Title

Characterization of the Dynamics and Thermostability of Y-family translesion DNA polymerase Dbh

Permalink

https://escholarship.org/uc/item/0wm0k018

Author

Moro, Sean Leo

Publication Date

2015

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-NonCommercial-NoDerivatives License, availalbe at https://creativecommons.org/licenses/by-nc-nd/4.0

Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA, IRVINE

Characterization of the Dynamics and Thermostability of Y -family translesion DNA polymerase Dbh

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Molecular Biology and Biochemistry
by
Sean Leo Moro

Dissertation Committee:
Dr. Melanie Cocco (committee chair)
Dr. Shiou-Chuan (Sheryl) Tsai
Dr. Ray Luo
2015

Figure 1.1: © Royal Society of Chemistry, 2014
Figure 1.2: © Elsevier, 2001
Figure 1.3: © John Wiley and Sons, 2008
Figure 1.4: © The American Association for the Advancement of Science, 2009
Portions of Chapter 2: © Springer Science, 2015
Figure 3.6: © Nature Publishing Group, 2001
All other materials: © Sean L. Moro, 2015

TABLE OF CONTENTS

Page
LIST OF FIGURES iii
ACKNOWLEDGEMENTS v
CURRICULUM VITAE vi
ABSTRACT OF THE DISSERTATION viii
CHAPTER 1: Introduction: Dynamics of a Thermostable Polymerase 1
CHAPTER 2: $\quad{ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$, and ${ }^{13} \mathrm{C}$ backbone assignments of $\operatorname{din} B$ homolog 40 (Dbh)
CHAPTER 3: Dynamics of Dbh investigated by Hydrogen-Deuterium 58 Exchange (HDX) NMR spectroscopy
CHAPTER 4: $\quad{ }^{15}$ N NMR Relaxation Spectroscopy of Dbh and Estimation 78 of Global Rotational Correlation Time
CHAPTER 5: Molecular Dynamics Simulations of Dbh and Dbh RKS $_{2}(243-245)$ 98
CHAPTER 6: Response of Dbh to Temperature Change 120
APPENDIX A: Table of HDX rates and protection factors, $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ 145
APPENDIX B: Table of T_{1} and T_{2} rates and T_{1} and T_{2} ratios, $35^{\circ} \mathrm{C}$ and 148$50^{\circ} \mathrm{C}$
APPENDIX C: Table of $S^{2}{ }_{\text {iRED }}$ order parameters, $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$, for Dbh 155 and $\mathrm{Dbh}_{\text {RKS(243-245) }}$
APPENDIX D: Hydrogen-bond analysis from MD simulations of Dbh 161
APPENDIX E: Samples of molecular dynamics scripts 170
APPENDIX F: Table of amide hydrogen temperature coefficients 171

LIST OF FIGURES

Page
Figure 1.1 Stability curve for an example protein 8
Figure 1.2 Phylogenetic tree of Y-family DNA polymerases 12
Figure 1.3 Interaction model of Dpo4 and PCNA 16
Figure 1.4 Two-metal mechanism of a DNA polymerase 23
Figure 1.5 Crystal structure of apoDbh 25
Figure 2.1 Representative "Backbone Walk" Strip Plot 45
Figure $2.2 \quad{ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}$ HSQC Map of Dbh assignments 50
Figure 2.3 Completeness of Assignment - Dbh Sequence. 52
Figure 2.4 Completeness of Assignment - Dbh Structure 53
Figure 2.5 Comparison of Dbh and Dpo4 chemical shifts for identical 54 residues.
Figure $3.1 \mathrm{a}{ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}$ TROSY-HSQC HDX spectra of Dbh at $35^{\circ} \mathrm{C}$ 63
Figure $3.1 \mathrm{~b}{ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}$ TROSY-HSQC HDX spectra of Dbh at $50^{\circ} \mathrm{C}$ 64
Figure 3.2 Representative decay rate fits for selected amides for Dbh 65
Figure 3.3 L vs. R for $k_{r c}$ calculation 66
Figure 3.4 Protection factors for Dbh at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$. 68
Figure 3.5 Hydrogen-deuterium exchange of Dbh at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ 70
Figure 3.6 Numbering of secondary structure elements in apo Dbh 71
Figure 4.1a ${ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}$ TROSY-HSQC T1 spectra Dbh at $35^{\circ} \mathrm{C}$ 88
Figure $4.1 \mathrm{~b} \quad{ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}$ TROSY-HSQC T1 spectra Dbh at $50^{\circ} \mathrm{C}$ 89
Figure $4.2 \mathrm{a} \quad{ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}$ TROSY-HSQC T2 spectra Dbh at $35^{\circ} \mathrm{C}$ 90
Figure $4.2 \mathrm{~b}{ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}$ TROSY-HSQC T2 spectra Dbh at $50^{\circ} \mathrm{C}$ 91

Figure 4.3 Representative rate fits for T_{1} and T_{2} data for Dbh residues 13Ala and 142Thr

Figure $4.4 \quad \mathrm{~T}_{1}$ and $\mathrm{T}_{2}{ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}$ relaxation times for Dbh at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$
Figure $4.5 \quad \mathrm{~T}_{1} / \mathrm{T}_{2}{ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}$ ratios for Dbh at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$
Figure 5.1 Root mean square deviation of $\mathrm{C} \alpha$ atoms 112
$\begin{array}{lll}\text { Figure 5.2 MD iRED }\left(S^{2}{ }_{\mathrm{MD}}\right) \text { backbone amide order parameters } & 113\end{array}$
Figure 5.3 Difference in iRED (S 2 MD) backbone amide order parameters of 114 Dbh vs. $\mathrm{Dbh}_{\text {RKs(243-245) }}$

Figure 5.4 Root mean square fluctuation by residue of $\mathrm{C} \alpha$ atoms of principal components
Figure 5.5 Projection of principal components 1 and 2 onto the coordinates of $\mathrm{C} \alpha$ atoms of Dbh at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$

Figure 5.6 Projection of principal components 1 and 2 onto the coordinates of $\mathrm{C} \alpha$ atoms of $\mathrm{Dbh}_{\mathrm{RKS}(243-245)}$ at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$
Figure 6.1 Overlay of ${ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}$ HSQCs of Dbh at $35^{\circ} \mathrm{C}, 45^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}, 55^{\circ} \mathrm{C}$, and $65^{\circ} \mathrm{C}$
Figure 6.2 Temperature coefficients of the ${ }^{1} \mathrm{H}(\mathrm{N})$ backbone amide chemical shifts

Figure 6.3 Overlay of hydrogen deuterium exchange ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ HSQC at $35^{\circ} \mathrm{C}$ after 18 hr incubation at $4^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C} \sim 15 \mathrm{~min}$ after reconstitution
Figure 6.4 CD spectra of Dbh from 185 to 260 nm at varying temperatures
Figure 6.5 DLS measurements of Dbh at $5^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$
Figure 6.6 DSC downscan curves of Dbh from $35^{\circ} \mathrm{C}$ to $1^{\circ} \mathrm{C}$ and from $70^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$

Figure 6.7 DSC downscan curves of hen egg white lysozyme from $75^{\circ} \mathrm{C}$ to 141 $10^{\circ} \mathrm{C}$ and an upscan from $10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Melanie Cocco, for all of her guidance, patience, and passion for science, and for her continual support. She has taught me the value of perseverance when experiments do not proceed as planned.

I would to thank my committee members, Professor Ray Luo and Professor Sheryl Tsai, for their kindness and support. I thank Professor Luo especially for the use of his computational resources, without which we could not have obtained the molecular dynamics simulation data for Dbh.

I thank Wesley Botello-Smith of the Luo laboratory for his teaching and guidance on how to perform MD simulations, which expedited the work significantly

I thank all the members of the Cocco laboratory with whom I have worked for their friendship and kindness over these years. Without good company, this would have certainly been a less enjoyable experience.

Portions of chapter 2 were originally published in Biomolecular NMR assignments, Volume 9, Issue 2, pages 441-445, with Melanie J. Cocco. The final publication is available at link.springer.com, doi 10.1007/s12104-015-9626-y. The copyright information for Biomolecular NMR assignments on the Springer website states that "author retains the right to use his/her article for his/her further scientific career by including the final published journal article in other publications such as dissertations and postdoctoral qualifications provided acknowledgement is given to the original source of the publication."

Figures 1.1, 1.2, 1.3, 1.4, and 3.6 have been re-used with express permission from the Royal Society of Chemistry, Elsevier, John Wiley and Sons, The American Association for the Advancement of Science, and Nature Publishing Group, respectively.

I thank Professor Tom Steitz (Yale University) for providing the plasmid containing the Dbh gene and F. W. (Rick) Dahlquist for the gift of E. Coli strain EA1. Egest Pone prepared several of the selectively labeled or unlabeled samples used for the Dbh backbone assignment.

The UC Cancer Research Coordinating Committee-35159 provided funding for the research contained herein.

Sean Leo Moro, Ph.D.

406 Verano Place
Irvine, CA 92617
(617) 997-7073
sean.l.moro@gmail.com

OBJECTIVE

Structural biologist with expertise in biomolecular NMR spectroscopy and experience in a number of biophysical techniques and protein modelling/simulations. I am interested in how the dynamics of thermophilic Y -family polymerases are modulated by temperature, and the changes in dynamics that occur upon DNA and nucleotide binding. I am also interested in the structural and dynamic basis of thermostability for Dbh and investigating the mechanism of cold denaturation for Dbh.

EDUCATION

University of California, Irvine, Irvine, CA

2011-2015
Ph.D., Molecular Biology \& Biochemistry
Dissertation Title: "Characterization of the dynamics and thermostability of a translesion DNA polymerase"

Dissertation defended on: October 26, 2015
Brandeis University, Waltham, MA
2005-2008
B.S., Biology, Cum Laude

Springfield Technical Community College, Springfield, MA
2004-2005

RESEARCH EXPERIENCE
University of California, Irvine, Irvine, CA
2012-2015
Graduate Student Researcher
Dr. Melanie J. Cocco laboraotry
Graduate Rotation Student
Dr. James S. Nowick laboratory

TEACHING EXPERIENCE

University of California, Irvine, Irvine, CA
2012-2015
Graduate Teaching Assistant
Cambridge Tutoring and Test Prep, Laguna Beach, CA
2009-2010
Tutor

PUBLICATIONS AND PRESENTATIONS

Publication:
${ }^{1 "} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{15} \mathrm{~N}$ backbone resonance assignments of the full-length 40 kDa . acidocaldarius Y-family DNA polymerase, dinB homolog", Biomolecular NMR Assignments, Vol. 9, Issue 2, pgs. 441-445
Published Oct 9, 2015. DOI: 10.1007/s12104-015-9626-y
Manuscripts in preparation:

1. Structural response of thermophilic Y-family polymerase Dbh to temperature change: by hydrogen deuterium exchange NMR and cold denaturation studies.
2. Picosecond-nanosecond dynamics of Y-family polymerase Dbh by nuclear spin relaxation and molecular dynamics simulation

Presentations:

- Research in progress, University of California, Irvine; Irvine, CA
- "Backbone Dynamics of a Y-family polymerase" 2015
- "Backbone NMR assignment of a Y-family polymerase" 2014
- "Recombinant expression and Purification of Nogo-18" 2013
- UCI Molecular Biology and Biochemistry Retreat; Lake Arrowhead, CA
- "Backbone Dynamics of a Y-family polymerase" 2015

PROFESSIONAL EXPERIENCE

Bausch + Lomb, Aliso Viejo, CA \quad 2010-2011
Global Product Surveillance and Safety Associate
Exiqon Diagnostics, Tustin, CA (location closed Jun 2010) 2009-2010
Document Control Specialist
Shire Human Genetic Therapies, Lexington, MA 2008-2009
Quality Control Coordinator

PROFESSIONAL AFFILIATIONS

American Association for the Advancement of Science 2012-2015
Graduate Student Member

AWARDS

Dean's List, Brandeis University: Fall 2005, Spring 2007, Fall 2007, Spring 2008
Dean's List, Springfield Tech CC: Fall 2004, Spring 2005
CRC Freshman Chemistry Award - Top Chemistry Student, Springfield Tech CC, 2004-2005

ABSTRACT OF THE DISSERTATION

Characterization of the Dynamics and Thermostability of Y-family translesion DNA polymerase Dbh

By

Sean L. Moro
Doctor of Philosophy in Molecular Biology and Biochemistry
University of California, Irvine, 2015
Professor Melanie J. Cocco, Chair

The dinB homolog (Dbh) from the thermophilic archaeon Sulfolobus acidocaldarius is a member of the Y -family of translesion DNA polymerases, which are specialized to accurately replicate DNA across from a wide variety of lesions in living cells. Dbh is also a remarkably thermostable polymerase, functioning well at $80^{\circ} \mathrm{C}$, the optimum growth temperature of S. acidocaldarius. Herein I present the study of the dynamics of apo Dbh at atomic resolution by hydrogen-deuterium exchange (HDX) NMR, NMR spin relaxation, and molecular dynamics (MD) simulations at two temperatures. In order to interpret the NMR data, it was necessary to assign the backbone resonances of Dbh. To this end, I have assigned the ${ }^{15} \mathrm{~N},{ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ backbone resonance signals at two temperatures $\left(35^{\circ} \mathrm{C}\right.$ and $\left.50^{\circ} \mathrm{C}\right)$ for 86% of the residues of Dbh , which have been published (Moro and Cocco, 2015).

The experiments presented herein demonstrate the remarkable stability of the palm and little finger (LF) domains of Dbh, which remain rigid and well-folded at $50^{\circ} \mathrm{C}$. For instance, residues in the palm and LF have protection factors greater than 10^{8} and 10^{9}.

MD simulations indicate that the LF domain is free to rotate about the linker region with respect to the polymerase core. The LF domain reorientation is much faster at $50^{\circ} \mathrm{C}$ and can explain the stark difference in Dbh activity at low versus high temperatures. It is also possible that the reorientation of the LF allows the binding of DNA distorted by various types of lesions.

In addition, I performed biophysical experiments (circular dichroism, differential scanning calorimetry, and HDX-NMR) to investigate the possibility of cold denaturation above zero ${ }^{\circ} \mathrm{C}$ for Dbh. Cold denaturation is a well-established phenomenon, but there are few examples of proteins that denature above zero ${ }^{\circ} \mathrm{C}$. I obtained conflicting evidence for cold denaturation, with CD and DSC indicating some structural change, but no evidence for structural change by HDX-NMR. No evidence was found for a full unfolding of the polypeptide chain of Dbh. Further investigation is merited in order to fully characterize structural changes in Dbh at low temperature.

Reference:

Moro, S.L., and Cocco, M.J. (2015). H, C, and N backbone resonance assignments of the fulllength 40 kDa S. acidocaldarius Y-family DNA polymerase, dinB homolog. Biomol NMR Assign.

Chapter 1: Introduction - Dynamics of a Thermostable Polymerase

Dbh (dinB homolog) is a 354-amino acid, thermostable, Y-family translesion polymerase from the thermophilic archaeon Sulfolobus acidocaldarius. I am interested in two aspects of the structure and dynamics that affects the biological function of Dbh and related enzymes: 1) how the dynamic properties of the enzyme relate to its thermostability and 2) how the structure and dynamics of the enzyme determine its function and biological role in translesion synthesis. This chapter reviews what has been discovered about the structural and dynamic properties of thermophilic enzymes, the biological function of translesion synthesis, and the structure and dynamics of Y-family polymerases during replication of undamaged and damaged DNA templates.

Thermostable enzymes

Life at extremes

Life on earth has evolved to inhabit even the most extreme of environments, from the frozen wastes of the Antarctic ice sheet to the crushing pressure of the Challenger Deep, to brine pools, highly alkaline soda lakes, and acidic solfataras. The specialist organisms that thrive in extreme environments that are hostile to most forms of life have evolved mechanisms to carry out cellular chemistry in these environments using the same basic materials as other organisms. In particular, the cellular substructures and macromolecules of extremophile organisms must remain functional under conditions which would irreversibly degrade and denature their mesophilic counterparts. For adaptations to ionic strength and extremes of pH , extremophiles possess efficient mechanisms of maintaining homeostasis, such as pumping out protons in highly acidic
environments (Baker-Austin and Dopson, 2007), or concentrating stabilizing molecules such as glycerol in the cytoplasm to deal with high salt concentrations (Plemenitas et al., 2014). In the case of low pH , these adaptations maintain a cellular environment more similar to mesophilic organisms, although with a much increased membrane pH gradient (Baker-Austin and Dopson, 2007). However, to adapt to extremes of temperature or pressure, cellular substructures themselves, and especially proteins, have to be changed to achieve stability and activity. Since the native, folded states of proteins at mesophilic conditions are often only marginally stable, with the $\Delta \mathrm{G}$ of the folded state only equivalent to a few hydrogen bonds, imparting thermostability to proteins is a particular challenge for these organisms. Adaptive mutations must be made to stabilize the protein fold at high temperature while preserving function and activity.

The question of how thermophilic proteins maintain their stability and activity at high temperatures has been a hotly debated question in the structural biology and biotechnology communities for many years. An active pursuit of this matter in the biotech sector has been improving the thermal stability of proteins for multitudinous applications such as the decomposition of polysaccharides for biofuel production (Bleicher et al., 2011) and as catalysts for the generation of building blocks for pharmaceutical compounds (Wieteska et al., 2015). To more efficiently engineer enzymes for these applications, many researchers have sought to understand what mutations impart stability to thermophilic enzymes in comparison to their mesophilic homologs. Unfortunately, although a number of stabilizing factors have been identified in thermophilic enzymes, these trends do not always hold for all examples and classes
of enzymes. Consequently, further defining the structural basis of protein thermostability remains an active area of research.

Factors Contributing to Thermostability

Some factors which have been proposed to impart thermostability to proteins include an increase in rigidity, increases in the relative composition of particular amino acids (especially charged residues) (Fukuchi and Nishikawa, 2001; Gromiha and Suresh, 2008), additional disulfide bonds (Wieteska et al., 2015), and increases of networked ion pairs (Yip et al., 1995), increases in main-chain hydrogen bonds (Sadeghi et al., 2006), and increases in hydrophobic packing due to increases in branched-chain amino acids (Gromiha et al., 1999). However, there are often exceptions to these factors, especially in the case of rigidity. The cost of increased thermostability resulting from increased rigidity is a decrease in activity at lower temperatures (Mamonova et al., 2013), although some thermophilic enzymes have been found to have similar flexibility and activity at room temperature as their mesophilic counterparts (Kamal et al., 2012). The only stabilizing property which seems to be true for most thermophilic proteins is a relative increase in salt bridges (Szilagyi and Zavodszky, 2000). It has been postulated that at higher temperatures, the desolvation cost of forming a salt bridge is far lower than at mesophilic temperatures, increasing the energy of interaction and contributing to the stability of the enzyme (Elcock, 1998). Even so, not all salt bridges provide the same degree of stabilization; in the case of aqualysin I, a thermophilic protease, Jonsdottir and co-workers found that only certain key salt bridges made a significant contribution to the thermostability of the enzyme (Jonsdottir et al., 2014).

Efforts to further improve the thermostability of enzymes have been informative regarding the properties that impart thermostability. The thermostability of Thermococcus sp. 1519 DNA ligase was increased by mutating two alanine residues to lysine, one serine residue to isoleucine, and one glycine to aspartate, which provided increased electrostatic interactions on the surface of the protein (Pezeshgi Modarres et al., 2015). A study by Wieteska and co-workers mutated two separate residues to cysteine to increase the stability of L-threonine aldolase from Thermotoga maritima; they also attempted to insert additional salt bridges to no effect (Wieteska et al., 2015). In the case of Photinus pyralis luciferase, mutating one residue to proline in one flexible region increased thermostability, while a proline substitution in another flexible region decreased thermostability (Yu et al., 2015). In another study, mutation of certain proline residues in one portion of E. coli phytase, yet also glycine residues in other regions increased its thermostability (Wu et al., 2014). While increasing rigidity would appear to be a surefire way to engineer thermostability in an enzyme, in certain cases increased flexibility is more entropy stabilizing (Karshikoff et al., 2015). It seems that there is no one simple solution to improving thermostability, as the structure and fold dictate what changes need to be made to each particular enzyme. Therefore, any attempt to confer improved thermostability to a protein should be preceded by a thorough biophysical and structural characterization in order to determine the best experimental approach.

Dynamics, Activity, and Thermostability

It has become increasingly clear that the various dynamic processes in proteins are intimately tied to their mechanism of function. While high-resolution crystal structures
provide detailed structural information on static conformations, they do not reveal dynamic properties, such as the timescales and degree of movement of domains. Substates important for the function of the protein that are not captured by crystallography can be revealed by methods that probe dynamics. In the case of thermophilic enzymes, the dynamic properties have an intimate relationship with the thermostability and the temperature at which the enzyme is most active. Although increased thermostability is often generated through increased rigidity at lower temperatures, in many cases the picture is more complex.

Many studies have been performed which investigate the dynamics of thermostable enzymes, primarily through computational methodologies, Mamonova and co-workers used an empirical method, [FoldUnfold (Galzitskaya et al., 2006)] and a molecular modelling method [MD/FIRST(Mamonova et al., 2005)], to evaluate the consequences of flexibility in thermostable proteins from many classifications. They concluded that the ion pairs in thermophilic proteins occur more often in networks, so that unbinding of one pair does not significantly affect thermostability (Mamonova et al., 2013). A molecular dynamics study evaluating specific ion pairs thermophilic adenylate kinase concluded that one particular ion pair was stable over the course of the simulation and conferred significant stability to the enzyme, while the other pair drifted apart and did not confer stability (Gromiha and Suresh, 2008). Another MD study demonstrated that the stability of CYP119, an extremely stable cytochrome P450 from Sulfolobus acidocaldarius, was conferred in large part by the hydrophobic packing of two key sidechains (Tyr and Leu), stabilizing a critical loop (Meharenna and Poulos, 2010). Joo and co-workers observed highly unstable regions from the MD simulation of Bacillus circulans, and demonstrated
that mutating polar residues in these regions to large hydrophobic side chains stabilized the enzyme without sacrificing activity (Joo et al., 2011). A network analysis and MD study comparing wild-type Bacillus subtilis lipase A to more thermostable mutant enzyme concluded that marginal local increases in stability have a large effect on overall stability, while leaving the overall tertiary structure unchanged (Srivastava and Sinha, 2014). Thus, improved hydrophobic packing and cooperative ion pair interactions in key locations, without necessarily altering tertiary structure, appears to confer thermostability to proteins

Experimental comparative dynamics studies on mesophilic and thermophilic homologues can provide rich information on dynamic changes that lead to thermostability when the tertiary structure is very similar. One set of thermophilicmesophilic enzyme homologues that have been extensively studied for factors contributing to thermostability are those of ribonuclease H . The Palmer research group investigated the dynamics of RNAseH from Thermus thermophilus by ${ }^{15} \mathrm{~N}$ NMR relaxation dynamics, and compared its dynamics to its mesophilic counterpart from Escherichia coli (Butterwick and Palmer, 2006; Stafford et al., 2013; Stafford et al., 2015). One interesting result of these studies is that the thermophilic RNAse occupies the closed conformation, which is not competent for substrate binding, while the mesophilic enzymes occupy the open, binding-competent conformation far more often (Stafford et al., 2013). A network of residues in the handle region (residues 81-101), which is important for substrate binding, was shown to have subtle changes in hydrophobic packing and dynamics that affect the population of the open, bindingcompetent state, thereby conferring activity to the mesophile and stability at the
expense of activity to the thermophile (Stafford et al., 2013). An extra glycine residue in the thermophile in this region was shown to be especially important in determining the conformation of this region (Butterwick and Palmer, 2006). In a subsequent study, Stafford and co-workers showed that even though the handle showed slightly increased flexibility, the handle region spent more time in a non-competent conformation for binding, while other regions were less flexible (Stafford et al., 2015).

In sum, these results suggest that the relationship of dynamics, activity, and thermostability is complex: certain regions may increase or decrease in flexibility, but cumulatively the dynamic processes increase stability and decrease activity. To understand how the conformational dynamics of thermophilic enzymes is changed at different temperatures, I am studying the conformational dynamics of Dbh polymerase from the thermophilic archaeon Sulfolobus acidocaldarius (optimal growth conditions, $80^{\circ} \mathrm{C}$ and pH 2$)$, at two different temperatures $\left(35^{\circ} \mathrm{C}\right.$ and $\left.50^{\circ} \mathrm{C}\right)$ by a combination of NMR relaxation dynamics and molecular dynamics simulations. Like many thermophilic enzymes, Dbh is increasingly active at higher temperatures, in vitro its activity is approximately 40 -fold higher at $65^{\circ} \mathrm{C}$ than at $22^{\circ} \mathrm{C}$ (Potapova et al., 2002). Therefore, I have been able to observe how the dynamics of the enzyme change over a temperature range where increasing activity has been observed.

Cold Denaturation

It is logical and expected that proteins denature at high temperatures, since sufficient energy is available to overcome the solvation penalty for hydrophobic groups in solution, and conformational entropy is increased at higher temperature. However,
proteins can also denature at low temperatures. The thermodynamic stability of proteins is a parabolic function of temperature, possessing a point of maximum stability. This implies that proteins have two

Figure 1.1: Stability curve for a typical protein. Maximum stability is at approximately $10^{\circ} \mathrm{C}$, and the protein possesses both cold and heat denaturation temperatures. Reproduced from Phys. Chem. Chem. Phys., Graziano, 2014, with permission of the PCCP Owner Societies dx.doi.org/10.1039/c4cp02729a denaturation temperatures, above and below which the denatured is thermodynamically favored over the native state of the protein (Graziano, 2014). For most proteins, the cold denaturation temperature is below freezing; hence, cold denaturation has not been as extensively studied, as it requires the use of denaturants, super-cooled solutions, or high pressure to observe the cold denaturation process. Many studies have demonstrated the existence of cold denaturation using these methods such as scanning calorimetry, CD spectroscopy, and NMR spectroscopy (Azuaga et al., 1992; Griko and Privalov, 1992; Griko and Kutyshenko, 1994; Kumar et al., 2006; Pometun et al., 2006; Whitten et al., 2006; Vajpai et al., 2013). In some cases, even in the absence of denaturants cold denaturation occurs above freezing (Pastore et al., 2007; Buchner et al., 2012). The phenomenon has allowed a more nuanced understanding of thermodynamics of water and how it affects protein stability.

The main mechanism of cold denaturation is a change in the properties of water at low temperature (Davidovic et al., 2009). The entropic penalty for solvation of hydrophobic groups of proteins is reduced at lower temperatures - at a certain point the interaction of water with hydrophobic groups becomes favorable and the protein can denature (Graziano, 2012). This leads to penetration of water into the protein core, and formation of non-native tertiary contacts and disruption of intramolecular hydrogen bonding (Yang et al., 2014). Cold denaturation proceeds with a decrease in both the entropy and enthalpy of the protein system; subsequently, the hydrophobic effect is weakened (Graziano, 2014). For many proteins, cold denaturation is a slow process that proceeds through an intermediate state, then to the fully denatured state (Privalov, 1990).

For thermostable proteins, their increased thermostability can be explained as a shift in the protein stability curve (in Figure 1.1, the curve shifts to the right, resulting in a higher temperature of maximum stability and a higher heat denaturation temperature (Graziano, 2014). Whether this entails the protein stability curve is deeper, shifted to the right, or both, is a matter of active research. Characterizing the process of cold denaturation can also lead to a greater understanding of protein folding and stability. To this end, I have investigated whether Dbh cold denatures at temperatures above zero Celsius. Based on HSQC NMR spectra, it appeared that Dbh began slowly denaturing at temperatures below $20^{\circ} \mathrm{C}$. Four experiments - circular dichroism spectroscopy, differential scanning calorimetry, dynamic light scattering, and hydrogen deuterium exchange NMR - were performed. However, there was no conclusive evidence that Dbh secondary structure unfolds to a random coil conformation approaching zero Celsius, although there was a gradual, reversible conformational transition by DSC and
by HSQC NMR spectra. Therefore, it appears that non-native tertiary structure gradually forms in Dbh at temperatures approaching zero Celsius.

Translesion DNA polymerases

In 1956, Arthur Kornberg discovered the first DNA-copying enzyme from E. coli, which was named DNA polymerase I (Bessman et al., 1956). Since then, many DNA polymerases from all forms of life have been discovered, classified by homology and function into six families: A, B, C, D, which are replicative polymerases, and X and Y, which are the translesion polymerases (Joyce and Benkovic, 2004).

In 1999, the RAD30 gene was recognized as a translesion DNA polymerase, pol η, which could accurately replicate cyclobutane pyrimidine dimers (Johnson et al., 1999a; Johnson et al., 1999b). Many other translesion polymerases were discovered shortly thereafter, such as pol IV (Wagner et al., 1999) pol к (Ogi et al., 1999; Ohashi et al., 2000; Gerlach et al., 2001), pol ı (McDonald et al., 1999; Tissier et al., 2000), and Rev1 (Nelson et al., 1996a; Lin et al., 1999; Wiltrout and Walker, 2011), and were categorized as the Y-family of DNA polymerases (Ohmori et al., 2001). Y-family polymerases carry out translesion synthesis (TLS), accurately bypassing a variety of damaged DNA templates that stall higher-fidelity replicative polymerases (Yang and Woodgate, 2007). However, Y-family polymerases are quite error-prone on undamaged templates (Yang and Woodgate, 2007).

The error-prone replication of undamaged DNA templates by Y-family polymerases is a direct consequence of their more open active sites. The expansion of the active site limits the ability of the polymerase to perform a "fidelity check" on the incoming
nucleotide. Nevertheless, the increased size of the active site allows the accommodation of bulky DNA adducts or other lesions which cause distortion of the DNA double helix (Sale et al. 2012).

In eukaryotes, TLS activity is not confined to the Y-family polymerases - several other enzymes are directly capable of performing TLS. The X-family polymerases pol β, pol λ, and pol μ primarily function in the base excision repair (BER) and non-homologous endjoining (NHEJ) pathways, yet all three are also capable of translesion synthesis across a number of lesions, such as 8 -oxoguanine ($\mathrm{pol} \beta$, pol μ) $1-N^{6}$-ethenoadenine ($\mathrm{pol} \mu$), and 2-hydroxyadenine (pol λ) (Yamtich and Sweasy, 2010). Pol 弓, a B-family polymerase consisting of the Rev3 polymerase and Rev7 regulatory domain, was shown to bypass cyclobutane pyrimidine dimers (Nelson et al., 1996b). Pol ζ can also replicate across a number of other lesions and extension from lesions, and interacts with Rev1 and PCNA to regulate TLS (Makarova and Burgers, 2015). TLS is used by the organism to alleviate replication fork stalling and allow completion of replication, which avoids the consequences of improper segregation of chromosomes, such as cellular senescence and apoptosis (Sale et al. 2012). A recently discovered protein, human Primase-Polymerase (PrimPol), a member of the archaeo-eukaryotic primase superfamily, possesses both primase and translesion synthesis activities (GarciaGomez et al., 2013). The primase activity of PrimPol is able to restart a stalled replication fork after lesion bypass (Mouron et al., 2013). PrimPol can also replicate across 6-4 thymine-thymine photoproducts and 8-oxoguanine, and extend from cyclobutane pyrimidine dimers (Bianchi et al., 2013; Zafar et al., 2014)

Biological Function

Classification of Y-family polymerases

As noted previously, Y-family polymerases allow cells to bypass a wide variety of cognate lesions in an error-free manner, while replicating undamaged DNA in an error-

Figure 1.2: Phylogenetic tree of Y-family DNA polymerases, Dbh is in the $\operatorname{din} B$ subfamily, and it is listed as "SsoDbh" in this diagram. Reprinted from Mol. Cell., vol. 8, issue 1, Ohmori et. al, "The Yfamilv of DNA polvmerases". pas. 7-8. © 2001, with permission from Elsevier.
prone fashion. Prokaryotes usually have one or two Y -family polymerases, whereas eukaryotes have four. In general, the prokaryotic polymerases handle a greater variety of lesions, while the eukaryotic polymerases have more specialized roles. The Y -family polymerases across all organisms are classified for their homology and function (Figure 1.2). A phylogenetic analysis performed by Ohmori et al. groups the Y -family
polymerase into five subfamilies: the dinB subfamily (e.g., E. coli pol IV, Dbh, and Dpo4) found in all domains of life, the bacterial UmuC subfamily(e.g. E. coli pol V), containing separate branches for gram-negative and gram-positive bacteria, the eukaryotic Rad30A subfamily (pol η), the Rad30B subfamily (pol ı) found only in higher eukaryotes, and finally the eukaryotic Rev1 subfamily (Ohmori et al., 2001).

Translesion Synthesis by Y-family polymerases

Translesion synthesis is carried out with varying efficiency and fidelity by each subfamily of Y-family polymerases, and some variation within different enzymes of each subfamily. Some polymerases are specialized to handle specific types of in an error-free manner. Pol K is specialized to bypass bulky N^{2}-guanine adducts generated by polyaromatic hydrocarbons (PAH) such as benzo[a]pyrene (Zhang et al., 2000a; Ogi et al., 2002; Zhang et al., 2002). Without pol k, cellular bypass of these lesions is more error-prone (Avkin et al., 2004). E. coli pol IV swiftly and accurately bypasses N^{2} benzo[a]pyrene diol epoxide (BPDE) adducts at stalled replication forks (lkeda et al., 2014). Pol IV is also able to replicate DNA lesions produced by reactive oxygen species, such as thymine glycol, 8-oxoguanine, 2-oxoguanine, and 5-formyluracil; however, pol IV preferred mutagenic bypass of the 2-oxoadenine lesion with dCTP (Hori et al., 2010).

Pol η is best known for its ability to accurately bypass cyclobutane pyrimidine dimers generated by ultraviolet radiation, both in vitro (McDonald et al., 1999) and in vivo (Yoon et al., 2009). Loss of pol η leads to dramatically increased susceptibility to UV light in cells and mice (Lin et al., 2006), and is a cause of the disease xeroderma pigmentosum
variant (XPV), which is characterized by keratoses and high rates of skin cancer (McDonald et al., 1999). In XPV cells, pol 1 takes over lesion bypass with the consequence of much higher rates of mutation (Lin et al., 2006). Nevertheless, even mutagenic lesion bypass appears to be favorable to the alternative - cells lacking both $\mathrm{pol} \eta$ and pol ı are even more sensitive to UV radiation, and mice develop tumors even more frequently (Dumstorf et al., 2006; Ohkumo et al., 2006).

The major role of Rev1, in contrast to the other Y-family polymerases, is not to directly catalyze a lesion bypass reaction; although in certain contexts its dCMP transferase activity does a have a role in lesion bypass (Wiltrout and Walker, 2011). Rev1 has key importance in eukaryotes as a regulatory scaffolding protein for TLS (Kosarek et al., 2008). It also has a key role in forming a complex with pol ζ in extension past many varieties of lesions, such as interstrand crosslinks (Budzowska et al., 2015).

Dpo4 and Dbh are the only TLS polymerases in their respective species of Sulfolobus, and share 54% overall sequence identity, yet the two differ significantly in their bypass properties (Boudsocq et al., 2004). Dpo4 has bypass properties more similar to pol η, such as the ability to bypass cyclobutane pyrimidine dimers and abasic sites, albeit less efficiently than pol η (Boudsocq et al., 2004). Dpo4 is able to efficiently bypass the 8oxoguanine lesion, which occurs with great frequency at the optimal growth temperature of Sulfolobus (Rechkoblit et al., 2006). Dpo4 also can accurately bypass the N2-AAFdG (2-acetylaminofluorene) lesion accurately (Boudsocq et al., 2001). Dpo4 can bypass at least one stereoisomer, $10 S(+)$-trans-anti-benzo[a]pyrene- N^{2}-dG, yet inserts all four dNTPs equally well (Perlow-Poehnelt et al., 2004). In contrast, the bypass properties of

Dbh resemble those of pol k ; Dbh is more likely to bypass N2-BPDE lesions and more accurately than Dpo4 (Sholder and Loechler, 2015). In vivo, at the optimal growth temperature of $80^{\circ} \mathrm{C}$ for S . acidocaldarius, Dbh is active in preventing transversion mutations resulting from 8 -oxoguanine lesions (Sakofsky et al., 2012). Interestingly, the lesion bypass properties of the two enzymes can be switched by switching the little finger domain, or the core-LF linker region (Boudsocq et al., 2004; Wilson and Pata, 2008).The significant differences in lesion bypass activity between these closely related enzymes demonstrates that the degree and fidelity of lesion bypass is intimately tied to the structure and dynamics of the particular polymerase, and in particular the conformational dynamics of the LF domain.

Regulation of Translesion Synthesis - Processivity Clamp Interaction

Because of their intrinsic error rates on undamaged DNA and differential ability to bypass lesions in an error-free fashion, Y-family polymerases are usually highly regulated in all organisms. Failure to properly regulate TLS can increase mutational burdens, and decrease the ability of the organism to deal with genotoxic stress. In prokaryotes such as E. coli, one way to control TLS is through the direct interaction with the β-clamp, with the main replicative polymerase (pol III) and Y -family polymerases (pol IV and pol V) both able to bind directly to the clamp. Pol IV will be able to access the replication fork only when the SOS DNA damage response occurs, or when replication fork stalling allows pol IV to switch places with pol III at the primer-template junction (Wagner et al., 1999; Furukohri et al., 2008; Ikeda et al., 2014; Kath et al., 2014).

Regulation of Y-family polymerases in eukaryotes also occurs through interactions with the processivity clamp, proliferating cell nuclear antigen (PCNA), with additional scaffolding provided by Rev1. Each eukaryotic Y-family polymerase can interact directly with PCNA. Pol \imath, pol η, and pol κ interact through their PCNA-interacting-protein boxes

Figure 1.3 Model of Dpo4 interaction with PCNA and dsDNA. Linker flexibility allows extension of the LF, resulting in Dpo4 being in an inactive state. Image reprinted from Xing et al., Molecular Microbiology, © 2009, John Wiley \& Sons.
(PIPs) (Haracska et al., 2005;
Ogi et al., 2005; Acharya et al., 2008). PIP-boxes have a consensus sequence of Qxxhxxaa, where h is a hydrophobic residue, a is an aromatic residue, and x is any residue (Hishiki et al., 2009). These polymerases also contain Rev1-interaction regions (RIRs) that allow them to bind to the C-terminal domain of Rev1 (D'Souza and Walker, 2006), which itself is able to bind PCNA through its BRCT domain (Pustovalova et al., 2013). The C-terminal domain of Rev1 also forms a complex with pol ζ that is critical for the proper functioning of pol ζ in TLS (Acharya et al., 2005). In this way, Rev1 can mediate interactions of other TLS polymerases with PCNA and with each other.

Although the interaction of Dbh with the clamp protein (archaeal PCNA) from S. acidocaldarius has not been studied, it is highly probable that translesion synthesis
could be regulated through interactions with the clamp. However, structural studies have been performed on Dpo4 and S. solfataricus PCNA. A co-crystal structure of Dpo4 with a heterodimer of S. solfataricus PCNA-1 and -2 demonstrates the Dpo4 possesses a PIP-box motif (AIGLDKFF) in the C-terminal tail that binds to a hydrophobic pocket on the surface of PCNA, structuring the tail into a 3_{10} helix; supplemental contacts are also formed between PCNA and loops in the palm, thumb, and finger domains (Xing et al., 2009). Interestingly, the LF was found in an extended conformation and rotated xxx degrees with respect to the polymerase core from the apo structure (1K1S,) and DNAbound structures. This observation suggests the conformational flexibility of the LF domain via the linker region assists in regulation of Y-family polymerases when bound to the processivity clamp, maintaining the enzyme in an inactive state. Dbh also possesses the PIP-box motif in its C-terminal tail (KTNLSDFF), so it is quite likely that Dbh binds to S. acidocaldarius PCNA in a similar manner. It would be interesting to observe how the dynamics of Dbh are altered when bound to the clamp.

Y-family polymerases and disease

Y-family polymerases are highly regulated to ensure that they are deployed only in the appropriate context; using the wrong polymerase for a specific lesion or undamaged template can generate high levels of mutations. Loss of function of a translesion polymerase or any of the many associated regulatory mechanisms can lead to defects in handling bulky lesions and interstrand crosslinks. The resultant aberrant functionality of TLS increases organismal susceptibility to DNA damage from environmental mutagens and endogenous processes, leading to cell death or increased carcinogenesis.

Increased levels of expression of translesion polymerases in cells can drive tumorigenesis through accumulation of mutations. Elevated expression of pol in breast cancer cells increases mutation frequency during replication, with a concomitant reduction in mutation frequency upon immunodepletion of pol 1 (Yang et al., 2004). Overexpression of pol \imath also drives mutagenesis in bladder cancer (Yuan et al., 2013). Pol κ is overexpressed in various types of non-small cell lung cancer (J et al., 2001). Pol η, pol κ, and pol ı overexpression have been found in esophageal carcinomas (Zhou et al., 2012). TLS polymerases also participate in aberrant DNA re-replication, a process that results in significant genomic instability (Sekimoto et al., 2015).

Cancer cells can exploit Y-family polymerases to tolerate DNA damage caused by chemotherapeutics. One prominent example is the bypass of adducts generated by cisplatin and oxalipatin by pol η, which can insert two cytosines across from the G-Pt-G lesion (Vaisman et al., 2000; Alt et al., 2007). The active site of pol η accommodates the helix-distorting lesion well through interactions with key residues (Ummat et al., 2012). Pol ζ complements pol η in the bypass of G-Pt-G adducts by extending the primer from the lesion site (Lee et al., 2014). Pol η deficient cells are far more susceptible to cisplatin-induced DNA damage (Albertella et al., 2005). In non-small cell lung cancer, patient survival during a chemotherapeutic regimen negatively correlated with level of mRNA expression of pol η (Ceppi et al., 2009). However, phenanthriplatin, a next generation platin drug, is not efficiently bypassed by pol η and is toxic to both pol $\eta+$ and pol η - cells (Gregory et al., 2014).

DNA interstrand cross-links (ICLs), which strongly block replication are also generated with high frequency by many DNA damaging agents such as cisplation, cyclophosphamide, mitomycin C, and carmustine (Sharma and Canman, 2012). Defective recruitment of Rev1-pol ζ complexes to the site of ICLs prevent proper repair and bypass of ICLs (Budzowska et al., 2015). Depletion of the catalytic subunit of pol ζ (REV3) in multiple human cancer cell lines increases their sensitivity to chemotherapeutics (Doles et al., 2010; Knobel et al., 2011). Depletion of Rev1 in human ovarian carcinoma cells increases the cytotoxicity of cisplatin and reduces the acquisition of resistance (Okuda et al. 2005). In aggregate, these results show the critical role of the Rev1/pol ζ in tolerance of chemotherapeutics which generate ICLs. Pol η overexpression is also implicated in tolerance of nitrogen mustard crosslinking agents in multiple cancer cells in vivo and in vitro (Tomicic et al., 2014).

Furthermore, loss of translesion synthesis leads to replication fork stalling and collapse, which can generate chromosomal abnormalities that can contribute to a cancerous phenotype (Lange et al., 2011). The overlap in function between TLS polymerases (both Y- and X-family polymerases) complicates the role of the loss of function of these enzymes in tumorigenesis. Often, one enzyme can fulfill the function of another TLS polymerases in bypassing a certain lesion, which may or may not be mutagenic. In certain cases, the consequences are clear. When pol η is not available for error-free bypass of CPD lesions, pol can bypass the lesion, but at the cost of much increased mutagenesis (Wang et al., 2007b).

Nevertheless, there is at least one instance in which the error-prone properties of TLS polymerases are advantageous. Extremely error-prone replication by pol ı, which preferentially mispairs G across from T (Tissier et al., 2000; Zhang et al., 2000b), and often generates other mispairs (Vaisman et al., 2001), is leveraged to diversify antibody genes in immature mammalian B-cells in a process known as somatic hypermutation (Faili et al., 2002). Pol η is also involved in generating A / T transversions in somatic hypermutation (Delbos et al., 2007). Combined with recombination and the generation of mutations across from cytosines by AID, this process generates extremely diverse sequences in the variable regions of antibodies.

Y-family polymerase structure, function, and dynamics

Dbh is a Y-family, TLS DNA polymerase from the thermophilic archaeon Sulfolobus acidocaldarius (Boudsocq et al., 2004), and shares 54\% sequence identity to Dpo4 from the related archaeon Sulfolobus solfataricus. Members of the Y-family share canonical polymerase architecture consisting of a catalytic core composed of palm, fingers, and thumb domains; and have an additional unique C-terminal domain termed the "wrist", "polymerase-associated domain" (PAD), or "little finger" (LF) domain. Notably, the LF domain is tethered to the catalytic core by a flexible linker and has been found to occupy a variety of conformations (Pata, 2010).

The error-prone replication of undamaged DNA templates by Y-family polymerases is a direct consequence of their more open active sites. The expansion of the active site limits the ability of the polymerase to perform a "fidelity check" on the incoming numb Nevertheless, the increased size of active site allows the accommodation of bulky DNA
adducts or other lesions which cause distortion of the DNA double-helix (Sale et al. 2012).

All DNA polymerases share a two-metal mechanism (Figure 1.4) by which they catalyze the addition of one nucleotide to the free 3 '- OH of the primer strand of duplex DNA (Joyce and Benkovic, 2004). Typically, two to three carboxylate side chains, and in some cases a backbone carbonyl, are used to chelate two divalent metal cations (mostly magnesium) in the active site of the polymerase, located in the palm domain (Steitz, 1999). High-fidelity polymerases involved in replication form tighter contacts with the DNA primer/template and the incoming nucleotide, thereby discriminating between the incorrect and correct nucleotide (Joyce and Benkovic, 2004). Upon nucleotide binding, the fingers domain closes over the active site, performing a fidelity check on the nascent base pair. This conformational transition was originally thought to be rate limiting, but was shown to occur much faster than the rate of catalysis (Rothwell et al., 2005). In contrast, the fingers domains of Y-family polymerases do not close upon nucleotide binding (Pata, 2010). The rate-limiting step of all DNA polymerases is now believed to be a subtle repositioning of residues surrounding the active site, which properly align the 3 ' OH of the primer terminus for nucleophilic attack on the $5^{\prime} \alpha$ phosphate of the incoming nucleotide (Maxwell and Suo, 2014).

The mechanism of Y-family polymerases has been investigated by both ensemble and single-molecule Förster resonance energy transfer (FRET) (Xu et al., 2009a; Maxwell et al., 2012, 2014), molecular dynamics (MD) simulations (Perlow-Poehnelt et al., 2004; Rechkoblit et al., 2006; Perlow-Poehnelt et al., 2007; Xu et al., 2007; Jia et al., 2008; Donny-Clark and Broyde, 2009; Xu et al., 2009b; Qin et al., 2013; Lior-Hoffmann et al.,

2014; Maxwell et al., 2014), and fluorescence based techniques (DeLucia et al., 2007; Wong et al., 2008). The greatest conformational rearrangement occurs on binding duplex DNA, with smaller changes occurring during nucleotide binding and repositioning for catalysis (Maxwell and Suo, 2014).

Experimental Dynamic Studies

Experimental dynamic studies on Y-family polymerases have largely used fluorescencebased techniques. DeLucia and co-workers studied the dynamics of nucleotide insertion by Dbh in a stopped-flow experiment using 2-aminopurine as the fluorescence reporter; they found that there are three fast conformational transitions after dNTP binding, followed by a fourth conformational transition that had a rate similar to the rate-limiting step of the reaction (DeLucia et al., 2007). They also demonstrated how Dbh can generate single-base deletions - the templating base can slip to pair with the primer terminus, unstacking the preceding template base (DeLucia et al., 2007). A study on Dpo4 dynamics monitoring tryptophan fluorescence confirmed that large conformational change in the little finger domain that is observed in crystal structures also occurs in solution, with the polymerase core remaining rigid (Wong et al., 2008). Studies monitoring tryptophan fluorescence in Dpo4 (Eoff et al., 2009) and pol κ (Zhao et al., 2014) during nucleotide incorporation suggest the rate-limiting step is a slow conformational relaxation after phosphodiester bond formation.

