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Abstract 

The three most basic performance measures used in cognitive 
research are choice, response time, and confidence. We 
present a diffusion model that accounts for all three using a 
common underlying process. The model uses a standard drift 
diffusion process to account for choice and decision time. To 
make a confidence judgment, we assume that evidence 
continues to accumulate after the choice. Judges then interrupt 
the process to categorize the accumulated evidence into a 
confidence rating. The fully specified model is shown to 
account qualitatively for the most important interrelationships 
between all three response variables found in past research.  

Keywords: diffusion; random walk; confidence; cognitive 
model; judgment. 

Introduction 
The three most important measures of cognitive 
performance are choice, decision time, and confidence. 
Signal detection theory (Green & Swets, 1966) was 
originally designed to explain choices and is able to also 
account for confidence ratings. A great limitation of this 
model, however, is its inability to explain decision time. 
Random walk/diffusion theory was introduced for this 
purpose (Link & Heath, 1975; Ratcliff, 1978). This theory 
provides an elegant explanation for both choices and 
response time. A great limitation of random walk/diffusion 
theory, up till now, is its inability to account for confidence 
ratings. To date only the Poisson race model has 
successfully accounted for all three variables (Van Zandt, 
2000; Vickers, 1979; Vickers & Packer, 1982; Vickers, 
Smith, Burt, & Brown, 1985b).1 The purpose of this paper is 
to develop a generalization of the random walk/diffusion 
theory to offer an alternative account of choice, decision 
time, and confidence.  

Our challenge is to explain with our diffusion model of 
confidence the massive amount of data that has accumulated 
about the complex relationships among these three 
measures. Here are a few. First, there is a speed/accuracy 
trade-off where faster choices produce higher error rates 
(Luce, 1986). Second, accuracy generally increases with 
confidence (Vickers, 1979), but judges are often 
overconfident (McClelland & Bolger, 1994). Finally, there 
is a twofold relationship between confidence and decision 
time. On the one hand, during optional stopping tasks 
                                                             

1 Vickers and colleagues call this the accumulator model. 

(where the respondent determines when to stop and decide), 
there is an inverse relationship between the time taken and 
the degree of confidence expressed in the choice 
(e.g.,Baranski & Petrusic, 1998; Henmon, 1911). On the 
other hand, during externally controlled stopping tasks 
(where the experimenter determines when to stop and 
decide) the longer people are given to make a decision the 
more confident they become (e.g., Irwin, Smith, & 
Mayfield, 1956). 

The purpose of this paper is to present a diffusion model 
that is capable of explaining all three response variables and 
their interrelationships using a common underlying 
processing mechanism. Next we give an intuitive 
description of how the model works using a prototypical 
sensory identification task. Then we formalize the model 
and illustrate how it simultaneously predicts the relationship 
between decision time and confidence for both the optional 
stopping and externally controlled stopping tasks. 
Accounting for both phenomena with a single process is an 
important hurdle for any model of confidence as most 
models of confidence can typically only account for one of 
these effects, but not both (Vickers, 1979). Finally, we will 
conclude by outlining the theoretical implications of this 
model. We will also offer some preliminary comparisons 
between the diffusion model of confidence and the Poisson 
race model.  

A diffusion model of confidence judgments 
To begin, consider a standard identification task. On each 
trial an observer listens through headphones to either white 
noise or white noise plus a faint tone (signal). The observer 
has no way of knowing which event has occurred and must 
decide whether the tone is present (Yes) or if there is only 
white noise (No). After deciding, the observer rates her 
confidence in her choice by selecting one of four categories: 
‘1’ for doubtful, ‘2’ for little confidence, ‘3’ for fairly 
confident, and ‘4’ for perfectly confident. With a faint 
enough signal mistakes are expected and confidence 
responses should be distributed over the scale. 

The diffusion model makes four fundamental assumptions 
to model observers’ Yes/No choices: (a) Evidence favoring 
each alternative is integrated over time during the trial; (b) 
The sampled evidence at each time step is subject to random 
fluctuations; (c) Evidence in support of one alternative 
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Figure 1. One realization of the diffusion model of confidence for a signal trial where an accurate choice is made. After a 
fixed time interval passes (τ) more evidence is collected and confidence rating of ‘2’ is selected. The upper distribution is the 
predicted distribution of the spread of evidence at Time 2. The predicted confidence distribution for errors is also shown had 
the drift process incorrectly reached -θ. 
 
