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Abstract

Objective: Tracking changes in hemodynamic congestion and the consequent proactive 

readjustment of treatment has shown efficacy in reducing hospitalizations for patients with heart 

failure (HF). However, the cost-prohibitive nature of these invasive sensing systems precludes 

their usage in the large patient population affected by HF. The objective of this research is to 

estimate the changes in pulmonary artery mean pressure (PAM) and pulmonary capillary wedge 

pressure (PCWP) following vasodilator infusion during right heart catheterization (RHC), using 

changes in simultaneously recorded wearable seismocardiogram (SCG) signals captured with a 

small wearable patch.

Methods: A total of 20 patients with HF (20% women, median age 55 (interquartile range 

(IQR), 44–64) years, ejection fraction 24 (IQR, 16–43)) were fitted with a wearable sensing patch 

and underwent RHC with vasodilator challenge. We divided the dataset randomly into a training–

testing set (n = 15) and a separate validation set (n = 5). We developed globalized (population) 

regression models to estimate changes in PAM and PCWP from the changes in simultaneously 

recorded SCG.
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Results: The regression model estimated both pressures with good accuracies: root-mean-square-

error (RMSE) of 2.5 mmHg and R2 of 0.83 for estimating changes in PAM, and RMSE of 1.9 

mmHg and R2 of 0.93 for estimating changes in PCWP for the training-testing set, and RMSE of 

2.7 mmHg and R2 of 0.81 for estimating changes in PAM, and RMSE of 2.9 mmHg and R2 of 

0.95 for estimating changes in PCWP for the validation set respectively.

Conclusion: Changes in wearable SCG signals may be used to track acute changes in 

intracardiac hemodynamics in patients with HF.

Significance: This method holds promise in tracking longitudinal changes in hemodynamic 

congestion in hemodynamically-guided remote home monitoring and treatment for patients with 

HF.

Index Terms—

Cardiovascular Monitoring; Heart Failure; Hemodynamic Congestion; Right Heart 
Catheterization; Seismocardiogram; Wearable Sensor

I. Introduction

The increase in intracardiac filling pressures provides an early and actionable indication 

of the onset of congestion in heart failure (HF) [1]. Hemodynamic changes precede 

progression of chronic compensated HF to acute decompensated HF (ADHF) by several 

weeks [1, 2]. Recent research also shows that the product of small changes in pulmonary 

pressures over an extended period of time is closely associated with the transition to 

ADHF [2, 3]. Accordingly, tracking hemodynamics using an implantable hemodynamic 

congestion monitoring system and subsequent proactive HF management therapies (e.g., 

titration of medications, early follow-up clinic visits, etc.) to reduce subclinical congestion 

have demonstrated efficacy in reducing HF-related rehospitalization [4–6]. Compared to 

hemodynamically-guided HF management, traditional HF management therapies including 

tracking of daily weights, telemonitoring of vital signs and clinical symptoms to detect 

ADHF have not shown efficacy in reducing HF-related rehospitalization in large randomized 

controlled trials [7–9], as these changes occur comparatively later into the progression from 

compensated HF to ADHF [1].

CardioMEMS (CardioMEMS HF System, Abbott, Chicago, IL) is an example of an 

implantable hemodynamic monitoring system, comprising a pressure sensor implanted in 

the pulmonary artery (PA) [4]. Healthcare professionals receive PA pressure (PAP) readings 

once per day, and adjust the course of the treatment based on detection of hemodynamic 

congestion to keep PAP within an optimal volemic range (e.g., PA mean pressure within 

10–25 mmHg) [10]. This proactive hemodynamically-guided adjustment of care has shown 

to decrease HF-related readmission by 37% in the randomized CHAMPION trial [4, 

5], and the device received Food and Drug Administration (FDA) approval in 2014. A 

CardioMEMS post-approval study with 1200 HF patients has also demonstrated a reduction 

in HF-related rehospitalization by 57%, comparing one-year pre-implant to one-year post-

implant data from these patients [6]. The results of this PAP-guided therapeutic strategy 

have demonstrated efficacy in reducing not only HF-related hospitalization but also all-cause 
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hospitalization, regardless of ejection fraction, sex, race, cause of cardiomyopathy, and 

presence/absence of implantable defibrillator devices or cardiac resynchronization therapy 

[6].

Another recently developed and tested product, remote dielectric sensing (ReDS, Sensible 

Medical, Netanya, Israel), tracks hemodynamic congestion indirectly (lung fluid content) via 

non-invasively measuring the dielectric properties of the thorax with the sensor placed on the 

right mid- chest and has demonstrated efficacy in reducing HF-related rehospitalization by 

87% and 79% compared to pre- and post-ReDS-guided therapy in a clinical study consists 

of 50 patients with HF [11]. Both of these technologies (CardioMEMS and ReDS) have 

demonstrated the importance of tracking subclinical congestion as an early indicator of 

worsening HF and the efficacy of a hemodynamically-guided HF management system to 

reduce HF-related rehospitalization. However, high costs associated with both of the devices 

make them not financially feasible for the large patient population affected with HF in the 

US, which is roughly 6.2 million Americans [12]. For that reason, a low-cost alternative that 

can track changes in hemodynamic congestion has the potential to help millions of people 

affected by HF.

With the advent of miniaturized, inexpensive sensors, and digital health technologies, 

various wearable monitoring systems have been explored to monitor cardiovascular health 

both in healthy individuals and patients with HF. One such methodology that has 

demonstrated promise in monitoring cardiovascular health is seismocardiography (SCG), 

the local mechanical vibration of the chest wall associated with the movement of the heart 

and blood within the vasculature [13]. SCG timings can be used to assess changes in 

cardiac contractility via estimating the pre-ejection period (PEP) of the heart, with exercise 

and physiological perturbation [14, 15]. On top of that, SCG signals have demonstrated 

applications in the diagnosis and monitoring of different cardiac conditions, e.g., atrial 

fibrillation [16, 17], heart valve disease [18], coronary artery disease [19–21], and HF 

[22–24]. Importantly, recent studies have demonstrated that SCG can be used to assess 

the clinical status of patients with decompensated HF [23, 24]. Besides the assessment of 

clinical status in patients with HF, SCG has exhibited efficacy in tracking instantaneous 

oxygen uptake during cardiopulmonary exercise tests in patients with HF and daily life 

activities in healthy individuals [24, 25]. Based on these results in tracking hemodynamics 

with SCG for both healthy individuals and patients with HF, we hypothesized that the 

changes in hemodynamic congestion could be tracked with the simultaneously recorded 

SCG signal by estimating changes in PAP and pulmonary capillary wedge pressure (PCWP).

