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ABSTRACT	OF	THE	THESIS	

Association	between	PFOA/PFOS	Drinking	Water	Exposures	and	Asthma	ED	Visits	

by	

Thomas	Matthew	Overton	

Master	of	Science	in	Environmental	Health	Sciences	

University	of	California,	Irvine,	2022	

Professor	Veronica	Vieira,	Chair	

Perdluoro-n-octanoic	acid	(PFOA)	and	Perdluoro-1-octanesulfonate	(PFOS)	are	ubiquitous	

and	highly	stable	toxins	in	our	environment.		Animal	and	epidemiological	research	studies	

have	begun	to	shed	light	on	the	toxicological	prodile	and	health	effects	of	PFOA/S,	including	

their	impacts	on	respiratory	function.		Asthma	is	one	of	the	health	effects	that	has	been	

linked	to	PFOA/S	exposure.		In	this	study,	we	explored	the	association	between	PFOA/S	in	

drinking	water	and	asthma	emergency	department	(ED)	visits	per	10,000	in	Orange	(OC)	

and	LA	counties	(LAC),	California.		These	studies	were	conducted	at	the	population	level	

using	data	sets	containing	drinking	water	concentrations	of	PFOA/S	and	number	of	asthma	

ED	visits	within	the	ZIP	Codes	of	the	2	counties.		PFOA/S	concentrations	in	drinking	water	

for	LAC	and	OC	water	districts	from	2013-2015	was	obtained	from	the	Third	Unregulated	

Contaminant	Monitoring	Rule	dataset.		We	conducted	geographical	analysis	using	ArcGIS	by	

quantitatively	mapping	PFOA/S	drinking	water	levels	and	asthma	ED	visits	by	ZIP	Code.		

We	performed	statistical	analysis	using	linear	as	well	as	non-linear	regression	methods	to	

determine	if	PFOA/S	drinking	water	levels	were	associated	with	asthma	ED.		These	

statistical	analyses	controlled	for	various	potential	confounders	of	this	relationship	—	race,	

 vi



education,	household	income,	air	quality	(diesel,	PM2.5).		Mapping	and	statistical	analysis	

did	not	reveal	a	direct	relationship	between	PFOA/S	drinking	water	levels	and	rates	of	

asthma	ED	visits.		

 vii



Chapter	1:		Introduction	

Per-/Poly	-	dluoroalkyl	substances	(PFAS)	are	increasingly	recognized	contaminants	in	

drinking	water.		This	presents	a	public	health	problem	as	growing	evidence	has	linked	PFAS	

to	human	health	problems,	including	asthma.		While	the	research	literature	provides	

supporting	evidence	of	the	association	between	PFAS	and	asthma,	there	is	little	insight	into	

the	effects	of	PFAS	on	asthma	severity	and	exacerbations.			

Asthma	and	Asthma	Exacerbations	

Asthma	is	one	of	the	most	common	respiratory	illnesses	in	the	United	States	of	America.		

The	National	Health	Institute	Survey	estimates	that	25	million	Americans	have	asthma.		

This	estimate	includes	8%	of	adults	and	7%	of	children.	It	is	well-known	that	asthma	is	a	

chronic	disease	marked	by	acute	exacerbations.	These	acute	episodes,	some	of	which	can	

be	life-threatening,	disproportionately	affect	children	(Figure	1).		In	2019,	44.3%	of	

children	with	asthma	were	reported	to	have	had	asthma	attacks	(NHIS,	2019).			Common	

causes	of	asthma	exacerbation	include	reactions	to	allergens	(such	as	pollen,	pets,	mold,	

and	dust	mites),		upper	respiratory	infections,	and	tobacco	smoke,		amongst	other	factors.	
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Figure	1.	Asthma	emergency	department	visit	rate	(per	10,000	population)	by	age	group	
and	year:	United	States,	2010	-	2018.	Children	(orange	line),	adults	(blue	line),	and	overall	
population	(Black	line).		(NHIS,	2019)	

Contributing	Factors	to	Asthma	Exacerbations		

Sociodemographics		

In	the	United	States	and	worldwide,	socioeconomic	status	is	a	major	determinant	of	health,	

including	for	asthma.			In	California	from	2011–2013,	historically	redlined	census	tracts	had	

2.4	times	higher	rates	of	emergency	department	visits	per	year	due	to	asthma	compared	to	

tracts	at	the	lowest	risk	level	of	discrimination	(Nardone	et	al.,	2021).		Communities	with	

lower	socioeconomic	status,	including	disadvantaged	minorities,	often	have	lower	

continuity	of	care	with	primary	care	physicians	and	consequently	have	higher	rates	of	ED	

visits	for	chronic	conditions.		Along	these	lines,	increased	asthma-related	emergency	

department	(ED)	visits	are	associated	with	fewer	asthma-related	primary	care	visits	

leading	up	to	the	ED	visit	(Smith	et	al.,	2007).		In	2000,	the	odds	that	Connecticut	children	

with	3	or	more	asthma-related	primary	care	visits	and	a	dilled	inhaled	corticosteroid	(ICS)	

had	an	asthma	ED	visit	were	one-difth	(OR	=	0.20,	95%	CI	(0.06,	0.65))	those	of	children	

with	fewer	asthma-related	PCP	visits	or	no	dilled	ICS.		Furthermore,	this	study	showed	that	

fewer	than	17%	of	children	with	asthma-related	ED	visits	dilled	any	prescription	for	
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controller	medications	in	the	3	months	before	these	visits	(Smith	et	al.,	2007).		Increased	

asthma	ED	visits	are	not	only	the	result	of	not	receiving	proper	treatment	for	their	asthma	

but	also	not	receiving	education	from	their	doctor	about	their	medical	condition.		No	

education	about	asthma	and	uncontrolled	asthma	are	major	factors	leading	to	frequent	

asthma-related	ED	visits	(Hamdan	et	al.,	2012).			

The	burden	of	asthma	prevalence	in	the	United	States	falls	disproportionately	on	Black	and	

American	Indian/Alaska	Native	people.		These	groups	have	the	highest	current	asthma	

prevalence	rates	compared	to	other	races	and	ethnicities.		According	to	the	American	Lung	

Association,	the	prevalence	of	asthma	among	Blacks	and	American	Indian/Alaska	Native	

people	in	2018	was	10.9%	and	12.0%,	respectively.		This	is	in	comparison	to	much	lower	

rates	in	Whites	(7.7%),	Hispanics	(6.4%),	and	Asians	(4.0%).		In	addition	to	asthma	

prevalence,	minority	groups,	particularly	African-Americans,	also	face	disparities	in	asthma	

exacerbations	(Guillbert	et	al.,	2019).	Asthma	exacerbations	are	the	focus	of	this	study.	

Air	Quality		

The	respiratory	tracts	of	individuals	who	have	asthma	is	particularly	sensitive	to	air	

pollutants	and	irritants	that	may	be	inhaled.		Air	quality	is	a	measure	of	the	level	of	

pollutants	in	the	air.		These	pollutants	include	carbon	monoxide,	lead,	nitrogen	oxides,	

sulfur	dioxide,	ozone,	particulate	matter,	and	diesel	exhaust.		In	many	cases	these	air	

pollutants	are	emitted	as	a	result	of	combustion	from	vehicles,	stoves,	heaters,	power	

plants,	oil	redineries,	industrial	facilities,	and	factories.		The	two	confounding	air	quality	

variables	that	were	included	in	the	dinal	analysis	were		PM2.5	and	diesel	exhaust,	which	is	a	
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major	source	of	PM2.5.		Particulate	matter	2.5	(PM2.5)	or	dine	particulate	matter	refers	to	

tiny	particles	or	droplets	in	the	air	that	are	two	and	one	half	microns	or	less	in	aerodynamic	

diameter	allowing	them	to	enter	into	the	smaller	airways	of	the	lungs.		Signidicant	

associations	have	been	found	between	ED	visits	for	asthma	in	children	and	dine	particulate	

matter	(Norris	et	al.,	1999).		Diesel	exhaust	is	the	gaseous	exhaust	produced	by	a	diesel	

type	of	internal	combustion	engine.		Los	Angeles	County	low-income	communities	of	color	

experience	uneven	asthma	ED	visits,	partly	attributed	to	inequitable	exposure	to	diesel	

particulate	matter	(Douglas	et	al.,	2019).	

Per-/Poly	-	dluoroalkyl	substances	

Per-/Poly	-	dluoroalkyl	substances	are	a	group	of	man-made	chemicals	that	are	ubiquitous	

in	the	environment.		The	water	and	lipid	resistant	properties	of	PFAS	have		resulted	in	their	

widespread	use	in	industrial	surfactants,	diredighting	foams,	and	textile	treatments	(Chang	

et	al.,	2016).		As	a	result	of	their	strong	carbon-dluorine	(C-F)	backbone	(Figure	2),	PFAS	are	

environmentally	persistent	chemicals	(Savvaides	et	al.,	2021).		The	C-F	backbone	makes	

PFAS	resistant	to	thermal	and	chemical	stress	in	the	environment	and	within	biological	

organisms.		Consequently,	the	biological	half-life	of	PFAS		in	humans	is	on	the	order	of	

years.		PFAS	have	been	associated	with	a	number	of	health	effects	in	humans	including	

reproductive	and	developmental,	liver,	kidney,	and	immunological	effects.	The	most	

commonly	studied	PFAS	are	Perdluoro-n-octanoic	acid	(PFOA)	and	Perdluoro-1-

octanesulfonate	(PFOS)	(Figure	2).		
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Figure	2.	PFOA	and	PFOS.		Molecular	structure	of	PFOA	and	PFOS.	

PFOA/S	and	Drinking	Water	

PFAS	are	widespread	drinking	water	contaminants	because	they	are	highly	persistent,	

mobile	in	groundwater,	and	bioaccumulate.		PFAS	were	found	in	the	drinking	water	of	more	

than	16	million	Americans	in	33	states	(Hu	et	al.,	2016).		Seven	states	have	developed	their	

own	water	guideline	levels	for	PFOA	and/or	PFOS	ranging	from	13	to	1000 ng/L,	compared	

to	the	EPA’s	health	advisory	(HAs)	of	70 ng/L	for	both	compounds	individually	or	combined	

(Cordner	et	al.,	2019).		Public	water	systems	(PWSs)	are	not	required	to	routinely	test	for	

PFAS	or	to	treat	water	exceeding	EPA	HAs,	and	so	no	complete	assessment	of	the	

prevalence	of	PFAS	in	U.S.	drinking	water	exists	(Cordner	et	al.,	2019).		Furthermore,	

California,	the	location	of	this	study,	uses	a	large	amount	of	recycled	water,	a	volume	that	

totaled	686,000	acre-feet	in	2019.		The	large	use	of	recycled	water	combined	with	the	

thermal/chemical	stability	of	PFAS	has	the	potential	to	promote	large	accumulation	of	PFAS	

overtime.	

PFOA/S	and	Asthma	

 5



Molecular	Mechanism	of	Asthma	

The	immune	system	plays	an	essential	role	in	defending	the	body	against	pathogens	that	

enter	the	body.		Epidemiological	studies	have	identidied	associations	between	PFOA/A	

exposure	and	immune	responses	and	asthma.		Moreover,	experimental	toxicological	

evidence	also	suggests	that	PFOA	affects	the	immune	response.		When	an	inappropriate	

immune	response	occurs	in	response	to	an	antigen	or	allergen,	the	process	is	referred	to	as	

a	hypersensitivity	reaction.			

There	are	four	types	of	hypersensitivity	reactions	--	Type	I	is	mediated	by	IgE	antibodies,	

Type	II	is	a	cytotoxic	reaction	mediated	by	IgG	or	IgM	antibodies,	Type	III	is	mediated	by	

immune	complexes,	and	Type	IV	is	a	delayed	reaction	mediated	by	cellular	response.		

Asthma	is	a	type	1	hypersensitivity	reaction.		In	a	type	1	hypersensitivity	reaction,	antigen	

presenting	cells,	such	as	dendritic	cells,	bring	the	allergen	to	T2	helper	cells	(TH2).		This	

triggers	TH2	cells	to	release	cytokines	that	activate	B	cells.		Activated	B	cells	produce	and	

release	IgE	antibodies	specidic	to	the	allergen.			IgE	binds	to	the	allergen	forming	a	complex.	

This	IgE-allergen	complex	then	binds	to	receptors	on	mast	cells	causing	mast	cells	to	

degranulate	and	release	the	molecules	that	produce	the	allergic	reaction.	

	Associations	between	asthma	risk	factors	and	PFAS	exposure	

The	apparent	associations	between	PFAS	exposure	and	asthma	exacerbations	(cite	

literature)	may	be	confounded	by	associations	between	PFAS	exposure	and	known	asthma	

risk	factors.		Individual	studies	have	shown	that	human	biomonitoring	biomarker	
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concentrations	of	PFAS	generally	increase	with	income.		A	2018	meta-analysis	performed	

by	Buekers	et	al.	showed	that	a	higher	income	is	associated	with	a	higher	internal	exposure	

to	PFOA/S,	as	well	as	other	PFAS	subtypes.		As	income	doubled,	internal	exposure	to	PFAS	

increased	on	average	by	10%–14%	(Buekers	et	al.,	2018).		Descriptors	for	education	

(<college,	x	years	of	study,	etc.)	differed	too	widely	between	studies	to	perform	a	meta-

analysis.	

Racial/ethnic	burdens	differ	between	PFOS	and	PFOA.		White	women	had	higher	

concentrations	of	PFOA	compared	with	Chinese	in	Oakland	and	Blacks	in	Pittsburgh,	while	

Black	women	had	higher	concentrations	of	PFOS	compared	to	White	women	in	Southeast	

Michigan	and	Boston	(Park	et	al.,	2019).		PFAS	can	be	found	in	PM2.5	with	PFOS	serving	as	

the	predominant	PFAS	subtype	in	PM2.5	collected	from	ambient	air	(Zhou	et	al.,	2021).	

Research	Objectives	

This	project	explores	the	two	most	commonly	studied	PFAS,	Perdluoro-n-octanoic	acid	

(PFOA)	and	Perdluorooctanesulfonic	acid	(PFOS),	and	their	level	in	drinking	water	in	

relation	to	the	number	of	asthma-related	emergency	department	(ED)	visits	per	100,000	in	

Orange	and	Los	Angeles	counties	by	ZIP	Code.		There	is	a	conceivable	association	between	

PFAS	exposure	and	asthma	exacerbation.	Proof	of	such	an	association	would	merit	

exploration	of	policy	changes	to	mitigate	PFAS	prevalence.	This	study	aims	to	extend	the	

current	research	literature	and	to	inform	future	studies.	The	primary	hypothesis	is	that	

higher	levels	of	PFAS	in	drinking	water	leads	to	a	greater	rate	of	asthma	ED	visits.		

Moreover,	there	are	three	main	objectives	of	the	study:	
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1. Determine	PFAS	drinking	water	concentrations	by	ZIP	Code	using	known	

concentrations	in	water	districts.	

2. Use	ArcGIS	to	map	PFAS	drinking	water	concentrations	by	ZIP	Code.	

3. Determine	if	there	is	a	statistical	association	between	PFAS	concentrations	in	

drinking	water	and	rates	of	asthma	ED	visits,	while	controlling	at	the	ZIP	code	level	

for	potential	confounding	factors.	
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Chapter	2:		Literature	Review	

Animal	Studies		

Immune	system	involvement	of	PFAS	

Early	toxicological	studies	have	provided	evidence	to	support	the	hypothesis	that	PFOA/S	

affects	the	immune	system.		Studies	have	demonstrated	that	PFOS	can	activate	pathways	of	

the	innate	immune	system	(Qazi	et	al.,	2009).		Alternatively,	other	studies	have	shown	that	

PFOS	may	suppress	acquired	immunity	(DeWitt	et	al.	2008;	Peden-Adams	et	al.	2008;	Dong	

et	al.	2009)	and	PFOS	has	been	shown	to	be	immunosuppressive	to	mice	(Peden-Adams	

et	al.,	2008).		These	research	studies	assessed	immune	system	changes	for	PFOS	exposure	

by	mostly	evaluating	the	weight	of	immune	organs	and	the	numbers	of	lymphocytes.	

