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EPIGRAPH

Science and everyday life cannot and should not be separated.

—Rosalind Franklin

If you’re too sloppy, then you never get reproducible results, and then you never can

draw any conclusions; but if you are just a little sloppy, then when you see something

startling, you [can] nail it down ... I called it the “Principle of Limited Sloppiness”.

—Max Delbrück

If you don’t like bacteria, you’re on the wrong planet.

—Stewart Brand
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ABSTRACT OF THE DISSERTATION

Model-driven discovery of adaptive mechanisms and underground
metabolism in Escherichia coli

by

Gabriela Guzmán Lopez Aguado

Doctor of Philosophy in Bioengineering

University of California, San Diego, 2018

Marcos Intaglietta, Chair

Evidence suggests that novel enzyme functions evolved from low-level promiscu-

ous activities in ancestral enzymes. Yet, the evolutionary dynamics and physiological

mechanisms of how such side activities contribute to systems-level adaptations are

poorly understood. Furthermore, it remains untested whether knowledge of an or-

ganism’s promiscuous reaction set (‘underground metabolism’) can aid in forecasting

the genetic basis of metabolic adaptations. In this dissertation, novel approaches

toward exploring promiscuity in the space of a metabolic network are described. The

work leverages genome-scale models, which have been widely used for predicting

xvii



growth phenotypes in various nutrient environments and following genetic pertur-

bation in Escherichia coli. Failure modes of model predictions in relation to gene

essentiality are explored as opportunities for targeting biological discovery, suggesting

the presence of unknown underground pathways stemming from enzymatic cross-

reactivity or suggesting limitations of experimental conditions stemming from short

growth tests. Workflows are presented that couple constraint-based modeling and

bioinformatic tools with knockout strain analysis and long-term growth experiments

for the purpose of enhancing knowledge and predictability of enzyme promiscuity at

the genome scale. Furthermore, a computational model of underground metabolism

and laboratory evolution experiments are employed to examine the role of enzyme

promiscuity in the acquisition and optimization of growth on predicted non-native

substrates. Promiscuous enzyme activities played key roles in multiple phases of

adaptation. Genes underlying the phenotypic innovations were accurately predicted

by genome-scale model simulations of metabolism with enzyme promiscuity. Thus, it

is shown that computational approaches will be essential to synthesize the complex

role of promiscuous activities in models of evolutionary adaptation.
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Chapter 1

Introduction

Organisms have evolved to take advantage of their environments. Our underly-

ing biochemical building blocks are believed to drive this adaptability. What are the

detailed biological mechanisms that lead to observable phenotypic changes? How do

incremental adaptations to novel surroundings occur? In the age of whole genome

sequencing, we can begin to answer these questions at the genetic and molecular level.

The bacterium Escherichia coli is an ideal organism for studying questions of evolution

and adaptation as it has a small genome and a short lifespan allowing us to track

evolution in the laboratory for thousands of generations. By probing this organism’s

ability to respond to environmental and genetic perturbations in the laboratory, we

can come closer to fully annotating its genetic components and better understand the

genotype - phenotype relationship of life.

Beyond understanding the biological components of life, a major scientific goal

is to be able to predict metabolic phenotypes and evolutionary trajectories. The

relatively new field of systems biology provides the tools necessary to integrate our

knowledge of the genetic and molecular components of life. Genome-scale models

1



synthesize our knowledge of genes, proteins, and reactions into whole-cell pictures

of metabolism (Bordbar et al. 2014; McCloskey, Palsson, and Feist 2013). Upon

these metabolic network representations of a cell, we can apply constraints based on

growth conditions and we are then able to make predictions about the physiological

states observed in real life. Although much progress has been made in the field of

genome-scale modeling, there remain gaps in our knowledge of metabolism which lead

to errors in predictions (Orth and Palsson 2012).

The work presented in this dissertation aims to resolve the inconsistencies

found between model predictions and experimental observations and thereby improve

the biological knowledge base for the model organism of E. coli. Beyond resolving

modeling errors, current knowledge is utilized to make predictions about attainable

phenotypes via adaptive laboratory evolution. I will start by introducing the key topics

and tools related to adaptive evolution and systems biology that are fundamental to

the work presented in this dissertation.

1.1 A Systems Biology Approach to Discovery

The following dissertation is composed of three main chapters that seek to

expand our knowledge of metabolism in E. coli. The advent of genome-scale biology

with next-generation sequencing technologies has resulted in more complete genome

annotations and genome-scale reconstructions of metabolism. Genome-scale modeling

relies upon well curated knowledge of enzyme reactivity; however, even for model

organisms like E. coli genome-protein-reaction associations are incomplete. There are

gaps in our knowledge of metabolism and this can lead to modeling errors in which

in silico computations and in vivo observations do not coincide (Orth and Palsson

2



2012).

Gene essentiality is often utilized as a clear test of the predictive power of

models (Figure 1.1). Experimental data sets related to gene essentiality have become

widely available for various organisms offering genome-wide metabolic phenotypes to

be predicted and tested (Baba et al. 2006; Christen et al. 2011). By placing specific

growth constraints on a genome-scale model, including the systematic removal of

individual genes to simulate a knockout strain, one can perform flux balance analysis

to make growth or no growth predictions (Orth, Thiele, and Palsson 2010). These

predictions may then be compared to experimental screens of gene essentiality. Those

instances where a model predicts a gene to be essential that has been shown to be non-

essential experimentally are termed false negative predictions. These inconsistencies

can occur due to missing information in the genome-scale model. For instance, there

may exist alternate isozymes or pathways capable of supporting growth despite the

gene knockout. Conversely, instances where a model predicts a gene to be non-essential

that has shown to be essential experimentally are termed false positive predictions.

These inconsistencies can be the result of incorrect knowledge being included in the

genome-scale model. It is possible that un-realistic reactions may have been added

to a metabolic network reconstruction based on low confidence evidence. On the

other hand, false positive predictions could also occur due to errors or limitations

of essentiality screens. High-throughput essentiality screens have previously been

conducted in microtiter plate formats and conducted over the period of 24 or 48 hours.

These conditions may lead to false calls of essentiality for strains requiring longer

incubation periods. Thus, false negative and false positive predictions of essentiality

may be used to identify areas for further study and enable the systematic filling of

3
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Figure 1.1: Computational and experimental comparisons identify knowledge
gaps. Two modeling inconsistencies may be identified by comparing computational
predictions of growth/no growth to experimental observations of growth/no growth, namely
false negative and false positive predictions. False negative predictions occur when the model
predicts no growth, but experiments show growth. Conversely, false positive predictions
occur when the model predicts growth, but experiments show no growth.
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knowledge gaps.

Furthermore, constraint-based modeling methods make predictions about the

optimized state of a cell, implying an evolved phenotype. Provided a short adaptation

period, the phenotype of a cell could change to match the predicted state. In this

sense, it is possible that models may be used to predict evolutionary outcomes (Papp,

Notebaart, and Pál 2011; Notebaart et al. 2014; Lässig, Mustonen, and Walczak 2017).

However, not much work has been done to test whether constraint-based approaches

can accurately predict the adaptive mutations that may occur in vivo. Much may be

learned about metabolic capabilities by conducting adaptive evolution experiments,

which directly feed into the knowledge contained in genome-scale reconstructions of

metabolism and allows for iterative model-driven discovery processes (Figure 1.2). In

the following section, we shall explore aspects of adaptive evolution in E. coli, which

played a dominant role in the discovery efforts of this dissertation.

1.2 Adaptive Evolution in Escherichia coli

One underlying, fundamental gap in our knowledge of metabolism, which is a

common theme found in the chapters of this dissertation, is an underestimation of

the role of enzyme promiscuity in cell growth and adaptation. All enzymes possess

the ability to use alternate substrates to a varying degree. The evolution of new gene

functions is believed to be driven by the molecular infidelity of enzymes. Enzymes

display flexibility in terms of substrate specificity and catalytic promiscuity. This

enzymatic feature of promiscuity has been observed in a limited number of laboratory

experiments (Jensen 1976; Khersonsky and Tawfik 2010; Loo et al. 2010; Notebaart

et al. 2014); however, a larger ‘underground’ network of reactions may occur within
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In silico query:
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(e.g. errors in essentiality calls)

Experiments:
Adaptive laboratory 

evolution to activate latent

pathways + downstream

analysis (e.g. DNA seq)
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Figure 1.2: An iterative workflow for model-driven discovery. Metabolic model
network knowledge gaps are identified by comparing in silico queries to experimental
observations. This leads to predictions about the source of the knowledge gap, possibly
missing isozyme or alternate pathway information or knowledge of an underground activity.
These predictions are tested experimentally, possibly utilizing adaptive laboratory evolution
experiments and genome resequencing and mutation analysis to test the hypothesis. Finally
the new biology discovered from experiments is incorporated into the metabolic network
and the loop is repeated.
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a cell below the level of detection. It is not until a cell’s metabolic capabilities are

probed that these novel functions may come to light.

The term underground metabolism has been defined in the context of evo-

lutionary biology as “reactions catalyzed by normal (unmutated) enzymes acting

on substrate analogues which are themselves endogenous metabolites" (D’Ari and

Casadesús 1998). It is believed that enzyme promiscuity has allowed for the adaptation

of organisms to novel environments and it is those secondary, underground reactions

that are normally not detected that drives the evolution of new gene functions. Studies

of enzyme families and superfamilies are reflective of the role of enzyme promiscuity in

the evolution of new, more specialized functions (Khersonsky and Tawfik 2010). The

specific mechanistic route to enzyme specialization from a more broad-specificity ances-

tor, however, has not been as well characterized in vivo. It is believed, however, that

new gene functions stemming from secondary activities of a pre-cursor enzyme must be

selected for by providing an immediate advantage in a selecting growth environment,

and specialization may occur by a small number of mutation events (Khersonsky

and Tawfik 2010). By evolving the model organism E. coli in the laboratory, we

can begin to examine these mechanisms at the genetic level and put some of the

previously suggested theories to test. Current whole-genome sequencing technologies

have enabled the rapid generation of large mutational datasets, that provide a picture

of the evolutionary trajectories to an optimized endpoint. The information gleaned

from these experiments allow us to make progress towards elucidating the extent of

underground activities and metabolic plasticity of an organism.

Beyond single nucleotide polymorphisms (SNPs), and small insertion, and

deletion mutation events that occur during adaptive evolutions, a mechanism of
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adaptation that commonly occurs in growing bacteria is large regions of genome

amplification. Genome duplication amplifications (GDAs) are not commonly called by

sequencing analysis pipelines; however, they appear to commonly play an important

role in selecting for and magnifying advantageous underground activities. GDA is

believed to occur to some extent in approximately 10% of cells in a non-selective growth

medium (Andersson and Hughes 2009). When a population of bacteria is placed in a

selective growth environment, beneficial over-expression of a gene with advantageous

underground reactivity may be selected for, and the population will reflect this by

having a higher frequency of GDAs in the region conferring the benefit. Upon removal

of the selection pressure or following acquirement of beneficial mutations and novel

gene functionalities, it is believed that genome duplication amplifications are lost

(Andersson and Hughes 2009; Bergthorsson, Andersson, and Roth 2007). Thus, GDAs

and underground reactivity can play integral roles in evolutionary mechanisms. The

results presented in this dissertation are reflective of the importance and prevalence of

GDAs in the adaptation of E. coli to genetic perturbations and non-native growth

environments.

1.3 Introducing the Thesis

In the chapters that follow, methods for probing promiscuous activities at

the genome-scale are presented. Genome-scale reconstructions of metabolic networks

are combined with gene knockout analysis, adaptive laboratory evolution, and next-

generation sequencing techniques such as DNAseq and RNAseq to probe the largely

uncharacterized space of underground metabolism. In doing so, cellular mechanisms

of regulation and adaptation are explored. The methods presented, which can be
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extended to other organisms, become increasingly important when designing drugs

targeting pathogenic bacteria or engineering enzymes and bacteria for biotechnology

applications.

In Chapter 2, a model-driven workflow for discovering underground metabolic

functions in E. coli is proposed. The method aims to resolve inconsistencies be-

tween modeling predictions of gene essentiality and experimental observations. The

workflow identifies potential targets for analysis with flux balance analysis (FBA)

gene essentiality simulations in E. coli utilizing the iJO1366 metabolic reconstruction.

Putative isozyme targets are identified by using sequence homology. It is predicted

that isozymes are up-regulated in the strain where the primary enzyme is knocked

out and this is explored by performing qPCR. If the putative isozyme is up-regulated,

multi-knockout strains are constructed in the hopes of finding a synthetic lethal

interaction and concluding the workflow. In Chapter 3, previously reported false

positive predictions of gene essentiality on defined minimal medium for E. coli are

explored. Of the twenty false positive strains available in the Keio gene knockout

collection, eleven strains are shown to grow with longer incubation periods. The

strains that grew reproducibly showed lag phases ranging from less than one day to

more than 7 days. Whole genome sequencing of the populations reveal that more than

half of the strains that grew acquired mutations. Comparison of mutations and model

predictions of alternate pathways/isozymes demonstrated agreement for many of the

cases analyzed. It is demonstrated that longer-term growth experiments followed

by whole genome sequencing can provide a better understanding of gene essentiality

as well as elucidate adaptative mechanisms that occur during these growth screens.

In Chapter 4, a computational model of underground metabolism and laboratory
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evolution experiments are employed to examine the role of enzyme promiscuity in the

acquisition and optimization of growth on predicted non-native substrates in E. coli

K-12 MG1655. Promiscuous enzyme activities are shown to play key roles in multi-

ple phases of adaptation. Altered promiscuous activities not only established novel

high-efficiency pathways, but also suppressed undesirable metabolic routes. Genes

underlying the phenotypic innovations were accurately predicted by genome-scale

model simulations of metabolism with enzyme promiscuity. Model-driven methods

like those presented in this dissertation have the advantage of being driven by a

top-down, systems analysis in the context of whole cell metabolism. Such work holds

promise for advancement of fields of metabolic engineering and pharmacology that

are continuously adapting enzymes and metabolic pathways for desired phenotypes.
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Chapter 2

Model-driven discovery of

underground metabolic functions

in Escherichia coli

2.1 Introduction

The notion that enzymes are highly specialized to carry out a single function

is often untrue. It has been demonstrated that many enzymes exhibit flexibility, or

promiscuity, in regards to what substrates their catalytic pockets recognize. This lack

of substrate specificity can lead to accuracy-rate tradeoffs that may affect evolutionary

trajectories (Tawfik 2014). How has enzyme promiscuity shaped the evolution and

divergence of organisms? The ‘patchwork’ model theorizes that primitive enzymes

possessed a high degree of substrate promiscuity because it conferred a greater degree

of catalytic versatility when the pool of available enzymes was limited (Jensen 1976;

Lazcano and Miller 1996; Rison and Thornton 2002; Khersonsky and Tawfik 2010).
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The existence of promiscuous proteins further serves as a starting point for evolving

new functions, allowing for novel adaptations. Thus, organisms may exhibit latent,

underground metabolic pathways that form the basis of their capacity to adapt to

changing environments (D’Ari and Casadesús 1998; Nam et al. 2012; Notebaart et al.

2014). Substrate promiscuity, also referred to as ‘moonlighting activity’ and ‘cross-

reactivity’, has thus been studied in terms of evolution and ties have been made

between enzymes and their superfamilies (Furnham, Beer, and Thornton 2012). How

novel enzyme functions arise within superfamilies is thus examined, and provides a

basis for predicting promiscuous behavior among these protein families. However,

defining targets for studies of promiscuity outside of these families and on a larger

scale can become quite challenging.

Enzyme promiscuity has become widely accepted and examined on the enzyme

level from a biochemical standpoint (Loo et al. 2010). These detailed biochemical

studies provide an in vitro view of enzyme promiscuity and may be extended to reflect

the promiscuity of other proteins based on sequence homology or enzyme familial

relationships. In the present study, this task is approached from a different perspective

by taking advantage of in vivo experimental techniques in order to gain insight into

activities that are more physiologically relevant. In this way, as has been demonstrated

in other in vivo studies, many of the challenges associated with removing enzymes from

their native environment are circumvented (Notebaart et al. 2014). Specifically, the

present study focuses on the examination of the regulatory and evolutionary capacity

of a cell in vivo. Theories regarding genome duplications have suggested that an

enzyme with a side activity that is selected for may be enhanced via gene duplication

followed by mutation accumulation (Andersson and Hughes 2009). Thus, laboratory
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evolutions may provide insight into these evolutionary mechanisms involving enzyme

promiscuity. Furthermore, exploration of an underground metabolic network that

takes advantage of enzyme cross-reactivity through native regulatory adaptations is

best examined in the context of a whole cell (D’Ari and Casadesús 1998; Notebaart

et al. 2014).

A top-down, model-driven approach coupled with in vivo experimentation to

explore enzyme promiscuity could provide new insights into the physiological role of

underground metabolism and complement the current approaches to enzyme research.

Computational predictions of gsne essentiality are a commonly utilized application of

genome-scale models and constraint-based modeling (McCloskey and Palsson 2013;

Bordbar et al. 2014). When these models fail to predict gene essentiality, it signifies

a missing link in our knowledge of metabolism and provides targets for further

exploration (Orth and Palsson 2012). Various computational algorithms – SMILEY,

GrowMatch – have been published with the intent of reconciling such knowledge gaps

(Reed et al. 2006; Kumar and Maranas 2009). The following is a proof-of-principle

study that demonstrates the advantages of a workflow for examining promiscuity

at the genome-scale that also encompasses an adaptive laboratory evolution (ALE)

framework. Three cases are explored to illustrate the capabilities of such a targeted,

top-down approach to uncover the underground, latent activities of enzymes that

reconcile gaps in our knowledge of metabolism.
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2.2 Results and Discussion

2.2.1 Developing a model-driven workflow for isozyme dis-

covery

The results from this study demonstrated that a top-down, systems approach

could be used to drive the discovery of enzyme substrate promiscuity by using three

genes, aspC, argD, and gltA, that were incorrectly identified to be essential as inputs.

