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Robust Fitting of Mixture Regression Models

Xiuqin Bai, Weixin Yao, ∗ and John E. Boyer

Kansas State University

Abstract

The existing methods for fitting mixture regression models assume a normal dis-

tribution for error and then estimate the regression parameters by the maximum

likelihood estimate (MLE). In this article, we demonstrate that the MLE, like the

least squares estimate, is sensitive to outliers and heavy-tailed error distributions.

We propose a robust estimation procedure and an EM-type algorithm to estimate

the mixture regression models. Using a Monte Carlo simulation study, we demon-

strate that the proposed new estimation method is robust and works much better

than the MLE when there are outliers or the error distribution has heavy tails. In

addition, the proposed robust method works comparably to the MLE when there

are no outliers and the error is normal. A real data application is used to illustrate

the success of the proposed robust estimation procedure.

Key words: EM algorithm; Mixture regression models; Outliers; Robust regression.

1 Introduction

Mixture regression models are widely used to investigate the relationship between variables

coming from several unknown latent homogeneous groups. They have applications in

∗Corresponding author. Department of Statistics, Kansas State University, Manhattan, Kansas 66506,
U.S.A. Email: wxyao@ksu.edu
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many fields, including engineering, genetics, biology, econometrics, and marketing. A

typical data set is the tone perception data (Cohen, 1984) which is shown in Figure

1. In the tone perception experiment of Cohen (1984), a pure fundamental tone with

electronically generated overtones added was played to a trained musician. The overtones

were determined by a stretching ratio. The experiment was designed to determine if either

of two musical perception theories was reasonable (see Cohen, 1980 for more detail). Based

on Figure 1, two lines are evident which correspond to the behavior indicated by the two

musical perception theories. The two regression lines correspond to correct tuning and

tuning to the first overtone, respectively.

The model setting for mixtures of linear regression models can be stated as follows.

Let Z be a latent class variable with P (Zi = j | x) = πj for j = 1, 2, · · · ,m, where x is

a p-dimensional vector. Given Zi = j, suppose that the response yi depends on x in a

linear way

yi = xTβj + ϵij, (1.1)

βj = (β1j, . . . , βpj)
T , and ϵij ∼ N(0, σ2

j ). Then the conditional density of Y given x can

be written as

f(y|x) =
m∑
j=1

πjϕ(y;x
Tβj, σ

2
j ), (1.2)

and the log-likelihood function for observations {(x1, y1), . . . , (xn, yn)} is

n∑
i=1

log

[
m∑
j=1

πjϕ(yi;x
T
i βj, σ

2
j )

]
, (1.3)

where ϕ(· ;µ, σ2) is the density function of N(µ, σ2). See, for example, Jacobs, Jordan,

Nowlan, and Hinton (1991), Jiang and Tanner (1999), Wedel and Kamakura (2000), and

Skrondal and Rabe-Hesketh (2004), for some applications of model (1.2). The unknown

parameters in the model (1.2) can be estimated by the maximum likelihood estimator

(MLE), which maximizes (1.3). Note that the maximizer of (1.3) does not have an explicit
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solution and is usually estimated by the EM algorithm (Dempster, Laird, and Rubin,

1977).

Note that different permutations of component parameters will give the same density

f(y | x) of (1.2), which is called label-switching in mixture models. See, for example,

Celeux, Hurn, and Robert (2000), Stephens (2000), and Yao and Lindsay (2009) for more

detail. Hence, we will say the model (1.2) is identifiable up to a permutation of component

parameters. To insure the identifiability of the model (1.2), we adopt the conditions of

Hennig (2000).

Similar to the least squares estimate (LSE) for linear regression, the normality based

MLE is sensitive to outliers or heavy-tailed error distributions. For linear regression, the

M estimate, which replaces the least squares criterion by a robust criterion, is one of the

most commonly used robust estimates for the regression parameters. See, for example,

Huber (1973, 1981), Andrews (1974), Rousseeuw and Yohai (1984), Hampel, Ronchetti,

Rousseeuw, and Stahel (1986), Yohai (1987), and Rousseeuw and Leroy (1987), for more

detail. However, there is little research related to estimating the mixture regression pa-

rameters robustly, in part because it is not easy to replace the log-likelihood in (1.3) by

a robust criterion similar to the M estimate. Neykov, Filzmoser, Dimova, and Neytchev

(2007) proposed robust fitting of mixtures using the trimmed likelihood estimator. Marka-

tou (2000) and Shen, Yang, and Wang (2004) proposed using a weight factor for each

data to robustify the estimation procedure for mixture regression models. There are also

some related robust methods for linear clustering; see, for example, Hennig (2002, 2003),

Mueller and Garlipp (2005), Garćıa-Escudero, Gordaliza, San Mart́ın, Van Aelst, and

Zamar (2009), and Garćıa-Escudero, Gordaliza, Mayo-Iscara, and San Mart́ın (2010).

In this article, we propose a new and simple robust estimation procedure for the mix-

ture regression parameters by modifying the existing EM algorithm rather than focusing

on the maximization of the function (1.3). Due to the normality assumption, the least

squares criterion is used in the M step of EM algorithm for mixture regression models.

We propose replacing the least squares criterion in the M step by a robust criterion, such
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as Tukey’s bisquare function. Based on a Monte Carlo study, we demonstrate that the

proposed new estimate is robust and much more efficient than the MLE when the data

have outliers or the error distribution has heavy tails. Furthermore, the proposed method

provides results comparable to the traditional MLE when there are no outliers and the

error is exactly normal.

The rest of this article is organized as follows. In Section 2, we introduce our new

robust estimation procedure for mixture linear regression models. In Section 3, a Monte

Carlo simulation study and a real data application are used to illustrate the robustness

of the proposed methodology and compare it with the traditional MLE. Some discussions

are given in Section 4. Technical conditions and proofs are provided in the Appendix.

2 Robust Mixture Regression Models

2.1 Introduction to the existing estimate

It is well known that the log-likelihood function (1.3) is unbounded and goes to infinity

if one observation exactly lies on one component line and the corresponding component

variance goes to zero. There has been considerable research dealing with the unbounded

likelihood issue. See, for example, Hathaway (1985, 1986), Chen, Tan, and Zhang (2008),

and Yao (2010). In this article, for simplicity of explanation of our new robust method,

we assume equal variance for each component in order to avoid the unboundedness of the

mixture likelihood (1.3).

The existing EM algorithm to maximize (1.3) is as follows.

Algorithm 1. Based on the initial values of {π(0)
j , β

(0)
j , σ(0), j = 1, . . . ,m}, the EM

algorithm iterates between the following E-step and M-step.