In	2011	Dong	et	al.	performed	studies	in	a	mouse	model	that	suggest	PFOS	exposure	shifts	

the	host	immune	response	from	a	balanced	TH1/TH2	state	toward	a	dominant	TH2	state,	a	

hallmark	of	atopic	disease	(Dong	et	al.,	2011).		In	these	experiments	C57BL/6	mice	were	

exposed	to	PFOS	daily	via	gavage	for	60	days.		One	day	after	the	Yinal	exposure,	the	

production	of	TH1-type	cytokines	(IL-2	and	IFN-c)	and	TH2-type	cytokines	(IL-4)	by	

isolated	splenocytes	were	assessed	via	ELISA	or	ELISPOT.		The	secretion	of	the	TH-2	

cytokine	IL-4	was	increased	in	a	dose-dependent	manner	whereas	PFOS	exposure	

decreased	the	formation	of	the	type	1	cytokines	IL-2	and	IFN-c.		Serum	levels	of	

immunoglobulin	(Ig)	were	measured	in	a	similar	manner.		Researchers	observed	

signiYicantly	increased	serum	(sheep	red	blood	cells	(SRBC)-speciYic)	IgE,	IgG,	and	IgG1	
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levels.		Alternatively,	signiYicantly	decreased	(SRBC-speciYic)	IgM	synthesis	was	observed	

with	decreased	PFOS	exposure	in	a	dose-related	manner.	

PFAS	and	Asthma	

Studies	using	animal	models	have	provided	data	suggesting	that	PFOA/PFOS	exposure	has	

the	potential	to	exacerbate	Type	1	or	IgE-mediated	hypersensitivity	responses,	such	as	

asthma.		These	studies	have	demonstrated	increased	IgE	levels	and	airway	hypersensitivity	

in	asthma	animal	models.		While	there	have	been	several	species	of	animals	used	to	model	

asthma,	by	far	the	most	common	model	has	been	mice,	particularly	BALB/c	(Aun	et	al.,	

2017).		In	order	to	mimic	human	pathophysiology,	animal	models	of	asthma	usually	have	

two	phases:	sensitization	and	challenge	with	allergen.	The	traditionally	used	allergen	has	

been	the	main	protein	found	in	egg	white,	ovalbumin,	which	causes	an	intense	

inYlammatory	response.		To	improve	the	relevance	to	human	disease,	ovalbumin	is	being	

replaced	by	aeroallergens,	such	as	house	dust	mites,	which	are	more	common	causes	of	

asthma	exacerbations.	The	outcomes	measured	include	serum-speciYic	IgE	antibodies,	

airway	hyperresponsiveness,	inYlammation	and	remodeling.		In	many	of	the	animal	studies	

airway	hypersensitivity	is	assessed	by	methacholine	challenge.		Methacholine	is	a	chemical	

that	causes	bronchoconstriction.		For	airways	that	are	highly	sensitive,	such	as	the	case	for	

asthmatics,	this	bronchoconstriction	occurs	to	a	greater	extent.			

		

In	2007	Fairley	et	al.	observed	that	PFOA	increased	serum	levels	of	IgE	and	enhanced	

hypersensitivity	responses	to	environmental	allergens	in	a	murine	model	(Fairley	et	al.,	

2007).			
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The	IgE	response	was	measured	in	BALB/c	mice	after	coexposure	to	the	allergen	ovalbumin	

and	increasing	concentrations	of	PFOA	over	a	14-day	period.		The	mice	received	an	

intraperitoneal	injection	(7.5	mg)	of	ovalbumin.		Mice	were	then	separated	and	given	an	

injection	into	the	dorsal	surface	of	each	ear	with	different	concentrations	of	PFOA.		In	the	

presence	of	ovalbumin,	increasing	concentrations	of	PFOA	resulted	in	signiYicantly	

increased	levels	of	both	total	IgE	and	ovalbumin-speciYic	IgE.		These	mice	were	also	

assessed	for	airway	hyperreactivity.		Mice	were	placed	in	a	plethysmograph,	an	instrument	

that	can	be	used	for	measuring	airway	volumes.		PenH	values,	a	dimensionless	index	used	

to	evaluate	changes	in	the	shape	of	the	airYlow	pattern	entering	and	leaving	a	whole-body	

Ylow	plethysmograph	as	an	animal	breathes,	were	measured	for	a	5-hour	time	period.		In	

the	presence	of	ovalbumin,	increasing	concentrations	of	PFOA	resulted	in	increased	airway	

hyperreactivity.	

Zeng	et	al.	published	a	study	that	demonstrated	PFOA	increases	airway	hypersensitivity	

and	downregulates	glucocorticoid	receptor	expression	in	asthmatic	mice	(Zeng	et	al.,	

2021).		Currently,	inhaled	glucocorticoids	are	the	Yirst-line	treatment	for	asthma	and	their	

binding	to	glucocorticoid	receptors	is	essential	to	their	anti-inYlammatory	effect.		BALB/c	

mice	were	administered	ovalbumin	(OVA)	and	PFOA	was	then	administered	intratracheally	

for	seven	days.	Increasing	concentrations	of	PFOA	resulted	in	increased	airway	

hypersensitivity	to	methacholine.		Furthermore,	increased	concentrations	of	PFOA	resulted	

in	decreased	glucocorticoid	receptor	mRNA	and	protein	in	the	lungs	of	mice.		This	was	an	

interesting	Yinding,	as	patients	with	severe	asthma	show	reduced	expression	of	

glucocorticoid	receptors	(Chang	et	al.,	2012).		In	a	previous	study,	PFOA	was	shown	to	
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inhibit	11β-hydroxysteroid	dehydrogenase	type	1,	which	catalyzes	reactions	that	increase	

the	expression	of	glucocorticoid	receptor	(Ye	et	al.,	2021;	Chapman	et	al.,	2013).	

Another	recent	study	explores	a	potential	mechanistic	explanation	for	the	role	of	PFAS	in	

increased	airway	hyperreactivity.		Wang	et	al.,	showed	that	PFOS	abolishes	the	ability	of	

lipopolysaccharide	(LPS),	a	gram-negative	bacterial	membrane	endotoxin,	to	protect	

against	asthma	development	(Wang	et	al.,	2021).		Authors	used	a	BALB/c	mouse	model	for	

asthma	which	utilized	house	dust	mite	(HDM)	intratracheally	as	the	allergen.		LPS	alone	

was	able	to	reduce	IgE	and	cytokine	production,	immune	cell	recruitment,	and	

methacholine	sensitivity	of	mice	in	response	to	HDM.	The	addition	of	PFOS	reduced	the	

ability	of	LPS	to	protect	against	IgE	and	cytokine	production,	immune	cell	recruitment,	and	

methacholine	sensitivity	in	response	to	HDM.		LPS	is	one	of	the	most	potent	microbe-

associated	molecular	pattern	molecules	and	TLR4	agonists.		LPS	is	present	at	high	levels	in	

air	and	dust,	and	LPS	exposure	negatively	correlates	with	the	risk	of	developing	asthma	

(Ege	et	al.,	2011;	Mutius	et	al.,	2010;	Riedler	et	al.,	2001).		Regular	exposure	to	LPS	up-

regulates	the	expression	of	a	negative	regulator	(protein	A20)	of	airway	epithelial	cell	

inYlammation.		Thus,	LPS	reduces	the	production	of	cytokines/chemokines	in	response	to	

allergens	and	in	turn	suppresses	dendritic	cell	recruitment	and	the	T	helper	2	response	

that	results	in	asthma	(Schuijs	et	al.,	2015;	Lee	et	al.,	2000).		In	addition	to	direct	airway	

interactions,	airway	inYlammation	is	also	affected	indirectly	by	LPS.		The	intestinal	

microbiota	modulates	allergic	asthma,	and	a	low	abundance	of	intestinal	LPS	is	associated	

with	a	high	risk	of	airway	inYlammation	(Arrieta	et	al.,	2015).	The	route	of	ingestion	of	PFOS	

through	contaminated	water	may	inYluence	airway	inYlammation	through	its	effects	on	

intestinal	LPS.	Although	Wang	et	al.,	showed	PFOS	+	LPS	+	HDM	to	increase	airway	
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hyperreactivity	compared	to	LPS	+	HDM,	PFOS	alone	reduced	airway	hyperreactivity	in	

response	to	HDM	alone.	

Gestational	exposure	to	PFAS	

Ryu	et	al	demonstrated	that	PFOA/S	increased	airway	resistance	in	animal	models	(Ryu	et	

al.,	2014).		In	these	experiments,	pregnant	dams	were	fed	PFOA-	or	PFOS-contaminated	diet	

ad	libitum	(∼4–6	g/day)	beginning	on	gestation	day	(GD)	2	through	the	pregnancy	and	

lactation	periods.			Offspring	at	8–9	wk	of	age	were	sensitized	by	intraperitoneal	injection	of	

ovalbuin	(2	μg).	To	measure	lung	mechanics,	mice	were	anesthetized	and	tracheotomized	

with	a	catheter	connected	to	a	YlexiVent	small	animal	ventilator	(Scireq	Montreal,	PQ,	

Canada).		Lung	mechanics	were	measured	using	a	mechanical	ventilator.		Airway	mechanics	

were	assessed	after	inhalation	of	increasing	concentrations	of	methacholine.		Methacholine	

increased	airway	resistance	in	a	dose-dependent	manner	as	expected	and	PFOA/S	alone	

was	able	to	increase	the	sensitivity	of	mice	to	methacholine-induced	airway	resistance.		

Furthermore,	the	addition	of	PFOA	signiYicantly	increased	the	sensitivity	of	methacholine-

induced	airway	resistance	above	that	of	the	ovalbumin	exposed	mice	alone.		The	

mechanisms	by	which	prenatal	exposures	cause	asthma	in	offspring	would	likely	differ	

compared	to	direct	exposure.	

Epidemiological	Studies	

Epidemiological	studies	have	provided	data	suggesting	that	PFOA/S	exposure	has	the	

potential	to	exacerbate	Type	1	or	IgE-mediated	hypersensitivity	responses,	such	as	asthma	

in	humans.			
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GBCA-based	Epidemiology	Studies	

The	Genetic	and	Biomarkers	study	for	Childhood	Asthma	(GBCA)	was	conducted	in	Taiwan	

from	2009	to	2010.		Study	participants	were	recruited	from	two	hospitals	in	Taipei	City	of	

Northern	Taiwan.		The	study	subjects	were	children	aged	10	-	15	years	old	who	were	

diagnosed	with	asthma	within	the	previous	year.		This	resulted	in	231	asthmatic	subjects.		

The	control	population	was	recruited	from	seven	public	schools	in	Taipei	City	of	Northern	

Taiwan.	Age-matched	controls	with	no	personal	or	family	history	of	asthma	were	chosen.		

This	totaled	225	non-asthmatic	controls.	

A	study	by	Dong	et	al.	(2013)	used	data	from	the	GBCA.		Logistic	regression	models	

adjusting	for	age,	sex,	BMI,	parental	education,	ETS	exposure,	and	month	of	survey	showed	

increased	odds	ratios	(OR)	for	asthma	with	PFOA/S	serum	concentrations.		The	OR	for	

PFOA	was	4.05	(95%	CI:	2.21,	7.42)	and	PFOS	was	2.63	(95%	CI:	1:48,	4.69),	respectively	

comparing	the	highest	quartile	to	the	lowest	quartile	serum	concentrations.		Also	higher	

asthma	severity	scores		among	the	children	with	asthma	were	associated	with	increasing	

serum	PFOA	and	PFOS	(Dong	et	al.,	2013).		Among	the	asthmatic	children,	asthma	severity	

scores	were	determined	using	a	13-item	questionnaire	to	evaluate	for	frequency	of	current	

asthma	symptoms,	use	of	systemic	corticosteroids,	use	of	medications	besides	systemic	

corticosteroids,	and	history	of	hospitalizations	and	intubations.		The	asthma	severity	

scoring	system	ranged	from	0	to	28,	with	higher	scores	representing	more	severe	asthma.		

Asthmatic	children	with	increased	serum	PFOS	had	signiYicantly	higher	asthma	severity	

scores	compared	to	asthmatic	children	with	lower	serum	PFOS.		Asthma	severity	scores	

divided	up	by	PFOS	quartiles	were	quartile	1	-	3.33	(2.36,	4.31);	quartile	2	-	4.18	(3.19,	
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5.17);	quartile	-	3	4.49	(3.52,	5.45);	quartile	4	4.57	-	(3.61,	5.54)].		Although	not	signiYicant,	

asthma	severity	scores	showed	a	positive	trend	with	increasing	PFOA	quartiles.		Dong	et	

al.’s	publication	also	showed	increasing	serum	IgE	and	eosinophil	levels	(asthma	related-

biomarkers)	with	increasing	serum	PFOA	and	PFOS	(Dong	et	al.,	2013).			

In	a	study	by	Qin	et	al.,	results	of	spirometry	testing	on	a	subset	of	the	GBCA	population	

suggested	that	increasing	serum	concentration	of	PFOA	and	PFOS	is	associated	with	

decreased	lung	function	in	children	with	asthma	but	not	in	children	without	asthma	(Qin	et	

al.,	2017).		Lung	function	parameters	assessed	were	1)	forced	expiratory	volume	(FEV),	

which	measures	the	quantity	of	air	a	person	can	exhale	during	a	forced	breath,	2)	forced	

vital	capacity	(FVC),	which	measures	the	quantity	of	air	a	person	can	forcibly	exhale	from	

their	lungs	after	taking	the	deepest	breath	possible,	3)	forced	expiratory	Ylow	25–75%	

(FEF25-75),	which	measures	the	quantity	of	air	a	person	can	exhale	from	the	point	at	which	

25%	of	the	FVC	has	been	exhaled	to	the	point	at	which	75%	of	the	FVC	has	been	exhaled.		

Linear	regression	modeling	adjusted	for	age,	sex,	BMI,	parental	education	level,	exercise,	

ETS	exposure,	and	month	of	survey	showed	serum	PFOA/S	levels	were	signiYicantly	

negatively	associated	with	three	pulmonary	function	measurements	in	children	with	

asthma.		The	adjusted	coefYicients	between	lung	function	and	PFOA/Ss	exposure	included	

the	following	FEV:	−0.104	(95%CI:	−0.193	to	−0.015)	for	PFOA	and	−0.061	(95%CI:	−0.101	

to	−0.021)	for	PFOS;	FVC:	−0.067	(95%CI:	−0.167	to	0.032)	for	PFOA	and	−0.055	(95%CI:	

−0.100	to	−0.010)	for	PFOS;	FEF25-75:	−0.223	(95%CI:	−0.400	to	−0.045)	for	PFOA	and	

−0.045	(95%CI:	−0.127	to	0.037)	for	PFOS.		CoefYicients	represent	the	mean	change	in	
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pulmonary	function	measurements	for	each	1	ln-(ng/mL)	increase	in	serum	PFOA/S	

concentration.	