Several FRET-based studies have also been performed on Dpo4. The authors of a FRET-based study on Dpo4 concluded that translocation of the DNA happens upon correct nucleotide binding, followed by movement of the little finger domain away from

Figure 1.4: Two-metal mechanism in the active site of a DNA polymerase. Figure from Shechner et al., "Crystal Structure of the Catalytic Core of an RNA-Polymerase Ribozyme", Science, 326(5957), pgs.1271-1275, © 2009, reprinted with permission from AAAS.
the polymerase core (Xu et al., 2009a). They also speculated that the rate-limiting step was the rearrangement of the active site following larger domain movements; however, they could not observe this motion directly with the FRET technique (Xu et al., 2009a). A follow-up FRET study of Dpo4 replicating an 8-oxoguanine lesioned template show additional movements in the thumb and palm domains, the same LF domain movement away from the palm, and slower translocation from the lesion (Maxwell et al., 2012). The differential dynamics of Dpo4 on a lesion-containing template versus an undamaged template highlights how changes in TLS polymerase dynamics could lead to accommodation of lesion-containing DNA substrates. A 2013 single-molecule FRET study of Dpo4 investigating the translocation step showed the translocation motion occurs in the binary complex, but is stabilized in the insertion conformation only by the correct dNTP (Brenlla et al., 2014). One more FRET study concluded that the apo form of Dpo4 possibly varies between DNA-binding competent and non-competent states (Maxwell et al., 2014).

Molecular Dynamics Studies

A multitude of molecular dynamics and molecular modelling studies have been performed on Y-family polymerases, utilizing the atomic structures derived from X-ray crystallography. A combined quantum mechanics/molecular mechanics (QM/MM) study of the nucleotide transfer reaction of Dpo4 showed the process involves a watermeditated proton relay mechanism, which is stabilized by the two coordinated Mg^{2+} ions (Wang et al., 2007a). A 2014 study used a two-basin structure-based model combined with replica-exchange MD simulations to investigate the dynamics of DNA binding to Dpo4. The authors postulated that Dpo4 toggles between three successive states during substrate binding (Chu et al., 2014). The greatest conformation change between the three states of Dpo4 involved the positioning of the LF domain, mediated by the flexible linker (Chu et al., 2014). When considered in light of other studies, this result suggests that the positioning of the LF is crucial for proper binding and orientation of the DNA substrate.

For dynamics of lesion bypass, the shape of the active site and the dynamics of the enzyme affect whether the lesion can be bypassed accurately, in an error-prone fashion, or at all. In the of an case N^{2}-BPDE lesion bypass by Dpo4, the spaciousness of the active site allows the lesioned base to reorient from the anti conformation (which favors correct base pairing) to the syn conformation (which favors mismatched base pairs) in the active site, allowing any dNTP to pair with the lesion and resulting in nearequal incorporation of all four dNTPs (Perlow-Poehnelt et al., 2004). Increasing the temperature from $37^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ and concordantly the dynamic motion of the polymerase increases the mismatch frequency; because the syn conformation of the lesion is now

Figure 1.5: Crystal structure of apo Dbh (1K1S, (Silvian et al., 2001) demonstrating the characteristic Y-family polymerase fold. The polymerase core consists of the palm (red), thumb (pink), and fingers (blue) domains, and the little finger (LF) or polymerase-associated domain (PAD) (green) is unique to Y -family polymerases. The flexible linker region (yellow) can allow the LF domain to occupy many conformations with respect to the polymerase core, which can significantly influence the polymerase's activity and lesion bypass properties. This figure was generated using UCSF Chimera (Pettersen et al., 2004)
preferred in the active site (Perlow-Poehnelt et al., 2007). Another study on N^{2}-BPDEdG lesion bypass by Dpo4 using MD suggested that a second conformation of the lesion in the polymerase represents an overlapping alternate catalytically competent active site, which may explain how Dpo4 can accommodate this lesion in multiple orientations with all four nucleotides (Xu et al., 2008). The spacious active-site of Dpo4
during N^{2}-BPDE-dG lesion bypass also explains how it can generate base deletions by allowing the templating lesion to slip into an extrahelical position, positioning the downstream undamaged base for Watson-Crick base-pairing in the active site (Xu et al., 2008). In contrast, the accurate bypass of N^{2}-AAF-dG lesions is achieved because the active site is only properly organized when the adduct is in the anti conformation, allowing only Watson-Crick pairing with correct dCTP (Wang and Broyde, 2006).

Pol κ can bypass N^{2}-BPDE-dG in an error-free manner due to its additional N-clasp region, which constrains the lesion in the anti conformation needed for Watson-Crick base pairing with dCTP (Jia et al., 2008). During pol κ bypass of an N^{2}-AAF-dG (2acetylaminofluorene) adduct, the N -clasp still partially enforces the correct orientation of lesion for Watson-Crick pairing with dCTP; however, increased flexibility in the N-clasp allows alternate wobble base-pairing with incorrect dTTP (Lior-Hoffmann et al., 2014). The fact that pol κ can bypass N^{2}-BPDE-dG error-free and yet bypasses N^{2}-AAF-dG inaccurately - vice versa for Dpo4 - demonstrates that proper lesion bypass requires the proper shape and dynamics of the active site of the polymerase. Pol t is also able to accurately bypass the N^{2}-AAF lesion (Zhang et al., 2001), due to the fact that it favors placing the lesion in the major groove side of the template, facilitating correct WatsonCrick pairing (Donny-Clark et al., 2009). Another MD study on pol \imath bypass of an N^{2} -BPDE-dA lesion showed that in certain sequences contexts the anti conformation with Watson-Crick base-pairing is preferred, while the syn conformation with Hoogsteen base-pairing is preferred in others (Donny-Clark and Broyde, 2009). While the flexibility of pol \mathfrak{r} allowed lesion rotation, pol \mathfrak{l} incorporated correct dTTP by either WC or Hoogsteen base-pariring (Donny-Clark and Broyde, 2009). Clearly, the relationship of
the structure and dynamics to accurate lesion bypass in Y -family polymerases is complex.

In contrast, high-fidelity polymerases should be unable to properly position bulky lesions in their active sites, leading to complete blockage or very inefficient replication. A MD study on high-fidelity Bacillus fragment on the N^{2}-BPDE-dG lesion shows it can only accommodate the lesion in the syn conformation, allowing insertion across from it; however, the post-insertion complex is highly distorted, precluding any extension from the lesion (Xu et al., 2007). These MD studies make it clear that the position and orientation of a lesioned base in the active site of the enzyme can largely determine whether or not bypass occurs, either in an error-free or mutagenic manner.

The experimental techniques reviewed above have been able to show domain movements during the catalytic cycle during replication of undamaged and lesioned DNA templates, yet lack atomic resolution. Molecular dynamics simulations of Y-family polymerases, while very informative, have not been directly compared to an atomiclevel resolution dynamics experiment. Herein, I present the study the dynamics on the apo form of Dbh polymerase by ${ }^{15} \mathrm{~N}$ NMR relaxation spectroscopy and hydrogendeuterium exchange spectroscopy, providing residue-specific information through the dynamics of the amide bond. In addition, I have investigated the dynamics of Dbh through MD simulations at two temperatures, and I have compared the wild-type polymerase to a variant $\left(\operatorname{Dbh}_{\text {RKS }(243-245)}\right)$ that has similar bypass properties to Dpo4.

No residue-specific experimental dynamic information has been reported for a DNA polymerase; this work represents the first report of NMR relaxation dynamics of a DNA
polymerase. The hydrogen-deuterium exchange demonstrates the thermostability of Dbh is partially due to extremely stable hydrogen bonds in the palm and little fingers domains. Many residues in the core of these domains have no observable decay even after 2 days at $50^{\circ} \mathrm{C}$, with protection factors of 10^{8} to 10^{9} and perhaps greater. These highly protected residues are rich in branched-chain amino acids, indicating that increased hydrophobic packing may be responsible for the thermostability of Dbh. In addition, the molecular dynamics simulations indicate the protein is highly rigid at $35^{\circ} \mathrm{C}$, but at $50^{\circ} \mathrm{C}$ the LF domain can reorient freely around the linker region. Since Dbh is far more active at higher temperatures, this leads me to conclude the free reorientation of the LF is necessary for polymerase function, including binding and proper positioning of substrates for catalysis. The MD simulations also indicate the cores of the domains of Dbh are very rigid at $35^{\circ} \mathrm{C}$, and even quite rigid at $50^{\circ} \mathrm{C}$, indicating that rigidity is crucial to the stability of Dbh at high temperature.

References:

Acharya, N., Haracska, L., Johnson, R.E., Unk, I., Prakash, S., and Prakash, L. (2005). Complex formation of yeast Rev1 and Rev7 proteins: a novel role for the polymerase-associated domain. Mol Cell Biol 25, 9734-9740.

Acharya, N., Yoon, J.H., Gali, H., Unk, I., Haracska, L., Johnson, R.E., Hurwitz, J., Prakash, L., and Prakash, S. (2008). Roles of PCNA-binding and ubiquitin-binding domains in human DNA polymerase eta in translesion DNA synthesis. Proc Natl Acad Sci U S A 105, 17724-17729.

Albertella, M.R., Green, C.M., Lehmann, A.R., and O'Connor, M.J. (2005). A role for polymerase eta in the cellular tolerance to cisplatin-induced damage. Cancer Res 65, 9799-9806.

Alt, A., Lammens, K., Chiocchini, C., Lammens, A., Pieck, J.C., Kuch, D., Hopfner, K.P., and Carell, T. (2007). Bypass of DNA lesions generated during anticancer treatment with cisplatin by DNA polymerase eta. Science 318, 967-970.

Avkin, S., Goldsmith, M., Velasco-Miguel, S., Geacintov, N., Friedberg, E.C., and Livneh, Z. (2004). Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells: the role of DNA polymerase kappa. J Biol Chem 279, 53298-53305.

Azuaga, A.I., Galisteo, M.L., Mayorga, O.L., Cortijo, M., and Mateo, P.L. (1992). Heat and cold denaturation of beta-lactoglobulin B. FEBS Lett 309, 258-260.

Baker-Austin, C., and Dopson, M. (2007). Life in acid: pH homeostasis in acidophiles. In Trends Microbiol (England), pp. 165-171.

Bessman, M.J., Kornberg, A., Lehman, I.R., and Simms, E.S. (1956). Enzymic synthesis of deoxyribonucleic acid. Biochim Biophys Acta 21, 197-198.

Bianchi, J., Rudd, S.G., Jozwiakowski, S.K., Bailey, L.J., Soura, V., Taylor, E., Stevanovic, I., Green, A.J., Stracker, T.H., Lindsay, H.D., et al. (2013). PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication. Mol Cell 52, 566-573.

Bleicher, L., Prates, E.T., Gomes, T.C., Silveira, R.L., Nascimento, A.S., Rojas, A.L., Golubev, A., Martinez, L., Skaf, M.S., and Polikarpov, I. (2011). Molecular basis of the thermostability and thermophilicity of laminarinases: X-ray structure of the hyperthermostable laminarinase from Rhodothermus marinus and molecular dynamics simulations. J Phys Chem B 115, 7940-7949.

Boudsocq, F., Iwai, S., Hanaoka, F., and Woodgate, R. (2001). Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4): an archaeal DinB-like DNA polymerase with lesion-bypass properties akin to eukaryotic pol? In Nucleic Acids Res, pp. 4607-4616.

Boudsocq, F., Kokoska, R.J., Plosky, B.S., Vaisman, A., Ling, H., Kunkel, T.A., Yang, W., and Woodgate, R. (2004). Investigating the role of the little finger domain of Y-family DNA polymerases in low fidelity synthesis and translesion replication. J Biol Chem 279, 32932-32940.

Brenlla, A., Markiewicz, R.P., Rueda, D., and Romano, L.J. (2014). Nucleotide selection by the Y-family DNA polymerase Dpo4 involves template translocation and misalignment. Nucleic Acids Res 42, 25552563.

Buchner, G.S., Shih, N., Reece, A.E., Niebling, S., and Kubelka, J. (2012). Unusual cold denaturation of a small protein domain. Biochemistry 51, 6496-6498.

Budzowska, M., Graham, T.G., Sobeck, A., Waga, S., and Walter, J.C. (2015). Regulation of the Rev1-pol zeta complex during bypass of a DNA interstrand cross-link. Embo j.

Butterwick, J.A., and Palmer, A.G., 3rd (2006). An inserted Gly residue fine tunes dynamics between mesophilic and thermophilic ribonucleases H. In Protein Sci (United States), pp. 2697-2707.

Ceppi, P., Novello, S., Cambieri, A., Longo, M., Monica, V., Lo lacono, M., Giaj-Levra, M., Saviozzi, S., Volante, M., Papotti, M., et al. (2009). Polymerase eta mRNA expression predicts survival of non-small cell lung cancer patients treated with platinum-based chemotherapy. Clin Cancer Res 15, 1039-1045.

Chu, X., Liu, F., Maxwell, B.A., Wang, Y., Suo, Z., Wang, H., Han, W., and Wang, J. (2014). Dynamic Conformational Change Regulates the Protein-DNA Recognition: An Investigation on Binding of a YFamily Polymerase to Its Target DNA. PLoS Comput Biol 10, e1003804.

D'Souza, S., and Walker, G.C. (2006). Novel role for the C terminus of Saccharomyces cerevisiae Rev1 in mediating protein-protein interactions. Mol Cell Biol 26, 8173-8182.

Davidovic, M., Mattea, C., Qvist, J., and Halle, B. (2009). Protein cold denaturation as seen from the solvent. J Am Chem Soc 131, 1025-1036.

Delbos, F., Aoufouchi, S., Faili, A., Weill, J.C., and Reynaud, C.A. (2007). DNA polymerase eta is the sole contributor of A / T modifications during immunoglobulin gene hypermutation in the mouse. J Exp Med 204, 17-23.

DeLucia, A.M., Grindley, N.D., and Joyce, C.M. (2007). Conformational changes during normal and errorprone incorporation of nucleotides by a Y-family DNA polymerase detected by 2-aminopurine fluorescence. Biochemistry 46, 10790-10803.

Doles, J., Oliver, T.G., Cameron, E.R., Hsu, G., Jacks, T., Walker, G.C., and Hemann, M.T. (2010). Suppression of Rev3, the catalytic subunit of Pol\{zeta\}, sensitizes drug-resistant lung tumors to chemotherapy. Proc Natl Acad Sci U S A 107, 20786-20791.

Donny-Clark, K., and Broyde, S. (2009). Influence of local sequence context on damaged base conformation in human DNA polymerase iota: molecular dynamics studies of nucleotide incorporation opposite a benzo[a]pyrene-derived adenine lesion. Nucleic Acids Res 37, 7095-7109.

Donny-Clark, K., Shapiro, R., and Broyde, S. (2009). Accommodation of an N-(deoxyguanosin-8-yl)-2acetylaminofluorene adduct in the active site of human DNA polymerase iota: Hoogsteen or Watson-Crick base pairing? Biochemistry 48, 7-18.

Dumstorf, C.A., Clark, A.B., Lin, Q., Kissling, G.E., Yuan, T., Kucherlapati, R., McGregor, W.G., and Kunkel, T.A. (2006). Participation of mouse DNA polymerase iota in strand-biased mutagenic bypass of UV photoproducts and suppression of skin cancer. Proc Natl Acad Sci U S A 103, 18083-18088.

Elcock, A.H. (1998). The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins. In J Mol Biol (England, 1998 Academic Press.), pp. 489-502.

Eoff, R.L., Sanchez-Ponce, R., and Guengerich, F.P. (2009). Conformational changes during nucleotide selection by Sulfolobus solfataricus DNA polymerase Dpo4. J Biol Chem 284, 21090-21099.

Faili, A., Aoufouchi, S., Flatter, E., Gueranger, Q., Reynaud, C.A., and Weill, J.C. (2002). Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase iota. Nature 419, 944947.

Fukuchi, S., and Nishikawa, K. (2001). Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria. J Mol Biol 309, 835-843.

Furukohri, A., Goodman, M.F., and Maki, H. (2008). A dynamic polymerase exchange with Escherichia coli DNA polymerase IV replacing DNA polymerase III on the sliding clamp. J Biol Chem 283, 1126011269.

Galzitskaya, O.V., Garbuzynskiy, S.O., and Lobanov, M.Y. (2006). FoldUnfold: web server for the prediction of disordered regions in protein chain. In Bioinformatics (England), pp. 2948-2949.

Garcia-Gomez, S., Reyes, A., Martinez-Jimenez, M.I., Chocron, E.S., Mouron, S., Terrados, G., Powell, C., Salido, E., Mendez, J., Holt, I.J., et al. (2013). PrimPol, an archaic primase/polymerase operating in human cells. Mol Cell 52, 541-553.

Gerlach, V.L., Feaver, W.J., Fischhaber, P.L., and Friedberg, E.C. (2001). Purification and characterization of pol kappa, a DNA polymerase encoded by the human DINB1 gene. J Biol Chem 276, 92-98.

Graziano, G. (2014). On the mechanism of cold denaturation. Phys Chem Chem Phys 16, 21755-21767.

Gregory, M.T., Park, G.Y., Johnstone, T.C., Lee, Y.S., Yang, W., and Lippard, S.J. (2014). Structural and mechanistic studies of polymerase eta bypass of phenanthriplatin DNA damage. Proc Natl Acad Sci U S A 111, 9133-9138.

Griko , Y.V., and Kutyshenko, V.P. (1994). Differences in the processes of beta-lactoglobulin cold and heat denaturations. Biophys J 67, 356-363.

Griko, Y.V., and Privalov, P.L. (1992). Calorimetric study of the heat and cold denaturation of betalactoglobulin. Biochemistry 31, 8810-8815.

Gromiha, M.M., Oobatake, M., and Sarai, A. (1999). Important amino acid properties for enhanced thermostability from mesophilic to thermophilic proteins. Biophys Chem 82, 51-67.

Gromiha, M.M., and Suresh, M.X. (2008). Discrimination of mesophilic and thermophilic proteins using machine learning algorithms. Proteins 70, 1274-1279.

Haracska, L., Acharya, N., Unk, I., Johnson, R.E., Hurwitz, J., Prakash, L., and Prakash, S. (2005). A single domain in human DNA polymerase iota mediates interaction with PCNA: implications for translesion DNA synthesis. Mol Cell Biol 25, 1183-1190.

Hishiki, A., Hashimoto, H., Hanafusa, T., Kamei, K., Ohashi, E., Shimizu, T., Ohmori, H., and Sato, M. (2009). Structural basis for novel interactions between human translesion synthesis polymerases and proliferating cell nuclear antigen. J Biol Chem 284, 10552-10560.

Hori, M., Yonekura, S., Nohmi, T., Gruz, P., Sugiyama, H., Yonei, S., and Zhang-Akiyama, Q.M. (2010). Error-Prone Translesion DNA Synthesis by Escherichia coli DNA Polymerase IV (DinB) on Templates Containing 1,2-dihydro-2-oxoadenine. J Nucleic Acids 2010, 807579.

Ikeda, M., Furukohri, A., Philippin, G., Loechler, E., Akiyama, M.T., Katayama, T., Fuchs, R.P., and Maki, H. (2014). DNA polymerase IV mediates efficient and quick recovery of replication forks stalled at N2-dG adducts. Nucleic Acids Res 42, 8461-8472.

J, O.W., Kawamura, K., Tada, Y., Ohmori, H., Kimura, H., Sakiyama, S., and Tagawa, M. (2001). DNA polymerase kappa, implicated in spontaneous and DNA damage-induced mutagenesis, is overexpressed in lung cancer. Cancer Res 61, 5366-5369.

Jia, L., Geacintov, N.E., and Broyde, S. (2008). The N-clasp of human DNA polymerase kappa promotes blockage or error-free bypass of adenine- or guanine-benzo[a]pyrenyl lesions. Nucleic Acids Res 36, 6571-6584.

Johnson, R.E., Kondratick, C.M., Prakash, S., and Prakash, L. (1999a). hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285, 263-265.

Johnson, R.E., Prakash, S., and Prakash, L. (1999b). Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Poleta. Science 283, 1001-1004.

Jonsdottir, L.B., Ellertsson, B.O., Invernizzi, G., Magnusdottir, M., Thorbjarnardottir, S.H., Papaleo, E., and Kristjansson, M.M. (2014). The role of salt bridges on the temperature adaptation of aqualysin I, a thermostable subtilisin-like proteinase. Biochim Biophys Acta 1844, 2174-2181.

Joo, J.C., Pack, S.P., Kim, Y.H., and Yoo, Y.J. (2011). Thermostabilization of Bacillus circulans xylanase: computational optimization of unstable residues based on thermal fluctuation analysis. J Biotechnol 151, 56-65.

Joyce, C.M., and Benkovic, S.J. (2004). DNA polymerase fidelity: kinetics, structure, and checkpoints. Biochemistry 43, 14317-14324.

Kamal, M.Z., Mohammad, T.A., Krishnamoorthy, G., and Rao, N.M. (2012). Role of active site rigidity in activity: MD simulation and fluorescence study on a lipase mutant. In PLoS One (United States), p. e35188.

Karshikoff, A., Nilsson, L., and Ladenstein, R. (2015). Rigidity versus flexibility: the dilemma of understanding protein thermal stability. Febs j .

Kath, J.E., Jergic, S., Heltzel, J.M., Jacob, D.T., Dixon, N.E., Sutton, M.D., Walker, G.C., and Loparo, J.J. (2014). Polymerase exchange on single DNA molecules reveals processivity clamp control of translesion synthesis. Proc Natl Acad Sci U S A 111, 7647-7652.

Knobel, P.A., Kotov, I.N., Felley-Bosco, E., Stahel, R.A., and Marti, T.M. (2011). Inhibition of REV3 expression induces persistent DNA damage and growth arrest in cancer cells. Neoplasia 13, 961-970.

Kosarek, J.N., Woodruff, R.V., Rivera-Begeman, A., Guo, C., D'Souza, S., Koonin, E.V., Walker, G.C., and Friedberg, E.C. (2008). Comparative analysis of in vivo interactions between Rev1 protein and other Y-family DNA polymerases in animals and yeasts. DNA Repair (Amst) 7, 439-451.

Kumar, R., Prabhu, N.P., Rao, D.K., and Bhuyan, A.K. (2006). The alkali molten globule state of horse ferricytochrome c: observation of cold denaturation. J Mol Biol 364, 483-495.

Lange, S.S., Takata, K., and Wood, R.D. (2011). DNA polymerases and cancer. Nat Rev Cancer 11, 96110.

Lee, Y.S., Gregory, M.T., and Yang, W. (2014). Human Pol zeta purified with accessory subunits is active in translesion DNA synthesis and complements Pol eta in cisplatin bypass. Proc Natl Acad Sci U S A 111, 2954-2959.

Lin, Q., Clark, A.B., McCulloch, S.D., Yuan, T., Bronson, R.T., Kunkel, T.A., and Kucherlapati, R. (2006). Increased susceptibility to UV-induced skin carcinogenesis in polymerase eta-deficient mice. Cancer Res 66, 87-94.

Lin, W., Xin, H., Zhang, Y., Wu, X., Yuan, F., and Wang, Z. (1999). The human REV1 gene codes for a DNA template-dependent dCMP transferase. Nucleic Acids Res 27, 4468-4475.

Lior-Hoffmann, L., Ding, S., Geacintov, N.E., Zhang, Y., and Broyde, S. (2014). Structural and Dynamic Characterization of Polymerase kappa's Minor Groove Lesion Processing Reveals How Adduct Topology Impacts Fidelity. Biochemistry 53, 5683-5691.

Makarova, A.V., and Burgers, P.M. (2015). Eukaryotic DNA polymerase zeta. DNA Repair (Amst) 29, 4755.

Mamonova, T., Hespenheide, B., Straub, R., Thorpe, M.F., and Kurnikova, M. (2005). Protein flexibility using constraints from molecular dynamics simulations. In Phys Biol (England), pp. S137-147.

Mamonova, T.B., Glyakina, A.V., Galzitskaya, O.V., and Kurnikova, M.G. (2013). Stability and rigidity/flexibility-two sides of the same coin? Biochim Biophys Acta 1834, 854-866.

Maxwell, B.A., and Suo, Z. (2014). Recent insight into the kinetic mechanisms and conformational dynamics of Y-Family DNA polymerases. Biochemistry 53, 2804-2814.

Maxwell, B.A., Xu, C., and Suo, Z. (2012). DNA lesion alters global conformational dynamics of Y-family DNA polymerase during catalysis. J Biol Chem 287, 13040-13047.

Maxwell, B.A., Xu, C., and Suo, Z. (2014). Conformational dynamics of a Y-family DNA polymerase during substrate binding and catalysis as revealed by interdomain Forster resonance energy transfer. Biochemistry 53, 1768-1778.

McDonald, J.P., Rapic-Otrin, V., Epstein, J.A., Broughton, B.C., Wang, X., Lehmann, A.R., Wolgemuth, D.J., and Woodgate, R. (1999). Novel human and mouse homologs of Saccharomyces cerevisiae DNA polymerase eta. Genomics 60, 20-30.

Meharenna, Y.T., and Poulos, T.L. (2010). Using molecular dynamics to probe the structural basis for enhanced stability in thermal stable cytochromes P450. Biochemistry 49, 6680-6686.

Mouron, S., Rodriguez-Acebes, S., Martinez-Jimenez, M.I., Garcia-Gomez, S., Chocron, S., Blanco, L., and Mendez, J. (2013). Repriming of DNA synthesis at stalled replication forks by human PrimPol. Nat Struct Mol Biol 20, 1383-1389.

Nelson, J.R., Lawrence, C.W., and Hinkle, D.C. (1996a). Deoxycytidyl transferase activity of yeast REV1 protein. Nature 382, 729-731.

Nelson, J.R., Lawrence, C.W., and Hinkle, D.C. (1996b). Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science 272, 1646-1649.

Ogi, T., Kannouche, P., and Lehmann, A.R. (2005). Localisation of human Y-family DNA polymerase kappa: relationship to PCNA foci. J Cell Sci 118, 129-136.

Ogi, T., Kato, T., Jr., Kato, T., and Ohmori, H. (1999). Mutation enhancement by DINB1, a mammalian homologue of the Escherichia coli mutagenesis protein dinB. Genes Cells 4, 607-618.

Ogi, T., Shinkai, Y., Tanaka, K., and Ohmori, H. (2002). Polkappa protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene. Proc Natl Acad Sci U S A 99, 15548-15553.

Ohashi, E., Bebenek, K., Matsuda, T., Feaver, W.J., Gerlach, V.L., Friedberg, E.C., Ohmori, H., and Kunkel, T.A. (2000). Fidelity and processivity of DNA synthesis by DNA polymerase kappa, the product of the human DINB1 gene. J Biol Chem 275, 39678-39684.

Ohkumo, T., Kondo, Y., Yokoi, M., Tsukamoto, T., Yamada, A., Sugimoto, T., Kanao, R., Higashi, Y., Kondoh, H., Tatematsu, M., et al. (2006). UV-B radiation induces epithelial tumors in mice lacking DNA polymerase eta and mesenchymal tumors in mice deficient for DNA polymerase iota. Mol Cell Biol 26, 7696-7706.

Ohmori, H., Friedberg, E.C., Fuchs, R.P., Goodman, M.F., Hanaoka, F., Hinkle, D., Kunkel, T.A., Lawrence, C.W., Livneh, Z., Nohmi, T., et al. (2001). The Y-family of DNA polymerases. Mol Cell 8, 7-8.

Pastore, A., Martin, S.R., Politou, A., Kondapalli, K.C., Stemmler, T., and Temussi, P.A. (2007). Unbiased Cold Denaturation: Low- and High-Temperature Unfolding of Yeast Frataxin under Physiological Conditions. J Am Chem Soc 129, 5374-5375.

Pata, J.D. (2010). Structural diversity of the Y-family DNA polymerases. Biochim Biophys Acta 1804, 1124-1135.

Perlow-Poehnelt, R.A., Likhterov, I., Scicchitano, D.A., Geacintov, N.E., and Broyde, S. (2004). The spacious active site of a Y-family DNA polymerase facilitates promiscuous nucleotide incorporation opposite a bulky carcinogen-DNA adduct: elucidating the structure-function relationship through experimental and computational approaches. J Biol Chem 279, 36951-36961.

Perlow-Poehnelt, R.A., Likhterov, I., Wang, L., Scicchitano, D.A., Geacintov, N.E., and Broyde, S. (2007). Increased flexibility enhances misincorporation: temperature effects on nucleotide incorporation opposite a bulky carcinogen-DNA adduct by a Y-family DNA polymerase. J Biol Chem 282, 1397-1408.

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25, 1605-1612.

Pezeshgi Modarres, H., Dorokhov, B.D., Popov, V.O., Ravin, N.V., Skryabin, K.G., and Dal Peraro, M. (2015). Understanding and Engineering Thermostability in DNA Ligase from Thermococcus sp. 1519. Biochemistry.

Plemenitas, A., Lenassi, M., Konte, T., Kejzar, A., Zajc, J., Gostincar, C., and Gunde-Cimerman, N. (2014). Adaptation to high salt concentrations in halotolerant/halophilic fungi: a molecular perspective. Front Microbiol 5, 199.

Pometun, M.S., Peterson, R.W., Babu, C.R., and Wand, A.J. (2006). Cold denaturation of encapsulated ubiquitin. J Am Chem Soc 128, 10652-10653.

Potapova, O., Grindley, N.D., and Joyce, C.M. (2002). The mutational specificity of the Dbh lesion bypass polymerase and its implications. J Biol Chem 277, 28157-28166.

Privalov, P.L. (1990). Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25, 281-305.

Pustovalova, Y., Maciejewski, M.W., and Korzhnev, D.M. (2013). NMR mapping of PCNA interaction with translesion synthesis DNA polymerase Rev1 mediated by Rev1-BRCT domain. J Mol Biol 425, 30913105.

Qin, Y., Yang, Y., Zhang, L., Fowler, J.D., Qiu, W., Wang, L., Suo, Z., and Zhong, D. (2013). Direct probing of solvent accessibility and mobility at the binding interface of polymerase (Dpo4)-DNA complex. J Phys Chem A 117, 13926-13934.

Rechkoblit, O., Malinina, L., Cheng, Y., Kuryavyi, V., Broyde, S., Geacintov, N.E., and Patel, D.J. (2006). Stepwise translocation of Dpo4 polymerase during error-free bypass of an oxoG lesion. PLoS Biol 4, e11.

Rothwell, P.J., Mitaksov, V., and Waksman, G. (2005). Motions of the fingers subdomain of klentaq1 are fast and not rate limiting: implications for the molecular basis of fidelity in DNA polymerases. Mol Cell 19, 345-355.

Sadeghi, M., Naderi-Manesh, H., Zarrabi, M., and Ranjbar, B. (2006). Effective factors in thermostability of thermophilic proteins. In Biophys Chem (Netherlands), pp. 256-270.

Sakofsky, C.J., Foster, P.L., and Grogan, D.W. (2012). Roles of the Y-family DNA polymerase Dbh in accurate replication of the Sulfolobus genome at high temperature. In DNA Repair (Amst) (Netherlands, 2012 Elsevier B.V), pp. 391-400.

Sale, J.E., Lehmann, A.R., and Woodgate, R. (2012). Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat Rev Mol Cell Biol 13, 141-152.

Sekimoto, T., Oda, T., Kurashima, K., Hanaoka, F., and Yamashita, T. (2015). Both high-fidelity replicative and low-fidelity Y-family polymerases are involved in DNA rereplication. Mol Cell Biol 35, 699715.

Sharma, S., and Canman, C.E. (2012). REV1 and DNA polymerase zeta in DNA interstrand crosslink repair. Environ Mol Mutagen 53, 725-740.

Shechner, D.M., Grant, R.A., Bagby, S.C., Koldobskaya, Y., Piccirilli, J.A., and Bartel, D.P. (2009). Crystal structure of the catalytic core of an RNA-polymerase ribozyme. Science 326, 1271-1275.

Sholder, G., and Loechler, E.L. (2015). A method to accurately quantitate intensities of (32)P-DNA bands when multiple bands appear in a single lane of a gel is used to study dNTP insertion opposite a benzo[a]pyrene-dG adduct by Sulfolobus DNA polymerases Dpo4 and Dbh. DNA Repair (Amst) 25, 97103.

Silvian, L.F., Toth, E.A., Pham, P., Goodman, M.F., and Ellenberger, T. (2001). Crystal structure of a DinB family error-prone DNA polymerase from Sulfolobus solfataricus. Nat Struct Biol 8, 984-989.

Srivastava, A., and Sinha, S. (2014). Thermostability of in vitro evolved Bacillus subtilis lipase A: a network and dynamics perspective. PLoS One 9, e102856.

Stafford, K.A., Robustelli, P., and Palmer, A.G., 3rd (2013). Thermal adaptation of conformational dynamics in ribonuclease H. PLoS Comput Biol 9, e1003218.

Stafford, K.A., Trbovic, N., Butterwick, J.A., Abel, R., Friesner, R.A., and Palmer, A.G., 3rd (2015). Conformational preferences underlying reduced activity of a thermophilic ribonuclease H . J Mol Biol 427, 853-866.

Steitz, T.A. (1999). DNA polymerases: structural diversity and common mechanisms. J Biol Chem 274, 17395-17398.

Szilagyi, A., and Zavodszky, P. (2000). Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. In Structure (England), pp. 493-504.

Tissier, A., McDonald, J.P., Frank, E.G., and Woodgate, R. (2000). poliota, a remarkably error-prone human DNA polymerase. Genes Dev 14, 1642-1650.

Ummat, A., Rechkoblit, O., Jain, R., Roy Choudhury, J., Johnson, R.E., Silverstein, T.D., Buku, A., Lone, S., Prakash, L., Prakash, S., et al. (2012). Structural basis for cisplatin DNA damage tolerance by human polymerase eta during cancer chemotherapy. Nat Struct Mol Biol 19, 628-632.

Vaisman, A., Masutani, C., Hanaoka, F., and Chaney, S.G. (2000). Efficient translesion replication past oxaliplatin and cisplatin GpG adducts by human DNA polymerase eta. Biochemistry 39, 4575-4580.

Vaisman, A., Tissier, A., Frank, E.G., Goodman, M.F., and Woodgate, R. (2001). Human DNA polymerase iota promiscuous mismatch extension. J Biol Chem 276, 30615-30622.

Vajpai, N., Nisius, L., Wiktor, M., and Grzesiek, S. (2013). High-pressure NMR reveals close similarity between cold and alcohol protein denaturation in ubiquitin. Proc Natl Acad Sci U S A 110, E368-376.

Wagner, J., Gruz, P., Kim, S.R., Yamada, M., Matsui, K., Fuchs, R.P., and Nohmi, T. (1999). The dinB gene encodes a novel E. coli DNA polymerase, DNA pol IV, involved in mutagenesis. Mol Cell 4, 281286.

Wang, L., and Broyde, S. (2006). A new anti conformation for N-(deoxyguanosin-8-yl)-2acetylaminofluorene (AAF-dG) allows Watson-Crick pairing in the Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4). Nucleic Acids Res 34, 785-795.

Wang, L., Yu, X., Hu, P., Broyde, S., and Zhang, Y. (2007a). A water-mediated and substrate-assisted catalytic mechanism for Sulfolobus solfataricus DNA polymerase IV. J Am Chem Soc 129, 4731-4737.

Wang, Y., Woodgate, R., McManus, T.P., Mead, S., McCormick, J.J., and Maher, V.M. (2007b). Evidence that in xeroderma pigmentosum variant cells, which lack DNA polymerase eta, DNA polymerase iota causes the very high frequency and unique spectrum of UV-induced mutations. Cancer Res 67, 30183026.

Whitten, S.T., Kurtz, A.J., Pometun, M.S., Wand, A.J., and Hilser, V.J. (2006). Revealing the nature of the native state ensemble through cold denaturation. Biochemistry 45, 10163-10174.

Wieteska, L., Ionov, M., Szemraj, J., Feller, C., Kolinski, A., and Gront, D. (2015). Improving thermal stability of thermophilic I-threonine aldolase from Thermotoga maritima. J Biotechnol 199, 69-76.

Wilson, R.C., and Pata, J.D. (2008). Structural insights into the generation of single-base deletions by the Y family DNA polymerase dbh. Mol Cell 29, 767-779.

Wiltrout, M.E., and Walker, G.C. (2011). The DNA polymerase activity of Saccharomyces cerevisiae Rev1 is biologically significant. Genetics 187, 21-35.

Wong, J.H., Fiala, K.A., Suo, Z., and Ling, H. (2008). Snapshots of a Y-family DNA polymerase in replication: substrate-induced conformational transitions and implications for fidelity of Dpo4. J Mol Biol 379, 317-330.

Wu, T.H., Chen, C.C., Cheng, Y.S., Ko, T.P., Lin, C.Y., Lai, H.L., Huang, T.Y., Liu, J.R., and Guo, R.T. (2014). Improving specific activity and thermostability of Escherichia coli phytase by structure-based rational design. J Biotechnol 175, 1-6.

Xing, G., Kirouac, K., Shin, Y.J., Bell, S.D., and Ling, H. (2009). Structural insight into recruitment of translesion DNA polymerase Dpo4 to sliding clamp PCNA. Mol Microbiol 71, 678-691.

Xu, C., Maxwell, B.A., Brown, J.A., Zhang, L., and Suo, Z. (2009a). Global conformational dynamics of a Y-family DNA polymerase during catalysis. PLoS Biol 7, e1000225.

Xu, P., Oum, L., Beese, L.S., Geacintov, N.E., and Broyde, S. (2007). Following an environmental carcinogen N2-dG adduct through replication: elucidating blockage and bypass in a high-fidelity DNA polymerase. Nucleic Acids Res 35, 4275-4288.

Xu, P., Oum, L., Geacintov, N.E., and Broyde, S. (2008). Nucleotide selectivity opposite a benzo[a]pyrene-derived N 2 -dG adduct in a Y-family DNA polymerase: a 5'-slippage mechanism. Biochemistry 47, 2701-2709.

Xu, P., Oum, L., Lee, Y.C., Geacintov, N.E., and Broyde, S. (2009b). Visualizing sequence-governed nucleotide selectivities and mutagenic consequences through a replicative cycle: processing of a bulky carcinogen N2-dG lesion in a Y-family DNA polymerase. Biochemistry 48, 4677-4690.

Yamtich, J., and Sweasy, J.B. (2010). DNA polymerase family X: function, structure, and cellular roles. Biochim Biophys Acta 1804, 1136-1150.

Yang, C., Jang, S., and Pak, Y. (2014). A fully atomistic computer simulation study of cold denaturation of a beta-hairpin. Nat Commun 5, 5773.

Yang, J., Chen, Z., Liu, Y., Hickey, R.J., and Malkas, L.H. (2004). Altered DNA polymerase iota expression in breast cancer cells leads to a reduction in DNA replication fidelity and a higher rate of mutagenesis. Cancer Res 64, 5597-5607.

Yang, W., and Woodgate, R. (2007). What a difference a decade makes: insights into translesion DNA synthesis. Proc Natl Acad Sci U S A 104, 15591-15598.

Yip, K.S., Stillman, T.J., Britton, K.L., Artymiuk, P.J., Baker, P.J., Sedelnikova, S.E., Engel, P.C., Pasquo, A., Chiaraluce, R., Consalvi, V., et al. (1995). The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure 3, 1147-1158.

Yoon, J.H., Prakash, L., and Prakash, S. (2009). Highly error-free role of DNA polymerase eta in the replicative bypass of UV-induced pyrimidine dimers in mouse and human cells. Proc Natl Acad Sci U S A 106, 18219-18224.

Yu, H., Zhao, Y., Guo, C., Gan, Y., and Huang, H. (2015). The role of proline substitutions within flexible regions on thermostability of luciferase. Biochim Biophys Acta 1854, 65-72.

Yuan, F., Xu, Z., Yang, M., Wei, Q., Zhang, Y., Yu, J., Zhi, Y., Liu, Y., Chen, Z., and Yang, J. (2013). Overexpressed DNA polymerase iota regulated by $\mathrm{JNK} / \mathrm{c}$-Jun contributes to hypermutagenesis in bladder cancer. PLoS One 8, e69317.

Zafar, M.K., Ketkar, A., Lodeiro, M.F., Cameron, C.E., and Eoff, R.L. (2014). Kinetic analysis of human PrimPol DNA polymerase activity reveals a generally error-prone enzyme capable of accurately bypassing 7,8-dihydro-8-oxo-2'-deoxyguanosine. Biochemistry 53, 6584-6594.

Zhang, Y., Wu, X., Guo, D., Rechkoblit, O., and Wang, Z. (2002). Activities of human DNA polymerase kappa in response to the major benzo[a]pyrene DNA adduct: error-free lesion bypass and extension synthesis from opposite the lesion. DNA Repair (Amst) 1, 559-569.

Zhang, Y., Yuan, F., Wu, X., Taylor, J.S., and Wang, Z. (2001). Response of human DNA polymerase ו to DNA lesions. In Nucleic Acids Res, pp. 928-935.

Zhang, Y., Yuan, F., Wu, X., Wang, M., Rechkoblit, O., Taylor, J.S., Geacintov, N.E., and Wang, Z. (2000a). Error-free and error-prone lesion bypass by human DNA polymerase kappa in vitro. Nucleic Acids Res 28, 4138-4146.

Zhang, Y., Yuan, F., Wu, X., and Wang, Z. (2000b). Preferential incorporation of G opposite template T by the low-fidelity human DNA polymerase iota. Mol Cell Biol 20, 7099-7108.

Zhao, L., Pence, M.G., Eoff, R.L., Yuan, S., Fercu, C.A., and Guengerich, F.P. (2014). Elucidation of kinetic mechanisms of human translesion DNA polymerase kappa using tryptophan mutants. Febs j 281, 4394-4410.

Zhou, J., Zhang, S., Xie, L., Liu, P., Xie, F., Wu, J., Cao, J., and Ding, W.Q. (2012). Overexpression of DNA polymerase iota (Poliota) in esophageal squamous cell carcinoma. Cancer Sci 103, 1574-1579.

Chapter $2-{ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$, and ${ }^{13} \mathrm{C}$ backbone assignments of dinB homolog (Dbh)
 Published in Biomolecular NMR Assignments, 2015, 9(2): 441-445, with kind permission from Springer Science, dx.doi.org/10.1007/s12104-015-9626-y

Abstract

The dinB homolog (Dbh) is a member of the Y -family of translesion DNA polymerases, which are specialized to accurately replicate DNA across from a wide variety of lesions in living cells. Lesioned bases block the progression of high-fidelity polymerases and cause detrimental replication fork stalling; Y-family polymerases can bypass these lesions. The active site of the translesion synthesis polymerase is more open than that of a replicative polymerase; consequently Dbh polymerizes with low fidelity. Bypass polymerases also have low processivity. Short extension past the lesion allows the high-fidelity polymerase to switch back onto the site of replication. Dbh and the other Y family polymerases have been used as structural models to investigate the mechanisms of DNA polymerization and lesion bypass. Many high-resolution crystal structures of Y family polymerases have been reported. NMR dynamics studies can complement these structures by providing a measure of protein motions. I have assigned the ${ }^{15} \mathrm{~N},{ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ backbone resonance signals at two temperatures ($35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$) for Sulfolobus acidocaldarius Dbh polymerase. Backbone resonance assignments have been obtained for 86% of the residues. The polymerase active site is assigned as well as the majority of residues in each of the four domains.

Rationale and Strategy of Experiments

NMR relaxation spectroscopy provides atomic level resolution concerning the dynamics of proteins. However, in order to interpret NMR spectra, it is necessary to assign the individual resonances in the HSQC spectra to their corresponding atoms in the protein. To accomplish this goal, series of 2D and 3D spectra must be obtained to establish connectivity between sets of resonances. First, sets of sequential resonances are identified. Since the primary sequence of the protein is already known, myriad methods can be used to determine individual amino acid residue identity within the sequential segment. Most amino acid residue types can be determined, and eventually a long enough segment with one or more known amino acid residues is obtained. By a process of elimination, it can be determined unambiguously that the sequential segment is equivalent to a particular portion of the primary sequence. When this condition is fulfilled, it can be said that that portion of the polypeptide chain is now "assigned".

The approach to assigning individual atoms to resonances in the NMR spectra of a polypeptide depends on several parameters. The size of the polypeptide correlates with how many resonances are visible, with increasing polypeptide size there is more chance of crowding of signals in the NMR spectra. Additionally, with increasing molecular weight the rotational correlation time (or τ_{m}) of the protein increases and the transverse relaxation time $\left(T_{2}\right)$ decreases, leading to loss of signal strength and providing a further complication (Frueh, 2014). Well-folded proteins with stable secondary structure show the greatest level of spectral dispersion, but if the protein has disordered regions or repeats, or it is over 300 or so residues, the spectra can become extremely crowded (Frueh, 2014). Proteins with high levels of conformational exchange or solvent-exposed surface area will have signals be lost due to exchange broadening
and exchange with solvent, respectively (Pervushin, 2001). Given these caveats, the spectroscopist must consider the particular challenges of assigning the protein in question, and choose the appropriate experiments which are essential for assignment.

At a minimum, the spectroscopist will seek to assign as many of the polypeptide "backbone" ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$, and ${ }^{13} \mathrm{C}$ resonances as possible, and if possible, the side chain resonances as well. The first step in assigning the backbone resonances is collecting a ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H} 2 \mathrm{D}$ HSQC (Heteronuclear Spectroscopy, Quantum Correlated, which detects the cross-peaks for every N-H bond in the protein: the backbone amide NH bonds, the NH_{2} bonds of asparagine and glutamine side chains, and the $\varepsilon_{1}-\mathrm{NH}$ bond of the tryptophan side chain (Bodenhausen and Ruben, 1980). Lysine ε-NH and arginine $\varepsilon-\mathrm{NH}$ resonances are in a different frequency range from the backbone amides; hence, they are not within the frequency range of the typical HSQC experiment. The HSQC is a relatively fast experiment, which allows the spectroscopist to determine if the protein is suitable for assignment. If the signals are well dispersed, indicative of a stable protein fold, and the signal-to-noise ratio is sufficient, more time-consuming and costly 3D experiments, which are necessary for assignment, can be performed. If the protein is above a certain molecular weight, the TROSY (Iransverse Relaxation-Optimized SpectroscopY, (Pervushin et al., 1997) method can be used to optimize the signal-tonoise ratio, mitigating the signal loss due to decreased transverse relaxation time.

The necessary component of any NMR assignment strategy is to determine sequential backbone resonances. The most common approach is to use $3 \mathrm{D}\left({ }^{1} \mathrm{H},{ }^{15} \mathrm{~N},{ }^{13} \mathrm{C}\right)$ experiments to connect a particular NH resonance with its own backbone carbon resonances ($\mathrm{C} \alpha$ and CO , of the " i " residue) with the backbone carbon resonances of
adjacent residues [the $\mathrm{i}-1$ and/or $\mathrm{i}+1$ residues (Ikura et al., 1990; Leopold et al., 1994)]. A spectrum that detects only the carbons from adjacent residues through the "i" NH can be overlaid with a spectrum that detects the carbons from both adjacent residues and the carbons from the "i" residue. The adjacent residue NH position can be found in the 3D data through matching the $\mathrm{i}-1$ resonance of the current NH with the " i " resonance of the adjacent residue. Typically, connectivity is determined for at least the $\mathrm{C} \alpha$ and CO carbons, as well as the $\mathrm{C} \beta$ carbons. A representative strip plot displaying an HNCACB spectrum (detecting $C \alpha_{i}, C \beta_{i}, C \alpha_{i-1}$, and $C \beta_{i-1}$ through NH_{i}) overlaid with an HNCOCA spectrum (detecting only $\mathrm{C}_{\mathrm{i}-1}$ through NH_{i}) visually demonstrates how the process of determining sequential residues is achieved (Figure 2.1). The connectivity through the CO atoms, combined with connectivity through $\mathrm{C} \alpha$ and $\mathrm{C} \beta$ atoms, provides strong evidence that the resonances detected belong to sequential residues. Nevertheless, for a protein of any significant size, it is inevitable there will be some overlap in a significant portion of the spectrum, which is the case for Dbh. In this case, it can be extremely helpful to determine which resonances belong to a particular amino acid type through the preparation of selectively-unlabeled HSQCs.