E-step: Calculate the classification probabilities

p
(k+1)
ij =

π
(k)
j ϕ(yi;x

T
i β

(k)
j , σ2(k))∑m

l=1 π
(k)
l ϕ(yi;xT

i β
(k)
l , σ2(k))

, i = 1, . . . , n; j = 1, . . . ,m.
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M step: Update the parameters

β
(k+1)
j = argmin

βj

n∑
i=1

p
(k+1)
ij (yi − xT

i βj)
2

= (XTWk+1
j X)−1XTW

(k+1)
j y, (2.1)

π
(k+1)
j =

1

n

n∑
i=1

p
(k+1)
ij ,

σ2(k+1) =
1

n

n∑
i=1

m∑
j=1

p
(k+1)
ij (yi − xT

i β
(k+1)
j )2,

where j = 1, . . . ,m,X = (x1,x2, . . . ,xn)
T ,y = (y1, . . . , yn)

T , and W
(k+1)
j is a n × n

diagonal matrix with diagonal elements {p(k+1)
ij , i = 1, . . . , n}.

It can be seen from (2.1) that the MLE based EM algorithm updates β by a weighted

least squares estimate in the M step, since ϕ(·) is a normal density. It is well known that

the least squares criterion is sensitive to outliers and heavy-tailed error distributions. In

this article, we provide a robust estimation procedure for the mixture regression models.

2.2 Robust estimation of a mixture of linear regressions

It is not easy to use the idea of an M estimate to directly replace the objective function

(1.3) with a robust criteria. In this article, we propose to replace the least squares criterion

(2.1) in the M step of Algorithm 1 with a robust criterion ρ. Therefore, β
(k+1)
j , j =

1, . . . ,m, is the solution of

n∑
i=1

p
(k+1)
ij xiψ

(
yi − xT

i βj

σ(k)

)
= 0, (2.2)

where ψ(·) = ρ′(·) and σ(k) is a robust scale estimate of the error ϵij’s. One of the

commonly used ρ functions is Huber’s ψ-function ψc(t) = ρ′(t) = max{−c,min(c, t)}

(Huber, 1981). Huber (1981) recommends using c = 1.345 in practice, which produces

a relative efficiency of approximately 95% when the error density is normal. Another
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possibility for ψ(·) is Tukey’s bisquare function ψc(t) = t{1 − (t/c)2}2+, which weights

the tail contribution of t by a biweight function. In the parametric robustness literature,

the use of c = 4.685, which produces 95% efficiency, is recommended. If we use L1

loss function ρ(t) = |t|, we will get the median regression. For more detail, see Huber

(1973, 1981), Andrews (1974), Beaton and Tukey (1974), Holland and Welsch (1977), and

Hampel, et al. (1986).

Note that

n∑
i=1

p
(k+1)
ij xiψ

(
yi − xT

i βj

σ(k)

)
≈

n∑
i=1

p
(k+1)
ij xiW

(
yi − xT

i β
(k)
j

σ(k)

)(
yi − xT

i βj

σ(k)

)
=

n∑
i=1

p
∗(k+1)
ij xi

(
yi − xT

i βj

σ(k)

)
,

where W (t) = ψ(t)/t and

p
∗(k+1)
ij = p

(k+1)
ij W

(
yi − xT

i β
(k)
j

σ(k)

)
.

Based on the above approximation, the solution of (2.2) can be approximated by

β
(k+1)
j =

(
n∑

i=1

p
∗(k+1)
ij xix

T
i

)−1 n∑
i=1

p
∗(k+1)
ij xiyi,

which is one step of the iterative reweighting algorithm (Maronna, Martin, and Yohai,

2006, Sec. 4.5.2). Note that β
(k+1)
j can be considered to be a weighted least squares

estimator with the weights {p∗(k+1)
ij , i = 1, . . . , n}.

Based on the above discussions, we propose the following robust estimation procedure

for the mixtures of linear regression model (1.1).

Algorithm 2. Based on the initial values of {π(0)
j , β

(0)
j , σ(0), j = 1, . . . ,m}, the

proposed robust EM-type algorithm is to iterate the following E-step and M-step.
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E-step: Calculate the classification probabilities

p
(k+1)
ij =

π
(k)
j ϕ(yi;x

T
i β

(k)
j , σ2(k))∑m

l=1 π
(k)
l ϕ(yi;xT

i β
(k)
l .σ2(k))

M step: Update the parameters

β
(k+1)
j =

(
n∑

i=1

p
∗(k+1)
ij xix

T
i

)−1 n∑
i=1

p
∗(k+1)
ij xiyi

= (XTW∗(k+1)

j X)−1XTW∗(k+1)

j y, (2.3)

π
(k+1)
j =

1

n

n∑
i=1

p
(k+1)
ij ,

σ2(k+1) =
2

n

n∑
i=1

m∑
j=1

p
(k+1)
ij (yi − xT

i β
(k+1)
j )2w

(k+1)
ij , (2.4)

where j = 1, . . . ,m,W
∗(k+1)
j is a n×n diagonal matrix with diagonal elements {p∗(k+1)

ij , i =

1, . . . , n}, and

w
(k+1)
ij = min

1−
1−

(
yi − xT

i β
(k+1)
j

1.56σ(k)

)2


3

, 1

( σ(k)

yi − xT
i β

(k+1)
j

)2

.

Here, (2.4) is our proposed robust scale estimate, which extends the idea ofM −estimate

of scale (see Maronna, et al., 2006, section 2.2 for more detail). Note that (2.4) is similar

to the traditional nonrobust scale estimate for mixtures of regression except for the ad-

justment factor “2” and the weights w
(k+1)
ij , which are the bisquare weights recommended

by Maronna, et al., (2006). One may also apply some other robust scale estimate to get

the weights w
(k+1)
ij .

The above proposed method can be easily extended to the unequal variances case. For

example, similar to Hathaway (1985, 1986), the above robust EM-type algorithm can be
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implemented over a constrained parameter space

ΩC = {θ ∈ Ω : σh/σj ≥ C > 0, 1 ≤ h ̸= j ≤ m}, (2.5)

where C ∈ (0, 1],θ = (π1,β
T
1 , σ1, . . . , πm−1,β

T
m−1, σm−1,β

T
m, σm)

T , and Ω denotes the

unconstrained parameter space.

In (1.1), if x only includes the intercept term 1, the model is the regular normal

mixture model. Hence, our proposed robust estimation procedure can be also used to

robustly estimate the location parameters in the normal mixture model.

Initial values: There are many ways to find the initial values for {π(0)
j , β

(0)
j , σ(0), j =

1, . . . ,m}. One method is to use trimmed likelihood estimates (TLE) (Neykov, et al.

2007). Note that the TLE is robust to both low leverage and high leverage outliers under

certain general conditions (Neykov, et al. 2007). Another possible method is that we first

randomly partition the data or a subset of the data into m groups. For each group, we

use some robust regression method, such as the MM-estimate (Yohai, 1987), to estimate

the component regression parameters. Similar partition ideas have been used to find the

initial values for finite mixture models (McLachlan and Peel, 2000). In addition, we can

also apply the robust linear clustering method to find the initial regression parameter

values. See, for example, Hennig (2002, 2003), and Garćıa-Escudero, et al. (2009). Note

that though, technically, the robust linear clustering methods do not produce consistent

regression component estimators. But in many cases, they are close enough to provide

good initial values, since the proposed algorithm doesn’t require the initial values to be

consistent.