Zhu	et	al.	generated	data	from	the	GBCA	cross-sectional	study.		This	study	looks	at	the	same	

study	subjects	and	measures	as	the	Dong	et	al.	study,	just	limited	to	boys.		The	results	of	the	

Zhu	et	al.	study	suggests	that	among	males	with	increasing	serum	PFOA	and	PFOS	there	is	

an	association	with	increasing	odds	of	asthma	(Zhu	et	al.,	2016).		Models	were	adjusted	for	

age,	BMI,	parental	education,	ETS	exposure,	parental	asthma,	and	month	of	survey.		Among	

males,	adjusted	odds	ratios	for	asthma	(4th	quartile	vs	1st	quartile	of	PFOA/S	exposure)	

were	4.24	(95%	CI:	1.91,	9.42)	for	PFOA	and	4.38	(95%	CI:	2.02,	9.50)	PFOS.		Just	as	in	

previous	animal	models	(Dong	et	al.,	2011)	Zhue	et	al.	provided	epidemiologic	evidence	for	

the	ability	of	PFAS	to	shift	the	host	immune	response	from	a	balanced	TH1/TH2	state	toward	

a	dominant	TH2	state,	an	immunological	state	that	increases	the	likelihood	of	an	asthma	

exacerbation.		Serum	concentrations	of	PFAS	and	levels	of	TH1	(interferon-γ,	IL-2)	and	TH2	

(IL-4	and	IL-5)	cytokines	were	measured	in	children	aged	10-15	years-old	who	were	

diagnosed	with	asthma	within	the	previous	year.		Serum	PFAS,	including	PFOA/S,	were	

associated	positively	with	TH2	cytokines	and	inversely	with	TH1	cytokines	among	male	

asthmatics,	but	not	females.		This	Yinding	makes	sense	as	prepuberal	boys	are	more	likely	to	

have	diagnosed	asthma	and	be	hospitalized	from	asthma	symptoms	(Fuseini	and	Newcomb,	

2017).		Furthermore,	increasing	serum	concentrations	of	PFOA/S	were	associated	with	

increasing	serum	IgE	levels.		Among	females,	signiYicant	increasing	odds	of	asthma	were	

found	only	with	PFOA,	and	not	PFOS.		Adjusted	odds	ratios	for	asthma	(4th	quartile	vs	1st	

quartile	of	PFOA/S	exposure)	for	females	was	3.68	(95%	CI:	1.43,	9.48)	for	PFOA.		Among	
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females,	there	were	no	signiYicant	associations	between	PFOA/S	and	TH2	cytokines	and	TH1	

cytokines	identiYied.		

NHANES-based	Epidemiology	Studies	

The	National	Health	and	Nutrition	Examination	Survey	(NHANES)	is	conducted	by	the	U.S.	

Centers	for	Disease	Control	and	Prevention	(CDC).		NHANES	assesses	health	and	nutrition	

in	a	nationally	representative	sample	of	the	US	population.		It	consists	of	interviews	and	

physical	examinations	of	approximately	5,000	persons	each	year.		These	data	are	released	

every	2	years.		With	regards	to	PFOA/S	and	asthma,	NHANES	measures	serum	PFOA/S	

concentrations	using	analytical	chemistry	methods	and	asthma	is	assessed	by	parent-

reported,	doctor-diagnosed,	asthma	using	a	standardized	questionnaire.		

A	cross-sectional	study	by	Humblet	et	al.	(2014)	used	data	from	the	NHANES	(1999–2000	

and	2003–2008)	to	evaluate	the	association	of	PFAS	with	reported	asthma.		This	study	used	

data	from	4	different	NHANES:	1999–2000,	2003–2004,	2005–2006,	and	2007–2008.		

Multivariable	models	adjusting	for	sex,	smoking,	age,	race/ethnicity,	survey	cycle,	poverty	

income	ratio,	and	health	insurance	evaluated	the	effect	of	a	doubling	of	PFAS	

concentrations	on	asthma.		These	data	showed	that	increasing	serum	PFOA	was	associated	

with	an	increased	odds	1.18	(95%	CI:	1.01,	1.39)	of	parent-report	of	ever	receiving	a	

diagnosis	of	asthma	among	children	12–19	years	of	age	(Humblet	et	al.,	2014).		On	the	

other	hand,	there	was	an	inverse	relationship	observed	for	PFOS	and	ever	asthma;	OR	=	

0.88;	95%	CI:	0.74,	1.04	(Humblet	et	al.,	2014).			
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In	a	subset	of	this	population	(NHANES	2005–2006),	Stein	et	al.	observed	no	adverse	

association	between	PFOA/S	exposure	and	asthma.		Models	were	adjusted	for	age,	gender,	

race,	weight	status,	and	serum	cotinine.		Adjusted	odds	ratios	for	asthma	(75th	percentile	

vs	25th	percentile	of	PFOA/S	exposure)	were	calculated.		These	data	showed	elevated	ORs	

for	PFOA	of	1.28	(95%	CI:	0.81,	2.04)	and	PFOS	of	1.20	(95%	CI:	0.88,	1.63)	with	asthma,	

but	with	wide	conYidence	intervals	(Stein	et	al.,	2016).			

From	a	more	recent	NHANES	(2013–2014)	dataset,	Jackson-Browne	et	al.	(2020)	found	

serum	PFAS	concentrations	were	weakly	associated	with	increased	asthma	prevalence	in	

US	children.		Unlike	the	two	previous	NHANES	analyses	(Humblet	et	al.,	2014	and	Stein	et	

al.,	2016)	which	focus	on	12–19	year	old	subjects,	this	NHANES	analysis	examined	a	

younger	population	of	children	aged	3–11	years.		Regression	models	were	adjusted	for	sex,	

age,	race/ethnicity,	serum	cotinine,	and	poverty	to	income	ratio.		Odds	ratios	for	the	

outcome	of	asthma	were	calculated	per	standard	deviation	increase	in	ln-transformed	

serum	PFOA/S	concentrations.		This	analysis	showed	increased	serum	PFOA	(1.1;	95%	Cl:	

0.8,	1.4)	and	PFOS	(1.2;	95%	Cl:	0.8,	1.7)	to	be	weakly	associated	with	an	increased	odds	of	

asthma.		This	study	also	examined	effect	measure	modiYication	of	age,	sex,	and	race.		This	

analysis	provided	evidence	to	support	the	ability	of	age	to	modify	the	associations	between	

serum	PFOS,	but	not	PFOA,	concentrations	and	odds	of	asthma.		Sex	and	race	did	not	

modify	these	associations	(Jackson-Browne	et	al.,	2020).	
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Chapter	3:		Methods	

Study	Areas	

Los	Angeles	County,	CA	and	Orange	County,	CA	were	selected	as	the	areas	of	study	for	the	

analysis	and	estimation.	The	study	areas	are	shown	in	(Figure	3).		LA	County	and	Orange	

County	are	contiguous	counties	in	the	southern	region	of	California.	Los	Angeles	County	is	

the	most	populous	county	of	both	the	United	States	and	the	state	of	California	with	a	

population	of	over	ten	million.		LA	County	covers	over	4000	sq	miles	of	land	territory,	and	is	

broken	into	290	ZIP	Codes.		Orange	County	is	the	third	most	populated	in	California	with	

over	3	million	residents.		The	county	covers	791	square	miles	of	land	and	is	the	smallest	

county	by	area	in	Southern	California.		It	is	partitioned	into	88	separate	ZIP	Codes.	

Demographics	of	LA	County	and	Orange	County	

The	2020	US	Census	estimates	that	the	Los	Angeles	County	population	was	10,014,009.			

White	(non-hispanic)	account	for	26.1%	of	Los	Angeles	County.		The	median	household	

income	(in	2019	dollars	),	2015-2019	was	$68,044.			The	percentage	of	persons	aged	25	

years	or	greater	with	a	high	school	graduate	degree	or	higher,	2015-2019	was	79.1%.		The	

2020	US	Census	estimates	that	the	Orange	County	population	was	3,186,989.		White	(non-

hispanic)	account	for	39.8%	of	Orange	County.		The	median	household	income	(in	2019	

dollars	),	2015-2019	was	$90,234.		The	percent	of	persons	aged	25	years	or	greater	with	a	

high	school	graduate	degree	or	higher,	2015-2019	was	85.5%.	
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Figure	3.	LA	County	and	Orange	County.		Both	counties	are	divided	by	ZIP	Code.	LA	

county	(green)	and	Orange	County	(brown).	

Data	Set	Construction	

Rates	of	asthma	ED	visits	by	ZIP	Code	

The	data	source	for	asthma	ED	visits	was	the	Emergency	Department	and	Patient	Discharge	

Datasets	from	the	State	of	California,	Ofdice	of	Statewide	Health	Planning	and	Development	

(OSHPD).	Tracking	California	processed	OSHPD’s	data	to	calculate	age-adjusted	rates	of	

asthma	ED	visits	for	California	ZIP	Codes	by	year	(Tracking	California,	2021).	The	dataset	

contained	rates	per	10,000	residents	of	asthma	emergency	department	visits	over	the	age	

of	18	using	hospital	coding.	Asthma-related	visits	considered	only	primary	discharge	

diagnosis	codes.		Rates	were	calculated	from	the	total	number	of	Asthma	ED	Visits	per	ZIP	

Code	population.		The	primary	dataset	includes	emergency	department	visits	from	all	
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licensed	hospitals	in	California.	A	mean	annual	asthma	ED	visit	rate	for	each	ZIP	Code	was	

calculated	by	averaging	the	rates	for	the	three	years–	2013-2015.	Rates	of	asthma	ED	visits	

for	ZIP	Codes	in	LAC	and	OC	were	then	selected	for	this	analysis.	The	Emergency	

Department	and	Patient	Discharge	Dataset	reports	patient	residence	only	at	the	ZIP	Code	

level.	Individual	counts	or	population	data	were	not	available.		

The	Third	Unregulated	Contaminant	Monitoring	Rule	(UCMR3)	Dataset	

PFOA/S	concentrations	in	drinking	water	for	LAC	and	OC	water	districts	from	2013-2015	

was	obtained	from	the	UCMR3	dataset.		UCMR1	emerged	from	the	1996	Safe	Drinking	

Water	Act	(SDWA).		The	SDWA	amendments	require	that	every	5	years	the	EPA	issue	a	list	

not	to	exceed	30	unregulated	contaminants	to	be	monitored	by	public	water	systems.		The	

data	generated	from	this	monitoring	provides	a	scientidic	basis	for	future	regulatory	actions	

geared	towards	protecting	public	health.		The	UCMR3,	the	third	installation,	was	published	

on	May	2,	2012.		UCMR3	required	monitoring	for	30	contaminants	between	2013	and	2015	

among	PWS	serving	more	than	10,000	people.			

The	largest	sources	of	surface	water	supply	in	LA	County	come	from	the	Los	Angeles	River	

and	the	San	Gabriel	River.		The	coastal	plain	of	Los	Angeles	groundwater	basin	is	the	

primary	source	of	groundwater.		In	Southern	California,	the	suspected	PFAS	sources	for	

water	systems	are	waste-water	treatment	plants	located	upstream	of	managed	aquifer	

recharge	(MAR)	operations.		Results	from	UCMR3	indicated	that	PFAS	contamination	in	LA	

County	is	present	in	10	water	districts:		

1. California	Water	Service	Company	-	East	Los	Angeles		
2. City	of	Downey	Water	Division	
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3. Golden	State	Water	Company	-	Norwalk	
4. Liberty	Utilities	-	Belldlower/	Norwalk	
5.Montebello	Land	And	Water	Company	
6. Orchard	Dale	Water	District			
7. City	of	Pico	Rivera	Water	Division		
8. Pico	Water	District	
9. Santa	Clarita	Water	Division	
10.Valencia	Water	Company	

			

Figure	4.	LA	County	PFAS	contaminated	water	districts.		Water	districts	with	detected	

PFAS	levels	(blue).	

The	northern	portion	of	Orange	County	lies	above	a	large	aquifer	known	as	the	Orange	

County	Basin.	This	water	source	provides	a	signidicant	portion	of	water	for	the	Orange	

County	cities	north	of	Newport	Beach	and	Irvine.	It	is	estimated	that	2.4	million	OC	

residents	rely	on	the	Orange	County	Basin	for	half	their	water	needs.		Results	from	UCMR3	

indicated	that	PFAS	contamination	in	Orange	County	is	present	in	5	water	districts:			
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1. City	of	Anaheim	Water	Division	
2. City	Of	Fullerton	Water	Division		
3. 	City	of	Garden	Grove	Water	Division			
4. City	of	Orange	Water	Division	
5. Yorba	Linda	Water	District	

			

Figure	5.	Orange	County	PFAS	contaminated	water	districts.		Water	districts	with	

detected	PFAS	levels	(blue).	

PFOA/S	derived	serum	concentrations	by	water	district	

Available	measures	of	drinking	water	PFOA/S	in	the	UCMR3	data	for	LAC	and	OC	water	

districts	were	averaged	for	2013-2015.		These	measures	were	used	to	derive	average	

PFOA/S	serum	concentrations	for	the	contaminated	LA	and	OC	water	district.		Using	a	basic	

pharmacokinetic	(Pk)	model	that	assumes	typical	background	serum	levels	from	non-

drinking	water	exposure	sources	(https://www.ics.uci.edu/~sbartell/pfascalc.html),	

expected	serum	concentrations	resulting	from	long-term	consumption	of	PFOA/S	
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contaminated	drinking	water	were	calculated	at	measured	concentrations	above	the	

reporting	limit	within	each	water	district.	Only	ZIP	Codes	with	contaminated	water	and	

adjacent	ZIP	Codes	were	included	in	the	analysis.			Modeled	serum	concentrations	were	

used	instead	of	estimated	water	levels	for	easier	comparison	to	other	populations	such	as	

NHANES.	

Comparison	of	rates	of	asthma	ED	visits	to	PFOA/S	concentrations	

To	investigate	a	potential	association	between	rates	of	asthma	ED	visits	and	PFOA/S	levels	a	

common	unit	of	location	needed	to	be	obtained	as	the	original	datasets	used	ZIP	Codes	for	

asthma	ED	visits	and	water	districts	for	PFOA/S	concentrations.		To	resolve	this	condlict,	

PFOA/S	concentrations	were	assigned	to	ZIP	Codes	based	on	the	location	of	the	water	

districts.		ArcGIS	was	used	to	determine	the	land	area	percentage	that	distinct	water	

districts	covered	within	a	given	ZIP	Code.		A	weighted	average	based	on	these	percentages	

was	used	to	determine	the	PFOA/S	concentration	within	a	given	ZIP	Code.	

ArcGIS		

Data	set	included	ArcGIS	shapediles	of	geographic	areas	of	ZIP	Codes	and	water	districts	of	

Los	Angeles	County	(LAC)	and	Orange	County	(OC).		Each	county	had	a	separate	shapedile	

for	ZIP	Code	and	water	district.		Shapediles	were	imported	into	ArcGIS.	ZIP	Code	shapediles	

were	in	a	projected	coordinate	system	in	units	of	feet.		Water	district	shapediles	were	

originally	in	a	geographic	coordinate	system	but	were	immediately	projected	into	the	same	

coordinate	system	as	ZIP	Code	shape	diles	after	import	to	ArcGIS.		The	tabulate	intersect	

analysis	was	used	to	determine	the	percent	of	land	that	a	respective	water	district	covers	
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within	a	given	ZIP	Code.		To	accomplish	this,	ZIP	Code	shapediles	were	used	as	the	‘zone’	

and	water	district	shapediles	were	used	as	the	‘class’.		This	analysis	was	done	separately	for	

each	county	and	a	table	containing	area	and	percentage	of	intersection	were	generated.	

CalEnviroScreen	4.0	

Air	quality	data	was	obtained	from	the	California	Environmental	Screen	4.0	

(CalEnviroScreen	4.0).		The	CalEnviroScreen	is	a	screening	tool	that	helps	in	identifying	and	

mapping	areas	in	California	burdened	by	pollution.		The	CalEnviroScreen	was	developed	by	

the	Ofdice	of	Environmental	Health	Hazard	Assessment	(OEHHA)	as	part	of	CalEPA’s	

environmental	justice	program.		This	mapping	tool	evaluates	the	magnitude	of	pollution	

from	multiple	sources	including	environmental,	health,	and	socioeconomic	information.		