There are few amino acid residues which can be confidently determined by the carbon shifts alone: glycine, which has $\mathrm{C} \alpha$ shifts less than 47 ppm , alanine, with $\mathrm{C} \beta$ shifts less than 25 ppm, and serine or threonine, which have $\mathrm{C} \beta$ shifts greater than 60 ppm (BMRB database, http://www.bmrb.wisc.edu/ref info/statsel.htm, (Ulrich et al., 2008). Outside of these residues, the $\mathrm{C} \alpha$ and $\mathrm{C} \beta$ shifts of the other amino acids show a significant amount of overlap. This makes it impossible to unambiguously determine the amino acid type from $\mathrm{C} \alpha$ and/or $\mathrm{C} \beta$ carbon shifts alone. The amino acid type can be narrowed down to a
few probable residue types using the $C \alpha$ and $C \beta$, but to be confident of the amino acid, a selectively unlabeled or labeled sample should be used.

To selectively unlabel or label samples, the protein is recombinantly expressed in E. coli growing in minimal media using an NMR-active isotope in the essential nitrogen or carbon source (most often ${ }^{15} \mathrm{~N} \mathrm{NH}_{3}$ or ${ }^{13} \mathrm{C}$ glucose), then an excess of the amino acid that is to be delabeled is added (Jaipuria et al., 2012). To selectively label with certain amino acid, the protein is recombinantly expressed in natural isotope abundance carbon and nitrogen source, then supplemented with an isotopically-enriched carbon or nitrogen source. In practice, this generates a 2D HSQC spectrum or 3D spectrum that is either missing only signals from that particular residue or containing only resonances for selectively labeled residues. In this way, certain NH , or CH resonances can be unambiguously determined to be that particular amino acid residue type. With enough amino acid types known in a particular section of sequential resonances, that region can then be assigned to a particular portion of the protein's primary sequence.

Another NMR experiment that can provide further clues for NMR assignment is a ${ }^{15} \mathrm{~N}$ or ${ }^{13} \mathrm{C}$-edited ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY (Nuclear O verhauser Effect $\underline{S p e c t r o s c o p Y) ~ e x p e r i m e n t ~}$ (Marion et al., 1989; Zuiderweg and Fesik, 1989). This experiment uses the Nuclear Overhauser Effect to detect through space pairs of protons that are near each other. The effect is weak and falls off to the sixth power of the distance between the two atoms, becoming undetectable around $6 \AA$ (Bax, 1989). The intensity of the NOE signal can be used to determine a more precise distance between the protons. For larger proteins, the $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY is far too crowded to interpret signals. Ergo, the

Figure 2.1: Representative "Backbone Walk" Strip Plot
A series of "strips" generated from overlaid 3D HNCACB ($C \alpha_{i}$ and $C \alpha_{i-1}$, in red; $C \beta_{i}$ and $C \beta_{i-1}$, in blue) and 3D HNCOCA ($\mathrm{C}_{\alpha_{i-1}}$ only, in yellow) spectra, depicting the sequential connecitivities for Dbh residues 89 through 103. The $\mathrm{C}_{\mathrm{i}-1}$ peaks overlaid from the HNCOCA and HNCACB spectra indicate the value for the preceding residue, which is matched by the HNCACB α_{i} peak in the preceding strip. For the $C \beta$ peaks, the $C \beta_{i-1}$ peak is much weaker than the $C \beta_{\mathrm{i}}$.. The ${ }^{13} \mathrm{C}$ dimension is displayed along the y-axis, the ${ }^{1} \mathrm{H}$ dimension is along the x-axis (units are not displayed due to space constraints, and the depth in the third dimension, ${ }^{15} \mathrm{~N}$, is indicated by the white number at the bottom of the graph. The white lines connecting peaks in adjacent strips indicate the connectivities between each residue.
experiment is "edited" through NH amide or the Ha proton, the N or C dimension is used as the third dimension to space out the signals and detect the NOE between the amide or alpha proton and any proton within roughly $6 \AA$ (Marion et al., 1989; Zuiderweg and Fesik, 1989).

The most useful NOEs for backbone assignment of a protein are the regular patterns of backbone-to-backbone NOEs that occur in regions of secondary structure (Torchia et al., 1989). Alpha helices, beta-sheets, and beta-turns have unique NOE patterns that correspond to secondary structures (Englander and Wand, 1987). Therefore, when that particular pattern for a residue is discerned, the spectroscopist can be confident it is involved in that type of secondary structure. When the crystal structure is known, atoms that are not involved in that type of secondary structure can be eliminated as possible assignments. The positon of the backbone NOE off of the diagonal can also provide evidence whether atoms are sequential, as the chemical shift of the (N)H to (N)H signal must be in accordance with the sequential assignments in other 3D spectra. Many NOEs are detected from the protons in the residue's own side chain, as well as those of adjacent and nearby side chains in the tertiary structure. Fortunately, side chain protons are predominantly aliphatic and less than 4 ppm , and do not obscure the strong signals between adjacent (N)H to (N)H or (Ca)H to (N)H atoms, which are greater than 4 ppm (Reid et al., 1997).

To assign the backbone resonances of Dbh, I first started by establishing the resonances which were unambiguously sequential in the 3D-HNCACB, HN(CO)CA, HNCO, and HN(CA)CO data, that is, there were no other possible connections to make between that segment of atoms. Then, I looked for segments more than one of the
residue types was known, and then matched that segment to a portion of the primary sequence. Next, I confirmed the assignment with the 3D-NOESY data. After I eliminated these sequences from the search, I was able to determine the identity of the remaining segments. I repeated this process until I assigned as many of the backbone atoms as possible.

Materials and Methods

Protein Expression and Purification

The Dbh gene was incorporated into the vector pKKT7-H (a derivative of pKK233, Promega) containing an N -terminal His_{6} tag (MHHHHHHLVPRGM). Quick-change mutagenesis (Stratagene) was used to change Cys31 to Ser (hereafter referred to as C31S-Dbh) to eliminate potential formation of disulfide bonds. Transfected E. coli BL21 cells were grown in 1 L Neidhart's minimal media (Neidhardt et al., 1974) at $37^{\circ} \mathrm{C}$ containing $1 \mathrm{~g}{ }^{15} \mathrm{~N}$ ammonium chloride (${ }^{15} \mathrm{~N}$-labeled samples), or $1 \mathrm{~g}{ }^{15} \mathrm{~N}$ ammonium chloride, $3 \mathrm{~g}{ }^{13} \mathrm{C}$ glucose, and $80 \% \mathrm{D}_{2} \mathrm{O}\left({ }^{2} \mathrm{H},{ }^{15} \mathrm{~N},{ }^{13} \mathrm{C}\right.$-labeled samples) to $\sim 1.0 \mathrm{OD}$; expression was induced by the addition of 1 mM IPTG. Protein was expressed for 5 hours; subsequently, the cells were harvested by centrifugation and frozen at $-80^{\circ} \mathrm{C}$. Dbh or C31S-Dbh were purified from cell lysate by Ni-NTA affinity chromatography under native conditions, and then dialyzed into buffer (20mM HEPES, 100 mM NaCl , $50 \mu \mathrm{M}$ EDTA, $50 \mu \mathrm{M} \mathrm{NaN} 3, \mathrm{pH} 7.5$) at $4^{\circ} \mathrm{C}$, then one change of buffer without EDTA (20 mM HEPES, $100 \mathrm{mM} \mathrm{NaCl}, 50 \mu \mathrm{M} \mathrm{NaN} 3, \mathrm{pH} 7.5$). To prepare the NMR samples, Dbh or C31S-Dbh protein was concentrated to at least 0.5 mM , and transferred into a Shigemi tube. $\mathrm{D}_{2} \mathrm{O}$ was added to the sample for a final concentration of $10 \% \mathrm{v} / \mathrm{v}$. Since polymerase enzymes use aspartic acid side chains to coordinate Mg^{2+} at the active site,
we were particularly interested in assigning the Asp groups. ${ }^{15} \mathrm{~N}$-HSQC spectra of selectively ${ }^{15} \mathrm{~N}$ labeled (Asp) and un-labeled (Asn, Arg, Gly, Lys, His, Met, Ser) samples were used to confirm amino acid identity within the sequence. Selectively labeled ${ }^{15} \mathrm{~N}$ Asp C31S-Dbh was prepared using the E. coli auxotroph strain EA1, which is unable to convert Asp to Asn (Muchmore et al., 1989), and by supplementing 1L of Neidhart's media with $100 \mathrm{mg}{ }^{15} \mathrm{~N}$-Asp. Selectively unlabeled Asn, Arg, Gly, Lys, His, Met, Ser C31S-Dbh samples were prepared using $1 \mathrm{~g}{ }^{15} \mathrm{~N}$ ammonium chloride per L of Neidhart's minimal media, BL21 cells, and by supplementing with 0.5 g of each ${ }^{14} \mathrm{~N}$ amino acid separately. Since the HNCO experiment on C31S-Dbh was by far the most sensitive, an HNCO spectrum of a selective ${ }^{13} \mathrm{C}$ '-Leu, fully ${ }^{15} \mathrm{~N}$ enriched sample was used to confirm amide resonances preceded by leucine residues. ${ }^{13}$ C'-Leu was incorporated by expressing the protein in BL21 cells and adding 150 mg of ${ }^{13} \mathrm{C}^{\prime}$-labeled Leu to 1 L of Neidhart's medium containing $1 \mathrm{~g}{ }^{15} \mathrm{~N}$ ammonium chloride.

NMR Experiments

NMR data were acquired at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ on a Varian INOVA 800 MHz NMR spectrometer equipped with a 5 -mm triple resonance $x y z$-gradient probe. The chemical shifts were referenced using 2,2-dimethyl-2-silapentane-sulfonic acid (DSS). All spectra were processed using NMRPipe/NMRDraw (Delaglio et al., 1995) and analyzed using CcpNmr Analysis (Vranken et al., 2005). A set of 3D triple resonance experiments, including HNCO, HN(CA)CO, HN(CO)CA, and HNCACB were carried out using TROSY (Pervushin et al., 1997) for the sequential backbone resonance assignment (Kay, 1997).

In addition, ${ }^{15} \mathrm{~N}$-edited NOESY-HSQC spectra were also used to confirm resonance assignments.

Results

Figure 2.2 displays the ${ }^{15} \mathrm{~N}$-HSQC of the full length C31S-Dbh protein (354 amino acids) with an N-terminal hexahistidine tag. Complete or partial backbone resonance assignments have been obtained for 86% (306 of 354) residues in C31S-Dbh, and 81\% of amide resonances (276 of 339 non-proline residues). Twelve additional peaks were visible in the ${ }^{15} \mathrm{~N}$-HSQC spectrum and the 3D spectra; I was unable to find connectivities for these resonances. In addition, four resonances in the ${ }^{15} \mathrm{~N}$-HSQC did not have visible corresponding resonances in the 3D data or in the ${ }^{15} \mathrm{~N}$-edited NOESY spectrum. Figure 2.3 presents the C31S-Dbh amino acid sequence with assigned residues indicated, and Figure 2.4 displays the assigned backbone portions of Dbh mapped onto the crystal structure (PDB entry 3BQ0 - Wilson and Pata). Residues 3638 and the C-terminus (residues 345-354) were disordered in the crystal structures of Dbh [PDB entries 1K1S/1K1Q (Silvian et al., 2001) and 3BQ0 (Wilson and Pata, 2008)]; unfortunately, I was unable to assign the backbone resonances of the regions that were not visible in the crystal structures. If I omit the 13 residues ($36-38 ; 345-354$) that are disordered in the crystal structures of Dbh, I can account for 89% of residues with at least one assigned backbone resonance. Likewise, most of the linker region (residues 232-245) between the LF and thumb domains was not assigned. The linker and disordered regions from the crystal structure are flexible and solvent exposed. Hence, the signals may be missing due to intrinsic exchange with the solvent. In conclusion, for

Figure 2.2: ${ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}$ HSQC Map of Dbh assignments. $2 \mathrm{D}{ }^{15} \mathrm{~N}$-HSQC spectra of C31S-Dbh, recorded at 800 MHz and $50^{\circ} \mathrm{C}(323 \mathrm{~K})$. The one-letter amino acid code and the residue number indicate resonance assignments. Unassigned resonances are indicated by an "x" symbol. Additional conformations of a particular residue are indicated by an asterisk "*". Peaks in the HSQC which did not have visible corresponding peaks in the 3D spectra are marked by a hash "\#" The crowded central region of the spectra is displayed in the insert for clarity. 44 A is aliased in the ${ }^{15} \mathrm{~N}$ dimension; its true ${ }^{15} \mathrm{~N}$ shift is 133.701 pdm .
portions of C31S-Dbh where we would expect rigid structure to enable us to detect NMR signals, I have assigned 94% of the protein.

A representative strip plot of sequential residues is displayed in Figure 2.1, showing overlaid 3D HNCACB and 3D HN(CO)CA spectra for residues 89-103. By performing a "backbone walk" through the white lines indicated in the figure, I was able to determine these residues were sequential. From there, I determined the amino acid types. For example, 96A and 102A, with $\mathrm{C} \beta$ shifts of $<24 \mathrm{ppm}$, and S 103 , with a $\mathrm{C} \beta$ shift of $\sim 64 p p m$, are perfect examples of residues whose type can be determined from their ${ }^{13} \mathrm{C}$ chemical shifts. Other residue types were determined from selectively labeled and delabeled spectra: 89M, 90N, 93N, 94K, H95H, 97D, and 98K. In addition, ${ }^{13}$ C'-Leu $/{ }^{15} \mathrm{~N}$ HNCO data had COi-1 signals for 93 N and 92L, indicating that these residues were preceded in the sequence by leucine residues. After establishing that these residues were sequential, and having determined the type of many of the amino acids, I concluded with confidence that this segment corresponded to residues 89-103.

$$
\begin{aligned}
1 & \text { MIVIFVDFDYFFAQVEEVLNPQYKGKPLVVSVYSGRTKTSGAVATANYEF } \\
51 & \text { RKLGVKAGMPIIKAMQIAPSAIYVPMRKPIYEAFSNRIMNLLNKHADKIF } \\
101 & \text { VASIDEAYLDVTNKVEGNFENGIELARKIKQEILEKEKITVTVGVAPNKI } \\
151 & \text { LAKIIADKSKPNGLGVIRPTEVQDFLNELDIDEIPGIGSVLARRLNELG] } \\
201 & \text { QKLRDILSKNYNELEKITGKAKALYLLKLAQNKYSEPVENKSKIPHGRYI } \\
251 & \text { TLPYNTRDVKVILPYLKKAINEAYNKVNGIPMRITVIAIMEDLDILSKGF } \\
301 & \text { KFKHGISIDNAYKVAEDLLRELLVRDKRRNVRRIGVKLDNIIINKTNLSI } \\
351 & \text { FFDI }
\end{aligned}
$$

Figure 2.3: Completeness of Assignment - Dbh Sequence. C31S-Dbh amino acid sequence with assignments indicated. Grey shade is used to indicate residues with at least one backbone atom assigned. Black background with white lettering indicates residues where only the ${ }^{13} \mathrm{C}$ ' or ${ }^{13} \mathrm{C} \alpha$ were found but not the NH. White background represents residues that have not been assigned. In blue lettering, amino acids 36-38 and 345-354 are too disordered in crystal structures to be detected [PDB entries 1K1S/1K1Q (Silvian et al., 2001) and 3BQ0 (Wilson and Pata, 2008)]. These regions are also not detected by NMR.

A small part of the structure appears to have an alternate conformation; several residues have two corresponding peaks in the ${ }^{15} \mathrm{~N}$-HSQC spectrum and 3D data (97D, 98K, 100E, 101V, 102A, 103S, 108Y, 109L, and 110D) consistent with slow chemical exchange. These residues are located in the β-sheet structure of the active site palm domain, surrounding the metal ion coordinating residues 105D and 106E. The mutation of residue 31 from Cys to Ser does not appear to affect the structure. For example, the crystal structures of apo C31S-Dbh [PDB entries 1K1S/1KIQ (Silvian et al. 2001)] superimpose well with ligand-bound forms of WT Dbh [PDB entries 3BQ0, 3BQ1, and 3BQ2 (Wilson and Pata, 2008)]. In addition, this mutation did not significantly affect the NMR spectrum, as the ${ }^{15} \mathrm{~N}-\mathrm{HSQC}$ of WT Dbh and C31S-Dbh overlay extremely well (data not shown). Only 11 peaks (9D, 10Y, 12F, 31S, 32V, 45T, 56K, 64A, 77R, 140T, and 301 K) were observed to have shifted by any appreciable amount ($>0.05 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ or $>0.2 \mathrm{ppm}$ for ${ }^{15} \mathrm{~N}$) upon mutation. Unsurprisingly, the peaks for residue 31 and adjacent 32 V are shifted, and all but two (140T, 301 K) of the remaining shifted peaks are located in the same domain (finger) as residue 31.

The backbone resonance assignments of Dpo4 catalytic core (Ma et al., 2010) and LF domain (Ma et al., 2011) at $50^{\circ} \mathrm{C}$ have been published. Given the homology between

Figure 2.4: Completeness of Assignment - Dbh Structure. Completeness of Dbh assignments mapped onto the crystal structure of Dbh (PDB entry 3BQ0). Assigned residues are indicated in green, unassigned residues are indicated in gray, and proline residues are indicated in red.
the two proteins (54\% sequence identity) and similar tertiary structure, some of the resonances of the two proteins would be expected to have similar chemical shifts. It should be noted that all of the assignments of C31S-Dbh were completed independently using only my own data; the Dpo4 assignments were compared to those of C31S-Dbh after I completed my assignments. The mutually assigned amide peak positions of

Figure 2.5: Comparison of Dbh and Dpo4 chemical shifts for identical residues. Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{15} \mathrm{~N}$ chemical shifts from identical residues from Dbh and Dpo4 is displayed as the difference of the chemical shift values.
identical residues do not correlate very well, with only 62 of 135 (46\%) available ${ }^{1} \mathrm{H}$ shifts within 0.2 ppm and 54 of 135 (40%) available ${ }^{15} \mathrm{~N}$ shifts within 0.8 ppm (Figure 2.5). However, the nearest neighbors of a particular residue can have a significant effect on the amide chemical shift, even if the residues are identical. For instance, a neighboring isoleucine residue on the C-terminal side of an amide could influence the ${ }^{1} \mathrm{H}$ shift downfield by $\sim 0.2 \mathrm{ppm}$ (Schwarzinger et al., 2001) and the ${ }^{15} \mathrm{~N}$ shift downfield by almost 5 ppm (Braun et al., 1994; Schwarzinger et al., 2001). Eliminating identical residues from the comparison that do not also have identical neighbors, the correlation between the two sets of shifts is improved: 30 of $54(56 \%){ }^{1} \mathrm{H}$ shifts within 0.2 ppm and
(57\%) 31 of $54{ }^{15} \mathrm{~N}$ shifts within $0.8 p p m$. All but one of the ${ }^{1} \mathrm{H}$ shifts and one of the ${ }^{15} \mathrm{~N}$ shifts in the preceding comparison are found in the polymerase core: 29 of $45(64 \%){ }^{1} \mathrm{H}$ shifts within 0.2 ppm and 30 of $45(67 \%){ }^{15} \mathrm{~N}$ shifts within 0.8 ppm . This is not surprising, since the polymerase core between the two proteins shares 59% sequence identity, while the LF domains of the two proteins only have 41% sequence identity. Even though the assignments of Dpo4 were completed on the polymerase core and the LF as separate constructs, the core and LF domains appear to fold independently into roughly the same native structure as found in the full-length protein based on chemical shifts.

Conclusions

I have obtained complete or partial backbone resonance assignments for 86% of residues in Dbh. Accounting for regions where NMR signals may not have been detected, I have assigned backbone resonances from 94% of residues in Dbh. A comparison of the Dbh chemical shifts with published Dpo4 chemical shifts revealed moderate correlation between shifts of identical residues. The backbone resonance assignments have been published in the journal Biomolecular NMR Assignments (Moro and Cocco, 2015). The chemical shifts of C31S-Dbh polymerase at 308K and 323K $\left(35^{\circ} \mathrm{C}\right.$ and $\left.50^{\circ} \mathrm{C}\right)$ have been deposited in the BioMagResBank database under accession number 26564 [http://www.bmrb.wisc.edu, (Ulrich et al., 2008)]. The backbone assignments have been used for relaxation dynamics studies of Dbh, and the published crystal structures of Dbh have been used to interpret NMR relaxation data through molecular modeling and molecular dynamics simulations

References:

Bax, A. (1989). Two-dimensional NMR and protein structure. Annu Rev Biochem 58, 223-256.

Bodenhausen, G., and Ruben, D.J. (1980). Natural Abundance Nitrogen-15 NMR by Enhanced Heteronuclear Spectroscopy. Chemical Physics Letters 69, 185-189.

Braun, D., Wider, G., and Wüthrich, K. (1994). Sequence-Corrected 15N "Random Coil" Chemical Shifts. J Am Chem Soc 116, 8466-8469.

Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J., and Bax, A. (1995). NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6, 277-293.

Englander, S.W., and Wand, A.J. (1987). Main-chain-directed strategy for the assignment of 1H NMR spectra of proteins. Biochemistry 26, 5953-5958.

Frueh, D.P. (2014). Practical aspects of NMR signal assignment in larger and challenging proteins. Prog Nucl Magn Reson Spectrosc 78, 47-75.

Ikura, M., Kay, L.E., and Bax, A. (1990). A novel approach for sequential assignment of 1H, 13C, and 15 N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29, 4659-4667.

Jaipuria, G., Krishnarjuna, B., Mondal, S., Dubey, A., and Atreya, H.S. (2012). Amino acid selective labeling and unlabeling for protein resonance assignments. Adv Exp Med Biol 992, 95-118.

Kay, L.E. (1997). NMR methods for the study of protein structure and dynamics. Biochem Cell Biol 75, 115.

Leopold, M.F., Urbauer, J.L., and Wand, A.J. (1994). Resonance assignment strategies for the analysis of NMR spectra of proteins. Mol Biotechnol 2, 61-93.

Ma, D., Fowler, J.D., and Suo, Z. (2011). Backbone assignment of the little finger domain of a Y-family DNA polymerase. Biomol NMR Assign 5, 195-198.

Ma, D., Fowler, J.D., Yuan, C., and Suo, Z. (2010). Backbone assignment of the catalytic core of a Yfamily DNA polymerase. Biomol NMR Assign 4, 207-209.

Marion, D., Driscoll, P.C., Kay, L.E., Wingfield, P.T., Bax, A., Gronenborn, A.M., and Clore, G.M. (1989). Overcoming the overlap problem in the assignment of 1 H NMR spectra of larger proteins by use of threedimensional heteronuclear $1 \mathrm{H}-15 \mathrm{~N}$ Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry 28 , 6150-6156.

Muchmore, D.C., McIntosh, L.P., Russell, C.B., Anderson, D.E., and Dahlquist, F.W. (1989). Expression and nitrogen-15 labeling of proteins for proton and nitrogen-15 nuclear magnetic resonance. Methods Enzymol 177, 44-73.

Neidhardt, F.C., Bloch, P.L., and Smith, D.F. (1974). Culture medium for enterobacteria. J Bacteriol 119, 736-747.

Pervushin, K. (2001). The use of TROSY for detection and suppression of conformational exchange NMR line broadening in biological macromolecules. J Biomol NMR 20, 275-285.

Pervushin, K., Riek, R., Wider, G., and Wuthrich, K. (1997). Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A 94, 1236612371.

Reid, D.G., MacLachlan, L.K., Edwards, A.J., Hubbard, J.A., and Sweeney, P.J. (1997). Introduction to the NMR of proteins. Methods Mol Biol 60, 1-28.

Schwarzinger, S., Kroon, G.J., Foss, T.R., Chung, J., Wright, P.E., and Dyson, H.J. (2001). Sequencedependent correction of random coil NMR chemical shifts. In J Am Chem Soc (United States), pp. 29702978.

Silvian, L.F., Toth, E.A., Pham, P., Goodman, M.F., and Ellenberger, T. (2001). Crystal structure of a DinB family error-prone DNA polymerase from Sulfolobus solfataricus. Nat Struct Biol 8, 984-989.

Torchia, D.A., Sparks, S.W., and Bax, A. (1989). Staphylococcal nuclease: sequential assignments and solution structure. Biochemistry 28, 5509-5524.

Ulrich, E.L., Akutsu, H., Doreleijers, J.F., Harano, Y., Ioannidis, Y.E., Lin, J., Livny, M., Mading, S., Maziuk, D., Miller, Z., et al. (2008). BioMagResBank. Nucleic Acids Res 36, D402-408.

Vranken, W.F., Boucher, W., Stevens, T.J., Fogh, R.H., Pajon, A., Llinas, M., Ulrich, E.L., Markley, J.L., Ionides, J., and Laue, E.D. (2005). The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687-696.

Wilson, R.C., and Pata, J.D. (2008). Structural insights into the generation of single-base deletions by the Y family DNA polymerase dbh. Mol Cell 29, 767-779.

Zuiderweg, E.R., and Fesik, S.W. (1989). Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a. Biochemistry 28, 2387-2391.

Chapter 3 - Dynamics of Dbh investigated by Hydrogen-Deuterium Exchange (HDX) NMR spectroscopy

Rationale and Strategy

Hydrogen-deuterium exchange (HDX) NMR spectroscopy is a technique used to measure the dynamics, stability, and folding of proteins (Krishna et al., 2004). The amide hydrogen of polypeptide chains can undergo exchange with the hydrogens of bulk water. The utility of this exchange in probing the dynamics of protein structure has long been recognized; if the protein is lyophilized, then re-suspended in $\mathrm{D}_{2} \mathrm{O}$, the protons will exchange with deuterons at a certain rate for given solvent conditions (Hvidt and Linderstrom-Lang, 1955). For an amide exposed to solution, this exchange is fast, usually on the order of seconds. The exchange can be detected as a gain in mass (HDX-MS) or as a decay in signal (HDX-NMR). The amide protons that are participating in secondary structure or otherwise shielded from the solvent will undergo exchange more slowly than if they were freely exposed to solvent. This reduction in the rate of exchange is referred to as the "protection factor" (Raschke and Marqusee, 1998).

The protection factor reflects the local structure and dynamics of a polypeptide. If a local region of a polypeptide is involved in secondary structure or otherwise shielded from the aqueous solvent, the structure will need to undergo an "opening' event in order for exchange of the amide proton to occur (Raschke and Marqusee, 1998). This opening is dependent on the degree of order in the local structure. Dynamic regions have a higher probability that an opening event will occur; conversely, more rigid and stable structures have a low probability of opening (Maity et al., 2003). For example, in the interior of β -
sheets in stably folded protein domains, the amide hydrogens may not exchange for many days. However, if the exchange is extremely slow, it may not be expedient to run the experiment for the necessary time to observe sufficient signal decay to extract a rate measurement. The rate of opening can be determined from the rate of exchange when normalized for the intrinsic exchange rate of the random coil polypeptide (Bai et al., 1995).

After the opening event occurs, the reverse process is the rate of closing, whereby the structure reforms and the amide hydrogen is again protected from exchange with solvent deuterium. The actual probability of exchange occurring is dependent on the actual time spent in the open state (Bai et al., 1995). Hence, the equilibrium constant is determined by the rate of closing ($k_{c l}$) divided by the rate of opening ($k_{o p}$), as defined in Eq. 1 (Hvidt and Linderstrøm-Lang, 1955), assuming that the system is under what is called the EX2 exchange limit defined where $k_{c l} \gg k_{o p}$.
(1) $\boldsymbol{k}_{e x}=\left(\boldsymbol{k}_{o p} / \boldsymbol{k}_{c l}\right) \boldsymbol{k}_{r c}=\boldsymbol{K}_{\text {op }} \boldsymbol{k}_{r c}$

For the determination of the observed hydrogen-deuterium exchange rate, a series of $2 \mathrm{D}{ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$ HSQC spectra are taken at regular periodic intervals. Next, the signal decay for each amide is measured over time and a single-order exponential decay is used to extract the rate. Unfortunately, during the dead time of a conventional HDX-NMR experiment, many solvent-exposed amide hydrogens exchange very rapidly. Hence, these signals are not observed at the first time point and an exact rate cannot be calculated, although an upper bound for the rate can be established. Likewise, wellprotected amide hydrogens may take weeks to fully exchange, and hence significant
decay may not occur during the time course of the experiment. As such, only a lower bound can be determined.

To determine the protection factor $\left(P F=k_{e x} / k_{r c}\right)$, the exchange of the intrinsic exchange of the amide hydrogen - that is, if it was in a random coil conformation - must first be calculated. To calculate the intrinsic exchange rate of any particular amide hydrogen, the rate must be corrected for pH , temperature, and nearest neighbor effects. Englander and co-workers performed an extensive study for the effect of each nearest neighbor to provide an approximate correction factor on the exchange rate; these rates are sufficient to calculate the protection factor (Molday et al., 1972; Bai et al., 1993). The calculation of the intrinsic exchange rate will be explained in greater detail in the methods section of this chapter.

In this way, hydrogen-deuterium is a sensitive technique for the backbone dynamics of proteins from seconds to days. Magnetization transfer of solvent saturation can be used to monitor very rapidly exchange amides to access sub-second time scales (Krishna et al., 1979). Conventional NMR-HDX can be used to observe the sample for as long as the spectroscopist deems necessary and informative. The time range available for investigation nicely complements other experiments which probe millisecond and faster motions, such as nuclear spin relaxation and relaxation dispersion measurements.

Provided that the system is in the EX2 exchange limit, thermodynamic parameters can be extracted from the exchange constants (Eq. 2). Within the EX2 limit, the free energy of exchange is equivalent to the equilibrium constant of structural opening (Bai et al., 1994; Bai et al., 1995).

$$
\text { (2) } \Delta \mathrm{G}_{\mathrm{HX}}=-R T \ln K_{o p}=-R T \ln k_{e x} / k_{r c}
$$

Since $k_{r c}$ can be calculated, the free energy can be calculated from the measured rate constant. The temperature dependence below the thermal melting point of the free energy can give the entropy ($\boldsymbol{d} \Delta \mathrm{G}_{\mathrm{HX}} / \boldsymbol{d} \mathbf{T}=\Delta \mathbf{S}_{\mathrm{HX}}$) and hence, the enthalpy of the exchange reaction. One example where this approach has been applied was the study of thermodynamic stability of hyperthermophilic rubredoxin (Hiller et al., 1997; LeMaster et al., 2005). Of particular interest in the case of Dbh is the thermodynamic basis of its stability. A higher exchange rate at a larger temperature is expected, but the high stability of the core of a thermostable protein has been demonstrated in the following data. The portions of the protein involved in the core interactions of each domain, especially in the central β-sheet/ α-helix bundle of the palm and little finger domains, are remarkably stable.

I have obtained HDX measurements at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$, to investigate the backbone dynamics of Dbh. From this information, I can see the modulation of dynamics in Dbh upon heating. Core residues in the palm and little finger domain, especially those in the interior of the β-sheets and interior face of α-helices, are key in maintaining the stability of Dbh; with the palm providing a stable platform for the active site residues. In addition, the thumb and finger domains are more flexible, with only a handful of residues protected at $35^{\circ} \mathrm{C}$ and almost none at $50^{\circ} \mathrm{C}$. These results highlight the importance of maintaining the active site structure and shape of LF domain for the function of Dbh.

Materials and Methods

Samples of $100 \%{ }^{15} \mathrm{~N}$-labeled Dbh containing 0.5 mM or higher concentration were lyophilized, then re-suspended in $300 \mu \mathrm{~L}$ of $\mathrm{D}_{2} \mathrm{O}, \mathrm{pD} 7.5$, which was pre-warmed to the experimental temperature, and transferred to a Shigemi NMR tube. The sample was immediately placed in an 800 MHz Varian Inova NMR spectrometer, containing an $x y z$ triple resonance probe, equilibrated at 35 or $50^{\circ} \mathrm{C}$. After shimming and tuning the magnet, the acquisition of the first ${ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}$ TROSY-HSQC (Pervushin et al., 1997) spectrum was started approximately 15 minutes after the re-suspension of lyophilized protein. Additional ${ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}$ HSQC spectra were taken sequentially every 147 minutes and 13 seconds (2.454 hours), except for the last five spectra at $50^{\circ} \mathrm{C}$, for which additional scans were taken ($2 x$ for the $17^{\text {th }}$ through $20^{\text {th }}$ spectra, 4 x for the $21^{\text {st }}$ spectrum) to improve signal-to-noise ratio. A total of 20 spectra were collected at $35^{\circ} \mathrm{C}$, and 21 spectra at $50^{\circ} \mathrm{C}$. Due to the additional length of acquisition in the last five spectra at $50^{\circ} \mathrm{C}$, the acquisition of the $18^{\text {th }}, 19^{\text {th }}, 20^{\text {th }}$ and $21^{\text {st }}$ spectra was started 4.907 hours after the start of the previous spectra. Representative spectra for various time points at both temperatures are shown in Figure 3.1a and b. The data was processed using NMRPipe (Delaglio et al., 1995), and visualized using CcPNMR Analysis (Vranken et al., 2005). The peak intensity was plotted as a function of time, and fit to a single order exponential-decay function $\left(I(t)=I_{0} \times e^{-k t}\right)$ to extract the exchange rate. Representative rate fits to the experimental data are displayed in Figure 3.2. To obtain the protection factor the hypothetical exchange rate for the amide proton in a random coil conformation was calculated, corrected for the effect of side chain identity to the left and right of the amide proton (Molday et al., 1972; Bai et al., 1993).

Figure 3.1a: ${ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}$ TROSY-HSQC HDX spectra of Dbh at $35^{\circ} \mathrm{C}$ at selected time points, demonstrating decay of signal over the course of the experiment.

Figure 3.1b: ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ TROSY-HSQC HDX spectra of Dbh at $50^{\circ} \mathrm{C}$ at selected time points, demonstrating decay of signal over the course of the experiment.

Figure 3.2: Representative decay rate fits for selected amides from HSQC-HDX spectra for Dbh at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$. The rates were determined from the following equation: $I(t)=I_{0} \times e^{-k t}$.

The protection factor was calculated using Eq. 2, as the ratio of the observed rate and the hypothetical random coil rate for the amide proton (Bai et al., 1995).

$$
(3) P=K_{r c} / K_{\text {prot }}
$$

Calculation of Random Coil Rate and Free Energy

The intrinsic H-D exchange rates for random coil polypeptides are known, and can be calculated for any amide hydrogen for a given pD, temperature, and local sequence context (Molday et al., 1972; Bai et al., 1993). The exchange can be expressed as a sum of the rates of the water, base, and acid catalyzed reactions, as given in Eq. 3. Each of these rates can be calculated individually for a given pD and every possible sequence context, by using a reference rate for the reaction at $20^{\circ} \mathrm{C}$, and correcting for effects of the side chains to the immediate left and right (Eqs. 4 and 5a, 5b, and 5c) (Bai et al., 1993). The side chain to the "left" is the residue's own side chain, and the side

Figure 3.3: L vs. \mathbf{R} for $\boldsymbol{k}_{r c}$ calculation chain to the right, as the preceding residue's side chain, which is displayed for clarity in Figure 3.5. Eq. 6 correct for the increase in rate due to the temperature, with 14,17 , and $19 \mathrm{kca} / \mathrm{mol}$ used as the values for the activation energy of the acid, base, and water catalyzed reactions, respectively. The increase in $k_{r c}$ from $20^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ is $3.23 \mathrm{x}, 4.14 \mathrm{x}$, and 4.89 x for the acid, base, and water-catalyzed reactions, respectively. The increase in $k_{r c}$ from $20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ is $9.88 \mathrm{x}, 16.1 \mathrm{x}$, and 22.4 x for the acid, base, and water-catalyzed reactions, respectively. The calculated random coil rates were divided by the experimental rates to obtain the protection factors.

$$
\begin{aligned}
& .(4) k_{e x}=k_{A} 10^{-\mathrm{pD}}+k_{B} 10^{\left[\mathrm{pD}-\mathrm{p} K_{\mathrm{D}}\right]}+k_{W} \\
& \text { (5) } \boldsymbol{k}_{r c}=\boldsymbol{k}(\text { acid })+\boldsymbol{k}(\text { base })+\boldsymbol{k}(\text { water })=\boldsymbol{k}_{\mathrm{A}, \text { ref }}\left(\mathrm{A}_{\mathrm{L}} \times \mathrm{A}_{\mathrm{R}}\right)\left[\mathrm{D}^{+}\right]+\boldsymbol{k}_{\mathrm{B}, \mathrm{ref}}\left(\mathrm{~B}_{\mathrm{L}} \times \mathrm{B}_{\mathrm{R}}\right)\left[\mathrm{OD}^{-}\right]+\boldsymbol{k}_{\mathrm{W}, \mathrm{ref}}\left(\mathrm{~B}_{\mathrm{L}} \times \mathrm{B}_{\mathrm{R}}\right) \\
& (6 a) \log k(\text { acid })=\log k_{A, r e f}+\log A_{L}+\log A_{R}-p D \\
& (6 b) \log k(\text { base })=\log k_{B, \text { ref }}+\log A_{L}+\log A_{R}-\text { pOD } \\
& (6 \mathbf{c}) \log k(\text { water })=\log k_{\text {W, ref }}+\log A_{L}+\log A_{R} \\
& \text { (7) } k_{r c}(\mathrm{~T})=k_{r c}(293) e^{\left(\frac{\left(\mathrm{E}_{\mathrm{a}}[1 / T-1 / 293]\right.}{R}\right)}
\end{aligned}
$$

The free energy of the hydrogen exchange reaction, measuring the equilibrium of local structural opening, was calculated according to Eq. 2.

Results and Discussion

${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ HSQC spectra of selected time points for each temperature are displayed in Figure 3.5. Signals for 95 residues were resolved at $35^{\circ} \mathrm{C}$, and for 50 residues at $50^{\circ} \mathrm{C}$. Of these, sufficient decay was observed to enable calculation of a rate for 61 residues at $35^{\circ} \mathrm{C}$ and 27 residues at $50^{\circ} \mathrm{C}$. There were a few signals which could not be resolved due to spectral overlap. Many of the residues in Dbh undergo exchange quickly enough at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ so that no signal is detected in the first spectra. As expected, residues that are solvent-exposed or not involved in secondary structure undergo rapid exchange. The lower limit for the rate of fast-exchanging residues was calculated as $>0.2 \mathrm{~min}^{-1}$, for which the signal to decay to $1 / 20^{\text {th }}$ of its original value, the ratio, by the start of acquisition of the first spectra 15 minutes. For residues which exchange fully by the start of the second time point (159.2 minutes), the exchange is approximately
between $0.018 \mathrm{~min}^{-1}$ and $0.2 \mathrm{~min}^{-1}$. Since the base-catalyzed reaction dominates at pD 7.5, the most base-activating dipeptide present in Dbh (Asn-NH-cis-Pro) defines the maximum protection factor possible for the fast exchanging residues (Bai et al., 1993) for the lower limit of the exchange rate. The $k_{r c}$ for an Asn-NH-Ser dipeptide is 3.3×10^{4} min^{-1} at $35^{\circ} \mathrm{C}$ and $1.3 \times 10^{5} \mathrm{~min}^{-1}$ at $50^{\circ} \mathrm{C}$, giving a maximum possible protection factor of 1.7×10^{5} at $35^{\circ} \mathrm{C}$ and 6.4×10^{5} for $50^{\circ} \mathrm{C}$. For exchange by the second time point, the maximum possible protection factor is 1.8×10^{6} at $35^{\circ} \mathrm{C}$, and 7.1×10^{6}. However, most dipeptide combinations in Dbh will have a much slower $k_{r c}$, and hence lower maximum protection factors, which are mostly in the range of $10^{3}-10^{4}$ at $35^{\circ} \mathrm{C}$ and $10^{3}-10^{6}$ at $50^{\circ} \mathrm{C}$. Protection factors for each detected amide group, along with estimated lower (highly protected residues) and upper (fast exchanging residues) limits for assigned residues whose rates could not be determined at that temperature, are displayed in Figure 3.4. These protection factors have also been mapped to the crystal structure of apo Dbh [1K1S, (Silvian et al., 2001)] in Figure 3.5. For the residues for which no decay was detected, assuming that 5% or less of initial peak intensity decayed by the end of the experiment, the minimum protection factors for possible for the most blocking dipeptide (lle-NH-Ile) $>1.7 \times 10^{7}$ at $35^{\circ} \mathrm{C}$, and $>9.2 \times 10^{7}$ at $50^{\circ} \mathrm{C}$.

Figure 3.4: Protection factors for Dbh at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$. Residues for which a value has been calculated, an upper limit determined (exchange before first spectrum), or a lower limit determined (no decay detected by the end of experiment, $\sim 69 \mathrm{~h}$ at $50^{\circ} \mathrm{C}$. Unassigned residues or residues that could not be resolved due to spectral overlap are not given a value.

Figure 3.5: Hydrogen-deuterium exchange of Dbh at $35^{\circ} \mathrm{C}$ (left-side images A, C, and E) and $50^{\circ} \mathrm{C}$ (right-side images B, D, and F). Panels A and B show a view of the whole protein, C and D show the catalytic core (residues 1-232) and E and F show the LF domain (residues 240-344). Protection from exchange is indicated in blue, with darker shades indicating greater protection fast exchange is indicated in red, and white indicating residues that are unresolved due to spectral overlap, or unassigned. PDB entry 1K1S (Silvian et al., 2001) and UCSF Chimera (Pettersen et al., 2004) were used to generate the images.

Most of the protected residues in Dbh are located in the palm and little finger domains (78 of 95 at $35^{\circ} \mathrm{C}$, and 49 of 50 at $50^{\circ} \mathrm{C}$), especially residues on the interior of the $\beta-$ sheets and the face of the α-helices packed against the central β-sheets (Figure 3.5).

Figure 3.6: Numbering of secondary structure elements in apo Dbh. Reprinted by permission from Macmillan Publishers Ltd: Nature, Silvian et. al, © 2001

Twenty of these residues in the interior of β-sheets and on the inward facing side of α-helices are so well protected from exchange that no discernible decay is even at $50^{\circ} \mathrm{C}(3 \mathrm{~V}, 7 \mathrm{D}, 128 \mathrm{~K}, 129 \mathrm{I}, 133 \mathrm{I}$, 144G, 145V, 146A, 152A, 155I, 156A, 195L, 270I, 287I, 288A, 289I, 290M, 319L, 335G, and 337K), with protection factors $\geq 10^{8}$ (assuming 5% or less decay of the original intensity has occurred by the end of experiment at 69 hours, which gives a minimum $k_{e x}$ of 1.24×10^{-5}). The calculated $\Delta \mathrm{G}_{\mathrm{HX}}$ for the residues in the palm and LF whose rates could be measured, averaged across both temperatures, is 9.24 ± 2.33 $\mathrm{kcal} / \mathrm{mol}$ and $8.96 \pm 2.93 \mathrm{kcal} / \mathrm{mol}$, respectively. The average minimum $\Delta \mathrm{G}_{\mathrm{HX}}$ for the stable residues at $50^{\circ} \mathrm{C}$, assuming 5% or less decay occurred, is $\geq 12.5 \mathrm{kcal} / \mathrm{mol}$. This indicates the cores of the palm and little finger domains are particularly rigid and stable.

However, the smaller thumb and finger domains have fewer (17) residues that are protected from exchange at $35^{\circ} \mathrm{C}(28 \mathrm{~L}, 30 \mathrm{VI}, 50 \mathrm{~A}, 51 \mathrm{R}, 55 \mathrm{~V}, 64 \mathrm{~A}, 68 \mathrm{~A}, 74 \mathrm{~V}, 175 \mathrm{~F}$, 178E, 184I, 194R, 195L, 201Q, 206I, 223A, 226L), and only one (195L, located in an $\alpha-$ helix and buried in the interior of the thumb domain) at $50^{\circ} \mathrm{C}$. The a-helices in the thumb and fingers domains are shorter than those of the palm and LF domains, and are
frequently broken by proline residues. Proline is the most rigid amino acid and can confer rigidity, but experiments examining the effects of addition of proline residues demonstrate that they do not confer stability in all cases (Wang et al., 2014; Yu et al., 2015). These prolines (21P, 27P, 60P, 69P and 75P in the fingers, and 185P in the thumb), likely constrain the .However, E. coli pol IV, a mesophilic homolog of Dbh, also has proline residues in roughly similar locations, so this may only to restrict the volume of the domain while maintaining a stable fold. The smaller volume of thumb and fingers domains of Dbh and other Y-family polymerases increases the volume of their active sites, enabling them to accommodate bulky lesions. Therefore, the increased hydrogen exchange observed for the palm and fingers domains is likely due to their reduced volume.

In the palm, metal-ion coordinating residues 106E and 7D are protected from exchange, along with surrounding residues $8 \mathrm{~F}, 107 \mathrm{~A}, 108 \mathrm{Y}, 6 \mathrm{~V}$, and 5 F . The β-sheet forms a rigid platform for the active site of the enzyme, ensuring that these residues remain in a proper orientation for catalysis. The third metal-ion coordinating residue 105D is located in a β-turn, and hence exchanges before the first time point. 103S NH is on the edge β strand $\beta 5$, right before the β-turn containing 104I and 105D. 103S NH forms a hydrogen bond with 106 E CO and exchanges quickly even at $35^{\circ} \mathrm{C}$. This may indicate structural fraying at the end of the edge strand and consequent propagation of motion through the β-turn. Motion of the backbone in this location could subtly affect the positioning of the metal-ion coordinating side chains. The peaks for 103S, 108Y, 109L, 110D, 97D, and 98 K are doubled in 2D and 3D spectra of Dbh (Moro and Cocco, 2015), indicating slow exchange between two stable conformations. Subtle repositioning of active site residues
is thought to be the rate-limiting step for catalysis; however, any possible motion of these residues would also have to be observed for the ligand bound states of Dbh.

Other thermostable proteins have rigid central β-sheet architecture which is resistant to exchange, as was demonstrated recently for a thermostable chimeric avidin (Tossavainen et al., 2014). Increased β-sheet structure often confers additional thermostability, provided that the hydrophobic interactions in the core of the protein can be increased (Yang et al., 2012; Niu et al., 2015). Many of the slowly exchanging residues in Dbh are branched-chain hydrophobic amino acids (I, L, and V), clusters of which can confer increased thermostability to a protein (Gangadhara et al., 2013). Comparing the amino acid composition of Dbh to mesophilic homolog E. coli pol IV to Dbh, Dbh has 17 more isoleucine, 4 less leucine, and 4 more valine residues. In particular, certain clusters of hydrophobic residues in the interior of the palm and LF are very resistant to exchange. In the palm, 129I, 133I, 6V, 4I, 109L, 145V, 143V, and 141 V , all of whose amides are protected from exchange (expect for non-H-bonded 141 V NH), form a cluster on the interior of the domain, with many of the side chain atoms within $4.5 \AA$ of each other. In place of 143 V and 141 V , E. coli pol IV has two alanine residues, and the equivalent to 133 I (1301 in pol IV) is located away from the cluster. The LF also has branched chain amino acids clustered in the central spine of the domain (323L, 322L, 318L, 319L, 286V, 336V, 270I, 266L, 338L, 334I, and 284I), Many of these residues are protected from exchange at $50^{\circ} \mathrm{C}$, except for $338 \mathrm{~L}, 336 \mathrm{~V}$, and 334I, which face the $\beta 10$ strand contiguous with the very flexible linker region. The structural opening of the $\beta 10$ strand, which has no protected residues likely facilitates fast exchange of the 338L, 336V, and 334I. In summary, the large of amount of
branched chain hydrophobic residues likely results in more efficient packing of the core of the palm and LF domains of Dbh is likely a key contributor to the thermostability of Dbh.

Salt-bridge and hydrogen-bonding networks can also impart thermostability to proteins (Mamonova et al., 2013; Jonsdottir et al., 2014; Makshakova et al., 2015). Examining the most protected residues in the apo Dbh crystal structure that are charged (Silvian et al., 2001) reveals that the some of them are involved in salt bridges. 128 K and 124 E , with protection factors of $>10^{8}$ and 1.7×10^{6} at $50^{\circ} \mathrm{C}$, form a salt bridge on the exterior of the F-helix. Further down the F-helix, the 135 E side chain (PF at $50^{\circ} \mathrm{C}, 4.2 \times 10^{5}$) forms an H-bond with $131 Q \varepsilon-\mathrm{NH}_{2}$, and 130 K (PF at $50^{\circ} \mathrm{C}, 1.5 \times 10^{7}$) H-bonds with 162 N CO and γ-CO, anchoring the G/ß8 loop to the F-helix. The equivalent residue in pol IV 127R is too far away from the $\mathrm{G} / \beta 8$ loop to H -bond with the equivalent 159 D backbone CO . The additional stabilization provided by side chain salt-bridges and hydrogen-bonding can rigidify the local structure, lowering the rate of transient opening reactions that allow hydrogen exchange. Further experiments to study the effect of salt-bridge and hydrogen-bonding disrupting mutations would be needed to confirm each residues' contribution to the thermostability of Dbh.