The isozyme discovery workflow presented in this study is a prime example of targeted

analysis based on systems-level insights, in this case: the inconsistencies between

modeling predictions and experimental observations (Figure 2.1).

The first step in the isozyme discovery workflow was to identify the targets for

exploration. These targets come from performing flux balance analysis (FBA) gene

essentiality simulations in E. coli utilizing the iJO1366 metabolic reconstruction (Orth

et al. 2011; Kauffman, Prakash, and Edwards 2003). When discussing computational

gene essentiality predictions, the term false negative prediction refers to a situation

in which a gene is predicted to be essential but experimentally observed to be non-

essential. This type of prediction failure can stem from lack of knowledge of an

alternate pathway or isozyme (Orth and Palsson 2012). All genes associated with false

negative predictions in iJO1366 were identified, and those genes with high-confidence

candidate isozymes, based on sequence homology, were used as examples for this

study. To identify potential isozymes based on sequence homology, NCBI’s BLASTp

algorithm (Altschul et al. 1997) was run for each protein sequence (results summarized

in Table S1). An expect value of <E-40 and high sequence identity percentage were

utilized as a cut-off for candidates.
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Figure 2.1: A schematic of the general workflow utilized for isozyme discovery
involving both in vivo and in silico experiments. Starting from the top-most box,
false negative model predictions and isozyme candidates were identified utilizing FBA
and BLASTp. The workflow was then followed vertically downward examining KO strain
growth, expression levels of candidate isozyme genes, and multi-KO strain phenotypes.
Deviations from the schematic occurred when growth discrepancies were encountered. The
workflow was terminated once a synthetic lethal interaction of false negative gene and
isozyme candidate(s) were identified. The output was new enzymatic activities characterized
and added to the current genome scale model reconstruction of E. coli.
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Following identification of false negative targets and potential isozymes, ex-

periments were conducted to determine which isozyme candidate might explain the

modeling failure. The knockout strain corresponding to the false negative target was

examined. Growth on glucose minimal medium of the knockout strain was confirmed.

It was then hypothesized that an isozyme was compensating for the lost function of

the primary gene that was knocked out. This hypothesis was tested by exploring

expression of the putative isozymes in the primary knockout strain. RT-qPCR analysis

was performed and if an isozyme candidate was up-regulated, the next step in the

workflow was followed (Figure 2.1).

Following confirmation of up-regulation of the candidate isozyme, a double

knockout (DKO) strain was constructed. It was thus hypothesized that removal of the

up-regulated isozyme candidate would lead to a synthetic lethal interaction if there

remained no other isozymes. The next step in the workflow was to test the growth

of the DKO strain and confirm a synthetic lethal interaction. If a synthetic lethal

interaction was verified following at least one week of incubation, then the isozyme

was deemed to be correctly identified based on genetic and transcriptional evidence. A

possible deviation from the above steps is also taken into consideration in this study.

For example, if a DKO strain was not lethal, the possibility of an alternate isozyme

was explored. The following sections describe the specific workflows followed for the

three false negative cases examined in this study (Figure S1).

Implementation of this workflow resulted in three main findings: 1) discovery

of seven new isozyme associations and adaptive regulatory mechanisms for partially-

characterized enzymes in E. coli; 2) development of a enzyme substrate promiscuity

discovery tool which can easily be extended to fill other knowledge gaps in E. coli
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as well as other organisms; and 3) the establishment of a more rigorous assessment

of lethality with longer growth incubations in order to prevent false statements of

lethality, particularly for high throughput screens.

2.2.2 Case 1: aspC–aspartate aminotransferase

The aspartate aminotransferase in E. coli, encoded by the gene aspC, has

been characterized as a broad-substrate, multi-functional enzyme that catalyzes the

formation of aspartate, phenylalanine, and tyrosine (Fotheringham et al. 1986). Early

studies have drawn links to the overlapping functions of the aminotransferases encoded

by aspC, tyrB, and ilvE (Gelfand and Steinberg 1977). The aromatic aminotransferase

encoded by tyrB has shown activity in the synthesis of phenylalanine, tyrosine, and

leucine (Powell and Morrison 1978), whereas the branched-chain aminotransferase,

encoded by ilvE, has been associated with the synthesis of isoleucine, leucine, and

valine (Lee-Peng, Hermodson, and Kohlhaw 1979). Previous studies reported that

aspC knockout strains are viable in both rich media and glucose minimal medium

(Baba et al. 2006); however, iJO1366 model simulations predicted no growth on

minimal medium. Given this false negative prediction, BLASTp was then utilized and

results pointed to tyrB as an isozyme candidate (see Table S1).

Initial growth tests were performed to verify reports of non-essentiality. The

growth data for the ∆aspC strain is illustrated in Figure 2.2B. Growth of the ∆tyrB

strain was also validated in this study. Following completion of initial growth charac-

terizations, RT-qPCR analysis of the tyrB isozyme target was performed in the ∆aspC

and wild type strains. qPCR analysis showed up-regulation of tyrB in the ∆aspC strain

with a fold change of 4.7 compared to the wild type strain (Figure 2.2A). Therefore,
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Figure 2.2: The workflow-guided results utilized to discover isozymes of aspC.
A) A bar chart of the qPCR results in terms of normalized expression of the tyrB isozyme
candidate in the ∆aspC and wild type strains (standard error ratio was calculated, p-
value<0.05, N=1, 2 biological duplicates, 6 technical replicates). A fold increase of 4.8 is
observed in the ∆aspC strain compared to wild type. B) Growth data on glucose minimal
medium in terms of cellular density is reported for ∆aspC and ∆aspC∆tyrB strains. The
∆aspC∆tyrB shows no growth for >150 hours.

the next step in the workflow was followed and construction of the ∆aspC∆tyrB DKO

strain was performed. Growth of the ∆aspC∆tyrB strain was monitored (Figure 2.2B)

and the ∆aspC∆tyrB KO pair was deemed synthetically lethal based on this genetic

evidence. Therefore, successful execution of the workflow identified the isozyme link

between aspC and tyrB.

As a secondary result of executing this method was the discovery of an associa-

tion between ilvE and L-tyrosine biosynthesis. Efforts were placed on finding amino

acid supplements that would enable growth of the ∆aspC∆tyrB strain to further

validate the functions of this interrelated trio of genes. Growth characterizations were
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performed utilizing various combinations of amino acid supplementation including

L-aspartate, L-tyrosine, L-phenylalanine, and L-leucine. Gene knockout simulations

of growth on glucose plus supplementation of all combinations of the aspC and tyrB

associated amino acids resulted in an expected requirement of aspartate and tyrosine

for growth rescue of the ∆aspC∆tyrB strain (Table S2). Experimental observations,

however, showed that only aspartate was required for growth rescue. It was therefore

speculated that the aminotransferase encoded by ilvE was fulfilling the role of tyrosine

synthesis. The enzyme encoded by ilvE has shown some, though minimal, specific

activity with phenylalanine and tyrosine in an in vitro assay (Lee-Peng, Hermodson,

and Kohlhaw 1979). Thus, the overlapping in vivo functionality of these aminotrans-

ferases, aspC, tyrB, and ilvE, appeared to be greater than previously expected, thus

these functionalities are assumed to be enabled by the native gene.

Finally, in order to examine the possibility of acquired mutations in the strains

constructed in this study, genome resequencing was performed for the ∆aspC and

∆tyrB strains (Barrick et al. 2009). A summary of the output for these strains is

shown in Table S3. The ∆aspC and ∆tyrB strains showed no apparent mutations in

the coding regions of the related isozymes examined.

From the study of the aspC false negative, it was proposed that two new

functions should be considered to occur in E. coli K-12: 1) the annotated tyrosine

aminotransferase, tyrB, apart from being the ‘aromatic amino acid’ aminotransferase,

can also perform the role of aspartate aminotransferase and 2) the isoleucine amino-

transferase, ilvE, apart from being the ‘branched-chain amino acid’ aminotransferase,

can also perform the role of tyrosine aminotransferase.

19



2.2.3 Case 2: argD–acetylornithine aminotransferase/

N-succinyldiaminopimelate aminotransferase

Another member of a generalist enzymatic class (Nam et al. 2012) explored

in this study was the enzyme encoded by the gene argD. This aminotransferase was

previously identified as having dual functionality, involved in both lysine and arginine

biosynthesis (Ledwidge and Blanchard 1999). The argD gene is predicted to be an

essential gene because of its role in amino acid synthesis; however, knockout studies

have repeatedly shown the non-essentiality of this gene on glucose minimal medium

(Baba et al. 2006). The putative isozyme targets explored for acetylornithine/N-

succinyldiaminopimelate aminotransferase based on sequence homology were astC,

gabT, patA, and puuE.

Initial examination of the growth of a ∆argD strain was performed. Following

this confirmation of growth, RT-qPCR analysis was performed to examine the expres-

sion of isozyme candidate genes in the ∆argD strain compared to a wild type strain

(Figure 2.3A). The candidate genes astC and gabT showed the greatest fold difference

from wild type in expression: 3.97-fold and 4.06-fold, respectively. The up-regulation

of these two genes prompted the construction of two DKO strains, ∆argD∆astC

and ∆argD∆gabT. Of the two, ∆argD∆astC was the DKO strain initially chosen

for examination due to a previously drawn relationship (Newman et al. 2013). The

growth exhibited by this strain is displayed in Figure 2.3B. The ∆argD∆astC strain

demonstrated only a mild difference in growth fitness compared to the ∆argD strain;

therefore, further analysis of the remaining candidates was performed.

A second round of RT-qPCR was performed on the ∆argD∆astC DKO strain

to further identify isozyme candidates. The gene gabT continued to be up-regulated in
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this DKO strain with a relative expression ratio of 4.22 (Figure 2.3A). This result led to

the construction of a triple knockout (TKO) strain, ∆argD∆astC∆gabT. A significant

reduction in growth fitness was observed in the TKO strain, with an exhibited lag

phase of approximately 24 hours (Figure 2.3B). The eventual growth of the strain

suggested the need for further examination of the remaining two candidates, puuE

and patA.

A third round of RT-qPCR was performed on the constructed TKO strain.

Although the puuE gene had been down-regulated in the SKO and DKO strain com-

pared to the wild type strain (relative expression ratios of 0.24 and 0.18, respectively),

qPCR showed its up-regulation in the TKO strain (Figure 2.3A). A relative expression

ratio of 7.00 was found for the puuE gene, thereby prompting the construction of a

quadruple KO (QKO) strain. The strain ∆argD∆astC∆gabT∆puuE was screened

for growth for more than four weeks in multiple attempts and a conclusion of lethality

was made. This result closed the experimental loop in the workflow. As a final

validation, all remaining DKO and TKO combinations were constructed and their

growth validated to ensure the synthetic lethal interaction was as expected (Figure

S2).

The results from examining isozymes of argD suggested the presence of a regu-

latory hierarchy regarding isozyme activation that emerged following serial knockout

and expression analysis of the multi-KO strains. The mechanisms influencing this

regulatory response is suggested as an avenue for further study beyond the scope of

work presented here.

In order to examine the possibility of acquired mutations in the strains con-

structed and utilized in this study, genome resequencing and analysis was performed
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for ∆argD, ∆puuE, and their descendent TKO strains. A summary of the results

for these strains is provided in Table S4. The only obvious mutation of interest was

that of the new junction call at puuR/ puuC in the ∆argD∆astC∆gabT TKO strain.

Further read-depth coverage analysis of this region revealed a 962 bp deletion between

1,360,264 bp 1,361,226 bp, deleting a large section of the puuR gene (Figure S3). The

genes puuR and puuC are both in the same operon as the isozyme puuE explored in

this study, with puuR acting as a repressor for this operon under conditions of low

putrescine concentration (Nemoto et al. 2012). These results thus point to a rarer

mechanism of up-regulation via promoter mutation (Andersson and Hughes 2009).

A potential mechanism for the large up-regulation of the puuE isozyme in the

TKO strain is elucidated from a structural analysis of the repressor protein, puuR.

The puuR DNA-binding transcriptional repressor consists of two domains, namely a

helix-turn-helix DNA-binding domain and a Cupin-family domain (Nemoto et al. 2012).

Using the high number of homologous templates available, a homology model was

constructed from the amino acid sequence of the puuR gene via the available toolkits

(Roy, Kucukural, and Zhang 2010; Hildebrand et al. 2009; Kelley and Sternberg 2009)

(with an average confidence of 97% across templates, see Figure S4). The resulting

structure demonstrates that the observed deletion in the Cupin domain from the read

depth coverage analysis is in direct contact with the helix-turn-helix motif in the DNA

binding domain. Thus it was concluded that removing this part of the protein would

drastically compromise protein integrity and prevent DNA binding, and, consequently,

the ability of the puuR protein to repress the puuE gene.

Finally, examination of this case demonstrated the potential importance of

extending incubation times in essentiality screens. Often in high throughput data
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sets, growth cut-off times are made for the sake of analysis (Nichols et al. 2011; Baba

et al. 2006; Gerdes et al. 2003), which could lead to misleading reports of essentiality.

This study provided initial data on a range for incubation times required to make

essentiality calls with higher accuracy. For the ∆argD∆astC∆gabT TKO strain,

longer lag phases than those typically observed in E. coli were measured. Interestingly,

mutations were observed that were implicated in rescuing the growth and loss of

the primary enzyme(s) under examination. As strain resequencing becomes more

accessible, it is possible that similar mutations acquired during extended lag phases

will be observed (Finkel 2006). As demonstrated here, strains exhibiting delayed or

slow growth may present an interesting opportunity for discovery.

2.2.4 Case 3: gltA–citrate synthase

The last false negative case examined in this study was the growth of a citrate

synthase, gltA, knockout strain. Previous studies demonstrated the ability of a 2-

methylcitrate synthase to perform the same catalytic function as citrate synthase and

suggested that mutagenesis is required for this transition to take place (Patton et al.

1993). Independently, utilizing the approach presented here, a BLASTp analysis also

pointed to prpC as a putative isozyme based on sequence homology. This case was

thereby examined as a final validating case, demonstrating the up-regulation of an

isozyme in the absence of the primary catalyzing enzyme.

Upon initial characterization of a ∆gltA strain, the strain did not grow on

minimal medium despite the fact that it was listed as a positive growth phenotype

in the initial Keio screen (Baba et al. 2006). Thus, the case could be considered a

true negative prediction; however, given the strong evidence for a possible homolog
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(Table S1) as well as previous literature reports (Patton et al. 1993), this case was

further explored. Adaptive evolution was utilized to see if the putative isozyme, prpC,

could indeed rescue a gltA deficient strain when a selective pressure was applied. To

promote growth, a ‘weaning’ ALE was performed (Lee and Palsson 2010). FBA was

conducted to determine which metabolite could be added to the medium in order to

rescue growth (Table S5). It was predicted that supplementation with citrate would

allow for utilization of glucose and support growth. Although other supplements were

predicted to improve growth, citrate was selected due to its close relation to the citrate

synthase reaction as well as the inability of E. coli to utilize citrate as its sole carbon

source, thereby forcing metabolism of glucose (Koser 1923). ∆gltA was therefore

grown with citrate supplementation in two parallel ALE experiments. Growth was

observed in ∆gltA ALE 1 and ∆gltA ALE 2 with supplementation; and following two

passages robust growth was observed without supplementation (Figure 2.4A). The

final apparent cell densities for each ALE experiment showed an approximate 8 and 6

fold increase (ALE experiment 1 and 2 respectively) from the initial supplemented

state.

Expression analysis of the evolved endpoints showed significant up-regulation

(more than 500 fold difference) of the isozyme target, prpC, thereby providing evidence

of its isozyme function and allowing for a linear progression through the workflow

(Figure 2.4B). Furthermore, the growth rate of each isolate clone correlated well

with the expression level of prpC (Figure S5). Following observation of these results,

an attempt was made to knock out prpC from the four endpoint clones. Although

knockout confirmation primers suggested successful removal of the prpC gene, the

strains continued to demonstrate growth. This suggested the possibility of duplication

25



A
Adaptive Laboratory Evolution of ∆gltA

C
e

llu
la

r 
D

e
n

s
it
y
 (

g
D

W
 L

-1
)

Glucose + Citrate 

Minimal Media

Glucose Minimal Media

∆gltA ALE 1
∆gltA ALE 2

Apparent

ALE 1

Final Density

Apparent

ALE 2

Final Density

Time (Hours)

B

R
e

la
ti
v
e

 E
x
p

re
s
s
io

n

Clone 1

prpC Expression Levels ∆gltA Evolved Strains

2000

10000

14000
16000

Clone 2 Clone 1 Clone 2

∆gltA ALE 1
∆gltA ALE 2

4000
6000
8000

12000

0
0

100 200 300 400 500 600

0.2

0.4

0.6

0.8

Figure 2.4: The workflow-guided results utilized to discover isozymes of gltA. A)
Cellular density results from the ALE of ∆gltA on glucose minimal medium are illustrated.
A vertical drop in cellular density corresponds to manual passaging of a fraction of the
cell culture for a fresh batch of medium. The independent ALE experiments reached a
different apparent final density. B) A bar chart showing qPCR results as a fold increase
in expression of the prpC isozyme candidate in four ALE endpoint clones in relation to
a wild type strain (standard error ratio was calculated, p-value<0.05, N=1, 2 biological
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of the prpC gene elsewhere in the genome. Therefore, an in-depth whole-genome

resequencing and analysis was performed.

