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NONEXISTENCE OF SOLUTIONS IN (0, 1) FOR K-P-P-TYPE
EQUATIONS FOR ALL d ≥ 1

JÁNOS ENGLÄNDER AND PÉTER L. SIMON

Abstract. Consider the KPP-type equation of the form ∆u+f(u) = 0, where
f : [0, 1] → R+ is a concave function. We prove for arbitrary dimensions that
there is no solution bounded in (0, 1). The significance of this result from the
point of view of probability theory is also discussed.

1. Introduction and main result

In this article we will investigate certain semilinear elliptic equations of the form
∆u + f(u) = 0. Our assumption on the nonlinear term f(u) is as follows.

Assumption 1. We assume that f : [0, 1] → R is
(i) continuous ,
(ii) positive in (0, 1) and
(iii) z 7→ f(z)/z is strictly decreasing. ¦

Consider now the Kolmogorov Petrovskii Piscunov-type (KPP) equation

∆u + f(u) = 0(1)

0 < u < 1, in Rd.(2)

Theorem 1. Problem (1)-(2) has no solution for d ≥ 1.

Semilinear elliptic equations of the form (1) have been widely studied. We men-
tion here only two reviews [14, 15], where the exact number of positive solutions
with different nonlinearities are studied. In [14] the differential equation is consid-
ered on a bounded domain, in [15] the equation is studied in the whole space R,
however, it is subject to the boundary condition u → 0 as |x| → ∞. The case of
concave f has also been studied by several authors. In [1] the assumption on f is
similar to ours, however, the problem is given on a bounded domain with Dirichlet
boundary condition. In that paper the existence and uniqueness of the positive
solution is proved. Castro et al. studied the case of concave nonlinearities in a
series of papers, see e.g. [2, 3]. In these works the problem is given on a bounded
domain with Dirichlet boundary condition. A generalized logistic equation, with
f(u) = mu − qup is studied in [8] on a bounded domain with Dirichlet boundary
condition again.
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2 JÁNOS ENGLÄNDER AND PÉTER L. SIMON

Summarizing, we can say that our equation (1) has been widely studied, however,
in the papers where it is considered in the whole space R, it is always subject to
the boundary condition u → 0 as |x| → ∞. In these publications the aim is to
determine the exact number of the so-called fast and slow decay solutions. Hence
according to the authors knowledge there is no result available concerning problem
(1)-(2) under the assumptions given on f .

Remark 2 (Low dimensions). Our theorem can be proved very easily for d ≤ 2.
To see this, recall that ∆ is a so-called critical operator in Rd when d = 1, 2.
Second order elliptic operators L with no zeroth order term are classified as being
subcritical or critical according to whether the operator possesses or does not possess
a minimal positive Green’s function. In probabilistic terms criticality/subcriticality
is captured by the recurrence/transience of the corresponding diffusion process (see
Chapter 4 in [12]).

Another equivalent condition for L to be critical is that all positive functions h
that are superharmonic (i.e. Lh ≤ 0) are in fact harmonic (i.e. Lh ≡ 0). (See again
Chapter 4 in [12])

Now, observe that (1)-(2) and the positivity of f on (0, 1) implies

∆u = −f(u) < 0 in Rd.(3)

By the above criterion for critical operators, this is impossible in dimension one or
two. ¦

The most important model case is the classical KPP equation, when

(4) f(u) := βu(1− u)

with β > 0. (In fact this particular nonlinearity is intimately related to the dis-
tribution of a branching Brownian motion; see more on the subject in the next
paragraph.) Here we present a proof of this result which is valid basically for con-
cave functions. In fact, (iii) of Assumption 1 is related to the concaveness of the
function.

The connection between the KPP equation and branching Brownian motion has
already been discovered by McKean — it first appeared in the classic work [10, 11].

Let Z = (Z(t))t≥0 be the d-dimensional binary branching Brownian motion with
a spatially and temporally constant branching rate β > 0. The informal description
of this process is as follows. A single particle starts at the origin, performs a
Brownian motion on Rd, after a mean–1/β exponential time dies and produces two
offspring, the two offspring perform independent Brownian motions from their birth
location, die and produce two offspring after independent mean–1/β exponential
times, etc. Think of Z(t) as the subset of Rd indicating the locations of the particles
zt
1, ..., z

Nt
t alive at time t (where Nt denote the number of particles at t). Write Px

to denote the law of Z when the initial particle starts at x. The natural filtration
is denoted by {Ft, t ≥ 0}.