Conclusions

The HDX experiments detailed above indicate the most stable domains of Dbh are the palm and LF domains. Many of the residues that are protected from exchange at $50^{\circ} \mathrm{C}$ are clustered together to form key sites of stability through hydrophobic interactions or networks of salt bridges. Maintaining the proper fold of the palm domain is likely crucial
for preserving the activity at high temperature. It is also important to maintain the shape of the LF as it is necessary for proper DNA binding and positioning, and residues important for substrate binding must be properly oriented in the major groove of DNA. Future HDX experiments can be performed on Dbh to investigate the stability and dynamics of the ligand bound states. Additionally, it would be informative to determine the residues which were stable even at $50^{\circ} \mathrm{C}$ also show protection at $65^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$, and therefore crucial to the stability of the Dbh Since many thermophilic enzymes show similar flexibility to the their mesophilic counterparts at their respective physiological temperatures, Given that Dbh is active in vivo at $80^{\circ} \mathrm{C}$ in S. acidocaldarius (Sakofsky et al., 2012), I hypothesize that residues in the interior of the β-sheets will be protected enough from exchange to detected by conventional HDX-NMR even at $80^{\circ} \mathrm{C}$.

References

Bai, Y., Englander, J.J., Mayne, L., Milne, J.S., and Englander, S.W. (1995). Thermodynamic parameters from hydrogen exchange measurements. Methods Enzymol 259, 344-356.

Bai, Y., Milne, J.S., Mayne, L., and Englander, S.W. (1993). Primary structure effects on peptide group hydrogen exchange. Proteins 17, 75-86.

Bai, Y., Milne, J.S., Mayne, L., and Englander, S.W. (1994). Protein stability parameters measured by hydrogen exchange. Proteins 20, 4-14.

Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J., and Bax, A. (1995). NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6, 277293.

Gangadhara, B.N., Laine, J.M., Kathuria, S.V., Massi, F., and Matthews, C.R. (2013). Clusters of branched aliphatic side chains serve as cores of stability in the native state of the HisF TIM barrel protein. J Mol Biol 425, 1065-1081.

Hiller, R., Zhou, Z.H., Adams, M.W., and Englander, S.W. (1997). Stability and dynamics in a hyperthermophilic protein with melting temperature close to 200 degrees C. Proc Natl Acad Sci U S A 94, 11329-11332.

Hvidt, A., and Linderstrøm-Lang, K. (1955). Exchange of hydrogen atoms in insulin with deuterium in aqueous solution. Biochim Biophys Acta 14, 574-575.

Jonsdottir, L.B., Ellertsson, B.O., Invernizzi, G., Magnusdottir, M., Thorbjarnardottir, S.H., Papaleo, E., and Kristjansson, M.M. (2014). The role of salt bridges on the temperature adaptation of aqualysin I, a thermostable subtilisin-like proteinase. Biochim Biophys Acta 1844, 2174-2181.

Krishna, M.M., Hoang, L., Lin, Y., and Englander, S.W. (2004). Hydrogen exchange methods to study protein folding. Methods 34, 51-64.

Krishna, N.R., Huang, D.H., Glickson, J.D., Rowan, R., and Walter, R. (1979). Amide hydrogen exchange rates of peptides in H 2 O solution by 1 H nuclear magnetic resonance transfer of solvent saturation method. Conformations of oxytocin and lysine vasopressin in aqueous solution. Biophys J 26, 345-366.

LeMaster, D.M., Tang, J., Paredes, D.I., and Hernandez, G. (2005). Enhanced thermal stability achieved without increased conformational rigidity at physiological temperatures: spatial propagation of differential flexibility in rubredoxin hybrids. Proteins 61, 608-616.

Maity, H., Lim, W.K., Rumbley, J.N., and Englander, S.W. (2003). Protein hydrogen exchange mechanism: local fluctuations. Protein Sci 12, 153-160.

Makshakova, O.N., Semenyuk, P.I., Kuravsky, M.L., Ermakova, E.A., Zuev, Y.F., and Muronetz, V.I. (2015). Structural basis for regulation of stability and activity in glyceraldehyde-3-phosphate dehydrogenases. Differential scanning calorimetry and molecular dynamics. J Struct Biol 190, 224-235.

Mamonova, T.B., Glyakina, A.V., Galzitskaya, O.V., and Kurnikova, M.G. (2013). Stability and rigidity/flexibility-two sides of the same coin? Biochim Biophys Acta 1834, 854-866.

Molday, R.S., Englander, S.W., and Kallen, R.G. (1972). Primary structure effects on peptide group hydrogen exchange. Biochemistry 11, 150-158.

Moro, S.L., and Cocco, M.J. (2015). H, C, and N backbone resonance assignments of the full-length 40 kDa S . acidocaldarius Y-family DNA polymerase, dinB homolog. Biomol NMR Assign.

Niu, C., Zhu, L., Zhu, P., and Li, Q. (2015). Lysine-Based Site-Directed Mutagenesis Increased Rigid beta-Sheet Structure and Thermostability of Mesophilic 1,3-1,4-betaGlucanase. J Agric Food Chem 63, 5249-5256.

Pervushin, K., Riek, R., Wider, G., and Wuthrich, K. (1997). Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A 94, 12366-12371.

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25, 1605-1612.

Raschke, T.M., and Marqusee, S. (1998). Hydrogen exchange studies of protein structure. Curr Opin Biotechnol 9, 80-86.

Sakofsky, C.J., Foster, P.L., and Grogan, D.W. (2012). Roles of the Y-family DNA polymerase Dbh in accurate replication of the Sulfolobus genome at high temperature. In DNA Repair (Amst) (Netherlands, 2012 Elsevier B.V), pp. 391-400.

Silvian, L.F., Toth, E.A., Pham, P., Goodman, M.F., and Ellenberger, T. (2001). Crystal structure of a DinB family error-prone DNA polymerase from Sulfolobus solfataricus. Nat Struct Biol 8, 984-989.

Tossavainen, H., Kukkurainen, S., Maatta, J.A., Kahkonen, N., Pihlajamaa, T., Hytonen, V.P., Kulomaa, M.S., and Permi, P. (2014). Chimeric Avidin--NMR structure and dynamics of a 56 kDa homotetrameric thermostable protein. PLoS One 9, e100564.

Vranken, W.F., Boucher, W., Stevens, T.J., Fogh, R.H., Pajon, A., Llinas, M., Ulrich, E.L., Markley, J.L., Ionides, J., and Laue, E.D. (2005). The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687-696.

Wang, K., Luo, H., Tian, J., Turunen, O., Huang, H., Shi, P., Hua, H., Wang, C., Wang, S., and Yao, B. (2014). Thermostability improvement of a streptomyces xylanase by introducing proline and glutamic acid residues. Appl Environ Microbiol 80, 2158-2165.

Yang, T.C., Legault, S., Kayiranga, E.A., Kumaran, J., Ishikawa, K., and Sung, W.L. (2012). The N-Terminal β-Sheet of the Hyperthermophilic Endoglucanase from Pyrococcus horikoshii Is Critical for Thermostability. In Appl Environ Microbiol, pp. 3059-3067.

Yu, H., Zhao, Y., Guo, C., Gan, Y., and Huang, H. (2015). The role of proline substitutions within flexible regions on thermostability of luciferase. Biochim Biophys Acta 1854, 65-72.

Chapter 4- ${ }^{15}$ N NMR Relaxation Spectroscopy of Dbh and Estimation of Global Rotational Correlation Time

Rationale and Strategy

The principle of nuclear spin relaxation has been known to physicists for over half a century. First defined by Bloch, Hansen, and Packard in 1946 and expanded by Bloembergen, Purcell, and Pound in 1948, relaxation processes that occur in NMRactive nuclei in an external magnetic field return perturbed nuclear spins to an equilibrium population (Bloch, 1946; Bloch et al., 1946; Bloembergen et al., 1948). The rate of these relaxation processes is dependent on the motion of the molecule in solution; Brownian diffusional motion and internal motion of the molecule itself. In the case of protein, there are many internal motions of the molecule that enhance spin relaxation; therefore, spin relaxation rates contain dynamic information about the protein. Since the function of many proteins is dependent on internal dynamics, NMR spin relaxation can provide crucial information regarding the mechanism of function as well as protein stability. Solution NMR is unique in that provides quantitative atomic resolution dynamic data on proteins. Specifically, nuclear spin relaxation is sensitive to motions occurring on the picosecond to nanosecond time scale (Reddy and Rainey, 2010). These motions include bond vibration and librations, loop motions, side chain rotations, and smaller amplitude motions of the backbone (Morin, 2011).

Spin Relaxation and Protein Dynamics

There are two essential processes - longitudinal $\left(T_{1}\right)$ and transverse relaxation $\left(T_{2}\right)$ which describe the decay of an NMR signal during an NMR experiment. Longitudinal
relaxation, describes the return of the population of nuclear spins to equilibrium in the z direction (direction of the static magnetic field) after perturbation from a radiofrequency pulse, and is typically on the order of seconds (Bloembergen, 1948). Longitudinal relaxation arises from the interactions of the nuclear spins with the surrounding environment; hence, it is also called spin-lattice relaxation. In contrast, transverse or spin-spin relaxation is the result of phase decoherence of the nuclear spins in the $x y$ plane, which leads to decay of the NMR signal. The decoherence, or dephasing of transverse magnetization as it precesses about the static magnetic field is due to the interactions of the local magnetic fields generated by each spin. The differences in local field cause the spins to precess at slightly different frequencies, generating the phase difference that leads to signal decay (Abragam, 1961). Transverse relaxation is enhanced with increasing molecular weight, which complicates the study of larger proteins by NMR (Chang et al., 2007). Another phenomenon which is sensitive to molecular motion is the heteronuclear Nuclear Overhauser Effect (hnNOE). The hnNOE involves cross-relaxation induced dipolar coupling between a proton and attached heteronucleus, which is modulated by motions of the bond vector (Morin, 2011).

These relaxation mechanisms are all sensitive to global and internal motion of the protein molecule in solution. Thus, the three essential experiments in any nuclear spin relaxation study are measuring the T_{1} (longitudinal relaxation time), T_{2} (transverse relaxation time) and the value of the heteronuclear ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ NOE (Reddy and Rainey, 2010). Each of these parameters are measured separately; then, they are typically analyzed together to arrive at a model of motion for the bond vector. For the T_{1} and T_{2}
experiments, peaks from 2D spectra taken at increasing delay times are fitted to an exponential decay equation to obtain the R_{1} and R_{2} rates (Morin, 2011). The ${ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}$ NOE is measured as the ratio of peak amplitudes from spectra with and without proton saturation (Morin, 2011). There are a number of methodologies to interpret spin relaxation data; the most frequently used method is model-free analysis.

Lipari and Szabo developed the method termed "model-free" analysis (so named because no model is required a priori for the analysis) to extract two variables from spin relaxation data, the order parameter $\left(S^{2}\right)$ and the effective internal correlation time (τ_{e}) (Lipari and Szabo, 1982). "Model-free" analysis is so termed because the interpretation of the data does not depend on having a pre-existing model to describe the motion of the protein. Lipari and Szabo released that the correlation function describing the motion of a given bond vector could be distilled into a single generalized order parameter. S^{2} describes the degree of restriction of motion of the bond vector, with an associated effective correlation time for this motion (Lipari and Szabo, 1982). Hence, it was possible to determine the time scale and degree of the motion for each detectable bond vector in the protein. However, in some cases, an accurate description of the motion of the bond vector by these two parameters is not possible. Therefore, Clore and co-workers expanded model-free analysis to include fast and slow motion order parameters with associated internal correlation times, that when combined yield the overall order parameter. One additional parameter is necessary to account for relaxation due to "chemical exchange" processes (R_{ex}) consisting of exchange between conformations on the $\mu \mathrm{s}$-ms time scale, but other NMR experiments are necessary to
quantify these motions. To obtain the model-free analysis parameters, the spectral density function and model-free equations are fitted to the relaxation data through χ^{2} minimization (Lipari and Szabo, 1982; Clore et al., 1990). Development of software, such as Modelfree (Palmer III et al., 1991; Mandel et al., 1995), DASHA (Orekhov et al., 1995), and Relax (d'Auvergne and Gooley, 2008b, a), designed to streamline the model-free analysis of nuclear spin relaxation data has facilitated many studies on protein dynamics.

In model-free analysis, the overall tumbling time of the protein molecule in solution must be estimated to provide a starting point for estimating diffusion tensor of the protein molecule (Chang et al., 2007; Morin, 2011) The tumbling time can be estimated from the average T_{1} / T_{2} of backbone amides, or estimated using hydrodynamic theory (Kay et al., 1989). The diffusion tensor can be isotropic (spherical) or anisotropic (an oblate or prolate spheroid, or ellipsoid), which (Lipari and Szabo, 1982). The estimate of diffusion tensor is evaluated with each of the model-free parameter sets until the best global fit of the data is achieved, which is called the diffusion-seeded paradigm (Lipari and Szabo, 1982; Clore et al., 1990). d'Auvergne and Gooley have developed an alternative approach to model-free analysis, whereby the diffusion tensor estimate is not necessary, but this requires the acquisition of relaxation at two separate static field strengths (d'Auvergne and Gooley, 2008a, b). This requirement doubles the amount of data needed to be collected and analyzed, and requires access to two high-field NMR magnets equipped for biomolecular NMR. Since we have obtained NMR relaxation data
at one field strength $(800 \mathrm{MHz})$, an estimate of the diffusion tensor must be calculated from the rotational correlation time.

Another reason the generalized order parameter is also particularly useful for the study of protein dynamics is that it can also be obtained from molecular dynamics simulation (Prompers and Bruschweiler, 2002; Fisette et al., 2012). The internal reorientation of the bond vector of the course of the simulation can be calculated from the trajectories directly and compared to experimental order parameters (Prompers and Bruschweiler, 2002). Unfortunately, I have not yet been able to process accurate heteronuclear NOE data on Dbh for the order parameter calculation. However, I have been able to fit T_{1} and T_{2} relaxation data on Dbh at both $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$. Since T_{1} and T_{2} values can also be calculated from the MD trajectories, I have directly compared the experimental T_{1} and T_{2} values for the purpose of evaluating the utility of the MD-derived order parameters.

Materials and Methods

$30 \mu \mathrm{~L}$ of $100 \% \mathrm{D}_{2} \mathrm{O} 300 \mu \mathrm{~L}$ of samples of $100 \%{ }^{15} \mathrm{~N}$-labeled Dbh (prepared by V.V. Vu and D . Ji) containing 0.5 mM or higher concentration in a buffer containing 50 mM sodium phosphate, $100 \mathrm{mM} \mathrm{K}_{2} \mathrm{SO}_{4}, 50 \mu \mathrm{~m}$ EDTA at pH 7.5 , which were then transferred into a Shigemi NMR tube. The samples were placed in an 800 MHz Varian Inova NMR spectrometer, containing an $x y z$ triple resonance probe, equilibrated at 35 or $50^{\circ} \mathrm{C}$. Eight 2D- ${ }^{15} \mathrm{~N},{ }^{1} \mathrm{H}$ TROSY-HSQC T_{1} spectra (Zhu et al., 2000) at each temperature were collected for the T_{1} experiment, with delay times of $10,50,100,200,400,600,800$, and 1300 ms . Six $2 \mathrm{D}-{ }^{15} \mathrm{~N},{ }^{1} \mathrm{H}$ TROSY-HSQC T_{2} spectra (Zhu et al., 2000) at each temperature were collected for the T_{2} experiment, with delay times of $10,30,50,70,90$,
and 110 ms . Representative spectra for various time delays at both T_{1} and T_{2} experiments are shown in Figure 4.1 a and $\mathrm{b}\left(\mathrm{T}_{1}\right)$, and Figure 4.2 a and $\mathrm{b}\left(\mathrm{T}_{2}\right)$. The data was processed using NMRPipe (Delaglio et al., 1995), and visualized using CcPNMR Analysis (Vranken et al., 2005).

Twice as many scans were taken for last two spectra of the T_{1} and the T_{2} experiments; therefore, the data was multiplied by $1 / 2$ during processing. The peak intensity was plotted as a function of delay time using CcPNMR, and fit to a single order exponentialdecay function $\left(I(t)=I_{0} \times e^{-k t}\right)$ to extract the respective relaxation rates. Representative rate fits to the experimental data are displayed in Figure 4.3.

Results and Discussion:

T_{1} and T_{2} relaxation times have been determined for Dbh at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$, and are displayed in Figure 4.4. Heteronuclear ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ NOEs measurements have been collected on Dbh. The heteronuclear NOE value is defined as the ratio between spectra with and without proton saturation $\left(N O E_{N H}=I_{\text {sat }} / I_{\text {unsat }}\right)$. However, the value of the ratio for many of the peaks is greater than 1. Since proton saturation should always result in a decrease of the signal In addition, the distribution of the values of the heteronuclear NOE is rather random and not consistent in regions of well-ordered secondary structure. For well-ordered regions in proteins, the value of heteronuclear NOE is usually around 0.7-0.8, with a tight distribution within contiguous regions of secondary structure (Kay et al., 1989; Sahu et al., 2000; Inman et al., 2001; Theret et al., 2001; Metcalfe et al., 2004; Goel et al., 2010). Therefore, the heteronuclear NOE experiment will have to be reanalyzed in order to calculate order parameters. Without the heteronuclear NOEs,
there is not enough information for the calculation, as the third parameter is necessary. The following analysis will focus on the information extractable from the T_{1} and T_{2} experiments, such as the estimate of tumbling time of the molecule in solution, and comparisons to the T_{1} and T_{2} value estimates from the molecular dynamics simulations of Dbh.

As expected, the average T_{2} time for all amides is increased at $50^{\circ} \mathrm{C}$, (average $\mathrm{T}_{2}=43.6$ $\pm 3.0 \mathrm{~ms}$ versus $30.0 \pm 1.8 \mathrm{~ms}$ at $35^{\circ} \mathrm{C}$), reflecting increased tumbling time of the molecule. The T_{1} values do not change as much with temperature; the average value at $35^{\circ} \mathrm{C}$ is $954 \pm 136 \mathrm{~ms}$ and the average value at $50^{\circ} \mathrm{C}$ is $967 \pm 102 \mathrm{~ms}$. Since the tumbling time increases with temperature and the T_{1} / T_{2} ratio is an estimator of the tumbling time, it makes logical sense that one of the values would be more sensitive to the increase in temperature. The T_{1} / T_{2} ratio can provide a rough estimate of the correlation time, or tumbling time $\left(\tau_{c}\right)$, in solution at a given temperature. The T_{1} / T_{2} ratios for individual amides at each temperature are displayed in Figure 4.5. Including all of the measured amides, the $\mathrm{T}_{1} / \mathrm{T}_{2}$ ratio for Dbh at $35^{\circ} \mathrm{C}$ is 33.5 ± 5.4, and at $50^{\circ} \mathrm{C} 23.9 \pm$ 2.9. The increase in the ratio with temperature is in line with on the dependence of the rotation correlation time with temperature (Garcia de la Torre et al., 2000). However, not all residues should be used, as slow internal motion of the amide bond vector results in a decrease in T_{2}.

Slow internal motion for particular residues in the $\mu \mathrm{s} / \mathrm{ms}$ range contributes to T_{2} relaxation, shortening the T_{2} and resulting in an underestimation of the T_{1} / T_{2} ratio (Yao et al., 1998). Failing to get an accurate estimate of the rotational correlation time of the molecule can ultimately prevent the fitting of the relaxation data for many residues in the
protein. Therefore, a number of methods have been devised for more accurate estimation, such as trimming ratios that are more than one standard deviation from the average, or selecting a particular minimum heteronuclear NOE cutoff value (Yao et al., 1998). The heteronuclear NOE is more sensitive to internal motion than the global rotational motion and hence is a good predictor of internal motion (Farrow et al., 1994). I cannot use the heteronuclear NOE ratio as a predictor of internal motion since I do not have reliable heteronuclear NOE data. Acquisition of NMR relaxation data at two static magnetic fields can also circumvent this issue. In this case, no estimation of the correlation time is necessary to begin model-free analysis, since six parameters $\left(T_{1}, T_{2}\right.$, NOE at each field) are available to fit relaxation data (d'Auvergne and Gooley, 2008a, b).However, this requires access to two high-field spectrometers and exquisite temperature calibration to achieve the exact same temperature in both instruments. Furthermore, assuming the diffusion tensor to be axially symmetric is generally sufficient for accurate analysis of relaxation data for many proteins, and more extensive modelling is not necessary (Ryabov et al., 2006).

Since I do not have heteronuclear NOE data to identify residues undergoing internal motion, I have chosen to only use T_{1} / T_{2} ratios from rigid positions involved in secondary structure in the protein. Residues involved in secondary structure should have fast effective internal correlation times (<100ps), since they are mostly restricted to vibrational motion. Excluding residues in loops or turns that are more likely to undergo slower motions that contribute to the T_{2} decay for that residue prevents underestimation of the global tumbling time (Yao et al., 1998). After trimming T_{1} / T_{2} ratios from residues not involved in secondary structure from the average of all T_{1} / T_{2} ratios, the average ratio
becomes 32.5 ± 5.0 for $35^{\circ} \mathrm{C}$ and $23.4 \pm 2.650^{\circ} \mathrm{C}$. As expected, the trimmed average ratio is higher than the total average ratio, indicating that ratio of all spins may be underestimating the correlation time, due to conformational exchange of mobile residues on a similar time scale to global rotational diffusion. Therefore, an initial estimate of the rotational correlational time for Dbh at each of these temperatures could be based on the trimmed average ratios. However, after heteronuclear NOE data is available, it can be used to further distinguish residues undergoing slow exchange and refine the estimate of the correlation time.

The trimmed average T_{1} / T_{2} ratio can be used to derive an estimate of the correlation time as seen in Eq. 1, where v_{N} is the Larmor frequency of the ${ }^{15} \mathrm{~N}$ nucleus (Kay et al., 1989). However; using the frequency of the ${ }^{15} \mathrm{~N}$ nucleus in a 800 MHz spectrometer $(-81.09 \mathrm{MHz})$, this equation yields a correlation time of $14.0 \pm 2.2 \mathrm{~ns}$ at $35^{\circ} \mathrm{C}$ and $11.8 \pm$ 1.4 ns at $50^{\circ} \mathrm{C}$. However, this is a correlation time that would be more in line with a $20-$ 25 kDa protein than Dbh. Since Eq. 1 was derived from data collected at 500 MHz , and since T_{1} changes more with static field strength than T_{2} for slow-tumbling molecules such as proteins, this may not work as well for data collected at 800 MHz . If the frequency of the ${ }^{15} \mathrm{~N}$ nucleus in 500 MHz spectrometer is used for Eq. $1(-50.68 \mathrm{MHz})$, the correlation time result is 22.5 ± 3.5 ns at $35^{\circ} \mathrm{C}$, and 18.9 ± 2.3 ns at $50^{\circ} \mathrm{C}$. The decreases from in tumbling time from $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ for either value of v_{N} are lower than would be expected $\left(10.2 \pm 1.2 \mathrm{~ns}, v_{N}=-81.09 \mathrm{MHz} ; 16.7 \pm 2.0 \mathrm{~ns}, v_{N}=-\right.$ 50.68 MHz), so the equation may only work for data acquired at lower temperature.

$$
\text { (1) } \tau_{c} \approx \frac{1}{4 \pi v_{N}} \sqrt{6 \frac{T_{1}}{T_{2}}-7}
$$

The value calculated from Eq. 1 using $v_{N}=-50.68 \mathrm{MHz}$ at $35^{\circ} \mathrm{C}(22.5 \pm 3.5 \mathrm{~ns})$ is closer to the predicted value from correlation time estimator based molecular weight [19.26 ns for a 41 kDa at $35^{\circ} \mathrm{C}$ (Anthis, 2015)]. For $50^{\circ} \mathrm{C}$, the estimator yields a $\tau_{c} 13.96 \mathrm{~ns}$, closer to the expected ($16.7 \pm 2.0 \mathrm{~ns}$) decrease from the value determined from Eq. 1 using $v_{N}=-50.68 \mathrm{MHz}$ at $35^{\circ} \mathrm{C}$. The estimated values were determined from the following equation $\left(\tau_{c}=0.0005998 \times \mathrm{MW}+0.1674\right.$; MW in Daltons and τ_{c} in ns$)$, which is based on linear fit of an experimentally determined data set of 20 proteins. However, the correlation time estimator is based on mostly smaller proteins (the largest is 21.9 kDa) than Dbh, and hence may not work well for proteins over 25 kDa (Northeast Structural Genomics Consortium, http://www.nmr2.buffalo.edu/nesg.wiki). Dbh is also Y-shaped; therefore, I would expect it to have a larger hydrodynamic radius and hence a longer tumbling time than an approximately spherical protein of similar molecular weight. Since the calculation from Eq. 1 using $v_{N}=-50.68 \mathrm{MHz}$ at $35^{\circ} \mathrm{C}$ of $22.5 \pm 3.5 \mathrm{~ns}$ (extrapolated to $50^{\circ} \mathrm{C}, 16.7 \pm 2.0 \mathrm{~ns}$), are close to the estimated values based on other relaxation experiments, I would use these values for the initial estimate of the diffusion tensor for model-free analysis. If these values do not result in proper fitting of the relaxation data for a significant portion of the residues in Dbh, a relaxation interference experiment using the $[15 \mathrm{~N}, 1 \mathrm{H}]$-TRACT pulse sequence can be performed to directly determine the rotational correlation time for Dbh. The estimation of the rotational correlation time is necessary to obtain order parameters and effective internal correlation times for each measurable amide in Dbh. These parameters can then be compared to the order parameters obtained from molecular dynamics simulations. Once heteronuclear NOE data can be collected, then model-free analysis can be performed, and the
quantification of important areas of backbone flexibility and rigidity of Dbh can determined.

Figure 4.1a: ${ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}$ TROSY-HSQC T1 spectra Dbh at $35^{\circ} \mathrm{C}$, with delay times as shown. The signal intensity decreases with increasing delay times.

Figure 4.1b: ${ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}$ TROSY-HSQC T1 spectra Dbh at $50^{\circ} \mathrm{C}$, with delay times as shown. The signal intensity decreases with increasing delay time.

Figure 4.2a: ${ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}$ TROSY-HSQC T2 spectra Dbh at $35^{\circ} \mathrm{C}$, with delay times as shown. The signal intensity decreases with increasing delay times. By 70 ms , most of the signals have decayed into the background noise.

Figure 4.2b: ${ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}$ TROSY-HSQC T2 spectra Dbh at $50^{\circ} \mathrm{C}$, with delay times as shown. The signal intensity decreases with increasing delay times. By 70 ms , most of the signals have decayed into the background noise.

Figure 4.3: Representative rate fits for T_{1} and T_{2} data for Dbh residues 13 Ala and 142 Thr , at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$. 13Ala is located in an α-helix in the fingers domain, and 142Thr is located in central β sheet of the palm domain. The decay rate is much faster for T_{2} than T_{1} relaxation.

Figure 4.4: T_{1} and $\mathrm{T}_{2}{ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ relaxation times for Dbh at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$. The error bars represent the error of the rate fitting for each residue. The palm domain consists of residues 1-19 and 78-171, the fingers domain consists of residues 20-77, the thumb domain consists of residues 172-231, and the LF domain consists of residues 246-344. The linker region (residues 232-245) and the C-terminal tail (residues 345-354) are unassigned and hence no relaxation data can be determined for these regions.

References:

Abragam, A. (1961). The Principles of Nuclear Magnetism (Clarendon Press, Oxford).
Anthis, N. (2015). Protein Correlation Time Calculators.

Bloch, F. (1946). Nuclear Induction. Phys Rev 70, 460-474.

Bloch, F., Hansen, W.W., and Packard, M. (1946). The Nuclear Induction Experiment. Phys Rev 70, 474-485.

Bloembergen, N. (1948). Relaxation Effects in Nuclear Magnetic Resonance Absorption.

Bloembergen, N., Purcell, E.M., and Pound, R.V. (1948). Relaxation Effects in Nuclear Magnetic Resonance Absorption. Phys Rev 73, 679-712.

Chang, S.L., Hinck, A.P., and Ishima, R. (2007). Model-free analysis for large proteins at high magnetic field strengths. J Biomol NMR 38, 315-324.

Clore, G.M., Szabo, A., Bax, A., Kay, L.E., Driscoll, P.C., and Gronenborn, A.G. (1990). Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. J Am Chem Soc 112, 4989.
d'Auvergne, E.J., and Gooley, P.R. (2008a). Optimisation of NMR dynamic models I. Minimisation algorithms and their performance within the model-free and Brownian rotational diffusion spaces. J Biomol NMR 40, 107-119.
d'Auvergne, E.J., and Gooley, P.R. (2008b). Optimisation of NMR dynamic models II. A new methodology for the dual optimisation of the model-free parameters and the Brownian rotational diffusion tensor. J Biomol NMR 40, 121-133.

Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J., and Bax, A. (1995). NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6, 277293.

Farrow, N.A., Muhandiram, R., Singer, A.U., Pascal, S.M., Kay, C.M., Gish, G., Shoelson, S.E., Pawson, T., Forman-Kay, J.D., and Kay, L.E. (1994). Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984-6003.

Fisette, O., Lague, P., Gagne, S., and Morin, S. (2012). Synergistic applications of MD and NMR for the study of biological systems. J Biomed Biotechnol 2012, 254208.

Garcia de la Torre, J., Huertas, M.L., and Carrasco, B. (2000). HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. J Magn Reson 147, 138-146.

Goel, A., Tripet, B.P., Tyler, R.C., Nebert, L.D., and Copie, V. (2010). Backbone amide dynamics studies of Apo-L75F-TrpR, a temperature-sensitive mutant of the tryptophan repressor protein (TrpR): comparison with the (15)N NMR relaxation profiles of wild-type and A77V mutant Apo-TrpR repressors. Biochemistry 49, 8006-8019.

Inman, K.G., Baldisseri, D.M., Miller, K.E., and Weber, D.J. (2001). Backbone dynamics of the calcium-signaling protein apo-S100B as determined by 15 N NMR relaxation. Biochemistry 40, 3439-3448.

Kay, L.E., Torchia, D.A., and Bax, A. (1989). Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28, 8972-8979.

Lipari, G., and Szabo, A. (1982). Model-Free Approach to the Interpretation of Nuclear Magnetic Resonance Relaxation in Macromolecules. 1. Theory and Range of Validity. J Am Chem Soc 104, 4546-4559.

Mandel, A.M., Akke, M., and Palmer, A.G., 3rd (1995). Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J Mol Biol 246, 144-163.

Metcalfe, E.E., Zamoon, J., Thomas, D.D., and Veglia, G. (2004). (1)H/(15)N heteronuclear NMR spectroscopy shows four dynamic domains for phospholamban reconstituted in dodecylphosphocholine micelles. Biophys J 87, 1205-1214.

Morin, S. (2011). A practical guide to protein dynamics from 15 N spin relaxation in solution. Prog Nucl Magn Reson Spectrosc 59, 245-262.

Orekhov, V.Y., Nolde, D.E., Golovanov, A.P., Korzhnev, D.M., and Arseniev, A.S. (1995). Processing of heteronuclear NMR relaxation data with the new software DASHA. Appl Magn Reson 9, 581-588.

Palmer III, A.G., Rance, M., and Wright, P.E. (1991). Intramolecular motions of a zinc finger DNA-binding domain from Xfin characterized by proton-detected natural abundance carbon13 heteronuclear NMR spectroscopy. J Am Chem Soc 113, 4371-4380.

Prompers, J.J., and Bruschweiler, R. (2002). General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation. J Am Chem Soc 124, 4522-4534.

Reddy, T., and Rainey, J.K. (2010). Interpretation of biomolecular NMR spin relaxation parameters. Biochem Cell Biol 88, 131-142.

Ryabov, Y.E., Geraghty, C., Varshney, A., and Fushman, D. (2006). An efficient computational method for predicting rotational diffusion tensors of globular proteins using an ellipsoid representation. J Am Chem Soc 128, 15432-15444.

Sahu, S.C., Bhuyan, A.K., Majumdar, A., and Udgaonkar, J.B. (2000). Backbone dynamics of barstar: a (15)N NMR relaxation study. Proteins 41, 460-474.

Theret, I., Baladi, S., Cox, J.A., Gallay, J., Sakamoto, H., and Craescu, C.T. (2001). Solution structure and backbone dynamics of the defunct domain of calcium vector protein. Biochemistry 40, 13888-13897.

Vranken, W.F., Boucher, W., Stevens, T.J., Fogh, R.H., Pajon, A., Llinas, M., Ulrich, E.L., Markley, J.L., Ionides, J., and Laue, E.D. (2005). The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687-696.

Yao, S., Hinds, M.G., and Norton, R.S. (1998). Improved Estimation of Protein Rotational Correlation Times from 15N Relaxation Measurements. J Magn Reson 131, 347-350.

Zhu, G., Xia, Y., Nicholson, L.K., and Sze, K.H. (2000). Protein dynamics measurements by TROSY-based NMR experiments. J Magn Reson 143, 423-426.

Chapter 5 - Molecular Dynamics Simulations of Dbh and $\mathrm{Dbh}_{\mathrm{RKS}(243-245)}{ }^{*}$

*These studies were performed in collaboration with the Luo laboratory at UC Irvine. Special thanks to Prof. Ray Luo for the use of his laboratory's computational resources.

Rationale and Strategy

Hydrogen-deuterium exchange and nuclear spin relaxation spectroscopy provide abundant, rich, and detailed dynamic information on proteins, such as the degree and time scale of motions and relative order. Nevertheless, it is difficult to extend this data to a visual model of protein motion, limiting a hypothesis that explains the relationship of the dynamics to protein function. Fortunately, it is possible to obtain additional dynamic information as well as model the experimental data through computational methods, in particular molecular dynamics simulations. Combined with experimental methods, computational methods provide additional support for any hypothesis. In particular, nuclear spin relaxation and molecular dynamics simulation complement each other well. The strengths of one method cover the weaknesses of the other, and they can be used to refine each other to give the most detailed and accurate description of the data. For instance, the degree of motion of bond vectors can be determined experimentally by NMR, but the interpretation of the motion in the context of the structure is not straightforward. The MD simulation can provide a visual interpretation of structural motion, yet at the moment only ns- $\mu \mathrm{s}$ trajectory lengths are feasible in most settings. In addition, even with steady improvements in force fields MD simulations for large biomolecules remain classical approximations of motion and should be validated with experimental data. These concerns can be mitigated by the fact that parameters generated by NMR spin relaxation studies can be directly compared to parameters
calculated from MD trajectories, such as the S^{2} order parameter (Fisette et al., 2012).In this case, the MD simulation can be validated by how well the S^{2} calculated from the MD trajectories match the S^{2} values determined from NMR relaxation experiments.

There are a number of methodologies to calculate S^{2} from MD trajectories, the most common of which is the iRED (isotropic reorientational eigenmode dynamics) method (Prompers and Bruschweiler, 2002). The iRED method was chosen because it has been demonstrated to be comparable to experimental order parameters (Gu et al., 2014; Stafford et al., 2015), as well as the fact that the analysis is built into the CPPTRAJ module of AMBER14. In principle, iRED involves the calculation of a covariance matrix of internuclear bond vector reorientations, combined with integration of each frame over an isotropic distribution of orientations (Prompers and Bruschweiler, 2001, 2002). Crucially, this approach obviates the need to separate overall tumbling motion from internal motions. For simulations much longer than overall tumbling time (the simulations of Dbh are up to $\sim 40 x$ tumbling time), the separability of internal from overall motion is much more difficult; calculation of order parameters by iRED is appropriate for trajectories of hundreds of nanoseconds. To obtain the most accurate calculation of order parameters by iRED, it has been empirically demonstrated that the ideal window of simulation time to use is approximately 5 times the correlation time (Gu et al., 2014). Therefore, the simulations of Dbh were performed to 500 ns , to provide sufficient time for four separate 125 iRED windows (approximate tumbling for Dbh is ~22.5 ns at $35^{\circ} \mathrm{C}$, estimated from the $\mathrm{T}_{1} / \mathrm{T}_{2}$ ratio at $35^{\circ} \mathrm{C}$ (Yao et al., 1998)]).

Principal component analysis (PCA), also is another technique frequently used to analyze MD trajectories (Mu et al., 2005; Skjaerven et al., 2011; Franco-Gonzalez et al.,

2013; Jaeger and Pfaendtner, 2013; Stafford et al., 2013; Sittel et al., 2014). PCA is dimensional reduction procedure which can reveal the most dominant motions over the course of the trajectory (Hayward and de Groot, 2008). PCA involves diagonalizing the covariance matrix C of the system to obtain eigenvalues of the diagonal matrix Λ and associated eigenvectors contained in matrix V (Eq. 1).

$$
\text { (1) } C=V \Lambda V^{T}
$$

The eigenvectors with the highest eigenvalues describe the first few principal components of the system (Hayward and de Groot, 2008). The eigenvectors can then be projected along the atoms of a system to isolate and visualize low frequency, coordinated motions of the system from higher frequency components (Wolf and Kirschner, 2013). The first few principal components are usually sufficient to capture the majority of the overall motion of the system (Amadei et al., 1993), and this motion often important in defining the function of the protein. In this way, PCA eliminates highfrequency vibrational motions and more clearly shows overall domain movements (Hayward and de Groot, 2008). Therefore, I used PCA to demonstrate the major movements of the domains of Dbh with respect to each other over the course of the trajectories. PCA analysis revealed that the major motions were rotation little finger domain propagated by rotation of the linker, and the flexing of the thumb and fingers domains with respect to the palm.

I performed simulations on Dbh at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ for 500 ns for direct comparison with the HDX and spin relaxation experiments. The AMBER14 MD software package (Case et al., 2015) was used to generate the MD trajectories, which utilizes the AMBER

12FFSB force field, along with the TIP4P-Ew explicit water model (Horn et al., 2004). AMBER is a very popular and well-established MD simulation software - multitudes of MD studies have been published using the software. TIP4P-Ew provides superior modeling of water over a wide range of temperatures in comparison to other explicit water models(Horn et al., 2004). Since my simulations were performed at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$, TIP4P-Ew is the logical choice for simulation at two elevated temperatures.

The apo state of the protein from PDB entry 1K1S (Silvian et al., 2001) was used to generate the MD trajectories. The dynamics of the apo state can reveal intrinsic motions of the protein in the absence of DNA contacts, which provides a baseline for changes that occur upon substrate binding. Then, one can understand which motions present in the apo form could be important for function of the enzyme.

Different windows of the Dbh trajectory show larger movements in the LF domain; consequently, the averaging of multiple windows should provide a better estimation of the order parameter for the LF domain. The MD simulations of Dbh indicated a higher degree of order in the polymerase core of the protein, with lower order in the little finger domain. However, it can be deduced from the trajectories that the lower order parameters of the little finger result from the reorientations with respect to the core of Dbh over tens of nanoseconds.

In addition, I performed additional simulations at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ for 250 ns on a structural variant of Dbh, which has three residues in the linker region substituted with corresponding residues from the related protein Dpo4 (KIP 243-245 \rightarrow RKS, henceforth referred to as $\operatorname{Dbh}_{\text {RKS }(243-245)}$. The $\operatorname{Dbh}_{\text {RKS }(243-245)}$ variant has been shown to resemble

Dpo4 in its lesion bypass properties and the orientation of the LF domain during DNA and nucleotide binding (Mukherjee et al., 2014). Given the substitution of a proline residue for polar serine and the substitution of a solvent-exposed isoleucine for a charged lysine, I would expect the mutation to increase the degrees of freedom of rotation for the linker, and should increase the movement of LF with respect to the polymerase core. This increased movement in fact was captured in the MD simulations, with the $\mathrm{Dbh}_{\mathrm{RKS}(243-245)}$ variant possessing similar order parameters in the core at $35^{\circ} \mathrm{C}$, and increased order parameters in the LF at both $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$.

Methods

Simulation Preparation and Execution

Amber14 software packages were used to run all simulations (Case et al., 2015). PDB structure 1K1S (apo form of Dbh) was used as the starting structure for the simulation (Silvian et al., 2001). 1K1S is missing coordinates for residues $36-38$ in the beta- $5-6$ loop in the fingers domain and residues 345-354 in the C-terminal tail. Residues 36-38 were built in using the program MODELLER (Webb and Sali, 2014); the structure outputted from MODELLER (1K1S_loop) was superimposable on 1K1S with an RMSD of $\sim 0.5 \AA$ (Silvian et al., 2001). Visual inspection of the structures also revealed no gross discrepancies. The C-terminal tail is not resolved in any structures of Dbh and is disordered, so the extended conformation peptide was generated in xleap, and appended to residue 344 of 1K1S_loop. The resulting structure (1K1S_looptail) was inspected for clashes, and no significant issues were found. Since there is no apo crystal structure for $\mathrm{Dbh}_{\mathrm{RKS}(243-245),}$, PDB file for 1K1S_looptail was generated, manually
edited the residue codes of backbone coordinates for residues KIP 243-245 to RKS, and deleted the side chain atom coordinates. The missing side chains for RKS 243245/1K1S_looptail were generated by xleap. Amber FF12SB was used as the force field. Both structure models of Dbh were placed in an octahedral box of size ($250 \AA \mathrm{x}$ $250 \AA$ x $250 \AA$) with periodic boundaries, solvated with TIP4P-Ew water molecules (Horn et al., 2004), and neutralized with Cl^{-}ions. The structures were energy minimized over a total of 2500 cycles with SANDER. Bond vibration of hydrogen atoms was constrained with the SHAKE algorithm (Ryckaert et al., 1977) allowing a time step of 2 fs to be used. For heating through the first portion of the equilibration of the models, a structural restraint in the form of $k\left(\Delta^{2}\right) \quad\left(k=2 \mathrm{kcal} / \mathrm{mol}-\AA^{2}\right)$ using the minimized structure as a reference. Gradual heating of the restrained models to simulation temperature $\left(35^{\circ} \mathrm{C}\right.$ and $50^{\circ} \mathrm{C}$) using a Langevin dynamics thermostat with a collision frequency set to $2 \mathrm{ps}^{-1}$ and random number seeding was run over 100 picoseconds. This was followed by density equilibration using a Berendsen barostat with a τ_{p} value (pressure relaxation time) of 2 ps , and with the same structural restraint over 100 picoseconds with SANDER. Equilibration with gradually decreasing structural restraints was performed under constant pressure conditions over 1 ns , followed by 5 ns of free equilibration. Production runs were performed using PMEMD under constant volume conditions for 500ns for Dbh for at 308 K and 323 K , and for 250 ns for $\mathrm{Dbh}_{\mathrm{RKS}(243-245)}$ at 308 K and 323 K , with coordinates written to trajectory every 10 picoseconds to ensure sufficient sampling for order parameter calculations.

Trajectory data analysis

Data analysis was performed using CPPTRAJ, a trajectory analysis program included in AMBER14 (Roe and Cheatham III, 2013). RMSD plots were for the trajectory were generated for $\mathrm{C} \alpha$ atoms, aligned and referenced to the first frame, using the rms command. Principal component analysis was performed according the CPPTRAJ diagmatrix command for $\mathrm{C} \alpha$ atoms and eigenvectors were for the first five principal components were projected along the $\mathrm{C} \alpha$ atom coordinates to visualize the motions of the principal components. A representative script of the analysis can be found in Appendix C.

Isotropically reorientational eigenmode dynamics (iRED) was used to generate $S^{2}{ }_{\text {MD }}$ values for the trajectories, using the built-in ired matrix analysis in CPPTRAJ. The iRED methodology involves calculating the isotropically average covariance matrix of the spatial functions of the spin interactions in the N-H bond vector (Eq. 2) (Prompers and Bruschweiler, 2001, 2002).

$$
\text { (2) } M_{i j}^{\mathrm{iRED}}=\frac{1}{2}\left\langle 3\left(\mathbf{u}_{\mathrm{LF}, i} \mathbf{u}_{\mathrm{LF}, j}\right)^{2}-1\right\rangle_{T_{\text {iRED }}}
$$

Then, an eigenvalue decomposition of the iRED matrix (Eq. 3) is performed to obtain the S^{2} value (Prompers and Bruschweiler, 2002).

$$
\text { (3) } S_{k}^{2}=1-\sum_{m=6}^{N} \lambda_{m \| m)\left._{k}\right|^{2}}
$$

Chosen trajectory time windows for the iRED method have been found to best correspond with experimental data at $\sim 5 \tau_{c}$ (Gu et al., 2014). Since the experimental correlation time has been estimated to be $\sim 24 \mathrm{~ns}$ for Dbh, a time window of approximately equal to $5 \tau_{\mathrm{c}}$, in this case 125 ns , was chosen for each ired calculation. The iRED values for four non-overlapping 125ns windows for Dbh and two 125ns nonoverlapping windows for $\mathrm{Dbh}_{\text {RKS(243-245) }}$ were averaged to generate the final values. A representative script of the analysis can be found in Appendix C.

The hydrogen-bond occupancy analysis of the entire length of the trajectories was performed using the hbond command of CPPTRAJ (Roe and Cheatham III, 2013). The distance cutoff used for the analysis was $3.5 \AA$, the atom mask selected for backbone hydrogen bonds only, and the angle cutoff for the bond was 135°. VMD (Humphrey et al., 1996) was used to visualize all trajectories and the projections of the principal components, and to generate the snapshots of the structures displayed in Figure 5.2.

Results and Discussion

Simulations of Dbh were run for 500 ns at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$, and for 250 ns for $\mathrm{Dbh}_{\text {RKS(243- }}$ 245) at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$. The RMSD values for the course of the simulation, from the first frame are displayed in Figure 5.1.The protein model remained stable over the course of each simulation. Much of the increase in the RMSD values is due to the change in the orientation of little finger domain with respect to the polymerase core. Order parameters were calculated according the iRED method as described in the methods section and are plotted by residue in Figures 5.2 and 5.3.

Linker flexibility allows substantial reorientation of the LF

The dominant motion in the simulations of Dbh is the overall movement of the little finger domain, propagated through the flexible linker. Principal component analysis analyzes the lowest frequencies motions which contribute the major fluctuations over the course of the trajectory. The projection of each principal component eigenmodes onto the structure can highlight any major conformational changes occurring during the simulation. Inspection of the principal component projections to the structure of Dbh reveal the dominant modes of motion for the LF domain, which rotates and flexes with respect to the polymerase core. The RMSF from an average structure of the $\mathrm{C} \alpha$ atoms of each residue calculated from the first five principal components of Dbh is plotted in Figure 5.4. Similarly, the displacement of the first two principal components from the average structure is projected onto the on the positions of $\mathrm{C} \alpha$ atoms of each residue is displayed in Figures 5.5 and 5.6, providing a visual model of the motion captured by the principal components. It is quite apparent that the linker domain does not move as significantly at $35^{\circ} \mathrm{C}$, as the energy in the system is not enough to disrupt the H -bonding contacts between the palm domain $\beta 5$ strand, the linker short $\beta 9$ strand, and the $\beta 14$ strand of the little finger domain. The main motion at $35^{\circ} \mathrm{C}$ is a hinging or flexing motion that changes the angle of the LF with respect to the core without rotation about the plane formed through the center of the LF and palm domains. This motion is very similar in amplitude and angle to the change in orientation from the apo crystal structure of Dbh to the DNA-bound structure (3BQ0) (Wilson and Pata, 2008). However, at $50^{\circ} \mathrm{C}$, given the flexibility of the linker, there is enough thermal energy to separate these bridging H bonds. The LF is then free to change conformation relative to the palm domain, and
rotations in the backbone in the linker region are responsible for the change in orientation.