Two clones from each experiment, ∆gltA ALE1 and ∆gltA ALE2, were isolated

and resequenced along with the parent ∆gltA Keio strain. Resequencing results

revealed the possibility of new junction evidence and mutations within the prp operon

(Table S6) for three out of the four endpoint isolates. Further analysis showed elevated

read coverage of the region between 279 and 371 kb in the ALE endpoint clones but

not in the ∆gltA parent strain (Figure S6). The same coverage abnormality was also

confirmed in ALE clones isolated from the third passage cultures (Figure S6). A single

relevant novel junction was then identified by applying a custom pipeline based on de

novo fragment assembly, providing significant evidence for tandem duplication. The

presence of the junction was further verified in all endpoint isolates by performing

read mapping onto the corresponding sequence. The duplicated region was flanked by

a 182 bp repeat which is a part of the IS30 mobile element. The rightmost flanking

copy is not present in the GenBank reference K-12 strain (Benson et al. 2005) and

is unique to the Keio K-12 parent strain. Furthermore, plots from Figure S6 clearly

suggest high multiplicity of the 100 kb duplicated fragment. To perform the copy

number analysis, per base coverage data was normalized to the average coverage of

the particular strain and to the position specific biases, inferred from the Keio parent

strain coverage distribution (Figure S7). Then the multiplicity was estimated by the

median of the normalized coverage values across the duplicated region. Predicted

multiplicities of the duplicated region are 7, 11, 16, and 8 for the different clones,

respectively. Finally, analysis of novel junctions also predicted a smaller-scale, 1 kb,

duplication event in ALE 1 clone 1. The genome coordinates of this duplication are
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348,810 - 349,895, which spans part of the prpC gene and is encompassed by the

larger-scale 100 kb duplication as well.

The results from the coverage and whole genome resequencing analysis helped

to explain the inability to construct the DKO construction. Based on the suspected

high copy number of duplication, it was deemed unreasonable to knockout all copies

of the prpC gene and the experimental workflow was concluded. Thus, given the

transcriptional and mutational evidence, it is likely that the prpC gene is indeed an

isozyme for gltA, as has previously been reported. Furthermore, these results expand

upon the theories surrounding previous reports of genome duplication amplifications

as an evolutionary mechanism (Andersson and Hughes 2009; Finkel 2006).

Insight into biological adaptability requiring evolution was thus gained from

exploring the presence of large-scale duplications. The mutation event was required

to rescue growth and activate the known isozyme, prpC, similar to a previous study

(Patton et al. 1993). This mutation event occurred after two ALE passages in this

study (Figure S6). Interestingly, all four individual endpoint clones, as well as

the two clones from Pass 3 that were isolated and sequenced, exhibited the same

large-scale duplication of the 100 kb region, thereby implying a clear evolutionary

pressure to up-regulate this particular region. Published theories regarding genome

duplication amplifications have remarked on the instability of large duplications and

their subsequent loss in the absence of selection pressures (Andersson and Hughes

2009). Thus, although the duplications were detected after the third passage and

again after the ninth, they could be lost with further adaptation.
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lethal interaction set. C) GPR for gltA and prpC highlights the requirement of evolution
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2.2.5 Gene-protein-reaction (GPR) analysis and conservation

of isozymes across 55 related strains

Inconsistencies between in silico predictions and in vivo data guided this study

and resulted in the discovery of seven new links between known, partially-characterized

enzymes and reactions that are conditionally essential to the metabolic network in

E. coli. In this study, we moved to complete the missing links that propose a solution

to the computational and experimental inconsistencies observed through in vivo

studies. Suggested changes to the GPR association in iJO1366 based on genetic and

transcriptional evidence are presented in Figure 2.5 (abbreviations are defined in Table

S7). The expanded reaction associations for the cases examined in this study support

the hypothesis that functional overlap occurs for enzymes across metabolism, forming

the basis of an underground metabolic network, and this concept has been supported

by other recent works (D’Ari and Casadesús 1998; Notebaart et al. 2014).
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As a preliminary expansion of this study, we investigated the conservation of

the newly discovered isozymes in 55 closely related strains of E. coli and Shigella that

have existing metabolic models (Monk et al. 2013). It was determined that the same

GPR changes should be made in the majority of these models. However, some of the

putative isozymes discovered in this study have no corresponding gene in the related

strains (Figure S8). For example, eight Shigella strains examined are lacking prpC,

the newly discovered gltA isozyme. Also, 14 E. coli strains from different clades lack

puuE, one of newly discovered argD isozymes. Finally, five of the Shigella strains lack

astC, another one of the argD isozymes. Therefore new GPR associations are available

for each of the 55 models, but they must be adjusted in a strain-specific manner.

Furthermore, analysis of isozyme and regulatory region sequence conservation between

different strains of E. coli could illuminate divergent evolutionary strategies in the

E. coli species.

2.3 Conclusions

Enzymatic promiscuity and a cell’s ability to adapt to genetic perturbations were

explored in the execution of the model-driven workflow developed in this study. The

results suggest that a hierarchy of latent metabolic solutions exist, as highlighted by the

analysis of the false negative argD. Furthermore, this study emphasized the possibility

of discovering novel regulatory responses following long-term culturing studies and

genome resequencing when determining gene essentiality. Lastly, the developed

methods can be readily extended to other organisms and gene targets where gap-filling

is required. For example, a gap-filling study utilizing the E. coli iJO1366 metabolic

reconstruction has identified a total of 265 false negative predictions (corresponding
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to 59 unique genes) which could be explored under various environmental and genetic

conditions (Orth and Palsson 2012). The extendability of this work to pathogenic

organisms could be particularly advantageous in searching for anti-microbial targets.

As genome-scale models and organism-specific knowledge bases expand, their ability to

predict biological behavior for both basic science and biotechnology applications will

increase. This likely expansion is evident in the appearance of complementary studies

(Notebaart et al. 2014) which use computational modeling to isolate specific predicted

functionalities through gene knockout or over-expression and through determining

media conditions which focus pressure on the predicted function(s). A comparison of

the present study to the aforementioned study (Notebaart et al. 2014) shows some

overlap between genes explored and thought to exhibit underground activity (ilvE

and tyrB), although the suggested activities reported in each study for these genes

are distinct. Workflows for discovering promiscuous and latent activities such as the

one presented here will be critical for advancement of model-driven science.

Although the strengths of the presented method were demonstrated with the

cases explored in this study, there is room for improvement to broaden the applicability

of the workflow. For false negative model gaps, there is the possibility that an alternate

pathway is rescuing the growth of the cell. For such alternate pathway solutions,

isozyme analysis, could result in fruitless effort as those solutions are not captured by

the workflow. Another area of improvement proposed for the workflow is in selecting

bioinformatic algorithms. There are many enzymes for which BLASTp, a purely

sequence homology driven algorithm, will not result in the identification of candidate

isozymes. In order to expand this list of putative isozymes, the use of protein structure

similarity or substrate structure similarity identifying algorithms is suggested (Zhang
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et al. 2012). Finally, the utilization of RNA-seq or other larger-scale omics methods

could capture a more complete picture of transcriptional changes in response to

KO perturbations rather than qPCR analysis. These modifications to the workflow

presented may result in a more robust method for filling model gaps, which can be

applied to other organisms as well.

2.4 Materials and Methods

2.4.1 Identifying isozyme candidates with BLASTp

Enzyme protein sequences corresponding to the false negative gene targets were

utilized as input for NCBI’s BLASTp algorithm. These sequences were compared with

all other protein sequences in the organism E. coli K-12 MG1655. Only those with

high alignment scores (>150) and Expect values (E-values) <1E-40 were considered

for this study (Table S1).

2.4.2 Bacterial strains and plasmids

All bacterial strains utilized in this study were descendants of E. coli K-12

strain. Strains included a control, characteristically wild-type strain, E. coli K-12

MG1655 (bop27), as well as several strains taken from the single-gene knockout Keio

collection (Baba et al. 2006) derived from the parent strain, E. coli K-12 strain

BW25113. Keio strains examined were ∆aspC, ∆gltA, ∆aldA and ∆argD. Knockout

strains constructed utilizing the Keio parent as a starting strain are summarized in

Table 2.1 of Materials and Methods.

Plasmids utilized in this study were pKD3, pKD13, pKD46, pCP20 (Datsenko
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and Wanner 2000).

2.4.3 Culture conditions and growth characterization

All strains were grown in either M9 minimal medium or Luria-Bertani (LB)

broth in 250 mL Erlenmyer flasks containing magnetic stir bars for aeration. The M9

minimal medium was composed of 2 g L−1 D-glucose, 100 µM CaCl2, 2 mM MgSO4,

6.8 g L−1 Na2HPO4, 3 g L−1 KH2PO4, 0.5 g L−1 NaCl, 1 g L−1 NH4Cl, and 250 µL

L−1 trace element solution. The trace element solution was composed of (per liter)

1 g of FeCl3 · 6H2O, 0.18 g of ZnSO4 · 7H2O, 0.12 g of CuCl2 · 2H2O, 0.12 g of

MnSO4 · H2O and 0.18 g of CoCl2 · 6H2O. For strains with antibiotic resistances and

during knockout procedures, LB and M9 minimal mediums were supplemented with

antibiotics at concentrations of 50 µg mL−1 kanamycin, 50 µg mL−1 chloramphenicol

or 100 µg mL−1 ampicilin.

Growth screens on 0.2% D-glucose M9 minimal medium were conducted in

liquid culture. Cell cultures were first grown to an optical density at 600 nm (OD600) of

0.6-1.0 in LB broth containing selective antibiotics. The cells were then washed twice

with M9 minimal medium (no carbon source) prior to inoculation of the screening

growth media. The target initial OD600 for inoculations was 0.01-0.02.

2.4.4 In silico modeling

The latest genome scale metabolic model for Escherichia coli K-12 MG1655

(Orth et al. 2011), iJO1366, was utilized in this study for all growth and knockout

simulations using the constrain-based modeling package, COBRApy (Ebrahim et al.

2013). Growth simulations were performed by optimizing for the default core biomass
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objective function, which is a representation of essential biomass compounds, from

cellular components in stoichiometric amounts (Feist and Palsson 2010). Determining

gene or reaction essentiality on simulated glucose minimal medium was achieved by

removing the desired gene or reaction from the model and then running a flux balance

analysis (FBA) simulation under conditions mimicking the in vivo screen (aerobic

growth with glucose as a substrate) as previously described in detail (Orth and Palsson

2012) with the glucose exchange reaction lower bound set to -10 mmol gDW−1hr−1

and the oxygen exchange reaction lower bound set to -1000 mmol gDW−1hr−1. A gene

or reaction was deemed essential if the predicted flux through the biomass objective

function was less than zero (a threshold of 0.001 or less). LB medium was simulated by

opening all exchange reactions (setting their lower bound to -10 mmol gDW−1hr−1).

2.4.5 Adaptive laboratory evolution by weaning off of sup-

plementation

Adaptive laboratory evolution was started isolating a single colony of the

confirmed ∆gltA Keio strain grown on a solid LB plate with 50 µg mL−1 kanamycin.

This single colony was then grown to mid-log in LB, washed twice with M9 minimal

medium with no carbon source and then used to inoculate two 50 mL flasks of M9

minimal medium with 0.2% glucose and 0.02% citric acid at 37 ◦C and utilizing

a magnetic stir bar for mixing and aeration. The citric acid supplementation was

completely removed after two passages once a notable increase in growth fitness was

measured. For ALE cultures, OD600 was measured once a day or before passages.

ALE cultures were allowed to grow to stationary phase before each passage. Passages

were conducted every other day with a targeted inoculation OD600 of 0.05. Before
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each passage, a glycerol stock of each culture was prepared and stored at -80 ◦C. ALE

was conducted over a period of approximately 25 days once the final apparent cellular

density of each flask had appeared to stabilize for over 5 days. Samples taken from the

endpoint ALE culture flasks were plated on LB rich medium and two colonies from

each ALE were selected for further characterization (qPCR, resequencing and growth

characterization). The endpoint clones were named ∆gltA ALE 1 clone 1, ∆gltA ALE

1 clone 2, ∆gltA ALE 2 clone 1 and ∆gltA ALE 2 clone 2.

2.4.6 Generation of knockout strains

Knockout strains were generated using the λ-Red recombination system de-

scribed by Datsenko and Wanner(Datsenko and Wanner 2000). When generating DKO

strains, the pKD3 plasmid was utilized to amplify the FRT-flanked chloramphenicol

resistance cassette, allowing for the selection of DKO strains with a dual antibiotic

resistance. For the generation of TKO strains, pCP20 was utilized to remove antibi-

otic resistance cassettes and standard knockout procedures were followed utilizing

a FRT-flanked kanamycin resistance cassette generated by PCR from the pKD13

plasmid (Datsenko and Wanner 2000).

2.4.7 qPCR

Cells were harvested for RNA extraction during exponential phase (OD600

.4-.7). Cells were collected in two volumes of Qiagen RNA-protect Bacteria Reagent,

pelleted and stored at -80 ◦C. Cell pellets were thawed and incubated with Readylyse

Lysozyme, SuperaseIn, Protease K and 20% SDS for 20 minutes at 37 ◦C. Total

RNA was was isolation using Qiagen RNeasy Mini Kit columns and following vendor

36



procedures. A 30 minute on-column DNase-treatment was performed prior to elution.

RNA was quantified on a NanoDrop. Total RNA quality was assessed by running an

RNA-nano chip on a Agilent Bioanalyzer.

Reverse-transcription was performed on 10 µg of total RNA. The reaction

mixture (60 µL) contained total RNA, 75 µg random primers, 1X first strand buffer,

10 mM dithiothreitol, 0.5 mM deoxyribonucleotide triphosphates, 20 U of SUPERase-

In, and 600 U of SuperScript II reverse-transcriptase. The mixture was incubated in

a thermocycler at 25 ◦C for 10 minutes, 37 ◦C for one hour, 42 ◦C for one hour and

70 ◦C for 10 minutes to inactivate SuperScript II. Remaining RNA was removed by

adding 20 µL of 1 N NaOH to the reaction mixture and incubating at 65 ◦C for 30

minutes. The reaction was neutralized by the addition of 20 µL of 1 N HCl. cDNA

was then purified utilizing a QIAquick PCR Purification column, following vendor

procedures. cDNA quantification was performed using a NanoDrop.

Real-time quantitative PCR was performed on the synthesized cDNA using

the QuantiTect SYBR Green PCR Kit. The 25 µL qPCR mixtures contained 12.5 µL

2x QuantiTect SYBR Green PCR Master Mix, 0.2 µM forward primer, 0.2 µM reverse

primer and cDNA template. Each qPCR was performed in triplicate in the BioRad

iCycler under the following conditions: 95 ◦C for 15 minutes, followed by 40 cycles of

denaturation at 94 ◦C for 15 seconds, annealing at 52 ◦C for 30 seconds, and extending

at 72 ◦C for 30 seconds at which point the SYBR fluorescence was measured for

the qPCR curve generation. The biological experiments were performed in duplicate

and compared to wild type (MG1655) under the same growth conditions. Binding

affinity of each primer set was assessed by constructing a standard curve for each

primer. This allowed for calculation of a reaction efficiency. Relative quantities of
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cDNA were calculated using the standard curve and normalizing to the quantity of an

housekeeping gene, hcaT, in the same sample. hcaT was chosen as the housekeeping

gene as it was most stably expressed across experiments and as it has been identified

as an ideal internal control gene in previous experiments (Zhou et al. 2011). Results

were reported in a bar chart showing relative normalized enrichment ratios. The

standard error ratios are reported after having performed a right-tailed t-test analysis,

assuming normal variables and distribution, with a p-value less than or equal to 0.05.

2.4.8 Genome resequencing

Following supplementation of growth media and culture passage of 10 days for

gltA mutant strains, genomic DNA assessment was prompted to examine mutation

accumulation over the course of the growth experiments. Genomic DNA was isolated

using NucleoSpin Tissue XS Purification Kit. The quality of DNA was assessed with

UV absorbance ratios 260/280 and 260/230. DNA was quantified utilizing the Qubit

dsDNA High Sensitivity Assay. Paired-end resequencing libraries were generated

following Illumina’s Nextera XT standard protocol with and input of 1 ng genomic

DNA. Libraries were run on a MiSeq platform using a 250 cycle kit.

2.4.9 Mutation analysis

The output library sequences were aligned to a reference genome utilizing the

computational pipeline tool, breseq (Barrick et al. 2009). The ∆gltA Keio parent strain

was sequenced and mutations were analyzed comparing those mutations accumulated

in the passaged strains to those that were present in the parent strain.

Additionally, custom approach based on de novo fragment assembly was used
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for complementary analysis of novel junctions in gltA strains.

Chapter 2 is a reprint of a published manuscript: Guzmán, G. I., Utrilla, J.,

Nurk, S., Brunk, E., Monk, J. M., Ebrahim, A., Palsson, B. O., and Feist, A. M.

(2015). “Model-driven discovery of underground metabolic functions in Escherichia

coli”. en. In: Proc. Natl. Acad. Sci. U. S. A. 112.3, pp. 929–934. The dissertation

author was the primary author of the paper and was responsible for the research.
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Chapter 3

Reframing essentiality in terms of

adaptive flexibility

3.1 Introduction

The term essential has been used to define those components of the cell that are

required to sustain cell growth. Defining the essential components of life in organisms

large and small has been a topic of great scientific interest, and, on one extreme,

there is a growing effort to understand the basic principles of life by studying and

even synthesizing minimal organisms (Mobegi et al. 2017; Hutchison et al. 2016).

Beyond understanding the basic genotype-phenotype connection of life, studies of gene

essentiality provide knowledge for medical and industrial applications. Essential genes

provide targets for antibacterial drug discovery. For example, by carefully targeting an

essential cell component in a bacterium as virulent as Mycobacterium tuberculosis, we

can strive to treat pathogenic bacterial infections in a targeted and rational manner

while at the same time avoiding harmful side-effects to the host organism (Chung,
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Dick, and Lee 2013). Strategic, logical drug design has become increasingly important

in the face of rising numbers of antibiotic resistant pathogens (Fischbach and Walsh

2009; Hughes and Andersson 2016; Ventola 2015). Thus, research studies of gene

essentiality have become important knowledge sources for the advancement of science

and medicine.

How do we go about defining the set of essential genes for an organism?

Increased availability of genome sequences has led to detailed experimental and

computational examination of gene functions at a genome scale in several model

organisms including E. coli. A clear method for studying gene essentiality is the

systematic experimental disruption of genes. One such study resulted in a collection of

3985 single-gene deletion strains for the BW25113 strain of E. coli (Baba et al. 2006).

Other studies have utilized high-throughput transposon mutagenesis as a tool for gene

disruption and identification of all essential genome elements beyond protein-coding

sequences (Christen et al. 2011). Beyond experimentally defining essential genes,

computational tools such as constraint-based modeling have been used for predicting

the essential metabolic components of cells (Feist and Palsson 2008).