In this study, SCG and electrocardiogram (ECG) signals were recorded from patients 

with HF using a previously-validated custom-built wearable patch during right heart 

catheterization (RHC) [26], the gold standard of measuring hemodynamic congestion via 

PAP and PCWP. During the RHC procedure, the PAP and PCWP were modulated by 

infusing systemic vasodilators, and changes in the mean pressure values were estimated 

via tracking the changes in simultaneously recorded SCG signals. Various portions of the 

SCG signals were analyzed to understand the important segments that are providing salient 

information regarding changes in PAP and PCWP. Tracking acute changes in hemodynamic 

congestion with SCG can demonstrate the potential of using this novel wearable technology, 
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an unobtrusive and low-cost alternative to the current monitoring systems, in longitudinal 

monitoring of the intracardiac filling pressures in remote HF management, and potentially 

ultimately reduce HF-related rehospitalization.

II. Methods

A. Experimental Protocol

The study was conducted under a protocol reviewed and approved by the University of 

California, San Francisco Institutional Review Boards (protocol number: 16–20442 and the 

date of approval: December 20, 2016). Patients were recruited from the catheterization 

laboratory at the University of California, San Francisco and all patients provided written 

consent. RHC procedures were conducted on a total of 20 HF patients (8 inpatients 

and 12 outpatients) who were referred for hemodynamic evaluation of their HF (patient 

demographics and clinical characteristics are provided in Table 1). Patients in cardiogenic 

shock were excluded. The dataset was separated randomly into two groups of 15 HF patients 

for a training-testing set and five HF patients for a separate independent validation set, 

with a 75:25 ratio respectively. The only constraint used to separate the dataset was to 

keep the same ratio of HF with reduced ejection fraction (HFrEF) and HF with preserved 

ejection fraction (HFpEF) subjects for both the training-testing and validation set to have a 

dataset balance of these two HF phenotypes in both the training-testing and validation set. 

The random separation resulted in four HFpEF subjects in the training-testing set and one 

HFpEF subject in the validation set.

Fig. 1(a) and (b) illustrate the experimental setup and placement of different sensors on each 

patient. Before starting the RHC procedure, the custom-built wearable patch was placed just 

below the suprasternal notch, and the cath lab recording system was time-synchronized with 

the wearable patch.

The RHC procedure was carried out in a quiet, environmentally controlled cardiac 

catheterization laboratory with an ambient temperature of ~25°C. Right neck or right 

antecubital fossa regions were cleaned and prepped in a standardized sterile fashion 

using Chlorhexidine swabs. Local anesthesia was administered with 2% lidocaine. Under 

ultrasound guidance, venous access was obtained, and a 5 French (F) introducer sheath 

(St. Jude Medical, St. Paul, MN) was placed in the right internal jugular or right brachial 

vein. After at least 20 min of rest in a supine position, a 6F balloon-tipped pulmonary 

artery wedge catheter (Teleflex, Morrisville, NC) was advanced under fluoroscopic guidance 

into the right atrium, right ventricle, pulmonary arterial, and pulmonary capillary wedge 

positions. At each position, pressures were acquired over 60 seconds, repeated in triplicate 

and averaged, per standard RHC protocols [27, 28]. Cardiac output was obtained by the 

Fick principle and thermodilution. After baseline hemodynamics and cardiac output were 

measured, and after a 10 min rest in a supine position, pharmacological agents were 

administered at the discretion of the HF physician performing the case. Nitroglycerin 

was given as sublingual spray (400 or 800 mcg), and nitroprusside was administered as 

intravenous (IV) infusion starting at 0.3 mcg/kg/min (and titrated by 0.3 mcg/kg/min every 

5 min until a hemodynamic effect was achieved). At the peak hemodynamic effect as 

determined by the HF physician, the hemodynamics were repeated as per baseline protocol. 
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Thereafter, the balloon-tipped pulmonary artery wedge catheter and the venous sheath were 

removed. Patients were observed for adverse events following the RHC procedure and later 

discharged.

The wearable ECG and SCG signals were recorded continuously throughout the RHC 

procedure, and the timestamps from both the RHC and wearable system were used to extract 

the specific portions of the wearable signals later in the analysis, to estimate the changes in 

PAP and PCWP from the changes in wearable signals. Fig. 1(c) shows the wearable signals 

with corresponding PAP signal from the RHC computer during the baseline RHC recording 

from a representative subject.

B. Sensing Hardware

RHC pressure values were extracted from the cath lab Mac-Lab system (Mac-Lab 

Hemodynamic Recording System, GE Healthcare, Chicago, IL, USA) with a sampling 

frequency of 240 points/second. The wearable ECG and triaxial SCG (axes: head-to-foot 

(HtoF), dorso-ventral (DV), and lateral (Lat)) were collected, with a custom-built wearable 

patch as shown in Fig. 1(b), which is an improvement upon our previous version described 

[29]. The patch has a diameter of 7 cm and a weight of 39 gm. Initially, it samples the ECG 

signal at 1kHz and the SCG signals at 500 Hz and saves the data into an SD card in the 

patch. A custom-built graphical user interface accesses all the data into a computer and later 

the SCG signals were interpolated (using the ‘Spline’ method in Matlab R2021a) to have 

the same number of samples as the ECG signals. Fig. 1(c) shows representative ECG and 

tri-axial SCG signals from the wearable patch.