Dbh is a very slow polymerase at ambient temperature, but is increasingly active at higher temperatures (Potapova et al., 2002). Wilson and Pata also noted in the ternary complexes of Dbh with DNA and correct incoming nucleotide, that the positioning of the 3 -‘OH primer terminus was further away from the ideal distance from the 5 '- α-phosphate for catalysis (Wilson and Pata, 2008). Therefore, it may be necessary for the LF to have more degrees of freedom during ligand binding to properly orient the substrates for efficient catalysis. Clearly, further simulations to observe the motion of the LF in the ligand-bound form of Dbh are needed to confirm whether the increased LF motion at higher temperature does improve conformational sampling of the active site.

The order parameter calculations also capture the motion of the LF; the $S^{2}{ }_{M D}$ values are systematically lower for the LF domain over the course each simulation, and especially at the higher temperature. Comparing the Dbh $S^{2}{ }_{M D}$ to the $\operatorname{Dbh}_{R K S(243-245)} S^{2}{ }_{M D}$ values, the values are slightly lower for $\operatorname{Dbh}_{\mathrm{RKS}(243-245)}$ at $35^{\circ} \mathrm{C}$, primarily in the little finger and thumb domains (Figure 5.3, top panel). A drastic reorientation of the linker in the Dbh ${ }_{\text {RKS(243-245) }}$ simulation at $35^{\circ} \mathrm{C}$ was not observed, even with the greater conformation flexibility of the $\operatorname{Dbh}_{\text {RKS }}(243-245)$ linker. In the palm and fingers domains, the difference between the order parameters is even smaller. Even with serine in place of proline at the 245 position in the linker of $\operatorname{Dbh}_{\operatorname{RKS}(243-245)}$, the LF is not able to undergo motion as dramatic as Dbh at $50^{\circ} \mathrm{C}$. However, for $\mathrm{Dbh}_{\text {RKS }(243-245)}$ at $50^{\circ} \mathrm{C}$ the $\mathrm{S}^{2}{ }_{\mathrm{MD}}$ values are lower than Dbh at $50^{\circ} \mathrm{C}$ not only in the LF domain, but portions of the secondary structure in the palm as well (Figure 5.3, bottom panel). The linker of $\mathrm{Dbh}_{\mathrm{RKS}(243-245)}$ allows a more
drastic reorientation of the LF domain. Additionally, the lack of stable hydrogen bonding interaction from the linker to the $\beta 5$ strand of the palm (residues 98 through 103) increases $\beta 5$ strand away from hydrogen-bonding distance $\beta 6$ strand and the rest of the palm. The principal component RMSF from average (Figure 5.4) and $S^{2}{ }_{M D}$ clearly demonstrates the increased movement of $\beta 5$ strand and other regions in the palm. The increase in motion of the palm occurs in Dbh at $50^{\circ} \mathrm{C}$ as well, but to a lesser degree. This movement clearly alters the conformation of the $\beta 5-\beta 6$ loop on which the metalcoordinating active site residue D105 is located and the adjacent residue E106 on the start of the $\beta 6$ strand. Since $\operatorname{Dbh}_{\operatorname{RKS}(243-245)}$ has lesion bypass properties and activity closer to Dpo4, which is also far more active enzyme than Dbh at lower temperatures (Mukherjee et al., 2014), the greater motion of the LF could explain a different mechanism for lesion accommodation and bypass. The increased motion of residues near the active site in the palm could also indicate a mechanism for the greater activity of $\mathrm{Dbh}_{\text {RKs(243-245). }}$. Nevertheless, it remains to be seen if the increased motion of the $\beta 5$ strand $\operatorname{Dbh}_{\text {RKS (243-245) }}$ compared to Dbh would also be observed in simulations and dynamics experiments of the DNA bound forms of the enzymes.

Further analysis of the MD trajectories, PC pseudo-trajectories, and order parameters reveals significant motion in other areas of the protein. The thumb domain (residues 171-231) is particularly mobile at $50^{\circ} \mathrm{C}$ for both Dbh and $\mathrm{Dbh}_{\text {RKS }(243-245)}$. The thumb flexes away from and toward the palm domain. This motion could represent a "gripping" motion involved in DNA binding and translocation, as observed in an experimental FRET study on Dpo4 (Xu et al., 2009). Further dynamics experiments on DNA-bound forms of Dbh would be necessary to test this hypothesis. Unsurprisingly, the C-terminal
tail and the $\beta 3-4$ loop of the protein are very dynamic. The C-terminal behaves as a random coil during the simulation; there is some partial folding. Since it is unresolved in DNA-bound forms of Dbh, it does not appear to have functional significance in binding u. In the apo crystal structures for Dbh, the residues near $\beta 3-4$ loop had the highest B factors in the protein, and the loop itself was not resolved in the apo [PDB entries 1K1S and 1IM4, (Silvian et al., 2001; Zhou et al., 2001)] and binary forms of Dbh [PDB entries 3BQ0 and 3BQ2, (Wilson and Pata, 2008)]. The loop is only resolved in the ternary structure of Dbh with nucleotide bound [PDB entry 3BQ1, (Wilson and Pata, 2008)], where it helps position the template strand.

Comparison with HDX

To roughly compare to the results of the MD simulation to the hydrogen-deuterium exchange NMR data, the percentage of hydrogen bond occupancy over the course of the trajectories was determined. It must be noted that the intrinsic exchange rate of amide hydrogens occurs on the order of seconds, while the MD simulations for WT-Dbh were performed for only 500 ns . Therefore, the comparison cannot be quantitative and is only intended to illustrate residues that are likely important loci of stability in Dbh. Nevertheless, the amide hydrogens that are most protected in the HDX-NMR experiments should be within hydrogen bonding distance of an acceptor during the course of the simulation.

The most protected residues in the HDX-NMR experiments are populated at least 80% of the time in the simulation, providing evidence that the protein remains stable over the course of experiment. One of the more intriguing observations from the HDX experiment
was that atoms in the $\beta 13$ strand facing the $\beta 10$ contiguous with linker (338L, 336V, 334I, and 332R) exchange in the dead-time of the experiment, even though they are hydrogen bonded with the $\beta 10$ strand and not solvent-exposed. By comparison, the residues of the $\beta 13$ strand facing the interior of the β-sheet toward the $\beta 11$ strand ($331 \mathrm{~V}, 333 \mathrm{R}, 335 \mathrm{G}, 337 \mathrm{~K}$) are protected during HDX and hydrogen bonded over the course of the simulation. The simulation of Dbh at $50^{\circ} \mathrm{C}$ reveals the basis for the HDX result: the $\beta 10$ flexes away from the $\beta 13$ strand, breaking the bonding as far the 246 H NH to 338 L CO H-bond, which is occupied in 98% of frames at $35^{\circ} \mathrm{C}$ but only 22% of frames at $50^{\circ} \mathrm{C}$. This reflects a local opening event which can account for the fast exchange of amides that are within hydrogen bonding distance in the crystal structure. Functionally, the flexing and partial unzipping of the $\beta 13$ strand actual restricts the reorientation of the LF for a portion of the simulation, as hydrogen bonds are then formed transiently in the linker (239E CO to 241 K NH, 240 N CO to $242 \mathrm{SNH}, 242 \mathrm{SCO}$ to $244 \mathrm{INH} ; 22.4 \%, 7.8 \%$, and 7.1% occupancy, respectively). It remains to be seen how the motion of the LF at $50^{\circ} \mathrm{C}$ affects DNA positioning before and after binding of a nucleotide.

Conclusions

The greatest motion observed in all of the simulations was the flexing or rotation of the LF domain with respect to the polymerase core. The motion of the LF was greatly increased in the $50^{\circ} \mathrm{C}$ simulations due to a breaking of the interaction of the LF through the linker to the palm, allowing rotation of the LF about the linker. The $\mathrm{Dbh}_{\text {RKS(243-245) }}$ simulation also revealed greater flexibility compared to Dbh, even in regions not directly connected to the more flexible linker, such as the fingers and palm domains. Future
simulations with DNA and nucleotide bound models of Dbh will be necessary to determine how the nanosecond time scale motions of differ from the apo Dbh upon ligand binding, and to extract further information about DNA/nucleotide binding and positioning.

Figure 5.1: Root mean square deviation of $\mathrm{C} \alpha$ atoms (measured in \AA) of Dbh at $35^{\circ} \mathrm{C}(\mathrm{A})$ and $50^{\circ} \mathrm{C}$ (B), and of $\mathrm{Dbh}_{\mathrm{RKS}(243-245)}$ at $35^{\circ} \mathrm{C}(\mathrm{C})$ and $50^{\circ} \mathrm{C}(\mathrm{D})$, referenced to the first frame of the production run. The increase in the RMSD can be primarily attributed to the changes in orientation of the little finger domain from its starting conformation.

Figure 5.2: MD iRED ($\mathrm{S}^{2}{ }_{\mathrm{MD}}$) backbone amide order parameters of Dbh at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ (upper graph), and of $\mathrm{Dbh}_{\mathrm{RKS}(243-245)}$ at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ (lower graph), plotted by residue number. The values for $35^{\circ} \mathrm{C}$ are red and the values for $50^{\circ} \mathrm{C}$ are blue in each graph. The palm domain consists of residues 1-19 and 78-171, the fingers domain consists of residues 20-77, the thumb domain consists of residues 172-231, and the LF domain consists of residues 246-344. The linker region (residues 232-245) and the C-terminal tail (residues 345-354) account for the rest of the enzyme. The increased mobility of the LF domain is captured in the simulations at $50^{\circ} \mathrm{C}$, and the increased motion is more pronounced for the $\mathrm{Dbh}_{\text {RKS }(243-245}$. The motion of the thumb domain is also increased at $50^{\circ} \mathrm{C}$ for both WT-Dbh and $\mathrm{Dbh}_{\mathrm{RKS}(243-245}$. For WT-Dbh, the palm and thumb domains show comparable rigidity at both temperatures. In contrast, $\mathrm{Dbh}_{\mathrm{RKS}(243-245}$ shows increased motion throughout the enzyme at $50^{\circ} \mathrm{C}$.

Figure 5.3: Difference in MD iRED ($\mathrm{S}^{2}{ }_{\text {MD }}$) backbone amide order parameters of Dbh vs. $\mathrm{Dbh}_{\text {RKS } 243 \text { - }}$ ${ }^{245)}$ at $35^{\circ} \mathrm{C}$ (upper graph), and $50^{\circ} \mathrm{C}$ (lower graph), plotted by residue number. The order parameters are comparable at $35^{\circ} \mathrm{C}$ (slightly higher for $\mathrm{Dbh}_{\mathrm{RK}(243-245)}$ in a few stretches of secondary structure), but significantly lower in many regions for $\mathrm{Dbh}_{\text {RKS(243-245) }}$ at $50^{\circ} \mathrm{C}$. The palm domain consists of residues 1-19 and 78-171, the fingers domain consists of residues 20-77, the thumb domain consists of residues 172-231, and the LF domain consists of residues 246-344. The linker region (residues 232-245) and the C-terminal tail (residues $345-354$) account for the rest of the enzyme.

Figure 5.4: Root mean square fluctuation by residue of $C \alpha$ atoms (measured in \AA) from an averaged reference structure of the first five principal components Dbh at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$, and of $\mathrm{Dbh}_{\mathrm{RKS}(243-245)}$ at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$. The principal components were generated using data from the entire production trajectory. Increased motion is observed at $50^{\circ} \mathrm{C}$, especially in the little finger domain (residues 246-354).

Figure 5.5: Projection of principal components 1 (left panels) and 2 (right panels) onto the coordinates of $\mathrm{C} \alpha$ atoms of Dbh at $35^{\circ} \mathrm{C}(\mathrm{A}, \mathrm{PC} 1 ; \mathrm{B}, \mathrm{PC} 2)$ and $50^{\circ} \mathrm{C}(\mathrm{C}, \mathrm{PC} 1 ; \mathrm{D}, \mathrm{PC} 2)$. The resulting pseudo-trajectories capture the major low-frequency motions of the main trajectory. The backbone is traced through the positions of the $\mathrm{C} \alpha$ atoms. The average structure or centroid about which the principal components oscillate is rendered in solid blue, while the maxima of the oscillation of each principal component are depicted in transparent red and orange. The arrows indicate direction of the oscillation about the centroid. The LF domain is located at the top of the structure, the palm in the center, the thumb on the lower left, and the fingers on the lower right. The arrow pointing to the $\beta 5$ strand of the palm in panel C highlights increased motion of the strand at $50^{\circ} \mathrm{C}$, which can alter the conformation of key active site residues.

Figure 5.6: Projection of principal components 1 (left panels) and 2 (right panels) onto the coordinates of $\mathrm{C} \alpha$ atoms of $\mathrm{Dbh}_{\mathrm{RKS}(243-245)}$ at $35^{\circ} \mathrm{C}\left(\mathrm{A}, \mathrm{PC} 1\right.$; B, PC2) and $50^{\circ} \mathrm{C}(\mathrm{C}, \mathrm{PC} 1$; D, PC2). Principal components capture the major low-frequency motions of the trajectory. The backbone is traced through the positions of the $\mathrm{C} \alpha$ atoms. The average structure or centroid about which the principal components oscillate is rendered in solid blue, while the maxima of the oscillation of each principal component are depicted in transparent red and orange. The arrows indicate direction of the oscillation about the centroid. The LF domain is located at the top of the structure, the palm in the center, the thumb on the lower left, and the fingers on the lower right.

References:

Amadei, A., Linssen, A.B., and Berendsen, H.J. (1993). Essential dynamics of proteins. Proteins 17, 412-425.

Case, D.A., Berryman, J.T., Betz, R.M., Cerutti, D.S., Cheatham III, T.E., Darden, T.A., Duke, R.E., Giese, T.J., Gohlke, H., Goetz, A.W., et al. (2015). AMBER 2015 (University of California, San Francisco).

Fisette, O., Lague, P., Gagne, S., and Morin, S. (2012). Synergistic applications of MD and NMR for the study of biological systems. J Biomed Biotechnol 2012, 254208.

Franco-Gonzalez, J.F., Cruz, V.L., Ramos, J., and Martinez-Salazar, J. (2013).
Conformational flexibility of the ErbB2 ectodomain and trastuzumab antibody complex as revealed by molecular dynamics and principal component analysis. J Mol Model 19, 12271236.

Gu, Y., Li, D.-W., and Brüschweiler, R. (2014). NMR Order Parameter Determination from Long Molecular Dynamics Trajectories for Objective Comparison with Experiment. J Chem Theory Comput 10, 2599-2607.

Hayward, S., and de Groot, B.L. (2008). Normal modes and essential dynamics. Methods Mol Biol 443, 89-106.

Horn, H.W., Swope, W.C., Pitera, J.W., Madura, J.D., Dick, T.J., Hura, G.L., and HeadGordon, T. (2004). Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys 120, 9665-9678.

Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: visual molecular dynamics. J Mol Graph 14, 33-38, 27-38.

Jaeger, V.W., and Pfaendtner, J. (2013). Structure, dynamics, and activity of xylanase solvated in binary mixtures of ionic liquid and water. ACS Chem Biol 8, 1179-1186.

Mu, Y., Nguyen, P.H., and Stock, G. (2005). Energy landscape of a small peptide revealed by dihedral angle principal component analysis. Proteins 58,45-52.

Mukherjee, P., Wilson, R.C., Lahiri, I., and Pata, J.D. (2014). Three Residues of the Interdomain Linker Determine the Conformation and Single-Base Deletion Fidelity of Y family Translesion Polymerases. J Biol Chem.

Potapova, O., Grindley, N.D., and Joyce, C.M. (2002). The mutational specificity of the Dbh lesion bypass polymerase and its implications. J Biol Chem 277, 28157-28166.

Prompers, J.J., and Bruschweiler, R. (2001). Reorientational eigenmode dynamics: a combined MD/NMR relaxation analysis method for flexible parts in globular proteins. J Am Chem Soc 123, 7305-7313.

Prompers, J.J., and Bruschweiler, R. (2002). General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation. J Am Chem Soc 124, 4522-4534.

Roe, D.R., and Cheatham III, T.E. (2013). PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J Chem Theory Comput 9, 3084-3095.

Ryckaert, J.P., Ciccotti, G., and Berendsen, A. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n alkenes. J Comp Phys 23.

Silvian, L.F., Toth, E.A., Pham, P., Goodman, M.F., and Ellenberger, T. (2001). Crystal structure of a DinB family error-prone DNA polymerase from Sulfolobus solfataricus. Nat Struct Biol 8, 984-989.

Sittel, F., Jain, A., and Stock, G. (2014). Principal component analysis of molecular dynamics: on the use of Cartesian vs. internal coordinates. J Chem Phys 141, 014111.

Skjaerven, L., Martinez, A., and Reuter, N. (2011). Principal component and normal mode analysis of proteins; a quantitative comparison using the GroEL subunit. Proteins 79, 232243.

Stafford, K.A., Robustelli, P., and Palmer, A.G., 3rd (2013). Thermal adaptation of conformational dynamics in ribonuclease H. PLoS Comput Biol 9, e1003218.

Stafford, K.A., Trbovic, N., Butterwick, J.A., Abel, R., Friesner, R.A., and Palmer, A.G., 3rd (2015). Conformational preferences underlying reduced activity of a thermophilic ribonuclease H . J Mol Biol 427, 853-866.

Webb, B., and Sali, A. (2014). Comparative Protein Structure Modeling Using MODELLER. Curr Protoc Bioinformatics 47, 5.6.1-5.6.32.

Wilson, R.C., and Pata, J.D. (2008). Structural insights into the generation of single-base deletions by the Y family DNA polymerase dbh. Mol Cell 29, 767-779.

Wolf, A., and Kirschner, K.N. (2013). Principal component and clustering analysis on molecular dynamics data of the ribosomal L11.23S subdomain. J Mol Model 19, 539-549.

Xu, C., Maxwell, B.A., Brown, J.A., Zhang, L., and Suo, Z. (2009). Global conformational dynamics of a Y-family DNA polymerase during catalysis. PLoS Biol 7, e1000225.

Yao, S., Hinds, M.G., and Norton, R.S. (1998). Improved Estimation of Protein Rotational Correlation Times from 15N Relaxation Measurements. J Magn Reson 131, 347-350.

Zhou, B.L., Pata, J.D., and Steitz, T.A. (2001). Crystal structure of a DinB lesion bypass DNA polymerase catalytic fragment reveals a classic polymerase catalytic domain. Mol Cell 8, 427-437.

Chapter 6 - Response of Dbh to Temperature Change

Rationale and Strategy

Thus far, I have presented the response of the dynamics of Dbh to temperature changes using three separate experimental methods: hydrogen-deuterium exchange NMR, nuclear spin relaxation, and molecular dynamics simulation. The data has revealed that the core folds of the palm and LF domains are very rigid and impart a high degree of stability to Dbh, while the fingers and thumb are more dynamic, but clearly are stably folded at $50^{\circ} \mathrm{C}$. In addition, the MD simulation revealed greater flexibility in the LF domain at higher temperature, offering a possible explanation for the lower activity of Dbh at lower temperatures than a related polymerase, Dpo4. In this chapter, I present additional experiments for the response of Dbh to changes in temperature, the first of which is "temperature factor" or "temperature coefficient". The temperature coefficient measures the change in chemical shift with increasing temperature, typically the ${ }^{1} \mathrm{H}$ chemical shift of the N-H backbone amide (Baxter and Williamson, 1997). The change in chemical shift with temperature is usually linear, and shifted downfield with increasing temperature; the slope of the line yields the temperature coefficient (Cierpicki and Otlewski, 2001). The magnitude of the change in proton chemical shift depends on the strength of the hydrogen bond; the change will be smaller for stronger hydrogen bonds.

The temperature coefficient can provide a prediction whether residues are participating in intramolecular hydrogen bonds, especially when this is combined with data from hydrogen-deuterium exchange experiments. Considered alone, it does not always correlate with the state of hydrogen-bonding (Tomlinson and Williamson, 2012), but can
be in combination with other experiments, such as hydrogen-deuterium exchange NMR (Hong et al., 2013), and the ${ }^{3 h} \mathrm{~J}-\mathrm{NC}$ ' through-hydrogen-bond coupling. In most cases, the temperature coefficient is more positive than $-4.6 \mathrm{ppb} / \mathrm{K}$ for hydrogen-bonded residues, predicting the presence of a hydrogen bond in more than 85% of the time (Cierpicki and Otlewski, 2001; Cordier and Grzesiek, 2002). The chemical shift of backbone amides can be subject to deshielding by ring currents in neighboring aromatic residues, which can cause the temperature coefficient to be more positive even in the absence of hydrogen bonding (Merutka et al., 1995; Cierpicki and Otlewski, 2001). In addition, it has been shown that amide proton temperature coefficients can be used to calculate the thermal expansion of the hydrogen bond, as the chemical shift is exquisitely sensitive to changes in the orientation and length of the hydrogen bond (Hong et al., 2013). The thermal expansion of hydrogen bonds is more pronounced in loop regions that are involved in weaker hydrogen bonds to solvent; therefore, the temperature coefficient should be more negative for these amides (Tilton et al., 1992; Cierpicki and Otlewski, 2001). It is possible to detect the presence of the hydrogen bond directly by NMR (Cordier et al., 2008), but this experiment was extremely timeconsuming for even a small protein (ubiquitin, 8.6 kDa), and is likely infeasible for a protein as large at $\mathrm{Dbh}(40.8 \mathrm{kDa})$. Since the hydrogen-deuterium exchange data is a strong indication of the presence of a hydrogen bond, I have compared the values of the temperature coefficients with the protection factor data for residues for which both values could be calculated. The data also provides further insight in the utility and interpretation of temperature coefficients in the prediction of protein intramolecular hydrogen bonds.

Investigating the possibility of cold denaturation above the freezing point of water in Dbh

It is extremely well established that proteins unfold at high temperatures, but it is also possible for proteins to denature at cold temperatures. This implies that the stability curve for proteins us U-shaped, with its free energy minimum at some temperature wherein it is stably folded and functional. The cold denaturation temperature for most proteins is below the freezing point of water (or above freezing with added denaturants or in acidic or basic pH) (Privalov, 1990; Azuaga et al., 1992; Griko and Privalov, 1992; Babu et al., 2004; Whitten et al., 2006; Jaremko et al., 2013; Vajpai et al., 2013), but some proteins have been found to cold denature above zero ${ }^{\circ} \mathrm{C}$ (Pastore et al., 2007; Buchner et al., 2012). Since the U-shaped stability curve for thermostable proteins may either be shifted to the right instead of simply deeper than mesostable proteins, some thermostable proteins may cold denature above zero Celsius. After an HSQC of Dbh at $5^{\circ} \mathrm{C}$ showed a possible increase in random coil, we decided to investigate if Dbh cold denatures above zero ${ }^{\circ} \mathrm{C}$. Additionally, it was observed that Dbh would not crystallize at $4^{\circ} \mathrm{C}$, but would readily crystallize at room temperature, which could indicate partial aggregation at lower temperature (J. Pata, personal communication). To investigate possible denaturation of Dbh at low temperatures, we performed four separate experiments to look for evidence of unfolding in Dbh from $1-10^{\circ} \mathrm{C}$: differential scanning calorimetry (DSC), dynamic light scattering (DLS), hydrogen-deuterium exchange NMR (HDX), and circular dichroism (CD). Differential scanning calorimetry can directly detect a change in heat capacity in a protein which results from a thermodynamic transition,
such as unfolding. Dynamic light scattering is sensitive to the hydrodynamic radius of a macromolecule; an unfolded protein should show an increase in radius versus the more compact folded form. Hydrogen-deuterium exchange NMR will detect unfolding when referenced to HDX experiments where the protein is stable; peaks that are visible at the stable temperature will disappear at lower temperature due to unfolding. HDX can even show local or transient unfolding, provided that the decrease in intrinsic exchange rate at lower temperature is corrected for. Finally, circular dichroism can measure loss of secondary structure and increase in random coil structure as a protein unfolds. If Dbh unfolds above zero ${ }^{\circ} \mathrm{C}$, the combination of these experiments should provide abundant evidence of unfolding. Unfortunately, the experiments provided conflcting evidence of Dbh unfolding at temperatures just above freezing. Future experiments will be necessary to conclusively determine the degree and nature of structural changes of Dbh at lower temperature.

Methods

Temperature Coefficient

Conventional $2 \mathrm{D}-{ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}$ HSQC spectra were taken at $35^{\circ} \mathrm{C}, 45^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}, 55^{\circ} \mathrm{C}$, and $65^{\circ} \mathrm{C}$, on samples containing at least $0.5 \mathrm{mM}{ }^{15} \mathrm{~N}$-labeled Dbh in 20 mM HEPES, $50 \mathrm{mMNaCl}, 50 \mu \mathrm{M}$ EDTA, pH 7.5 , with $10 \%(\mathrm{v} / \mathrm{v}) \mathrm{D}_{2} \mathrm{O}$ added to the solution for spin locking. The data was processed with NMRpipe (Delaglio et al., 1995), and visualized using CcPNMR Analysis (Vranken et al., 2005). The chemical shift values for the resolvable amide protons were measured at each temperature, and then fit to a linear regression equation to obtain the temperature factor. For the hydrogen-bonding analysis, UCSF Chimera (Pettersen et al., 2004) was used to analyze residues within
hydrogen bonding distance from PDB structure 1K1S (Silvian et al., 2001), and CPPTRAJ (Roe and Cheatham III, 2013) was used to analyze the hydrogen bonds in the MD trajectories, as described in the methods section of Chapter 5 .

Low-Temperature Biophysical Experiments to Investigate Possible Cold

 Denaturation
Differential Light Scattering (DLS)

1 mL of Dbh buffer solution containing Dbh protein (50 mM sodium phosphate, 100 mM $\mathrm{NaCl}, 50 \mu \mathrm{M}$ EDTA, pH 7.5) was filtered through a $0.1 \mu \mathrm{M}$ polyvinylidene fluoride membrane to remove any large particles in the solution. The protein concentration was measured by light absorbance at 280 nm and determined to be $1.27 \mathrm{mg} / \mathrm{mL}$. The protein solution was pipetted into a disposable plastic cuvette with a path length of 1 cm and placed in a Malvern Zetasizer Nano DLS instrument. The temperature was equilibrated at $35^{\circ} \mathrm{C}$ and measurements were taken for 30 s and repeated ten times. The temperature was then lowered to $5^{\circ} \mathrm{C}$, allowed to equilibrate for 10 minutes at $5^{\circ} \mathrm{C}$, then measurements were taken as above.

Differential Scanning Calorimetry (DSC)

Dbh buffer solution containing Dbh protein was centrifuged at 10,000xg for 5 minutes to sediment any aggregates in solution, then extensively degassed under vacuum. The concentration of protein was then determined to be $1.7 \mathrm{mg} / \mathrm{mL}$ by light absorbance at 280nm. The sample was then transferred via syringe to the sample cell of a MicroCal VP-DSC microcalorimeter until the cell was filled; trapped air was expunged from the cell using extra solution in the syringe. The reference cell was filled with buffer solution
in an identical manner. After placing the cap over the calorimetry cells, the system pressure fluctuated between 5-6 psi. The equilibration time at the starting temperature before starting a scan was 15 minutes. During a continuous downscan from $70^{\circ} \mathrm{C}$ to $1^{\circ} \mathrm{C}$ and upscan from $1^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, some protein precipitation was observed, negatively affecting the quality of the data. Therefore, alternating upscans and downscans were taken between $1^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$ for one protein sample, and then from 30 to $70^{\circ} \mathrm{C}$ on a second protein sample. The first few degrees of each scan are part of instrument equilibration period, hence the $\mathrm{C}_{p} / \mathrm{dT}$ values cannot be recorded. The upscan rate was $90^{\circ} \mathrm{C} / \mathrm{hr}$ and the downscan rate was $60^{\circ} \mathrm{C} / \mathrm{hr}$. Four upscans and four downscans in each temperature range; the first has a different "thermal history" than the subsequent scans, and the following scans were performed to ensure repeatability. The scans were normalized for protein concentration to obtain the final curves. For the lysozyme sample, the same buffer was used as for Dbh, and the protein concentration was 2.1 $\mathrm{mg} / \mathrm{mL}$. One upscan and one downscan were taken, from $10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$, at the same scan rates used for Dbh.

Hydrogen Deuterium Exchange NMR (HDX-NMR)

A sample of ${ }^{15} \mathrm{~N}$-labeled Dbh solution $(50 \mathrm{mM}$ sodium phosphate, $100 \mathrm{mM} \mathrm{NaCl}, 50 \mu \mathrm{M}$ EDTA, pH 7.5) was lyophilized, then re-suspended in cold buffer at $4^{\circ} \mathrm{C}$ (same as above) containing $10 \%(\mathrm{v} / \mathrm{v}) \mathrm{D}_{2} \mathrm{O}$, pipetted into a Shigemi NMR tube, and placed at $4^{\circ} \mathrm{C}$ for 18 hours. The sample was then placed in an 800 MHz Oxford NMR spectrometer at $35^{\circ} \mathrm{C}$ and a $2 \mathrm{D}{ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}$ TROSY-HSQC (Pervushin et al., 1997) spectrum was collected. The data was processed with NMRpipe (Delaglio et al., 1995) and visualized with CcPNMR analysis (Vranken et al., 2005).

Circular Dichroism Spectroscopy (CD)

$200 \mu \mathrm{~L}$ of $0.28 \mathrm{mg} / \mathrm{mL}$ Dbh protein in buffered (same as above) solution was transferred into a CD cuvette with a 1 mm path length. The cuvette was placed in the sample cell Jasco J-810 spectropolarimeter equipped with a Peltier temperature controller, and the cell was calibrated at $35^{\circ} \mathrm{C}$. A spectrum was collected at $35^{\circ} \mathrm{C}$ from 260 nm to 185 nm , with a scan rate of $50 \mathrm{~nm} / \mathrm{min}$, data points collected every 0.5 nm , and 10 total scans. The cell was then cooled at rate of $0.5^{\circ} \mathrm{C} / \mathrm{min}$ to $7^{\circ} \mathrm{C}$, with the ellipticity value measured at 208 nm every $2^{\circ} \mathrm{C}$, then after a full spectrum was taken at $7^{\circ} \mathrm{C}$ with same parameters as above. The sample was then removed from the CD cuvette, the cuvette was cleaned, and a second $200 \mu \mathrm{~L} 0.28 \mathrm{mg} / \mathrm{mL}$ Dbh protein sample was transferred into the cuvette. The cuvette was placed into the cell equilibrated at $35^{\circ} \mathrm{C}$, another full CD spectrum was taken at this temperature, and the sample was heated to $65^{\circ} \mathrm{C}$ at a rate of $0.5^{\circ} \mathrm{C} / \mathrm{min}$, with the ellipticity value at 208 nm taken every $2^{\circ} \mathrm{C}$. One full spectrum was then take at 65°. After adjustments to the chiller unit, a third $0.28 \mathrm{mg} / \mathrm{mL}$ Dbh sample was used to collect full CD spectra again at $7^{\circ} \mathrm{C}$ and then at $2^{\circ} \mathrm{C}$.

Results and Discussion

Amide Temperature Coefficients

The thermostability of Dbh allows NMR measurements to be performed at elevated temperatures; therefore, HSQC s were collected at $35^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ to measure the temperature factor over a wide temperature range. Figure 6.1 displays the HSQC spectra collected at each temperature; the spectra at $65^{\circ} \mathrm{C}$ shows Dbh remains wellfolded at this temperature. The temperature coefficients were calculated for 255 of 277 (92\%) of assigned backbone amide proton chemical shifts, which are displayed in

Figure 6.2. Of these residues, 213 are more positive than $-4.6 \mathrm{ppb} / \mathrm{K}$, which was the limit to determine hydrogen-bonded residues suggested by Cordier and Grzesiek in their study of the temperature coefficients of ubiquitin (Cordier and Grzesiek, 2002). It must be noted that the limit was empirically determined and based only on ubiquitin; therefore, this limit may or may not have predictive value for the presence of hydrogen bonds in Dbh. Assuming that the temperature coefficient is influenced primarily by hydrogen-bonding in residues known to participate in secondary structure, Hong et al. (based on NMR and MD studies of ubiquitin) proposed that the thermal expansion coefficient of the hydrogen bond could also be estimated (Hong et al., 2013), which is shown in Eq. 1.

$$
\text { (1) } \frac{d \mathrm{r}}{d \mathrm{~T}}=\frac{1.16}{\delta-(4.06 \mathrm{ppm})} \cdot \frac{d \delta}{d \mathrm{~T}} \AA
$$

However, small changes electronic environment around the amide hydrogen - for example, positioning of ring current or changes in magnetic anisotropy - could also have a significant effect on the temperature coefficient (Cordier and Grzesiek, 2002; Hong et al., 2013). Using Eq. 1 and the chemical shift value at $50^{\circ} \mathrm{C}$, the average thermal expansion coefficient $(d r / d T)$ of the hydrogen-bonded backbone amides of Dbh is $7.1 \times 10^{-4} \pm 3.9 \times 10^{-4} \AA / \mathrm{K}$, which is very similar to the values obtained by Hong et al. in their study of GB3 domain of protein $G\left[7.9 \times 10^{-4} \pm 5.1 \times 10^{-4} \AA / K(\right.$ Hong et al., 2013)]. Thus, it appears the expansion upon heating in hydrogen bonds from a thermostable protein compared a mesophilic protein domain is similar, at least for these two proteins. In combination with HDX and molecular dynamics data collected on Dbh, it is possible to make more definitive observations about the relationship between the temperature coefficient and hydrogen bonding strength.

Figure 6.1: Overlay of ${ }^{15} \mathrm{~N}-{ }^{1} \mathrm{H}$ HSQCs of Dbh at $35^{\circ} \mathrm{C}$ (green), $45^{\circ} \mathrm{C}$ (red), $50^{\circ} \mathrm{C}$ (blue), $55^{\circ} \mathrm{C}$ (purple), and $65^{\circ} \mathrm{C}$ (orange). The proton chemical shifts are shifted upfield with increasing temperature.

I compared the hydrogen-deuterium exchange rates for the 68 backbone amides for which a rate could be calculated to their respective temperature coefficients. The protection factors and temperature coefficients were uncorrelated, with an R^{2} value of 0.004 . This is not surprising since the protection factors are majorly dependent on tertiary structure blocking; intramolecular hydrogen bonds certainly contribute to the protection factor, but are not the sole determinant. Therefore, the protection factor is not

Figure 6.2: Temperature coefficients of the ${ }^{1} \mathrm{H}(\mathrm{N})$ backbone amide chemical shifts. The blue line represents the cutoff point for hydrogen-bonded residues according to the criterion proposed by Cordier and Grzesiek. Residues above this line should be involved in the intramolecular hydrogenbonded, below the line should be in hydrogen bonds with solvent. However, this is not a direct measurement of hydrogen bonding - it is only a prediction.
an outright measure of hydrogen bond strength. On the other hand, temperature coefficients are known to be quite sensitive to both the distance and geometry of the hydrogen bond, as well as small changes in the local electronic structure (Hong et al., 2013). Nevertheless, it is not necessary for the two factors to be correlated to reveal useful information about the strength of backbone hydrogen bonds. If an amide proton has a small temperature coefficient and is well-protected from exchange with solvent, it is more than reasonable to conclude that the hydrogen bond is present and strong. In the case of a thermostable protein, the presence of a strong, stable hydrogen-bond is indicative of the rigidity and stability of the local structure.

Temperature coefficients were determined for 255 backbone amides of Dbh, with 200 of those amides involved in main-chain hydrogen bonds. The average value of the
temperature coefficient of the residues of Dbh with detectable protection in the HDX experiment $(-2.55 \mathrm{ppb} / \mathrm{K})$ is lower than the average value of the temperature coefficient of the residues exhibiting fast exchange in the HDX experiment ($-3.05 \mathrm{ppb} / \mathrm{K}$). For backbone amides that are within hydrogen-bonding distance for main-chain hydrogenbonds (in either the PDB or occupied $>20 \%$ in the MD simulation), the average temperature coefficient is $-2.55 \mathrm{ppb} / \mathrm{K}$, a very similar result to the temperature coefficient for the exchange-protected set of amides. None of the main-chain bonded amides have a temperature coefficient more negative than $-6.5 \mathrm{ppb} / \mathrm{K}$. In contrast, the average of the temperature coefficient for amides which are not involved in backbone hydrogen bonds is $4.06 \mathrm{ppb} / \mathrm{K}$. It is clear that many of the residues on flexible loops (for which NMR signals can be detected - many unassigned residues are located on the loop regions) have particularly negative temperature coefficients (e.g. 12F, -10.08 ppb/K; 49E, -11.95 ppb/K; 174D, -10.16 ppb/K; 259V -8.99 ppb/K).

However; not all of the backbone amides which are apparently not involved in mainchain hydrogen bonds have large negative temperature coefficients (e.g. 28L, -2.44 ppb/K; 139I, $0.23 \mathrm{ppb} / \mathrm{K} ; 168 \mathrm{R},-0.10 \mathrm{ppb} / \mathrm{K} ; 309 \mathrm{D} 0.73 \mathrm{ppb} / \mathrm{K})$. Many of these amides are located on short turns or at the beginning of α-helices. Therefore, the value of the temperature coefficient is correlated with, yet is not necessarily predictive of, the intramolecular hydrogen bonding state of the amide proton. Nevertheless, for amides which have very negative temperature coefficients (in other words, a high sensitivity of the amide), it is reasonable to conclude that the amide is not involved in an intramolecular hydrogen bond. In conclusion, amide temperature coefficients alone are
not sufficient to determine intramolecular hydrogen bonding, but are informative in combination with other experiments that can also probe the state of intramolecular hydrogen bonding.

Low-temperature biophysical experiments

Hydrogen-deuterium exchange NMR

If Dbh is undergoing partial unfolding at lower temperatures, HDX-NMR is capable of detecting changes in the structure of Dbh. Peaks that are visible in the 15 minute HDX spectrum at $35^{\circ} \mathrm{C}$ represent structured regions of Dbh protected from exchange. If these peaks are missing in 18 hour cold-incubated spectrum, then it is fair to conclude that there is structural opening of unfolding occurring in that region of Dbh. The intrinsic rate of amide hydrogen exchange is ~ 21 times lower at $4^{\circ} \mathrm{C}$, compared to $35^{\circ} \mathrm{C}$ (see Ch. 3 , Eq. 7 for rate correction, (Bai et al., 1993). The first time point collected at $35^{\circ} \mathrm{C}$ was after ~ 15 minutes, and the spectrum for the cold-incubated sample was collected after ~18 hours. However, no significant difference was observed between the peaks in the two spectra (Figure 6.3), as almost all of the peaks visible in the $35^{\circ} \mathrm{C}$ spectrum are present in the cold-incubated $35^{\circ} \mathrm{C}$ spectrum. Therefore, the HDX data indicates that there is no unfolding event at $4^{\circ} \mathrm{C}$ which exposes amides that are protected at $35^{\circ} \mathrm{C}$.

Circular Dichroism

CD spectroscopy is sensitive to changes in the secondary structure of proteins, and can discriminate between α-helical, β-sheet, and random coil structures. Therefore, if Dbh partially or completely unfolds at lower temperatures, the CD spectrum should shift from a mixed β-sheet/a-helical CD signature (since the atomic structure of Dbh is known) to a more random coil signature. Random coil CD signatures should show a more positive

CD signal in the 205nm-230nm range, and a more negative signal in the $190 \mathrm{~nm}-205 \mathrm{~nm}$ range. Examining the CD spectra of Dbh taken at $2^{\circ} \mathrm{C}, 7^{\circ} \mathrm{C}, 35^{\circ} \mathrm{C}$, and $65^{\circ} \mathrm{C}$ in Figure 6.3 shows no drastic changes within the secondary structure of Dbh within this large temperature range. However, there is some increase in signal in the 190nm-205nm, indicating an overall increase in helical structure. In the case of β-lactoglobulin, the cold denatured state showed an expanded, helical conformation when examined by CD spectroscopy (Yamada et al., 2005). The evidence does not suggest that Dbh denatures into a random coil at this temperature by CD spectroscopy. Therefore, it may be that Dbh partially transitions to alternative conformation that is more helical and expanded. Any expansion occurring could be detected by dynamic light scattering. Nevertheless, a change in the hydrogen bonding pattern of Dbh at lower temperature should have been detectable by HDX-NMR, and no significant change was observed.

Dynamic Light Scattering

Dynamic light scattering measures macromolecular particle size (hydrodynamic radius) by tracking the autocorrelation function of the light scattered by the solution over time. The rate of Brownian diffusion (slower for larger particles) affects how quickly the autocorrelation function decays and determines the particle size and relative number of particles in solution (Lorber et al., 2012) . Following a hypothetical unfolding event, denatured Dbh monomers should display an increase in size compared to compact, stably-folded monomers. Figure 6.5 displays the size distribution for Dbh at $5^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$; note that the large particles scatter far more light than the smaller particles (the intensity scales with a r^{6} dependence). The hydrodynamic diameter of the Dbh monomer falls around $6-7 \mathrm{~nm}$, which is greater than what is predicted for hydrodynamic
theory perfectly spherical protein of $41 \mathrm{kDa}(\sim 4.5 \mathrm{~nm})$ (Erickson, 2009). Given that Dbh has a rather extended Y -shape, a size greater than that predicted for a sphere is expected. However; the presence of larger particles in the solution (70-100nm) suggests impurities or oligomers that were able to pass through the $0.1 \mu \mathrm{~m}$ PVDF filter. The high polydispersity index of the solution (averaging around 35% for most measurements) indicates a collection of states (broad monomer peak) and also the presence of oligomers or impurities. A desirable polydispersity index would be below $<20 \%$. There does not appear to be a significant difference in the two monomers at the two temperatures; however, a measurement with a small PDI (and sharper monomer distribution) would be needed to confirm this result. Therefore, a future DLS experiment should use a lower protein concentration of Dbh, ideally as low as the instrument can get an accurate reading, to prevent oligomer formation and bring the PDI into an acceptable range.

Differential Scanning Calorimetry

DSC is capable of directly detecting unfolding or folding transitions in by precisely monitoring the change in heat capacity with temperature. The technique is typically used to monitor the thermal unfolding of proteins with temperature and to measure the change in heat capacity. In the case of Dbh, DSC was used to investigate an unfolding transition upon a decrease in temperature. There is little published data on DSC downscans to monitor transitions upon temperature decreases, usually using denaturants to achieve cold denaturation at higher temperature (Azuaga et al., 1992; Griko and Kutyshenko, 1994; Romero-Romero et al., 2011).This complicates the interpretation of downscan curves, whereas interpretation of upscans is more clear. For
instance, the shape of the curve in the region from $70^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ in Figure 6.6 (bottom) and Figure 6.7 (bottom) appears to be normal for the instrument, since water/water downscans in the instrument manual show this shape in this region as well. For this reason, the downscan of Dbh was compared to a downscan hen egg white lysozyme. There are published curves of upscans of lysozyme; therefore, I took an upscan to verify the instrument settings. The upscan of lysozyme (Figure 6.7, bottom) shows a thermal transition at approximately $74^{\circ} \mathrm{C}$, which matches the published denaturation temperature for lysozyme (Cooper et al., 2000). The downscan of Dbh (Figure 6.6) shows a peak from approximately $25^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$ (indicating the calorimeter needs to remove less heat from the sample cell compared to reference, which could due to the protein absorbing extra heat due to unfolding), which is not present in the downscan of lysozyme. However, the peak is very broad, and overall the downscan of Dbh is Ushaped. In contrast, the Dbh and lysozyme upscans show a linear increase with increasing temperature, and the lysozyme transition peak is quite sharp, typical of cooperative thermal unfolding events. On the other hand, cold denaturation can result in transition to a compact, but structurally heterogeneous ensemble of states where the efficiency of hydrophobic packing is disrupted (Sadqi et al., 2009; Jaremko et al., 2013). Broader transition peaks for cold denaturation have been observed for other proteins, and may be a result of the unfolding intermediates becoming kinetically trapped at lower temperature (Romero-Romero et al., 2011). A scan rate adjustment can reveal if there is a kinetic barrier to the transition - lower scans rates will cause the peak to be more sharp (Romero-Romero et al., 2011). A future DSC experiment on Dbh could use a lower scan rate to reveal any changes the transition peak. Also, the use of
cryoprotectants and an adjustment on the instrument minimum temperature would allow access to temperatures below $1^{\circ} \mathrm{C}$. These experiments could allow further interpretation of the nature of the transition.

Conclusions

Based on the results of the above experiments, it is difficult to reach a definitive conclusion about the presence of cold denaturation of Dbh. The observation of that Dbh does not crystallize well $4^{\circ} \mathrm{C}$, and the altered HSQC at $5^{\circ} \mathrm{C}$ indicate significant conformational heterogeneity. However, this apparent conformational heterogeneity did not alter the HDX HSQC spectrum at $35^{\circ} \mathrm{C}$ after incubation for 18 hours at $4^{\circ} \mathrm{C}$. This indicates that the secondary structure and hydrophobic core of Dbh is not significant disrupted at low temperature. It was noted in a cold denaturation study of ubiquitin that the residual hydrophobic core in cold-denatured ubiquitin resembled the native core as determined by HDX (Sivaraman et al., 2001; Babu et al., 2004). This is confirmed by the observation by CD that Dbh actually appears to have increasing helical content at lower temperatures. Increased helical content has also been observed by $C D$ in cold denaturation (Yamada et al., 2005). Nevertheless, the DSC measurement appears to indicate some form of structural transition, albeit a gradual, second-order process, as the cold transition peak is broad and flattened (Romero-Romero et al., 2011). In a recent study on CyIR2, it was observed that there were only small changes in CD signal to $-8^{\circ} \mathrm{C}$; while the NMR spectra indicated that the structure remained compact, nonnative tertiary contacts and increased backbone dynamics were observed (Jaremko et al., 2013). Similar observations have been made by NMR for ubiquitin, where a noncooperative unfolding process yields an ensemble of states, with regions of the protein
possessing compact, native-like structure, and other regions with increased water penetration into the structure (Babu et al., 2004; Whitten et al., 2006). In contrast, thermal denaturation typically follows a cooperative, two-state process, and usually yields expanded and disordered structures, without retaining a hydrophobic core (Dobson et al., 1998).

In summary, the DSC experiment indicated a slow transition below $20^{\circ} \mathrm{C}$, with the CD spectra showing increased α-helical structure. In contrast, the HDX-NMR experiment incubated at $4^{\circ} \mathrm{C}$ was essentially identical to the HDX-NMR at $35^{\circ} \mathrm{C}$, and the DLS experiment was inconclusive. The data suggests that Dbh may be undergoing a cold denaturation process at temperatures below $20^{\circ} \mathrm{C}$, but retains compact with native-like levels of secondary structure. Further experiments will be necessary to observe disruption of native structure and formation of non-native tertiary contacts and water penetration, possibly using the approach of Jaremko et. al. for CyIR2; they explored well-resolved changes in ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOE contacts (Jaremko et al., 2013). Ultimately, the characterization of the possible cold denatured state of Dbh merits further study, as it would be a rare case of a protein that undergoes this process above zero ${ }^{\circ} \mathrm{C}$.

Figure 6.3: Overlay of hydrogen deuterium exchange ${ }^{15} \mathrm{~N}-{ }^{-1} \mathrm{H}$ HSQC at $35^{\circ} \mathrm{C}$ (red) after 18 hr incubation at $4^{\circ} \mathrm{C}$ (red) and $35^{\circ} \mathrm{C} \sim 15 \mathrm{~min}$ after reconstitution from lyophilized protein (blue). No significant differences were observed between the two spectra, indicating that incubation at $4^{\circ} \mathrm{C}$ does not expose protected residues to solvent exchange via a denaturation process. The intrinsic exchange amide exchange rate is ~ 21 times lower at $4^{\circ} \mathrm{C}$ than $35^{\circ} \mathrm{C}$, but the incubation time at $4^{\circ} \mathrm{C}$ was 72 times as long as the dead time in the $35^{\circ} \mathrm{C}$ experiment.

Figure 6.4: CD spectra of Dbh from 185 to 260 nm at varying temperatures: $2^{\circ} \mathrm{C}$ (lime), $7^{\circ} \mathrm{C}$ (red, green), $35^{\circ} \mathrm{C}$ (blue, purple), and $65^{\circ} \mathrm{C}$ (orange). The increase in signal in the region from 190 to 200 nm indicates an increase in α-helical structure. The double minimum at 208 nm and 222 nm also indicates a significant amount of helical structure.