Expanding knowledge of the cellular components contributing to metabolism has

allowed for the construction of genome-scale models of metabolism. The comprehensive

metabolic model for E. coli iJO1366 contains information related to 1366 metabolic

genes and their associated 2251 reactions. Such models can be used to study bacteria

from a whole-cell, systems biology perspective (Orth et al. 2011; Bordbar et al. 2014;

Monk et al. 2017). By removing genes from the model and performing flux-balance

analysis, predictions about gene essentiality on defined growth media can be made.

These predictions can then be compared to experimental data and provide insight into
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existing knowledge gaps when inconsistencies are encountered (Orth and Palsson 2012).

False positive predictions are inconsistencies that occur when the model predicts a

gene to be non-essential, but experiments show the gene to be essential. Such instances

can be attributed to the inclusion of unrealistic reactions in the model. They can

also, however, be attributed to flaws in the experimental data. For example, high-

throughput growth screens conducted in plate format are often stopped after 24 or

48 hours of growth (Baba et al. 2006; Nichols et al. 2011; Gerdes et al. 2003). These

screens might not capture those strains that are slower to grow. Furthermore, it is

also possible that the models predict growth that is not feasible without some form of

genetic change or adaptation. High-throughput screens are rarely followed by whole

genome sequencing because of the assumption that mutations are not accrued in such

a short period of time. Thus, growth that is accompanied by genetic change is not

captured by such growth screens.

Essentiality is widely accepted to be conditional (D′Elia, Pereira, and Brown

2009; Ish-Am, Kristensen, and Ruppin 2015). Genes essential for growth in one

environment might not be essential in another, given the right nutrient composition.

However, essentiality may also be discussed in evolutionary terms. Upon the removal

of an essential gene, it is possible that a short period of adaptation is sufficient to

activate a redundant pathway or isozyme and enable growth. On the other hand,

some genes may be essential regardless of whether or not an adaptive period is

provided. Thus, we can also consider a spectrum of essentiality that is related to

adaptability. This has been discussed and demonstrated in studies of multi-copy

suppression and adaptive laboratory evolution (Patrick et al. 2007a; Guzmán et al.

2015). The extent of redundant pathways in E. coli is yet to be fully elucidated;

42



however, underground metabolism and enzyme promiscuity have been shown to play

critical roles in adaptation to new growth environments or in response to genetic

perturbation (D’Ari and Casadesús 1998; Notebaart et al. 2014; Guzmán et al. 2015).

In this study, we utilize previously reported false positive predictions of essen-

tiality (Orth and Palsson 2012) to identify gene-deletion strains that may be considered

‘non-essential’ given a longer incubation period. This study examines gene-deletion

strains and categorizes them into three categories (expanding on definitions previously

used (D′Elia, Pereira, and Brown 2009; Ish-Am, Kristensen, and Ruppin 2015)). First,

if a knockout strain cannot grow on a defined medium where the wild type strain can

grow, ’conditional essentiality’ is established. Second, if a knockout strain is able to

grow on the defined medium where the wild type strain can also grow, ’non-essentiality’

is established. Third, if a knockout strain does not initially grow on a defined medium,

but is able to grow given an adaptive period and the acquisition of mutations, ’non-

essentiality with mutations’ is established. Longer growth tests are followed by whole

genome sequencing and interpretation of any resulting mutations to determine the

adaptive mechanisms required for the rescue of the knockout strains analyzed. The

results presented demonstrate a striking agreement between model-predicted alternate

isozymes/pathways and observed mutations and shed light on the dynamics of growth

observed for various non-essential genes.
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3.2 Results

3.2.1 Identifying Gene Targets

The genes explored in this study were chosen because of essentiality discrep-

ancies observed between in silico predictions and in vivo observations (Orth and

Palsson 2012). Such discrepancies indicate areas for discovery or better understanding

as they point out differences between in vivo screens and computations based on

the collected wealth of knowledge for a given organism (Feist and Palsson 2008).

These discrepancies were previously identified as false positive (FP) model predictions

(instances where the model predicts that a gene is non-essential, but experimental

studies have identified the gene as essential in the particular growth environment). FP

model predictions are believed to occur due to the inclusion of a ‘non-physiological’

model reaction such as an unrealistic alternate isozyme or pathway. On the other hand,

FP predictions may also occur if there are errors in experimental calls of essentiality.

It is possible that short-term high-throughput growth screens could result in genes

being identified as essential when in actuality they require more incubation time to

display growth. In these cases, it is possible that the metabolic model annotation of

an alternate pathway or isozyme is correct. This study examined the possibility that

FP predictions are caused by experimental limitations. Furthermore, the dynamics

and mechanisms behind a cell’s ability to still display reproducible and robust growth

during time frames longer than normal wild-type growth were also examined. This was

accomplished by performing more extensive growth analysis of FP genes identified for

the E. coli metabolic model, iJO1366. 41 genes previously identified as FP predictions

(Orth and Palsson 2012) were utilized as a starting point for this study (Figure 3.1A).
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These were genes associated with FP predictions in defined minimal media conditions.

3.2.2 Growth screens considering longer time scales

Extended growth tests were performed on FP associated gene-deletion strains

with the hypothesis that model-predicted alternate pathways would rescue growth

given longer incubation. Of the 41 FP associated gene knockout (KO) strains identified

as potential targets for long growth incubations, only 20 were available in the Keio

collection and confirmed by PCR. Unavailable strains were not considered for the

longer growth test presented in this study (Baba et al. 2006) (Figure 3.1A). It is

possible and perhaps likely that these strains are essential on nutrient-rich media;

however, a thorough study using alternate gene disruption analyses (Christen et al.

2011) is required to further elucidate essentiality for this set. The 20 confirmed

gene-deletion strains (Table S1) were grown in a rich nutrient undefined medium

(Luria-Bertani LB broth) and then used to inoculate minimal medium for the long

growth test. Growth of these 20 gene-deletion strains was monitored periodically over

the course of approximately two weeks or until growth was observed. If growth was

observed, the culture was passed to fresh media to ensure that the growth would persist

and was not a by-product of residual LB media. Nine strains did not grow during the

extended growth test and were classified as conditionally essential (not essential in

LB, but essential for growth in the minimal medium tested) (Figure 3.1A). For the

KO strains that did display growth, such long incubation growth tests showed that

eleven of the twenty previously identified essential genes were actually non-essential

(Figure 3.1, Table 3.1). To confirm the reproducibility of these results, these eleven

gene-deletion strains were grown again in triplicate (with some strains tested more
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Figure 3.1: Project workflow and growth characterizations of false positive
strains. A. A workflow summarizing the sequence of analyses followed and results from this
study is shown. A Keio gene knockout collection strain was not available for approximately
half of the corresponding false positive genes listed in (Orth and Palsson 2012), possibly
due to essentiality on rich growth media. Of those strains that were available for a longer
growth test, approximately half showed growth. Those strains that grew were analyzed
for mutations. Five false positive strains showed mutations in all replicate experiments
sequenced. Four strains showed mixed results, meaning that only some populations accrued
mutations. Two strains showed no mutations in any replicate samples. The nine strains
that showed mutations in at least some populations were further analyzed in the context
of model-predicted alternate pathways and historical data. Six of these cases showed
agreement with model-predictions, two showed agreement with previous reports of multi-
copy suppression (Patrick et al. 2007b), and mutation analysis for one case was not clearly
linked to either. B. Growth curves of eleven Keio collection strains associated with false
positive predictions is displayed. Growth data in terms of cellular density in grams of dry
weight per Liter (gDW/L) is reported for the FP gene KO strains. Those strains that
accrued mutations in all replicate populations during this growth test are noted with small
dashed lines. Those strains that showed mixed results, showing mutations in only some
populations, are noted with larger dashed lines. All Keio strains were grown in M9 minimal
medium with glucose as the carbon source with the exception of ∆cysK and ∆cysP which
utilized a glycerol carbon source. Growth of the wild type strain in glucose and glycerol is
also provided as a point of reference (black and grey growth curves).
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than triplicates, up to nine biological replicates) and their cell density monitored more

closely to acquire a more detailed view of their growth trajectories (Figure 3.1B).

These eleven gene KO strains were the main focus of this work.

Growth experiments showed a great deal of fitness diversity among the eleven

gene-deletion strains (Figure 3.1B, Table 3.1). While four of the eleven KO strains

(∆cysK, ∆metL, ∆thrA, ∆ubiE) showed reproducible growth to their respective

final cellular densities within the first 48 hours of incubation, the remaining strains

displayed more variability in the time necessary to display growth. Furthermore,

some replicates showed a range in growth dynamics between replicate experiments,

which is reflected in the standard deviation of the mean time required to reach at

least half of the final density observed during these growth tests (Table 3.1). For

example, ∆proB experiments showed a high degree of variability between the three

replicates tested. One replicate reached its final density, near that of wild-type, around

Day 4 whereas the other two replicates had reached half this level around Day 6

(Figure 3.1B). Several gene-deletion strains also showed variability in the final density

achieved. While several strains such as ∆thrA, ∆cysK, and ∆metL showed typical

growth trajectories similar to the wild type strain (with longer lag phases), other

strains such as ∆carA, ∆metC, and ∆ubiE displayed significantly slower growth rates

and reached approximately half of the cell density observed for the wild type during the

testing period. We hypothesized that the diverse range of growth phenotypes observed

could be attributed to differences in adaptive mechanisms required for growth. This

was further studied by examining mutations acquired during the growth experiments.
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Table 3.2: Flask 1 Population Mutations. GDA abbreviation stands for genome
duplication amplification event. 1Binding site recognition sites predicted in (Liu, Blackwell,
and States 2001). 2Evidence to support binding site in (El Qaidi et al. 2009). 3Attenuator-
model of regulation for histidine operon described in (Frunzio, Bruni, and Blasi 1981;
Johnston et al. 1980; Di Nocera et al. 1978; Artz and Broach 1975). 4Information related
to the MalI transcriptional repressor in (Reidl and Boos 1991; Reidl et al. 1989).

Keio Fraction Protein Perceived
Strain Exp. # Population Gene Change Impact

∆thrA 2 0.23 metJ V46E Reduce MetJ repression1

1 0.10 metJ/metB Intergenic (-200/-75) Reduce MetJ repression1

1 0.79 metJ/metB Intergenic (-211/-66) Reduce MetJ repression1

∆ptsI (1, 4, (1.0, 1.0, metK/galP Intergenic (+328/-96) Reduce GalR repression2

5, 6) 0.36, 0.39)
5 0.25 metK/galP Intergenic (+333/-91) Reduce GalR repression2

3 1.0 metK/galP Intergenic (+334/-90) Reduce GalR repression2

6 0.57 metK/galP Intergenic (+339/-85) Reduce GalR repression2

3 1.0 crp T141P -
5 0.70 crp G142S -
6 0.59 crp G142D -
4 1.0 crp R143H -
1 1.0 crp A145V -
6 0.43 crp I187T -
7 1.0 96 genes 99 kbp, 2X GDA Increased Expression cyaA

[rrsC-rrlA]

∆serB 1 0.67 hisL/hisG Intergenic (+41/-105) Increase his operon expression3

6 0.88 hisR His tRNA (5/77 bp) Increase his operon expression3

2 0.82 hisR His tRNA (48/77 bp) Increase his operon expression3

4 0.92 hisR His tRNA (67/77 bp) Increase his operon expression3

7 0.71 hisR His tRNA (72/77 bp) Increase his operon expression3

∆proA 2 1.0 proB 1 bp Del -
1 0.77 argD G282D Reduce ArgD activity
2 0.56 argD Del (772-774/1221 bp) Reduce ArgD activity
4 0.43 argD Q154* Reduce ArgD activity
3 0.34 argD G49R Reduce ArgD activity

∆proB 6, 7 0.83, 0.72 glnA F463L Reduce GlnA activity
5 0.86 glnA D187E Reduce GlnA activity
4 0.45 glnA G179C Reduce GlnA activity
4 0.23 glnA H172R Reduce GlnA activity
1 1.0 glnA G171S Reduce GlnA activity
2 0.86 glnA E156D Reduce GlnA activity
3 1.0 glnA S148F Reduce GlnA activity

∆carA 7 0.27 carA/ carB Intergenic (+2/-16) Increase Expression carB
5 0.86 carB L11L -
3, 7 0.31, 0.81 rpoS E96* -
3, 7 1.0 508 genes 520 kbp, 2X GDA Increase Expression carB

[insD6 -insD1 ]

∆metC 4 0.55 malI 10bp Dup (227/1029 bp) Reduce MalI activity4

2 0.32 malI Q55* Reduce MalI activity4

3 0.55 malX Q529Q -

∆metL 2, 4 0.72, 0.38 rpoS L317R -
4 1.0 metB 1 bp Del (1144/1161 bp) -

∆cysK 1 1.0 2,062 genes 2.1 Mbp, 2X GDA Increase Expression cysM
[insL3 -insL1 ]
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3.2.3 Mutation analysis driven by parallel evolution

The guiding principle for mutation analysis was to identify evidence of paral-

lelism between replicate experiments at the level of genes mutated to determine likely

mechanisms of adaptation. Parallel evolution at the gene-level has been demonstrated

to provide compelling evidence specific to applied selection pressures (Woods et al.

2006; Bailey, Rodrigue, and Kassen 2015) or, for this study, in response to genetic

perturbations. Parallelism was examined by first identifying key mutation events

across replicate experiments, such as multiple unique mutations occurring within the

same gene or multiple unique mutations in linked metabolic genes and their regulatory

elements (Table 3.2). The identification of even a single mutation shared between

two samples at the gene level is highly unlikely (Fisher’s exact test p-value < 0.005).

Secondly, these key mutation events were interpreted in the context of model-predicted

alternate isozymes and pathways or other experimental studies to further frame poten-

tial adaptive evolution events. Model-associated isozymes were identified by examining

model gene-protein-reaction associations and model-associated alternate pathways

were identified by examining those reactions associated with alternate growth solutions

(Table 3.1).

Following growth characterization experiments, genomic DNA was sequenced.

Samples were taken from the first flask of growth in minimal medium and prepped

for whole genome sequencing (referred to as flask 1 populations, see Materials and

Methods). In addition to flask 1 population sample sequencing, the starting inoculation

strain grown in nutrient-rich media was sampled and sequenced as a reference for

mutation analysis. It is of importance to note that four starting strains isolated from

the Keio collection and grown in rich medium (∆carA, ∆cysK, ∆metC, and ∆ptsI )
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contained mutations prior to growth on the defined minimal medium. These base

mutations, possibly acquired during the construction of these strains, might have been

selected for during growth on the nutrient rich medium and will be addressed later on

a case-by-case basis. Of the eleven gene-deletion strains that grew during the long

growth tests, two strains (∆cysP and ∆ubiE) did not reveal any prevalent mutations

in the flask 1 populations that were sequenced and were thus considered non-essential

and actually ‘True Positive’ model predictions (Figure 3.1A). Five (∆thrA, ∆ptsI,

∆serB, ∆proA, and ∆proB) accrued prevalent mutations in all flask 1 populations

sequenced (occurring at a fraction of the total population > 0.2 as determined by

read-depth) that were not present in the inoculating cultures (Table 3.2). These

strains that acquired mutations during growth were considered non-essential with

mutations (Figure 3.1A). Four strains (∆cysK, ∆metC, ∆metL, and ∆carA) showed

mutations in some of the flask 1 populations sequenced and were considered non-

essential with/without mutations since it appeared that it was possible to attain growth

without mutations; however, it was possible that mutations were below the detection

criteria (occurring at a fraction < 0.2) and the population is highly heterogeneous with

many mutations or the mutational events are outside the scope of the computational

mutation identification pipeline utilized (e.g., genome rearrangements). In summary,

those strains that showed prevalent mutations in some or all population samples

sequenced were considered non-essential with mutations, whereas those that showed

no mutations were considered non-essential and actually True Positive predictions

(Figure 3.1A).

The nature of the mutations that were observed varied in terms of structural or

regulatory mutations. Regulatory mutations observed included mutations in intergenic
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regions, transcription factors, tRNAs, as well as large regions of genome amplification.

Mutations were considered structural if they occurred within the coding region of a

metabolic gene. The following sections highlight the diversity and extent of parallel

mutation events observed during these extended growth experiments.

3.2.4 Mutation enrichment in genetic elements linked to pre-

dicted alternate pathways/isozymes

In order to elucidate the mechanism of adaptation for the FP gene-deletion

strains, key mutations were analyzed in the context of model-predicted alternate

pathways or isozymes (Table 3.1 and Table 3.2). The first few cases highlighted were

in excellent agreement with the model-predicted alternate functional pathway. For

the ∆thrA and ∆ptsI strains, mutations were enriched in intergenic regions that

could be linked to model-predicted alternate isozymes (metL) or pathways (galP)

(Figure 3.2A,B). ThrA is annotated as a bifunctional aspartate kinase and homoserine

dehydrogenase. The metabolic model for E. coli, iJO1366, lists MetL as an alternative

bifunctional enzyme capable of catalyzing the same reactions (Orth et al. 2011),

which is also supported by in vitro enzyme assays (Falcoz-Kelly, Rapenbusch, and

Cohen 1969). It was thus speculated that the intergenic mutations between metJ and

metB (Figure 3.2A) affect transcription of metL (Liu, Blackwell, and States 2001).

Furthermore, the mutation within the coding region of metJ, the transcriptional

repressor for various met operon genes, was also proposed to influence expression of

metL. Lastly, in another independent replicate, a genome duplication amplification

was also detected (Table 3.2) which included the metL gene and was thus hypothesized

to increase metL expression.
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Figure 3.2: Pathway maps related to ∆thrA, ∆ptsI, and ∆serB false positive
cases. Whole genome sequencing analysis revealed that, for two out of three of these cases
the model prediction was in agreement with the observed utilized pathway as inferred
from mutation analysis. The associated gene-protein-reaction information for each case is
highlighted. In A., the mutation results for ∆thrA imply that MetL (highlighted in orange)
is the enzyme responsible for the isozyme activity as predicted. B. Results for ∆ptsI suggest
that the predicted alternate pathway related to GalP is utilized in the absence of PtsI.
C. Results for ∆serB suggest that contrary to the predicted GlyA associated alternate
pathway, HisB is responsible for rescuing growth in the absence of SerB.
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Another false positive case for which mutations showed strong agreement with

model-predictions was ptsI (Figure 3.2B). PtsI is part of the well-characterized phos-

phoenolpyruvate:sugar phosphotransferase system (PTSsugar) (Postma, Lengeler, and

Jacobson 1993; Chauvin, Brand, and Roseman 1996; Ginsburg and Peterkofsky 2002).