The wearable patch was synchronized with a PC. Before starting each RHC procedure, the 

time difference between the RHC Mac Lab PC and the wearable PC was recorded. This 

time difference was measured again at the end of the protocol to see if there was any 

significant drift between the two systems. From our experience, we have not observed any 

significant drift between the two systems before and after the protocol (< 1 second). During 

the study protocol, the clinical research coordinator (CRC) recorded the exact times of the 

RHC events (e.g., when the catheter was in the pulmonary artery and pulmonary capillary 

wedge position) using the Mac Lab PC timings. We utilized these timings plus the time 

difference between the wearable PC and RHC Mac Lab PC to get appropriate wearable 

signals corresponding to RHC pressure signals for further analysis.

C. Signal Processing and Feature Extraction

Fig. 2 illustrates the signal processing and feature extraction procedures used for the 

wearable signals and the pressure signal from the cath lab Mac Lab system. The PA mean 

pressure (PAM) and PCWP values for both the baseline (BL) and during vasodilator infusion 

(VI) were extracted by a heart failure cardiologist (LK) and later used to calculate changes 

in PAM (ΔPAM) and changes in PCWP (ΔPCWP) by subtracting the mean pressure values 

during the BL from the mean pressure values during VI respectively:

ΔPAM = PAMV I − PAMBL (1)
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ΔPCWP = PCWPV I − PCWPBL (2)

The PCWPVI value for one subject was not recorded due to a technical issue in the Mac-Lab 

system and is missing from the analysis. In total, ΔPAM values were available for 20 

subjects (15 subjects for the training-testing set and five subjects for the validation set), and 

ΔPCWP values were available for 19 subjects (14 subjects for the training-testing set and 

five subjects for the validation set).

For the data collection process, the physicians and attending nurses were following the 

standard RHC protocol [27, 28] to get PAM and PCWP values. Besides following the 

standard RHC protocol, they were asked to keep the catheter as stable as possible at each 

intra-cardiac chamber for at least 20 seconds during both BL and VI to get clean pressure 

signals from each chamber. The CRC recorded corresponding timestamps (from the RHC 

Mac Lab PC) of the start and end of the period when the clinicians confirmed the catheter 

was kept in a stable position in a specific intra-cardiac chamber. These timestamps were 

used to extract corresponding wearable ECG and SCG signals from both BL and VI states 

of the protocol when the catheter was at the pulmonary artery and pulmonary capillary 

wedge positions. The choice of 20 seconds time window to get clean pressure signals was 

arbitrary for this initial feasibility study without adding complexity to the standard RHC 

protocol. The BL and VI wearable signals were processed (filtering, removal of outliers, and 

ensemble averaging) separately and later used to calculate changes in the wearable signals 

via estimating dynamic time warping (DTW) distances [30] between the two states (BL 

and VI). The changes in the wearable signals were analyzed with the ΔPAM and ΔPCWP 

values and later used in a population regression model with leave-one-subject-out (LOSO) 

cross-validation on the training-testing set and later validated on the independent validation 

set.

1) Filtering and Heartbeat Segmentation—The raw ECG and SCG signals from the 

wearable patch were digitally filtered (cut-off frequencies: 0.5–40.0 Hz for the ECG and 

1–40 Hz for the SCG signals) to remove out-of-band noise. These cut-off frequencies were 

employed to remove out-of-band noise without distorting the shape of the signals [15]. After 

the filtering step, a fourth SCG signal representing the accelerometer magnitude (SCGMag) 

was computed using vector summation of the three SCG axes already obtained (SCGHtoF, 

SCGLat, SCGDV) according to the following formula:

SCGMag = SCGHtoF2 + SCGLat2 + SCGDV 2 (3)

The ECG signal (in the 20-second frame) was amplitude-normalized and the R-peaks of 

the ECG signal were detected using the Pan Tompkins method [31, 32]. The SCG signals 

(four axes of SCG) were segmented into individual heartbeats using the R-peaks of the ECG 

signal. Each heartbeat was cropped to a duration of 500 ms before and after the R-peak. The 

500 ms SCG frame before the R peak roughly represents the ventricular diastolic phase, and 

the 500 ms SCG frame after the R peak roughly represents the ventricular systolic phase 

of the cardiac cycle [33]. The duration of 500 ms before and after the R-peak was chosen 
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based on our previous experience with SCG signals and generic feature extraction processes 

[15, 25], as most of the relevant diastolic and systolic cardiac events of interests (e.g., rapid 

inflow, atrial systole, isovolumetric contraction, ventricular ejection, etc.) occur within this 

time frame, with respect to the corresponding R-peak of ECG. A constant time window 

was chosen to crop the ECG and SCG signals to have a repeatable and globalized feature 

extraction process.

2) Outlier Removal and Ensemble Averaging—Following the heartbeat 

segmentation of the wearable SCG signals, the outlier heartbeats were removed from 

the SCG for the two distributions from the two states (BL and VI) for each axis and 

each portion (diastolic and systolic) of the SCG signals separately using an automated 

unsupervised algorithm. For outlier removal from a particular distribution, the dimension 

of the 500-sample long SCG heartbeats (for 500 ms long frame with a 1 kHz sampling 

frequency) was reduced into three dimensions by using principal component analysis (PCA) 

and taking the first three principal components (PC). This low-level representation of the 

SCG heartbeats was used in a Gaussian-mixture model (GMM) to determine the probability 

that each sample belongs to a particular distribution (BL or VI) for a particular portion 

and a particular axis of SCG. For a particular distribution, the points with the lowest 10% 

probability were detected as the outlier for the distribution. The cut-off of 10% was chosen 

based on the initial analysis, with 10%, 20%, and 30% beats removed as outliers. The 

number of principal components (e.g., three in this case) to create the GMM for a particular 

distribution was chosen based on the analysis of the percentage of variance explained by the 

number of PCs and tuning hyperparameters to maximize the accuracy of estimation on the 

training-testing set. As most of the power in the SCG signal stays in the systolic portion of 

the signal [13], it might end up dominating the outlier removal in the diastolic portion of the 

signal. For that reason, the outlier removal was performed separately for the diastolic and 

systolic portions of the SCG.

