'(z) = :eZ');and ¢i(z) = :e :, and consider

the following grading A on Vz \.x4,.v by:
(B.0.2.3) Av) = A(c0) =0, A v) = A(X%0) = A(Y %) = 1.

Moreover, A(A,B) = A(A) + A(B) —n — 1. With this grading, Vz x.x4,.v is positively graded,

and the minimal degree part of this is spanned by vectors of the form:

(B.0.2.4) H AL

11 <to<--<ig
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The vector ¢! ¢, -+ c";v has weight (A%) under the action of E¢ and weights:

(B.0.2.5) fa = Y Pia-

i
under the action of N§. Moreover, this vector is annihilated by positive modes of V(g«(p)) by
degree considerations as A(z) = 1 for x € g.(p), and it is killed by wé’_ by considering the

weights of Ny. Therefore, this vector, under the action of 1/16’+, generates a copy of V where

B=psA)s

p—p = (fta — Y, Pia)- By universal property of induction functor, there is an induced morphism:
(B.O.Q.G) Ind(V(“_p,)\)) — VZ,)\'X-F,U"Y‘

PROPOSITION B.0.7. When Y, piaA® ¢ Z or Y, piaA* = 0 for all i, the morphism in equation
(B.0.2.6) is an isomorphism.

PROOF. We first show that this is an embedding. To do so, by Theorem [B.0.6] we only need

to show that it is non-zero on any submodule of V{ )- In fact, the g+(p) module Vi, ) has a

H—p,A

unique simple submodule generated by:

(B.0.2.7) I vt

1,9 PiaA?=0
It is very clear then that the above map Ind(V(,_,x)) — Vz x4,y is nonzero when restricted to
this unique simple.

To show that this is an isomorphism, we just need to define a positive grading on Ind(V{,_, \))
such that Ind(V(M_p, )\)) — Vz x4y is graded and that they have the same grading. We define
the grading on Ind(V{,,_, x)) such that A(V(,_, 1)) = 0 and A(z_1v) = 1 for all x € g«(p), and that
A(A,B) = A(A) + A(B) —n — 1. It is clear that the map Ind(V(,_, ) = Vzx. x4,y is a map of
positively graded vector spaces. It is straightforward that the graded character Tr(qA) agrees on

the two modules, and so they must be isomorphic.

As a consequence, the restriction of any free-field module is an object in KL,,.

COROLLARY B.0.8. For any A, u € C", the module Vz x.x .y is an object in KL,.
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PRrROOF. We have shown this when entries of p(\) are either zero or non-integer. When this is
not the case, choose v such that p(A+v) satisfy this, and p(v) € Z". This implies that Vz (x ). x4y

is an object in K'L,. We now can finish the proof since there is clearly an isomorphism:

(B.0.2.8) Varxx+uy S0y gt Vz,040) X400

given by mapping o_,, _ 1, [(A+v) - X +p-Y) to [\- X +p-Y —p(v)-Z) (the free field realization).
Since the spectral flow o preserves K L,, the object Vz . x4,y is in KL,, and the proof is complete.

0

Namely, when entries of p(\) are either zero or non-integer, the module V7 x. x4,y is identi-
fied with the induction of the lowest-weight module Ind(V{,_, \)). Otherwise, choose v as above,
Vzxx+py can be identified with o_,, _ 1 , Ind(V{,,_, x1,)). Since any simple objects in G, is a quo-

tient of a lowest-weight module V{ we see that any module in KL, is a quotient of Vz x.x1,.v.

H=p,A)s
In fact, this goes beyond simple modules. For each A\, u € C", and each p,q € N (namely vectors
with natural numbers entries), the module Vy ). X+py has a self-extension, which we denote by

VoS x+ .y generated by the following free-field generator:
(B.0.2.9) [T XEvien-X +pu-v).
a

This gives the action of X¢ and Y Jordan blocks since [X&, Y7 = 6% = [Y@, X?]. It is a self-
extension of Vz x.x4,.y in the sense that it has a filtration whose associated graded are all isomor-
phic to Vz x.x4,.v. It turns out that any object in KL, is a subquotient of such modules restricted
to V(g«(p)). The proof of this is similar to the appendix of [GN23|, and we won’t repeat here

again.