Scores	are	generated	for	every	census	tract	in	California,	and	these	are	ranked	based	on	

data	from	state	and	federal	government	sources.		Data	for	ranking	include	prevalence	of	

pollutants,	poor	environmental	conditions,	socioeconomic	status,	and	abundance	of	local	

health	conditions.		Higher	scores	represent	census	tracts	with	higher	amounts	of	pollution	

burden.		Census	tract	data	is	used	with	21	indicators	to	create	a	single	score.		The	Census	

tract	data	was	aggregated	into	ZIP	Code	data	using	the	provided	ZIP	Code	metrics.	The		

CalEnviroScreen	ZIP	Code	estimates	were	assigned	to	2010	census	blocks	using	areal	

apportionment.		Areal	apportionment	is	a	simple	technique	to	divide	and	allocate	values	by	

area.	The	area	of	each	Census	Tract-Zip	Code	intersection	is	calculated,	and	then	census	

tract	values	are	given	to	zip	code	boundaries	proportional	to	how	much	of	its	area	lies	

within	each	zip	code.		Indicators	of	interest	for	this	study	were	PM2.5	and	diesel	particulate	

matter.		The	California	Air	Resources	Board	(ARB)	collected	estimated	emissions	from	
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several	sources,	primarily	from	years	2012-2019.		CalEnviroScreen	1.0	was	released	in	

2010.		Up-to-date	date	data	and	contributions	from	governmental	organizations	have	been	

incorporated	in	subsequent	versions	of	the	tool.		CalEnviroScreen	2.0	was	released	in	2014	

and	3.0	in	2017.		The	CalEnviroScreen	4.0	was	released	in	February	2021.		Data	was	

acquired	from	the	CalEnviroScreen	4.0	data	set	in	July	2021.		The	CalEnviroScreen	Version	

4.0	receives	periodic	updates	as	data	becomes	available	and	as	methodologies	improve.		

Census	Data	

Demographic	information	was	obtained	from	the	United	States	Census	Bureau	

(census.gov).		The	retrieved	data	was	in	ZIP	Code	Tabulation	Area	(ZCTA)	format,	

equivalent	to	a	ZIP	Code.	ZCTAs	are	based	on	aerial	representations	of	United	States	Postal	

Service	ZIP	Code	service	areas.		Retrieved	information	included	race,	education,	and	income	

from	the	2020	United	States	census.		

Joining	the	Data		

Intersection	tables	generated	in	ArcGIS	were	exported	into	Excel	diles.		LAC	and	OC	Excel	

diles	were	merged	together.		PFOA/PFOS	concentrations	by	water	district	were	added	to	the	

Excel	dile.		PFOA/PFOS	was	calculated	for	each	ZIP	Code	by	adding	up	the	weighted	PFOA/

PFOS	concentration	of	the	water	districts	that	made	up	a	given	ZIP	Code	and	weighting	

each	of	the	component	concentrations	by	land	area	percentage	that	the	water	district	

covered	in	the	given	ZIP	Code.		Unexposed	ZIP	Codes	were	assigned	the	background	

concentrations	used	in	the	PK	modeling.		PFOA	background	concentration	is	2	ng/mL.			
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PFOS	background	concentration	is	5	ng/mL.		Asthma	ED	rates	were	then	linked	by	ZIP	

Code.	There	are	a	total	of	75	ZIP	Codes	in	this	analysis.				

Examining	the	Data	

Confounders	

Literature-based	discovery	was	used	to	identify	potential	confounding	variables	in	the	

study.		Identidied	variables	include:	Diesel,	Particulate	Matter,	Race,	and	Education.		Air	

pollution	data	for	PM2.5	and	diesel	were	obtained	from	CalEnviroScreen	4.0	(https://

calenviroscreen-oehha.hub.arcgis.com/#Data).		Income/socioeconomic	status	(SES),	race,	

and	education	data	was	obtained	from	United	States	Census	Information.		The	parameter	

that	was	assessed	for	income/SES	was	median	household	income.		The	parameter	that	was	

assessed	for	race	was	percentage	of	non-Hispanic	White.		The	parameter	that	was	assessed	

for	educational	attainment	was	percentage	of	less	than	high	school	Diploma.	

Exploratory	analysis	

Exploratory	data	analysis	is	a	statistical	approach	that	focuses	on	looking	at	data	to	see	

what	it	seems	to	say	as	opposed	to	analytical	approaches	that	focus	on	testing	pre-dedined	

hypotheses	and	require	a	well-dedined	question	to	ask	from	the	data	(Hoaglin,	2003).	Using	

trial-and-error	as	part	of	a	process	of	uncovering	hidden	features	of	the	raw	data,	it	is	

possible	to	discover	structure,	dind	patterns,	and	identify	relationships.		In	this	project,	

exploratory	analysis	was	conducted	by	summarizing	the	data	frame	in	R	and	visualizing	the	

data	with	a	number	of	graphs,	including	histogram	plots	of	PFOA/S	levels.		Scatterplots	
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were	graphed	measuring	Asthma	ED	Visits	and	PFOA/S	concentrations.			In	addition,	

several	maps	were	constructed	to	visualize	the	distribution	of	PFOS/PFOA	geographically.			

Correlation	Analysis		

	

Figure	6.	Heat	Map	of	Variables.	Red	areas	represent	a	stronger	correlation.		Green	areas	
represent	weaker	correlation.	

To	understand	the	interrelationship	among	predictor	variables,	correlation	analysis	was	

conducted	and	a	heat	map	of	the	results	was	constructed.		Correlation	coefdicients	are	used	

to	assess	the	magnitude	and	direction	of	the	linear	relationships	between	pairs	of	variables.	

High	correlations	are	closer	to	1	and	correspond	to	red	on	the	heat	map.		Low	correlations	

are	closer	to	0	and	correspond	to	Green	on	the	heat	map.	Correlation	analysis	was	not	used	
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as	a	stand	alone	solution,	but	instead	was	accompanied	by	the	regression	analysis	and	

primarily	used	as	a	tool	to	uncover	any	collinearity	between	the	study’s	variables.			

Spearman	correlation	analysis	was	used	to	investigate	socioeconomic	(race,	income,	

education)	and	pollutant	variables	(PFOS,	PFOA,	Diesel,	PM2.5)	along	with	asthma	ED	rates.		

Spearman’s	correlation	coefdicient	rho	(ρ)	is	non–parametric	in	nature	and	can	be	used	

when	the	data	doesn’t	follow	the	normal	distribution.	The	value	ρ	=1	indicates	a	perfectly	

positive	correlation.		On	the	other	hand	ρ	=	-1	suggests	a	perfectly	negative	correlation.		The	

value	ρ	=0	suggests	no	correlation	at	all.		Strong	relationships	were	found	between	the	

pollutants	Diesel	and	PM2.5	as	well	as	the	socioeconomic	factors	race	and	income.	Based	on	

the	results	of	the	correlation	analysis,	combinations	of	the	initial	confounding	variables	

(Table	1)	were	broken	into	several	groups	and	separately	analyzed.	

Table	1.	Collinearity-adjusted	Model	Combinations.		Green	represents	confounding	
variables	that	were	included	in	each	model.		Red	represents	excluded	variables.	

Regression	Analysis	

Multiple	Linear	Regression	

Model 

Confounders Diesel PM.2.5 Race Income Education

Group 1

Group 2

Group 3

Group 4
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Associations	across	affected	LA	and	OC	ZIP	Codes	were	explored	by	developing	a	multiple	

regression	model	with	rates	of	Asthma	ED	visits	as	the	dependent	variable	and	PFOA/S	

concentrations	as	the	primary	predictor	variables.	The	model	also	controlled	for	air	quality	

and	SES	factors.	Multiple	linear	regression	models	the	relationship	between	dependent	and	

independent	variables	and	is	formally	represented	as	follows:		

𝑦	=	𝛼1𝑥1	+	𝛼2𝑥2	+	…	+	𝛼𝑛𝑥𝑛	

Where	y	is	the	dependent	variable,	𝛼1,	𝛼2	,...,	𝛼𝑛	are	regression	coefdicients,	and	𝑥1,	𝑥2…,	𝑥𝑛	

are	independent	variables.	The	main	features	of	regression	coefdicients	are	sign,	magnitude,	

and	signidicance	(Eberly,	2007).	The	positive	or	negative	sign	of	the	regression	coefdicient	

for	an	independent	variable	indicates	the	direction	of	the	association	with	the	dependent	

variable.	The	magnitude	of	each	coefdicient	quantidies	the	observed	effect	between	the	

independent	variable	and	the	dependent	variable.	Signidicance	is	the	observed	result	based	

on	sample	data	which	represents	the	entire	population.		

In	the	multiple	linear	regression,	the	model	was	dit	using	ordinary	least	squares	(OLS).	

Linear	least	squares	estimates	the	unknown	variable	by	minimizing	the	sum	of	the	squares	

of	the	differences	between	actual	values	and	predicted	values	(Eberly,	2007).	The	error	of	

the	model	is	dedined	using	a	loss	function.	Residuals	are	differences	between	actual	and	

predicted	values	of	each	target	variable.	Residuals	are	calculated	using	the	following	

formula:		
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𝐸i	=	𝑦𝑖	−	𝑓(𝑥𝑖	)	

Where	𝑦𝑖	is	the	actual	value	and	𝑓(𝑥𝑖	)	is	the	predicted	value	based	on	the	multiple	linear	

regression	function.		

The	regression	models	can	be	evaluated	using	regression	metrics	such	as	R²	score	and	

Mean	squared	error.	The	R²	coefdicient	gives	a	measure	of	how	accurately	future	samples	

are	likely	predicted	by	the	model	(Miles,	2005).	The	best	possible	score	is	1.0	and	indicates	

that	the	model	perfectly	dits	the	data.	Scores	can	be	negative	if	the	model	does	not	follow	

the	trend	of	the	data.	A	model	that	always	predicts	the	expected	value	of	y	regardless	of	the	

input	variables,	such	as	a	constant	y=1	function,	has	R²	score	zero.	

Although	multiple	linear	regression	is	a	simple	and	robust	technique,	it	does	have	pitfalls	

such	as	not	generalizing	well	for	nonlinear	data	and	performing	poorly	in	the	presence	of	

collinearity	between	variables.	Several	regression	methods	have	been	developed	to	

overcome	these	limitations,	including	linear	regression	with	categorical	variables	and	

spline	regression,	which	were	also	performed	as	part	of	the	study.	

Linear	Regression	with	Categorical	Variables	

When	the	magnitude	of	several	regression	coefdicients	of	continuous	data	implied	a	strong	

effect	in	the	model,	the	data	were	transformed	into	quartile	values	for	modeling.		The	goal	

of	categorizing	the	data	is	to	reduce	error	and	improve	the	predictive	value	of	the	
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regression	model.		The	process	used	to	categorize	the	data	into	a	smaller	range	was	a	

quartile	transform.	

Quartiles	describe	a	division	of	individual	dataset	values	into	four	dedined	intervals	based	

on	a	comparison	to	the	entire	set	of	observations.	To	derive	quartiles,	the	vector	of	each	

variable	must	dirst	be	arranged	in	ascending	order.		Each	quartile	contains	around	25%	of	

the	total	vector	values.		The	dirst	quartile,	Q1,	contains	the	smallest	25%	of	values.	On	the	

other	hand,	Q4	contains	the	largest	25%	of	values.		The	resulting	dataset	was	then	re-

evaluated	using	multiple	linear	regression	with	OLS.		

Spline	Regression	

When	the	association	with	the	covariate	and	ED	data	appeared	non-linear,	the	data	were	

also	analyzed	using	a	spline	technique.		Splines	are	piecewise	lines	or	low-degree	

polynomials	that	are	inset	continuously	between	values,	termed	knots	(Perperoglou	et	al.,	

2019).	There	are	multiple	types	of	splines,	which	redlect	different	choices	in	polynomials	

and	knots.		Spline	regression	is	an	approach	for	ditting	and	smoothing	a	line’s	twists.		To	

compute	the	spline	results,	the	“mgcv”	package	in	R	was	used.	
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Figure	7.	Sample	Spline	and	Knot.		
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Chapter	4:		Results	

Exploratory	Analysis	

Descriptive	Statistics		

The	background	serum	concentration	for	PFOA	was	2	ng/mL	and	the	background	serum	

concentration	for	PFOS	was	5	ng/mL.		These	represent	exposure	from	the	non-drinking	

water	PFOA/S	found	in	the	environment,	i.e.	pots/pans,	product	packaging,	and	dire-

resistant	chemicals.		These	values	were	assigned	to	ZIP	Codes	in	which	no	drinking	water	

PFOA	and/or	PFOS	contamination	was	identidied.		Thus,	these	background	values	represent	

the	minimum	PFOA/S	in	this	data	set	(Table	2).		Of	the	75	ZIP	Codes	in	the	analysis,	31	had	

no	detectable	PFOA	in	the	drinking	water	and	were	assigned	serum	levels	of	2	ng/mL.		11	

ZIP	Codes	had	no	detectable	PFOS	in	the	drinking	water	and	were	assigned	serum	levels	of	

5	ng/mL.		The	abundance	of	the	undetectable	PFOA/S	in	many	water	districts	resulted	in	

the	background	values	playing	a	signidicant	role	in	our	data	set	to	the	extent	where	the	

minimum	(0	percentile)	and	1st	quartile	(25th	percentile)	were	very	close	to	the	same	

value	for	PFOS.		In	the	case	of	PFOA,	2	ng/mL	was	the	value	from	the	minimum	(0	

percentile)	all	the	way	to	the	41st	percentile	(Table	2).		The	range	(Min-Max)	for	PFOA/S	in	

the	data	set	was	narrow	with	the	maximum	values	only	reaching	slightly	above	2x	the	

minimum	values.			

Table	2:	Descriptive	Data	for	LA	County	and	Orange	County	combined.		Annual	asthma	ED	
visits	per	10,000	by	ZIP	Code.		Predicted	serum	PFOA/S	(ng/mL)	levels	in	communities	
with	contaminated	drinking	water	by	ZIP	Code.	
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Summary	Data	for	PFOA/S	(75	LAC	and	OC	Zips)	

Descriptive	data	for	potential	confounding	variables	are	shown	in	Table	3.		The	range	of	PM	

2.5	was	0.0095	to18.49	µg/m3,	the	median	was	4.26.	The	range	of	diesel	was	0.000041	to	

0.61kg,	the	median	was	0.064.		There	was	a	much	larger	variation	in	air	quality	between	

ZIP	Codes	with	both	PM2.5	and	diesel	compared	to	the	variation	and	PFOA/S	between	ZIP	

Codes.		The	range	for	income	was	$21,964	to	$169,125;	the	median	was	$73,187.		The	

percentage	of	white	non-Hispanic	in	each	ZIP	Code	ranged	from	16%	to	84%,	the	median	

was	63%.		The	percentage	of	individuals	who	did	not	dinish	high	school	in	each	ZIP	Code	

ranged	from	0%	to		26%,	the	median	was	9%.	

Table	3.	Descriptive	data	for	LA	County	and	Orange	County	combined	by	ZIP	Code.		PM	2.5	
(µg/m3),	Diesel	(kg),	Income,	Race	(%	White	non-Hispanic),	Education	(%	high	school	
incompletion)	by	ZIP	Code.	