The actual SCG heartbeats corresponding to the outliers for the distribution were removed 

and resulted in two separate distributions per axis (SCGBL and SCGVI). The remaining 

heartbeats were ensemble-averaged [34] to create two ensemble-averaged heartbeats for 

BL and VI for a particular axis and portion, which were later used to calculate the 

DTW distances [30]. The ensemble-averaging step reduced the inherent variabilities and 

remaining noises in the SCG heartbeats. Fig. 3 shows the ensemble-averaged PAP and 

PCWP heartbeats from the BL and VI states and Fig. 4 shows corresponding ensemble-

averaged SCGDV heartbeats.

3) Dynamic Time Warping and Feature Extraction—To calculate the changes in 

SCG from BL to VI, we leveraged DTW and compared the DTW distances from different 

portions of the SCG heartbeats to the ΔPAM and ΔPCWP with correlation analyses, shown 

in Fig. 4. The DTW is a time-series analysis method to align signals and find similarities 

between signals [30]. The DTW distances between signals from BL and VI were calculated 

utilizing the “dtw-python” package [35] with Euclidean distance and asymmetric step 

patterns from different portions of the SCG heartbeats : total diastole (−500ms : R-peak), 

early diastole (−500ms : −200ms), late diastole (−200ms : R-peak), total systole (R-peak : 

Shandhi et al. Page 7

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



500ms), early systole (25 : 150 ms), and late systole (200 : 500ms), where negative time 

represents prior to the R-peak and positive time represents following the R-peak. Early 

diastole corresponds to the passive ventricular filling, late diastole corresponds to the 

atrial systole, early systole corresponds to isovolumetric contraction (IVC), and late systole 

corresponds to the ventricular ejection phase of the cardiac cycle.

For the DTW algorithm and feature extraction, we assumed the first and last samples are 

correspondent when applying the 500 ms window and the DTW distances representative 

of different portions in the SCG portions are corresponding to the changes in cardiac 

event parameters (e.g., IVC). Although, there might be some overlap between real systolic 

and diastolic phases of the individual heartbeats using this approach. However, we used 

generic time windows to approximately extracting these phases from ensemble-averaged 

SCG heartbeats instead of specifically extracting them from individual heartbeats using 

wearable ECG and SCG signals based on our prior experience with these signals [15] to 

mitigate the effect of inter-subject variability and motion artifacts on SCG signals.

The preprocessing and feature extraction process described above were performed in 

the same way for both the training-testing and validation dataset. Following the feature 

extraction process, only the data from the training-testing set were used to develop a 

regression algorithm using LOSO cross-validation. The model’s hyperparameters were 

tuned in this step to maximize the performance (maximize the coefficients of determination, 

R2, and minimize the root mean squared error, RMSE) of the developed model on the 

training-testing set. The resulting trained model was later validated on the independent 

validation set to showcase the generalizability of the developed models. The details of this 

step are given in the following section.

D. Regression

Before developing a regression algorithm using the data from the training-testing set, the 

features (i.e., DTW distances) were compared from the different portions of SCG heartbeats 

with the target variables (ΔPAM and ΔPCWP), using in a simple correlation analysis and the 

R2 was calculated between them to analyze which segments of the SCG are more relevant to 

track changes in PAM and PCWP, as shown in Fig. 5.

Following the simple correlation analysis, a population level regression model with LOSO 

cross-validation was performed on the training-testing set to estimate the ΔPAM and 

ΔPCWP from the DTW distances and later validated on the independent validation set. 

Different regression algorithms were explored for this purpose, and, the support vector 

regression (SVR) [36] model was chosen as the regression model from our initial analysis.

As the simple correlation analysis between the DTW distances from different portions 

of the SCG heartbeats and corresponding target variables (ΔPAM and ΔPCWP) for the 

training-testing set is shown in Fig. 5, not all the changes from the different portions of 

the SCG (i.e., DTW distances) are relevant to the changes in the mean pressures (MP). 

For that reason, a feature selection technique was performed using a sequential forward 

selection (SFS) algorithm [37] to select the top five features as the estimating variables in 

the regression model using a linear SVR regressor.
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Following the feature selection, we performed a grid search to tune hyperparameters (kernel, 

C, gamma, coef0, etc.) of the SVR regressor [38] to maximize the accuracy of estimation 

using a LOSO cross-validation for 15 subjects in the training-testing set. This grid search 

method resulted in two hyperparameter-tuned models: one for the estimation of ΔPAM 

(SVR with a sigmoid kernel, C=3, gamma=‘auto’, coef0=0.5) and one for the estimation of 

ΔPCWP (SVR with a linear kernel, C=3, gamma=‘auto’, coef0=0.0001). This grid search 

with cross-validation method was used to develop a global regression model with optimized 

hyperparameters on the data in the training–testing set only. Following the grid search, we 

used the hyperparameter tuned SVR regression model on the selected (using SFS method) 

DTW distances to estimate the target variables in the training-testing set using a LOSO 

cross-validation, training the model using data from 14 subjects and leaving one subject 

out at each fold. The target variables (ΔPAM and ΔPCWP) were predicted for the left-out 

subject, repeating these 14 more times with a different subject excluded each time. As 

a result, we obtained predictions for all 15 subjects in the training-testing set. For the 

validation of the global model, the regression model (with the optimized hyperparameters) 

was trained on the whole training–testing set (data from 15 subjects) and tested on the 

separate validation set (data from 5 subjects). As a result, all the target variables were 

predicted, from all 20 subjects.

Four figures of merit that are commonly used in the existing literature were used to evaluate 

the regression model and approach. First, the RMSE was calculated between the estimated 

target variable (ΔMPPred) and the ground truth target variable from the Mac-Lab system 

(ΔMPAct):

RMSE = 1
N ∑

i = 1

N
ΔMPPred − ΔMPAct

2
(4)

Second, the normalized RMSE (NRMSE) was calculated:

NRMSE = RMSE
1
N ∑i = 1

N ΔMPAct
× 100 (5)

Third, a simple correlation analysis (Pearson) was performed between the true values and 

the predictions of ΔMP to get the statistical significance of prediction, and the R2 between 

the true and predicted values was calculated. In this work, p-values below 0.05 were 

considered to be statistically significant.