This system is responsible for the phosphorylation and transport of various carbohy-

drate substrates including glucose; however, E. coli contains an alternative system

for glucose transport and phosphorylation linked to galP in iJO1366 (Figure 3.2B).

GalP is a proton symporter involved in galactose transport, but it has also been

shown to transport glucose in ptsG and ptsM mutants (Henderson, Giddens, and

Jones-Mortimer 1977). The mutation evidence observed in the ∆ptsI experiments

in this study was suggestive of D-glucose transport via the galP alternate pathway,

as predicted by iJO1366 model simulations. Seven mutations were observed in the

intergenic region upstream of galP in five independent replicate experiments (Ta-

ble 3.2). Of these seven mutation events, four were identical at the nucleotide level

of mutation (Table 3.2), thus demonstrating a high degree of parallel evolution for

these replicate experiments and implicating that these intergenic mutations played

an important role in adaptation to the ptsI perturbation. The likelihood of getting

the same mutation at the nucleotide level in two independent samples is even less

likely than at the gene level (Fisher’s exact test P < 5e-06). The mutation event was

suggested to be associated with increased expression of galP via reduced repression

by the transcriptional repressor GalP based on binding site analysis (El Qaidi et al.

2009). Other mutations observed across the replicate ∆ptsI populations were in CRP

(cyclic-AMP regulatory protein). Six unique crp mutations were observed in five

replicate experiments (Table 3.2). CRP is known to regulate the transcription of

54



approximately 100 genes, including galP, and it is activated by binding cyclic-AMP

(cAMP) (Fic et al. 2009; Latif et al. 2016; Kim et al. 2018). Thus, the mutations

observed could be linked to influencing the expression of galP. It is of interest to note,

however, that a deleterious cyaA mutation was observed in the Keio parent strain used

to inoculate all experiments. The mutation observed was a seven base-pair deletion

leading to the truncation of the CyaA (cyclic-AMP synthase) protein, reducing it from

848 amino acids to 485 amino acids. CyaA activity is important for the activation

of the regulator CRP (Franchini, Ihssen, and Egli 2015; Peterkofsky, Svenson, and

Amin 1989) and it is thus likely that this deletion event influenced these growth study

results.

While ∆ptsI strains showed widespread agreement in the locations that accrued

mutations, the ∆metC strains showed mutations in only some of the populations

sequenced (Table 3.2, no mutations were detected in Experiment #1). For ∆metC,

the model predicted that malY could compensate for the gene-deletion. The ∆metC

populations showed mutations in malI, a regulatory protein that represses expression

of malY (Reidl and Boos 1991; Reidl et al. 1989). Thus, we hypothesize that the two

mutations observed in independent replicate experiments are likely responsible for

increasing malY expression.

Mutation analysis for the remaining cases did not show as clear of an agreement

with model predictions. The mutations observed in the ∆carA strains did not agree

with the model-predicted alternate pathway; however, it did suggest agreement with

previous multi-copy suppression results associated with over-expression of carB (Patrick

et al. 2007a) (Table 3.1). One mutation observed in a ∆carA population was in the

carA/carB intergenic region, suggesting a regulatory effect on the expression of carB.
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Another was a synonymous mutation in the coding region of carB, indicating possible

selective pressure for the use of carB, even though the protein sequence did not change.

Lastly, there was also a genome duplication event observed in some of the replicate

experiments which included carB.

For the ∆serB experiments, distinct protein-coding, intergenic, and tRNA

non-coding mutations were observed that could be linked to increasing the expression

and possibly the activity of an isozyme, HisB. This isozyme relationship was not

included in the iJO1366 reconstruction; however, an alternate pathway for L-serine

biosynthesis linked to glyA was predicted to suppress the serB deletion (Table 3.1,

Figure 3.2C). Mutations observed in the replicate experiments, however, did not

appear to be associated with this alternate pathway (Table 3.1, Figure 3.2C). Previous

work has shown that plasmid over-expression of hisB, gph, and ytjC individually could

rescue a serB knockout strain (Patrick et al. 2007a). Furthermore, directed evolution

experiments have identified mutations in the corresponding enzymes (HisB, Gph, and

YtjC) that could improve the isozyme activities that rescue a serB deletion (Yip

and Matsumura 2013). One such mutation, a D57N HisB protein change (Yip and

Matsumura 2013), was also observed in a flask 5 clonal sample (i.e., a clone taken

after several passages of the starting strain) in this study (Figure 3.2C).

Parallel mutations linked to the regulation of the histidine operon were also

observed in ∆serB flask 1 populations (Figure 3.2C). Previous work has supported an

attenuator model of regulation for the histidine operon (Frunzio, Bruni, and Blasi 1981;

Johnston et al. 1980; Di Nocera et al. 1978; Artz and Broach 1975). Transcription of

the histidine operon is believed to be dependent on the secondary structure of a lead

mRNA (intergenic region between hisL and hisG), which is affected by the translation
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of a histidine-rich lead peptide (hisL). One key mutation observed was found in the

hisL/hisG intergenic region (Figure 3.2C), likely increasing transcription of histidine

operon genes (including HisB) by directly affecting the attenuator region. Four other

replicate experiments, however, accrued four distinct mutations in hisR, a non-coding

histidine tRNA (Table 3.2). Specifically, three (out of four) of these mutations were

found in the acceptor-stem of tRNAHis–a region of tRNA important for recognition by

aminoacyl-tRNA synthetases (aaRS) (Tian et al. 2015; Jahn, Rogers, and Söll 1991)

and for proper cleavage of the pre-tRNA transcripts (Holm and Krupp 1992; Kirsebom

and Svärd 1992). Moreover, tRNAHis position A71 interacts with multiple residues

of Histidyl-tRNA synthetase (HisRS) (Tian et al. 2015) and the A–>G (72/77nt)

mutation found in replicate 7 has been shown to decrease the cleavage precision

of pre-tRNAs by E. coli ribonuclease P (Holm and Krupp 1992). Previous studies

have demonstrated that mature tRNAHis can attenuate the transcription of the his

operon genes (Frunzio, Bruni, and Blasi 1981; Johnston et al. 1980; Di Nocera et al.

1978; Artz and Broach 1975). Thus, the hisR mutations observed in the replicate

experiments in this work are speculated to reduce the amount of mature tRNAHis and

its attenuator behavior upon the his operon by decreasing the efficacy of pre-tRNAHis

cleavage and amino-acylation, allowing for increased HisB expression. Overall, the

highly reproducible mutations observed in this study appear to be linked to increasing

expression and possibly the side-activity of HisB, a histidinol phosphatase which can

also perform the phosphoserine phosphatase function of SerB (Yip and Matsumura

2013).
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Figure 3.3: Structural mutations observed in ∆proA and ∆proB experiments
analyzed in relation to ArgE underground activity. A. Metabolic pathway maps
related to ∆proA and ∆proB false positive cases. Both are involved in L-proline synthesis.
Model simulations predict using an alternate pathway related to arginine and ornithine
synthesis to rescue a proA/proB deficient E. coli strain. Mutations were observed in the
coding regions of the metabolic genes argD and glnA. It is suggested that reduced flux
through these enzymes, increases flux through the ArgE associated underground activity,
thus increasing production of L-proline and allowing for cell growth. B. Mutation analysis
in relation to the glutamine synthetase (GlnA) protein structure. An I-Tasser-predicted
protein structure is provided (Yang et al. 2015) and the amino acid residue associated with
observed glnA mutations in the ∆proB populations are highlighted in red. Those residues
associated with ligand binding based on the crystal structure of the Salmonella typhimurium
GlnA enzyme (Gill and Eisenberg 2001) are highlighted in blue. The mutations appear
to be in buried regions of the homo-dodecameric enzyme at the interface of chain-chain
interactions.
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3.2.5 Structural mutations are indirectly linked to an under-

ground activity

The mutations observed in the ∆proA and ∆proB growth screen experiments

could not be directly linked to the predicted alternate gene argE as in those FP cases

previously discussed; however, analysis suggested that the mutations are indirectly

related to the suppression of a proA or proB deletion phenotype. ProA and ProB

are enzymes involved in the first two steps of proline biosynthesis in E. coli K-12

(Figure 3.3A). Previous work in Salmonella typhimurium and E. coli strains (Berg and

Rossi 1974; Kuo and Stocker 1969; Itikawa, Baumberg, and Vogel 1968) have suggested

that an underground activity of the ArgE enzyme in E. coli, typically involved in the

arginine biosynthesis pathway, can catalyze the conversion of N-acetyl-L-glutamate-

5-semialdehyde to L-glutamate 5-semialdehyde (Figure 3.3A) (D’Ari and Casadesús

1998). This side activity of ArgE does not typically occur at a significant enough level

to rescue a proA/proB KO strain unless a mutation in argD occurs. The proposed

mechanism of suppression is that a mutation inactivates ArgD activity leading to

sufficient build up of the N-acetyl-L-glutamate-5-semialdehyde metabolite such that

the underground activity of ArgE becomes significant (Itikawa, Baumberg, and Vogel

1968; D’Ari and Casadesús 1998). Thus, the four parallel mutation events in argD

observed in the ∆proA replicate experiments are in agreement with these prior reports

(Table 3.2). One observed mutation in this study was predicted to significantly affect

ArgD activity by interfering with substrate binding since residues 283 and 284 have

been identified as ligand binding residues and the mutation observed was of glycine 282

changing to aspartate. Other mutations observed in replicate experiments included a

three base-pair deletion and introduction of an early stop codon (Figure 3.3A), also
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likely to reduce ArgD activity.

While the mutations observed in the ∆proA experiments seemed to agree with

previous reports, mutations observed in ∆proB appeared to be novel, but still related

to the underground activity of ArgE. Eight mutations in seven independent ∆proB

replicate experiments occured in the coding region of glnA, a glutamine synthetase

encoding gene (Figure 3.3, Table 3.2). When the mutated amino acid residues are

highlighted on a predicted GlnA protein structure (I-Tasser structure prediction (Yang

et al. 2015)), they appear to be clustered in two distinct regions of the GlnA chain

(Figure 3.3B). The mutations do not appear to be directly changing ligand-binding

residues based on analysis of corresponding ligand-binding residues of a Salmonella

typhimurium GlnA enzyme (Gill and Eisenberg 2001). The mutations appear to be in

regions that are highly buried and involved in chain-chain interactions of the homo-

dodecameric enzyme (Figure 3.3B). These mutations are likely to have some effect on

GlnA enzyme activity. If GlnA activity were reduced, it is suggested that a larger

L-glutamate pool could increase flux through the ArgABCE pathway (Figure 3.3A)

and suppress the proB deletion. In summary, mutation analysis for the ∆proA and

∆proB experiments suggested distinct adaptive mechanisms indirectly related to the

low-level, underground activity of the ArgE enzyme. This alternate pathway is in

agreement with model predictions made with iJO1366.

3.2.6 Genome amplification events

A mechanism of adaptation observed in several gene KO growth experiments

was genome amplification. This type of adaptation was observed most clearly in some

of the ∆cysK, ∆ptsI, and ∆carA replicate experiments. Examination of the functional
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significance of these large duplication events is statistically less compelling compared

to small mutation events (Fisher’s exact test resulting in larger p-values depending

on size of duplication). However, although these large regions of amplification often

contain hundreds of genes, their impact can sometimes be linked to a key gene of

interest (Andersson and Hughes 2009; Guzmán et al. 2015; Mundhada et al. 2017).

The largest duplication observed was in a ∆cysK flask 1 population (Table 3.2).

CysK is a PLP-dependent enzyme involved in L-cysteine biosynthesis and has been

annotated as a cysteine synthase and L-cysteine desulfhydrase (Kredich and Tomkins

1966; Boronat et al. 1984). There are multiple cysteine-desulfhydrases suspected for

E. coli K-12 including cysM, metC, tnaA, and malY (Awano et al. 2005). CysM

was the isozyme listed in iJO1366 and predicted to rescue a cysK knockout strain.

Mutations in the flask 1 population sample for the cysK knockout strain did not reveal

any clear key small mutations; however, a large region of genome amplification of

2X multiplicity was observed based on read-depth analysis (Figure 3.4A). The region

spanning approximately 2 million basepairs, or slightly less than half of the genome,

does contain the gene encoding the model-predicted alternate isozyme, cysM. The

region of amplification was flanked by IS186 insertion elements (Figure 3.4A). We

propose that these repetitive IS element sequences were instrumental in the mechanism

of duplication by recombination as has been previously described (Andersson and

Hughes 2009). Although cysM was included within the large region of amplification,

we propose further follow-up studies conducting expression and/or knockout analysis

in order to make more definitive claims of the alternate pathway used to compensate

for the cysK gene deletion.

Two instances of genome duplication occurred in replicate experiments of ∆carA
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and ∆ptsI (Figure 3.4B, C). For the ∆carA populations, a region of approximately

520 kilo base pairs was duplicated in two replicate experiments (Table 3.2). This

region of amplification was flanked by IS2 insertion elements. The region that was

amplified does include the carB gene that has been shown to suppress a carA gene

deletion in previous work (Patrick et al. 2007a) (Figure 3.4B). Thus, similar to the

cysK case, the repetitive IS2 element seems to mediate the amplification and increased

dosage of the enzyme encoded by carB (Figure 3.4B). Unlike the cysK and carA

genome amplification events, the ptsI amplification was significantly smaller (99 kilo

base pairs) and flanked by genes encoding ribosomal RNA (rrlC and rrsC on one

side and rrlA and rrsA on the other) (Figure 3.4C). The gene pairs rrlA and rrlC,

and rrsA and rrsC each share 99% sequence identity according to BLAST (basic

local alignment search tool) alignment analysis (Altschul et al. 1990). Thus, these

repetitive sequence regions are potential targets for duplication by recombination as

is observed with IS elements (Andersson and Hughes 2009). Although this region did

not contain the model-predicted gene of interest, galP, it did contain the gene cyaA,

which encodes an adenylate cyclase. Adenylate cyclase is responsible for the synthesis

of cyclic AMP, which is an important signaling molecule, and as previously mentioned,

important for activation of the regulator CRP (Kim et al. 2018; Franchini, Ihssen, and

Egli 2015; Peterkofsky, Svenson, and Amin 1989). Thus, this amplification appeared

to be indirectly related with affecting expression/regulation of galP.
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Figure 3.4: Genome duplication amplification events observed in ∆cysK,
∆carA, and ∆ptsI experiments. Read depth coverage (y-axis) is plotted against
the genome position (x-axis) for flask 1 population samples for A. ∆cysK, B. ∆carA,
C. and ∆ptsI experiments. For ∆cysK and ∆carA samples (on the left), the regions
of amplification are flanked by IS elements, IS186 and IS2, respectively. These regions
of amplification contain the genes (cysM and carB) associated with a model-predicted
alternate isozyme (cysM ) or a previously reported multi-copy suppressor (carB). For the
∆ptsI experiment (on the right), a smaller region is amplified and the this region is zoomed
in on in the bottom plot. This region of amplification is flanked by ribosomal RNA genes
and the identified metabolic gene of interest within this region is cyaA.

3.2.7 False Positive strains requiring no mutations for growth,

or, True Positives

For those strains that did not acquire detectable mutations during the long

growth experiments, ∆ubiE and ∆cysP, it is assumed that only regulatory responses

were required to shift expression of alternate metabolic pathways and enable growth.

For the case of ∆ubiE, however, the drastic reduction in final cell density observed in

replicate experiments suggests that the associated reactions involved in ubiquinone

and menaquinone biosynthesis are important for cellular energetics (Lee et al. 1997).

Previous work has shown that ubiE mutant strains can grow using demethylme-

naquinone as the sole respiratory quinone (Wissenbach, Ternes, and Unden 1992).

Although reported to be important during anaerobic growth, demethylmenaquinone
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was observed to have a small but significant capacity to function during aerobic growth

as well (Sharma et al. 2012). Furthermore, previous high throughput growth screens

show inconsistencies in labeling ∆ubiE as essential, probably due to cell density

cut-offs utilized to label growth/ no growth (Baba et al. 2006; Feist et al. 2007; Monk

et al. 2017). Overall, the results of this study (Figure 3.1B, Table 3.1) are consistent

with prior reports and show that ubiE is non-essential for growth on glucose minimal

medium. For the case of cysP, it is possible that the predicted alternate pathway

(Table 3.1) could be used to enable growth and only regulatory shifts already wired

in the wild-type strain are required. Detailed analysis of these regulatory shifts were

not pursued in this study; however, future work could examine expression (RT-qPCR,

RNAseq) of model-predicted alternate pathways, following workflows similar to those

previously reported (Guzmán et al. 2015). These cases are no longer considered false

positive model predictions, but instead were true positive predictions in agreement

with the model.

3.3 Discussion

This study utilized a systematic model-driven approach to identify genes that

were mistakenly labeled as essential in minimal media, as well as interpret and suggest

mechanisms of adaptation to such genetic perturbations when combined with growth

experiments and whole genome sequencing. Three key findings were supported by the

results. Firstly, extended growth tests of gene KO strains were shown to result in

the reversal of several calls of essentiality, in agreement with model predictions. This

finding has direct implications to high-throughput screens of essentiality. Secondly, it

was demonstrated that mutation events are likely even after relatively short incubation
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times in response to genetic perturbations. Finally, results showed that analysis of

parallel mutation events among replicate experiments have implications for expanding

gene-protein-reaction associations in both knowledge bases and models.