Convergence of Algorithm 2: In the estimating equation (2.10), if we replace pij

by zij, where zij is the latent component indicator and is equal to 1 if ith observation is

from jth component and 0 otherwise, then the corresponding proposed Algorithm 2 can

be considered as the ES algorithm proposed by Elashoff and Ryan (2004) for estimat-

ing equations with missing data. Therefore, the convergence property of the proposed

Algorithm 2 can be proved similarly to the ES algorithm of Elashoff and Ryan (2004).
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2.3 Asymptotic results

In this section, for simplicity of explanation and the proof, we assume that the scale

parameter σ used in (2.2) is fixed. Let θ = (βT
1 , . . . ,β

T
m, π1, . . . , πm)

T and θ̂n be the

estimate found by our proposed robust EM-type Algorithm 2. Note that the θ̂n solves

the following estimating equations

n∑
i=1

pij(θ)xiψ

(
yi − xT

i βj

σ

)
= 0, (2.6)

πj =
n∑

i=1

pij(θ)/n, j = 1, . . . ,m, (2.7)

where

pij(θ) =
πjϕ(yi;x

T
i βj, σ

2)∑m
l=1 πlϕ(yi;x

T
i βl, σ

2)
. (2.8)

Let zi = (xT
i , yi)

T and

Ψ(zi,θ) =

{
pi1xiψ

(
yi − xT

i β1

σ

)
, . . . , pimxiψ

(
yi − xT

i βm

σ

)
, pi1 − π1, . . . , pi,m−1 − πm−1

}T

,

(2.9)

where pij = pij(θ) is defined in (2.8). Therefore, our proposed estimate θ̂n solves the

equation

Sn(θ) =
1

n

n∑
i=1

Ψ(zi,θ) = 0.

Theorem 2.1. Under the regularity conditions (A1)—(A5) in the Appendix, if the error

in (1.1) is normal, then there exists a sequence {θ̂n, n = 1, 2, . . . , } such that

a) P (θ̂n is a solution to Sn(θ) = 0) → 1

b) θ̂n
p→ θ0, where θ0 is the true value of θ.

Note that the true value of θ0 is not unique due to the label switching. Therefore,

the consistent sequence {θ̂n, n = 1, 2, . . . , } depend on the specific label of θ0. The above

theorem states that when the error is normal there exists a consistent solution to the
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equation Sn(θ) = 0. If there is only one root of Sn(θ) = 0, the above theorem tells us

that the estimate found by the proposed algorithm must be consistent.

However, like general estimating equations, there may be multiple solutions to the

above equation and the selection of a consistent root is usually very difficult. In addition,

it is also very difficult to directly prove that the sequence found by our algorithm is

consistent. We will provide an empirical way to select the root when multiple roots are

found in Section 3.

Let

A = Eθ0

{
∂Ψ(Z,θ)

∂θT

}
(2.10)

and

B = Eθ0
{Ψ(Z,θ)Ψ(Z,θ)T}.

Theorem 2.2. Under the regularity conditions (A1)—(A7) in the Appendix, when the er-

ror in (1.1) is normal, the estimate θ̂n, given in Theorem 2.1, has the following asymptotic

distribution
√
n(θ̂ − θ0)

d→ N(0, V ),

where V = A−1BA−1.

Robustness: Based on our empirical studies, the method based on Tukey’s bisquare

has greater resistance to high leverage outliers and has overall better performance than

the method based on Huber’s function. Hennig (2004) treats 1-d mixtures, which is

“intercept-only” regression and therefore a special case of what is treated in this article.

Hennig (2004) proved that the robust mixture estimates by maximizing some objective

functions have low breakdown. It will be interesting to know whether their results can be

similarly proved for mixtures of regression models if estimating equations based estimators

are used.

Since our proposed estimate solves the equation (2.10), based on the theory of M

estimate (Maronna, et al., 2006, section 5.4.2), the influence function of our proposed
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estimate is

If((x0, y0),θ0) = −A−1Ψ((x0, y0),θ0),

where A is defined in (2.10) and Ψ is defined in (2.9).

The sample breakdown point is another important measure of the robustness. How-

ever, as Garćıa-Escudero, et al. (2010) stated, the traditional definition of breakdown

point is not the right one to quantify the robustness of clustering regression procedures

to outliers, since the robustness of these procedures is not only data dependent but also

cluster dependent.

3 Simulation Studies and Real Data Application

In this section, we use a Monte Carlo simulation study and the analysis of a real data set to

compare our proposed robust estimation procedure with the MLE for mixture regression

models. For the proposed robust method, we consider both Tukey’s bisquare function with

c = 4.685 and Huber’s ψ function with c = 1.345 and denote them by Robust-Bisquare and

Robust-Huber, respectively. We run the proposed EM type algorithm until the maximum

difference between the updated parameter estimates of two consecutive iterations is less

than 10−5. For the MLE, we start the algorithm from 20 random initial values and then

choose the converged mode with the largest likelihood. For better comparison, we also

include the robust estimates based on the trimmed maximum likelihood estimator (TLE)

proposed by Neykov, et al. (2007) with the percentage of trimmed data α set to 0.1. The

choice of α plays an important role for the TLE. If α is too large, the TLE will lose much

efficiency. If α is too small and the percentage of outliers is more than α then the TLE

will fail. In our simulation study, the proportion of outliers is never greater than 0.1.

The TLE is implemented based on the FAST-TLE algorithm (Neykov, et al. 2007 with

20 initial values calculated from 20 randomly chosen sub-samples). For Robust-Bisquare

and Robust-Huber, we used 22 initial values that consists of FAST-TLE, robust linear

clustering method ( Garćıa-Escudero, et al. 2009), and 20 initial parameter values used
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by FAST-TLE. When the proposed algorithm can identify multiple roots, it is important

to find the right one. However, finding a consistent root among multiple roots is always a

difficult problem for estimating equations. In our simulation study and real data analysis,

we used the root, called modal root, which most initial values converge to. (One of the

motivations of using modal root is that it can be used to approximate the major maximizer

of the unknown objective function that defines the estimating equation (2.10) if the area

associated with major maximizer is larger than the area associated with any other local

minor maximizer/minimizer (Li, Ray, and Lindsay, 2007).) Although it is difficult to give

the theoretical support for such choice, our empirical study demonstrates the effectiveness

of using such modal root. In addition, our empirical study found that the converged roots

starting from FAST-TLE are usually the same as the modal root. Therefore, in practice,

to save computation time, one might simply run the proposed algorithm starting from

FAST-TLE.

In addition, for mixture models, the label switching issues (Celeux, Hurn, and Robert,

2000; Stephens, 2000; Yao and Lindsay, 2009) also create much trouble when doing com-

parison using the simulation study. Different labeling strategies might give totally different

results and there are no widely accepted labeling methods. In our simulation study, we

simply choose the labels by minimizing the distance to the true parameter values. It

requires more research to compare different labeling methods.