Fourth, Bland-Altman analysis was performed between the true values and the predictions 

of ΔMP to get the limit of agreement (LOA) (i.e., 1.96 × standard deviation of the mean 

difference between the true values and the predictions). The RMSE, R2, and LOA values 

were calculated for the training-testing set and the validation set separately.
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III. Results

Patient demographics and clinical characteristics are detailed in Table 1, and RHC 

characteristics are provided in Table 2. There were 15 patients with HFrEF and 5 with 

HFpEF; four patients were women, and the median age was 55 (interquartile range, IQR, 

46–64) years. The median weight was 93 (IQR, 84–107) kg, the median height was 177 

(IQR, 168–181) cm, and the median ejection fraction (EF) was 24 (IQR, 16–43).

With vasodilator infusion, the PAM and PCWP decreased by a median of 8.5 (IQR, 4.5–

13.25) mmHg and 6 (IQR, 3–11.25) mmHg, respectively, from the corresponding BL values. 

Fig. 3 and 4 show the changes in PAP and PCWP signals and the changes in SCGDV with 

vasodilator infusion for one representative subject. Note that all the signals shown in both 

the figures are synchronized with the corresponding R-peak. The overall mean of the PAP 

and PCWP signals decreased with vasodilator infusion, whereas the systolic portion of the 

SCGDV signal shifted later with respect to the ECG R-peak following vasodilator infusion.

Fig. 5 shows the R2 values between the dynamic time warping (DTW) distances from 

different portions and axes of the SCG signals with ΔPAM and ΔPCWP for the training-

testing set. In the case of ΔPAM, the changes in SCG during the early systole (isovolumetric 

contraction, IVC, period) provided the most relevant information related to changes in the 

PAM, with changes in SCG in the dorso-ventral direction (SCGDV) during the IVC period 

showing the highest R2 of 0.79 with ΔPAM. In the case of ΔPCWP, the changes in the 

SCG during the late diastole (atrial systole) phase provided the most relevant information 

related to changes in PCWP, with changes in SCG magnitude signal (SCGMag) during the 

late diastole period (atrial systole) showing the highest R2 of 0.88 with ΔPCWP.

Fig. 6 and 7 show the correlation analysis and Bland-Altman analysis between the actual 

(measured) and the estimated ΔPAM and ΔPCWP values for both the training-testing and 

validation set, respectively. The results show an RMSE of 2.5 mmHg, an NRMSE of 28%, 

an R2 of 0.83, and an LOA of 5 mmHg for the training-testing set and an RMSE of 2.7 

mmHg, an NRMSE of 33%, an R2 of 0.81, and an LOA of 3.8 mmHg for the validation set 

for ΔPAM, and an RMSE of 1.85 mmHg, an NRMSE of 23%, an R2 of 0.93, and an LOA of 

4.6 mmHg for the training-testing set and an RMSE of 2.9 mmHg, an NRMSE of 38%, an 

R2 of 0.95, and an LOA of 6.4 mmHg for the validation set for ΔPCWP.

Fig. 8 shows the selected five DTW distances using the feature selection technique (SFS 

algorithm) mentioned in the method section, and their relative importance (weights) in the 

regression model (SVR with a linear kernel) for the estimation of ΔPAM and ΔPCWP in the 

training-testing set, with the top feature related to ΔPAM being the change SCGLat during 

the IVC period and the top feature related to ΔPCWP being the change in SCGLat. Similar 

to the results obtained from the individual correlation analysis (in Fig. 5) between the target 

variables (ΔPAM and ΔPCWP) with the DTW distances, four of the top five features for the 

ΔPAM are from the systolic portion of the SCG, and one is from the diastolic portion of the 

SCG. In the case of ΔPCWP, four of the top five are from the systolic portion of the SCG, 

and one is from the diastolic portion of the SCG.
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IV. Discussion

This work shows that changes in SCG may track acute changes in PAM and PCWP due 

to systemic vasodilator infusion in patients with HF. Although the LOA values between the 

true and estimated values are relatively high, the reported RMSE, NRMSE, and R2 values 

show the feasibility and potential of this technology in estimating changes in intracardiac 

hemodynamics. Future studies with a larger population and more complex algorithms should 

improve the accuracy of estimation even further. The results from this initial feasibility 

study suggest that SCG signals obtained using a wearable patch can potentially track 

changes in hemodynamic congestion in future studies. These promising initial results 

provide a foundation for tracking changes in hemodynamics in patients with HF in their 

daily life and activities via wearable sensors. With further research, this approach could 

enable longitudinal remote monitoring of hemodynamic congestion, which could potentially 

enable a low-cost alternative to the already proven hemodynamically-guided remote HF 

management using CardioMEMS or ReDS systems, and one that could be applied to a 

broader population of patients with HF.

Two important findings in this work were the individual feature (DTW distances) correlation 

and feature importance ranking corresponding to the changes in PAM and PCWP due to 

systemic vasodilator infusion. The results from this work show that the changes in SCG 

during the ventricular systolic portion of the cardiac cycle provide salient information about 

the changes in PAM, whereas the changes in the SCG signals during atrial systole (active 

ventricular diastolic period) provided the most pertinent information regarding changes 

in PCWP. It might be explained with physiological rationale, as the pulmonary artery 

is directly connected to the right ventricle, the ventricular systole (contraction) phase is 

dominating the changes in PAM. On the other hand, the pulmonary capillaries are connected 

to the left atrium and showing more relation with atrial systole. These preliminary results 

should be verified with simultaneous imaging modalities in a large population study with 

diversified subjects with various cardiovascular conditions.