Figure 6.5: DLS measurements of $\operatorname{Dbh}(1.27 \mathrm{mg} / \mathrm{mL})$ at $5^{\circ} \mathrm{C}$ (top panel) and $35^{\circ} \mathrm{C}$ (bottom panel), by intensity. The size of Dbh monomer is between $6-7 \mathrm{~nm}$ diameter. There is slight decrease in diameter at $5^{\circ} \mathrm{C}$ for the monomer. However, the presence of large particles around 100 nm in the solution indicates a lower protein concentration should be used.

Figure 6.6: DSC downscan curves of Dbh from $35^{\circ} \mathrm{C}$ to $1^{\circ} \mathrm{C}$ (top panel) and from $70^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$. The first downscan in a series has a separate "thermal history" (that is, it is not preceded by a previous scan) which results in the curve shifting vertically. Three subsequent scans have identical thermal history, and were taken to test reversibility of any possible transition. The range from $70^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ resembles the curve for hen egg white lysozyme (Figure 6.7, top), but the rise from $25^{\circ} \mathrm{C}$ to the peak around $5^{\circ} \mathrm{C}$ differs from lysozyme, indicating a possible structural transition. It should be noted that DSC does not provide any information about what specific structural changes could be occurring.

Figure 6.7: DSC downscan curves of hen egg white lysozyme from $75^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$ (top panel) and an upscan (bottom panel) of HEWL from $10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$, the maximum temperature achievable for this particular instrument. For the downscan, the curve does not rise as sharply between $25^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C}$ as Dbh. The upscan shows the typical peak around the denaturation temperature ($\sim 74^{\circ} \mathrm{C}$), which matches published values for HEWL. The $\Delta \mathrm{C}_{\mathrm{p}}$ is measured as the difference between the baseline value before and after the transition peak; unfortunately, measurements above $80^{\circ} \mathrm{C}$ were not possible for this instrument due to a malfunction in the pressure cap.

References:

Azuaga, A.I., Galisteo, M.L., Mayorga, O.L., Cortijo, M., and Mateo, P.L. (1992). Heat and cold denaturation of beta-lactoglobulin B. FEBS Lett 309, 258-260.

Babu, C.R., Hilser, V.J., and Wand, A.J. (2004). Direct access to the cooperative substructure of proteins and the protein ensemble via cold denaturation. Nat Struct Mol Biol 11, 352-357.

Bai, Y., Milne, J.S., Mayne, L., and Englander, S.W. (1993). Primary structure effects on peptide group hydrogen exchange. Proteins 17, 75-86.

Baxter, N.J., and Williamson, M.P. (1997). Temperature dependence of 1 H chemical shifts in proteins. J Biomol NMR 9, 359-369.

Buchner, G.S., Shih, N., Reece, A.E., Niebling, S., and Kubelka, J. (2012). Unusual cold denaturation of a small protein domain. Biochemistry 51, 6496-6498.

Cierpicki, T., and Otlewski, J. (2001). Amide proton temperature coefficients as hydrogen bond indicators in proteins. J Biomol NMR 21, 249-261.

Cooper, A., Nutley, M.A., and Wadood, A. (2000). Differential scanning microcalorimetry in Protein-Ligand Interactions: hydrodynamics and calorimetry. (Oxford University Press).

Cordier, F., and Grzesiek, S. (2002). Temperature-dependence of protein hydrogen bond properties as studied by high-resolution NMR. J Mol Biol 317, 739-752.

Cordier, F., Nisius, L., Dingley, A.J., and Grzesiek, S. (2008). Direct detection of N$\mathrm{H}[\ldots] \mathrm{O}=\mathrm{C}$ hydrogen bonds in biomolecules by NMR spectroscopy. Nat Protoc 3, 235-241.

Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J., and Bax, A. (1995). NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6, 277293.

Dobson, C.M., Sali, A., and Karplus, M. (1998). Protein folding: A perspective from theory and experiment. Angew Chem Int Ed 37, 868-893.

Erickson, H.P. (2009). Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy. In Biol Proced Online, pp. 32-51.

Griko , Y.V., and Kutyshenko, V.P. (1994). Differences in the processes of beta-lactoglobulin cold and heat denaturations. Biophys J 67, 356-363.

Griko, Y.V., and Privalov, P.L. (1992). Calorimetric study of the heat and cold denaturation of beta-lactoglobulin. Biochemistry 31, 8810-8815.

Hong, J., Jing, Q., and Yao, L. (2013). The protein amide (1)H(N) chemical shift temperature coefficient reflects thermal expansion of the $\mathrm{N}-\mathrm{H} . . . \mathrm{O}=\mathrm{C}$ hydrogen bond. J Biomol NMR 55, 71-78.

Jaremko, M., Jaremko, L., Kim, H.Y., Cho, M.K., Schwieters, C.D., Giller, K., Becker, S., and Zweckstetter, M. (2013). Cold denaturation of a protein dimer monitored at atomic resolution. Nat Chem Biol 9, 264-270.

Lorber, B., Fischer, F., Bailly, M., Roy, H., and Kern, D. (2012). Protein analysis by dynamic light scattering: methods and techniques for students. Biochem Mol Biol Educ 40, 372-382.

Merutka, G., Dyson, H.J., and Wright, P.E. (1995). 'Random coil' 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for the peptide series GGXGG. J Biomol NMR 5, 14-24.

Pastore, A., Martin, S.R., Politou, A., Kondapalli, K.C., Stemmler, T., and Temussi, P.A. (2007). Unbiased Cold Denaturation: Low- and High-Temperature Unfolding of Yeast Frataxin under Physiological Conditions. J Am Chem Soc 129, 5374-5375.

Pervushin, K., Riek, R., Wider, G., and Wuthrich, K. (1997). Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A 94, 12366-12371.

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25, 1605-1612.

Privalov, P.L. (1990). Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25, 281-305.

Roe, D.R., and Cheatham III, T.E. (2013). PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J Chem Theory Comput 9, 3084-3095.

Romero-Romero, M.L., Ingles-Prieto, A., Ibarra-Molero, B., and Sanchez-Ruiz, J.M. (2011). Highly anomalous energetics of protein cold denaturation linked to folding-unfolding kinetics. PLoS One 6, e23050.

Sadqi, M., de Alba, E., Perez-Jimenez, R., Sanchez-Ruiz, J.M., and Munoz, V. (2009). A designed protein as experimental model of primordial folding. Proc Natl Acad Sci U S A 106, 4127-4132.

Silvian, L.F., Toth, E.A., Pham, P., Goodman, M.F., and Ellenberger, T. (2001). Crystal structure of a DinB family error-prone DNA polymerase from Sulfolobus solfataricus. Nat Struct Biol 8, 984-989.

Sivaraman, T., Arrington, C.B., and Robertson, A.D. (2001). Kinetics of unfolding and folding from amide hydrogen exchange in native ubiquitin. Nat Struct Biol 8, 331-333.

Tilton, R.F., Jr., Dewan, J.C., and Petsko, G.A. (1992). Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K. Biochemistry 31, 2469-2481.

Tomlinson, J.H., and Williamson, M.P. (2012). Amide temperature coefficients in the protein G B1 domain. J Biomol NMR 52, 57-64.

Vajpai, N., Nisius, L., Wiktor, M., and Grzesiek, S. (2013). High-pressure NMR reveals close similarity between cold and alcohol protein denaturation in ubiquitin. Proc Natl Acad Sci U S A 110, E368-376.

Vranken, W.F., Boucher, W., Stevens, T.J., Fogh, R.H., Pajon, A., Llinas, M., Ulrich, E.L., Markley, J.L., Ionides, J., and Laue, E.D. (2005). The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687-696.

Whitten, S.T., Kurtz, A.J., Pometun, M.S., Wand, A.J., and Hilser, V.J. (2006). Revealing the nature of the native state ensemble through cold denaturation. Biochemistry 45, 1016310174.

Yamada, Y., Yajima, T., Fujiwara, K., Arai, M., Ito, K., Shimizu, A., Kihara, H., Kuwajima, K., Amemiya, Y., and Ikeguchi, M. (2005). Helical and expanded conformation of equine beta-lactoglobulin in the cold-denatured state. J Mol Biol 350, 338-348.

Appendix A: HDX rates and protection factors for residues where signal could be detected for at least one temperature

Legend:
Stable $=$ No decay detected over the course of the experiment
$k_{\text {ex }}=$ measured HDX rate
PF = Protection factor, for stable residues minimum possible protection factor is given $\mathrm{E}=$ Exponent, base 10

Observed Signals for HDX, $35^{\circ} \mathrm{C}$

Res \#	$\boldsymbol{k}_{\text {ex }}$	$k_{\text {ex }}$ fit error	PF	PF Error	If Stable, Min PF
2110	1.43E-03	2.84E-04	6.63E+05	$1.31 \mathrm{E}+05$	
3 Val	Stable		Stable		$1.818 \mathrm{E}+07$
4IIe	Stable		Stable		$2.087 \mathrm{E}+07$
5Phe	Stable		Stable		$5.242 \mathrm{E}+07$
6 Val	Stable		Stable		$3.544 \mathrm{E}+07$
7Asp	Stable		Stable		
8Phe	1.27E-04	$2.77 \mathrm{E}-05$	8.03E+06	$1.76 \mathrm{E}+06$	
13Ala	Stable		Stable		$1.776 \mathrm{E}+08$
15Val	1.51E-04	1.53E-05	5.62E+06	5.69E+05	
18 Val	$9.07 \mathrm{E}-04$	$6.76 \mathrm{E}-05$	$4.17 \mathrm{E}+05$	$3.11 \mathrm{E}+04$	
19Leu	4.31E-04	1.02E-04	1.18E+06	$2.80 \mathrm{E}+05$	
20Asn	Stable		Stable		$2.948 \mathrm{E}+08$
28Leu	2.87E-04	$9.94 \mathrm{E}-05$	$1.41 \mathrm{E}+06$	$4.90 \mathrm{E}+05$	
30 Val	3.19E-04	$4.95 \mathrm{E}-05$	$1.21 \mathrm{E}+06$	$1.88 \mathrm{E}+05$	
50Ala	$1.30 \mathrm{E}-03$	$7.45 \mathrm{E}-05$	$1.46 \mathrm{E}+06$	8.35E+04	
51 Arg	Stable		Stable		$1.860 \mathrm{E}+08$
55 Val	$9.38 \mathrm{E}-03$	$1.70 \mathrm{E}-03$	8.42E+04	1.53E+04	
64Ala	$1.08 \mathrm{E}-02$	$6.36 \mathrm{E}-03$	$3.28 \mathrm{E}+05$	$1.94 \mathrm{E}+05$	
68Ala	Stable		Stable		$9.110 \mathrm{E}+07$
74Val	1.10E-04	$1.40 \mathrm{E}-05$	5.47E+06	$6.98 \mathrm{E}+05$	
84Phe	$2.60 \mathrm{E}-03$	5.49E-04	5.93E+05	$1.26 \mathrm{E}+05$	
85Ser	$1.86 \mathrm{E}-03$	$4.14 \mathrm{E}-04$	$3.88 \mathrm{E}+06$	$8.67 \mathrm{E}+05$	
88Ile	$4.66 \mathrm{E}-05$	$2.31 \mathrm{E}-05$	$1.77 \mathrm{E}+07$	$8.80 \mathrm{E}+06$	
89Met	$1.49 \mathrm{E}-04$	3.79E-05	$1.03 \mathrm{E}+07$	2.62E+06	
91Leu	Stable		Stable		$8.502 \mathrm{E}+07$
92Leu	2.57E-04	1.97E-05	1.69E+06	1.29E+05	
991le	5.67E-03	7.27E-04	$1.16 \mathrm{E}+05$	1.49E+04	
106Glu	1.23E-04	1.23E-05	$4.45 \mathrm{E}+06$	$4.46 \mathrm{E}+05$	
107Ala	6.17E-05	2.47E-05	3.07E+07	$1.23 \mathrm{E}+07$	
108Tyr	Stable		Stable		$8.308 \mathrm{E}+07$
109Leu	Stable		Stable		$4.566 \mathrm{E}+07$
122Gly	4.13E-03	1.83E-03	$2.52 \mathrm{E}+06$	1.12E+06	
124Glu	1.92E-04	4.71E-05	$2.54 \mathrm{E}+06$	$6.21 \mathrm{E}+05$	
127Arg	1.52E-03	1.37E-04	2.11E+06	$1.90 \mathrm{E}+05$	
128Lys	Stable		Stable		$2.815 \mathrm{E}+07$
130Lys	Stable		Stable		$2.342 \mathrm{E}+08$
132Glu	4.29E-03	7.77E-04	3.05E+05	5.53E+04	
133IIe	4.01E-05	3.01E-05	8.80E+06	$6.61 \mathrm{E}+06$	
134Leu	Stable		Stable		7.577E+07
135Glu	4.20E-04	3.17E-05	1.21E+06	$9.16 \mathrm{E}+04$	
137Glu	2.87E-03	3.89E-04	3.81E+05	5.17E+04	
138Lys	7.52E-03	$2.98 \mathrm{E}-03$	$2.30 \mathrm{E}+05$	9.09E+04	
13911e	7.52E-03	1.18E-05	8.73E+04	$1.37 \mathrm{E}+02$	
142Thr	Stable		Stable		$9.989 \mathrm{E}+07$
143Val	6.58E-05	$3.52 \mathrm{E}-05$	1.29E+07	$6.88 \mathrm{E}+06$	
144Gly	Stable		Stable		$9.539 \mathrm{E}+07$
145Val	Stable		Stable		$4.892 \mathrm{E}+07$
146Ala	Stable		Stable		$2.087 \mathrm{E}+08$
152Ala	Stable		Stable		$4.566 \mathrm{E}+07$

155IIe	Stable		Stable		$1.121 \mathrm{E}+08$
156Ala	Stable		Stable		$9.539 \mathrm{E}+07$
167Ile	2.59E-04	3.85E-05	1.39E+06	$2.06 \mathrm{E}+05$	
175Phe	3.53E-03	$9.99 \mathrm{E}-04$	$2.88 \mathrm{E}+05$	8.14E+04	
178Glu	3.33E-03	$8.60 \mathrm{E}-04$	$5.20 \mathrm{E}+05$	$1.34 \mathrm{E}+05$	
184IIe	$9.77 \mathrm{E}-03$	$1.63 \mathrm{E}-03$	$3.61 \mathrm{E}+04$	$6.01 \mathrm{E}+03$	
194Arg	$1.41 \mathrm{E}-03$	7.52E-05	$3.79 \mathrm{E}+06$	$2.02 \mathrm{E}+05$	
195Leu	Stable		Stable		$2.039 \mathrm{E}+07$
201GIn	$3.80 \mathrm{E}-04$	$6.90 \mathrm{E}-05$	4.77E+06	$8.66 \mathrm{E}+05$	
206Ile	$5.78 \mathrm{E}-03$	$1.67 \mathrm{E}-03$	$5.70 \mathrm{E}+04$	$1.64 \mathrm{E}+04$	
223Ala	$9.00 \mathrm{E}-03$	$2.54 \mathrm{E}-03$	3.92E+05	$1.11 \mathrm{E}+05$	
226Leu	2.66E-04	$9.67 \mathrm{E}-05$	2.96E+06	$1.08 \mathrm{E}+06$	
262lle	2.76E-04	1.51E-04	$1.31 \mathrm{E}+06$	7.17E+05	
265Tyr	3.75E-03	6.13E-04	2.20E+05	$3.60 \mathrm{E}+04$	
266Leu	Stable		Stable		$2.087 \mathrm{E}+07$
267Lys	2.07E-03	$1.86 \mathrm{E}-03$	7.27E+05	$6.55 \mathrm{E}+05$	
269Ala	3.89E-04	$2.34 \mathrm{E}-05$	9.08E+06	$5.46 \mathrm{E}+05$	
270lle	Stable		Stable		$8.700 \mathrm{E}+07$
271Asn	1.47E-03	2.82E-04	3.32E+06	$6.39 \mathrm{E}+05$	
273Ala	$4.41 \mathrm{E}-03$	2.62E-03	$4.29 \mathrm{E}+05$	$2.54 \mathrm{E}+05$	
2801le	1.29E-04	$6.77 \mathrm{E}-05$	$5.72 \mathrm{E}+06$	3.00E+06	
283Arg	$5.15 \mathrm{E}-03$	7.80E-04	$8.05 \mathrm{E}+05$	$1.22 \mathrm{E}+05$	
284IIe	Stable		Stable		$4.261 \mathrm{E}+07$
285Thr	1.16E-04	3.17E-05	1.16E+07	$3.18 \mathrm{E}+06$	
286Val	Stable		Stable		$4.781 \mathrm{E}+07$
287IIe	Stable		Stable		$7.754 \mathrm{E}+07$
288Ala	Stable		Stable		$4.892 \mathrm{E}+07$
2891Ie	Stable		Stable		$2.087 \mathrm{E}+07$
290Met	Stable		Stable		$9.110 \mathrm{E}+07$
291Glu	4.20E-04	$4.04 \mathrm{E}-05$	$2.54 \mathrm{E}+06$	$2.44 \mathrm{E}+05$	
296Leu	1.01E-03	$3.34 \mathrm{E}-04$	$4.10 \mathrm{E}+05$	$1.35 \mathrm{E}+05$	
298Lys	Stable		Stable		$6.159 \mathrm{E}+07$
315Ala	1.06E-04	$1.66 \mathrm{E}-05$	1.82E+07	$2.85 \mathrm{E}+06$	
317Asp	Stable		Stable		$2.815 \mathrm{E}+08$
318Leu	Stable		Stable		$1.121 \mathrm{E}+08$
319Leu	Stable		Stable		$5.489 \mathrm{E}+07$
320Arg	3.96E-04	4.82E-05	5.01E+06	$6.11 \mathrm{E}+05$	
321Glu	6.33E-03	4.26E-04	2.17E+05	$1.46 \mathrm{E}+04$	
322Leu	3.01E-04	2.95E-05	1.66E+06	1.63E+05	
323Leu	$1.04 \mathrm{E}-02$	3.69E-03	4.17E+04	$1.47 \mathrm{E}+04$	
331 Val	1.11E-03	$8.74 \mathrm{E}-04$	$1.01 \mathrm{E}+06$	7.97E+05	
333Arg	1.34E-04	7.13E-05	3.99E+07	$2.13 \mathrm{E}+07$	
335Gly	Stable		Stable		$6.449 \mathrm{E}+07$
337Lys	Stable		Stable		$3.087 \mathrm{E}+08$
339Asp	5.71E-03	$1.55 \mathrm{E}-03$	$1.45 \mathrm{E}+05$	$3.94 \mathrm{E}+04$	

Observed Signals for HDX, $50^{\circ} \mathrm{C}$

Res \#	$\boldsymbol{k}_{\boldsymbol{e x}}$	$\boldsymbol{k}_{\boldsymbol{e x}}$ fit error	PF	PF Error	If Stable, Min PF
3Val	Stable		Stable		$9.879 \mathrm{E}+07$
4lle	Stable		Stable		$1.134 \mathrm{E}+08$
5Phe	Stable		Stable		$2.849 \mathrm{E}+08$
6Val	Stable		Stable		$1.926 \mathrm{E}+08$
7Asp	Stable		Stable		$3.053 \mathrm{E}+08$
8Phe	$1.32 \mathrm{E}-03$		$3.01 \mathrm{E}+06$	$2.51 \mathrm{E}+05$	
19Leu	$1.60 \mathrm{E}-04$		$1.25 \mathrm{E}+07$	$6.83 \mathrm{E}+06$	
89Met	$5.62 \mathrm{E}-03$	$7.74 \mathrm{E}-05$	$1.07 \mathrm{E}+06$	$1.51 \mathrm{E}+05$	$1.50 \mathrm{E}+05$
92Leu	$1.31 \mathrm{E}-03$	$1.52 \mathrm{E}-04$	$1.29 \mathrm{E}+06$	$9.56 \mathrm{E}+04$	
106Glu	$1.32 \mathrm{E}-03$	$7.78 \mathrm{E}-05$	$1.62 \mathrm{E}+06$	$3.54 \mathrm{E}+07$	
107Ala	$9.45 \mathrm{E}-05$	$4.28 \mathrm{E}-05$	$7.81 \mathrm{E}+07$	$4.45 \mathrm{E}+05$	
108Tyr	$1.79 \mathrm{E}-03$	$2.54 \mathrm{E}-04$	$3.13 \mathrm{E}+06$	$1.91 \mathrm{E}+07$	
109Leu	$1.23 \mathrm{E}-04$	$9.35 \mathrm{E}-05$	$2.51 \mathrm{E}+07$	$4.40 \mathrm{E}+05$	
124Glu	$1.10 \mathrm{E}-03$	$2.80 \mathrm{E}-04$	$1.73 \mathrm{E}+06$		

127Arg	1.12E-02	6.92E-03	1.12E+06	$6.95 \mathrm{E}+05$	
128Lys	Stable		Stable		1.273E+09
1291le	Stable		Stable		$2.064 \mathrm{E}+08$
130Lys	3.68E-04	2.43E-05	$1.52 \mathrm{E}+07$	$1.00 \mathrm{E}+06$	
133Ile	Stable		Stable		$1.108 \mathrm{E}+08$
134Leu	2.34E-04	3.80E-05	$6.91 \mathrm{E}+06$	$1.12 \mathrm{E}+06$	
135Glu	4.78E-03	$4.78 \mathrm{E}-04$	$4.16 \mathrm{E}+05$	$4.16 \mathrm{E}+04$	
139lle	$1.66 \mathrm{E}-04$	$1.98 \mathrm{E}-05$	$1.54 \mathrm{E}+07$	$1.84 \mathrm{E}+06$	
142Thr	$2.80 \mathrm{E}-04$	$4.46 \mathrm{E}-05$	$2.30 \mathrm{E}+07$	$3.67 \mathrm{E}+06$	
143Val	$6.56 \mathrm{E}-04$	$9.48 \mathrm{E}-05$	$5.02 \mathrm{E}+06$	$7.25 \mathrm{E}+05$	
144Gly	Stable		Stable		$1.134 \mathrm{E}+09$
145Val	Stable		Stable		$2.482 \mathrm{E}+08$
146Ala	Stable		Stable		$6.092 \mathrm{E}+08$
152Ala	Stable		Stable		$5.185 \mathrm{E}+08$
155IIe	Stable		Stable		$9.220 \mathrm{E}+07$
156Ala	Stable		Stable		$4.951 \mathrm{E}+08$
167IIe	2.39E-04	5.33E-05	5.88E+06	$1.31 \mathrm{E}+06$	
195Leu	Stable		Stable		$2.599 \mathrm{E}+08$
266Leu	1.77E-04	4.82E-05	$1.74 \mathrm{E}+07$	$4.76 \mathrm{E}+06$	
269Ala	8.67E-04	9.80E-05	$1.59 \mathrm{E}+07$	$1.79 \mathrm{E}+06$	
2701le	Stable		Stable		$1.566 \mathrm{E}+08$
284IIe	7.48E-04	1.16E-04	4.31E+06	$6.67 \mathrm{E}+05$	
285Thr	3.23E-03	2.63E-03	$1.62 \mathrm{E}+06$	$1.31 \mathrm{E}+06$	
286Val	8.90E-04	1.91E-04	$3.70 \mathrm{E}+06$	7.93E+05	
287Ile	Stable		Stable		$1.134 \mathrm{E}+08$
288Ala	Stable		Stable		$4.951 \mathrm{E}+08$
2891Ie	Stable		Stable		$1.566 \mathrm{E}+08$
290Met	Stable		Stable		$4.839 \mathrm{E}+08$
291Glu	3.85E-03	1.84E-03	1.08E+06	$5.16 \mathrm{E}+05$	
315Ala	1.82E-03	$1.68 \mathrm{E}-04$	$4.16 \mathrm{E}+06$	$3.86 \mathrm{E}+05$	
318Leu	$9.08 \mathrm{E}-04$	$1.09 \mathrm{E}-04$	1.99E+06	$2.40 \mathrm{E}+05$	
319Leu	Stable		Stable		$1.364 \mathrm{E}+08$
320Arg	8.30E-03	4.78E-03	9.31E+05	$5.36 \mathrm{E}+05$	
322Leu	$9.38 \mathrm{E}-03$	3.14E-03	2.07E+05	$6.93 \mathrm{E}+04$	
335Gly	Stable		Stable		$9.220 \mathrm{E}+08$
337Lys	Stable		Stable		$5.556 \mathrm{E}+08$

Appendix B : T_{1} and T_{2} rates, and T_{1} / T_{2} ratios for Dbh at $35^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$

Observed Signals for Spin Relaxation Parameters, $35^{\circ} \mathrm{C}$

Res \#	$\mathrm{T}_{1}(\mathrm{~ms})$	$\begin{aligned} & \hline \mathrm{T}_{1} \text { fit error } \\ & (\mathrm{ms}) \end{aligned}$	T ${ }_{2}$ (ms)	$\begin{aligned} & \mathrm{T}_{2} \text { fit error } \\ & \text { (ms) } \end{aligned}$	$\mathrm{T}_{1} / \mathrm{T}_{2}$	$\mathrm{T}_{1} / \mathrm{T}_{2}$ error
21leN	1371	183	30.7	1.4	44.6	6.3
3Valn	1139	294	28.1	1.1	40.5	10.6
11PheN	1138	94	27.6	0.8	41.2	3.6
12PheN	580	187	37.6	1.5	15.4	5.0
13AlaN	1050	107	28.5	2.5	36.8	4.9
15ValN	962	98	24.3	1.0	39.5	4.3
18ValN	893	119	40.3	2.2	22.2	3.2
19LeuN	1045	138	24.1	1.4	43.4	6.2
20AsnN	1261	128	27.6	0.5	45.6	4.7
24LysN	1065	178	26.2	1.5	40.7	7.2
25GlyN	754	167	25.4	2.7	29.7	7.3
26LysN	876	79	28.9	1.1	30.3	3.0
28LeuN	842	69	27.4	1.2	30.8	2.9
29ValN	828	253	22.8	4.4	36.3	13.2
30Valn	867	95	30.1	4.4	28.8	5.3
32ValN	631	83	29.1	0.4	21.7	2.9
43Valn	1246	115	30.7	1.0	40.6	4.0
45ThrN	891	134	28.1	1.4	31.7	5.0
49GluN	871	176	24.5	3.7	35.6	9.0
50AlaN	935	184	37.1	1.8	25.2	5.1
51ArgN	1128	97	27.7	1.3	40.8	4.0
52LysN	883	80	26.9	2.0	32.9	3.9
53LeuN	1154	118	29.7	1.5	38.8	4.4
55ValN	1089	151	31.7	0.9	34.4	4.9
56LysN	1283	179	30.9	1.6	41.5	6.2
611 leN	1129	303	33.7	1.3	33.5	9.1
62IleN	735	35	27.5	0.8	26.7	1.5
63LysN	929	75	28.3	2.8	32.8	4.1
64AlaN	963	88	34.6	2.3	27.8	3.1
65MetN	946	82	34.0	0.4	27.8	2.4
66GInN	1056	71	26.6	2.3	39.6	4.4
67IleN	1130	313	29.3	0.7	38.5	10.7
68AlaN	1109	133	32.1	0.6	34.6	4.2
72IleN	1161	113	39.1	1.5	29.7	3.1
73TyrN	1125	154	33.5	3.3	33.6	5.7
74ValN	1025	56	24.9	1.6	41.2	3.5
76MetN	1040	157	38.3	2.5	27.1	4.5
77ArgN	922	305	33.0	3.4	27.9	9.7
80IleN	928	101	36.1	7.5	25.7	6.0
81TyrN	1008	157	31.8	1.9	31.7	5.3
83AlaN	1365	137	26.7	1.0	51.2	5.5
84PheN	1055	108	23.5	1.0	44.9	5.0
85SerN	1529	271	33.1	4.8	46.2	10.6
86AsnN	1013	191	25.6	1.9	39.6	8.0
87ArgN	732	70	27.3	1.2	26.8	2.8
89MetN	1028	160	24.2	3.1	42.5	8.6
90AsnN	1260	239	23.0	0.6	54.7	10.5
91LeuN	1027	96	30.4	1.6	33.8	3.6
92LeuN	1053	149	25.2	1.5	41.8	6.4
93AsnN	1152	226	24.5	0.9	47.1	9.4
94LysN	694	47	27.3	0.5	25.4	1.8
95HisN	991	164	31.0	2.4	32.0	5.8
96AlaN	1119	123	31.5	0.6	35.5	4.0
97AspN	554	34	34.4	2.1	16.1	1.4
98LysN	1082	155	31.0	2.7	34.9	5.8
100 GluN	986	459	59.4	7.7	16.6	8.0
103SerN	745	71	27.8	1.9	26.8	3.1
105AspN	660	104	27.9	1.3	23.6	3.9

106GluN	795	69	28.0	1.6	28.4	2.9
107AlaN	869	69	31.1	1.1	28.0	2.4
108TyrN	922	240	28.0	1.9	32.9	8.8
109LeuN	675	288	27.1	2.6	24.9	10.9
110AspN	745	213	25.2	2.0	29.6	8.8
114LysN	633	46	33.9	2.7	18.7	2.0
115ValN	1071	108	36.2	1.0	29.6	3.1
118AsnN	1159	148	30.1	0.8	38.5	5.0
120GluN	608	21	28.7	1.1	21.2	1.1
121AsnN	1192	158	27.8	2.2	42.9	6.6
122GlyN	843	83	26.2	2.0	32.2	4.0
123IIeN	982	251	31.4	2.7	31.3	8.4
124GluN	1492	348	23.9	1.4	62.4	15.0
125LeuN	951	78	31.7	2.0	30.0	3.1
126AlaN	529	42	30.2	1.4	17.5	1.6
127ArgN	1280	199	23.9	1.0	53.5	8.6
129lleN	1023	90	25.7	1.1	39.9	3.9
130LysN	1281	157	25.8	0.8	49.6	6.3
132GluN	1097	135	26.9	0.9	40.8	5.2
133IIeN	709	47	24.3	0.9	29.2	2.2
134LeuN	1251	173	27.5	1.2	45.5	6.6
135GluN	1305	207	26.2	1.4	49.9	8.4
136LysN	1652	346	25.8	1.0	63.9	13.6
137GluN	1544	433	27.1	1.5	57.0	16.3
1391leN	1334	164	29.7	1.3	44.9	5.9
140ThrN	860	288	31.8	3.0	27.0	9.4
141ValN	887	147	35.0	2.4	25.3	4.5
142ThrN	794	108	31.2	1.1	25.5	3.6
143ValN	876	104	33.1	2.4	26.4	3.7
144GlyN	1733	352	29.7	1.3	58.4	12.1
145ValN	1034	170	29.9	3.2	34.6	6.8
146AlaN	941	257	31.0	2.0	30.3	8.5
154IIeN	983	62	31.4	5.6	31.2	5.9
155IIeN	895	53	27.9	0.9	32.0	2.1
157AspN	889	66	29.7	1.5	29.9	2.7
158LysN	834	93	29.0	0.5	28.8	3.2
159SerN	1074	248	28.7	4.0	37.4	10.1
160LysN	670	53	30.3	1.2	22.1	2.0
162AsnN	518	93	33.7	2.6	15.4	3.0
163GlyN	514	107	27.6	3.5	18.6	4.6
164LeuN	633	93	31.2	2.6	20.3	3.4
166VaIN	742	114	33.8	1.4	21.9	3.5
167IleN	1205	155	29.3	2.0	41.2	6.0
168ArgN	659	69	35.6	2.8	18.5	2.4
171GluN	1061	255	38.1	3.4	27.8	7.1
172ValN	962	109	26.4	2.5	36.5	5.4
177AsnN	1076	154	23.9	0.6	44.9	6.5
178GluN	1007	110	29.3	1.0	34.4	3.9
179LeuN	825	49	27.5	1.0	30.0	2.1
180AspN	1076	207	31.5	1.3	34.1	6.7
181IleN	972	139	30.6	0.9	31.7	4.6
182AspN	1186	199	26.3	1.2	45.2	7.9
183GluN	2072	323	23.8	1.9	87.1	15.2
184IIeN	1180	151	27.0	3.7	43.7	8.2
191LeuN	798	72	27.1	0.9	29.4	2.8
192AlaN	927	77	31.0	1.3	29.9	2.8
195LeuN	953	89	26.9	0.9	35.4	3.5
198LeuN	1213	221	25.7	0.5	47.2	8.6
199GlyN	1547	242	30.7	1.5	50.4	8.3
201GInN	896	127	21.7	1.3	41.4	6.4
204ArgN	819	168	27.8	2.1	29.4	6.4
206IleN	876	149	21.9	2.0	39.9	7.7
207LeuN	836	128	24.1	2.8	34.7	6.7
213GluN	700	59	31.7	1.7	22.1	2.2
215GluN	951	57	27.7	0.3	34.3	2.1
216LysN	901	73	29.4	1.4	30.6	2.9

218ThrN	1188	264	30.3	1.7	39.3	9.0
219GlyN	937	82	24.5	1.1	38.3	3.7
222LysN	488	73	27.1	0.9	18.0	2.8
223AlaN	1027	96	32.1	1.4	32.0	3.3
224LeuN	1050	145	20.9	0.7	50.2	7.2
226LeuN	1070	156	28.7	0.8	37.2	5.5
229LeuN	1186	143	20.4	0.9	58.1	7.4
230AlaN	1090	233	25.2	1.5	43.3	9.6
231GInN	1065	148	25.3	1.6	42.1	6.4
258AspN	1025	146	32.1	0.6	31.9	4.6
260LysN	735	35	27.9	0.9	26.3	1.5
261ValN	1041	129	29.2	0.6	35.7	4.5
262IleN	870	152	26.4	2.0	33.0	6.3
263LeuN	1098	86	30.7	1.0	35.7	3.0
265TyrN	742	67	29.1	0.8	25.5	2.4
266LeuN	1134	106	34.6	1.7	32.7	3.5
267LysN	1194	241	23.1	1.4	51.6	10.9
268LysN	1204	101	32.4	4.3	37.2	5.9
269AlaN	901	87	30.7	1.1	29.4	3.0
273AlaN	824	107	35.6	1.0	23.2	3.1
274TyrN	2156	396	26.5	2.9	81.3	17.4
275AsnN	1179	289	27.2	1.7	43.4	11.0
276LysN	742	67	28.3	0.8	26.3	2.5
277ValN	808	107	28.4	0.8	28.5	3.9
279GlyN	824	100	35.4	1.9	23.3	3.1
282MetN	968	249	20.4	4.0	47.4	15.4
283ArgN	807	92	32.3	2.2	25.0	3.3
284IIeN	934	83	33.9	2.2	27.5	3.0
285ThrN	715	71	36.5	1.5	19.6	2.1
286ValN	659	54	27.6	2.1	23.9	2.7
287IleN	791	125	24.9	2.6	31.8	6.0
288AlaN	913	162	30.7	2.2	29.7	5.7
2891leN	671	79	38.3	1.3	17.5	2.2
290MetN	717	83	33.5	1.5	21.4	2.7
291GluN	882	139	26.8	3.4	32.9	6.7
294AspN	979	106	27.7	1.0	35.3	4.0
296LeuN	916	153	30.8	3.1	29.8	5.8
297SerN	732	69	34.0	0.4	21.6	2.1
298LysN	1182	198	33.8	1.4	35.0	6.0
300LysN	796	39	29.4	0.7	27.1	1.5
301LysN	661	48	35.1	2.3	18.8	1.8
302PheN	661	95	28.6	3.8	23.1	4.5
305GlyN	531	41	31.6	2.1	16.8	1.7
306IleN	882	94	29.7	1.0	29.7	3.3
307SerN	648	147	34.6	2.1	18.7	4.4
309AspN	860	69	31.4	1.3	27.4	2.5
310AsnN	776	53	27.8	1.4	27.9	2.4
311AlaN	833	79	33.1	1.9	25.2	2.8
312TyrN	1239	171	35.5	3.6	34.9	6.0
314ValN	758	85	27.1	1.5	28.0	3.5
315AlaN	959	66	31.1	0.6	30.8	2.2
316GluN	1336	161	33.2	1.3	40.3	5.1
318LeuN	705	80	35.6	1.1	19.8	2.3
321GluN	869	63	27.7	1.2	31.3	2.7
322LeuN	925	169	33.8	1.4	27.4	5.1
323LeuN	892	106	29.7	5.2	30.0	6.3
324ValN	894	97	27.4	1.2	32.7	3.8
325ArgN	769	49	30.1	0.8	25.6	1.8
330AsnN	625	109	32.0	1.1	19.5	3.5
331ValN	979	115	29.6	1.1	33.1	4.1
332ArgN	977	156	34.5	6.6	28.3	7.1
333ArgN	774	82	26.3	1.8	29.5	3.7
334IIeN	957	219	32.5	1.0	29.5	6.8
335GlyN	1076	223	22.4	1.2	48.1	10.3
336ValN	998	145	30.2	1.3	33.1	5.0
337LysN	761	60	29.6	0.9	25.7	2.2

Observed Signals for Spin Relaxation Parameters, $50^{\circ} \mathrm{C}$

Res \#	$\mathrm{T}_{1}(\mathrm{~ms})$	T_{1} fit error (ms)	T 2 (ms)	T_{2} fit error (ms)	$\mathrm{T}_{1} / \mathrm{T}_{2}$	$\mathrm{T}_{1} / \mathrm{T}_{2}$ error
2 lleN	656	36	48.3	2.7	13.6	1.1
3VaIN	1339	187	42.8	1.9	31.3	4.6
7AspN	840	100	36.5	3.0	23.0	3.3
8PheN	887	86	48.3	5.2	18.4	2.7
9AspN	736	103	41.1	0.6	17.9	2.5
11PheN	1250	100	35.0	1.0	35.7	3.0
12PheN	920	61	38.5	2.2	23.9	2.1
13AlaN	1057	102	38.6	1.7	27.4	2.9
14GInN	1075	152	45.1	0.5	23.8	3.4
15ValN	778	59	36.4	1.0	21.4	1.7
16GluN	1009	85	38.6	1.6	26.1	2.5
17GluN	1306	157	33.3	2.1	39.2	5.3
18ValN	1194	164	40.1	5.1	29.7	5.6
19LeuN	1174	114	36.1	1.0	32.5	3.3
20AsnN	894	29	42.0	0.8	21.3	0.8
22GInN	1052	106	36.4	4.1	28.9	4.4
23TyrN	812	63	42.8	3.7	19.0	2.2
24LysN	849	34	41.6	1.3	20.4	1.0
25GlyN	450	91	31.8	3.5	14.2	3.3
26LysN	1055	38	40.7	2.4	25.9	1.8
30ValN	1059	101	43.1	2.5	24.6	2.7
31SerN	1072	110	36.9	1.4	29.1	3.2
32ValN	632	59	44.8	1.5	14.1	1.4
43ValN	1077	58	42.5	2.4	25.3	2.0
44AlaN	1114	185	33.5	3.2	33.3	6.4
45ThrN	1123	85	44.7	2.8	25.2	2.5
51ArgN	1386	186	34.9	1.6	39.7	5.6
52LysN	1105	69	40.4	3.2	27.3	2.8
53LeuN	1256	68	45.5	1.8	27.6	1.8
54GlyN	1009	72	40.9	1.5	24.6	2.0
55ValN	1016	88	41.1	3.4	24.7	3.0
56LysN	1227	149	47.9	1.1	25.6	3.2
58GlyN	900	135	42.3	4.1	21.3	3.8
59MetN	1065	81	43.0	1.9	24.7	2.2
61 lleN	799	136	44.2	2.0	18.1	3.2
62IleN	789	25	42.0	0.9	18.8	0.7
63LysN	986	58	42.0	2.4	23.5	1.9
64AlaN	1449	123	45.3	3.4	32.0	3.6
65MetN	1413	115	40.3	2.2	35.1	3.4
66GInN	953	91	41.6	2.6	22.9	2.6
67IleN	1022	133	45.6	3.6	22.4	3.4
68AlaN	976	27	46.6	1.1	21.0	0.8
71AlaN	993	69	39.1	0.9	25.4	1.9
72IleN	887	167	46.0	2.9	19.3	3.8
73TyrN	1131	118	41.8	0.8	27.1	2.9
76MetN	1188	126	45.1	0.5	26.3	2.8
77ArgN	1127	149	42.2	0.5	26.7	3.6
78LysN	1039	132	46.5	1.0	22.3	2.9
80lleN	905	65	41.7	2.5	21.7	2.0
81TyrN	1182	150	43.4	1.4	27.2	3.6
82GluN	541	56	28.7	2.3	18.8	2.4
83AlaN	1287	120	38.3	1.0	33.6	3.3
84PheN	1188	126	45.1	0.5	26.3	2.8
85SerN	1118	110	40.6	2.7	27.6	3.3
86AsnN	1052	86	35.8	1.2	29.4	2.6
87ArgN	1129	140	34.9	0.5	32.3	4.0
88IIeN	1387	134	37.2	0.8	37.3	3.7
89MetN	1575	308	31.3	2.2	50.3	10.5
90AsnN	1354	155	39.7	1.4	34.1	4.1

91LeuN	1134	64	41.8	2.5	27.1	2.2
92LeuN	1178	198	35.8	1.9	32.9	5.8
94LysN	554	39	42.5	2.2	13.0	1.1
95HisN	1086	156	53.5	3.4	20.3	3.2
96AlaN	1333	85	44.3	0.7	30.1	2.0
97AspN	487	61	38.0	1.4	12.8	1.7
98LysN	974	116	38.0	1.1	25.6	3.1
991IeN	949	77	53.3	5.8	17.8	2.4
100GluN	1135	535	31.9	1.4	35.6	16.8
101VaIN	463	59	40.0	4.3	11.6	1.9
103SerN	910	81	42.1	1.8	21.6	2.1
105AspN	792	73	34.1	3.3	23.2	3.1
106GluN	982	172	41.1	4.3	23.9	4.9
107AlaN	1002	99	36.8	2.3	27.2	3.2
109LeuN	811	267	70.2	21.8	11.5	5.2
110AspN	691	54	42.6	1.5	16.2	1.4
111ValN	884	140	36.4	1.5	24.3	4.0
114LysN	943	43	35.0	0.6	26.9	1.3
115ValN	851	68	46.2	1.5	18.4	1.6
116GluN	711	73	35.4	2.7	20.0	2.6
117GlyN	720	84	37.7	2.0	19.1	2.5
118AsnN	679	62	41.7	5.0	16.3	2.5
120GluN	443	44	43.2	3.1	10.3	1.2
121AsnN	838	56	42.5	3.5	19.7	2.1
122GlyN	907	119	37.9	1.9	23.9	3.4
123IIeN	1303	184	39.6	3.9	32.9	5.7
124GluN	1084	128	37.4	1.6	29.0	3.7
125LeuN	1160	40	38.3	1.1	30.3	1.4
126AlaN	1583	112	39.9	1.0	39.6	3.0
127ArgN	1584	367	37.5	0.8	42.2	9.8
128LysN	1437	102	41.5	2.3	34.7	3.1
129IIeN	1083	90	36.6	1.6	29.6	2.8
132GluN	1312	189	36.6	1.6	35.9	5.4
133IIeN	1561	189	39.4	2.5	39.6	5.4
134LeuN	1622	175	33.7	2.8	48.1	6.5
135GluN	1141	76	34.9	1.0	32.7	2.4
136LysN	1210	124	40.6	0.5	29.8	3.1
137GluN	1219	111	41.5	2.5	29.4	3.2
138LysN	1364	83	39.0	2.7	35.0	3.2
1391IeN	1100	127	39.7	1.5	27.7	3.4
140ThrN	958	169	35.1	2.1	27.3	5.1
141ValN	951	87	43.0	1.2	22.1	2.1
142ThrN	789	62	37.1	3.0	21.3	2.4
143VaIN	913	77	51.6	2.7	17.7	1.8
144GlyN	875	83	37.3	0.9	23.4	2.3
145ValN	1234	184	43.1	1.7	28.6	4.4
146AlaN	844	145	43.8	1.8	19.3	3.4
150lleN	1496	204	36.1	1.2	41.5	5.8
151LeuN	1099	116	32.9	0.8	33.4	3.6
152AlaN	996	120	32.1	0.8	31.0	3.8
153LysN	937	51	34.1	1.8	27.5	2.1
155IIeN	783	62	36.3	1.0	21.6	1.8
156AlaN	1046	97	29.9	2.4	35.0	4.3
157AspN	1408	82	34.6	3.4	40.7	4.6
158LysN	774	91	51.4	3.4	15.1	2.0
159SerN	1030	118	37.5	1.7	27.5	3.4
160LysN	858	59	40.2	4.1	21.3	2.6
162AsnN	423	32	43.1	2.8	9.8	1.0
163GlyN	620	65	42.8	3.5	14.5	1.9
165GlyN	1221	219	39.9	1.5	30.6	5.6
166ValN	772	64	45.2	1.4	17.1	1.5
167IIeN	1085	154	31.8	1.6	34.2	5.1
168ArgN	967	165	37.5	2.9	25.8	4.8
171GluN	862	98	42.0	1.1	20.5	2.4
172VaIN	1122	174	46.1	3.8	24.4	4.3
173GInN	774	48	48.6	1.9	15.9	1.2

174AspN	1111	68	36.2	0.3	30.7	1.9
175PheN	978	26	38.0	0.3	25.8	0.7
176LeuN	1040	157	30.1	1.8	34.5	5.6
177AsnN	1104	61	37.5	0.8	29.4	1.8
178GluN	1022	61	38.7	0.7	26.4	1.6
180AspN	1008	107	40.0	1.5	25.2	2.8
181IIeN	865	134	35.8	1.7	24.1	3.9
182AspN	1306	77	39.4	1.5	33.1	2.3
183GluN	948	159	34.2	3.7	27.7	5.5
184IIeN	1217	84	43.2	1.0	28.2	2.1
187IIeN	657	49	49.2	2.1	13.4	1.1
191LeuN	947	76	40.3	0.6	23.5	1.9
192AlaN	1212	94	37.4	1.7	32.4	2.9
193ArgN	1073	138	34.0	0.2	31.6	4.1
196AsnN	1011	63	45.8	4.5	22.1	2.6
197GluN	1105	69	43.8	4.2	25.2	2.9
198LeuN	1274	227	38.1	1.9	33.4	6.2
199GlyN	1024	54	38.7	2.1	26.5	2.0
2001leN	1078	106	44.5	1.1	24.2	2.5
201GInN	1054	68	38.1	2.0	27.7	2.3
202LysN	852	83	36.7	4.3	23.2	3.5
203LeuN	919	89	36.6	1.5	25.1	2.6
205AspN	971	28	40.0	2.5	24.3	1.7
206IleN	1123	146	37.7	1.7	29.8	4.1
207LeuN	1413	171	38.4	2.4	36.8	5.0
213GluN	889	33	41.8	0.8	21.3	0.9
214LeuN	860	51	44.5	4.7	19.3	2.3
215GluN	876	66	37.8	1.1	23.2	1.9
216LysN	841	48	37.6	0.6	22.3	1.3
217IIeN	994	106	34.5	1.6	28.8	3.3
218ThrN	947	99	43.4	1.9	21.8	2.5
219GlyN	645	41	33.5	2.1	19.2	1.7
223AlaN	856	37	39.8	2.4	21.5	1.6
224LeuN	917	59	35.1	1.5	26.2	2.0
225TyrN	679	62	36.9	1.2	18.4	1.8
226LeuN	1661	383	36.0	2.7	46.1	11.2
228LysN	696	39	40.0	1.5	17.4	1.2
229LeuN	865	134	35.8	1.7	24.1	3.9
231GInN	740	54	36.5	1.2	20.3	1.6
250LeuN	1142	227	47.8	2.8	23.9	5.0
252LeuN	946	102	44.6	0.5	21.2	2.3
254TyrN	603	29	41.3	1.9	14.6	1.0
258AspN	976	27	45.6	1.7	21.4	1.0
259ValN	298	101	37.1	2.6	8.0	2.8
260LysN	845	92	36.7	1.4	23.0	2.6
261VaIN	1026	52	45.0	2.4	22.8	1.7
262lleN	904	121	50.9	4.7	17.8	2.9
263LeuN	1031	62	44.5	0.9	23.2	1.5
265TyrN	816	127	38.6	3.1	21.2	3.7
266LeuN	923	87	44.6	2.5	20.7	2.3
267LysN	897	58	41.8	3.5	21.4	2.2
268LysN	1146	51	49.2	0.2	23.3	1.0
269AlaN	982	78	51.6	2.2	19.0	1.7
271 AsnN	1054	66	44.7	0.4	23.6	1.5
273AlaN	803	53	48.8	2.9	16.4	1.5
274TyrN	1206	162	38.7	5.5	31.1	6.1
276LysN	986	101	44.1	1.9	22.4	2.5
277ValN	659	46	39.0	1.1	16.9	1.3
279GlyN	452	44	52.4	4.1	8.6	1.1
282MetN	1074	233	54.1	6.2	19.9	4.9
283ArgN	796	65	52.2	7.3	15.2	2.5
284IIeN	799	88	47.2	1.3	16.9	1.9
285ThrN	926	41	46.5	2.2	19.9	1.3
286VaIN	980	90	46.5	4.6	21.1	2.8
287IleN	1117	181	44.0	2.9	25.4	4.4
288AlaN	1049	207	44.7	4.4	23.5	5.2