Growth/ no growth calls made by large-scale growth screens of gene-deletion

strain collections such as the Keio collection (Baba et al. 2006) serve as a comprehensive

guide for strain are key to testing the predictive power of genome-scale metabolic

models (Bordbar et al. 2014; Orth and Palsson 2012). Cellular acclimation to such

genetic and metabolic disruptions may require greater time to make such growth/no

growth calls as mechanisms of adaptation or regulatory responses might be required

for detectable growth. Extended growth incubation of false positive KO strains in

this study revealed that 55% (11 out of 20) of the false positive strains available and

confirmed could be considered true positives (both experiments and predictions in

agreement with calls of non-essentiality). Growth of the examined false positive KO

strains was highly reproducible given growth conditions that were well-aerated and

provided sufficient time to allow for extended lag-phases. Thus, this study outlines a

quantitative time window in which high-throughput growth screens can be designed

to call growth/no growth phenotypes going forward (Baba et al. 2006; Joyce et al.

2006; Feist et al. 2007). There was a great deal of phenotypic diversity observed for

the different KO strains that grew sub-optimally (as compared to wild type) and this

diversity is manifested in the different mechanistic responses of the cells as revealed

through mutations.

Coupling population sequencing with extended growth tests in this study

revealed that mutation events of interest were likely, even within a period of incubation

as short as 48 hours. The false positive strains that were considered for this study
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were ultimately placed in one of three categories of essentiality: conditionally essential,

non-essential, and non-essential with mutations. Those strains that were repeatedly

able to grow given longer periods of incubation were considered non-essential (with

or without mutations) and thus in agreement with model predictions of growth (i.e.,

reassigned as true positives). Of these strains, mechanisms of adaptation to genetic

perturbation were categorized broadly as either requiring mutations or not requiring

mutations for growth. Population sequencing and mutation analysis of the false

positive KO strains revealed that 82% (9 out of 11) of the strains that grew accrued

mutations in at least some of the replicate population samples sequenced (Figure 3.1).

This result is of general interest as short-term growth screens are commonly practiced

with the assumption that mutations are not acquired during such short periods of

growth. For those populations that did not accrue mutations, it is suggested that the

annotated alternate pathways or isozymes listed in the genome-scale reconstruction

and model of metabolism utilized in this study were likely correct. However, such

confirmation was not the focus of this study and future work could examine this

more comprehensively by performing additional cellular measures such as expression

analysis of the predicted isozymes, as has been previously demonstrated (Guzmán

et al. 2015), or a complementary approach such as ribosomal sequencing (Ingolia et al.

2012). Furthermore, it is also of general interest to note that some starting Keio

strains grown and isolated on a nutrient rich medium possessed mutations that may

have influenced growth on the minimal medium. There is strong evidence for this in

the ptsI KO strain in the Keio collection. Given the wide usage of such gene-deletion

libraries, it is important to understand baseline mutations and how they may influence

downstream applications.
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Examination of mutational parallelism at the gene level proved to be informative

and provided compelling contextual evidence for correlation to modeling predictions

in a number of the gene KO cases examined. For those strains that did require

mutations, the mutations observed across replicate experiments (Table 3.2) allowed

for the identification of proposed alternate pathways. Six of the nine cases examined

(∆thrA, ∆ptsI, ∆proA, ∆proB, ∆metC, and ∆cysK ) showed key mutations that were

interpreted to be in agreement with the model-predicted alternate pathways, thus

allowing us to label them as newly assigned true positives. Mutation enrichment

across replicate experiments has been shown to provide strong evidence that they

were positively selected for (Woods et al. 2006; Bailey, Rodrigue, and Kassen 2015),

and this coupled with previously reported data provided the basis for the proposed

mechanisms of adaptation described in this study. The establishment of causality for

each gene KO strain in detail, however, will require follow-up experiments isolating

individual mutants and conducting more detailed experimental analysis as has been

previously demonstrated (Utrilla et al. 2016). The results and mutations identified

here are the starting reagents for such studies. Furthermore, there are additional key

mutations which were identified to display parallel evolution (e.g., metK in the ∆metL

strain) whose mechanism of adaptation was not immediately obvious and such cases

provide additional targets for discovery (see Table 3.2).

3.4 Conclusions

Adaptive flexibility is critical for organisms evolving to novel ecological niches

or responding to environmental stress. When examining gene essentiality for such

applications as drug discovery or modifying industrial bioprocessing strains, one must
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consider possible unanticipated adaptive mechanisms that may follow the intended

genetic disruption. Underlying enzymatic side activities may rise to the surface

after short adaptive periods leading to unwanted ‘rogue’ activities (Notebaart et al.

2017). This study shows that while high-throughput, short-term growth screens may

capture a large-scale picture of gene essentiality, they may not reveal underlying

metabolic capabilities attainable with slightly longer incubation or short adaptive

periods. Furthermore, these findings suggest that many of the strains in large gene-

deletion collections, such as the Keio collection, likely contain adaptive mechanisms

to overcome the intended KO. Thus, sequencing is likely necessary prior to using such

clones for the myriad of applications they enable. In conclusion, the results presented

in this study highlight genetic and metabolic flexibility in response to gene disruption

in the organism of E. coli. Furthermore, genome-scale reconstructions and metabolic

models provide a promising avenue for the elucidation of adaptive mechanisms and

for predicting observable in vivo phenotypes.

3.5 Materials and Methods

3.5.1 False Positives Selection and In silico Model Validation

The false positive strains identified for longer growth tests were taken from the

previously published work (Orth and Palsson 2012). Those strains were the subset of

genes considered in this study. They were described as false positive predictions on at

least one substrate examined and had no experimental growth on any of 34 substrates

experimentally tested (Orth and Palsson 2012). However, upon further examination,

it was observed that ∆cysK and ∆cysP did have experimental evidence of growth on
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glucose carbon source (Baba et al. 2006; Feist et al. 2007). These two cases were thus

examined using a glycerol substrate on which they were still considered false positive

predictions (Joyce et al. 2006).

The false positive predictions were verified as growth predictions in silico by

utilizing the comprehensive metabolic reconstruction of E. coli K-12, iJO1366 (Orth

et al. 2011). The flux balance analysis (FBA) simulations were conducted using the

constraint-based modeling package COBRApy (Ebrahim et al. 2013). Simulations

were conducted by optimizing the core biomass objective function, which is determined

to be a stoichiometric representation of all core metabolic biomass components in

the cell (Feist et al. 2007). To simulate a gene-deletion growth screen and thereby

closely mimic experimental growth conditions, the desired gene was removed from the

metabolic model and then a FBA simulation was run as previously described (Orth

and Palsson 2012), setting the glucose (or glycerol) exchange reaction lower bound

to -10 mmol · gDW−1h−1 (gDW is an abbreviation of gram of dry weight) and the

oxygen exchange reaction lower bound to -1000 mmol · gDW−1h−1. All gene-deletion

simulations were verified to result in a prediction of growth in agreement with previous

reports (Orth and Palsson 2012).

Model-predicted alternate isozymes or alternate pathways listed in Table 1 were

determined based on gene-protein-reaction associations listed in the iJO1366 model (for

isozymes) or based on verification of alternate growth solutions using alternate reactions.

Alternate reactions were identified by examining alternate pathways required for

synthesis of the essential biomass component related to the gene knockout as described

in an existing knowledge base (EcoCyc (Keseler et al. 2013)) and confirming that the

model-predicted growth solution was associated with flux through a corresponding
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model reaction (listed in Table 1). Alternate isozymes and pathways are also listed

and described in a previous publication (Orth and Palsson 2012).

3.5.2 Strains Utilized and PCR verification

All strains utilized in this study were taken from the single-gene deletion Keio

collection (Baba et al. 2006). These strains are all derived from the parent Keio strain

E. coli K-12 BW25113. The reference strain utilized in growth screens and wherever

‘wild type’ is specified in this manuscript, the parent Keio strain without any deletions

or Kanamycin resistance cassette was utilized.

The strains utilized in the growth screens were first verified by polymerase

chain reaction (PCR) experiments utilizing the methods detailed in (Baba et al. 2006).

For each strain that was used, they were verified by three PCR reactions utilizing

1)flanking primers, 2) internal K1 and forward flanking primer, and 3) internal K2

and reverse flanking primer as previously suggested in (Baba et al. 2006).

3.5.3 Culture Conditions and Growth Characterizations

Rich media utilized for pre-culture growth was Luria-Bertani Broth (LB). LB

media consisted of an autoclaved 25 g/L LB Broth (EMD Millipore LB Broth, Miller -

Novagen, catalog 71753) in Milli-Q water. The M9 minimal media utilized in the long

term growth characterizations consisted of 0.1mM CaCl2 , 2mM MgSO4, 1x Trace

elements Solution, 1x M9 salts solution, and either 2g/L glucose or 0.2% (by volume

glycerol), in Milli-Q water. The 4000x trace elements solution consisted of 27 g/L

FeCl3 · 6H2O, 1.3 g/L ZnCl2, 2 g/L CoCl2 · 6H2O, 2 g/L Na2MoO4*2H2O, 0.75 g/L

CaCl2, 0.91 g/L CuCl2 · 2H2O, and 0.5 g/L H3BO3, in concentrated HCl. The 10x
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M9 salt solution was composed of 68 g/L Na2HPO2, 30 g/L KH2PO2, 5 g/L NaCl,

and 10 g/L NH4Cl, in Milli-Q water. The M9 media, trace elements solution, and M9

salt solutions were all sterile filtered. Except for the BW25113 wild-type strain, all

LB and M9 cultures contained 25 mg/L Kanamycin A.

The twenty strains that were available in the Keio collection and PCR verified,

were selected for an initial long-term growth test. Pre-cultures of these strains were

grown overnight in 2-3 mLs of LB media in a 10 mL culture tube on a shaker plate.

The following morning, 50 mL M9 minimal media cultures in 250-mL Erlenmeyer

flasks containing magnetic stir bars for aeration were inoculated at a target OD600 of

0.01-0.02. The OD600 was monitored at least once a day for two weeks or until growth

was observed, at which point the cells were passed to a new flask of M9 minimal media

to ensure that the growth observed persisted. The cells were passed consecutively to 5

flasks to ensure the growth observed was consistent. At the end of the experiment,

glycerol stock samples were frozen at -80 ◦C for future use and the flask 5 population

was PCR validated as described above to ensure there was no contamination.

Following the initial growth screen, a more detailed growth characterization was

conducted on an automated platform. Initial 15 mL LB pre-cultures were inoculated

from glycerol frozen stocks of the Keio Knockout Collection strains and the Keio

Knockout parent strain BW25113, and were grown overnight. Growth test cultures

were then started in triplicate by pipetting 50 µL from a preculture into three 17

mL tubes containing M9 minimal media. Both the pre-cultures and growth tests

were grown at 37 ◦C in magnetically stirred tubes, at a rate of 1,100 rpm to ensure

full aeration. Optical density at 600 nm (OD600) sampling was performed using an

automated system with a Tecan Sunrise Microplate Reader, using 100 µL of culture
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for each measurement. Sampling frequency was initially between 6-12 hours, and was

increased to 2-4 hours once growth was observed. The OD600 data was then converted

to units of grams of dry weight per liter (gDW/L) using the conversion factor for the

plate reader and sample volume (1.663 gDW/L/OD600). The growth curves depicted

in Figure 3.1B were constructed by importing cell density data from the experiment

into a Jupyter notebook (http://jupyter.org/) and utilizing the scientific computing

library suite SciPy (http://www.scipy.org/).

3.5.4 Whole Genome Sequencing and Mutation Analysis

Genomic DNA was isolated using a Macherey-Nagel NucleoSpin Tissue Kit.

DNA concentrations were determined using a Thermo Fischer Qubit dsDNA HS Assay

Kit. Paired-end whole genome DNA sequencing libraries were prepared using a Kapa

Biosystems KAPA HyperPlus Kit. Manufacturer protocols were followed for all kits.

DNA sequencing libraries were then run on a Illumina HiSeq4000 platform with a

100/100 HiSeq 3000/4000 PE cycle kit (PE-410-1001).

The breseq pipeline (Deatherage and Barrick 2014) version 0.30.0 with bowtie2

version 2.2.6 was used to map sequencing reads and identify mutations relative to the

E. coli BW25113 genome (NCBI accession CP009273.1). Mutations considered for

analysis in this study were present in a population at a fraction > 0.2. Those mutations

listed in Table 3.2, were further filtered so the key mutations discussed in the results

are presented. Additionally, analysis of large regions of genome amplification (GDAs)

was performed by analyzing read depth coverage utilizing a custom python script.

Chapter 3 is a version of a manuscript under review at BMC Systems Biology:

Guzmán, G. I., Olson, C. A., Hefner, Y., Phaneuf, P., Catoiu, E., Crepaldi, L. B.,
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Goldschmidt Micas, L., Palsson, B. O., Feist, A. M. (2017) "Reframing essentiality in

terms of adaptive flexibility". The dissertation author was the primary author of the

manuscript and was responsible for the research.
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Chapter 4

Enzyme promiscuity shapes

evolutionary innovation and

optimization

4.1 Introduction

Understanding how novel metabolic pathways arise during adaptation to en-

vironmental changes remains a central issue in evolutionary biology. The prevailing

view is that enzymes often display promiscuous (i.e., side or secondary) activities and

evolution takes advantage of such pre-existing weak activities to generate metabolic

novelties(Jensen 1976; Khersonsky and Tawfik 2010; Nam et al. 2012; Notebaart

et al. 2014; Huang et al. 2012; Voordeckers et al. 2012; Näsvall et al. 2012; Schmidt

et al. 2003; Copley 2000). However, it remains poorly explored how and at what

evolutionary stages enzyme side activities contribute to environmental adaptations.

Do genetic elements associated with promiscuous activities mutate mostly in the initial
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‘innovation’ stage of adaptation when the population acquires the ability to grow on a

new nutrient source(Copley 2000; Mortlock 2013) (i.e., innovation) or do they also

contribute to improving fitness in subsequent stages (i.e., optimization)(Barrick and

Lenski 2013)? Innovations have been linked to beneficial mutations that endow an

organism with novel capabilities such as the ability to use a new carbon source and

expand into a new ecological niche(Barrick and Lenski 2013; Wagner 2011). This is

distinct from optimizations associated with mutations that improve upon the initial

innovation. It is often observed that the mutations accrued within this optimization

phase produce gradual benefits in fitness(Barrick and Lenski 2013). Typically, enzyme

promiscuity has been linked to the innovation phase, for which mutations enhancing

secondary activities may result in dramatic phenotypic improvements(Khersonsky and

Tawfik 2010; Barrick and Lenski 2013). In this work, we demonstrate that enzyme

promiscuity can be linked to fitness benefits in both the innovation and optimization

stages of adaptive evolution.

A second open question concerns our ability to predict the genetic basis of adap-

tive evolution(Papp, Notebaart, and Pál 2011). There has been an increasing interest

in studying empirical fitness landscapes to assess the predictability of evolutionary

routes(Visser and Krug 2014). However, these approaches assess predictability only in

retrospect and there is a need for computational frameworks that forecast the specific

genes that accumulate mutations based on mechanistic knowledge of the evolving trait.

A recent study suggested that a detailed knowledge of an organism’s promiscuous

reaction set (the so-called ‘underground metabolism’(D’Ari and Casadesús 1998))

enables the computational prediction of genes that confer new metabolic capabilities

when overexpressed(Notebaart et al. 2014). However, it remains to be tested whether
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this approach can also accurately predict the adaptive mutations that occur in an

evolving population of cells where many alternative adaptive routes may lead to the

same phenotype. In this study, we address these issues by performing controlled

laboratory experiments to adapt E. coli to novel carbon sources and by monitoring

the temporal dynamics of adaptive mutations.

4.2 Results and Discussion

4.2.1 Experimental evolution of non-native carbon source

utilizations

The non-native carbon sources explored in this study were selected based on

enzymatic side activities computationally predicted to enable growth. This was accom-

plished by using a comprehensive network reconstruction of underground metabolism

shown to predict novel functional states in vivo when the predicted enzyme side

activity is overexpressed using plasmids(Notebaart et al. 2014). By adding a subset of

underground reactions to the comprehensive metabolic reconstruction for E. coli K-12

MG1655, iJO1366(Orth et al. 2011), novel substrates were computationally identified

to be tested experimentally (Table S1).

Adaptive evolution experiments were conducted in two distinct phases: first, an

‘innovation’(Copley 2000; Mortlock 2013) stage during which cells acquired mutations

to grow on the non-native carbon sources and, second, an ‘optimization’(Barrick and

Lenski 2013) stage during which a strong pressure was placed to select for the fastest

growing cells on the novel carbon sources (Figure 4.1A).

During the initial innovation stage of laboratory evolution experiments (Fig-
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Figure 4.1: Laboratory evolution method schematic and D-lyxose experiments.
A) A schematic of the two-part adaptive laboratory evolution (ALE) experiments. The
innovation phase involved growing cells in supplemented flasks containing the innovative
substrate (blue) and growth-promoting supplement (red). As cultures were serially passed,
they were split into another supplemented flask as well as an ‘innovation test flask’ containing
only the innovative nutrient to test for the desired evolved growth phenotype. The
‘optimization’ phase consisted of selecting for the fastest growing cells and passing in mid
log phase. B) Growth rate trajectories for duplicate experiments (green and purple) for
the example case of D-lyxose. Population growth rates are plotted against cumulative
cell divisions. Clones were isolated for whole genome sequencing at notable growth-rate
plateaus as indicated by the arrows. Mutations gained at each plateau are highlighted
beside the arrows (mutations arising earlier along the trajectory persisted in later sequenced
clones). C) YihS V314L + R315S mutant enzyme activity on D-mannose and D-lyxose.
LC-MS was used to analyze YihS activity at saturating substrate concentrations to compare
turnover rates on each substrate. Product formation was followed over time at a constant
enzyme concentration. Turnover rates were calculated using linear regression. D) Turnover
ratios of substrate conversion of D-lyxose / D-mannose are shown for the wild type YihS
and mutant YihS enzymes. A ratio <1 indicates a higher turnover rate on D-mannose
compared to D-lyxose. Error bars represent standard error calculated from the linear
regression analysis.
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ure 4.1A, see SI Materials and Methods), E. coli was successfully adapted to grow

on five non-native substrates, specifically, D-lyxose, D-2-deoxyribose, D-arabinose,

m-tartrate, and monomethyl succinate. Duplicate laboratory evolution experiments

were conducted in batch growth conditions and in parallel on an automated laboratory

evolution (ALE) platform using a protocol that uniquely selected for adaptation to

conditions where the ancestor (i.e., wild-type) is unable to grow (Figure 4.1A)(LaCroix

et al. 2015). In the innovation phase, E. coli was weaned off a growth-supporting

nutrient (glycerol) onto novel substrates (Figure 4.1A, Table S2). Clones were iso-

lated and sequenced shortly after the innovative growth phenotype was achieved and

mutations analyzed for their associated causality (Figure 4.1B, Fig. S1, Dataset S1).