With vasodilator infusion, the PAM and PCWP decrease as does preload (as observed as the 

decrease in RAMP), and IVC time interval (i.e., PEP) is inversely correlated with preload 

[39]. For that reason, with a decrease in preload, we observe an increase in PEP (as shown 

in Fig. 4), which is expected. These scientific findings pave the way toward elucidating the 

origin of the SCG signal itself, and inform the use of these signals to extract physiologically 

meaningful information beyond vital signs and cardiac timing intervals as have previously 

been demonstrated. These results also show the importance of the ventricular diastolic 

portion of the SCG signals, which is often neglected in most research works focused on 

SCG [13, 40]. Future studies should incorporate imaging modalities to understand how the 

changes in SCG are related to underlying physiological changes due to physiological or 

pharmacological perturbation.

Another important finding from this work is the use of simple linear models (linear SVR) 

rather than complex non-linear models to estimate the changes in hemodynamic congestion. 

Simple linear models can provide more insights into the model and corresponding features 

used to build the model compared to the complex non-linear models, which are sometimes 
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“black box” in nature. As there was a small number of subjects for this study, using 

a simpler regression model provided a better understanding of the important features 

(segments and axes of the SCG) that are relevant to acute changes in hemodynamic 

congestion, and increased confidence in the generalizability of the methods. These methods 

make the models more physiologically insightful and interpretable. Nevertheless, this is a 

feasibility study, and the results from this initial study should be verified with a larger 

population study to validate these initial results.

Another key finding of this study was the use of noise reduction and outlier removal that 

improved the overall accuracy of estimation significantly. The results from the analysis 

demonstrated that having 20–30 seconds of high-quality wearable ECG and SCG recordings 

is sufficient to track changes in hemodynamic congestion. However, this study was carried 

out in a controlled clinical environment with trained professionals, and thus in home 

monitoring settings, longer recording times may be needed. The choice of 20 seconds time 

window to get clean pressure signals was arbitrary for this initial feasibility study without 

adding complexity to the standard RHC protocol. Future work should further validate and 

expand this methodology to see the minimum length of the data needed to estimate changes 

in PAM and PCWP from wearable SCG and ECG signals from a wide variety of window 

lengths.

Our previous work with the same wearable patch demonstrated that cardiopulmonary fitness 

parameters (i.e., instantaneous oxygen uptake and clinical state of patients) can be tracked 

from both patients with HF in a controlled clinical setting (cardiopulmonary exercise test) 

and healthy subjects in an uncontrolled daily life setting [24, 25]. Incorporating the method 

of tracking changes in hemodynamic congestion using SCG described in this paper with the 

methods of tracking cardiopulmonary parameters using SCG in our previous work [24, 25] 

should be leveraged in future work.

Though this feasibility study has shown promise in tracking changes in PAM and PCWP 

in patients with HF, it has multiple limitations. This study was conducted with 20 subjects, 

including both patients with HFrEF and HFpEF. However, the pathophysiology of the two 

HF subgroups may present different relationships between the changes in SCG with changes 

in PAM and PCWP. Due to the small number of subjects for this preliminary study, it 

was not possible to analyze such phenotypic differences. Future studies should verify the 

analysis of this study in a large patient population with HF, with emphasis on the differences 

between the subgroups. Another limitation is that this study has estimated changes in PAM 

and PCWP only. Future studies should look into changes in other key variables from the 

RHC procedure, e.g., right atrial pressure, right ventricular pressure, stroke volume, and 

cardiac output.

For this study, 500 ms of SCG heartbeats after and before corresponding ECG R-peaks 

were considered as representative for the systolic and diastolic portions of the cardiac 

cycle. However, there might be some overlap between the real systolic and diastolic phases 

using this approach due to heart rate variability in the individual heartbeats. It could be 

mitigated via identifying the real systolic and diastolic portions of the individual heartbeats 

by identifying aortic/mitral valve opening and closing points from simultaneously recorded 
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wearable ECG and SCG signals. Although researchers explored different approaches 

to identify aortic/mitral valve opening and closing points from simultaneously recorded 

wearable ECG and SCG signals [41–46], the generalizability of these approaches remains 

questionable due to high inter-subject variability in SCG [15]. For example, our previous 

work demonstrates that general time-domain feature extraction of SCG and advanced 

machine learning regression algorithms can perform significantly well (p-value < 0.05) 

in estimating changes in the PEP of the heart due to exercise compared to the traditional 

method of utilizing SCG characteristic points to estimate PEP via identifying aortic valve 

opening points [15]. Besides, ensemble averaging of SCG heartbeats also helps to improve 

the signal-to-noise ratio and reduce beat-to-beat variation of the signals which can further 

impact the reliable feature extraction from SCG due to high inter-subject variability and 

motion artifacts. For these reasons, we chose generic feature extraction from the ensemble-

averaged SCG heartbeats with some domain knowledge to extract approximate systolic and 

diastolic portions of the SCG heartbeat instead of specifically isolating systolic and diastolic 

portions of the individual SCG heartbeats. Future work should explore if identifying the 

real systolic and diastolic phases of the individual heartbeats from wearable ECG and SCG 

signals improves the estimation accuracy even further.

In this study, the change in hemodynamic congestion with vasodilator infusion was 

considered only. Future studies should include other pharmacological agents, e.g., diuretics, 

beta-blocker, angiotensin receptor blockers - neprilysin inhibitors, and verify whether 

changes in simultaneously recorded SCG can be used to track changes due to other 

pharmacological agents as well. Also, data were collected during the RHC procedure in 

a controlled clinical environment for acute changes in hemodynamic congestion. To be 

a reliable sensor for outpatient HF management, the device and the methods should be 

verified with longitudinal remote home hemodynamic congestion monitoring systems (e.g., 

CardioMEMS). Future studies should also focus on how motion artifacts impact estimation 

accuracy.