Example 1. We generate the independent and identically distributed (i.i.d.) data

{(x1i, x2i, yi), i = 1, . . . , n} from the model

Y =

 0 +X1 +X2 + ϵ1, if Z = 1;

0−X1 −X2 + ϵ2, if Z = 2.
,

where Z is a component indicator of Y with P (Z = 1) = 0.25,X1 ∼ N(0, 1), X2 ∼ N(0, 1),

and ϵ1 and ϵ2 have the same distribution as ϵ. Note that the two regression lines will

intersect each other when X1 = 0 and X2 = 0. We consider the following five cases:

Case 1: ϵ ∼ N(0, 1) – Standard normal distribution.
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Case 2: ϵ ∼ t3 – t-distribution with degrees of freedom 3.

Case 3: ϵ ∼ t1 – t-distribution with degrees of freedom 1 (Cauchy distribution).

Case 4: ϵ ∼ 0.95N(0, 1) + 0.05N(0, 52) – Contaminated normal mixture.

Case 5: ϵ ∼ N(0, 1) with 5% of high leverage outliers being X1 = 20, X2 = 20 and

Y = 100.

We use Case 1 to test the efficiency of our robust estimation method compared to the

traditional MLE when the error is exactly normally distributed and there are no outliers.

Case 2 is a heavy-tailed distribution. The t-distributions with degrees of freedom from

3 to 5 are often used to represent the heavy-tailed distributions. Case 3 is an extremely

heavy-tailed t distribution with one degree of freedom. Case 4 is a contaminated normal

mixture model, which is often used to mimic the outlier situation. The 5% data from

N(0, 52) are likely to be low leverage outliers. In Case 5, 95% of the observations have the

error distribution N(0, 1), but 5% of the observations are replicated high leverage outliers

with X1 = 20, X2 = 20, and Y = 100.

Tables 1 and 2 report the bias and standard errors (Std) of the parameter estimates

for each estimate for samples of size n = 100 and n = 400, respectively. The number of

replicates is 1,000. Based on Tables 1 and 2, we note the following general findings:

1. When there are no outliers and the error is normal (Case I), all methods estimate

the parameters well, except that TLE has large bias for some regression parameters.

In addition, the MLE works slightly better than the proposed robust methods and

Robust-Huber works better than the Robust-Bisquare, especially when sample size

is small, such as n = 100. (Note that in this case, the traditional MLE, which

assumes a normal error, is asymptotically most efficient.)

2. For Cases II to V, all robust estimates work much better than the MLE. In addition,

the Robust-Bisquare overall has the best performance. (For Case V, TLE works

slightly better than Robust-Bisquare when n = 400.)
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3. For Case II (ϵ ∼ t3) and IV (ϵ ∼ 0.95N(0, 1) + 0.05N(0, 52)), the Robust-Huber

works better than the TLE. For Case III (ϵ ∼ t1) and V (5% high leverage outliers),

the TLE works better than the Robust-Huber, which has a large bias for parameter

estimates.

Based on the above findings, we can see that the Robust-Bisquare is robust to both

low leverage outliers and high leverage outliers and has the overall best performance.

Therefore, in practice, we recommend the use of Robust-Bisquare method.

Table 3 reports the average number of found solutions when using 22 initial values for

the proposed robust methods. From the table, we can see that in many cases the proposed

algorithm can identify multiple solutions and the average number of found roots tends to

decrease when sample size increases.

Example 2. We generate the independent and identically distributed (i.i.d.) data

{(xi, yi), i = 1, . . . , n} from the model

Y =


1 +X + ϵ1, if Z = 1;

2 + 2X + ϵ2, if Z = 2;

3 + 5X + ϵ3, if Z = 3;

,

where Z is a component indicator of Y with P (Z = 1) = P (Z = 2) = 0.3, P (Z = 3) = 0.4,

X ∼ N(0, 1), and ϵ1, ϵ2, and ϵ3 have the same distribution as ϵ. We consider the same

five cases for ϵ as in Example 1, except for Case V, in which the 5% high leverage outliers

are X = 20 and Y = 200. Note that in this case all three components have the same sign

of the slopes and the first two components are very close.

Tables 4 and 5 report the bias and standard errors (Std) of the parameter estimates

for each estimate for samples of size n = 100 and n = 400, respectively. The number of

replicates is 1,000. Based on Tables 4 and 5, we can get similar findings to the Example

1, except that TLE also works better than Robust-Huber in Cases II and IV.

Table 6 reports the average number of found roots. From the table, we can see that
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the average number of roots tends to decrease when the sample size increases. In addition,

based on Tables 3 and 6, we can also see that the average number of roots tend to increase

when the number of components increases.

Example 3. Next, we use the tone data introduced in Section 1 to illustrate the

Robust-Bisquare method and compare it with the MLE. To better see the robustness of

our proposed estimate, we have added ten identical high leverage outliers (0, 4) to the

original data set (the range of the Actual tone ratio in the original data set is from 1.35

to 3), and refit the data with both the Robust-Bisquare and the MLE. For this data

set, Robust-Bisquare found four solutions and 13 out of 22 initial values converged to

the modal root. For this data set, both FAST-TLE (Neykov, et al. 2007) and robust

linear clustering estimate ( Garćıa-Escudero, et al. 2009) converge to the modal root.

The numbers of initial values converged to the other three minor roots are 4, 3, and 2,

respectively.

Figure 2 shows the scatter plot with the estimated regression lines generated by MLE

(dashed lines) and Robust-Bisquare (solid line) for the data augmented by the outliers

(stars). From Figure 2, we note that our proposed robust method provides almost the

same fit as the one in Figure 1 and thus is robust to the added outliers. However, the

MLE for one of the components fits the line through the outliers and the MLE for the

other component fits the line using the rest of data. In this case, the ten high leverage

outliers have a big impact on the fitted regression lines.

4 Discussion

In this article, we propose a new robust estimation procedure for mixture regression

models. Instead of modifying the log-likelihood objective function, we propose to modify

the existing EM algorithm for mixture regression models by replacing the least squares

criterion with a robust criteria in the M step. Our empirical study demonstrates that

the proposed method which utilizes the bisquare function works well and is robust and
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much more efficient than the existing MLE when there are outliers present or the error

has heavy tails. In addition, the proposed robust estimation procedure has performance

comparable to the MLE when there are no outliers and the error is exactly normal. We

believe that similar modifications can be applied to other mixture regression models such

as mixtures of generalized linear models. Such extensions will be our future interest.

Although our empirical study demonstrates the effectiveness of the proposed modal

root when multiple solutions are found, it requires more research to provide some theo-

retical guideline for the choice of a consistent root. One method is to find the objective

function for the estimating equation (2.7) and then choose the root that maximizes the

objective function. Similar ideas have been used by McCullagh and Nelder (1989), Li

(1993), and Hanfelt and Liang (1995, 1997).

