
Lawrence Berkeley National Laboratory
Recent Work

Title
ENHANCEMENTS TO THE CODATA DATA DEFINITION LANGUAGE

Permalink
https://escholarship.org/uc/item/0wq283ww

Author
McCarthy, J.L.

Publication Date
1982-02-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0wq283ww
https://escholarship.org
http://www.cdlib.org/

':~
-~

'~. '

LBL-14083 '"'\
UC-32 c-.~

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA RECEIVED

BERKELEY LABORATORY

Computing Division MAY 1 1984

LIBRARY AND
DOCUMENTS SE,CTION

ENHA~CEMENTS TO THE CODATA DATA DEFINITION LANGUAGE

. J. L. McCarthy

February 1982 TWO-WEEK LOAN COPY

This is a Library Circulating Copy .

which may be borrowed for two weeks.

For a personal retention co~Y~ call

Tech. Info. Division~ Ext. 6782.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness o'f any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of th~
University of California. ,

LBL-14083

ENHANCEMENTS TO THE CODATA OATA DEFINITION LANGUAGE

John L. McCarthy

Computer Science Department
Lawrence Berkeley L~boratory

University of California
Berkeley, California 94720

February 1982

This work was supported in part by the
Director, Off ice of Energy Research, Off ice
of Basic Energy Sciences, Engineering,
Mathematical, and Geosciences Division of the
U.S. Department of Energy under Contract Number
DE-AC03-76SFOOD98.

•

ENHANCEMENTS TO TIIE CODATA DATA DEFINITION LANGUAGE

by

John L. McCarthy

Current Codata Data Definition Language .. ,
Present Metadata Elements .. .

Global. (File Level) .. .
Global or Element Level .. .
Repeated for Each Data Element (Column)

Present Data Files , .. .
Codata Data Files
SEEDIS Compressed Data Files .. .

Sample Codata File .. .
Primary Proposed Codata DDL Enhancements

Metadata Names and Aliases
Truncation or Explicit Aliases
Naming Conventions

Long Data Elements and Continuation Conventions
New Metadata Elements for Arrays
Descriptive Items for Various Metadata Levels ~
Data Element Groups .. .

Other Proposed Enhancements to Codata DDL .. .
Other Global and Element Level Items ;
Correcting Problems With The Current DDL

Special Characters for Breaks, Concatenation, etc.
Upper and Lower Case Distinctions .. ,.,
Leading and Trailing Blanks
Metadata Specific to SEEDIS Compressed Files
Handling of Input and Output Data .. .
Missing Data
Record/Entity Type Designation
Organization of DDX and NDX Files -- A Digression

Variable Length (and Multiply Occurring) Data Fields
Summary of Proposed Enhancements ,

Metadata Structure .. .
Exhibit 1: Hierarchical Structure of Proposed Metadata Elements
Exhibit 2: Example Census Codata File With Minimal Metadata
Exhibit 3: Example Census Codata File With Full Metadata

Implementation Strategies for Proposed Enhancements
Alternative #1 --Modify Existing Software
Alternative #2 -- Redesign Calling Sequences .. .
Recursive Metadata Definition

SELECTED REFERENCES

February 20, 1982 version

2
2
·~ u

4
4

4

4

b
6
6
6
7

7
8
9

ll
11
12
Jl
13
13
1,1
J. "

14

14
14
lb
16
16
1?
17
18
20
22
25
26
26
26
27

•

Codata DDL Enhancements DRAFt Specs John L. Mccarthy

Author

Access
Files
Version
Status

Distribution

John L. Me Carthy ·'· . ·· .
Computer Science and Mathematics Department
Lawrence Berkeley Laboratory, 50B-32~8
University of California · · ·
Berkeley, CA 94 720 ·
(415) 486-5307 (fts) 451-5307

tbl "'john/seedis/redesign/specs/codata I vtroff -mes
lblf:"'john/seedis/redesign/specs/codata, macros, exl, ex2, ex3
February 20, 1982

Preliminary Draft Please mark up .and return ,
I would appreciate any comments -in Writing if possible, verbally
if necessary~ and as soon as you can in any case.

SEEDIS (2/18): Gey, Holmes, Merrill, Healey, Bensbn, Marcus, Yen,
· Burkhart, Schroeder, Kwok, Eades, Graves; Sventek ..