(signal) is evidence against the other (noise); and (d) When 
a threshold level of evidence favoring one alternative over 
the other has accumulated, the observer stops collecting 
evidence and makes a decision accordingly. A standard 
diffusion model also allows evidence to be continuous in 
nature and its accrual is continuous over time. See the left 
side of Figure 1 for the typical diffusion process during one 
trial of the identification task. Cognitive models assuming 
these four assumptions have been shown to account for 
response time and accuracy data in several different areas 
(e.g., Busemeyer & Townsend, 1993; Ratcliff, 1978; 
Ratcliff & Smith, 2004; Roe, Busemeyer, & Townsend, 
2001; Usher & McClelland, 2004). 

Despite the ability of the diffusion model to so elegantly 
explain choice and decision time, the model has typically 
been dismissed as a plausible model of confidence 
judgments (e.g., Vickers, 1979). Here is why. If the 
accumulated evidence in the diffusion model is interpreted 
as the likelihood ratio of the observed data given the two 
response alternatives then the choice process can be 
understood as an optimal Bayesian inference model 
(Edwards, 1965). With this interpretation the choice 
thresholds are a fixed level of posterior odds that are just 
small or just large enough for observers to act on. Thus, the 
model predicts that across all trials – having reached the 
same level of posterior belief in their choices – judges must 
have an equal level of confidence in all of their choices. 
This is clearly false.  

To surmount this obstacle we use the actual task the 
observers are confronted with to relax one assumption of the 
diffusion model. Recall that during the identification task, 
judges are first asked to make a choice and then make a 
confidence judgment. Across 100 years of psychological 
experiments this procedure is the rule rather than the 
exception (Baranski & Petrusic, 1998). What are the 
consequences of this procedure on diffusion models? There 

are none if observers stop accumulating evidence once a 
threshold is reached.  

Instead, as Figure 1 shows, we remove this feature and 
instead assume judges, after making a choice, continue to 
accumulate evidence to estimate their confidence. In our 
model, judges then interrupt the diffusion process to 
categorize the accumulated evidence into a confidence 
response category.  

 Next we specify in more detail the two stages of our 
diffusion model beginning with the decision stage.  

Decision stage 
The decision stage takes the standard form as other 

diffusion models. At time 0 the state of evidence, L(0), is at 
its starting point, L(0) = z, where L(t) denotes the state of 
evidence at time t. The parameter z accounts for any 
response bias observers may have toward one response or 
the other. If z = 0 observers are unbiased, if z < 0 then 
observers are biased to respond No, and if z > 0 then they 
are biased to respond Yes. As Figure 1 shows, at the onset 
of the trial observers begin accumulating evidence to make a 
decision. If the accumulated evidence reaches the upper 
threshold at θ, then judges choose the Yes response. If it 
reaches -θ then they would choose the No response. The 
time it takes for the evidence to reach either threshold is the 
predicted decision time, t1.  

To formalize the decision stage we will temporarily 
assume that the accumulation process occurs at discrete and 
arbitrarily small fixed blocks of time, h. With each passing 
block of time each sampled piece of evidence, x(t + h), 
updates the state of evidence so that at time t + h the state of 
the evidence would be, 
   L(t+h) = L(t) + x(t + h).        (1) 
The time that has passed after n samples is given by t = nh.  

As Figure 1 illustrates at each time step the sampled 
evidence is not constant, but subject to variability. We 
assume the sampled evidence at each time step is normally 
distributed with a mean of δh and variance of σ2h when the 
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signal is present and with a mean of -δh and variance of σ2h 
when noise is present. Holding everything else constant the 
larger the magnitude of δ the faster people will reach a 
response and the fewer errors people will make.  

This model is now equipped to account for speed-
accuracy tradeoffs. Namely increasing the magnitude of |θ | 
will increase the amount evidence needed to reach a choice. 
This reduces the impact random fluctuations in evidence 
will have on choice and as a result increase choice accuracy. 
However, a larger |θ | means more time will be needed 
before sufficient evidence is collected. In comparison, 
decreasing |θ | leads to faster responses, but also more 
errors.  

A standard Wiener diffusion model – where evidence 
accrues continuously over time – is derived when the time 
step h approaches zero so that the above discrete process 
converges to a continuous time process (Cox & Miller, 
1965). Ratcliff (1978) provides the expressions for the 
predicted choice probabilities of the four different types of 
responses (hits, false alarms, correct rejections, and misses) 
and the probability density functions for decision times (see 
also Cox & Miller, 1965).  