Theorem 2.1 and 2.2 assume that σ is fixed. The things will be more complicated if σ

is estimated. Note that the scale estimator (2.4) can be considered as the solution to the

estimating equation
1

n

n∑
i=1

m∑
j=1

pijρ

(
yi − xT

i βj
σ

)
= 0.5, (4.1)

where ρ(·) corresponds to Tukey’s bisquare function. Therefore, if σ is estimated, Theorem

2.1 and 2.2 can be still proved similarly by adding another estimating equation (4.1).

However, the asymptotic variance in Theorem 2.2 will be different if σ is estimated.

In addition, note that Theorem 2.1 only proved the existence of a consistent sequence

of solutions. The normality results given in Theorem 2.2 only applies to that particular

consistent sequence found in Theorem 2.1. Unfortunately, we are not able to directly

prove that the solution found by the proposed algorithm is consistent, which is a very

difficult task and requires more research. Therefore, Theorem 2.1 and 2.2 have very limited

practical use. However, one thing that Theorem 2.1 can tell us is that the estimate found

by the proposed algorithm is consistent if the estimating equations only have one root.
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Appendix

The following technical conditions are imposed in this section. They are not the weakest

possible conditions, but they are imposed to facilitate the proofs.

Technical Conditions:

A1 (xi, Yi) are independent and identically distributed from some joint density f(x, y).

In addition, the number of distinct (p− 1)-dimensional hyperplanes which one needs

to cover the covariates is no less than m.

A2 The true parameter θ0 is an interior point of parameter space Ω, i.e., βi ̸= βj, 1 ≤

i ̸= j ≤ m, and πj > 0, j = 1, . . . ,m.

A3 The ψ(·) function satisfies ∫ ∞

−∞
ψ(t)ϕ(t)dt = 0,

where ϕ(t) is the density for standard normal.

A4 ψ(t) is continuous and Eθ{Ψ(Z,θ)} is differentiable at θ0 and the derivative matrix

is negative (positive) definite.

A5 In a neighborhood of θ0, Sn(θ) converges in probability uniformly to Eθ0
{Ψ(Z,θ)},

i.e.,

sup
θ

[∣∣∣∣∣n−1

n∑
i=1

Ψ(Zi,θ)− Eθ{Ψ(Z,θ)}

∣∣∣∣∣ : |θ − θ0| ≤ δn

]
p→ 0 if δn → 0.

A6 Eθ{Ψ(Z,θ)Ψ(Z,θ)T} and Eθ{∂Ψ(Z,θ)/∂θ} exist and are continuous functions of θ

for all θ ∈ Ω with Eθ{∂Ψ(Z,θ)/∂θ} ̸= 0 in a neighborhood of θ0.
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A7 ||∂2Ψ(Z,θ)/∂θi∂θj|| ≤ M(Z) for all θ and 1 ≤ i ≤ j ≤ 2m − 1, where M(Z) is an

integrable function.

The condition A1 is the identifiability conditions for mixtures of liner regression models

used by Hennig (2000). The condition A3 guarantees E{Ψ(Z,θ)} = 0 and thus the

existence of a consistent solution to the estimating functions when the error is normal.

If ψ(·) is an odd function, then the Condition A3 is satisfied. The conditional A5 is

satisfied if Ψ(Z,θ) is continuous in θ for every Z and |Ψ(Z,θ)| is dominated by an

integrable function, say, G(Z). Here, we put conditions directly on estimating function

Ψ(Z,θ) (Godambe, 1991), instead of on x−variables. Hennig (2000) pointed out that

some limiting conditions on x−variables might be needed to get the consistency results.

However, we are not able to directly derive the explicit limiting conditions on x−variables

from Condition A5, which is very cumbersome as stated in Hennig (2000).

Proof of Theorem 2.1: From A1 and A3, we have

E

{
pijxiψ

(
yi − xT

i βj

σ

) ∣∣xi

}
= πjxi

∫ ∞

∞
ϕ(t)ψ(t)dt = 0. (4.2)

and

E(pij | xi) = πj

∫ ∞

−∞
ϕ(y;xT

i βj, σ
2)dy = πj

∫ ∞

−∞
ϕ(t)dt = πj. (4.3)

Therefore, E{Ψ(xi,θ0)} = 0.

Let Rn be the collection of all solutions to Sn(θ) = 0. If Rn ̸= ∅, define an =

infθ∈Rn
||θ− θ0||. By definition, there exists a sequence of {θ̂n,k :, k = 1, 2, . . .} such that

||θ̂n,k − θ0|| → an as k → ∞. Noting that the sequence is contained in a bounded set,

there exists a subsequence that converges to θ̂n,0, say. Note that ||θ̂n,0 − θ0|| = an. Since

Sn(θ) is continuous in θ, S(θ̂n,0) = 0. We define

θ̂n =

 θ̂n,0, if Rn ̸= ∅;

0, Rn = ∅.
(4.4)
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Now we show θ̂n satisfies (a) and (b) of Theorem 2.1.

Since Eθ0
{Sn(θ)} = Eθ0

{Ψ(Z,θ)} is differentiable at θ0,

Eθ0
{Sn(θ)} − Eθ0

{Sn(θ0)} =
∂

∂θT
Eθ0

{Sn(θ0)}(θ − θ0) + o(||θ − θ0||). (4.5)

Since Eθ0
{S(θ0)} = 0,

(θ−θ0)
TEθ0

{Sn(θ)} = (θ−θ0)
T ∂

∂θT
Eθ0

{Sn(θ0)}(θ−θ0)+(θ−θ0)
To(||θ−θ0||). (4.6)

Because ∂Eθ0
{Sn(θ0)}/∂θT < 0, we have for sufficiently small ||θ − θ0||, the above

formula (4.6) is less than 0. Let ε > 0 be so small such that (4.6) is less than 0 on

B(θ0, ε) = {θ : ||θ − θ0|| ≤ ε}. Then

sup
θ∈∂B(θ0,ε)

[(θ − θ0)
TEθ0

{Sn(θ)}] < 0,

where ∂B(θ0, ε) = {θ : ||θ − θ0|| = ε}.

Based on the uniformly convergence of Sn(θ) to Eθ0
{Sn(θ)} in a neighborhood of θ0,

we have with probability going to 1,

sup
θ∈∂B(θ0,ε)

[(θ − θ0)
TSn(θ)] < 0,

Let An = {{(x1, y1), . . . , (xn, yn)} : Rn ∩ B(θ0, ε) ̸= ∅}. Then on Ac
n, Sn(θ) = 0 has

no solution on B(θ0, ε). Define

f(ξ) =
Sn(θ0 + εξ)

||Sn(θ0 + εξ)||
, ||ξ|| ≤ 1.

Then f(·) is a continuous function from the closed unit ball to itself. Based on the Brouwer
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fixed point theorem, we know there exists ξ∗ such that ||ξ∗|| ≤ 1 and

f(ξ∗) = ξ∗ =
Sn(θ0 + εξ∗)

||Sn(θ0 + εξ∗)||
.