Summary	Data	for	Potential	Confounders:	PM	2.5,	Diesel,	Income,	Race,	Education	

Min. 1st Qu.
Media

n
Mean 3rd Qu Max

Asthma ED 

Visits
28.070 45.670 72.570 68.860 83.400 117.330

PFOS (ng/mL) 5.000 5.011 5.606 7.381 10.093 11.299

PFOA (ng/mL) 2.000 2.000 2.003 2.550 3.130 4.448
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PFOA	reached	a	maximum	serum	level	of	~4.5	ng/mL	with	only	25%	of	the	ZIP	Codes	

having	a	PFOA	serum	level	above	3	ng/L	(Table	2	and	Figure	8).		PFOS	reached	a	maximum	

serum	level	of	11.3	ng/mL	with	25%	of	the	ZIP	Codes	having	at	least	10	ng/ml	(2x	the	

minimum	value)	(Table	2	and	Figure	9).		On	the	other	hand,	the	range	of	the	outcome	

asthma	ED	visits	that	our	study	measures	was	much	larger	compared	to	the	range	of	the	

risk	factors	PFOA/S.		The	minimum	number	of	ED	visits	was	28.07,	whereas	the	maximum	

was	4x	larger	at	117.33.		The	top	25%	of	ZIP	Codes	with	regards	to	asthma	ED	visits	were	3	

to	4x	larger	than	the	minimum.	

Min. 1st Qu.
Media

n
Mean 3rd Qu Max

PM2.5 0.010 2.182 4.256 4.927 6.886 18.490

Diesel 0.000 0.028 0.064 0.106 0.143 0.612

Race 16.00% 49.50% 63.00% 60.07% 75.00% 84.00%

Income $21,964 $63,147
$73,18

7
$82,591

$101,23

7

$169,12

5

Education 0.00% 7.00% 9.00% 10.25% 12.00% 26.00%
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Figure	8.	Histogram	of	Predicted	serum	PFOA	Descriptive	data	for	LA	County	and	Orange	
County	combined	by	ZIP	Code.	

			

Figure	9.	Histogram	of	predicted	serum	PFOS	descriptive	data	for	LA	County	and	Orange	
County	combined	by	ZIP	Code.	
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Scatter	plots	were	created	to	determine	if	there	was	a	correlation	between	our	risk	factors	

of	interest	(predicted	serum	PFOA/S)	and	our	outcome	of	interest	(Asthma	ED	visits).		Per	

scatter	plot,	there	was	no	correlation	between	predicted	serum	PFOA	and	the	number	of	

asthma	ED	visits	(Figure	10).		There	was	also	no	correlation	between	predicted	serum	PFOS	

and	the	number	of	asthma	ED	visits	(Figure	11).		A	visual	analysis	using	ArcGIS	was	also	

used	to	determine	if	there	is	a	correlation	between	predicted	serum	PFOA/S	and	Asthma	

ED	visits.		Per	mapping,	there	was	no	correlation	between	predicted	serum	PFOA	and	the	

rate	of	asthma	ED	visits	(Figure	12).		There	was	also	no	correlation	between	predicted	

serum	PFOS	and	the	rate	of	asthma	ED	visits	(Figure	12).	

			

Figure	10:	Scatter	plot	of	predicted	serum	PFOA	(x-axis)	levels	(ng/mL)	and	rate	of	asthma	
ED	visits	(y-axis)	
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Figure	11:	Scatter	plot	of	predicted	serum	PFOS	(x-axis)	levels	(ng/mL)	and	rate	of	asthma	
ED	visits	(y-axis)	

Spatial	Analysis	

Data,	including	predicted	serum	PFOS/PFOA	levels	and	Asthma	ED	Visit	rates,	were	

mapped	and	analyzed	at	the	ZIP	Code	level	for	the	ZIP	Codes	included	in	the	study	for	each	

county.		Results	demonstrated	distinct	spatial	patterns	of	asthma	ED	visit	prevalence	across	

 39



both	LAC	and	OC.	While	there	was	some	overlap	between	ED	visit	rate	and	PFAS	hot	spots,	

there	was	no	dedinite	pattern,	suggesting	that	varied	spatial	processes	are	at	play.	
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Figure	12.	Orange	County	ArcGIS	Map	of	Rates	of	Asthma	ED	Visits,	PFOA,	and	PFOS	in	
contaminated	ZIP	Codes.	Top	map:	Rates	of	Asthma	ED	visits	represented	by	graduated	
colors	-	yellow,	orange,	red	(lowest	to	highest).		Middle	map:	Predicted	serum	PFOS	(blue)	
levels	represented	by	graduated	shapes	-	blue	circles	smallest	to	largest	(lowest	to	highest	
concentration	of	PFOS).		Botton	map:	Predicted	serum	PFOA	(black)	levels	represented	by	
graduated	shapes	-	black	circles	smallest	to	largest	(lowest	to	highest	concentration	of	
PFOA).	
				

			

	

Figure	13.	Los	Angeles	County	ArcGIS	Map	of	Rates	of	Asthma	ED	Visits,	PFOA,	and	PFOS	in	
contaminated	ZIP	Codes.	Top	map:	Rates	of	Asthma	ED	visits	represented	by	graduated	
colors	-	yellow,	orange,	red	(lowest	to	highest).		Middle	map:	Predicted	serum	PFOS	(blue)	
levels	represented	by	graduated	shapes	-	blue	circles	smallest	to	largest	(lowest	to	highest	
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concentration	of	PFOS).		Botton	map:	Predicted	serum	PFOA	levels	(black)	represented	by	
graduated	shapes	-	black	circles	smallest	to	largest	(lowest	to	highest	concentration	of	
PFOA).	

Regression	Analysis	

Simple	Linear	Regression		

As	part	of	exploratory	analysis,	a	simple	regression	was	done	with	predicted	serum	PFOS	as	

the	only	independent	variable.		The	relationship	was	not	statistically	signidicant	and	the	

model	had	quite	a	low	R-Squared	of	0.004.			Likewise,	PFOA	was	evaluated	as	a	single	

independent	variable,	and	the	model	had	an	R-squared	value	of	0.06.			Therefore,	further	

analysis	that	included	additional	explanatory	variables	was	an	appropriate	next	step.	

Table	4.	Result	of	a	single	linear	regression	of	PFOS	and	single	linear	regression	of	PFOA	
versus	rate	of	Asthma	ED	visits	

Multiple	Linear	Regression		

Linear	regression	analysis	was	performed	to	determine	if	there	is	a	correlation	between	

our	risk	factors	of	interest	(predicted	serum	PFOA/S)	and	our	outcome	of	interest	(rate	of	

Asthma	ED	visits).		Continuous	serum	PFOS	concentrations	showed	a	positive	association	

with	rates	of	asthma	visits	whereas	serum	PFOA	showed	a	negative	association	with	rates	

Variable Estimate
Confidence 

Interval

PFOS (Only) 0.61 -1.47 , 2.69

PFOA (Only) -6.78 -12.74, -0.82
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of	asthma	ED	visits.		Potential	confounding	variables	are	also	included	in	the	regression	

analysis.		Diesel	and	education	were	associated	with	increased	Asthma	ED	visit	rates.		PM2.5,		

income,	and	race	were	associated	with	decreased	asthma	ED	visit	rates	(Table	6).	

Table	5.	Result	of	a	single	linear	regression	of	independent	continuous	variables	of	interest	
and	potential	confounding	variables	used	to	predict	Asthma	ED	visits.	

Simple	Linear	Regression	with	Categorical	Variables	

To	further	examine	negative	associations	(i.e.,	PFOA	and	PM2.5)	with	Asthma	ED	visits,	the	

variables	were	transformed	into	quartiles	and	categorical	analysis	was	performed	(Table	

7).		As	the	concentration	of	serum	PFOS	increased	from	Q2-Q3,	there	is	an	increase	in	the	

positive	regression	coefdicients	with	asthma	ED	visit	rates.		Surprisingly,	in	the	4th	quartile	

of	PFOS	there	was	a	decrease	in	the	rate	of	Asthma	ED	visits	suggesting	that	the	

relationships	may	not	be	linear.		Unexpectedly	as	the	concentration	of	PFOA	increased	from	

Q2-Q4,	there	is	a	decrease	in	the	positive	association	and	an	increase	in	the	negative	

Variable Estimate
Confidence 

Interval

PFOS 1.67 -0.23 , 3.57

PFOA -6.53 -12.21 , -0.85

PM 2.5 -10.22 -18.06 , -2.38

Diesel 12.68 5.49 , 19.87

Income -14.05 -22.71 , -5.39

Race -2.79 -11.06 , 5.48

Education 8.14 0.71 , 15.57
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association	with	to	asthma	ED	visit	rates.		Unexpectedly,	as	the	concentration	of	PM2.5	

increased	from	Q2-Q4,	there	was	an	increase	in	the	negative	association	with	asthma	ED	

visit	rates.		On	the	other	hand,	diesel	produced	an	estimate	in	a	tight	range	(9-10)	for	each	

quartile.		With	increasing	income	from	Q2-Q4,	a	decrease	in	Asthma	ED	visit	rates	was	

observed.		Race	was	dedined	as	non-Hispanic	White.		As	expected,	as	the	number	of	non-

Hispanic	White	increases	from	Q2-Q4,	there	is	a	decrease	in	the	positive	association	and	an	

increase	in	the	negative	association	with	asthma	ED	visit	rates.		Education	is	dedined	as	

percent	incomplete	high	school.	Likewise	as	expected,	as	the	percentage	of	individuals	who	

did	not	complete	high	school	increased	from	Q2-Q4	in	a	ZIP	Code	there	was	an	increased	

asthma	ED	visits.		

Table	6.		Results	of	quartile	linear	regression	model	of	independent	variables	of	interest	
and	potential	confounding	variables	used	to	predict	rates	of	asthma	ED	visits.	

Variable Estimate
Confidence 

Interval

PFOS_Q2 0.32 -11.77,12.40

PFOS_Q3 10.11 -3.87,24.09

PFOS_Q4 -2.19 -16.37,11.98

PFOA_Q2 0.73 -11.55,13.01

PFOA_Q3 0.11 -12.62,12.84

PFOA_Q4 -1.79 -16.37,12.79

pm2.5_Q2 -3.39 -22.52,15.75

pm2.5_Q3 -4.04 -26.11,18.03

pm2.5_Q4 -12.09 -34.97,10.78
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Correlation	Analysis		

After	identifying	which	independent	variables	were	associated	with	the	outcome	,	

correlation	analysis	was	conducted	to	understand	the	interrelationship	among	predictor	

variables.	Spearman	correlation	analysis	was	used	to	investigate	socioeconomic	(race,	

income,	education)	and	pollutant	variables	(serum	PFOS,	serum	PFOA,	Diesel,	PM2.5)	along	

with	asthma	ED	rates.	A	table	representing	numerical	values	of	the	correlation	analysis	

shows	positive	and	negative	values	ranging	from	0	to	1	(Table	4).		For	example,	PM2.5	and	

diesel	show	a	value	of	0.84	on	the	table.		This	suggests	a	strong	positive	relationship	

between	the	two	variables.		Conversely,	race	and	PM2.5	have	a	low	correlation	value	of	-0.18	

on	the	table	that	is	close	to	0.		Positive	signs	represent	a	positive	correlation	whereas	

negative	signs	represent	an	inverse	correlation.	Strong	relationships	were	found	between	

diesel_Q2 9.14 -11.37,29.66

diesel_Q3 10.29 -13.10,33.70

diesel_Q4 10.15 -15.58,35.88

income_Q2 -4.47 -16.36,7.42

income_Q3 -16.28 -31.77,-0.79

income_Q4 -31.69 -47.33,-16.05

race_Q2 4.15 -9.27,17.56

race_Q3 1.12 -12.37,14.61

race_Q4 -11.20 -27.59,5.19

edu_Q2 -0.72 -13.27,11.84

edu_Q3 -7.53 -18.60,3.54

edu_Q4 5.29 -6.81,17.38
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the	pollutants	Diesel	and	PM2.5	as	well	as	the	socioeconomic	factors	race	and	income	(Table	

4).		We	ran	four	different	models	to	compare	combinations:	1)	race	and	diesel,	2)	race	and	

PM2.5,	3)	income	and	diesel,	4)	income	and	PM2.5.	The	model	that	included	income	and	PM2.5	

had	the	greatest	predictive	value.			

Table	7.	Correlation	Coefdicients.		Numerical	representation	of	heat	map.		Numbers	closer	

to	+1	or	-1	represent	stronger	positive	or	negative	correlations	respectively.		Numbers	

closer	to	0	represent	weaker	correlations.	

Categorical	Regression	without	Collinearity	

Table	8.		Model	Variables	and	R-Squared	for	Categorical	Regression	w/o	Collinearity.		

PFOS PFOA
Asthma 

ED
PM2.5 diesel income

race 

white
edu

PFOS 1.00 0.16 0.22 0.29 0.34 -0.24 -0.02 -0.01

PFOA 0.16 1.00 -0.29 -0.13 -0.20 0.43 0.55 -0.19

Asthma 

ED
0.22 -0.29 1.00 0.10 0.32 -0.73 -0.50 0.20

PM2.5 0.29 -0.13 0.10 1.00 0.84 -0.19 -0.18 0.07

diesel 0.34 -0.20 0.32 0.84 1.00 -0.45 -0.32 0.14

income -0.24 0.43 -0.73 -0.19 -0.45 1.00 0.54 -0.44

race_white -0.02 0.55 -0.50 -0.18 -0.32 0.54 1.00 -0.11

edu -0.01 -0.19 0.20 0.07 0.14 -0.44 -0.11 1.00
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Several	combinations	of	confounders	were	considered	as	separate	models	and	compared	

based	on	R-squared	values	(Table	8).		While	interactions	were	considered	for	combinations	

of	race,	income,	diesel	and	PM2.5,	we	only	present	specidic	results	(Table	9)	for	the	model	

that	leveraged	income	and	PM2.5.	This	model	had	the	strongest	R-squared	value	at	0.605.		

However,		there	was	no	statistical	evidence	for	a	relationship	between	predicted	serum	

PFOA/PFOS	and	asthma	ED	visit	rates.	

Table	9.	Results	of	a	multiple	variable	regression	model	of	predicted	serum	PFOS/A	

modeled	categorically	and	adjusted	for	PM2.5,	Income,	and	Education.	

PF

OA PFOS Diesel

PM.2.

5 Race Income

ED

U R-Squared

Model 1 ✓ ✓ ✓ ✓ ✓ 0.484

Model 2 ✓ ✓ ✓ ✓ ✓ 0.602

Model 3 ✓ ✓ ✓ ✓ ✓ 0.511

Model 4 ✓ ✓ ✓ ✓ ✓ 0.605

Variable Estimate Confidence Interval

PFOS_Q2 2.01 -9.66,13.69

PFOS_Q3 13.48 0.88,26.08

PFOS_Q4 -0.09 -13.46,13.26

PFOA_Q2 2.05 -9.76,13.86

PFOA_Q3 -0.04 -12.38,12.28

PFOA_Q4 -4.22 -17.96,9.51
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Spline	Regression	

As	previously	stated,	some	results	from	linear	regression	analysis	of	quartiled	data	seem	to	

indicate	that	the	relationship	between	dependent	variables	and	outcome	may	be	non-linear.		

For	this	reason,	we	ran	a	spline	regression	analysis	(Table	10).		PFOS,	PFOA,	diesel,	income,	

and	education	were	used	in	the	spline	model.		These	variables	were	all	modeled	using	

spline	terms.		In	this	initial	spline	analysis,	only	income	was	signidicant	and	the	R-sq.(adj)	=		

0.533.		