CSAM (2/18): Shoshani, Hall, Johnston, Kreps, Hawthorn, Chan,
Eggers, Olken, Woilg, Ku~. Selvin, Johnson, Sacks

PNL: [Burnett, Thomas, Littlefield, Carr, Nicholson]

Florid~: [Su, Batory, 'Navathe]

Wisconsin: [DeWitt, Boral]

BLS: [Stevens, Weiss, Weeks]

Other: ·[Johnson, Einowski, Stinnett, Marks, Hammond; Becker,
Klensin. Teitel. Dintelman, Kobayashi, Sato, Shanks,
Ruderman, Sack, Guertin, Keefer, Winkler, Simes]

This memo outlines a number of proposed enhancements to the
current codata data definition language (DDL) for SEEDIS [MCCA
81A]. At present, the codata DDL is used in data definition files
(DDF's) to describe both fixed format, character-image codata files
and binary format "SEEDIS Compressed" data files.
The basic enhancement proposed here is that-.. we make the process
of adding and changing metadata definitions easier (and less
"hardwi'red") than it has been in the past. We also propose specific
enhancements to facilitate handling 1980 Census Project data files,
including multidimensional data elements, dimension descriptions,
and differentiated labeling components. Such enhancements are
intended to be compatible with a ·more extensive set of metadata
outlined in a previous memo [MCCA 81B], as well as with other
physical storage formats tb.at may be incorporated in SEEDIS .
[EGGE 82] in the future, including multiply occuring data
elements, transposed files, etc.
Since not everyone reading this memo will be familiar with codata
concepts, the first section describes the current cbdata format
and data definition language and the closely related "SEEDIS
Compressed" format. Subsequent sectibns discuss proposed
enhancements and implementation strategy.

February 20, 1982 version page 1.

Codata DDL Enhancements DRAFT Specs John L. McCarthy.· ··

Current Codata Data Definition Language
Codata is a shorthand term for·the "common data format", which
SEEDIS Project staff developed in 1978· to provide a self-describing
interch~e format for data used by different program modules
[MERR BlJ. The codata data definition language (DDL) presently is
used to describe two different types of physical data storage
implementions:

• fixed format, eye-readable codata files
• variable record-length, binary "SEEDIS Compressed" data files

In both cases, a data set consists of two logical components-- a
data. definition file (DDF') and a data file (DF). The logical data view
is that of a table (i.e., a rectangular array or flatfile) with a fixed
number of rows and columns. Data are arranged so that each
logical record is a row of the table and contains all the attributes
(data elements·or columns) of an named entity (e.g., "Alameda
County", "person number 2037"), as well as a row label or stub plus
any keys necessary for data access and matching. The number of
logical records (rows) iii a data file is equal t.o the number of
entities, arid the number of columns is equal to the number of data
elements in each logical record (row).
The basic structure of metadata elements in the DDF,is:

<keyword>= <value>
with one "keyword=value" pair per unit record (line). At present,
all keywords may be abbreviated to the first letter, so the current
procedure to read such metadata is basically to scan a physical
unit record (line) for the first non-blank character. This data
description is always stored in text form. No metadata field may
cross physical unit record (line) boundaries. Keywords occurring
before the first data element definition have global effect. That is,
they holdfor all data elements, unless specifically overridden by
keyword definitions within the local environment of a data element
definition.
Supported keywords and syntax are described in the next two
subsections. Keywords that are usedwith only one of the two types
of data storage formats -- SEEDIS. compressed files or codata files
--are so indicated in brackets. Names imbedded in angle brackets
(e.g., <name>) are used to indicate values that must be provided
by the user. When there are only a limited number of keywords

. permitted, those are separated by vertical bars (e.g.,
"alp hal decimallinteger"). · ·

Present Metadata Elements
Global (File Level}
This first set of metadata items only can appear in the initial,
global section of a DDF, and they apply to the file as a whole.

FILE=*<text string> ... *<text string>
This is simply a textual description of the file. *can be any
user defined delimiter.