Then, as is well known (see e.g. Chapter 1 in [4]), the law of the process can
be described via its Laplace functional as follows. If f is a positive measurable
function, then

(5) Ex exp

(
−

Nt∑

i=1

f(zt
i)

)
= 1− u(x, t),



NONEXISTENCE OF SOLUTIONS IN (0, 1) FOR K-P-P-TYPE EQUATIONS FOR ALL d ≥ 1 3

where u solves the initial value problem

u̇ =
1
2
∆u + f(u) in Rd × R+(6)

u(·, 0) = 1− e−f(·) in Rd

0 ≤ u ≤ 1 in Rd × R+,

with f from (4).
Equation (1)-(2) appears when one studies certain ‘natural’ martingales asso-

ciated with branching Brownian motion (see e.g. [5]). To understand this, let
F̂t := σ(

⋃
s≥t Fs) and consider the tail σ-algebra F̂∞ :=

⋂
t≥0 F̂s. Choosing appro-

priate (sequences of) f ’s one can then express the probabilities of various events
At ∈ F̂t, for t > 0, in terms of the function u in (6). Letting t → ∞ then leads
to the conclusion that if A ∈ F̂∞ denotes a certain tail event (e.g. having strictly
positive limit for a certain nonnegative ‘natural’ martingale, or local/global extinc-
tion) then the function u(x) := Px(A) is either constant (= 0 or = 1), or it must
solve (1)-(2). Hence, it immediately follows from our main theorem that the tail
σ-algebra is trivial, that is, all those events A satisfy P·(A) ≡ 0 or ≡ 1.

Note that if β > 0 is replaced by a smooth nonnegative function β(·) that
does not vanish everywhere, then this corresponds to having spatially dependent
branching rate for the branching Brownian motion. It would be desirable therefore
to investigate whether our main theorem can be generalized for such β’s.

2. Proof of the theorem

The proof is based on two ideas: the application of the semilinear elliptic maxi-
mum principle, which is generalized here fore concave functions, and a comparison
between the semilinear and the linear problems. Using these two ideas we will show
that the minimal positive solution of (1) is umin ≡ 1, hence (1) has no solution sat-
isfying (2).

First we state and prove a semilinear maximum principle. The results in this
form is a generalization of [6, Proposition 7.1] for the particular case when the
elliptic operator is L = ∆.

Lemma 3 (Semilinear elliptic maximum principle). Let f : [0,∞) → R be a con-
tinuous function, for which Assumption 1(iii) holds. Let D ⊂ Rd be a bounded
domain with smooth boundary. If vi ∈ C2(D) ∩ C(D̄) satisfy vi > 0 in D,
∆vi + f(vi) = 0, in D for i = 1, 2, and v1 ≥ v2 on ∂D, then v1 ≥ v2 in D̄.

Proof: The function w := v1 − v2 satisfies

(7) ∆w + f(v1)− f(v2) = 0.

We show that w ≥ 0 in D. Suppose to the contrary that there exists a point y ∈ D
where w is negative. Let Ω0 := {x ∈ D | w(x) < 0}. Let Ω be the connected
component of Ω0 containing y. Since w ≥ 0 on ∂D, one has Ω ⊂⊂ D and

(8) w < 0 in Ω w = 0 in ∂Ω.

Let us multiply the equation ∆v1 + f(v1) = 0 by w and equation (7) by v1, then
subtract the second equation from the first, and integrate on Ω. Using that w =
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v1 − v2 one obtains

(9) I + II :=
∫

Ω

(w∆v1 − v1∆w) +
∫

Ω

(v1f(v2)− v2f(v1)) = 0.

Using Green’s second identity and that w = 0 in ∂Ω along with the fact that
∂νw ≥ 0 on ∂Ω, we obtain

I = −
∫

∂Ω

v1∂νw ≤ 0,

where ν denotes the unit outward normal to ∂Ω. Furthermore, since v1 < v2 in Ω,
using (iii) of Assumption 1, we have that also II < 0:

v1f(v2)− v2f(v1) = v1v2

[
f(v2)

v2
− f(v1)

v1

]
< 0.

It follows that the left hand side of (9) is negative, while its right hand side is zero.
This contradiction proves that in fact w ≥ 0 in D. ¥

Remark 4 (Spatially dependent f ’s). One can similarly prove the analogous more
general result for the case, when f : D× [0,∞) → R is continuous in u and bounded
in x, and u 7→ f(x, u)/u is strictly decreasing. ¦

Let f : [0, 1] → R be a continuous function which is positive in (0, 1). Based
on ideas in [9] and using the comparison between the linear and the semilinear
equations, we prove the following lemma.