Table	10.		Spline	Regression	Analysis	

pm2.5_Q2 3.83 -7.73,15.40

pm2.5_Q3 2.53 -9.50,14.57

pm2.5_Q4 -3.40 -15.31,8.51

income_Q2 -2.32 -13.84,9.18

income_Q3 -17.22 -31.07,-3.38

income_Q4 -35.70 -49.48,-21.91

edu_Q2 -2.23 -14.24,9.77

edu_Q3 -5.88 -16.51,4.75

edu_Q4 5.92 -5.78,17.63

Variable Estimate

Confidence 

Interval

s(PFOS_Q) 1.71 -4.17,7.59

s(PFOA_Q) 2.04e-11 -7.84,7.84

s(diesel_Q) 1.06e-10 -7.84,7.84
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	The	spline	analysis	was	repeated	by	modeling	PFOA	and	PFOS	with	splines	and	the	other	

covariates	modeled	categorically	by	quartiles.		This	second	spline	analysis	resulted	in	a	

higher	adjusted	R-squared	of	0.541	(Table	11).	Again	the	only	signidicant	variable	is	income.		

Table	11.	Mixed	Spline	Regression	Analysis	

Spline	data	was	plotted	for	serum	PFOS	vs	rates	of	asthma	ED	visits.		In	the	digure,	PFOS	

values	range	from	5	to	11.		At	the	lowest	concentration	of	PFOS,	there	is	a	steady	increase	in	

rates	of	asthma	ED	visits	which	peaks	at	7,	and	then	steadily	declines	until	10.5.		

s(income_Q) 2.81 -3.07,8.69

s(edu_Q) 0.90 -4.98,6.78

Variable Estimate Confidence Interval

s(PFOS_W) 3.19 -4.494,10.876

s(PFOA_W) 1.06 -1.133,3.257

pm2.5_Q2 4.61 -6.52,15.74

pm2.5_Q3 1.01 -10.33,12.34

pm2.5_Q4 -0.01 -11.34,11.33

income_Q2 0.85 -10.46,12.16

income_Q3 -17.32 -29.6,-4.99

income_Q4 -34.52 -46.79,-22.26

edu_Q2 -1.66 -12.61,9.29

edu_Q3 -6.56 -16.55,3.43

edu_Q4 3.91 -7.28,15.10
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Figure	14.	Predicted	serum	PFOS	and	predicted	number	of	asthma	ED	visits.	

Evaluation	of	Regression	Techniques	

Five	different	types	of	regression	models	were	evaluated	with	several	variations	of	each	

type	(Table	12).		Correlation	Analysis	revealed	collinearity	between	several	confounders	

and	this	factor	was	considered	for	dinal	model	selection	along	with	R-squared	value.		

Income	was	the	variable	that	added	the	most	predictability	to	each	model.		A	categorical	

regression	model	with	PM2.5,	education,	and	income	as	confounders	was	shown	to	be	the	

most	appropriate.	
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Table	12.	Variable	Type	and	R-Squared	for	Various	Models.	

Model
Raw 

Variables

Categorical 

Variables

Smoothed 

Variables
R-squared

Simple Linear 

Regression
PFOS 0.004

Multiple Linear 

Regression
All 0.525

Categorical 

Regression
All 0.649

Categorical 

Regression w/o 

Collinearity

PFOS, PFOA, 

PM2.5, 

Income, 

Education

0.605 

Spline Regression All 0.533

Mixed Spline

PM2.5, Income, 

Education

PFOS,PFO

A 0.541
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Chapter	5:		Discussion	

PFOA	Exposure	Patterns	

In	our	study,	derived	serum	concentrations	by	water	districts	for	PFOA	ranged	from	2	to	4.5	

ng/mL	with	a	median	of	2	ng/mL.		In	some	cases,	this	level	is	higher	than	what	is	reported	

in	the	literature;	however,	the	differences	in	background	level	could	be	due	to	temporal	

trends	and/or	geographic	location.		The	mean	PFOA	serum	concentrations	for	the	U.S.	

population	from	the	National	Health	and	Nutrition	Examination	Survey	trended	downward	

from	2.08	ng/mL	to	1.42	ng/mL	from	2011	to	2018	(CDC,	2021).		Dong	et	al.	measured	a	

median	PFOA	serum	of	1.2	ng/mL	in	asthmatics	and	0.5	ng/mL	in	non-asthmatics	(Dong	et	

al.,	2013).		Likewise	Qin	et	al.,	measured	a	median	PFOA	serum	of	approximately	1.02	ng/

mL	in	asthmatics	and	0.5	ng/mL	in	those	without	asthma	(Qin	et	al.,	2017).		In	other	cases,	

there	were	reports	of	PFOA	levels	that	exceed	our	calculated	levels	in	this	study.		Such	as	is	

the	case	for	Humblet	et	al.,	who	measured	a	median	PFOA	serum	of	approximately	4.2	ng/

mL	(Humblet	et	al.,	2014).		

In	our	study,	there	was	no	difference	between	LA	and	Orange	county	in	terms	of	modeled	

serum	PFOA	concentrations	by	water	districts.		Both	counties	had	a	median	for	PFOA	of	2	

ng/mL,	which	redlects	the	study	design	of	using	2	ng/mL	as	a	background	serum	

concentration.	Within	LA	county,	the	ZIP	Codes	that	had	the	highest	PFOA	concentration	

were	two	adjacent	locations:	91350	(4.4	ng/mL)	and	91351	(4.5	ng/mL).		Within	Orange	

county,	there	were	ten	ZIP	Codes	that	had	between	4.1	and	4.3	ng/mL	(the	highest	in	the	

county)	of	PFOA	in	the	drinking	water.	These	include	two	clusters	of	ZIP	Codes:	cluster	1	
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(92801,	92802,	92805,	92806,	92807,	and	92808)	and	cluster	2	(92865,	92866,	92867,	and	

92868).			

PFOS	Exposure	Patterns	

In	our	study,	derived	serum	concentrations	by	water	districts	for	PFOS	ranged	from	5	to	

11.3	ng/mL	with	a	median	of	5.6	ng/mL.		The	level	of	PFOS	calculated	in	our	study	was	

lower	than	that	published	in	the	literature;	however,	prevalence	of	PFAS	have	been	

decreasing	over	time.		For	instance	from	1999-2008,	Humblet	et	al.	measured	a	median	

PFOS	of	about	16.9	ng/mL	(Humblet	et	al.,	2014).		Even	higher	concentrations	were	

reported	by	Dong	et	al.,	who	measured	a	median	PFOS	of	about	33.9	ng/mL	in	asthmatics	

and	28.9	ng/mL	in	controls	(Dong	et	al.,	2013).		Likewise,	Qin	et	al.	measured	a	median	

PFOS	of	about	30.0	ng/mL	(Qin	et	al.,	2017).		On	the	other	hand,	the	mean	PFOS	serum	

concentrations	for	the	U.S.	population	from	the	National	Health	and	Nutrition	Examination	

Survey	trended	downward	from	6.31	ng/mL	to	4.25	ng/mL	from	2011	to	2018	(CDC,	2021).						

Due	to	exposure	patterns,	most	communities	with	elevated	PFAS,	i.e.	military	or	industrial	

environments,	have	primarily	elevated	PFOS;	however,	given	the	suspected	source	of	

Southern	California	water	system	contamination,	it	is	likely	that	PFOS/PFOA	exposure	is	

correlated	in	our	study.	

In	our	study,	there	was	a	marked	difference	between	LA	and	Orange	county	in	terms	of	

serum	PFOS	concentrations	by	water	districts.		As	a	result	of	our	ZIP	Code	inclusion	

method,	the	median	for	PFOS	in	Orange	County	was	nearly	2	fold	greater	(9.9	ng/mL)	than	

that	of	LA	county	(5.1	ng/mL).		This	difference	resulted	from	11	ZIP	Codes	in	LA	that	had	
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no	detectable	PFOS	in	their	water	districts	and	as	such	the	background	PFOS	level	of	5.0	

ng/mL	was	assigned	as	the	PFOS	level	for	these	ZIP	Codes.		Whereas	all	ZIP	Codes	in	

Orange	County	had	measurable	levels	of	PFOS	in	their	respective	water	districts.		Within	LA	

county,	the	ZIP	Code	that	had	the	highest	PFOS	concentration	was	90022	(11.1	ng/mL)	

followed	by	a	ZIP	Code	cluster	ranging	from	10.3	to	10.5	ng/mL	of	PFOS	(90240,	90241,	

and	90242).		Within	Orange	county,	the	ZIP	Codes	that	had	the	highest	PFOS	concentration	

were	four	adjacent	locations:	92865,	92866,	92867,	and	92868.	

Asthma	ED	Visits	

In	our	study,	rates	of	age-adjusted	Asthma	ED	visits,	2013-2015,	for	the	ZIP	Codes	included	

for	LA	and	Orange	county	ranged	from	28	to	117	per	10,000.		The	mean	rate	of	Asthma	ED	

visits	was	69	per	10,000.		The	mean	rate	of	Asthma	ED	visits	for	the	73	ZIP	Codes	included	

in	this	study	was	slightly	above	the	CDC	reported	national	rate	of	approximately	60	per	

10,000	ED	visits	with	asthma	as	the	primary	diagnosis	during	2013-2015	(CDC).		This	

elevated	rate	of	asthma	ED	visits	in	LA	and	Orange	county	may	be	related	to	the	high	levels	

of	smog	and	other	air	pollutants	that	encompass	the	LA	area.		This	is	further	supported	by	

the	markedly	elevated	median	number	of	asthma	ED	visits	in	the	LA	ZIP	Codes	81	per	

10,000	(mean	=	75	per	10,000)	compared	to	the	median	of	Orange	County	at	only	61	per	

10,000	(mean	=	63	per	10,000).		Within	LA	county,	the	ZIP	Codes	that	had	the	highest	rate	

of	asthma	ED	visits	were	90023	(115	per	10,000),	90033	(117	per	10,000),	90040	(115	per	

10,000),	and	90605	(114	per	10,000).		Within	Orange	county,	the	ZIP	Codes	that	had	the	

highest	rate	of	asthma	ED	visits	were	92703	(108	per	10,000)	followed	by	92832	(93	per	

10,000).		
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Predicted	Serum	PFOA/S	and	Rates	of	Asthma	ED	Visits	

In	this	study,	we	found	that	there	was	no	statistically	signidicant	relationship	between	

predicted	serum	concentrations	of	PFOA/S	and	Asthma	ED	visit	rate	in	communities	with	

PFAS	drinking	water	contamination.		However,	we	did	observe	a	non-statistically	signidicant	

positive	relationship	between	these	two	variables	in	which	the	second	and	third	quartiles	

of	both	PFOA	and	PFOS	had	a	positive	association	with	asthma	ED	visits.		Nonetheless,	

there	were	wide	condidence	intervals	for	these	associations,	so	the	effect	is	inconclusive.		

This	positive	relationship	was	not	seen	in	the	fourth	quartile	of	either.		Even	when	modeled	

categorically	by	quartiles,	the	overall	relationship	for	serum	PFOS	and	Asthma	ED	visits	

remained	positive,	while	that	for	serum	PFOA	was	negative.		We	may	not	have	been	able	to	

see	a	statistically	signidicant	relationship	in	our	study	due	to	the	high	level	of	air	pollution	

in	LA	county	and	surrounding	areas	which	may	add	confounders	that	were	difdicult	to	

control.		Another	factor	is	the	strong	negative	relationship	between	asthma	ED	visits	and	

household	income	because	of	the	layout	of	LA	it	is	possible	that	wealthy	households	may	be	

in	proximity	to	the	higher	levels	of	pollutants	in	areas	more	central	to	the	city	but	not	

consume	the	drinking	water	as	a	result	of	being	able	to	afford	diltered	bottled	water.		It’s	

also	possible	that	inhaled	PFOS/PFOA	may	be	more	applicable	route	for	asthma	

exacerbation	than	ingested	or	dermal	routes	of	exposure.		We	were	unable	to	compare	our	

results	to	other	studies	as	we	could	not	identify	any	other	studies	in	the	scientidic	literature	

that	evaluated	this	relationship.		

Limitations	of	the	Study	
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There	are	a	number	of	limitations	to	the	study.		One	of	the	main	limitations	of	our	study	is	

that	our	analysis	uses	asthma	ED	visits	as	a	proxy	for	asthma	exacerbations.		Many	different	

factors	--	medication	compliance,	lack	of	continuity	with	a	primary	care	provider,	stress	--	

can	result	in	ED	visits	with	the	primary	diagnosis	of	asthma.		Many	of	the	aforementioned	

variables	are	more	common	in	communities	with	lower	socioeconomic	status.		Thus	we	

attempted	to	control	for	these	variables	by	adding	income	and	educational	attainment	to	

our	model.			

Certainly,	results	would	be	more	valid	if	data	about	medication	compliance	and	asthma	

primary	care	visits	were	included.		Studies	have	found	that	compliant	asthmatic	patients	

are	signidicantly	less	likely	to	experience	exacerbation	than	their	less-compliant	asthmatic	

counterparts	(Stern	et	al.,	2006).		Patients	and/or	their	caregivers	often	have	

misconceptions	about	the	ED	department,	including	that	the	ED	have	access	to	more	

effective	treatments	or	that	ED	staff	are	better	qualidied	than	primary	care	counterparts	

(Al-Muhsen	et	al.,	2015).		These	perceptions	can	lead	to	excess	low	acuity	visits	and	dedlate	

the	explanatory	value	of	ED	visits.	

Another	limitation	is	the	study	assumes	similar	use	of	drinking	water	for	all	individuals	

within	a	ZIP	Code	as	well	as	similar	use	of	drinking	water	between	ZIP	Codes.		For	instance	

some	families	may	drink	exclusively	tap	water	within	a	given	ZIP	Code	while	other	families	

within	the	same	ZIP	Code	may	drink	soft	drinks	exclusively.		Likewise,	lower	income	ZIP	

Codes	may	drink	signidicantly	more	bottled	water	compared	to	tap	water.			In	fact,	low	SES	

groups	have	more	negative	perceptions	about	the	quality	and	safety	of	tap	water	than	their	
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more	afdluent	or	highly	educated	peers	(Rosinger	et	al.,	2018).	Moreover,	within	studied	

water	districts,	customers	that	consume	primarily	bottled	water	average	serum	PFOA	

concentrations	that	are	more	than	50%	less	than	their	primarily	tap	water	consuming	

counterparts	(Bartell	et	al.,	2010).	

Additionally,	while	our	study	addressed	many	important	confounders	for	asthma	ED	visits,		

some	confounders	were	not	considered	in	our	analysis.		Important	known	confounders	

include	the	smoking	status	of	patients	and/or	their	caregivers.	The	habit	of	smoking	in	

asthmatics	can	lead	to	destructive	effects	in	patient	outcomes	and	effectiveness	of	

treatment	(Stapleton	et	al.,	2011).		The	possibility	of	other	unmeasured	confounders	

causing	bias	cannot	be	eliminated.	

There	are	general	limitations	to	the	application	of	ZIP	Code	as	the	geographic	unit	for	

analysis	versus	more	precise	geographies	such	as	individual	addresses	and/or	census	

tracts.		While	generally	more	accessible,		ZIP	code	measures	can	have	more	variation	within	

each	individual	unit	(Thomas	et	al.,	2006).	Moreover,	our	study	uses	population	data	and	

assumes	one	PFAS	value	for	each	individual	within	a	given	ZIP	Code	rather	than	directly	

measuring	serum	PFAS	values.		In	other	words,	all	individuals	from	a	given	ZIP	Code	were	

assumed	to	have	roughly	the	same	serum	PFOA/S	values.		However,	past	serum	level	

studies	have	found	variance	among	different	demographics.		For	example,	one	community	

study	found	PFAS	serum	levels	were	higher	among	older	compared	with	younger	as	well	as	

male	versus	female	residents	(Graber	et	al.,	2019).		Similarly,	variables	such	as	education,	

race,	PM2.5,	and	diesel	were	analyzed	at	a	ZIP	Code	versus	an	individual	level.	
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Finally,	there	were	limits	to	the	statistical	approach.		Our	regression	models	studied	the	

association	between	the	Asthma	ED	response	variable	and	PFOS/PFOA	exposure	variables.	