Hence f(ξ∗)T ξ∗ = ξ∗T ξ∗. Let θ∗ = θ0 + εξ∗. Then θ∗ ∈ B(θ0, ε) and

(θ∗ − θ0)
TSn(θ

∗) = εξ∗Sn(θ0 + εξ∗) = ε
Sn(θ0 + εξ∗)T

||Sn(θ0 + εξ∗)||
Sn(θ0 + εξ∗)

= ε||Sn(θ0 + εξ∗)|| > 0.

So, on Ac
n, (θ

∗ − θ0)
TSn(θ

∗) > 0 and

Cn , {((x1, y1), . . . , (xn, yn)) : (θ
∗ − θ0)

TSn(θ
∗) < 0} ⊂ An.

Note that P (Cn) → 1. Therefore, P (An) → 1 and, with probability going to 1, Sn(θ) = 0

has a solution in B(θ0, ϵ) and the defined θ̂n must also be in B(θ0, ϵ) satisfying S(θ̂n) = 0.

Therefore, ||θ̂n − θ0|| < ε, and P (||θ̂n − θ0|| < ε) → 1.

Proof of Theorem 2.2: Based on the Taylor expansion and condition A6, we have

0 = Sn(θ̂) = Sn(θ0) +

{
∂Sn(θ0)

∂θT
+ op(1)

}
(θ̂ − θ0),

Note that

∂Sn(θ0)

∂θ
=

1

n

n∑
i=1

∂Ψ(X,θ0)

∂θ
= Eθ0

{
∂Ψ(Z,θ)

∂θ

}
+ op(1) = A+ op(1).

Therefore, (θ̂−θ0) = {−A+ op(1)}−1 Sn(θ0). Based on the central limit theorem, we have
√
nSn(θ0)

d→ N(0, B), where B = Eθ{Ψ(Z,θ)Ψ(Z,θ)T}. Then by Slutsky’s theorem, we

have
√
n(θ̂ − θ0) = N(0, A−1BA−1).
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Table 1: Bias (Std) of Point Estimates for n = 100 in Example 1.

Case TRUE MLE Robust-Bisquare Robust-Huber TLE

I β10 : 0 0.004(0.309) -0.018(0.382) 0.015(0.357) -0.005(0.657)

β20 : 0 -0.005(0.158) -0.006(0.220) -0.005(0.180) -0.044(0.431)

β11 : 1 -0.026(0.328) -0.120(0.492) -0.080(0.449) -0.814(0.831)

N(0,1) β21 : −1 -0.002(0.143) -0.020(0.207) 0.001(0.149) 0.001(0.238)

β12 : 1 -0.013(0.318) -0.119(0.499) -0.044(0.415) -0.839(0.867)

β22 : −1 -0.016(0.138) -0.008(0.187) -0.012(0.156) -0.014(0.205)

π1 : 0.25 0.014(0.071) 0.040(0.129) 0.020(0.074) 0.120(0.107)

II β10 : 0 0.317(3.144) -0.001(0.658) -0.004(0.792) -0.012(0.775)

β20 : 0 0.123(2.304) 0.001(0.286) 0.001(0.268) -0.004(0.319)

β11 : 1 -0.231(2.519) -0.181(0.781) -0.137(0.831) -0.432(0.761)

t3 β21 : −1 -0.417(2.173) -0.062(0.243) -0.052(0.228) -0.024(0.236)

β12 : 1 0.169(2.764) -0.179(0.765) -0.048(0.814) -0.417(0.744)

β22 : −1 -0.343(2.048) -0.064(0.275) -0.066(0.261) -0.038(0.270)

π1 : 0.25 0.091(0.298) 0.068(0.129) 0.051(0.104) 0.080(0.093)

III β10 : 0 109.2(1597) 0.117(1.221) -0.122(7.327) -0.037(4.070)

β20 : 0 33.79(412.1) -0.018(0.837) 0.927(8.547) -0.257(2.674)

β11 : 1 131.6(1195) 0.264(1.057) 0.927(5.473) 0.101(3.967)

t1 β21 : −1 -40.06(233.7) -0.175(0.901) -1.082(4.853) -0.609(3.356)

β12 : 1 62.25(449.6) 0.180(1.190) 1.751(6.132) 0.018(3.153)

β22 : −1 -52.49(253.7) -0.017(0.628) -1.341(6.329) -0.393(2.886)

π1 : 0.25 0.238(0.469) 0.133(0.184) 0.124(0.298) 0.120(0.267)

IV β10 : 0 -0.118(2.307) 0.038(0.565) 0.019(0.514) 0.010(0.683)

β20 : 0 -0.246(2.218) -0.052(0.273) -0.045(0.885) -0.007(0.309)

0.95N(0, 1) β11 : 1 0.044(2.044) -0.186(0.669) -0.074(0.613) -0.564(0.763)

+0.05N(0, 52) β21 : −1 -0.231(1.668) 0.002(0.187) 0.018(0.349) 0.028(0.215)

β12 : 1 -0.095(2.240) -0.102(0.623) 0.016(0.615) -0.458(0.788)

β22 : −1 -0.046(1.379) -0.040(0.185) -0.073(0.473) -0.007(0.219)

π1 : 0.25 0.064(0.283) 0.055(0.118) 0.037(0.110) 0.071(0.094)

V β10 : 0 0.175(2.088) -0.006(0.870) 0.163(1.569) 0.054(0.722)

β20 : 0 0.011(0.165) 0.009(0.197) 0.010(0.142) 0.006(0.283)

5% high leverage β11 : 1 1.501(1.541) 0.185(0.994) 1.608(0.971) 0.240(1.027)

outliers β21 : −1 0.193(0.192) 0.008(0.151) 0.107(0.156) -0.009(0.164)

β12 : 1 1.487(1.543) 0.189(0.865) 1.380(0.975) -0.172(0.937)

β22 : −1 -0.216(0.191) -0.004(0.177) 0.119(0.163) -0.015(0.176)

π1 : 0.25 -0.095(0.034) 0.003(0.102) -0.073(0.037) 0.041(0.096)
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Table 2: Bias (Std) of Point Estimates for n = 400 in Example 1.