V. Conclusion

In this work, we have estimated the changes in pulmonary artery mean pressure and 

pulmonary capillary wedge pressure in patients with HF due to vasodilator infusion with 

the changes in simultaneously recorded SCG signal. We have developed a global regression 

model for the estimation of ΔPAM and ΔPCWP using machine learning algorithms validated 

with leave-one-subject-out cross-validation. We have demonstrated that tracking changes in 

SCG may track changes in the subclinical congestion, which has the potential to be used 

for remote home management for patients with HF. Overall, this work demonstrates the 

capability of an unobtrusive wearable patch to track hemodynamic congestion. Success in 

this regard represents a considerable step towards the hemodynamically-guided affordable 

HF management for the larger population affected by HF.
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Fig. 1. 
(a) Experimental setup with a wearable patch placed on a subject undergoing right heart 

catheterization (RHC) procedure, with axes (on the upper-right) showing the axes of the 

seismocardiogram (SCG) signal. (b) Front (left) and side (right) view of a wearable patch 

placed on a representative subject. (c) Representative cardiogenic signals: electrocardiogram 

(ECG), triaxial SCG (head-to-foot (HtoF), lateral (Lat), and dorsoventral (DV)), and RHC 

pulmonary artery pressure (PAP) signal. SCG is a mechanical signal that has been associated 

with cardiac muscle contraction, cardiac valve movement, and movement of the blood from 

the left ventricle towards the aorta.
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Fig. 2. 
Overview of the method: (a) Wearable ECG and SCG (only showing one axis of the 

signal for simplicity) signals were synchronized with the right heart catheterization pressure 

(RHCP) signal. 20s long signals from both baseline (BL) and during vasodilator infusion 

(VI) were extracted when the catheter was recording pulmonary artery (PA) pressure 

and in pulmonary capillary wedge (PCW) pressure signals. (b) The R-peaks of the ECG 

signal were detected and later used to segment the corresponding SCG signals into 

individual heartbeats. Outlier removal and noise reduction steps were performed on the 

SCG heartbeats, and features were extracted to be used in the regression algorithm to 

estimate the changes in the RHC mean pressure (MP) values (e.g., changes in pulmonary 

artery mean pressure (ΔPAM), and changes in pulmonary capillary wedge mean pressure 
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(ΔPCWP)). The MPBL and MPVI values were extracted from the RHC Mac-Lab computer 

and used to calculate the target variable (ΔPAM and ΔPCWP). (c) Details on the wearable 

signal processing: First, the R-peaks of the ECG signals were detected, and the SCG signals 

were segmented into individual heartbeats. Second, SCGBL and SCGVI heartbeats were 

passed through an outlier removal algorithm (using principal component analysis [PCA] 

and Gaussian mixture model (GMM)) and were ensemble-averaged to have two average 

SCG heartbeats per axis (one for BL and one for VI). Third, dynamic time warping (DTW) 

distances were calculated between the BL and VI heartbeats per axes and used as features (f) 
in the regression algorithm.
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Fig. 3. 
Changes in (a) pulmonary artery pressure (PAP) and (b) pulmonary capillary wedge pressure 

(PCWP), with the infusion of vasodilator for a representative subject, with brown arrows 

showing the changes in the respective signals. Time “0” indicates the location of the 

corresponding ECG R-peak.
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Fig. 4. 
Changes in SCG in the dorso-ventral direction (SCGDV) with the infusion of vasodilator for 

a representative subject, with brown arrows showing the changes in the respective signals. 

Time “0” indicates the location of the corresponding ECG R-peak.
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Fig. 5. 
Correlation analysis of the target variable (a) ΔPAM and (b) ΔPCWP with different DTW 

distances of corresponding SCG signals for the training-testing set, with the colorbar 

showing the R2 values and the red dotted line indicating the division between ventricular 

diastole and systole (i.e., R-peak of corresponding ECG). Total Diastole (−500ms : R-peak), 

early diastole (−500ms : −200 ms), late diastole (−200ms : R-peak), total systole (R-peak : 

500ms), early systole (25ms : 150ms), and late systole (200ms : 500ms).
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Fig. 6. 
Estimation results for the training-testing set: (a) Correlation analysis for ΔPAM predicted 

vs. ΔPAM actual, (b) Bland-Altman analysis for ΔPAM predicted and ΔPAM actual, (c) 

correlation analysis for ΔPCWP predicted vs. ΔPCWP actual, and (d) Bland-Altman analysis 

for ΔPCWP predicted and ΔPCWP actual. In the Bland-Altman plots, the black line 

indicates the mean, while the blue dashed lines indicate mean ± 1.96 × standard deviation 

(SD).

Shandhi et al. Page 23

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Estimation results for the validation set: (a) Correlation analysis for ΔPAM predicted 

vs. ΔPAM actual, (b) Bland-Altman analysis for ΔPAM predicted and ΔPAM actual, 

(c) correlation analysis for ΔPCWP predicted vs. ΔPCWP actual, and (d) Bland-Altman 

analysis for ΔPCWP predicted and ΔPCWP actual. In the Bland-Altman plots, the black line 

indicates the mean, while the blue dashed lines indicate mean ± 1.96 × standard deviation 

(SD).
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Fig. 8. 
Relative feature importance ranking (i.e., relative weights) of the features in the regression 

algorithm for (a) ΔPAM and (b) ΔPCWP on the training-testing set. Dias: Total Diastole, 

ED: Early Diastole, LD: Late Diastole, Sys: Systole, ES: Early Systole, and LS: Late 

Systole. Time-length for the segments is explained in the Fig. 5.
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TABLE I

Subject demographics and characteristics

All Subjects (n=20) HFrEF Subjects (n=15) HFpEF Subjects (n=5) p-Value

Age, years 55 (46–64) 53 (45–62) 64 (64–66) 0.07

Sex …

 Male 16 (80%) 12 (80%) 4 (80%)

 Female 4 (20%) 3 (20%) 1 (20%)

Height, cm 177 (168–181) 173 (168–180) 180 (175–183) 0.46

Weight, kg 93 (84–107) 92 (84–106) 93 (87–107) 0.93

BMI, kg/m2 31 (27–33) 31 (27–33) 28 (27–33) 0.86

Ejection fraction,% 24 (16–43) 21 (16–26) 58 (58–64) 0.001

NYHA class

 I 1 (5%) 0 (0%) 1 (20%) 0

 II 3 (15%) 3 (20%) (0%)

 III 11 (55%) 7 (47%) 4 (80%)

 IV 5 (25%) 5 (33%) 0 (0%)

Systolic blood pressure, mmHg 115 (107–120) 110 (103–115) 120 (120–132) 0.008

Diastolic blood pressure, mmHg 68 (59–73) 70 (61–72) 64 (57–73) 0.76

Values shown are median (25th-75th percentiles) or n (% of the population) unless otherwise indicated. Statistical significance between HFrEF 
and HFpEF subjects in values, where applicable, was evaluated using a Mann-Whitney U test.; BMI, Body Mass Index; NYHA, New York Heart 
Association.