Confidence stage 
After making a decision we assume judges continue 
accumulating evidence to make a confidence rating. Our 
model captures this idea by allowing the diffusion process, 
after reaching either choice threshold, to continue for a fixed 
period of time, τ. The parameter τ is empirically observable. 
Baranski and Petrusic (1998) report over a number of 
perceptual experiments that with accuracy-stressed 
conditions and after an initial block of trials the amount of 
time between making a decision and selecting a confidence 
level (τ) is between 500 to 650 ms and constant across 
confidence ratings. For speeded conditions τ was slightly 
higher (~700 to 900 ms) and tended to vary across 
confidence ratings.2 In a memory study where accuracy was 
emphasized Pleskac, Dougherty, Rivedenera, and Wallsten 
(2007) found that τ was between 700 to 750 ms and also 
constant across confidence levels. As a result we fix the 
interval between the decision time (t1) and confidence time 
(t2) at τ = 700 milliseconds to identify the basic properties of 
the model. Future work will investigate if τ is sensitive to 
item difficulty or the speed/accuracy tradeoff.  

At the time of the confidence judgment, the accumulated 
evidence reflects the newly collected evidence plus the 
evidence collected before making a decision, 
  L(t2) = L(t1) + x(t1 + τ).       (2)  

                                                             
2 The systematic change in τ across confidence ratings may be 

indicative of τ being a function of other parameters of the diffusion 
process such as the drift rate or its sensitivity to other experimental 
factors. However, since all of Baranski and Petrusic’s (1998) used 
the same verbal terms for confidence it is difficult to know if the 
change in τ is indicative of post-decision computation or the 
respondent learning how to scale different levels of confidence.  

As Figure 1 depicts, analogous to signal detection theory, 
judges scale the accumulated evidence L(t2) onto the 
possible response categories. In the case of our hypothetical 
identification task there are four response categories 
conditioned on the Yes/No choice, Rj|Choice where j = 0, 1, 
2, 3 so each judge needs three response criteria for each 
option, ck, yes where k = 1, 2, 3, to select among the 
responses. The response criteria, just like the choice 
thresholds, are set relative to values of evidence. The 
location of the criteria depend, as in signal detection theory, 
on the biases of judges and may also be sensitive to the 
same experimental manipulations that change the location of 
the drift starting point, z. We also assume symmetry in the 
criteria for a yes or no response (e.g, c1, no = -c3, yes). If 
judges choose the Yes option and the cumulated evidence is 
less then c1, yes (L(t2) < c1, yes) then judges select confidence 
level 1, if it rests between the first and second criteria, c1, yes 
<L(t2) < c2, yes, then they chooses confidence level 2, and so 
on. 

The distributions over the confidence ratings are a 
function of the distribution of evidence in the diffusion 
process. However, the properties of the distributions reflect 
the fact that we know what state the evidence was in at the 
time of decision, either θ or -θ. So our uncertainty about its 
location at t2 is only a function of τ. Consequently, during a 
signal trial for a given δ the distribution of evidence at time 
t2, f [x(t2)], is normally distributed with a mean of τδ +θ if  
Yes was chosen and τδ - θ  if No was chosen. The means 
for noise trials can be found by replacing the δ’s with -δ. 
The variance in all cases is σ2τ. The distribution over the 
different confidence ratings for hits trials is then 

Pr(Rj | Hit) = P(cj,Yes < L(t2) < cj+1,Yes|δ, σ2, τ)      (3) 
where c0, yes is equal to -∞ and cj+1, yes is equal to ∞. Similar 
expressions can be formulated for the other choices. The 
precise values can be found using the standard normal 
cumulative distribution function.  

We leave the model as specified and now turn to some 
basic properties of the model and how it accounts for the 
known relationships between confidence, choice accuracy, 
and decision time.  

Qualitative Predictions 
Notice that our diffusion model has the same strengths as 
signal detection theory in accounting for confidence ratings. 
Namely it can capture the basic relationship between 
confidence and accuracy where larger δ’s lead to greater 
discrimination and also, ceteris peribus, higher levels of 
confidence. Like signal detection theory it can also account 
for situations when the observer is overconfident. For 
example, Erev, Wallsetn, and Budescu (1994) provide a 
detailed account of how signal detection can account for 
overconfidence assuming improper criteria placement and 
random error (see also Ferrell & McGoey, 1980).  