Case TRUE MLE Robust-Bisquare Robust-Huber TLE

I β10 : 0 0.013(0.135) 0.013(0.136) 0.012(0.134) 0.020(0.396)

β20 : 0 -0.002(0.062) -0.001(0.065) -0.001(0.065) -0.005(0.248)

β11 : 1 -0.010(0.131) -0.009(0.139) -0.008(0.141) -0.437(0.615)

N(0, 1) β21 : −1 0.005(0.063) 0.003(0.061) 0.003(0.061) 0.020(0.075)

β12 : 1 0.021(0.119) 0.025(0.127) 0.022(0.128) 0.435(0.626)

β22 : −1 -0.002(0.068) -0.003(0.070) -0.002(0.070) 0.017(0.086)

π1 : 0.25 0.007(0.033) 0.009(0.033) 0.009(0.033) 0.035(0.083)

II β10 : 0 -0.053(3.055) 0.002(0.206) 0.009(0.214) -0.031(0.230)

β20 : 0 0.704(3.844) -0.004(0.085) -0.004(0.085) -0.008(0.088)

β11 : 1 0.279(2.425) 0.005(0.175) 0.038(0.182) -0.141(0.257)

t3 β21 : −1 -0.884(3.921) -0.028(0.080) -0.048(0.081) -0.004(0.086)

β12 : 1 -0.363(1.774) 0.026(0.201) 0.045(0.205) -0.121(0.216)

β22 : −1 -0.296(2.487) -0.014(0.080) -0.027(0.083) 0.007(0.079)

π1 : 0.25 0.058(0.285) 0.021(0.036) 0.020(0.036) 0.018(0.041)

III β10 : 0 -100.5(981.6) -0.097(0.590) 0.655(5.966) 0.066(1.496)

β20 : 0 4.336(702.2) 0.021(0.156) -0.282(4.237) 0.168(1.852)

0.95N(0, 1) β11 : 1 88.90(342.2) -0.108(0.632) 1.197(4.321) -0.100(1.044)

+0.05N(0, 52) β21 : −1 -111.2(425.4) -0.105(0.304) -0.074(1.860) -0.107(1.025)

β12 : 1 163.1(888.4) -0.145(0.578) 0.557(2.669) -0.130(1.087)

β22 : −1 -71.85(564.8) -0.043(0.288) -0.372(2.191) -0.044(0.923)

π1 : 0.25 0.210(0.492) 0.096(0.111) 0.037(0.195) 0.059(0.219)

IV β10 : 0 0.237(2.103) -0.006(0.162) -0.004(0.182) -0.001(0.330)

β20 : 0 -0.348(2.096) -0.006(0.069) -0.007(0.071) 0.009(0.131)

0.95N(0, 1) β11 : 1 0.064(1.703) -0.002(0.166) 0.028(0.161) -0.213(0.371)

+0.05N(0, 52) β21 : −1 -0.004(0.503) -0.002(0.070) -0.011(0.073) 0.012(0.079)

β12 : 1 -0.007(1.599) 0.008(0.151) 0.044(0.162) -0.239(0.402)

β22 : −1 -0.005(0.893) 0.001(0.065) -0.011(0.067) 0.015(0.077)

π1 : 0.25 -0.001(0.212) 0.013(0.033) 0.012(0.033) 0.013(0.049)

V β10 : 0 0.199(1.274) 0.084(0.401) 0.293(1.213) 0.007(0.230)

β20 : 0 0.006(0.095) -0.001(0.071) 0.007(0.079) -0.001(0.082)

β11 : 1 1.398(0.085) 0.165(0.488) 1.543(0.661) 0.143(0.212)

5% high leverage β21 : −1 0.242(0.101) 0.006(0.071) 0.113(0.072) -0.009(0.074)

outliers β12 : 1 1.587(0.858) 0.183(0.594) 1.438(0.662) -0.116(0.270)

β22 : −1 0.254(0.098) 0.012(0.067) 0.014(0.065) 0.001(0.069)

π1 : 0.25 -0.100(0.020) -0.016(0.038) -0.074(0.021) -0.002(0.036)
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Table 3: The average number of found solutions for Robust-Bisquare and Robust-Huber
based on 22 initial values for Example 1.

Case n Robust-Bisquare Robust-Huber

I: N(0,1) 100 1.880 1.620

400 1.330 1.040

II: t3 100 2.465 2.500

400 1.610 1.600

III: t1 100 4.590 4.905

400 3.920 4.930

IV: 0.95N(0, 1) + 0.05N(0, 52) 100 2.140 2.035

400 1.270 1.190

V: 5% high leverage outliers 100 4.440 3.360

400 3.800 2.770
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Table 4: Bias (Std) of Point Estimates for n = 100 in Example 2.
Case TRUE MLE Robust-Bisquare Robust-Huber TLE
I β10 : 1 -0.108(0.406) -0.068(0.443) -0.073(0.463) -0.037(0.465)

β20 : 2 -0.029(0.559) 0.105(0.567) 0.069(0.569) 0.191(0.604)
β30 : 3 0.021(0.279) 0.004(0.285) 0.025(0.287) 0.031(0.350)

N(0,1) β11 : 1 0.022(0.398) 0.068(0.410) 0.078(0.394) 0.346(0.494)
β21 : 2 0.150(0.785) 0.215(0.756) 0.288(0.844) 0.243(0.919)
β31 : 5 0.085(0.226) 0.032(0.224) 0.026(0.235) -0.055(0.303)
π1 : 0.3 -0.003(0.110) 0.007(0.118) 0.008(0.118) 0.026(0.085)
π2 : 0.3 0.024(0.109) 0.011(0.105) 0.011(0.108) 0.021(0.074)

II β10 : 1 -1.031(2.206) -0.012(0.577) -0.157(0.808) -0.068(0.564)
β20 : 2 1.032(2.587) 0.141(0.779) 0.178(0.981) 0.152(0.741)
β30 : 3 0.546(4.015) 0.052(0.379) 0.071(0.426) 0.105(0.452)

t3 β11 : 1 -0.724(4.654) -0.005(0.580) -0.091(0.730) 0.201(0.575)
β21 : 2 0.361(1.950) 0.424(1.020) 0.258(1.041) 0.429(1.049)
β31 : 5 1.310(3.588) 0.044(0.320) 0.085(0.360) -0.113(0.478)
π1 : 0.3 0.026(0.234) 0.041(0.131) 0.016(0.129) 0.031(0.093)
π2 : 0.3 0.067(0.193) -0.017(0.124) 0.009(0.123) 0.012(0.088)

III β10 : 1 -18.38(159.7) -0.014(1.472) -2.380(11.67) -0.818(2.663)
β20 : 2 857.4(9512) 0.472(1.629) 1.926(5.704) 0.717(2.166)
β30 : 3 13.77(305.1) 0.097(1.478) 1.696(8.679) 0.628(2.326)

t1 β11 : 1 -40.96(173.9) -0.011(1.821) 1.561(8.171) -0.445(2.842)
β21 : 2 -739.0(8931) 0.361(1.394) -0.365(4.356) 0.359(1.823)
β31 : 5 84.69(359.4) 0.205(1.228) 2.121(6.471) 0.393(2.091)
π1 : 0.3 -0.013(0.323) 0.111(0.174) 0.037(0.231) 0.028(0.193)
π2 : 0.3 0.185(0.357) -0.079(0.166) 0.060(0.196) 0.061(0.177)

IV β10 : 1 -0.445(5.098) -0.032(0.516) -0.258(1.153) -0.087(0.510)
β20 : 2 0.845(2.284) 0.109(0.692) 0.091(0.843) 0.161(0.558)
β30 : 3 0.330(3.579) 0.019(0.278) 0.078(0.492) 0.034(0.357)