Additional substrates were also chosen that did not result in successful laboratory

evolution experiments (i.e., strains growing solely on the novel substrate). This could

be attributed to various experimental and biological factors such as experimental dura-

tion limitations, the requirement of multiple mutation events, or stepwise adaptation

events, as observed in an ethylene glycol adaptation study(Szappanos et al. 2016).

There was no obvious pattern to these substrates which are listed in Table S1.

4.2.2 Underground metabolism accurately predicts the genes

mutated during innovation

Strong signs of parallel evolution were observed at the level of mutated genes

in replicate evolution experiments. Such parallelism provides evidence of the beneficial

nature of the observed mutations and is a prerequisite for predicting the genetic

basis of adaptation. Mutations detected in the evolved isolated clones for each

experiment demonstrated a striking agreement with such predicted ‘underground’
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utilization pathways(Notebaart et al. 2014). Specifically, for four out of the five

different substrate conditions, key mutations were linked to the predicted enzyme with

promiscuous activity, which would be highly unlikely by chance (P < 10−8, Fisher’s

exact test), (Table 4.1, Fig. S2). Not only were the specific genes (or their direct

regulatory elements) mutated in 4 out of 5 cases, but few additional mutations (0-3

per strain, Dataset S1) were observed in the initial innovation phase, indicating that

the innovations required only one or two mutational steps to activate the predicted

growth phenotype and the method utilized was highly selective.

4.2.3 Mechanistic insights into metabolic innovations

In general, key innovative mutations could be categorized as regulatory (R)

or structural (S) (Table 4.1). Of the sixteen mutation events outlined in Table 4.1,

eleven were categorized as regulatory (observed in all five substrate conditions) and

five were categorized as structural (three of five substrate conditions). For D-lyxose,

D-2-deoxyribose, and m-tartrate evolution experiments, mutations were observed

within the coding regions of the predicted genes, namely yihS, rbsK, and dmlA

(Table 4.1, Figs. S3-S5). Regulatory mutations, occurring in transcriptional regulators

or within intergenic regions–likely affecting sigma factor binding and transcription of

the predicted gene target–were observed for D-lyxose, D-2-deoxyribose, m-tartrate, and

monomethyl succinate (Table 4.1). Observing more regulatory mutations is broadly

consistent with previous reports(Mortlock 2013; Toll-Riera et al. 2016). Regulatory

mutations are believed to increase the expression of the target enzyme, thereby

increasing the dose of the typically low-level side activity(Guzmán et al. 2015). This

observation is consistent with ‘gene sharing’ models of promiscuity and adaptation
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where diverging mutations that alter enzyme specificity are not necessary to acquire the

growth innovation(Guzmán et al. 2015; Piatigorsky et al. 1988). Structural mutations

are believed to improve the enzyme side activity to achieve the innovation, and this

effect was experimentally verified.

The effects of structural mutations on enzyme activity were examined for the

YihS isomerase enzyme that was mutated during the D-lyxose evolution (Figure 4.1B,

Table 4.1). The activities of the wild-type YihS and three mutant YihS enzymes

(YihS R315S, YihS V314L + R315C, and YihS V314L + R315S) were tested in vitro.

A cell-free in vitro transcription and translation system(Shimizu et al. 2001; Raad

et al. 2017) was used to express the enzymes and examine conversions of D-mannose

to D-fructose (a primary activity(Itoh et al. 2008)) and D-lyxose to D-xylulose (side

activity) (Figure 4.1C, Fig. S6). The ratios of the turnover rates of D-lyxose to the

turnover rates of D-mannose were calculated and compared (Figure 4.1D). The double

mutant YihS enzymes showed approximately a ten-fold increase in turnover ratio

of D-lyxose to D-mannose compared to wild type (P < 0.0003, ANCOVA). These

results suggest that the mutations indeed shifted the affinity towards the innovative

substrate (enzyme side activity), while still retaining an overall preference for the

primary substrate, D-mannose (ratio <1). This is in agreement with ‘weak trade-off’

theories of the evolvability of promiscuous functions(Khersonsky and Tawfik 2010) in

that only a small number of mutations could result in significant improvements in the

promiscuous activity of an enzyme without greatly affecting the primary activity.

The causality of the observed key innovative mutations was explored by re-

introducing them into the ancestor wild-type strain using a recently developed genome

engineering method (pORTMAGE)(Nyerges et al. 2016). Genome editing was per-
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formed for screening mutation causality(Herring et al. 2006) on all novel substrate

conditions, except for monomethyl succinate, which only contained a single mutation

(Table 4.1). Individual mutants were isolated after pORTMAGE reconstruction, and

their growth was monitored on the innovative growth medium over the course of one

week. The growth test revealed that single mutations were sufficient for growth on

D-lyxose, D-arabinose, and m-tartrate (Table S3). In the case of D-2-deoxyribose, an

individual mutation was not sufficient for growth, thereby suggesting that the mecha-

nism of adaptation to this substrate is more complex, requiring multiple mutation

events (in this case, both regulatory and structural mutations). Overall, these causality

assessments support the notion that underground activities open short adaptive paths

towards novel phenotypes.

Are the mutations observed in our laboratory experiment relevant for envi-

ronmental adaptations in the wild? Previous studies have found that predominantly

intestinal and extraintestinal strains of E. coli, as well as some Salmonella species,

can use D-2-deoxyribose as a sole carbon source as they possess a pathogenicity island

containing the deoxyribokinase deoK(Bernier-Fébreau et al. 2004; Monk et al. 2013;

Tourneux et al. 2000). Four such reported pathogenic strains (three E. coli and one

Salmonella)(Bernier-Fébreau et al. 2004; Monk et al. 2013; Tourneux et al. 2000) can

grow on D-2-deoxyribose and possesses a deoxyribokinase (DeoK) with a tyrosine

residue at the equivalent N20Y position (Fig. S4). This information suggests that the

N20Y mutation may have improved the ribokinase underground activity in the strains

evolved here on D-2-deoxyribose. Therefore the genetic basis of adaptation observed

in the laboratory is indeed relevant to evolution in the wild.
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4.2.4 Contribution of enzyme side activities to the optimiza-

tion phase of adaptation

Once the roles of mutations acquired during the innovation phase were estab-

lished, adaptive mechanisms required for optimizing or fine-tuning growth on the

novel carbon sources were explored. Specifically, of major interest for this study was

the role of enzyme promiscuity during this second ‘optimization’(Barrick and Lenski

2013) phase of the evolutions. Analysis of mutations in the optimization phase led

to identification of additional promiscuous enzyme activities, above and beyond the

innovative mechanisms, impacting the phenotypes of the evolved strains in three of

the five nutrient conditions. Discovery of these optimizing activities was driven by a

systems-level analysis consisting of mutation and transcriptome analyses coupled with

computational modeling of optimized growth states on the novel carbon sources.

The ‘optimization’ phase of the evolution experiments consisted of serially

passing cultures in the early exponential phase of growth in order to select for cells with

the highest growth rates (Figure 4.1A). Marked and repeatable increases in growth

rates on the non-native carbon sources was observed in as few as 180?420 generations

(Table S1). Whole genome sequencing of clones was performed at each distinct growth-

rate ‘jump’ or plateau during the optimization phase (Figure 4.1B, Fig. S1). Such

plateaus represent regions where a causal mutation has fixed in a population(LaCroix

et al. 2015). Out of the total set of 41 mutations identified in the growth optimization

regimes (Datasets S1, S2), a subset (Table 4.2) was explored where the same gene was

repeatedly mutated in replicate experiments or across all endpoint sequencing data on

a given carbon source. To unveil the potential mechanisms for improving growth on

the non-native substrates, the transcriptome of initial and endpoint populations (right
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after the innovation phase and at the end of the optimization phase) was analyzed

using RNAseq. Differentially expressed genes were compared to genes containing

optimizing mutations (or their direct targets) and targeted gene deletion studies were

performed.

Mutations acquired during the optimization phase leading to large gains in

fitness were directly linked to the influence of enzyme promiscuity. The clearest example

of an important optimizing mutation was found in the D-arabinose experiments

occurring in the araC gene, a DNA-binding transcriptional regulator associated with

L-arabinose metabolism(Bustos and Schleif 1993). Based on structural analysis of

AraC (Figure 4.2A), the mutations observed in the parallel experiments likely affect

substrate binding regions given their proximity to a bound L-arabinose molecule

(RCSB Protein Data Bank entry 2ARC)(Soisson et al. 1997), possibly increasing its

affinity for D-arabinose. Expression analysis revealed that the araBAD transcription

unit associated with AraC regulation(Gama-Castro et al. 2016) was the most highly

up-regulated set of genes (expression fold increase ranging from approximately 45-65

for Exp 1 and 140-200 for Exp 2, P < 10−4) in both experiments (Figure 4.2B).

Further examination of these up-regulated genes revealed that the ribulokinase (AraB)

has a similar kcat on four 2-ketopentoses (D/L- ribulose and D/L- xylulose)(Lee,

Gerratana, and Cleland 2001) despite the fact that araB is consistently annotated to

only act on L-ribulose (EcoCyc)(Keseler et al. 2013) or L-ribulose and D/L-xylulose

(BiGG Models)(King et al. 2016). It was thus reasoned that AraB was catalyzing

the conversion of D-ribulose to D-ribulose 5-phosphate in an alternate pathway for

metabolizing D-arabinose (Figure 4.2C).

The role of the proposed second pathway in optimizing growth on D-arabinose
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was analyzed both computationally and experimentally. Flux balance analysis of

a model utilizing the AraB underground reaction, instead of the FucK associated

ribulokinase reaction (pathway of D-arabinose metabolism associated with innovative

mutations), resulted in an approximately 10% higher simulated growth rate (Fig.

S7). Experimental growth rate measurements of clones carrying either the fucK or

araBAD genes knockouts showed that the FucK enzyme activity was essential for

growth on D-arabinose (Figure 4.2D, Table S4). However, removal of araB from

optimized endpoint strains reduced the growth rate of the strain to the approximate

growth rate of the initial innovative strain (Figure 4.2D), suggesting that the proposed

araB encoded pathway was the primary optimizing adaption responsible for the jump

in growth rate. A similar pathway has been described in mutant Klebsiella aerogens

W70 strains(St Martin and Mortlock 1977), providing further support for the proposed

alternate pathway. Overall, underground activities of both the fuc operon (innovative

mutations) and ara operon (optimizing mutations) encoded enzymes appeared to

be important for the adaptation to efficiently metabolize D-arabinose and the ara

mutated operon did not solely support growth. A similar mechanism of amplification

of growth enhancing promiscuous activities in the m-tartrate optimization regime of

adaptation is also described (Supporting Text, Fig. S8).

4.2.5 Loss of an enzyme side activity improves fitness

Finally, analysis of D-2-deoxyribose adaptation revealed a conceptually novel

way by which alterations in promiscuous enzyme activities contribute to growth opti-

mization. It is suggested that suppression of a side reaction of aldehyde dehydrogenase

A (AldA) enhanced growth on the novel carbon source. Several lines of observation
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are consistent with this scenario. The optimizing mutation event was a large deletion

event spanning 171 genes (Fig. S9). Of these, the metabolic gene that was most

significantly expressed in the ancestor was aldA (Fig. S9). AldA has been described

as a broad substrate specificity enzyme and has shown catalytic activity on acetalde-

hyde(Rodríguez-Zavala, Allali-Hassani, and Weiner 2006). Computational modeling

showed that forcing increased flux through acetaldehyde to acetate conversion de-

creased the overall growth rate (Fig. S9, Dataset S3), suggesting a clear mechanism

behind the growth-rate enhancing deletion event. This finding demonstrates that

not only enhancement, but also suppression of side reactions plays pivotal roles in

adaptation to novel environments. Two additional proposed mechanisms for growth

optimization on m-tartrate and D-lyxose were related to the primary activities of pyrE

and xylB and are discussed in the Supporting Text (Fig. S8 and Fig. S10).

4.3 Conclusions

Taken together, the results presented show that enzyme promiscuity is prevalent

in metabolism and plays a major role in both phenotypic innovation and optimization.

It was demonstrated that enzyme side activities can confer a fitness benefit in two

distinct ways. First, side activities contributed to the establishment of novel metabolic

routes that enabled or improved the utilization of a new nutrient source. Second,

suppression of an undesirable underground activity that diverted flux from a newly

established pathway conferred a fitness benefit.

The results of this study have direct relevance for understanding the role of

promiscuous enzymatic activities in evolution and for utilizing computational models

to predict the trajectory and outcome of molecular evolution(Papp, Notebaart, and
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Pál 2011; Lässig, Mustonen, and Walczak 2017). Here, it was demonstrated that

computational metabolic network models which include the repertoire of enzyme side

activities made it possible to predict the genetic basis of adaptation to novel carbon

sources. As such, systems models and analyses are likley to contribute signficanlty

towards representing the complex implications of promiscuity in theoretical models of

molecular evolution(Lässig, Mustonen, and Walczak 2017).

4.4 Materials and Methods

4.4.1 In silico modeling

The most current version of the genome scale model for Escherichia coli K-12

MG1655, iJO1366(Orth et al. 2011), was utilized in this study as the base model before

adding underground reactions related to the five substrates analyzed as previously

reported(Notebaart et al. 2014). The underground reactions previously reported were

added to iJO1366 using the constraint-based modeling package, COBRApy(Ebrahim

et al. 2013). All growth simulations using parsimonious flux balance analysis were

conducted using COBRApy. Growth simulations were performed by optimizing

the default core biomass objective function (a representation of essential biomass

compounds in stoichiometric amounts)(Feist and Palsson 2010). To simulate aerobic

growth on a given substrate, the exchange reaction lower bound for that substrate

was adjusted to -10 mmol gDW−1hr−1.

Sampling was conducted to determine the most likely high flux metabolic

pathways for growth on D-2-deoxyribse (Dataset S3). The Artificial Centering Hit-

and-Run algorithm, optGpSampler(Megchelenbrink, Huynen, and Marchiori 2014),
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was utilized to sample the steady-state solution space. The lower bound of the biomass

objective function was set to 90% of the optimum in order to better simulate realistic

growth conditions. The number of sample points used was two times the number of

reactions in the iJO1366 model (5186 sample points) and the step count was set to

25000 in order to ensure a nearly uniformly sampled solution space. Thus for each

reaction, a distribution of likely flux states was acquired. The high flux reaction set

was pulled out from these distributions as those reactions which had a mean flux

greater than 1.0, but less than 100 and whose standard deviation was less than 50.

The results from this analysis for D-2-deoxyribose are summarized in Dataset S3 and

Fig. S9.

4.4.2 Laboratory Evolution Experiments

The bacterial strain utilized in this study as the starting strain for all evolutions

and MAGE manipulations was an E. coli K-12 MG1655 (ATCC 4706). Laboratory

evolution experiments were conducted on an automated platform using a liquid

handling robot as previously described(LaCroix et al. 2015; Sandberg et al. 2014).

As described above, the experiments were conducted in two phases, an ?innovation?

phase and an ‘optimization’ phase. At the start of the innovation phase, cultures were

serially passaged after reaching stationary phase in a supplemented flask containing

the non-native carbon source at a concentration of 2 g/liter and the growth-supporting

supplement (glycerol) at a concentration of 0.2%. Cultures were passaged in stationary

phase and split into another supplemented flask and a test flask containing only the

non-native carbon source at a concentration of 2 g/liter. As the innovation phase

progressed, the concentration of the growth-supporting nutrient was adjusted to
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maintain a target max OD600 (optical density 600 nm) of 0.5 as measured on a

Tecan Sunrise plate reader with 100 µL of sample. This ensured that glycerol was

always the growth limiting nutrient. If growth was not observed in the test flask

within three days, the culture was discarded; however, once growth was observed in

the test flask, this culture was serially passaged to another test flask. Once growth

was maintained for three test flasks, the second phase of the evolution experiments

commenced - the optimization phase. The optimization phase was conducted as in

previous studies(LaCroix et al. 2015; Sandberg et al. 2014). The culture was serially

passaged during mid-exponential phase so as to select for the fastest growing cells on

the innovative carbon source. The growth rate was monitored by periodically taking

OD600 measurements. The evolution experiments were concluded once increases in

the growth rate were no longer observed for several passages.

Growth data from the evolution experiments was analyzed with an in-house

MATLAB package. Growth rates were calculated for each flask during the ‘optimiza-

tion’ phase of the evolution experiments by using a least-squares linear regression.

Calculated growth rates were rejected if fewer than three OD measurements were

sampled, the range of OD measurements were less than 0.2 or greater than 0.4, or if

the R2 correlation was <0.98. Growth-rate trajectory curves (Figure 4.1B, Fig. S1)

curves were produced in MATLAB by fitting a monotonically increasing piecewise

cubic spline to the data as reported previously(Sandberg et al. 2014; LaCroix et al.