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shandhi et al. Page 27

TA
B

L
E

 2

R
ig

ht
 h

ea
rt

 c
at

he
te

ri
za

tio
n 

re
sp

on
se

s

A
ll 

Su
bj

ec
ts

 (
n=

20
)

T
ra

in
in

g-
Te

st
in

g 
Se

t 
Su

bj
ec

ts
 (

n=
15

)
V

al
id

at
io

n 
Se

t 
Su

bj
ec

ts
 (

n=
5)

B
L

V
I

p-
V

al
ue

B
L

V
I

p-
V

al
ue

B
L

V
I

p-
V

al
ue

PA
M

P,
 m

m
H

g
34

 (
32

–3
7)

26
 (

24
–2

8)
<

0.
00

1
35

 (
31

–3
8)

26
 (

24
–2

8)
<

0.
00

1
33

 (
32

–3
4)

26
 (

24
–2

8)
0.

06
2

PC
W

P,
 m

m
H

g
22

 (
18

–2
5)

13
 (

12
–1

7)
*

<
0.

00
1

21
 (

18
–2

6)
14

 (
10

–1
8)

*
<

0.
00

1
22

 (
21

–2
4)

13
 (

13
–1

6)
0.

06
2

H
R

_P
A

, B
PM

82
 (

69
–9

4)
85

 (
69

–9
3)

*
0.

73
6

82
 (

70
–9

4)
89

 (
70

–9
4)

0.
68

70
 (

67
–8

8)
72

 (
67

–9
2)

1

H
R

_P
C

W
, B

PM
80

 (
69

–9
0)

79
 (

69
–9

0)
0.

42
80

 (
67

–9
0)

78
 (

69
–8

9)
*

0.
32

8
87

 (
72

–8
9)

88
 (

75
–9

0)
0.

56
25

R
A

M
P,

 m
m

H
g

9 
(7

–1
3)

7 
(5

–1
1)

*
0.

00
2

9 
(6

–1
4)

7 
(5

–1
1)

*
0.

00
8

10
 (

9–
13

)
7 

(6
–7

)*
0.

5

SV
, m

L
/b

ea
t

47
 (

40
–6

5)
*

65
 (

47
–7

5)
*

0.
05

9
46

 (
39

–6
1)

*
60

 (
48

–8
0)

*
0.

03
59

 (
43

–6
8)

66
 (

46
–6

8)
1

Fi
ck

 C
O

, L
/m

in
3.

8 
(3

.4
–4

.6
)*

4.
6 

(4
–5

.3
)*

0.
01

3.
8 

(3
.3

–4
.3

)*
4.

5 
(4

–5
.5

)*
0.

04
5

4.
1 

(3
.5

–4
.7

)
4.

6 
(4

–4
.9

)
0.

25

T
he

rm
od

ilu
tio

n 
C

O
, L

/m
in

3.
7 

(3
.3

–4
.4

)*
4.

6 
(3

.7
–5

.6
)*

0.
00

2
3.

5 
(3

.3
–4

.4
)

4.
6 

(3
.7

–5
.8

)*
0.

00
7

3.
9 

(3
.5

–4
.2

)*
4.

1 
(3

.7
–4

.9
)

0.
25

C
I, 

L
/m

in
/m

2
1.

8 
(1

.7
–2

)
2.

1 
(1

.9
–2

.7
)*

<
0.

00
1

1.
8 

(1
.7

–2
)

2.
2 

(1
.9

–2
.7

)*
0.

00
2

1.
9 

(1
.7

–2
)

2.
1 

(2
.1

–2
.2

)
0.

18
8

* M
is

si
ng

 v
al

ue
s 

fo
r 

on
e 

or
 m

or
e 

su
bj

ec
ts

.

V
al

ue
s 

sh
ow

n 
ar

e 
m

ed
ia

n 
(2

5t
h -

75
th

 p
er

ce
nt

ile
s)

 u
nl

es
s 

ot
he

rw
is

e 
in

di
ca

te
d.

 S
ta

tis
tic

al
 s

ig
ni

fi
ca

nc
e 

be
tw

ee
n 

B
L

 a
nd

 V
I 

pe
ri

od
s 

in
 v

al
ue

s,
 w

he
re

 a
pp

lic
ab

le
, w

as
 e

va
lu

at
ed

 u
si

ng
 a

 W
ilc

ox
on

 s
ig

ne
d 

ra
nk

 
te

st
. B

L
, B

as
el

in
e 

V
al

ue
s;

 V
I,

 V
as

od
ila

to
r 

In
fu

se
d 

va
lu

es
, P

A
M

P,
 P

ul
m

on
ar

y 
A

rt
er

y 
M

ea
n 

Pr
es

su
re

, P
C

W
P,

 P
ul

m
on

ar
y 

C
ap

ill
ar

y 
W

ed
ge

 P
re

ss
ur

e,
 R

A
M

P,
 R

ig
ht

 A
tr

ia
l M

ea
n 

Pr
es

su
re

, S
V

, S
tr

ok
e 

V
ol

um
e,

 
C

O
, C

ar
di

ac
 O

ut
pu

t, 
C

I,
 C

ar
di

ac
 I

nd
ex

.

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 August 01.


	Abstract
	Introduction
	Methods
	Experimental Protocol
	Sensing Hardware
	Signal Processing and Feature Extraction
	Filtering and Heartbeat Segmentation
	Outlier Removal and Ensemble Averaging
	Dynamic Time Warping and Feature Extraction

	Regression

	Results
	Discussion
	Conclusion
	Disclosures
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	TABLE I
	TABLE 2