0.95N(0, 1) β11 : 1 2.226(24.73) 0.066(0.455) 0.001(0.668) 0.288(0.469)
+0.05N(0, 52) β21 : 2 0.244(2.162) 0.283(0.776) 0.211(0.922) 0.256(0.956)

β31 : 5 0.944(2.645) 0.016(0.251) 0.066(0.436) -0.061(0.373)
π1 : 0.3 0.017(0.237) 0.041(0.128) 0.014(0.131) 0.031(0.084)
π2 : 0.3 0.079(0.197) -0.023(0.132) 0.011(0.127) 0.016(0.081)

V β10 : 1 0.465(0.209) 0.114(0.454) 0.459(0.235) -0.064(0.463)
β20 : 2 0.936(0.233) 0.307(0.600) 0.938(0.256) 0.244(0.723)
β30 : 3 -2.624(3.700) -0.224(1.038) -1.452(2.409) -0.098(0.844)

5% high leverage β11 : 1 0.463(0.222) 0.188(0.386) 0.444(0.263) 0.233(0.467)
outliers β21 : 2 2.922(0.238) 0.569(1.334) 2.918(0.351) 0.275(0.909)

β31 : 5 4.981(0.185) 0.381(1.331) 4.927(0.121) 0.087(0.779)
π1 : 0.3 0.244(0.065) 0.058(0.131) 0.241(0.071) 0.046(0.099)
π2 : 0.3 0.067(0.063) -0.005(0.119) 0.068(0.067) 0.007(0.092)
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Table 5: Bias (Std) of Point Estimates for n = 400 in Example 2.
Case TRUE MLE Robust-Bisquare Robust-Huber TLE
I β10 : 1 -0.053(0.204) 0.064(0.217) 0.064(0.214) 0.108(0.254)

β20 : 2 0.045(0.196) 0.040(0.208) 0.067(0.211) 0.240(0.242)
β30 : 3 0.006(0.098) 0.007(0.103) 0.007(0.103) 0.027(0.207)

N(0,1) β11 : 1 0.010(0.187) 0.007(0.187) 0.014(0.187) 0.304(0.268)
β21 : 2 0.004(0.176) 0.011(0.181) 0.032(0.184) -0.138(0.483)
β31 : 5 0.019(0.085) 0.015(0.091) 0.015(0.090) -0.053(0.150)
π1 : 0.3 -0.003(0.059) -0.002(0.059) -0.004(0.059) 0.020(0.050)
π2 : 0.3 0.004(0.063) 0.003(0.063) 0.004(0.062) 0.012(0.050)

II β10 : 1 -0.949(4.354) -0.129(0.452) -0.243(0.429) -0.214(0.324)
β20 : 2 1.604(4.427) 0.131(0.453) 0.165(0.573) 0.218(0.317)
β30 : 3 0.506(7.373) 0.018(0.122) 0.030(0.137) 0.009(0.164)

t3 β11 : 1 -0.698(4.114) 0.082(0.298) 0.009(0.645) 0.242(0.280)
β21 : 2 -0.058(3.883) 0.064(0.356) 0.028(0.545) -0.058(0.378)
β31 : 5 2.161(6.046) 0.027(0.123) 0.056(0.122) -0.034(0.134)
π1 : 0.3 0.024(0.275) 0.025(0.094) 0.008(0.094) 0.014(0.057)
π2 : 0.3 0.095(0.215) -0.022(0.088) -0.001(0.090) 0.009(0.056)

III β10 : 1 105.6(1066) 0.078(1.117) -7.375(11.74) 1.804(2.506)
β20 : 2 185.3(1106) 0.135(0.818) 1.749(7.543) 0.378(1.658)
β30 : 3 460.8(2960) -0.010(1.013) 2.829(8.789) 0.436(1.717)

t1 β11 : 1 -375.4(1443) 0.307(0.743) -0.611(0.654) 0.545(1.529)
β21 : 2 -130.0(796.0) 0.302(1.081) -0.772(6.175) 0.381(1.617)
β31 : 5 705.9(2646) 0.057(0.471) 0.524(3.727) 0.091(0.888)
π1 : 0.3 -0.026(0.295) 0.154(0.130) -0.066(0.243) -0.011(0.230)
π2 : 0.3 0.181(0.301) -0.148(0.133) 0.138(0.160) 0.084(0.179)

IV β10 : 1 -2.045(4.149) -0.020(0.255) -0.204(0.955) -0.084(0.292)
β20 : 2 0.787(2.473) 0.063(0.245) 0.143(0.511) 0.220(0.292)
β30 : 3 0.739(3.728) 0.010(0.121) 0.019(0.123) -0.001(0.151)

0.95N(0, 1) β11 : 1 -0.339(3.860) 0.032(0.205) 0.035(0.328) 0.293(0.263)
+0.05N(0, 52) β21 : 2 0.273(2.249) 0.053(0.242) -0.063(0.434) -0.050(0.389)

β31 : 5 1.055(3.095) -0.007(0.098) 0.013(0.096) -0.035(0.132)
π1 : 0.3 -0.034(0.279) 0.019(0.077) 0.001(0.083) 0.023(0.055)
π2 : 0.3 0.148(0.186) -0.020(0.082) 0.001(0.087) 0.001(0.062)

V β10 : 1 0.459(0.093) 0.092(0.212) 0.459(0.107) -0.102(0.256)
β20 : 2 0.966(0.104) 0.069(0.232) 0.968(0.106) 0.171(0.299)
β30 : 3 -2.945(2.395) 0.092(0.113) -1.724(1.856) -0.008(0.124)

5% high leverage β11 : 1 0.482(0.108) 0.042(0.244) 0.468(0.126) 0.204(0.261)
outliers β21 : 2 2.916(0.099) 0.126(0.829) 2.936(0.097) -0.104(0.237)

β31 : 5 4.996(0.119) 0.021(0.477) 4.936(0.092) -0.040(0.118)
π1 : 0.3 0.235(0.031) 0.021(0.081) 0.235(0.030) 0.011(0.056)
π2 : 0.3 0.083(0.031) 0.007(0.083) 0.083(0.030) -0.006(0.059)
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Table 6: The average number of the found solutions for Robust-Bisquare and Robust-
Huber based on 22 initial values for Example 2.

Case n Robust-Bisquare Robust-Huber

I: N(0,1) 100 3.370 3.400

400 2.380 2.290

II: t3 100 3.690 4.055

400 2.920 3.460

III: t1 100 5.635 5.465

400 5.620 5.930

IV: 0.95N(0, 1) + 0.05N(0, 52) 100 3.540 3.665

400 2.690 3.180

V: 5% high leverage outliers 100 5.600 3.740

400 5.200 3.400
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Figure 1: The scatter plot of the tone perception data and the fitted two lines by our
proposed method. The predictor is actual tone ratio and the response is the perceived
tone ratio by a trained musician.
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Figure 2: Fitted mixture regression lines with added ten identical outliers (0, 4) (denoted
by stars at the upper left corner). The solid lines represent the fit by Robust-Bisquare
and the dashed lines represent the fit by traditional MLE.
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