ProPosSITION B.0.9. Any object in KL, is a quotient of a sub-module of a finite direct sum of
V;:KX—‘,—;rY'

We use this to prove Theorem [3.2.

PrOOF OF THEOREM [B.2.71 Recall the field redefinition of equation (3.1.5.15) and (3.1.5.16)).

For each A, € C", the module Vz . xy,y ® Vi3 of V(g«(p)) ® Vx5 is clearly a lift of the
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V(gl(1]1))®™ module restricted from the free-field algebra Hxy z ® Hxv. This, together with
Proposition shows that the functor £,"5" is surjective.

We now show that £,"""#° maps into K'L,. Let W be a simple module of V(gl(1]1))®" that
has trivial monodromy with V(g.(p)) ® V3. By [BN22, Proposition 4.3], every such module W
embed uniquely into a module of the free-field algebra Hxy z ® Hx v, say F) for some A that is a
linear combination of the Heisenberg generators X,Y and X,Y. Since monodromy acts semi-simply
on Fy, W has trivial monodromy with V(g.(p)) ® Vi 3 if and only if F) does, and this is true if
and only if A\(X), A(Y) € Z, and the lift of such F) can be clearly identified with Vz ). x4,y ® Vv
Therefore, the lift of W must be in KL,. This completes the proof.

(Il

B.0.3. Monodromy via Free Field Realization. In this last section of this appendix, we

use free-field realization to compute monodromy. Let W be an object in KL,, we show:

ProprosiTIiON B.0.10. The monodromy:
(B.0.3.1) UsxW —— W xUs —— Ug x W
is given by Id x €27 2a 5aNG' |

The idea of the proof is as follows. We first show that the above is true for any W = VJ1{ Y
Then it will follow that this is true for all W since any W is a sub-quotient of VJ'{ Ly and
monodromy is functorial with respect to sub-quotient. We present a proof of this here.

First of all, there is an embedding Uy — V7 . x, and the free-field intertwining operator:
(B.0.3.2) Y :Vzex Xy, V§7’§.X+M_Y — V;”E])\Jrs).XJFM.Y

2 3 1 11 p,q P,q
induces the universal intertwining operator Us Xy (q, (»)) Vzx ey VZ7( Abs)-XAp Y Therefore

we only need to compute the monodromy using this intertwining operator. By definition, Uy is

generated by the vector v = |s- X + p(s) - Z), and Vg’g/\Jrs),XJm'Y generated by w = [], XZ* Y|\ -

X + p-Y). The logarithmic intertwining operator ) is defined by the formula:

(B.0.3.3) Y(v, z)w = :exp (Z Sq(X* + pi“Zi)> ‘w.
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In this formula, the logarithmic part comes from:

(B.0.3.4) e2a Sa(X(§+pi® Zj)log(2) HXgaYa‘Ja‘)\ X +p-Y).

a

Since [X§,Y?] = §%, the above is given by:

(B035) H(Xa)pa (Ya + 54 log(z))Qaeza Sa(Xg+Pi“Zé)log(z) |)\ X+ - Y>

a

To compute the monodromy, we rotate the z coordinate by z ++ €27z, which results in log(z)

log(z) + 2mi. The contribution of the above comes from two parts, where the first part is:
(B.0.3.6) [[(Xa)Pe (Vo + salog(z) + 2mis, )%,
a

and the second part is:

(B.0.3.7) ea Sa(XSJrPi“Zé)(lOg(z)Jr?ﬂ)|)\ X 4pu-Y).
The contribution of the first part can be compactly written as:
(B.0.3.8) e Lo sagya

while the second part as:

(B.0.3.9) 2 La el — 2misn)

One can verify that the morphism corresponding to:

(B.0.3.10) €27 Lo sa gy o2milsii)

is nothing but:

(B.0.3.11) 2™ 20 5a NG

We have, in conclusion

(B.0.3.12) Vv, ¥ 2w = Y(v, 2)e? 2a 5Ny,
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which is the desired statement that the monodromy is Id x €272 a5eN¢' . We comment that the
proof of Proposition and Proposition follows exactly in the same way as above, using

the explicit formula of the free-field intertwining operator.
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