Lemma 5 (Radially symmetric solutions). Assume in addition that f satisfies
lim inf

z↓0
f(z)

z > 0 (this is automatically satisfied under Assumption 1(iii)). Then for

any y ∈ Rd and p ∈ (0, 1) there exists a ball Ω := BR(y) (with some R > 0) and a
radially symmetric C2 function v : Ω → R such that

∆v + f(v) = 0
v > 0 in Ω, v = 0 in ∂Ω, v(y) = p.

Proof: We show the existence of a radially symmetric solution of the form v(x) =
V (|x− y|). Let V ∈ C2([0,∞)) be the solution of the initial value problem

(rd−1V ′(r))′ + rd−1f(V (r)) = 0(10)
V (0) = p, V ′(0) = 0.(11)

Writing ∆ in polar coordinates, one sees that it is sufficient to prove that there
exists an R > 0 such that V (R) = 0 and V (r) > 0 for all r ∈ [0, R).

To this end, consider the linear initial value problem

(rd−1W ′(r))′ + rd−1mW (r) = 0(12)
W (0) = p, W ′(0) = 0,(13)

where m > 0 is chosen so that f(u) > mu holds for all u ∈ (0, p). (Our assumptions
on f guarantee the existence of such an m.) It is known that W has a first root,
which we denote by ρ. Note that in this case −m is the first eigenvalue of the
Laplacian on the ball Bρ. We now show that V has a root in (0, ρ]. In order to do
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so let us multiply (12) by V and (10) by W , then subtract one equation from the
other, and finally, integrate on [0, ρ]. We obtain

I + II :=

ρ∫

0

[(rd−1W ′(r))′V (r)− (rd−1V ′(r))′W (r)] dr

+

ρ∫

0

rd−1[mW (r)V (r)−W (r)f(V (r))] dr = 0.(14)

Suppose now that V has no root in (0, ρ]. Then, integrating by parts, I =
ρd−1W ′(ρ)V (ρ) < 0.

Next, observe that by integrating (10), one gets V ′(r) < 0 (i.e. V is decreasing).
Hence V (r) < p, yielding mV (r)− f(V (r)) < 0. Therefore II, and thus the whole
left hand side of (14) are negative; contradiction. This contradiction proves that V
in fact has a root in (0, ρ]. ¥

Remark 6 (Spatially dependent f’s). When f depends also on x, our method
breaks down as it is no longer possible to use ordinary differential equations to
show the existence of a solution attaining a value close to one at a given point.

There is one easy case though: it is immediately seen that if there exists a g(u),
with f(x, u) ≥ g(u) and g(u) satisfies the conditions of Theorem 1, then Theorem
1 remains valid for f(x, u) as well.

Indeed, we know that umin ≥ 1, where umin is the minimal positive solution for
the semilinear equation with g. Recall (see e.g. [6, 7]) that one way of constructing
the minimal positive solution is as follows. One takes large balls BR(0), and positive
solutions with zero boundary condition on these balls (in our case we know from
[9] that there exist such positive solutions for arbitrarily large R’s), and finally,
lets R → ∞; using the monotonicity in R that follows from the semilinear elliptic
maximum principle (Lemma 3), the limiting function exists and positive. It is
standard to prove that it solves the equation on the whole space, and by Lemma 3
again it must be the minimal such solution.

Now suppose that 0 < v solves the semilinear equation with f(x, u). Then v is a
supersolution: 0 ≥ ∆v + g(v); hence by the above construction of umin and by an
obvious modification of the proof of Lemma 3, v ≥ umin ≥ 1.

The general case is harder. For example, when f(x, u) := β(x)(u − u2) and β
is a smooth nonnegative bounded function, the mere existence of positive solutions
on large balls is no problem as long as the generalized principal eigenvalue of ∆+β
on Rd is positive. (The method in [13], pp. 26-27 goes through for f(x, u) :=
β(x)(u − u2) even though β is constant in [13].) The problematic part is to show
that the solution is large at the center of the ball. ¦

Proof of Theorem 1: Suppose that problem (1)-(2) has a solution. Choose an arbi-
trary point y ∈ Rd and an arbitrary number p ∈ (0, 1). Note that by Assumption
1, f satisfies the conditions of Lemma 5 and consider the ball BR(y) and the radi-
ally symmetric function v on it, which are guaranteed by Lemma 5. We can apply
Lemma 3 with D = BR(y), v1 = u and v2 = v and obtain that u ≥ v. In particular
then, u(y) ≥ v(y) = p. Since y and p were arbitrary, we obtain that u ≥ 1, in
contradiction with (2). Consequently, (1)-(2) has no solution. ¥
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