2015). Evolution experiment parameters were also calculated with the MATLAB

script (Table S2) including the cumulative number of cell divisions (CCDs), which

were calculated as previously described(Lee et al. 2011).
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4.4.3 Growth Media Composition

All strains were grown in M9 minimal medium. The M9 minimal medium was

composed of the carbon source at a concentration of 2 g/L unless otherwise specified

(for example, during the ‘innovation’ phase of the ALE experiments the total amount of

carbon source varied as the growth supporting nutrient concentration was dynamically

decreased). Carbon sources were purchased from Sigma Aldrich (D-(-)-Lyxose 99%

catalog #220477, 2-Deoxy-D-Ribose 97% catalog #121649, D-(-)-Arabinose >=98%

catalog #A3131, meso-Tartaric acid monohydrate >=97% catalog #95350, and mono-

Methyl hydrogen succinate 95% catalog #M81101). The growth supporting nutrient

used was glycerol. Other components of the M9 minimal medium were 0.1 mM CaCl2,

2.0 mM MgSO4, 6.8 g L−1 Na2HPO4, 3.0 g L−1 KH2PO4, 0.5 g L−1 NaCl, 1.0 g L−1

NH4Cl, and trace elements solution. A 4,000x trace element solution consisted of 27 g

L−1 FeCl3 · 6 H2O, 2 g L−1 NaMoO4 · 2 H2O, 1 g L−1 CaCl2 · H2O, 1.3 g L−1 CuCl2 ·

6 H2O, 0.5 g L−1 H3BO3, and concentrated HCl dissolved in double-distilled H2O and

sterile filtered. The final concentration in the media of the trace elements solution

was 1x.

4.4.4 Whole Genome Sequencing and Mutation Analysis

Genomic DNA was isolated using the Machery-Nagel Nucleospin Tissue Kit

using the support protocol for bacteria provided by the manufacturer user manual.

The quality of genomic DNA isolated was assessed using Nanodrop UV absorbance

ratios. DNA was quantified using Qubit dsDNA high-sensitivity assay. Paired-end

whole genome DNA sequencing libraries were generated utilizing either a Nextera XT

kit (Illumina) or KAPA HyperPlus kit (Kapa Biosystems). DNA sequencing libraries
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were run on an Illumina Miseq platform with a paired-end 600 cycle v3 kit.

DNA sequencing fastq files were processed utilizing the computational pipeline

tool, breseq (Deatherage and Barrick 2014) , aligning reads to the E. coli K-12

MG1655 genome (NC000913.3) (Datasets S1 and S2). Additionally, identification of

large regions of genome amplification were identified using a custom python script that

utilizes aligned files to identify regions with more than 2x (minus standard deviation)

of mean read depth coverage.

4.4.5 Enzyme activity characterization

All enzymes used in this study were generated by cell-free in vitro transcription

and translation using the PURExpress in vitro Protein Synthesis Kit (New England

Biolabs). Linear DNA templates utilized in all cell-free in vitro transcription and

translation reactions were generated by PCR from dsDNA blocks encoding the en-

zymes with transcription and translations elements synthesized by Integrated DNA

Technologies. Linear DNA templates were purified and concentrated using phenol/chlo-

roform extraction and ethanol precipitation. The encoded enzymes were produced

using PURExpress according to manufacturer?s protocol with linear DNA templates

concentrations of 25 ng/ 1 µL reaction.

The activities of the wild type YihS and three mutant YihS enzymes towards

D-Mannose and D-Lyxose over time was determined using LC/MS. Substrate (10 mM)

was added to 7.5 µL of PURExpress reaction in a buffered solution (50 mM Tris, 100

mM KCl, 10 mM MgCl2, pH 8) for a total volume of 250 µL and incubated at 37 ◦C.

At different time points (0, 15, 30, 60, 120, 240 and 1320 minutes), 10 µL samples

were taken and quenched with 90 µL of LC/MS grade ethanol. Next, samples were
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dried under vacuum (Savant SpeedVac Plus SC110A) and resuspended in 50 µL of

LC/MS grade methanol/water (50/50 v/v). The samples were filtered through 0.22

µm microcentrifugal filtration devices and transferred to 384-well plate for LC/MS

analysis. An Agilent 1290 LC system equipped with a SeQuant R© ZIC R© -HILIC

column (100 mm x 2.1 mm, 3.5 µm 200 Å, EMD Millipore) was used for separation

with the following LC conditions: solvent A, H2O with 5 mM ammonium acetate;

solvent B, 19:1 acetonitrile:H2O with 5 mM ammonium acetate; timetable: 0 min

at 100% B, 1.5 min at 100% B, 6 min at 65% B, 8 min at 0% B, 11 min at 0% B,

12.5 min at 100% B and 15.5 min at 100% B; 0.25 mL/min; column compartment

temperature of 40 ◦C. Mass spectrometry analyses were performed using an Agilent

6550 quadrupole time of flight mass spectrometer. Agilent software Mass Hunter

Qualitative Analysis (Santa Clara, CA) was used for naïve peak finding and data

alignment. Analysis of covariance (ANCOVA) was used to determine if the slopes

of mutants for both xylose and mannose are significantly different from the wild

type slopes. Detailed instrument information and data are provided in Table S6 and

Dataset S6.

4.4.6 pORTMAGE Library Construction/Isolation of indi-

vidual mutants

Mutations were introduced and their corresponding combinations accumulated

during the laboratory evolution experiments into the ancestral E. coli strain using

pORTMAGE recombineering technology (Nyerges et al. 2016). ssDNA oligonucleotides,

carrying the mutation or mutations of interest, were designed using MODEST (Bonde

et al. 2014) for E. coli K-12 MG1655 (ATCC 4706). To isolate individual mutants,
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a single pORTMAGE cycle was performed separately with each of the 15 oligos in

E. coli K-12 MG1655 (ATCC 4706) + pORTMAGE3 (Addgene ID: 72678) according

to a previously described pORTMAGE protocol (Nyerges et al. 2016). Following

transformation, cells were allowed to recover overnight at 30 ◦C and were plated to

Luria Bertani (LB) agar plates to form single colonies. Presence of each mutation

or mutation combinations was verified by High-Resolution Melting (HRM) colony-

PCRs with Luminaris HRM Master Mix (Thermo Scientific) in a Bio-Rad CFX96

qPCR machine according to the manufacturer?s guidelines. Mutations were confirmed

by capillary-sequencing. pORTMAGE oligonucleotides, HRM PCR and sequencing

primers are listed in Dataset S4.

4.4.7 RbsK Comparison to DeoK/kinases in other Enterobac-

teriacae

Protein sequence alignment was conducted for the E. coli MG1655 RbsK N20Y

mutant sequence from this study and DeoK sequences reported for E. coli strains

(Bernier-Fébreau et al. 2004; Monk et al. 2013), three pathogenic (AL862, 55989,

and CFT073) and one commensal (EC185), as well as the DeoK sequence reported

for S. enterica serovar Typhi (Tourneux et al. 2000). The sequence alignments were

performed using the multiple sequence alignment package, T-Coffee (Notredame,

Higgins, and Heringa 2000) (Figure S4).

Enzyme protein sequences of RbsK, YihS, and DmlA modified with the protein

changes observed in the ALE whole genome sequencing data were used as input

sequences to NCBI?s BLASTp algorithm (Altschul et al. 1997). These sequences were

compared to all other protein sequences in other Enterobacteriacae. The resulting
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alignments were saved as and analyzed using biopython and the python data analysis

library, pandas. Results were filtered to identify sequences which aligned to the

observed mutated protein change. For RbsK (the only sequence for which alignments

containing tyrosine in the mutated N20Y position were observed) the alignments

were further filtered to only include results with an Expect value (e-value) <1E-2

and alignment lengths longer than 200 residues. These filtered results for RbsK are

summarized in Dataset S5.

4.4.8 Individual mutant growth test

Isolated mutants were tested for growth over the course of one week (Table S3).

Individual colonies were isolated on LB agar plates and used to inoculate pre-cultures

grown overnight in 2 mL of glucose M9 minimal liquid media in 10 mL tubes. The

following morning, pre-cultures were pelleted at 5000 rpm and gently resuspended in

M9 minimal medium with no carbon source and this spinning and resuspension was

repeated twice to wash the cells of residual glucose. The final resuspension was in 2

mL of M9 minimal medium with no carbon source. The growth test tubes consisting

of 2 mL of M9 minimal medium plus the corresponding innovative carbon source were

inoculated with the washed cells at a dilution factor of 1:200. Growth was monitored

over the course of one week by visually inspecting for increased cellular density. Once

growth was observed, colony PCR was conducted (Qiagen HotStarTaq Master Mix Kit)

with the primer sequences listed in Table S5. DNA sequencing of PCR products was

conducted by Eton Bioscience Inc using their SeqRegular services. DNA sequencing

was utilized to confirm the designed mutations were as expected and to confirm that

no other mutations had been acquired in the regions of interest during the growth
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test.

4.4.9 RNA sequencing

RNA sequencing data were generated under conditions of aerobic, exponential

growth on M9 minimal medium plus the corresponding innovative carbon source (D-

lyxose, D-2-deoxyribose, D-arabinose, or m-tartrate). Cells were harvested using the

Qiagen RNA-protect bacteria reagent according to the manufacturer’s specifications.

Prior to RNA extraction, pelleted cells were stored at -80 ◦C. Cell pellets were thawed

and incubated with lysozyme, SuperaseIn, protease K, and 20% sodium dodecyl

sulfate for 20 min at 37 ◦C. Total RNA was isolated and purified using Qiagen?s

RNeasy minikit column according to the manufacturer’s specifications. Ribosomal

RNA (rRNA) was removed utilizing Ribo-Zero rRNA removal kit (Epicentre) for

Gram-negative bacteria. The KAPA Stranded RNA-seq kit (Kapa Biosystems) was

used for generation of paired-end, strand-specific RNA sequencing libraries. RNA

sequencing libraries were then run on an Illumina HiSeq 2500 using the ‘rapid-run

mode’ with 2 x 35 paired end reads.

Reads were mapped to the E. coli K-12 genome (NC_000913.2) using bowtie2

(Langmead and Salzberg 2012). Cufflinks (Trapnell et al. 2010) was utilized to calculate

the expression level of each gene in units per kilobase per million fragments mapped

(FPKM). This information was then utilized to run cuffdiff (Trapnell et al. 2013) to

calculate gene expression fold change between endpoint and initial growth populations

using a geometric normalization and setting a maximum false discovery rate of 0.05.

Gene expression fold change was considered significant if the calculated q-value was

smaller than 0.05.
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4.4.10 Metabolic Map Generation and Data Superimposition

All metabolic pathway maps generated in Figure 4.2 and Figs. S8-S10 were

generated using the pathway visualization tool Escher (King et al. 2015).

4.4.11 Bioscreen growth test of mutants

Individual sequenced clones from the D-arabinose evolution experiments (Exp.

1 and Exp. 2) along with the wild-type E. coli K-12 MG1655 strain were utilized for

bioscreen growth tests and gene knockout manipulations. These were clones isolated

from the initial innovation and optimized endpoint populations (Dataset S1). A

P1-phage transduction mutagenesis protocol based on a previously reported method

(Donath, Dominguez, and Withers 2011) was followed to replace the fucK gene in

the evolution and wild-type strains with a Kanamycin resistance cassette from the

fucK Keio strain (Baba et al. 2006). The BW25113 Keio collection strain is effectively

missing the araBAD genes, so the yabI Keio strain was utilized for the P1-phage

transduction of all strains to transfer this neighboring araBAD deletion along with

the yabI -replaced Kanamycin resistance cassette. It was deemed that a yabI deletion

would not significantly affect the results of the growth experiments since yabI is a

non-essential inner membrane protein that is a member of the DedA family (Doerrler

et al. 2013). E. coli K-12 contains seven other DedA proteins and it is only collectively

that they are essential (Boughner and Doerrler 2012).

The growth screens were conducted in a Bioscreen-C system machine. Pre-

cultures were started from frozen stocks of previously isolated clones and grown

overnight in M9 minimal medium + 0.2% glycerol. These pre-cultures were used to

inoculate the triplicate bioscreen culture wells at 1:100 dilution of M9 minimal medium
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supplemented with either 2g/L D-arabinose or 0.2% glycerol. The final volume for

each well was 200 µl. The growth screen was conducted under continuous shaking

conditions at 37 ◦C. OD600 (optical density at 600 nm) readings were taken every 30

minutes over the course of 48 hours.

Chapter 4 is a version of a manuscript in preparation for submission: Guzmán,

G. I., Sandberg, T. E., LaCroix, R. A., Nyerges, A., Papp, H., de Raad, M., King, Z.

A., Northen, T. R., Notebaart, R. A., Pál, C., Palsson, B. O., Papp, B., Feist, A. M.

(2017) "Enzyme promiscuity shapes evolutionary innovation and optimization". The

dissertation author was the primary author of the paper and was responsible for the

research.
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Chapter 5

Conclusions and Outlook

5.1 Expanding Model-Driven Discovery

The results presented in this dissertation demonstrate the pervasive nature of

enzyme promiscuity in metabolism as well as the power of systems biology methods

to excavate underground activities in a systematic way. The case studies presented,

however, merely scratch at the surface of underground metabolism as it is assumed

to be vast. How do we go beyond these case studies? Is it a realistic pursuit to

fully elucidate the underground metabolic network of reactions in E. coli and other

organisms?

5.1.1 How deep is the underground?

A previous limitation in the study of enzyme promiscuity was the sensitivity

of enzyme characterization. More rigorous and quantitative measures of enzyme side

activities and substrate ambiguity could aid in expanding the database of feasible

reactions within a cell. Progress has recently been demonstrated in high throughput
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characterizations of enzyme activities (Greving et al. 2012; Sévin et al. 2017). Recent

progress in mass-spectrometry-based enzyme assays have demonstrated the potential

for highly sensitive, high-throughput enzyme characterization. Acoustic deposition

methods with nanostructure initiator mass-spectrometry (NIMS) coupled with array

imaging-based activity readouts have shown the potential for rapidly characterizing

multiple reactions and reaction pathways (Greving et al. 2012). Furthermore, non-

targeted in vitro metabolomics techniques have shown the potential for identifying

previously uncharacterized enzymes in E. coli (Sévin et al. 2017). This method

consisted of utilizing mass-spectrometry to monitor the accumulation or depletion of

metabolites when overexpressed or purified proteins were incubated in a metabolome

extract containing hundreds of biologically relevant substrates. The resulting knowl-

edge gained from such techniques could directly aid in expanding the database of

enzyme activities and allow for the inclusion of such data in reconstructions of under-

ground metabolism. A version of this type of reconstruction has already proven to be

fruitful in predicting evolutionary trajectories in non-native growth environments as

was described in Chapter 4 of this dissertation. By including the enzyme activities

listed in the BRENDA enzyme database (Placzek et al. 2017), the computational

model of underground metabolism (Notebaart et al. 2014) expanded upon the genome

scale metabolic model of metabolism to predict attainable phenotypes accessible via

underground metabolic routes. Thus, it is my opinion that the current advances in

high-throughput metabolomics and enzyme activity assays could be directly leveraged

to more completely elucidate the network of underground metabolism.
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5.1.2 Where might the underground take us?

Within the biotechnology industry, there is a strong desire to produce highly

efficient bioprocessing strains (Manzer, Waal, and Imhof 2013). In strain design, it

is typical to target specific pathways to be up-regulated or knocked out in order to

improve the desired phenotype; however, the biological systems that we work with

tend to push back on such manipulations. One can imagine the removal of one pathway

resulting in the over-expression of a compensating underground activity, or what may

colloquially be referred to as a ‘rogue’ enzyme activity. These undesired compensating

mechanisms, which are related to the adaptive mechanisms of an organism, are a

challenge in strain engineering. However, as our knowledge of underground metabolism

expands, our ability to anticipate the ‘rogue’ activities will likely aid in making rapid

strain design more successful.

Beyond engineering bioprocessing strains for industrial applications, the themes

presented in this dissertation have far-reaching potential in the field of medicine as well.

For example, recent work has shown that brain cancer-associated mutations in the

cytosolic metabolic enzyme isocitrate dehydrogenase 1 result in its ability to catalyze a

reaction other than its primary reaction (Dang et al. 2009). This new reaction leads to

the increased production of a metabolite (R(-)-2-hydroxyglutarate) and these elevated

levels have been implicated in an increased risk of malignant brain tumors. Thus,

it is evident that expanding our understanding of the potential secondary activities

enzymes could aid in better analyzing disease states as well as lead to possibly more

targeted drugs and treatments.
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5.1.3 Constraint-Based Modeling and Laboratory Evolution

for Discovery

The work presented in this dissertation highlighted the potential for discovery

resulting from the coupling of in silico computational methods and in vivo experimental

methods. Constraint-based modeling methods allow us to utilize our knowledge of

biological building blocks (genes, proteins, and reactions) to make predictions about

observable, measurable phenotypes. Flux balance analysis computes an optimal growth

solution; however, experimental conditions are often not optimized for cell growth.

Thus, laboratory evolution methods help to achieve these optimal growth states in

vivo. The comparison can then be made between the computed and adapted cell

state to identify knowledge gaps and therefore potential avenues of discovery. The

iterative process of model-driven discovery should result in the regular upkeep and

improvement of metabolic models, which can then aid in understanding and predicting

in vivo phenotypes and move towards more complete genome annotations.

Beyond studying the model organism of E. coli, the workflows applied in this

dissertation could be extended to other organisms. For example, studying relevant

adaptive mechanisms in pathogenic strains of bacteria could aid in the understanding

of antibiotic resistance. Future avenues of study could also examine the evolution of

populations of mixed species and look at the commonly used adaptive mechanism of

horizontal gene transfer. I hope that the work presented in this dissertation may serve

as an impetus for future discovery efforts.
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5.2 Conclusion

As we continue to unearth the biological foundations that support the evolution

of elegant biological structures, the coupling of computational efforts and experimental

studies will greatly benefit our understanding and expand our ability to engineer

solutions to industrial and medical challenges. The iterative nature of model-driven

discovery provides an avenue for continual improvement of our knowledge base. Cur-

rent improvements to the sensitivity in the field of mass spectrometry and enzyme

characterization, as well as next-generation sequencing technologies, and laboratory

evolution experiments coupled with constraint-based modeling methods make the

elucidation of underground metabolism a tangible goal. Being able to predict adaptive

mechanisms will greatly benefit our ability to engineer bioprocessing strains and

anticipate medical and environmental responses to human interventions.
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