2891IeN	761	94	47.4	3.7	16.0	2.3
290MetN	1313	111	51.2	1.4	25.6	2.3
291GluN	911	66	43.7	1.7	20.8	1.7
292AspN	892	104	41.1	2.2	21.7	2.8
293LeuN	803	121	41.1	2.4	19.5	3.1
294AspN	1103	117	44.4	0.3	24.8	2.6
2951IeN	1025	51	45.9	3.4	22.3	2.0
296LeuN	836	83	47.9	2.8	17.5	2.0
297SerN	622	54	41.5	1.6	15.0	1.4
298LysN	1000	68	53.5	1.2	18.7	1.3
300LysN	936	66	52.3	5.2	17.9	2.2
301LysN	503	61	54.0	8.4	9.3	1.8
302PheN	809	85	48.4	2.6	16.7	2.0
305GlyN	410	53	55.5	15.8	7.4	2.3
306IleN	983	42	42.9	1.6	22.9	1.3
307SerN	530	191	43.4	23.5	12.2	7.9
308IleN	856	58	46.0	2.0	18.6	1.5
309AspN	894	29	43.4	1.4	20.6	1.0
310AsnN	743	58	49.4	3.2	15.0	1.5
311AlaN	862	82	41.1	3.2	21.0	2.6
312TyrN	730	39	37.7	2.0	19.3	1.4
313LysN	882	78	43.8	1.3	20.1	1.9
314ValN	972	102	43.6	0.4	22.3	2.3
315AlaN	930	86	39.4	1.3	23.6	2.3
316GluN	1053	56	41.7	2.9	25.3	2.2
317AspN	1040	103	46.3	2.0	22.5	2.4
318LeuN	1173	101	42.6	0.6	27.6	2.4
320ArgN	911	66	43.7	1.7	20.8	1.7
321GluN	899	52	42.3	2.3	21.3	1.7
322LeuN	1038	98	46.2	1.4	22.4	2.2
323LeuN	1233	165	43.4	0.2	28.4	3.8
324VaIN	1072	105	45.1	1.2	23.7	2.4
325ArgN	731	40	49.2	2.1	14.8	1.0
326AspN	604	40	49.5	2.7	12.2	1.1
328ArgN	685	50	37.1	2.1	18.5	1.7
329ArgN	474	49	48.3	2.5	9.8	1.1
331ValN	793	88	48.4	2.2	16.4	2.0
332ArgN	635	124	40.6	5.2	15.6	3.6
333ArgN	741	72	35.7	1.4	20.7	2.2
334IIeN	1062	169	43.4	2.3	24.5	4.1
335GlyN	850	83	48.3	3.2	17.6	2.1
336ValN	824	89	44.2	2.5	18.6	2.3
337LysN	777	57	41.2	0.6	18.8	1.4
339AspN	697	61	45.9	3.2	15.2	1.7

Appendix C: $\mathbf{S}^{2}{ }_{\text {iRED }}$ order parameters from MD simulations of Dbh and $\mathrm{Dbh}_{\mathrm{RKS}(243-245)}$

Residue Number	WT Dbh $35^{\circ} \mathrm{C} \mathrm{S}^{\mathbf{2}}{ }_{\text {iRED }}$	Dbh $_{\text {RKS }}^{243-245)}$ $35^{\circ} \mathrm{C} \mathrm{S}^{2}{ }_{\text {iRED }}$	WT Dbh $50^{\circ} \mathrm{C}$ $\mathrm{S}^{2}{ }^{\text {iRED }}$	Dbh $_{\text {RKS }}^{243-245)}$ $50^{\circ} \mathrm{C} \mathrm{S}^{2}{ }_{\text {iRED }}$
2	0.66	0.69	0.67	0.63
3	0.86	0.89	0.83	0.82
4	0.90	0.89	0.88	0.85
5	0.88	0.90	0.87	0.85
6	0.89	0.92	0.89	0.85
7	0.90	0.92	0.89	0.86
8	0.62	0.86	0.65	0.50
9	0.74	0.56	0.74	0.73
10	0.83	0.83	0.82	0.75
11	0.90	0.92	0.89	0.83
12	0.89	0.89	0.89	0.80
13	0.88	0.86	0.87	0.78
14	0.89	0.90	0.87	0.77
15	0.87	0.91	0.86	0.77
16	0.91	0.91	0.90	0.84
17	0.90	0.90	0.87	0.81
18	0.82	0.87	0.79	0.76
19	0.87	0.86	0.85	0.74
20	0.83	0.84	0.81	0.72
22	0.78	0.84	0.77	0.75
23	0.80	0.86	0.81	0.77
24	0.86	0.89	0.86	0.78
26	0.69	0.69	0.68	0.64
28	0.81	0.83	0.81	0.74
29	0.90	0.91	0.88	0.82
30	0.80	0.87	0.83	0.74
31	0.88	0.89	0.85	0.80
32	0.82	0.83	0.85	0.66
33	0.61	0.56	0.79	0.45
34	0.37	0.38	0.70	0.42
36	0.13	0.08	0.49	0.18
37	0.16	0.14	0.46	0.27
38	0.44	0.14	0.47	0.39
39	0.39	0.11	0.56	0.48
40	0.41	0.35	0.49	0.27
42	0.82	0.57	0.74	0.68
43	0.87	0.87	0.88	0.77
44	0.85	0.87	0.85	0.78
45	0.86	0.89	0.85	0.79
46	0.85	0.88	0.84	0.78
47	0.89	0.92	0.87	0.80
48	0.90	0.92	0.89	0.85
49	0.88	0.89	0.86	0.80
50	0.86	0.89	0.85	0.80
51	0.91	0.92	0.90	0.86
52	0.87	0.90	0.87	0.80
53	0.83	0.84	0.81	0.77
55	0.83	0.85	0.82	0.75
56	0.81	0.79	0.74	0.66
57	0.86	0.88	0.84	0.80
59	0.80	0.83	0.81	0.74
61	0.90	0.90	0.88	0.82
62	0.88	0.89	0.87	0.80
63	0.82	0.84	0.82	0.76
64	0.88	0.90	0.86	0.81
65	0.89	0.89	0.88	0.80
66	0.79	0.81	0.78	0.72
67	0.78	0.82	0.78	0.74
68	0.86	0.86	0.84	0.78

70	0.82	0.81	0.80	0.72
71	0.83	0.84	0.82	0.76
72	0.87	0.87	0.87	0.83
73	0.82	0.83	0.80	0.76
74	0.55	0.63	0.75	0.49
76	0.85	0.87	0.84	0.72
77	0.56	0.57	0.65	0.52
78	0.86	0.89	0.87	0.49
80	0.86	0.89	0.87	0.61
81	0.83	0.91	0.87	0.65
82	0.91	0.92	0.90	0.74
83	0.86	0.91	0.85	0.66
84	0.90	0.91	0.89	0.79
85	0.90	0.92	0.89	0.77
86	0.91	0.92	0.89	0.71
87	0.91	0.91	0.88	0.81
88	0.90	0.90	0.88	0.80
89	0.93	0.93	0.91	0.86
90	0.90	0.91	0.87	0.85
91	0.85	0.87	0.86	0.79
92	0.87	0.89	0.87	0.81
93	0.91	0.91	0.91	0.85
94	0.82	0.85	0.82	0.80
95	0.76	0.78	0.76	0.68
96	0.77	0.76	0.75	0.68
97	0.81	0.70	0.81	0.74
98	0.86	0.79	0.84	0.70
99	0.90	0.88	0.78	0.49
100	0.86	0.86	0.78	0.66
101	0.74	0.87	0.73	0.65
102	0.61	0.75	0.46	0.33
103	0.74	0.86	0.62	0.54
104	0.75	0.87	0.69	0.62
105	0.71	0.89	0.67	0.49
106	0.85	0.92	0.81	0.69
107	0.77	0.94	0.75	0.57
108	0.74	0.90	0.78	0.76
109	0.87	0.91	0.86	0.83
110	0.82	0.87	0.76	0.78
111	0.89	0.88	0.88	0.82
112	0.90	0.91	0.91	0.83
113	0.89	0.89	0.89	0.84
114	0.76	0.79	0.80	0.75
115	0.77	0.79	0.78	0.73
116	0.89	0.91	0.89	0.85
118	0.80	0.81	0.82	0.74
119	0.89	0.85	0.87	0.81
120	0.88	0.85	0.89	0.83
121	0.85	0.85	0.85	0.79
123	0.92	0.92	0.91	0.88
124	0.92	0.93	0.91	0.90
125	0.91	0.92	0.89	0.85
126	0.94	0.93	0.91	0.90
127	0.93	0.93	0.92	0.90
128	0.92	0.93	0.91	0.87
129	0.90	0.91	0.88	0.85
130	0.93	0.93	0.92	0.89
131	0.90	0.91	0.89	0.88
132	0.90	0.91	0.88	0.85
133	0.92	0.91	0.89	0.88
134	0.91	0.91	0.91	0.87
135	0.85	0.85	0.84	0.81
136	0.83	0.83	0.80	0.76
137	0.81	0.78	0.78	0.78
138	0.89	0.89	0.88	0.84
139	0.72	0.62	0.70	0.66
140	0.84	0.86	0.82	0.77
141	0.59	0.89	0.56	0.35
142	0.84	0.88	0.85	0.78
143	0.90	0.92	0.90	0.88

145	0.88	0.88	0.87	0.85
146	0.92	0.93	0.91	0.90
148	0.85	0.86	0.87	0.81
149	0.90	0.92	0.91	0.89
150	0.88	0.89	0.86	0.82
151	0.91	0.93	0.91	0.89
152	0.93	0.94	0.91	0.88
153	0.91	0.92	0.91	0.86
154	0.91	0.92	0.88	0.85
155	0.92	0.94	0.92	0.87
156	0.92	0.93	0.90	0.90
157	0.90	0.92	0.91	0.85
158	0.84	0.87	0.85	0.80
159	0.68	0.69	0.68	0.60
160	0.78	0.82	0.80	0.78
162	0.85	0.85	0.85	0.84
164	0.83	0.85	0.84	0.79
166	0.86	0.88	0.86	0.81
167	0.86	0.89	0.85	0.84
168	0.84	0.86	0.84	0.78
170	0.77	0.80	0.77	0.73
171	0.73	0.75	0.69	0.67
172	0.84	0.86	0.82	0.82
173	0.88	0.89	0.82	0.83
174	0.80	0.83	0.76	0.78
175	0.83	0.85	0.76	0.79
176	0.86	0.86	0.79	0.74
177	0.82	0.86	0.79	0.79
178	0.73	0.78	0.71	0.66
179	0.84	0.86	0.75	0.78
180	0.83	0.87	0.77	0.79
181	0.86	0.83	0.84	0.79
182	0.83	0.78	0.72	0.77
183	0.79	0.76	0.73	0.76
184	0.82	0.83	0.74	0.80
187	0.65	0.75	0.69	0.63
189	0.78	0.81	0.72	0.49
190	0.79	0.81	0.74	0.43
191	0.78	0.80	0.78	0.52
192	0.85	0.87	0.81	0.77
193	0.85	0.87	0.79	0.78
194	0.83	0.88	0.80	0.81
195	0.85	0.87	0.83	0.78
196	0.84	0.88	0.78	0.78
197	0.85	0.88	0.81	0.82
198	0.78	0.82	0.78	0.75
200	0.69	0.73	0.69	0.66
201	0.73	0.76	0.70	0.73
202	0.72	0.77	0.71	0.68
203	0.86	0.89	0.84	0.85
204	0.86	0.89	0.85	0.84
205	0.84	0.89	0.82	0.83
206	0.87	0.89	0.77	0.84
207	0.82	0.86	0.77	0.80
208	0.66	0.70	0.70	0.64
209	0.64	0.66	0.66	0.61
210	0.78	0.81	0.75	0.72
211	0.82	0.86	0.81	0.78
212	0.85	0.86	0.79	0.83
213	0.80	0.83	0.76	0.77
214	0.80	0.84	0.77	0.77
215	0.84	0.89	0.80	0.77
216	0.84	0.88	0.79	0.81
217	0.72	0.76	0.65	0.67
218	0.75	0.80	0.71	0.73
220	0.82	0.87	0.80	0.79
221	0.83	0.86	0.79	0.81
222	0.83	0.90	0.78	0.80
223	0.88	0.91	0.86	0.85
224	0.88	0.93	0.84	0.88

225	0.87	0.92	0.80	0.86
226	0.88	0.92	0.85	0.86
227	0.87	0.92	0.84	0.85
228	0.88	0.92	0.83	0.87
229	0.86	0.92	0.81	0.87
230	0.88	0.92	0.83	0.86
231	0.84	0.89	0.73	0.85
232	0.85	0.91	0.67	0.83
233	0.61	0.71	0.61	0.64
234	0.55	0.61	0.40	0.54
235	0.47	0.77	0.38	0.73
236	0.44	0.58	0.55	0.60
238	0.76	0.79	0.80	0.72
239	0.71	0.76	0.70	0.48
240	0.67	0.83	0.63	0.57
241	0.45	0.46	0.39	0.47
242	0.53	0.73	0.41	0.33
243	0.50	0.77	0.47	0.44
244	0.44	0.71	0.46	0.50
245		0.53	0.23	0.64
246	0.62	0.81	0.55	0.67
248	0.83	0.78	0.69	0.64
249	0.81	0.76	0.66	0.66
250	0.79	0.75	0.72	0.63
251	0.79	0.83	0.68	0.71
252	0.81	0.84	0.67	0.68
254	0.74	0.79	0.60	0.66
255	0.72	0.78	0.60	0.53
256	0.78	0.81	0.65	0.53
257	0.80	0.82	0.62	0.62
258	0.81	0.80	0.71	0.66
259	0.80	0.82	0.69	0.71
260	0.81	0.79	0.66	0.63
261	0.79	0.80	0.67	0.62
262	0.78	0.78	0.71	0.69
263	0.84	0.86	0.70	0.62
265	0.82	0.89	0.74	0.62
266	0.84	0.87	0.77	0.70
267	0.89	0.89	0.76	0.69
268	0.83	0.88	0.73	0.55
269	0.84	0.87	0.72	0.70
270	0.85	0.88	0.78	0.61
271	0.88	0.88	0.70	0.64
272	0.81	0.84	0.69	0.53
273	0.81	0.81	0.73	0.58
274	0.87	0.82	0.74	0.60
275	0.82	0.81	0.60	0.52
276	0.75	0.67	0.45	0.62
277	0.74	0.60	0.59	0.47
278	0.81	0.68	0.57	0.51
280	0.57	0.62	0.74	0.39
282	0.84	0.84	0.76	0.64
283	0.79	0.86	0.73	0.68
284	0.83	0.87	0.78	0.68
285	0.83	0.88	0.70	0.74
286	0.81	0.84	0.76	0.66
287	0.85	0.85	0.72	0.77
288	0.81	0.86	0.72	0.67
289	0.82	0.79	0.75	0.66
290	0.85	0.88	0.72	0.71
291	0.84	0.85	0.71	0.65
292	0.77	0.75	0.65	0.65
293	0.79	0.62	0.55	0.60
294	0.67	0.66	0.64	0.46
295	0.73	0.71	0.73	0.53
296	0.78	0.80	0.71	0.63
297	0.83	0.83	0.74	0.73
298	0.84	0.88	0.70	0.68
300	0.81	0.86	0.72	0.65
301	0.82	0.84	0.67	0.70

302	0.76	0.81	0.68	0.61
303	0.75	0.84	0.63	0.53
304	0.71	0.68	0.71	0.49
306	0.69	0.84	0.69	0.55
307	0.79	0.83	0.74	0.54
308	0.82	0.85	0.71	0.71
309	0.76	0.81	0.63	0.60
310	0.63	0.63	0.73	0.57
311	0.83	0.85	0.73	0.66
312	0.83	0.84	0.70	0.69
313	0.75	0.81	0.69	0.52
314	0.78	0.83	0.75	0.55
315	0.82	0.86	0.76	0.72
316	0.83	0.89	0.73	0.60
317	0.79	0.86	0.70	0.51
318	0.81	0.83	0.74	0.65
319	0.86	0.87	0.77	0.69
320	0.83	0.88	0.68	0.62
321	0.77	0.77	0.67	0.54
322	0.75	0.78	0.66	0.65
323	0.80	0.76	0.60	0.56
324	0.69	0.72	0.36	0.48
325	0.67	0.65	0.33	0.49
326	0.67	0.61	0.32	0.49
327	0.60	0.51	0.44	0.44
328	0.68	0.72	0.33	0.53
329	0.61	0.68	0.64	0.47
330	0.80	0.81	0.49	0.61
331	0.81	0.85	0.70	0.60
332	0.83	0.84	0.72	0.67
333	0.85	0.83	0.72	0.66
334	0.82	0.84	0.73	0.68
336	0.84	0.86	0.75	0.67
337	0.83	0.85	0.70	0.75
338	0.82	0.85	0.76	0.66
339	0.82	0.88	0.77	0.68
340	0.90	0.90	0.72	0.65
341	0.81	0.81	0.63	0.65
342	0.84	0.81	0.51	0.55
343	0.83	0.79	0.50	0.50
344	0.78	0.74	0.30	0.58
345	0.51	0.38	0.36	0.48
346	0.78	0.68	0.35	0.29
347	0.64	0.70	0.29	0.31
348	0.57	0.72	0.26	0.30
349	0.58	0.48	0.22	0.22
350	0.32	0.66	0.27	0.33
351	0.32	0.68	0.32	0.28
352	0.32	0.72	0.32	0.25
353	0.40	0.73	0.26	0.24
354	0.21	0.66	0.18	0.11
312	0.83	0.84	0.70	0.69
313	0.75	0.81	0.69	0.52
314	0.78	0.83	0.75	0.55
315	0.82	0.86	0.76	0.72
316	0.83	0.89	0.73	0.60
317	0.79	0.86	0.70	0.51
318	0.81	0.83	0.74	0.65
319	0.86	0.87	0.77	0.69
320	0.83	0.88	0.68	0.62
321	0.77	0.77	0.67	0.54
322	0.75	0.78	0.66	0.65
323	0.80	0.76	0.60	0.56
324	0.69	0.72	0.36	0.48
325	0.67	0.65	0.33	0.49
326	0.67	0.61	0.32	0.49
327	0.60	0.51	0.44	0.44
328	0.68	0.72	0.33	0.53
329	0.61	0.68	0.64	0.47
330	0.80	0.81	0.49	0.61

	0.81	0.85	0.70	0.60
331	0.83	0.84	0.72	0.67
332	0.85	0.83	0.72	0.66
333	0.82	0.84	0.73	0.67
334	0.84	0.86	0.75	0.75
336	0.83	0.85	0.70	0.66
337	0.82	0.85	0.76	0.68
338	0.82	0.88	0.77	0.65
339	0.90	0.90	0.72	0.55
340	0.81	0.81	0.63	0.50
341	0.84	0.81	0.51	0.58
342	0.83	0.79	0.50	0.48
343	0.78	0.74	0.30	0.29
344	0.51	0.38	0.36	0.31
345	0.78	0.68	0.35	0.22
346	0.64	0.70	0.29	0.33
347	0.57	0.72	0.22	0.28
348	0.58	0.66	0.27	0.25
349	0.32	0.68	0.32	0.24
351	0.32	0.72	0.32	0.11
352	0.32	0.73	0.26	
353	0.40	0.66	0.18	

Appendix D: Hydrogen-bond analysis from MD simulations of Dbh

*Note: This includes only the donor-acceptors pairs that meet the hydrogen bond criterion (within $3.5 \AA$ and 135° angle) for at least 10% of the frames in each simulation
$35^{\circ} \mathrm{C}, 500 \mathrm{~ns}$ simulation of Dbh

\# Lifetimes	Max Lifetime	Avg. Lifetime	\# Frames	$\begin{aligned} & \text { \% } \\ & \text { Occupancy } \end{aligned}$	Donor-Acceptor Pair
1188	505	40.521	48139	97.29\%	ALA_146@O-VAL_3@N-H
407	1215	120.4202	49011	99.05\%	LEU_109@O-ILE_4@N-H
1004	442	48.2361	48429	97.88\%	GLY_144@O-PHE_5@N-H
2812	326	12.734	35808	72.37\%	ALA_107@O-VAL_6@N-H
1162	915	41.4957	48218	97.45\%	THR_142@O-ASP_7@N-H
3125	23	1.6458	5143	10.39\%	VAL_6@O-PHE_8@N-H
3484	157	5.244	18270	36.92\%	ASP_105@O-PHE_8@N-H
3231	62	3.4751	11228	22.69\%	ASP_7@O-ASP_9@N-H
8062	54	3.1569	25451	51.44\%	PHE_8@O-PHE_11@N-H
10934	55	2.3303	25480	51.50\%	TYR_10@O-ALA_13@N-H
10052	38	3.1339	31502	63.67\%	TYR_10@O-GLN_14@N-H
7166	9	1.3302	9532	19.26\%	PHE_11@O-GLN_14@N-H
4383	348	10.0319	43970	88.87\%	PHE_11@O-VAL_15@N-H
5425	90	7.5228	40811	82.48\%	PHE_12@O-GLU_16@N-H
9584	42	3.0654	29379	59.38\%	ALA_13@O-GLU_17@N-H
4096	12	1.2793	5240	10.59\%	GLN_14@O-GLU_17@N-H
8862	51	2.8187	24979	50.48\%	GLN_14@O-VAL_18@N-H
7403	42	1.864	13799	27.89\%	VAL_15@O-VAL_18@N-H
5437	142	7.8389	42620	86.14\%	VAL_15@O-LEU_19@N-H
10780	22	1.8455	19894	40.21\%	GLU_16@O-ASN_20@N-H
6200	18	1.4002	8681	17.54\%	GLU_17@O-ASN_20@N-H
3453	156	12.1445	41935	84.75\%	ASN_20@O-TYR_23@N-H
7867	40	4.157	32703	66.09\%	PRO_21@O-LYS_24@N-H
7914	40	3.8884	30773	62.19\%	TYR_23@O-LYS_26@N-H
1339	438	35.9022	48073	97.16\%	ILE_72@O-VAL_29@N-H
3282	602	13.8041	45305	91.56\%	THR_45@O-VAL_30@N-H
2786	256	16.6378	46353	93.68\%	VAL_74@O-SER_31@N-H
1826	225	25.9014	47296	95.59\%	ALA_42@O-VAL_32@N-H
3348	116	8.0502	26952	54.47\%	SER_40@O-SER_34@N-H
2738	55	3.6308	9941	20.09\%	GLY_35@O-THR_37@N-H
7458	39	2.269	16922	34.20\%	THR_37@O-SER_40@N-H
4244	161	9.3827	39820	80.48\%	VAL_32@O-ALA_42@N-H
605	1068	80.7388	48847	98.72\%	MET_59@O-VAL_43@N-H
4740	107	9.2888	44029	88.99\%	VAL_30@O-ALA_44@N-H
5478	292	7.5329	41265	83.40\%	VAL_30@O-THR_45@N-H
850	604	57.16	48586	98.20\%	LEU_28@O-ASN_47@N-H
4461	9	1.1946	5329	10.77\%	ASN_47@O-ALA_50@N-H
1398	338	34.3276	47990	96.99\%	ASN_47@O-ARG_51@N-H
4665	135	9.2658	43225	87.36\%	TYR_48@O-LYS_52@N-H
9487	35	1.8615	17660	35.69\%	GLU_49@O-LEU_53@N-H
8643	74	1.6578	14328	28.96\%	ALA_50@O-LEU_53@N-H
7545	11	1.4869	11219	22.67\%	ALA 50@O-GLY_54@N-H
10581	42	2.7562	29163	58.94\%	ARG_51@O-GLY_54@N-H
6506	86	5.9175	38499	77.81\%	ALA_50@O-VAL_55@N-H
3973	121	11.2112	44542	90.02\%	VAL_43@O-GLY_58@N-H
9537	17	1.6655	15884	32.10\%	LYS_56@O-MET_59@N-H
7121	319	5.0232	35770	72.29\%	GLY_41@O-ILE_61@N-H
10433	14	1.7379	18131	36.64\%	PRO_60@O-LYS_63@N-H
2740	170	16.9255	46376	93.73\%	PRO_60@O-ALA_64@N-H
560	895	87.2982	48887	98.80\%	ILE_61@O-MET_65@N-H
8913	16	1.6247	14481	29.27\%	ILE_62@O-GLN_66@N-H
10717	48	1.942	20812	42.06\%	LYS_63@O-GLN_66@N-H
8330	49	4.1579	34635	70.00\%	LYS_63@O-ILE_67@N-H
6681	15	1.4308	9559	19.32\%	ALA_64@O-ILE_67@N-H
2255	295	20.8475	47011	95.01\%	ALA_64@O-ALA_68@N-H
11743	36	2.4281	28513	57.63\%	ALA_68@O-ALA_71@N-H
1184	532	40.3226	47742	96.49\%	PRO_27@O-ILE_72@N-H

5012	148	7.4607	37393	75.57\%	VAL_29@O-VAL_74@N-H
11208	26	2.5545	28631	57.86\%	SER_31@O-MET_76@N-H
5591	20	1.8481	10333	20.88\%	MET_76@O-LYS_78@N-H
8715	92	4.0893	35638	72.03\%	ARG_77@O-ILE_80@N-H
7606	24	1.7782	13525	27.33\%	ARG_77@O-TYR_81@N-H
3349	59	1.5563	5212	10.53\%	LYS_78@O-TYR_81@N-H
2419	327	18.7565	45372	91.70\%	LYS_78@O-GLU_82@N-H
9681	33	2.9771	28821	58.25\%	PRO_79@O-ALA_83@N-H
3889	164	10.3474	40241	81.33\%	ILE_80@O-PHE_84@N-H
2601	264	16.6817	43389	87.69\%	TYR_81@O-SER_85@N-H
2595	325	16.9187	43904	88.73\%	GLU_82@O-ASN_86@N-H
6810	138	5.7206	38957	78.73\%	ALA_83@O-ARG_87@N-H
4430	181	9.7079	43006	86.92\%	PHE_84@O-ILE_88@N-H
1237	1051	38.7437	47926	96.86\%	SER_85@O-MET_89@N-H
4569	180	9.5835	43787	88.50\%	ASN_86@O-ASN_90@N-H
8720	39	3.1444	27419	55.42\%	ARG_87@O-LEU_91@N-H
5348	40	1.8407	9844	19.90\%	ILE_88@O-LEU_91@N-H
2713	244	16.9598	46012	92.99\%	ILE_88@O-LEU_92@N-H
2842	372	16.1038	45767	92.50\%	MET_89@O-ASN_93@N-H
8188	28	2.0561	16835	34.02\%	ASN_90@O-LYS_94@N-H
8724	38	1.9411	16934	34.22\%	LEU_91@O-LYS_94@N-H
6171	23	1.7751	10954	22.14\%	LEU_91@O-HIE_95@N-H
9563	38	2.47	23621	47.74\%	LEU_92@O-HIE_95@N-H
7918	69	4.4554	35278	71.30\%	LEU_92@O-ALA_96@N-H
2025	402	20.8247	42170	85.23\%	ASP_110@O-ASP_97@N-H
741	612	65.6559	48651	98.33\%	TYR_108@O-GLU_100@N-H
2618	322	11.2074	29341	59.30\%	LYS_241@O-VAL_101@N-H
5478	56	2.5694	14075	28.45\%	GLU_106@O-ALA_102@N-H
6377	45	3.6784	23457	47.41\%	GLU_106@O-SER_103@N-H
7987	177	4.1316	32999	66.69\%	SER_103@O-GLU_106@N-H
4907	280	4.1973	20596	41.63\%	VAL_6@O-ALA_107@N-H
525	837	65.8952	34595	69.92\%	GLU_100@O-TYR_108@N-H
2609	63	3.524	9194	18.58\%	GLU_106@O-TYR_108@N-H
1135	520	42.5207	48261	97.54\%	ILE_4@O-LEU_109@N-H
2229	344	20.5895	45894	92.75\%	LYS_98@O-ASP_110@N-H
7150	163	5.0649	36214	73.19\%	ILE_2@O-VAL_111@N-H
7931	38	1.7324	13740	27.77\%	VAL_111@O-LYS_114@N-H
8853	64	3.8677	34241	69.20\%	VAL_111@O-VAL_115@N-H
7301	13	1.418	10353	20.92\%	THR_112@O-VAL_115@N-H
9858	23	2.2697	22375	45.22\%	ASN_113@O-GLU_116@N-H
7452	78	5.2322	38990	78.80\%	THR_112@O-GLY_117@N-H
7635	60	5.1395	39240	79.31\%	VAL_115@O-ASN_118@N-H
6394	14	1.3924	8903	17.99\%	ASN_118@O-ASN_121@N-H
9714	38	3.2453	31525	63.71\%	ASN_118@O-GLY_122@N-H
5022	342	8.3598	41983	84.85\%	PHE_119@O-ILE_123@N-H
7647	76	4.0449	30931	62.51\%	GLU_120@O-GLU_124@N-H
7068	82	5.5805	39443	79.72\%	ASN_121@O-LEU_125@N-H
2608	206	17.8972	46676	94.33\%	GLY_122@O-ALA_126@N-H
2157	255	21.8215	47069	95.13\%	ILE_123@O-ARG_127@N-H
3416	221	13.3451	45587	92.13\%	GLU_124@O-LYS_128@N-H
697	1245	69.9555	48759	98.54\%	LEU_125@O-ILE_129@N-H
2931	313	15.5677	45629	92.22\%	ALA_126@O-LYS_130@N-H
3607	281	12.4303	44836	90.62\%	ARG_127@O-GLN_131@N-H
3774	507	11.9014	44916	90.78\%	LYS_128@O-GLU_132@N-H
4084	204	10.8244	44207	89.34\%	ILE_129@O-ILE_133@N-H
8719	89	3.2407	28256	57.11\%	LYS_130@O-LEU_134@N-H
6944	107	5.6326	39113	79.05\%	GLN_131@O-GLU_135@N-H
1520	413	31.3125	47595	96.19\%	GLU_132@O-LYS_136@N-H
9236	110	3.5225	32534	65.75\%	ILE_133@O-GLU_137@N-H
4423	21	1.3366	5912	11.95\%	ILE_133@O-LYS_138@N-H
5262	19	1.5785	8306	16.79\%	ILE_133@O-ILE_139@N-H
4712	11	1.3162	6202	12.53\%	GLU_137@O-ILE_139@N-H
849	489	11.371	9654	19.51\%	ASP_7@O-THR_142@N-H
4043	180	10.9644	44329	89.59\%	GLY_163@O-VAL_143@N-H
1726	474	27.6025	47642	96.29\%	PHE_5@O-GLY_144@N-H
7203	123	5.5531	39999	80.84\%	GLY_165@O-VAL_145@N-H
1171	610	41.1401	48175	97.36\%	VAL_3@O-ALA_146@N-H
6316	69	6.5249	41211	83.29\%	ASN_148@O-ALA_152@N-H
6661	111	5.0459	33611	67.93\%	LYS_149@O-LYS_153@N-H
3320	240	13.4961	44807	90.56\%	ILE_150@O-ILE_154@N-H

915	522	52.9814	48478	97.98\%	LEU_151@O-ILE_155@N-H
10559	54	2.9208	30841	62.33\%	ALA_152@O-ALA_156@N-H
2191	316	20.885	45759	92.48\%	LYS_153@O-ASP_157@N-H
7060	153	5.2021	36727	74.23\%	ILE_154@O-LYS_158@N-H
6924	17	1.575	10905	22.04\%	ILE_155@O-SER_159@N-H
10114	40	2.7911	28229	57.05\%	ALA_156@O-SER_159@N-H
6778	45	2.8184	19103	38.61\%	ALA_156@O-LYS_160@N-H
5806	15	1.7375	10088	20.39\%	ASP_157@O-LYS_160@N-H
4596	13	1.5907	7311	14.78\%	SER_159@O-GLY_163@N-H
3396	371	13.2709	45068	91.09\%	VAL_143@O-GLY_165@N-H
7268	57	5.0645	36809	74.39\%	VAL_145@O-ILE_167@N-H
4802	192	8.8817	42650	86.20\%	ARG_168@O-GLU_171@N-H
6994	33	1.6538	11567	23.38\%	ARG_168@O-VAL_172@N-H
5324	13	1.284	6836	13.82\%	PRO_169@O-VAL_172@N-H
6278	25	1.6314	10242	20.70\%	GLU_171@O-ASP_174@N-H
9058	76	3.6006	32614	65.91\%	GLU_171@O-PHE_175@N-H
1789	311	26.1878	46850	94.69\%	VAL_172@O-LEU_176@N-H
7859	85	3.4446	27071	54.71\%	GLN_173@O-ASN_177@N-H
4681	33	1.8458	8640	17.46\%	ASP_174@O-ASN_177@N-H
8144	58	4.3238	35213	71.17\%	PHE_175@O-GLU_178@N-H
7256	241	2.4613	17859	36.09\%	PHE_175@O-LEU_179@N-H
8301	47	1.9275	16000	32.34\%	LEU_176@O-LEU_179@N-H
2573	541	17.0626	43902	88.73\%	GLN_201@O-ILE_181@N-H
5816	124	5.7044	33177	67.05\%	ASP_180@O-GLU_183@N-H
10713	29	2.4763	26529	53.62\%	ILE_181@O-ILE_184@N-H
4130	37	1.8191	7513	15.18\%	ILE_184@O-ILE_187@N-H
5921	25	1.5661	9273	18.74\%	GLY_188@O-LEU_191@N-H
3127	255	14.599	45651	92.26\%	GLY_188@O-ALA_192@N-H
5696	125	7.1419	40680	82.22\%	SER_189@O-ARG_193@N-H
9406	54	3.2077	30172	60.98\%	VAL_190@O-ARG_194@N-H
4251	156	10.4554	44446	89.83\%	LEU_191@O-LEU_195@N-H
5442	133	7.62	41468	83.81\%	ALA_192@O-ASN_196@N-H
7449	58	3.383	25200	50.93\%	ARG_193@O-GLU_197@N-H
5970	35	2.0022	11953	24.16\%	ARG_194@O-GLU_197@N-H
8270	27	2.2169	18334	37.05\%	ARG_194@O-LEU_198@N-H
8432	44	1.856	15650	31.63\%	LEU_195@O-LEU_198@N-H
9725	37	3.6056	35064	70.87\%	ASN_196@O-GLY_199@N-H
5261	112	7.865	41378	83.63\%	LEU_195@O-ILE_200@N-H
1168	567	38.4444	44903	90.75\%	LEU_179@O-LEU_203@N-H
5244	106	8.1766	42878	86.66\%	LYS_202@O-ASP_205@N-H
6976	173	5.3661	37434	75.66\%	LEU_203@O-ILE_206@N-H
8566	63	3.7582	32193	65.06\%	ARG_204@O-LEU_207@N-H
7561	100	4.2477	32117	64.91\%	ASP_205@O-SER_208@N-H
4827	105	5.5045	26570	53.70\%	ASP_205@O-LYS_209@N-H
4410	47	2.4757	10918	22.07\%	ILE_206@O-LYS_209@N-H
9948	65	2.8514	28366	57.33\%	ASN_210@O-GLU_213@N-H
8277	115	3.5074	29031	58.67\%	ASN_210@O-LEU_214@N-H
4200	22	1.4352	6028	12.18\%	TYR_211@O-LEU_214@N-H
2039	373	22.8901	46673	94.33\%	TYR_211@O-GLU_215@N-H
7794	79	3.2261	25144	50.82\%	ASN_212@O-LYS_216@N-H
4007	21	1.4567	5837	11.80\%	GLU_213@O-LYS_216@N-H
7388	70	3.0288	22377	45.23\%	GLU_213@O-ILE_217@N-H
7402	28	1.718	12717	25.70\%	LEU_214@O-ILE_217@N-H
4382	127	9.8791	43290	87.49\%	LEU_214@O-THR_218@N-H
8819	98	3.8626	34064	68.85\%	GLU_215@O-GLY_219@N-H
2525	188	18.478	46657	94.30\%	GLY_219@O-ALA_223@N-H
3068	258	14.5512	44643	90.23\%	LYS_220@O-LEU_224@N-H
6254	111	6.6337	41487	83.85\%	ALA_221@O-TYR_225@N-H
2367	491	19.7444	46735	94.45\%	LYS_222@O-LEU_226@N-H
2344	176	20.026	46941	94.87\%	ALA_223@O-LEU_227@N-H
1540	298	31.0325	47790	96.59\%	LEU_224@O-LYS_228@N-H
4573	110	9.6035	43917	88.76\%	TYR_225@O-LEU_229@N-H
1843	299	25.7721	47498	96.00\%	LEU_226@O-ALA_230@N-H
4116	144	10.1511	41782	84.44\%	LEU_227@O-GLN_231@N-H
6069	87	6.2829	38131	77.07\%	LEU_229@O-ASN_232@N-H
3612	210	10.4023	37573	75.94\%	LYS_228@O-LYS_233@N-H
3062	21	1.9745	6046	12.22\%	LYS_228@O-TYR_234@N-H
4111	151	3.7397	15374	31.07\%	ILE_99@O-LYS_241@N-H
2795	61	2.9256	8177	16.53\%	GLU_239@O-LYS_241@N-H
2384	525	6.5642	15649	31.63\%	ILE_341@O-SER_242@N-H

2150	465	8.8451	19017	38.43\%	VAL_101@O-LYS_243@N-H
2724	275	13.1028	35692	72.14\%	LEU_338@O-HIE_246@N-H
3123	192	14.6987	45904	92.77\%	VAL_336@O-ARG_248@N-H
391	1063	125.4604	49055	99.14\%	ILE_334@O-LEU_250@N-H
1076	535	44.8132	48219	97.45\%	ARG_332@O-LEU_252@N-H
5029	194	7.3864	37146	75.07\%	VAL_331@O-THR_256@N-H
4017	122	11.0697	44467	89.87\%	ASP_258@O-VAL_261@N-H
7483	88	5.0843	38046	76.89\%	ASP_258@O-ILE_262@N-H
1155	450	41.4684	47896	96.80\%	VAL_259@O-LEU_263@N-H
7417	37	1.8738	13898	28.09\%	VAL_261@O-TYR_265@N-H
3683	142	12.3152	45357	91.67\%	ILE_262@O-LEU_266@N-H
873	458	55.6334	48568	98.16\%	LEU_263@O-LYS_267@N-H
4470	114	9.8993	44250	89.43\%	PRO_264@O-LYS_268@N-H
3278	148	13.9433	45706	92.37\%	TYR_265@O-ALA_269@N-H
1859	341	25.5557	47508	96.02\%	LEU_266@O-ILE_270@N-H
1866	497	25.2964	47203	95.40\%	LYS_267@O-ASN_271@N-H
2461	347	18.9045	46524	94.03\%	LYS_268@O-GLU_272@N-H
7119	110	5.536	39411	79.65\%	ALA_269@O-ALA_273@N-H
176	3196	280.0341	49286	99.61\%	ILE_270@O-TYR_274@N-H
7630	83	5.0484	38519	77.85\%	ASN_271@O-ASN_275@N-H
3244	31	1.8305	5938	12.00\%	GLU_272@O-LYS_276@N-H
5560	164	7.1293	39639	80.11\%	ALA_273@O-LYS_276@N-H
8419	85	3.9797	33505	67.72\%	ALA_273@O-VAL_277@N-H
8156	21	2.0249	16515	33.38\%	VAL_277@O-GLY_279@N-H
7634	93	2.6551	20269	40.96\%	ILE_342@O-ILE_280@N-H
6665	75	2.0104	13399	27.08\%	LYS_345@O-ILE_280@N-H
9859	66	3.2336	31880	64.43\%	ASP_339@O-MET_282@N-H
8337	21	1.5699	13088	26.45\%	ASN_340@O-MET_282@N-H
9256	56	3.8499	35635	72.02\%	ASP_339@O-ARG_283@N-H
1269	346	37.9046	48101	97.21\%	LYS_300@O-ILE_284@N-H
2642	232	17.6366	46596	94.17\%	LYS_337@O-THR_285@N-H
1285	460	37.4553	48130	97.27\%	LYS_298@O-VAL_286@N-H
741	625	65.7341	48709	98.44\%	GLY_335@O-ILE_287@N-H
508	685	96.3524	48947	98.92\%	LEU_296@O-ALA_288@N-H
1066	450	45.3715	48366	97.75\%	ARG_333@O-ILE_289@N-H
461	1130	106.1692	48944	98.92\%	ASP_294@O-MET_290@N-H
3430	361	13.2426	45422	91.80\%	ASN_330@O-GLU_291@N-H
8628	70	4.1633	35921	72.60\%	MET_290@O-LEU_293@N-H
1025	556	47.2283	48409	97.84\%	ALA_288@O-LEU_296@N-H
1092	584	44.2152	48283	97.58\%	VAL_286@O-LYS_298@N-H
784	601	62.0523	48649	98.32\%	ILE_284@O-LYS_300@N-H
2598	202	17.9126	46537	94.05\%	MET_282@O-PHE_302@N-H
1838	455	25.8107	47440	95.88\%	PRO_281@O-ILE_306@N-H
7575	73	2.935	22233	44.93\%	SER_307@O-ASN_310@N-H
3842	211	11.5643	44430	89.80\%	SER_307@O-ALA_311@N-H
5214	170	4.8506	25291	51.11\%	ILE_308@O-TYR_312@N-H
5705	39	2.4535	13997	28.29\%	ASP_309@O-LYS_313@N-H
4760	12	1.3609	6478	13.09\%	ASN_310@O-LYS_313@N-H
3323	305	13.3226	44271	89.47\%	ASN_310@O-VAL_314@N-H
4456	171	9.4253	41999	84.88\%	ALA_311@O-ALA_315@N-H
7211	105	4.1035	29590	59.80\%	TYR_312@O-GLU_316@N-H
4029	13	1.2946	5216	10.54\%	LYS_313@O-GLU_316@N-H
6758	130	2.7405	18520	37.43\%	LYS_313@O-ASP_317@N-H
4105	7	1.2129	4979	10.06\%	VAL_314@O-ASP_317@N-H
5830	179	7.071	41224	83.32\%	VAL_314@O-LEU_318@N-H
4286	106	10.3385	44311	89.56\%	ALA_315@O-LEU_319@N-H
5852	264	6.9725	40803	82.47\%	GLU_316@O-ARG_320@N-H
7479	123	4.8461	36244	73.25\%	ASP_317@O-GLU_321@N-H
8192	81	4.2063	34458	69.64\%	LEU_318@O-LEU_322@N-H
4060	20	1.499	6086	12.30\%	LEU_319@O-LEU_322@N-H
2553	317	17.698	45183	91.32\%	LEU_319@O-LEU_323@N-H
5903	153	5.1481	30389	61.42\%	ARG_320@O-VAL_324@N-H
4401	24	1.7866	7863	15.89\%	GLU_321@O-VAL_324@N-H
4315	40	2.2137	9552	19.31\%	GLU_321@O-ARG_325@N-H
7230	51	2.0035	14485	29.28\%	LEU_322@O-ARG_325@N-H
5817	30	2.3801	13845	27.98\%	LEU_322@O-ASP_326@N-H
7686	22	1.9863	15267	30.86\%	LEU_323@O-ASP_326@N-H
4368	171	8.413	36748	74.27\%	ASP_326@O-ARG_328@N-H
752	75	7.6476	5751	11.62\%	LYS_327@O-ARG_329@N-H
2926	247	15.7833	46182	93.34\%	THR_256@O-VAL_331@N-H

962	1190	50.2214	48313	97.64\%	ILE_289@O-ARG_332@N-H
4962	208	8.605	42698	86.30\%	ILE_289@O-ARG_333@N-H
342	959	143.6199	49118	99.27\%	LEU_250@O-ILE_334@N-H
8445	51	4.4889	37909	76.62\%	ILE_287@O-GLY_335@N-H
699	480	69.7411	48749	98.52\%	ARG_248@O-VAL_336@N-H
910	484	53.3231	48524	98.07\%	THR_285@O-LYS_337@N-H
784	600	62.0625	48657	98.34\%	HIE_246@O-LEU_338@N-H
2352	253	19.8486	46684	94.35\%	ARG_283@O-ASP_339@N-H
885	918	54.5153	48246	97.51\%	ILE_280@O-ILE_342@N-H
1466	103	3.6357	5330	10.77\%	ASN_240@O-ILE_343@N-H
4465	157	7.9823	35641	72.03\%	ASN_278@O-ASN_344@N-H
7346	45	1.7985	13212	26.70\%	ILE_342@O-LYS_345@N-H
6942	72	2.1538	14952	30.22\%	ILE_343@O-LYS_345@N-H
5209	13	1.7015	8863	17.91\%	ASN_344@O-ASN_347@N-H
3816	22	2.0503	7824	15.81\%	ASP_350@O-PHE_352@N-H
1908	195	8.414	16054	32.45\%	LYS_276@O-ASP_353@N-H
$50^{\circ} \mathrm{C}, 500 \mathrm{~ns}$ simulation of Dbh					
\# Lifetimes	Max Lifetime	Avg. Lifetime	\# Frames	$\begin{aligned} & \text { \% } \\ & \text { Occupancy } \end{aligned}$	Donor-Acceptor Pair
1280	670	37.9898	48627	97.25\%	ALA_146@O-VAL_3@N-H
368	989	134.8587	49628	99.26\%	LEU_109@O-ILE_4@N-H
1032	629	47.4157	48933	97.87\%	GLY_144@O-PHE_5@N-H
4852	347	8.0387	39004	78.01\%	ALA_107@O-VAL_6@N-H
1334	389	36.4123	48574	97.15\%	THR_142@O-ASP_7@N-H
3240	102	4.0966	13273	26.55\%	ASP_105@O-PHE_8@N-H
4130	46	2.7242	11251	22.50\%	ASP_7@O-ASP_9@N-H
9254	53	3.0039	27798	55.60\%	PHE_8@O-PHE_11@N-H
11207	42	2.1991	24645	49.29\%	TYR_10@O-ALA_13@N-H
10593	54	2.9317	31055	62.11\%	TYR_10@O-GLN_14@N-H
7559	10	1.351	10212	20.42\%	PHE_11@O-GLN_14@N-H
5272	228	8.1959	43209	86.42\%	PHE_11@O-VAL_15@N-H
5808	94	7.1865	41739	83.48\%	PHE_12@O-GLU_16@N-H
9837	47	3.0845	30342	60.68\%	ALA_13@O-GLU_17@N-H
4082	12	1.2626	5154	10.31\%	GLN_14@O-GLU_17@N-H
8586	42	2.8452	24429	48.86\%	GLN_14@O-VAL_18@N-H
7599	55	2.0371	15480	30.96\%	VAL_15@O-VAL_18@N-H
6314	76	6.5969	41653	83.31\%	VAL_15@O-LEU_19@N-H
10675	20	1.8004	19219	38.44\%	GLU_16@O-ASN_20@N-H
6281	8	1.4117	8867	17.73\%	GLU_17@O-ASN_20@N-H
4191	123	10.3737	43476	86.95\%	ASN_20@O-TYR_23@N-H
8993	40	3.5301	31746	63.49\%	PRO_21@O-LYS_24@N-H
8767	50	3.3055	28979	57.96\%	TYR_23@O-LYS_26@N-H
1559	282	31.0359	48385	96.77\%	ILE_72@O-VAL_29@N-H
1026	407	47.7037	48944	97.89\%	THR_45@O-VAL_30@N-H
671	877	73.4814	49306	98.61\%	VAL_74@O-SER_31@N-H
1780	287	26.9826	48029	96.06\%	ALA_42@O-VAL_32@N-H
4841	44	3.1535	15266	30.53\%	ARG_36@O-LYS_38@N-H
3323	134	8.4141	27960	55.92\%	THR_37@O-SER_40@N-H
801	511	61.392	49175	98.35\%	MET_59@O-VAL_43@N-H
4586	91	9.7656	44785	89.57\%	VAL_30@O-ALA_44@N-H
10313	36	3.2206	33214	66.43\%	VAL_30@O-THR_45@N-H
1075	540	45.4828	48894	97.79\%	LEU_28@O-ASN_47@N-H
4818	7	1.1812	5691	11.38\%	ASN_47@O-ALA_50@N-H
2086	225	22.8993	47768	95.54\%	ASN_47@O-ARG_51@N-H
4958	193	8.6668	42970	85.94\%	TYR_48@O-LYS_52@N-H
9023	20	1.9705	17780	35.56\%	GLU_49@O-LEU_53@N-H
8833	40	1.7071	15079	30.16\%	ALA_50@O-LEU_53@N-H
7290	9	1.4379	10482	20.96\%	ALA_50@O-GLY_54@N-H
10684	28	2.8361	30301	60.60\%	ARG_51@O-GLY_54@N-H
7096	82	5.3875	38230	76.46\%	ALA_50@O-VAL_55@N-H
4546	87	9.6447	43845	87.69\%	VAL_43@O-GLY_58@N-H
9457	14	1.6111	15236	30.47\%	LYS_56@O-MET_59@N-H
2941	407	15.7375	46284	92.57\%	GLY_41@O-ILE_61@N-H
11575	15	1.8407	21306	42.61\%	PRO_60@O-LYS_63@N-H
2458	182	19.2559	47331	94.66\%	PRO_60@O-ALA_64@N-H
500	1361	98.986	49493	98.99\%	ILE_61@O-MET_65@N-H
7218	13	1.3962	10078	20.16\%	ILE_62@O-GLN_66@N-H
11261	26	2.3128	26044	52.09\%	LYS_63@O-GLN_66@N-H
9289	48	3.6953	34326	68.65\%	LYS_63@O-ILE_67@N-H