The model goes beyond signal detection theory though in 
that it predicts that confidence is sensitive to the speed-
accuracy tradeoff. Larger magnitudes of |θ | will not only 
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Figure 2. The predicted direct relationship between decision 
time and confidence. 
 
lead to slower decision times and more accurate choices, but 
also higher levels of confidence. This is because the mean of 
the confidence distributions are a function of the choice 
thresholds, θ and -θ. The opposite is true for speeded trials 
where the model predicts lower levels of confidence. 
Vickers and Packer (1982) report experimental results that 
support this prediction.  

Next we show how the diffusion model can account for 
the twofold relationship between confidence and decision 
time. Though historically the inverse relationship between 
the two variables was shown to exist first, for simplicity’s 
sake, we begin with the later finding that there is a direct 
relationship between confidence and decision time. 

Confidence and decision time directly related 
The result that in some cases there is a direct relationship 
between confidence and decision time has been investigated 
primarily with what Irwin, Smith, and Mayfield (1956) call 
the expanded judgment task. The task essentially 
externalizes the sequential sampling process asking people 
to physically sample observations from a distribution and 
then make a choice. For example Vickers et al. (1985) 
allowed observers to sample horizontal lines on a computer 
monitor. Their location on the horizontal axis of the screen 
was determined by a normal distribution with either a 
positive or a negative mean. The participant had to 
determine the sign of the mean based on the location of the 
sampled lines. Generalizing results from expanded judgment 
tasks to situations when sampling is internal, like our 
hypothetical identification task, is justified as results from 
both tasks mimic each other (Vickers et al., 1985a; Vickers 
et al., 1985b).  

The direct relationship between decision time and 
confidence was uncovered when an external stopping rule 
was used during the expanded judgment task. With this 
stopping rule, the experimenter interrupts observers at 
different sample sizes and asks them for a confidence 
judgment. For example, whether the mean is above or below 
0. In this case, confidence increases with larger samples 
(Irwin et al., 1956; Vickers et al., 1985b). As Figure 2 

shows the diffusion model naturally predicts this 
relationship. It shows the average path of the drift process 
with δ > 0 and the predicted distributions over the 
confidence scale at different points in time. Because the 
expected state of evidence at any point in time is δt, 
observers’ confidence will naturally increase holding the 
response criteria constant. 

The direct relationship between confidence and decision 
time, has posed a problem for early models of confidence. 
That is because they assumed that confidence was an 
inverse function of response time (Audley, 1960; Ratcliff, 
1978). But, can our model predict the inverse relationship 
between confidence and decision time? As we show next, 
for a complete account we need to incorporate trial-by-trial 
variability in δ. 

Confidence and decision time inversely related 
A common result is that confidence and decision time are 
inversely related (e.g., Baranski & Petrusic, 1998; Henmon,  
1911). These studies employ a discrimination task with an 
optional stopping procedure where observers control their 
own sampling by choosing when they are ready to make a 
choice. The results in these tasks show that across stimuli 
the average decision time monotonically decreases as the 
confidence level increases. 

The model naturally accounts for the inverse relationship 
between confidence and decision time when the objective 
difference between stimuli varies from trial to trial. The 
diffusion model handles this by assigning more difficult 
stimuli lower levels of δ. For these stimuli, low δ’s result in 
slower predicted decision times, and lower confidence 
levels - the inverse relationship. 

The difficulty for the diffusion model comes in that 
Henmon (1911) and Baranski and Petrusic (1998) (see 
Experiment 1) showed that this inverse relationship holds 
even when the objective difference between stimuli is held 
constant in the same block of trials. The model in its present 
form does not predict this relationship. In fact it predicts 
that during an optional stopping task for a given δ any 
observed decision time will have an identical distribution 
over confidence. This is because the distribution over 
decision time g(t1 | δ, z, θ) is conditionally independent from 
the distribution of evidence at the confidence time point, fδ [ 
x(t2) |  δ, θ,τ, Choice]. In other words, the time in which the 
diffusion process reaches θ does not directly depend on the 
accumulated evidence at time t2, and visa versa. Instead the 
relationship, as we have previously shown, is mediated by 
the values of δ and θ.  

To account for this inverse relationship for a fixed level of 
difficulty we introduce a slight modification to the model. 
Due to factors like fluctuations in attention or motivation, 
we allow δ for a given stimulus to vary randomly between 
trials. The modification is not new. Ratcliff and colleagues 
(Ratcliff, 1978; Ratcliff & Smith, 2004) used the same 
modification to account for the often-observed phenomenon 
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Figure 3. Contour plots of the marginal density of decision 
time and evidence at the time of confidence for hits and 
false alarms. Parameters from Ratcliff (1978) were used.  
 
that decision times for errors are slower than times for 
correct choices (for another modeling strategy see Lee, 
Fuss, & Navarro, 2006).  