Besides	the	exposure	of	interest,	other	covariates	were	Yitted	to	the	model	in	order	to	

control	for	their	effects	on	outcome.	Unfortunately,	there	could	have	been	misspeciYication	

of	the	main	exposure	variables	and	the	other	covariates,	and	this	could	have	adversely	

affected	tests	of	the	association	between	the	exposure	and	response	(Myers	1990).		Linear	

regression	may	not	have	been	appropriate	considering	the	extremely	non-normal	

distribution	of	the	PFOA	and	PFOA	levels	by	Zip	Code.	Moreover,	there	was	multicollinearity	

for	some	of	the	key	variables.		This	problem	was	addressed	by	sorting	correlated	covariates	

into	separate	models;	however,	the	problem	could	have	further	been	solved	by	more	

informative	data,	possibly	in	the	form	of	a	larger	sample.		A	larger	number	of	observations	

could	have	also	increased	statistical	power.	A	study	with	inadequate	statistical	power	has	a	

reduced	chance	of	detecting	a	true	effect.			Moreover,	low	power	also	reduces	the	likelihood	

that	a	statistically	signiYicant	result	reYlects	a	true	effect.	In	our	study,	the	conYidence	

intervals	for	most	of	the	reported	variables	are	very	wide	and	could	be	consistent	with	

random	variations.		

Strengths	of	the	Study	

Despite	the	limitations,	there	are	several	strengths	in	this	study.		A	strength	of	this	study	is	

that	it	addresses	important	confounders	that	have	been	shown	in	the	literature	to	impact	

asthma	ED	visits.		These	confounders	include	income,	race,	education,	and	air	quality	(PM2.5	

and	diesel).		By	controlling	for	these	confounders	in	our	regression	analysis	we	were	able	to	

enhance	the	predictive	power	of	our	overall	model,	though	it	didn’t	further	the	detection	of	
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PFOS/PFOA	effects.		Another	strength	of	this	study	is	that	we	performed	analysis	to	address	

a	possible	linear	relationship	between	dependent	and	independent	variables	as	well	as	an	

analysis	to	address	a	non	linear	relationship	between	these	variables.		By	addressing	a	

potential	non-linear	relationship	we	were	able	to	enhance	the	predictive	power	of	our	

model.			

Future	Studies	

Future	studies	should	be	designed	to	address	the	limitations	of	the	study.		One	possibility	is	

the	distribution	of	questionnaires	to	individuals	in	the	ED	with	the	primary	diagnosis	of	

asthma.		These	questionnaires	can	address	asthma	medication	compliance,	frequency	of	

primary	care	visits,	BMI,	use	of	local	drinking	water.		Furthermore,	serum	PFOA/S	levels	

can	be	measured	for	individuals	in	the	ED	with	the	primary	diagnosis	of	asthma.		In	fact,	

Asthma	ED	visit	rates	could	be	examined	in	a	cohort	population	for	which	biological	

specimens	are	available.		Moreover,	the	Agency	for	Toxic	Substances	and	Disease	Registry	

(ATSDR)	and	the	EPA	have	compiled	a	list	of	communities	across	the	country	that	have	

been	shown	to	have	PFAS	water	contamination.		It	could	be	informative	to	conduct	a	large	

ecological	study	to	compare	asthma	ED	rates	in	the	communities	with	known	and	likely	

higher	PFAS	contamination	than	a	sample	of	control	communities.	

Policy	implications		

Signidicant	evidence	from	literature	review	supports	the	belief	that	PFOS	and	PFOA	are	

toxins	that	have	the	potential	to	harm	human	health;	therefore,	the	implications	of	

exposure	can't	be	ignored.		The	regulation	of	PFOA/S	has	been	a	contentious	yet	salient	
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issue	in	Environmental	Health.		In	2006,	due	to	public	health	concerns	the	EPA	convinced	

eight	major	companies	in	the	PFASs	industry	to	voluntarily	phase	out	PFOA/S	by	2015	

(Cousins	et	al.,	2020).		Despite	this	push	in	the	right	direction,	there	are	currently	no	federal	

PFAS	drinking	water	standards.		This	is	concerning	considering	increasing	toxicological	and	

epidemiological	evidence	of	the	adverse	health	effects	PFAS.		This	combined	with	the	

widespread	environmental	presence	of	PFAS	makes	this	an	even	more	alarming	issue.		PFAS	

are	known	drinking	water	contaminants,	and	there	is	documented	population-level	

exposure	identidied	in	NHANES.			

In	2016,	the	EPA	developed	health	advisories	(HAs),	which	are	only	recommendations	

(Post,	2021).		This	indicates	that	they	are	non-enforceable.		Furthermore,	some	research	

has	suggested	that	the	EPA’s	HA	are	not	sufdiciently	protective.		Studies	suggest	that	

drinking	water	with	70	ng/L	PFOA/S	increases	blood	levels	above	current	U.S.	background	

levels	(Cousins	et	al.,	2020).		As	a	result,	seven	states	have	developed	guidelines	for	

drinking	water	PFOA/S	levels.		California	has	adopted	non-regulatory	notidication	levels	for	

PFOA	and	PFOS	in	drinking	water.	These	levels	are	14	ng/L	for	PFOA	and	13	ng/L	for	PFOS.	

Water	systems	are	not	required	to	conduct	monitoring.	However,	if	test	results	exceed	a	

specidied	level,	water	systems	must	comply	with	state	public	notidication	requirements	

(Pontius,	2019).		

In	2018,	the	Agency	for	Toxic	Substances	and	Disease	Registry	(ATSDR)	determined	

minimal	risk	levels	(MRLs)	for	intermediate	duration	exposure	for	PFOA/S.		Though	MRLs	

used	similar	measuring	units	to	the	EPA,	the	MRL	values	for	PFOA	(3	ng/kg/day)	and	PFOS	
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(2	ng/kg/day)	were	up	to	ten	times	lower	than	the	metrics	the	EPA	used	to	develop	its	

health	advisories	(Buser,	2018)	.		In	addition	to	the	health	advisories,	the	EPA’s	PFOA	

Stewardship	Program	includes	PFOA	and	its	precursors	(Cordner	et	al.,	2019).		However,	

EPA	has	not	included	PFOA/S	in	the	fourth	cycle	of	UCMR	testing.		EPA-validated	drinking	

water	testing	protocols	exist	for	some	PFAS	(EPA	Method	537),	though	validated	methods	

are	lacking	for	others	and	for	media	such	as	groundwater	(Cordner	et	al.,	2019).			

The	mixed	results	of	this	study	and	others	suggests	ongoing	research	of	PFOA/S	is	still	a	

high	priority	in	order	to	reduce	risk	and	inform	future	policy.		Increased	knowledge	can	

help	policymakers	and	other	professionals	in	the	dield	to	properly	address	this	health	

priority.		
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Chapter	6:		Conclusion	

PFOA/S	are	ubiquitous	and	highly	stable	toxins	in	our	environment.		Mounting	evidence	

from	animal	and	epidemiological	studies	has	begun	to	elucidate	the	toxicological	prodile	

and	health	effects	of	these	compounds.		Asthma	is	one	of	the	health	effects	that	has	been	

linked	to	PFOA/S.	

In	our	study,	we	explored	the	association	between	predicted	serum	PFOA/S	concentrations	

in	communities	with	drinking	water	contamination	and	asthma	ED	visits	in	Orange	and	LA	

counties.		These	studies	were	conducted	at	the	population	level	using	data	sets	containing	

drinking	water	concentrations	of	PFOA/S	and	number	of	asthma	ED	visits	within	the	ZIP	

Codes	of	the	2	counties.		We	conducted	geographical	analysis	by	quantitatively	mapping	

predicted	serum	PFOA/S	calculated	using	measured	drinking	water	levels	and	asthma	ED	

visits	by	ZIP	Code.		We	performed	statistical	analysis	using	various	regression	methods	to	

determine	if	predicted	serum	PFOA/S	levels	were	associated	with	asthma	ED.		These	

statistical	analyses	controlled	for	various	potential	confounders	of	this	relationship	—	race,	

education,	household	income,	air	quality	(diesel,	PM2.5).		Mapping	and	statistical	analysis	

show	no	clear	relationship	between	PFOA/S	serum	levels	and	rates	of	asthma	ED	visits.		
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Appendix	A:	R	Code	

> library(readr)

> pfos_pfoa <- read_csv("~/downloads/PFAS_Asthma - Background Weighted - Target Data [wt].csv")

cols(

  Zip = col_double(),

  `PFOS [wt]` = col_double(),

  `PFOA[wt]` = col_double(),

  `Asthma ED [Avg]` = col_double()

)

> summary(pfos_pfoa)

      Zip          PFOS [wt]         PFOA[wt]     Asthma ED [Avg] 

 Min.   :90022   Min.   : 5.000   Min.   :2.000   Min.   : 28.07  

 1st Qu.:90634   1st Qu.: 5.011   1st Qu.:2.000   1st Qu.: 45.67  

 Median :91382   Median : 5.606   Median :2.003   Median : 72.57  

 Mean   :91639   Mean   : 7.381   Mean   :2.557   Mean   : 68.86  

 3rd Qu.:92822   3rd Qu.:10.093   3rd Qu.:3.130   3rd Qu.: 83.40  

 Max.   :92887   Max.   :11.299   Max.   :4.448   Max.   :117.33 

#Histograms & Boxplots

> hist(pfos_pfoa$'PFOS [wt]')

> hist(pfos_pfoa$'PFOA[wt]')

> library(ggplot2)

> ggplot(data = pfos_pfoa, 

+        aes(x = `PFOS [wt]`, y =  `Asthma ED [Avg]`)) +

+   geom_point()

> ggplot(data = pfos_pfoa, 

+        aes(x = `PFOA [wt]`, y =  `Asthma ED [Avg]`)) +

+   geom_point()

#exploratory analysis

> pfos_lm_fit <- lm(`Asthma ED [Avg]`~`PFOS [wt]`, data = pfos_pfoa)

> summary(pfos_lm_fit)

Call:

lm(formula = `Asthma ED [Avg]` ~ `PFOS [wt]`, data = pfos_pfoa)

Residuals:
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    Min      1Q  Median      3Q     Max 

-40.673 -21.757   3.341  15.675  49.924 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  64.3703     8.2880   7.767 3.86e-11 ***

`PFOS [wt]`   0.6077     1.0607   0.573    0.568    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 23.56 on 73 degrees of freedom

Multiple R-squared:  0.004476, Adjusted R-squared:  -0.009161 

F-statistic: 0.3282 on 1 and 73 DF,  p-value: 0.5685

> pfoa_lm_fit <- lm(`Asthma ED [Avg]`~`PFOA[wt]`, data = pfos_pfoa)

> summary(pfoa_lm_fit)

Call:

lm(formula = `Asthma ED [Avg]` ~ `PFOA[wt]`, data = pfos_pfoa)

Residuals:

    Min      1Q  Median      3Q     Max 

-43.664 -18.109   0.471  19.711  44.704 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)   86.186      8.203  10.507 2.97e-16 ***

`PFOA[wt]`    -6.778      3.038  -2.231   0.0287 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 22.85 on 73 degrees of freedom

Multiple R-squared:  0.06384, Adjusted R-squared:  0.05102 

F-statistic: 4.978 on 1 and 73 DF,  p-value: 0.02874

> combined_lm_fit <- lm(`Asthma ED [Avg]`~`PFOS [wt]`+`PFOA[wt]`, data = pfos_pfoa)

> summary(combined_lm_fit)

Call:

lm(formula = `Asthma ED [Avg]` ~ `PFOS [wt]` + `PFOA[wt]`, data = pfos_pfoa)
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Residuals:

    Min      1Q  Median      3Q     Max 

-40.123 -20.591   1.404  15.626  47.930 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)   78.152      9.366   8.344  3.5e-12 ***

`PFOS [wt]`    1.910      1.119   1.707  0.09219 .  

`PFOA[wt]`    -9.149      3.305  -2.768  0.00716 ** 

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 22.55 on 72 degrees of freedom

Multiple R-squared:  0.1002, Adjusted R-squared:  0.07525 

F-statistic: 4.011 on 2 and 72 DF,  p-value: 0.02231

# diagnostic plots

> layout(matrix(c(1,2,3,4),2,2))

> plot(combined_lm_fit)
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> anova(combined_lm_fit,pfoa_lm_fit)

Analysis of Variance Table

Model 1: `Asthma ED [Avg]` ~ `PFOS [wt]` + `PFOA[wt]`

Model 2: `Asthma ED [Avg]` ~ `PFOA[wt]`

  Res.Df   RSS Df Sum of Sq      F  Pr(>F)  

1     72 36624                              

2     73 38105 -1   -1481.7 2.9129 0.09219 .

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> 
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#Regression Analysis

> model<-lm(df$'Asthma ED [Avg]' ~ df$'PFOS [wt]' + df$'PFOA[wt]'+df$pm2.5 + df$diesel+df$income_qrt + df$race_white + 

df$edu, data = df)

> summary(model)

Call:

lm(formula = df$"Asthma ED [Avg]" ~ df$"PFOS [wt]" + df$"PFOA[wt]" + 

    df$pm2.5 + df$diesel + df$income_qrt + df$race_white + df$edu, 

    data = df)

Residuals:

    Min      1Q  Median      3Q     Max 

-38.540 -11.425  -3.092   8.366  51.451 

Coefficients:

               Estimate Std. Error t value Pr(>|t|)    

(Intercept)    115.6986    12.1134   9.551 3.98e-14 ***

df$"PFOS [wt]"   0.3987     0.9035   0.441   0.6604    

df$"PFOA[wt]"   -0.3655     2.8947  -0.126   0.8999    

df$pm2.5        -1.2999     0.7686  -1.691   0.0954 .  

df$diesel       36.2314    25.6952   1.410   0.1632    

df$income_qrt  -13.7728     2.9499  -4.669 1.50e-05 ***

df$race_white  -18.7722    15.6600  -1.199   0.2349    

df$edu          -4.6905    46.3049  -0.101   0.9196    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 17 on 67 degrees of freedom

Multiple R-squared:  0.5246, Adjusted R-squared:  0.4749 

F-statistic: 10.56 on 7 and 67 DF,  p-value: 7.187e-09
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Call:

lm(formula = df.f$"Asthma ED [Avg]" ~ PFOS_Q + PFOA_Q + pm2.5_Q + 

    diesel_Q + income_Q + race_Q + edu_Q, data = df.f)

Residuals:

    Min      1Q  Median      3Q     Max 

-32.620 -11.310  -0.113   7.859  32.127 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  79.4281    10.1103   7.856  1.9e-10 ***

PFOS_Q2       0.3151     6.1666   0.051 0.959435    

PFOS_Q3      10.1112     7.1357   1.417 0.162339    

PFOS_Q4      -2.1977     7.2345  -0.304 0.762483    

PFOA_Q2       0.7310     6.2693   0.117 0.907623    

PFOA_Q3       0.1114     6.4963   0.017 0.986383    

PFOA_Q4      -1.7896     7.4426  -0.240 0.810907    

pm2.5_Q2     -3.3852     9.7651  -0.347 0.730215    

pm2.5_Q3     -4.0394    11.2604  -0.359 0.721224    

pm2.5_Q4    -12.0968    11.6727  -1.036 0.304756    

diesel_Q2     9.1447    10.4693   0.873 0.386340    

diesel_Q3    10.2981    11.9422   0.862 0.392390    

diesel_Q4    10.1518    13.1314   0.773 0.442901    

income_Q2    -4.4672     6.0681  -0.736 0.464872    

income_Q3   -16.2827     7.9039  -2.060 0.044315 *  

income_Q4   -31.6931     7.9795  -3.972 0.000216 ***

race_Q2       4.1486     6.8460   0.606 0.547105    

race_Q3       1.1203     6.8833   0.163 0.871335    

race_Q4     -11.2043     8.3644  -1.340 0.186118    

edu_Q2       -0.7153     6.4081  -0.112 0.911540    

edu_Q3       -7.5289     5.6500  -1.333 0.188379    

edu_Q4        5.2854     6.1743   0.856 0.395834    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 16.43 on 53 degrees of freedom
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Multiple R-squared:  0.6486, Adjusted R-squared:  0.5093 