7176	10	1.3612	9768	19.54\%	ALA_64@O-ILE_67@N-H
2816	266	16.6392	46856	93.71\%	ALA_64@O-ALA_68@N-H
12088	18	2.308	27899	55.80\%	ALA_68@O-ALA_71@N-H
698	517	70.5659	49255	98.51\%	PRO_27@O-ILE_72@N-H
2425	238	19.5072	47305	94.61\%	VAL_29@O-VAL_74@N-H
4959	21	1.7582	8719	17.44\%	SER_31@O-MET_76@N-H
4770	68	5.7698	27522	55.04\%	TYR_33@O-MET_76@N-H
3201	12	1.5711	5029	10.06\%	MET_76@O-LYS_78@N-H
9983	45	3.3895	33837	67.67\%	ARG_77@O-ILE_80@N-H
9229	50	2.2872	21109	42.22\%	ARG_77@O-TYR_81@N-H
1921	227	24.7881	47618	95.24\%	LYS_78@O-GLU_82@N-H
11095	26	2.7988	31053	62.11\%	PRO_79@O-ALA_83@N-H
4592	161	9.5379	43798	87.60\%	ILE_80@O-PHE_84@N-H
2874	163	16.2669	46751	93.50\%	TYR_81@O-SER_85@N-H
3077	286	15.0442	46291	92.58\%	GLU_82@O-ASN_86@N-H
8209	61	4.5781	37582	75.16\%	ALA_83@O-ARG_87@N-H
4154	125	10.7768	44767	89.53\%	PHE_84@O-ILE_88@N-H
1336	517	36.2672	48453	96.91\%	SER_85@O-MET_89@N-H
5828	75	7.2437	42216	84.43\%	ASN_86@O-ASN_90@N-H
9738	40	3.1142	30326	60.65\%	ARG_87@O-LEU_91@N-H
5075	15	1.415	7181	14.36\%	ILE_88@O-LEU_91@N-H
2855	261	16.2242	46320	92.64\%	ILE_88@O-LEU_92@N-H
3708	144	12.1713	45131	90.26\%	MET_89@O-ASN_93@N-H
9182	25	2.0753	19055	38.11\%	ASN_90@O-LYS_94@N-H
8917	72	1.9131	17059	34.12\%	LEU_91@O-LYS_94@N-H
6384	23	1.8235	11641	23.28\%	LEU_91@O-HIE_95@N-H
9512	46	2.4514	23318	46.64\%	LEU_92@O-HIE_95@N-H
7643	62	4.6745	35727	71.45\%	LEU_92@O-ALA_96@N-H
3189	367	13.0546	41631	83.26\%	ASP_110@O-ASP_97@N-H
5799	91	4.4941	26061	52.12\%	ASP_110@O-LYS_98@N-H
1058	732	41.7391	44160	88.32\%	TYR_108@O-GLU_100@N-H
920	117	9.5652	8800	17.60\%	LYS_241@O-VAL_101@N-H
3968	47	2.1381	8484	16.97\%	GLU_106@O-ALA_102@N-H
3861	61	3.4561	13344	26.69\%	GLU_106@O-SER_103@N-H
6855	143	4.6468	31854	63.71\%	SER_103@O-GLU_106@N-H
5177	167	3.3975	17589	35.18\%	VAL_6@O-ALA_107@N-H
2889	668	14.172	40943	81.89\%	GLU_100@O-TYR_108@N-H
1931	324	24.7954	47880	95.76\%	ILE_4@O-LEU_109@N-H
1438	372	30.9305	44478	88.96\%	LYS_98@O-ASP_110@N-H
8297	67	4.2567	35318	70.64\%	ILE_2@O-VAL_111@N-H
7530	30	1.6248	12235	24.47\%	VAL_111@O-LYS_114@N-H
7624	96	5.071	38661	77.32\%	VAL_111@O-VAL_115@N-H
5838	8	1.2845	7499	15.00\%	THR_112@O-VAL_115@N-H
10146	24	2.2274	22599	45.20\%	ASN_113@O-GLU_116@N-H
7791	77	4.9702	38723	77.45\%	THR_112@O-GLY_117@N-H
8316	43	4.6611	38762	77.52\%	VAL_115@O-ASN_118@N-H
5906	11	1.2843	7585	15.17\%	ASN_118@O-ASN_121@N-H
10105	31	3.2947	33293	66.59\%	ASN_118@O-GLY_122@N-H
4847	104	9.0404	43819	87.64\%	PHE_119@O-ILE_123@N-H
8432	63	3.8254	32256	64.51\%	GLU_120@O-GLU_124@N-H
6831	66	6.0767	41510	83.02\%	ASN_121@O-LEU_125@N-H
3172	139	14.675	46549	93.10\%	GLY_122@O-ALA_126@N-H
2588	219	18.1847	47062	94.12\%	ILE_123@O-ARG_127@N-H
3671	210	12.4634	45753	91.51\%	GLU_124@O-LYS_128@N-H
976	512	50.1936	48989	97.98\%	LEU_125@O-ILE_129@N-H
3116	210	14.775	46039	92.08\%	ALA_126@O-LYS_130@N-H
3787	193	11.9638	45307	90.61\%	ARG_127@O-GLN_131@N-H
4397	273	10.1542	44648	89.30\%	LYS_128@O-GLU_132@N-H
4311	131	10.3046	44423	88.85\%	ILE_129@O-ILE_133@N-H
8964	82	3.3569	30091	60.18\%	LYS_130@O-LEU_134@N-H
7395	81	5.2158	38571	77.14\%	GLN_131@O-GLU_135@N-H
3946	13	1.3163	5194	10.39\%	GLU_132@O-GLU_135@N-H
1601	471	29.9631	47971	95.94\%	GLU_132@O-LYS_136@N-H
9840	44	3.3048	32519	65.04\%	ILE_133@O-GLU_137@N-H
5138	25	1.4905	7658	15.32\%	ILE_133@O-LYS_138@N-H
5160	16	1.4758	7615	15.23\%	ILE_133@O-ILE_139@N-H
5660	14	1.3984	7915	15.83\%	GLU_137@O-ILE_139@N-H
1536	215	5.7826	8882	17.76\%	ASP_7@O-THR_142@N-H
4713	105	9.3866	44239	88.48\%	GLY_163@O-VAL_143@N-H
2035	442	23.4983	47819	95.64\%	PHE_5@O-GLY_144@N-H

7540	82	5.2922	39903	79.81\%	GLY_165@O-VAL_145@N-H
923	617	53.1354	49044	98.09\%	VAL_3@O-ALA_146@N-H
6447	61	6.4793	41772	83.54\%	ASN_148@O-ALA_152@N-H
6570	85	5.6848	37349	74.70\%	LYS_149@O-LYS_153@N-H
3256	283	13.9982	45578	91.16\%	ILE_150@O-ILE_154@N-H
1498	442	32.1295	48130	96.26\%	LEU_151@O-ILE_155@N-H
11019	33	2.6293	28972	57.94\%	ALA_152@O-ALA_156@N-H
4530	8	1.1583	5247	10.49\%	LYS_153@O-ALA_156@N-H
1922	332	24.5281	47143	94.29\%	LYS_153@O-ASP_157@N-H
7075	113	5.3952	38171	76.34\%	ILE_154@O-LYS_158@N-H
6712	19	1.4184	9520	19.04\%	ILE_155@O-SER_159@N-H
10236	37	2.9004	29688	59.38\%	ALA_156@O-SER_159@N-H
7442	46	2.6432	19671	39.34\%	ALA_156@O-LYS_160@N-H
5958	15	1.5898	9472	18.94\%	ASP_157@O-LYS_160@N-H
4566	12	1.5009	6853	13.71\%	SER_159@O-GLY_163@N-H
4896	231	8.6842	42518	85.04\%	VAL_143@O-GLY_165@N-H
7839	100	4.6648	36567	73.13\%	VAL_145@O-ILE_167@N-H
5844	204	6.8441	39997	79.99\%	ARG_168@O-GLU_171@N-H
5939	41	1.5969	9484	18.97\%	ARG_168@O-VAL_172@N-H
5376	9	1.3021	7000	14.00\%	PRO_169@O-VAL_172@N-H
6254	15	1.6431	10276	20.55\%	GLU_171@O-ASP_174@N-H
8819	88	3.9976	35255	70.51\%	GLU_171@O-PHE_175@N-H
2466	250	17.0576	42064	84.13\%	VAL_172@O-LEU_176@N-H
8373	61	2.864	23980	47.96\%	GLN_173@O-ASN_177@N-H
5350	30	1.725	9229	18.46\%	ASP_174@O-ASN_177@N-H
3782	19	1.3773	5209	10.42\%	ASP_174@O-GLU_178@N-H
9061	68	3.7248	33750	67.50\%	PHE_175@O-GLU_178@N-H
8287	71	2.3164	19196	38.39\%	PHE_175@O-LEU_179@N-H
8393	24	1.7865	14994	29.99\%	LEU_176@O-LEU_179@N-H
4453	261	9.7673	43494	86.99\%	GLN_201@O-ILE_181@N-H
3730	223	6.0957	22737	45.47\%	ASP_180@O-GLU_183@N-H
7662	24	2.1397	16394	32.79\%	ILE_181@O-ILE_184@N-H
6145	16	1.4885	9147	18.29\%	GLY_188@O-LEU_191@N-H
2629	332	17.8167	46840	93.68\%	GLY_188@O-ALA_192@N-H
6204	140	6.6626	41335	82.67\%	SER_189@O-ARG_193@N-H
9066	107	3.6492	33084	66.17\%	VAL_190@O-ARG_194@N-H
2951	216	15.7835	46577	93.15\%	LEU_191@O-LEU_195@N-H
5148	139	8.3411	42940	85.88\%	ALA_192@O-ASN_196@N-H
7270	117	4.6014	33452	66.90\%	ARG_193@O-GLU_197@N-H
4128	37	1.6659	6877	13.75\%	ARG_194@O-GLU_197@N-H
9087	33	2.8797	26168	52.34\%	ARG_194@O-LEU_198@N-H
7148	42	1.661	11873	23.75\%	LEU_195@O-LEU_198@N-H
9918	38	3.5874	35580	71.16\%	ASN_196@O-GLY_199@N-H
5703	85	7.3277	41790	83.58\%	LEU_195@O-ILE_200@N-H
1808	368	25.0796	45344	90.69\%	LEU_179@O-LEU_203@N-H
8004	165	4.7777	38241	76.48\%	LYS_202@O-ASP_205@N-H
7619	59	4.9604	37793	75.59\%	LEU_203@O-ILE_206@N-H
1678	428	20.093	33716	67.43\%	LEU_203@O-LEU_207@N-H
2956	27	2.9185	8627	17.25\%	ARG_204@O-LEU_207@N-H
7669	20	2.2794	17481	34.96\%	ARG_204@O-SER_208@N-H
3042	50	3.3974	10335	20.67\%	ASP_205@O-SER_208@N-H
1504	49	4.1602	6257	12.51\%	ASP_205@O-LYS_209@N-H
7011	53	4.613	32342	64.68\%	ILE_206@O-LYS_209@N-H
10673	40	2.4849	26521	53.04\%	ASN_210@O-GLU_213@N-H
6527	125	5.8269	38032	76.06\%	ASN_210@O-LEU_214@N-H
3195	207	14.4	46008	92.02\%	TYR_211@O-GLU_215@N-H
8790	33	2.5677	22570	45.14\%	ASN_212@O-LYS_216@N-H
5181	16	1.5258	7905	15.81\%	GLU_213@O-LYS_216@N-H
5751	112	5.0134	28832	57.66\%	GLU_213@O-ILE_217@N-H
5711	18	1.7584	10042	20.08\%	LEU_214@O-ILE_217@N-H
5432	154	7.9523	43197	86.39\%	LEU_214@O-THR_218@N-H
10188	48	2.7531	28049	56.10\%	GLU_215@O-GLY_219@N-H
1868	223	25.705	48017	96.03\%	GLY_219@O-ALA_223@N-H
3185	182	14.1862	45183	90.37\%	LYS_220@O-LEU_224@N-H
10022	48	3.302	33093	66.19\%	ALA_221@O-TYR_225@N-H
1843	349	26.0239	47962	95.92\%	LYS_222@O-LEU_226@N-H
3480	136	13.2612	46149	92.30\%	ALA_223@O-LEU_227@N-H
7330	128	4.7513	34827	69.65\%	LEU_224@O-LYS_228@N-H
4234	19	1.5125	6404	12.81\%	TYR_225@O-LYS_228@N-H
8176	182	3.8158	31198	62.40\%	TYR_225@O-LEU_229@N-H

5028	26	1.4093	7086	14.17\%	LEU_226@O-LEU_229@N-H
4729	123	9.1664	43348	86.70\%	LEU_226@O-ALA_230@N-H
3909	123	9.9872	39040	78.08\%	LEU_227@O-GLN_231@N-H
5736	45	4.6065	26423	52.85\%	LEU_229@O-ASN_232@N-H
6579	72	2.6635	17523	35.05\%	LYS_228@O-LYS_233@N-H
3332	57	5.2638	17539	35.08\%	LYS_228@O-TYR_234@N-H
2446	21	2.1345	5221	10.44\%	ASN_232@O-TYR_234@N-H
2552	98	4.3781	11173	22.35\%	GLU_239@O-LYS_241@N-H
3378	359	13.2315	44696	89.39\%	VAL_336@O-ARG_248@N-H
949	984	51.6407	49007	98.01\%	ILE_334@O-LEU_250@N-H
1274	359	37.3893	47634	95.27\%	ARG_332@O-LEU_252@N-H
4220	199	9.4526	39890	79.78\%	VAL_331@O-THR_256@N-H
6107	88	6.684	40819	81.64\%	ASP_258@O-VAL_261@N-H
7821	95	4.3953	34376	68.75\%	ASP_258@O-ILE_262@N-H
3467	67	1.4442	5007	10.01\%	VAL_259@O-ILE_262@N-H
2889	246	15.722	45421	90.84\%	VAL_259@O-LEU_263@N-H
5456	16	1.7311	9445	18.89\%	VAL_261@O-TYR_265@N-H
4606	7	1.2414	5718	11.44\%	ILE_262@O-TYR_265@N-H
3793	127	12.048	45698	91.40\%	ILE_262@O-LEU_266@N-H
1335	391	36.394	48586	97.17\%	LEU_263@O-LYS_267@N-H
5873	115	7.234	42485	84.97\%	PRO_264@O-LYS_268@N-H
4214	132	10.6972	45078	90.16\%	TYR_265@O-ALA_269@N-H
2975	226	15.7176	46760	93.52\%	LEU_266@O-ILE_270@N-H
2953	245	15.617	46117	92.23\%	LYS_267@O-ASN_271@N-H
3356	372	13.5837	45587	91.17\%	LYS_268@O-GLU_272@N-H
6351	160	6.2601	39758	79.52\%	ALA_269@O-ALA_273@N-H
615	603	80.213	49331	98.66\%	ILE_270@O-TYR_274@N-H
9597	71	3.4444	33056	66.11\%	ASN_271@O-ASN_275@N-H
4684	10	1.2882	6034	12.07\%	GLU_272@O-ASN_275@N-H
6900	79	2.818	19444	38.89\%	GLU_272@O-LYS_276@N-H
8753	28	2.3501	20570	41.14\%	ALA_273@O-LYS_276@N-H
8124	52	2.7312	22188	44.38\%	ALA_273@O-VAL_277@N-H
4264	34	1.4566	6211	12.42\%	TYR_274@O-VAL_277@N-H
2407	122	4.236	10196	20.39\%	ILE_342@O-ILE_280@N-H
2095	36	3.6368	7619	15.24\%	LYS_345@O-ILE_280@N-H
861	107	16.295	14030	28.06\%	ASN_347@O-ILE_280@N-H
9763	51	3.5602	34758	69.52\%	ASP_339@O-MET_282@N-H
7674	11	1.401	10751	21.50\%	ASN_340@O-MET_282@N-H
9852	43	3.5903	35372	70.74\%	ASP_339@O-ARG_283@N-H
1412	328	34.3534	48507	97.01\%	LYS_300@O-ILE_284@N-H
3422	170	13.4988	46193	92.39\%	LYS_337@O-THR_285@N-H
736	718	66.8872	49229	98.46\%	LYS_298@O-VAL_286@N-H
747	1013	65.905	49231	98.46\%	GLY_335@O-ILE_287@N-H
608	577	81.199	49369	98.74\%	LEU_296@O-ALA_288@N-H
1451	338	33.4087	48476	96.95\%	ARG_333@O-ILE_289@N-H
1078	1063	45.1178	48637	97.27\%	ASP_294@O-MET_290@N-H
1703	289	18.8015	32019	64.04\%	ASN_330@O-GLU_291@N-H
10423	28	2.7402	28561	57.12\%	MET_290@O-LEU_293@N-H
5588	17	1.4467	8084	16.17\%	GLU_291@O-LEU_293@N-H
1561	312	30.9488	48311	96.62\%	ALA_288@O-LEU_296@N-H
1147	717	42.476	48720	97.44\%	VAL_286@O-LYS_298@N-H
873	377	56.2451	49102	98.20\%	ILE_284@O-LYS_300@N-H
3017	192	15.4498	46612	93.22\%	MET_282@O-PHE_302@N-H
1694	372	28.4256	48153	96.31\%	PRO_281@O-ILE_306@N-H
8855	53	2.1211	18782	37.56\%	SER_307@O-ASN_310@N-H
3395	261	13.3962	45480	90.96\%	SER_307@O-ALA_311@N-H
4293	142	8.7107	37395	74.79\%	ILE_308@O-TYR_312@N-H
6754	30	2.4861	16791	33.58\%	ASP_309@O-LYS_313@N-H
5679	15	1.4172	8048	16.10\%	ASN_310@O-LYS_313@N-H
3240	264	13.9645	45245	90.49\%	ASN_310@O-VAL_314@N-H
4214	316	10.5389	44411	88.82\%	ALA_311@O-ALA_315@N-H
8576	64	3.2836	28160	56.32\%	TYR_312@O-GLU_316@N-H
4935	17	1.3386	6606	13.21\%	LYS_313@O-GLU_316@N-H
7847	86	3.1847	24990	49.98\%	LYS_313@O-ASP_317@N-H
5775	102	7.1479	41279	82.56\%	VAL_314@O-LEU_318@N-H
5959	89	7.1898	42844	85.69\%	ALA_315@O-LEU_319@N-H
6099	322	6.6091	40309	80.62\%	GLU_316@O-ARG_320@N-H
8096	70	4.0497	32786	65.57\%	ASP_317@O-GLU_321@N-H
8412	113	3.8581	32454	64.91\%	LEU_318@O-LEU_322@N-H
5279	19	1.577	8325	16.65\%	LEU_319@O-LEU_322@N-H

5203	257	7.9416	41320	82.64%	LEU_319@O-LEU_323@N-H
7242	93	3.5301	25565	51.13%	ARG_320@O-VAL_324@N-H
2784	44	2.3718	6603	13.21%	GLU_321@O-VAL_324@N-H
2702	163	5.0259	13580	27.16%	ARG_320@O-ARG_325@N-H
1289	42	4.3988	5670	11.34%	ASP_326@O-ARG_328@N-H
2105	107	3.2128	6763	13.53%	LEU_323@O-ARG_329@N-H
3012	35	2.1763	6555	13.11%	LYS_327@O-ARG_329@N-H
4537	800	9.4022	42658	85.32%	THR_256@O-VAL_331@N-H
1330	484	36.3173	48302	96.60%	ILE_289@O-ARG_332@N-H
3947	170	11.1809	44131	88.26%	ILE_289@O-ARG_333@N-H
801	678	61.3021	49103	98.21%	LEU_250@O-ILE_334@N-H
7941	69	4.9746	39503	79.01%	ILE_287@O-GLY_335@N-H
1537	377	31.2023	47958	95.92%	ARG_248@O-VAL_336@N-H
1780	277	27.0393	48130	96.26%	THR_285@O-LYS_337@N-H
313	278	34.9712	10946	21.89%	HIE_246@O-LEU_338@N-H
2436	161	19.461	47407	94.81%	ARG_283@O-ASP_339@N-H
634	505	53.4685	33899	67.80%	ILE_280@O-ILE_342@N-H
1191	61	4.8405	5765	11.53%	ASN_278@O-ASN_344@N-H
5872	38	1.689	9918	19.84%	ILE_342@O-LYS_345@N-H
6575	27	1.8785	12351	24.70%	ILE_343@O-LYS_345@N-H
2862	34	2.841	8131	16.26%	ILE_342@O-THR_346@N-H
1224	129	7.8423	9599	19.20%	ASN_278@O-SER_349@N-H
4294	50	3.8763	16645	33.29%	PHE_352@O-ILE_354@N-H

Appendix E: Selected AMBER scripts for MD simulations of Dbh

Restrained Minimization:

```
Minimization of restrained Dbh
    &cntrl
    imin=1,maxcyc=2000,ncyc=1000,
    cut=8.0,ntb=1,
    ntc=2,ntf=2,
    ntpr=20,
    ntr=1,restraintmask=':1-34,39-344',
    restraint wt=2.0
/
```


Restrained Heating:

Heat Dbh with restraints \& cntrl

```
    imin=0,irest=0,ntx=1,
```

 nstlim=50000, dt=0.002,
 ntc=2, ntf=2,
 cut=8.0, ntb=1,
 ntpr=500, ntwx=500,
 ntt=3, gamma_ln=2.0,
 tempi=0.0, temp0=308.0,
 ntr=1, restraintmask=':1-354',
 restraint wt=2.0,
 ntp \(=0\),
 ig \(=-1\)
 /
\&wt TYPE='TEMP0', istep1=0, istep2=50000,
value1=0.0, value2=308.0, /
\&wt TYPE='END' /

Restrained Density Equilibration:

Restrained density equilibration of Dbh \& cntrl
imin=0,irest=1,ntx=5, nstlim=50000,dt=0.002, ntc=2, ntf=2, cut=8.0, ntb=2,ntp=1,taup=2.0, $n t p r=5000, n t w x=5000$, ntt=3,gamma_In=2.0, temp0=308.0, ntr=1,restraintmask=':1-354', restraint_wt=2.0, ig=-1
/

Protein Equilibration, Gradual Decrease in Restraints:

Restraint back-off equilibration of Dbh \& cntrl

```
imin=0,irest=1,ntx=5,
nstlim=500000,dt=0.002,
ntc=2,ntf=2,
cut=8.0,ntb=2,ntp=1,taup=2.0,
ntpr=50000,ntwx=5000,
ntt=3,gamma_ln=2.0,
temp0=308.0,
ntr-1, restraintmask=':1-354',
restraint_wt=2.0,
ig=-1,
/
&wt TYPE='REST', istep1=0, istep2=125000,
value1=2.0, value2=1.5,/
&wt TYPE='REST', istep1=125001,
istep2=250000, value1=1.5, value2=1.0, /
&wt TYPE='REST', istep1=250001,
istep2=375000, value1=1.0, value2=0.5, /
&wt TYPE='REST', istep1=375001,
istep2=500000, value1=0.5, value2=0.0, /
&wt TYPE='END' /
```


Free Protein Equilibration:

Free equilibration of Dbh
\& cntrl
imin $=0$, irest $=1, n t x=5$,
nstlim=2000000,dt=0.002,
ntc=2, ntf=2,
cut=8.0,ntb=2,ntp=1,taup=2.0,
ntpr=50000, ntwx=5000,
$\mathrm{ntt}=3$, gamma $\mathrm{In}=2.0$
temp0=308.0,
$\mathrm{ig}=-1$,
/

Production Run:

NTV Production Dbh
\& cntrl
irest=1,ntx=5,
nstlim=5000000,dt=0.002,
ntc=2, ntf=2,
ntb=1,
$\mathrm{ntxo}=2$
ntpr=5000,ntwx=5000,ntwr=500000,
ntt=1, tautp=10.0,
temp0=308.0, ig=-1, / \& ewald /

Appendix F: Temperature Coefficients of Amide Hydrogens of Dbh calculated from chemical shifts at $35^{\circ} \mathrm{C}, 45^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}, 55^{\circ} \mathrm{C}$, and $65^{\circ} \mathrm{C}$

Res \#	Res Type	${ }^{1} \mathrm{H} \delta, 35^{\circ} \mathrm{C}$ (ppm)	${ }^{1} \mathrm{H} \delta, 45^{\circ} \mathrm{C}$ (ppm)	${ }^{1} \mathrm{H} \delta, 50^{\circ} \mathrm{C}$ (ppm)	${ }^{1} \mathrm{H} \delta, 55^{\circ} \mathrm{C}$ (ppm)	${ }^{1} \mathrm{H} \delta, 65^{\circ} \mathrm{C}$ (ppm)	Temp. Coeff. (ppb/K)	Temp. Coeff. error
2	Ile	8.351	8.258	8.250	8.241		-5.60	1.50
3	Val	8.378	8.351	8.358	8.321	8.293	-2.85	0.51
4	Ile	9.067	9.030	9.021	9.010	8.986	-2.64	0.21
5	Phe	9.821	9.802	9.783	9.770	9.745	-2.61	0.13
6	Val	8.430	8.398	8.381	8.369	8.341	-2.96	0.09
7	Asp	8.393	8.380	8.373	8.371	8.359	-1.11	0.08
8	Phe	8.342	8.310	8.293	8.276	8.244	-3.29	0.01
9	Asp	7.429	7.426	7.418	7.426	7.436	0.21	0.30
10	Tyr	8.876	8.812	8.778	8.726		-7.33	0.62
11	Phe	8.021	8.002	7.971	7.965	7.968	-1.96	0.60
12	Phe	8.762	8.685	8.630	8.574	8.463	-10.08	0.52
13	Ala	6.869	6.888	6.889	6.905	6.920	1.70	0.16
14	Gln	8.218	8.186	8.161	8.128	8.099	-4.15	0.33
15	Val	8.137	8.108	8.092	8.078	8.044	-3.09	0.07
16	Glu	7.127	7.114	7.108	7.108	7.098	-0.93	0.11
17	Glu	7.912	7.893	7.868	7.857	7.851	-2.19	0.40
18	Val	8.123	8.092	8.070	8.055	8.018	-3.52	0.10
19	Leu	8.037	8.018	7.993	7.984	7.962	-2.59	0.23
20	Asn	7.554	7.540	7.513	7.511	7.497	-2.00	0.34
22	Gln	8.957	8.892	8.822	8.803		-8.10	1.04
23	Tyr	8.541	8.509	8.488	8.469	8.431	-3.70	0.10
24	Lys	7.353	7.337	7.326	7.320	7.302	-1.70	0.05
25	Gly	9.333	9.266	9.234	9.207		-6.35	0.20
26	Lys	7.963	7.937	7.921			-2.77	0.15
28	Leu	8.141	8.122	8.096	8.094	8.069	-2.44	0.26
29	Val	9.004	8.976	8.957	8.943	8.912	-3.09	0.07
30	Val	8.683	8.634	8.602	8.578	8.525	-5.30	0.10
31	Ser	9.438	9.421	9.415	9.411	9.393	-1.45	0.09
32	Val	8.928	8.906	8.894	8.883	8.854	-2.45	0.10
42	Ala	8.686	8.667	8.667	8.652	8.629	-1.86	0.21
43	Val	8.738	8.692	8.664	8.637	8.606	-4.51	0.29
44	Ala	9.949	9.887	9.866	9.834	9.783	-5.51	0.16
45	Thr	7.728	7.722	7.709	7.706	7.695	-1.15	0.14
47	Asn	8.360	8.328	8.313	8.307	8.293	-2.22	0.31
49	Glu	8.826	8.701	8.642	8.583	8.467	-11.95	0.13
50	Ala	7.761	7.725	7.708	7.692	7.660	-3.36	0.06
51	Arg	8.619	8.581	8.557	8.540	8.499	-4.01	0.08
52	Lys	8.046	8.028	8.009	7.992	7.953	-3.15	0.30
53	Leu	6.933	6.938	6.937	6.940	6.939	0.20	0.08
54	Gly	7.599	7.588	7.574	7.565	7.542	-1.94	0.17
55	Val	7.315	7.278	7.264	7.259	7.243	-2.35	0.36
56	Lys	7.044	7.089	7.081	7.083	7.073	0.81	0.79
58	Gly	9.005	8.964	8.961	8.944	8.915	-2.90	0.25
59	Met	7.625	7.574	7.561	7.544	7.515	-3.60	0.32
61	Ile	6.826	6.813	6.809	6.802	6.793	-1.10	0.05
62	Ile	8.357	8.317	8.259	8.226	8.154	-7.00	0.59
63	Lys	6.712	6.716	6.712	6.716	6.715	0.09	0.09
64	Ala	7.992	7.962	7.944	7.930	7.897	-3.17	0.05
65	Met	8.409	8.377	8.357	8.345	8.311	-3.26	0.09
66	GIn	7.238	7.217	7.206	7.201	7.185	-1.75	0.12
67	Ile	7.365	7.335	7.323	7.316	7.200	-5.13	1.33
68	Ala	8.699	8.659	8.637	8.621	8.575	-4.10	0.10
71	Ala	7.039	7.022	7.009	6.998	6.976	-2.13	0.08
72	Ile	8.040	8.025	8.018	8.004	7.997	-1.50	0.16
73	Tyr	8.386	8.308	8.271	8.238	8.167	-7.27	0.14
74	Val	8.892	8.857	8.836	8.817	8.794	-3.34	0.22
76	Met	8.239	8.205	8.174	8.156	8.110	-4.36	0.20
77	Arg	7.403	7.396	7.386	7.386	7.378	-0.85	0.11

78	Lys	8.190	8.135	8.082	8.040	7.964	-7.73	0.44
80	Ile	7.451	7.423	7.422	7.410	7.416	-1.18	0.44
81	Tyr	6.880	6.867	6.860	6.855	6.845	-1.17	0.06
82	Glu	8.961	8.915	8.889	8.855	8.790	-5.73	0.32
83	Ala	7.687	7.664	7.654	7.647	7.635	-1.73	0.17
84	Phe	8.235	8.225	8.218	8.215	8.201	-1.12	0.06
85	Ser	8.911	8.885	8.868	8.858	8.829	-2.73	0.07
86	Asn	8.812	8.757	8.731	8.701	8.640	-5.72	0.11
87	Arg	7.722	7.697	7.683	7.671	7.641	-2.69	0.07
88	Ile	8.071	8.045	8.032	8.008	7.987	-2.89	0.20
89	Met	9.434	9.388	9.359	9.336	9.272	-5.38	0.24
90	Asn	7.855	7.830	7.818	7.809	7.784	-2.34	0.06
91	Leu	7.593	7.568	7.555	7.545	7.524	-2.30	0.08
92	Leu	8.177	8.167	8.159	8.147	8.124	-1.79	0.21
93	Asn	7.878	7.866	7.862	7.856	7.845	-1.09	0.03
94	Lys	7.223	7.201	7.191	7.186	7.174	-1.62	0.17
95	His	7.411	7.382	7.377	7.362	7.346	-2.15	0.18
96	Ala	7.067	7.057	7.054	7.051	7.044	-0.75	0.05
98	Lys	7.535	7.524	7.519	7.512	7.498	-1.23	0.06
99	Ile	8.635	8.555	8.525	8.506		-6.59	0.68
100	Glu	9.353	9.312	9.296	9.276	9.244	-3.63	0.12
103	Ser	8.510	8.482	8.464	8.458	8.433	-2.55	0.16
104	Ile	7.939	7.907	7.898	7.890	7.861	-2.51	0.16
105	Asp	8.007	8.028	8.027	8.039	8.048	1.34	0.18
106	Glu	6.432	6.421	6.433	6.421	6.438	0.18	0.38
107	Ala	8.198	8.179	8.134	8.127	8.106	-3.28	0.57
108	Tyr	9.074	9.021	9.009	8.988	8.951	-4.02	0.25
109	Leu	10.111	10.075	10.060	10.050	10.020	-2.99	0.15
110	Asp	8.673	8.652	8.647	8.632	8.602	-2.33	0.21
114	Lys	9.218	9.153	9.131	9.086	9.003	-7.12	0.44
115	Val	7.629	7.606	7.592	7.580	7.547	-2.72	0.14
116	Glu	8.194	8.162	8.149	8.138	8.101	-3.03	0.14
117	Gly	8.798	8.745	8.718	8.692	8.636	-5.39	0.04
118	Asn	7.569	7.553	7.542	7.530	7.517	-1.79	0.11
120	Glu	8.153	8.140	8.131	8.131	8.126	-0.90	0.18
121	Asn	8.022	7.962	7.925	7.916	7.852	-5.56	0.36
122	Gly	8.286	8.252	8.233	8.221	8.189	-3.22	0.10
123	Ile	7.784	7.758	7.745	7.733	7.704	-2.65	0.05
124	Glu	7.403	7.375	7.361	7.334	7.306	-3.32	0.21
125	Leu	8.006	8.002	7.982	-	-	-1.43	0.89
126	Ala	7.979	7.978	7.971	7.968	7.952	-0.91	0.20
127	Arg	7.922	7.903	7.894	7.890	7.872	-1.63	0.09
128	Lys	8.034	8.012	8.001	7.998	7.980	-1.76	0.14
129	Ile	8.653	8.624	8.604	8.589	8.553	-3.35	0.10
130	Lys	7.800	7.766	7.748	7.730	7.695	-3.51	0.02
131	Gln	7.863	7.862	7.851	7.853	7.854	-0.36	0.19
132	Glu	8.590	8.583	8.581	8.583	8.577	-0.39	0.09
133	Ile	8.163	8.130	8.120	8.108	8.078	-2.77	0.12
134	Leu	7.475	7.461	7.451	7.448	7.434	-1.36	0.08
135	Glu	8.650	8.619	8.604	8.593	8.565	-2.81	0.08
136	Lys	8.606	8.566	8.544	8.528	8.487	-3.95	0.07
137	Glu	8.060	8.044	8.032	8.026	8.004	-1.86	0.09
138	Lys	7.597	7.586	7.580	7.581	7.576	-0.68	0.14
139	Ile	6.578	6.575	6.572	6.578	6.581	0.12	0.16
140	Thr	10.130	10.070	10.031	9.989	9.893	-7.92	0.53
141	Val	7.341	7.328	7.320	7.319	7.309	-1.05	0.11
142	Thr	9.032	9.006	8.987	8.973	8.934	-3.27	0.17
143	Val	7.843	7.825	7.819	7.807	7.791	-1.74	0.06
144	Gly	9.299	9.302	9.287	9.298	9.283	-0.52	0.31
145	Val	8.791	8.752	8.738	8.728	8.704	-2.85	0.25
146	Ala	9.231	9.208	9.192	9.173	9.139	-3.11	0.19
149	Lys	7.389	7.384	7.374	7.362	7.359	-1.12	0.21
150	Ile	7.448	7.423	7.425	7.410	7.416	-1.09	0.40
151	Leu	8.061	8.036	8.015	8.002	7.980	-2.77	0.17
152	Ala	7.602	7.571	7.554	7.547	7.525	-2.55	0.21
153	Lys	7.354	7.332	7.289	7.261	7.240	-4.13	0.60

154	Ile	7.993	7.938	7.938			-1.83	1.06
155	Ile	8.367	8.357	8.342	8.327	8.314	-1.89	0.22
156	Ala	7.784	7.758	7.744	7.732	7.705	-2.63	0.02
157	Asp	8.360	8.328	8.313	8.307	8.293	-2.22	0.31
159	Ser	7.843	7.823	7.811	7.800	7.774	-2.30	0.08
160	Lys	7.080	7.055	7.036	7.033	7.009	-2.35	0.19
162	Asn	9.974	9.957	9.936	9.932	9.896	-2.59	0.26
163	Gly	8.209	8.201	8.224	8.215		0.31	0.50
165	Gly	9.320	9.284	9.269	9.248	9.209	-3.69	0.10
166	Val	8.503	8.432	8.395	8.361	8.302	-6.74	0.20
167	Ile	8.638	8.600	8.565	8.543	8.509	-4.44	0.30
168	Arg	8.457	8.462	8.454			-0.10	0.52
171	Glu	7.843	7.810	7.799	7.778	7.745	-3.26	0.12
172	Val	6.946	6.935	6.929	6.928	6.923	-0.76	0.12
174	Asp	8.277	8.170	8.126			-10.16	0.47
175	Phe	7.974	7.956	7.942	7.915		-2.81	0.56
176	Leu	8.810	8.753	8.728	8.690	8.615	-6.48	0.35
177	Asn	7.940	7.898	7.876	7.859	7.821	-3.96	0.10
178	Glu	7.050	7.049	7.048	7.045	7.042	-0.28	0.05
179	Leu	7.062	7.038	7.029	7.030	7.033	-0.95	0.44
180	Asp	9.131	9.060	9.030	8.986	8.902	-7.61	0.29
181	Ile	8.225	8.193	8.180	8.169	8.145	-2.64	0.13
182	Asp	8.281	8.279	8.263	8.274	8.270	-0.38	0.30
183	Glu	7.551	7.535	7.524	7.527		-1.33	0.34
184	Ile	7.284	7.260	7.243	7.239	7.224	-2.01	0.23
188	Gly	8.377	8.310	8.285			-6.21	0.42
191	Leu	8.209	8.132	8.084	8.030	7.977	-7.98	0.53
192	Ala	8.511	8.460	8.430	8.394	8.329	-6.12	0.25
193	Arg	7.831	7.811	7.796	7.788	7.764	-2.24	0.08
194	Arg	7.750	7.718	7.707	7.699	7.668	-2.65	0.15
195	Leu	8.428	8.395	8.375	8.342	8.304	-4.25	0.28
196	Asn	8.740	8.711	8.687	8.655	8.616	-4.28	0.32
197	Glu	8.039	8.015	7.980			-3.71	1.14
198	Leu	7.365	7.352	7.344	7.343	7.333	-1.05	0.11
199	Gly	7.900	7.888	7.877	7.872	7.856	-1.48	0.07
200	Ile	7.914	7.868	7.847	7.828	7.797	-3.91	0.22
201	GIn	9.016	9.008	9.008	8.998	8.983	-1.09	0.18
202	Lys	8.570	8.554	8.541	8.531	8.509	-2.06	0.09
203	Leu	8.541	8.519	8.509	8.506	8.491	-1.63	0.16
204	Arg	8.470	8.419	8.386	8.342	8.263	-6.98	0.48
205	Asp	7.962	7.929	7.918	7.908	7.893	-2.28	0.26
212	Asn	7.937	7.907	7.898	7.890	7.861	-2.45	0.15
207	Leu	7.187	7.169	7.158	7.151	7.139	-1.62	0.12
213	Glu	7.684	7.623	7.603	7.571		-5.56	0.27
214	Leu	7.553	7.527	7.491	7.470	7.439	-3.99	0.37
215	Glu	8.374	8.341	8.315	8.275	8.244	-4.56	0.42
216	Lys	7.298	7.266	7.250	7.241	7.236	-2.11	0.43
217	Ile	7.442	7.440	7.437	7.438	7.435	-0.23	0.04
218	Thr	8.421	8.390	8.368	8.354	8.318	-3.45	0.10
223	Ala	7.629	7.638	7.638	7.644	7.638	0.33	0.20
224	Leu	7.881	7.898	7.897	7.897	7.898	0.50	0.25
225	Tyr	7.587	7.567	7.560	7.548	7.530	-1.90	0.05
226	Leu	8.091	8.051	8.034	8.015	7.972	-3.93	0.08
228	Lys	8.357	8.332	8.323	8.311	8.291	-2.19	0.07
229	Leu	8.177	8.138	8.072			-3.50	0.52
230	Ala	7.600	7.571	7.555	7.547	7.525	-2.49	0.16
231	Gln	7.697	7.653	7.630	7.631	7.616	-2.65	0.59
252	Leu	8.028	7.996	7.978	7.967	7.942	-2.87	0.15
254	Tyr	6.767	6.722	6.719	6.715	6.698	-2.14	0.48
256	Thr	8.380	8.334	8.317	8.297	8.263	-3.88	0.16
258	Asp	8.729	8.668	8.666	8.625	8.599	-4.33	0.52
259	Val	8.764	8.667	8.631			-8.99	0.62
260	Lys	8.326	8.314	8.310	8.300	8.281	-1.49	0.14
261	Val	7.258	7.257	7.254	7.247	7.230	-0.94	0.25
262	Ile	7.684	7.652	7.633	7.623	7.594	-2.99	0.13
265	Tyr	7.380	7.351	7.341	7.336	7.325	-1.80	0.29

266	Leu	8.053	8.061	8.060	8.061		0.27	0.11
267	Lys	8.745	8.706	8.682	8.666	8.624	-4.03	0.08
268	Lys	7.412	7.408	7.394	7.400	7.390	-0.74	0.21
269	Ala	8.248	8.212	8.191	8.183	8.155	-3.08	0.22
270	Ile	8.397	8.344	8.324	8.310	8.302	-3.19	0.67
271	Asn	8.727	8.687	8.649	8.625	8.587	-4.82	0.32
272	Glu	8.360	8.350	8.341	8.333	8.308	-1.73	0.21
273	Ala	8.395	8.378	8.375	8.370	8.367	-0.92	0.19
274	Tyr	8.966	8.917	8.891	8.866	8.806	-5.31	0.16
275	Asn	7.737	7.720	7.710	7.702	7.682	-1.83	0.04
276	Lys	7.389	7.384	7.367	7.362	7.359	-1.12	0.26
277	Val	7.286	7.272	7.261	7.260	7.252	-1.14	0.17
279	Gly	7.286	7.275	7.263	7.262	7.247	-1.30	0.12
280	Ile	8.233	8.228	8.221	8.215	8.187	-1.51	0.32
282	Met	8.076	8.067	8.053	8.053	8.041	-1.19	0.15
283	Arg	8.023	7.992	7.992	7.977	7.966	-1.86	0.27
284	Ile	8.182	8.163	8.155	8.152	8.139	-1.40	0.13
285	Thr	8.381	8.378	8.373	8.373	8.370	-0.38	0.06
286	Val	8.798	8.771	8.761	8.753	8.734	-2.10	0.14
287	Ile	8.560	8.539	8.529	8.524	8.511	-1.62	0.15
288	Ala	9.388	9.357	9.340	9.328	9.298	-2.99	0.07
289	Ile	8.608	8.611	8.614			0.39	0.07
290	Met	9.028	9.020	9.010	9.001	8.972	-1.87	0.29
291	Glu	8.463	8.451	8.419	8.409	8.390	-2.61	0.38
293	Leu	8.287	8.258	8.253	8.249	8.231	-1.77	0.23
294	Asp	7.654	7.620	7.599	7.588	7.561	-3.11	0.18
295	Ile	8.025	7.997	7.981	7.954	7.926	-3.40	0.21
296	Leu	9.171	9.133	9.113	9.098	9.063	-3.59	0.09
297	Ser	8.386	8.337	8.302	8.288	8.281	-3.64	0.77
298	Lys	8.559	8.527	8.511	8.503	8.483	-2.52	0.23
300	Lys	8.596	8.544	8.532	8.521	8.494	-3.29	0.41
301	Lys	8.123	8.081	8.057			-4.37	0.15
302	Phe	9.179	9.126	9.104	9.078	9.025	-5.10	0.07
306	Ile	8.457	8.421	8.373	8.357	8.335	-4.30	0.63
307	Ser	8.823	8.748	8.704			-7.87	0.32
308	Ile	8.740	8.684	8.632	8.610	8.592	-5.18	0.86
309	Asp	7.521	7.524	7.524	7.528	7.544	0.73	0.22
310	Asn	7.312	7.289	7.279	7.273	7.259	-1.75	0.15
311	Ala	8.632	8.588	8.562	8.544	8.501	-4.37	0.10
312	Tyr	7.518	7.514	7.509	7.513	7.506	-0.37	0.11
313	Lys	7.194	7.172	7.159	7.151	7.132	-2.07	0.08
314	Val	8.351	8.331	8.313	8.300	8.266	-2.86	0.19
315	Ala	8.902	8.858	8.822	8.807	8.746	-5.19	0.26
316	Glu	7.627	7.604	7.592	7.579	7.561	-2.23	0.08
317	Asp	7.936	7.909	7.888	7.871	7.831	-3.53	0.18
318	Leu	8.418	8.417	8.395	8.398	8.384	-1.21	0.30
319	Leu	8.429	8.381	8.352	8.323	8.284	-4.93	0.21
320	Arg	8.481	8.450	8.429	8.416	8.383	-3.28	0.09
321	Glu	8.018	7.977	7.956	7.942	7.910	-3.59	0.18
322	Leu	8.348	8.298	8.270	8.248	8.200	-4.94	0.09
323	Leu	7.639	7.638	7.635	7.641	7.642	0.12	0.12
324	Val	7.537	7.546	7.550	7.556	7.547	0.40	0.27
325	Arg	7.507	7.494	7.488	7.479	7.471	-1.23	0.08
326	Asp	7.915	7.853	7.824	7.797	7.744	-5.69	0.14
328	Arg	8.358	8.336	8.320	8.304	8.270	-2.96	0.18
329	Arg	8.550	8.538	8.527	8.516	8.486	-2.14	0.25
330	Asn	9.010	8.982	8.966	8.955	8.926	-2.79	0.06
331	Val	8.487	8.448	8.432	8.415	8.380	-3.54	0.07
332	Arg	9.216	9.192	9.162	9.144	9.100	-3.96	0.31
333	Arg	8.383	8.357	8.339	8.326	8.297	-2.89	0.07
334	Ile	8.969	8.933	8.916	8.899	8.858	-3.67	0.09
335	Gly	9.290	9.265	9.250	9.243	9.222	-2.26	0.13
336	Val	8.309	8.230	8.188	8.167	8.118	-6.36	0.57
337	Lys	8.724	8.697	8.684	8.680	8.660	-2.09	0.19
339	Asp	8.549	8.518	8.496	8.479	8.446	-3.48	0.10