To model trial-by-trial variability in the drift rate we – 
like Ratcliff – will assume that δ is normally distributed 
with a mean v and variance η2. Now with trial-by-trial 
variability the model does predict the inverse relationship 
for the same reason as when objective difficulty varied 
between stimuli. To see the predicted inverse relationship, 
Figure 3 shows a contour plot of the marginal joint density 
function of t1 and x(t2) for both hits and false alarms. The 
distributions were found by calculating the joint distribution 
of δ, t1, and x(t2), and integrating over δ, 

! 

u x t2( ), t1[ ] = g t1"( ) f" " hit( ) fx t2( ) x t2( )"[ ]# d" .               (4) 

Notice that the distribution over δ reflects our knowledge of 
the type of choice at t1 (hit, miss, false alarm, or correct 
rejection),  

! 

f" " choice( ) =
Pr choice"( ) f" "( )

Pr choice"( ) f" "( )d"#
.                 (5) 

The parameters of the model were approximated from 
Ratcliff’s (1978) diffusion model parameters. 

The top panel plots the joint distribution for hits and the 
bottom for false alarms. Comparing the two density 
functions reveals, consistent with past work (e.g., Ratcliff & 

Smith, 2004), that decision times for errors will on average 
be slower than decision times for correct choices. This is 
because the tail for the errors extends beyond the tail for 
correct choices. The top panel of Figure 3 also shows the 
predicted inverse relationship for hits. Taking slices of the 
joint density function at different values of x(t2) along the y-
axis we see that the peak of the density function travels 
south, southeasterly across plot. That together with the 
increasing tail of the decision times as we move down x(t2) 
will draw the average decision time out for lower levels of 
evidence. Because confidence is directly scaled from the 
accumulated evidence this in turn implies an inverse 
relationship. The plot shows a hypothetical set of criteria 
and confidence scales for such a mapping. The bottom panel 
shows the same inverse relationship for incorrect choices.  

Conclusion 
Vickers (2001) commented that “despite its practical 
importance and pervasiveness, the variable of confidence 
seems to have played a Cinderella role in cognitive 
psychology - relied on for its usefulness, but overlooked as 
an interesting variable in its own right.” (p. 148). Our 
diffusion model helps confidence relinquish this role and 
reveals that a single stochastic cognitive process can give 
rise to the three most important response variables in 
cognitive psychology: choice, decision time, and 
confidence.  

The model uses a standard drift diffusion process to 
account for choice and decision time. To make a confidence 
rating, we assume that evidence continues to accumulate 
after a choice. Judges then interrupt the process to 
categorize the accumulated evidence into a confidence 
rating. The formally specified model qualitatively accounts 
for the known interrelationships between choice, decision 
time, and confidence. 

An advantage of this model is that it is a generalization of 
signal detection theory. Therefore, it is immediately 
applicable to the same basic and applied tasks that signal 
detection has been used for such as lie detection (see Ben-
Shakhar, Lieblich, & Bar-Hillel, 1982); jury decision 
making (Mowen & Darwyn, 1986); and HIV screening 
(Meyer & Pauker, 1987).  

The model can also be adapted to account for other 
confidence procedures. For example, often judges are asked 
to directly evaluate their confidence that the current 
stimulus is a signal without explicitly making a choice. An 
intriguing possibility that deserves investigation is that even 
in these situations respondents implicitly make a choice 
(signal or noise) then scale their confidence. Indeed, 
applications of the Poisson race model often make this 
assumption when modeling these types of confidence 
ratings (e.g., Van Zandt, 2000).  

The Poisson race model is a viable competitor for the 
diffusion model in that it also accounts for choice, response 
time, and confidence. Our diffusion model holds two 
advantages over the Poisson race model. First, the diffusion 
model accurately predicts skewed response time 
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distributions where the Poisson model tends to predict more 
symmetrical distributions (Ratcliff & Smith, 2004). A 
second advantage is that the diffusion model explicitly 
models the response mapping function, whereas the Poisson 
model typically contains no such component. Future tests of 
these two models can only improve our understanding of the 
cognitive underpinnings of choice, decision time, and 
confidence.  
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