F-statistic: 4.658 on 21 and 53 DF,  p-value: 2.901e-06

> df.cor = cor(df, method = c("spearman"))

> as.matrix(df.cor)

                Asthma ED [Avg]      PFOS_Q      PFOA_Q     pm2.5_Q    diesel_Q   income_Q      race_Q       edu_Q

Asthma ED [Avg]       1.0000000  0.19808216 -0.33385872  0.11894038  0.28781633 -0.6759445 -0.48680206  0.19734781

PFOS_Q                0.1980822  1.00000000  0.20398719  0.30893933  0.28618137 -0.2290058 -0.01646167  0.02668083

PFOA_Q               -0.3338587  0.20398719  1.00000000 -0.04594832 -0.16500281  0.4386673  0.49511986 -0.15283120

pm2.5_Q               0.1189404  0.30893933 -0.04594832  1.00000000  0.81491709 -0.1647070 -0.18925217  0.03733339

diesel_Q              0.2878163  0.28618137 -0.16500281  0.81491709  1.00000000 -0.3708182 -0.34468378  0.04857143

income_Q             -0.6759445 -0.22900578  0.43866729 -0.16470695 -0.37081822  1.0000000  0.55230610 -0.36907594

race_Q               -0.4868021 -0.01646167  0.49511986 -0.18925217 -0.34468378  0.5523061  1.00000000 -0.13152560

edu_Q                 0.1973478  0.02668083 -0.15283120  0.03733339  0.04857143 -0.3690759 -0.13152560  1.00000000

> model1<-lm(formula=df.f$'Asthma ED [Avg]'~PFOS_Q+PFOA_Q+diesel_Q+race_Q+edu_Q, data=df.f)

> summary(model1)

Call:

lm(formula = df.f$"Asthma ED [Avg]" ~ PFOS_Q + PFOA_Q + diesel_Q + 

    race_Q + edu_Q, data = df.f)

Residuals:

    Min      1Q  Median      3Q     Max 

-34.304 -11.576   0.061  14.419  31.637 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  70.5910    10.3212   6.839 5.06e-09 ***

PFOS_Q2       5.8234     6.7055   0.868  0.38867    

PFOS_Q3      14.5515     7.1315   2.040  0.04579 *  

PFOS_Q4       7.6505     7.1706   1.067  0.29035    

PFOA_Q2      -4.1262     6.7124  -0.615  0.54111    

PFOA_Q3      -7.3344     6.9373  -1.057  0.29471    

PFOA_Q4      -9.3192     8.2254  -1.133  0.26181    

diesel_Q2     5.0265     6.8983   0.729  0.46909    
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diesel_Q3     5.4467     7.9081   0.689  0.49369    

diesel_Q4     3.3504     7.8167   0.429  0.66976    

race_Q2      -0.8806     6.9331  -0.127  0.89936    

race_Q3      -8.9480     7.2070  -1.242  0.21930    

race_Q4     -26.2584     8.2614  -3.178  0.00236 ** 

edu_Q2        0.4421     7.1372   0.062  0.95082    

edu_Q3       -8.2529     6.4049  -1.289  0.20259    

edu_Q4       13.0686     6.3942   2.044  0.04544 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 18.87 on 59 degrees of freedom

Multiple R-squared:  0.4839, Adjusted R-squared:  0.3527 

F-statistic: 3.688 on 15 and 59 DF,  p-value: 0.0001575

> model2<-lm(formula=df.f$'Asthma ED [Avg]'~PFOS_Q+PFOA_Q+diesel_Q+income_Q+edu_Q, data=df.f)

> summary(model2)

Call:

lm(formula = df.f$"Asthma ED [Avg]" ~ PFOS_Q + PFOA_Q + diesel_Q + 

    income_Q + edu_Q, data = df.f)

Residuals:

    Min      1Q  Median      3Q     Max 

-30.555 -11.768   0.300   9.075  35.813 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  79.1911     9.1357   8.668 4.10e-12 ***

PFOS_Q2       0.9354     6.0946   0.153   0.8785    

PFOS_Q3      10.6301     6.4801   1.640   0.1062    

PFOS_Q4      -1.2689     6.8740  -0.185   0.8542    

PFOA_Q2       1.1023     5.9202   0.186   0.8529    

PFOA_Q3       1.6473     6.4720   0.255   0.8000    

PFOA_Q4      -3.7004     7.2241  -0.512   0.6104    

diesel_Q2     6.5533     6.2866   1.042   0.3015    

diesel_Q3     2.3298     6.6939   0.348   0.7290    

diesel_Q4     2.0427     6.5880   0.310   0.7576    
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income_Q2    -3.2320     6.0014  -0.539   0.5922    

income_Q3   -18.7888     7.3162  -2.568   0.0128 *  

income_Q4   -37.4295     7.2658  -5.151 3.13e-06 ***

edu_Q2       -1.0129     6.3155  -0.160   0.8731    

edu_Q3       -5.8007     5.4444  -1.065   0.2910    

edu_Q4        5.2576     6.0346   0.871   0.3872    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 16.57 on 59 degrees of freedom

Multiple R-squared:  0.6022, Adjusted R-squared:  0.5011 

F-statistic: 5.954 on 15 and 59 DF,  p-value: 2.738e-07

> model3<-lm(formula=df.f$'Asthma ED [Avg]'~PFOS_Q+PFOA_Q+pm2.5_Q+income_Q+edu_Q, data=df.f)

> summary(model3)

Call:

lm(formula = df.f$"Asthma ED [Avg]" ~ PFOS_Q + PFOA_Q + pm2.5_Q + 

    income_Q + edu_Q, data = df.f)

Residuals:

    Min      1Q  Median      3Q     Max 

-28.963 -11.450  -0.105   7.785  38.248 

Coefficients:

             Estimate Std. Error t value Pr(>|t|)    

(Intercept)  79.27694    8.95277   8.855 1.99e-12 ***

PFOS_Q2       2.01689    5.95870   0.338   0.7362    

PFOS_Q3      13.48162    6.42839   2.097   0.0403 *  

PFOS_Q4      -0.09775    6.81971  -0.014   0.9886    

PFOA_Q2       2.05265    6.02710   0.341   0.7346    

PFOA_Q3      -0.04821    6.29419  -0.008   0.9939    

PFOA_Q4      -4.22185    7.00967  -0.602   0.5493    

pm2.5_Q2      3.83540    5.90443   0.650   0.5185    

pm2.5_Q3      2.53589    6.14400   0.413   0.6813    

pm2.5_Q4     -3.40058    6.07789  -0.559   0.5779    

income_Q2    -2.32945    5.87316  -0.397   0.6931    

income_Q3   -17.22771    7.06232  -2.439   0.0177 *  
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income_Q4   -35.70170    7.03290  -5.076 4.12e-06 ***

edu_Q2       -2.23347    6.12613  -0.365   0.7167    

edu_Q3       -5.88103    5.42586  -1.084   0.2828    

edu_Q4        5.92384    5.97406   0.992   0.3254    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 16.51 on 59 degrees of freedom

Multiple R-squared:  0.605, Adjusted R-squared:  0.5046 

F-statistic: 6.024 on 15 and 59 DF,  p-value: 2.287e-07

> model4<-lm(formula=df.f$'Asthma ED [Avg]'~PFOS_Q+PFOA_Q+pm2.5_Q+race_Q+edu_Q, data=df.f)

> summary(model4)

Call:

lm(formula = df.f$"Asthma ED [Avg]" ~ PFOS_Q + PFOA_Q + pm2.5_Q + 

    race_Q + edu_Q, data = df.f)

Residuals:

    Min      1Q  Median      3Q     Max 

-37.001 -11.568   0.251  14.253  38.289 

Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)  71.4170     9.8396   7.258 9.89e-10 ***

PFOS_Q2       6.2122     6.4528   0.963  0.33962    

PFOS_Q3      18.0556     6.8454   2.638  0.01066 *  

PFOS_Q4       7.6670     7.0160   1.093  0.27893    

PFOA_Q2      -1.3345     6.7232  -0.198  0.84334    

PFOA_Q3      -9.0383     6.5577  -1.378  0.17333    

PFOA_Q4      -7.0505     7.8370  -0.900  0.37197    

pm2.5_Q2      5.1864     6.3695   0.814  0.41877    

pm2.5_Q3      4.2314     6.9980   0.605  0.54772    

pm2.5_Q4     -6.9442     6.9965  -0.993  0.32499    

race_Q2       0.8312     6.7452   0.123  0.90235    

race_Q3     -10.1878     6.7236  -1.515  0.13505    

race_Q4     -26.4512     7.8577  -3.366  0.00135 ** 

edu_Q2        0.2296     6.8084   0.034  0.97321    

edu_Q3       -7.8667     6.2058  -1.268  0.20991    
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edu_Q4       13.7404     6.1288   2.242  0.02874 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 18.36 on 59 degrees of freedom

Multiple R-squared:  0.5112, Adjusted R-squared:  0.3869 

F-statistic: 4.113 on 15 and 59 DF,  p-value: 4.422e-05

> model_fs_spline<-gam(df.f$"Asthma ED [Avg]" ~ s(PFOS_Q, bs="fs") + s(PFOA_Q, bs="fs") + s(pm2.5_Q, bs="fs") + 

+     s(income_Q, bs="fs") + s(edu_Q, bs="fs"), , data=df.f)

> summary.gam(model_fs_spline)

Family: gaussian 

Link function: identity 

Formula:

df.f$"Asthma ED [Avg]" ~ s(PFOS_Q, bs = "fs") + s(PFOA_Q, bs = "fs") + 

    s(pm2.5_Q, bs = "fs") + s(income_Q, bs = "fs") + s(edu_Q, 

    bs = "fs")

Parametric coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)   69.051      8.071   8.555 2.02e-12 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:

                  edf Ref.df      F p-value    

s(PFOS_Q)   1.710e+00      3  1.938   0.142    

s(PFOA_Q)   3.371e-11      4  0.000   0.761    

s(pm2.5_Q)  3.581e-11      4  0.000   0.820    

s(income_Q) 2.811e+00      3 28.876  <2e-16 ***

s(edu_Q)    8.972e-01      3  0.702   0.198    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) =  0.533   Deviance explained = 56.7%

GCV = 281.19  Scale est. = 257.13    n = 75
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> model_fs2_spline<-gam(df.f$"Asthma ED [Avg]" ~ s(PFOS_Q, bs="fs") + s(PFOA_Q, bs="fs") + s(pm2.5_Q, bs="fs") + 

+     s(race_Q, bs="fs") + s(edu_Q, bs="fs"), , data=df.f)

> summary.gam(model_fs2_spline)

Family: gaussian 

Link function: identity 

Formula:

df.f$"Asthma ED [Avg]" ~ s(PFOS_Q, bs = "fs") + s(PFOA_Q, bs = "fs") + 

    s(pm2.5_Q, bs = "fs") + s(race_Q, bs = "fs") + s(edu_Q, bs = "fs")

Parametric coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)   68.330      8.322   8.211 9.64e-12 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:

                 edf Ref.df      F  p-value    

s(PFOS_Q)  1.607e+00      3  1.844   0.0621 .  

s(PFOA_Q)  5.585e-11      4  0.000   0.4792    

s(pm2.5_Q) 1.035e-08      3  0.000   0.4288    

s(race_Q)  2.697e+00      3 11.209 1.81e-05 ***

s(edu_Q)   2.294e+00      3  4.342   0.0106 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) =   0.39   Deviance explained = 44.4%

GCV =  373.6  Scale est. = 335.75    n = 75

> model_fs3_spline<-gam(df.f$"Asthma ED [Avg]" ~ s(PFOS_Q, bs="fs") + s(PFOA_Q, bs="fs") + s(diesel_Q, bs="fs") + 

+     s(race_Q, bs="fs") + s(edu_Q, bs="fs"), , data=df.f)

> summary.gam(model_fs3_spline)

Family: gaussian 

Link function: identity 

Formula:

df.f$"Asthma ED [Avg]" ~ s(PFOS_Q, bs = "fs") + s(PFOA_Q, bs = "fs") + 

    s(diesel_Q, bs = "fs") + s(race_Q, bs = "fs") + s(edu_Q, 
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    bs = "fs")

Parametric coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept)   68.330      8.322   8.211 9.64e-12 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:

                  edf Ref.df      F  p-value    

s(PFOS_Q)   1.607e+00      3  1.844   0.0621 .  

s(PFOA_Q)   9.387e-11      4  0.000   0.4797    

s(diesel_Q) 8.081e-11      4  0.000   0.5447    

s(race_Q)   2.697e+00      3 11.209 1.81e-05 ***

s(edu_Q)    2.294e+00      3  4.342   0.0106 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) =   0.39   Deviance explained = 44.4%

GCV =  373.6  Scale est. = 335.75    n = 75

---

> model_dfs2_spline<-gam(df.s$"Asthma ED [Avg]" ~ s(PFOS_W) + s(PFOA_W) + pm2.5_Q + 

+     income_Q+ edu_Q, , data=df.s)

> summary(model_dfs2_spline)

Family: gaussian 

Link function: identity 

Formula:

df.s$"Asthma ED [Avg]" ~ s(PFOS_W) + s(PFOA_W) + pm2.5_Q + income_Q + 

    edu_Q

Parametric coefficients:

              Estimate Std. Error t value Pr(>|t|)    

(Intercept)  81.407373   6.767117  12.030  < 2e-16 ***

pm2.5_Q2      4.606608   5.678782   0.811  0.42042    

pm2.5_Q3      1.006703   5.783547   0.174  0.86239    

pm2.5_Q4     -0.005333   5.783079  -0.001  0.99927    
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income_Q2     0.850215   5.767805   0.147  0.88330    

income_Q3   -17.317986   6.285953  -2.755  0.00773 ** 

income_Q4   -34.524862   6.257932  -5.517 7.52e-07 ***

edu_Q2       -1.658857   5.587766  -0.297  0.76758    

edu_Q3       -6.556201   5.096436  -1.286  0.20317    

edu_Q4        3.909590   5.709913   0.685  0.49614    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:

            edf Ref.df     F p-value  

s(PFOS_W) 3.191  3.921 2.147  0.0759 .

s(PFOA_W) 1.062  1.120 0.528  0.4470  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) =  0.541   Deviance explained = 62.3%

GCV = 311.97  Scale est. = 252.68    n = 75

#spline plot

> grdpts = seq(min(df.s$PFOS_W),max(df.s$PFOS_W),length.out=1000)

> head(grdpts)

[1] 5.000000 5.006305 5.012610 5.018916 5.025221 5.031526

> grdpots

> prdgrd = data.frame(PFOS_W=grdpts, pm2.5_W=median(df.s$pm2.5_W,na.rm=T),PFOA_W=median(df.s$PFOA_W,na.rm=T), 

income_Q=2, edu_Q=2)

>  plot(grdpts, type="l", xlab="PFOS", ylab = "Asthma ED",

+ 

+  main="pfos and asthma ed")
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