MODE=compressed .
[SEEDIS COMPRESSED FILES ONLY]

February 20, 1982 version page 2

•

•

Codata DDL Enhancements ORAFTSpecs · . John L. McCarthy ·

VAX= <data file location I ddf file location>
[SEEDIS"COMPRESSED DDF or NDX FILES]

NDE= <integer>
Number of data elements. or columns

AREAS=<integer>
Number of rows

CARD..l..ENGTH=<integer> . . .
Length of unit record in characters (max 132). At present,
this gives the maximum record length for both DF and DDF

.,i!l codata files, and for SEEDIS compressed DDF's.

RECORD_8IZE =<integer>
Number of bytes in each physical block [in NDX files

.. describing COMPRESSED FILES ONLY]

ACCESS=direct ,, . .
Type of access method used [for NDX file describing
COMPRESSED FILES ONLY]

M~SSING=<low end real value> <high endreal value>
Range of values to be considered as "missing data" in
calculations.

END_DDF
Indicates end of DDF.

· Global or Element Level
The following ~terns apply to all data elements in the file if tll.ey
appear at this point in the global section of the DDF. They can also
repeat within each individual data element. definition in. order to
override the global defaults .

. TIPE=<AlphaiintegeriDecimal> ·. . .
Decimal points must be explicit for fixed format cqdata
files. · · · ·

USE=<StubjDataiKey>
If the data element use is key, the data element name must
match one of the type A keys currently defined in SEEDIS
(about 80 at present; most of them geographic.,.- e.g.,
FIPS.STATE)

SCALE...F ACTOR= <real i:mmber >
Number by which stored values are multiplied to yield
displayed values [COMPRESSED FILES ONLY].· Codata files
created from compressed files are scaled prior to output,
since codata files presently do not have a scale fact9r.

*<comment>
text for comments-- can appear at any point in the ddf

February 20, 1982 version ·page 3·

Codata DDL Enhancements DRAFI' Specs John I... McCarthy

Repeated for Each Data Element (Column)
This group of metadaia items recurs for each data element in a
file.

DE=<name>
Data element name

START=<integer>
Starting character position in a logical record [CO:DATA
FILES ONLY]

LENGTII=<integer>
length in characters [for compressed data files, this
directive pertains to output string length only]

POSITION=<integer>
Sequential data element number [in DDF for COMPRESSED
FILES ONLY]. These are these generated automatically by
the routines that create a compressed file from a codata
file. ·· · ·

HEADER=;<line l>;<line 2>;<line 3>;
The semi-colon can be any user-defined break character to
separate portions of a header or label that shbuld be output
on different multiple lines; alternatively, the user may
specify mUltiple "Header =;<text>;" type directives.
Currently, the codata tools use.whatever character
immediately follows the equals sign as the break character ..

Present Data Files
The second logical component of a data set is the data file. As
mentioned above, the same DDL is used t'o deschbeeither of two
different l<it1ds of physical storage· formats for data files '":.. fixed
record-length; line-image codata 'files and variable record-length,

··binary SEEDIS compressed files. Althciugh.this paper is concerned
only with the logical data definition language; it may·be, helpful to
put things in context with a brief summary ofthe two types of
physical data storag~ formats which the DDL curreri~ly supports.
Codata Data Files ·

In codata files, both the data definition file (DDF) and the data file
(DF) reside on a single physical file, with information stored in
character representation wtthin fixed~length logical records as
defined· in the DDF. The DF is the ·subset of fixed length records
following the '~END DDF" directive; it contains data as defined in the
DDF. As in the DDF, data fields in the DF cannot cross unit record
boundaries. For numeric data, missing or suppressed values can
be indicated by the global MISSING directive or simply by reaving
the field blank (blankr;; are not interpreted as zeros on input, as in
FORTRAN}. Codata write routines automatically r.eformat fields in
the DF to right justify numeric data.

SEEDIS Compressed Data: Flles
In SEEDIS Compress~d files, the DDF is maintained in a separate
physical file comprised of logical records with 132 coh.1.mri fixed
length recOrds and character representation-- just a slightly
specialized form of codata DDF. Data is stored in binary form on a
separate file [EGGE 82]. In addition, every SEEDIS Compressed file

February 20,. 1982 version ·pag~4·

•

Codata DDL Enhancements DRAITSpecs John L. McCarthy

has two types of associated ancillary' files~ The DDX is' a special
------------~~type-oHHe-which-serves-as-an-:tndex-to-t-he-separate-BB¥;-it----------

contains data element names and their corresponding byte offset
locations in the DDF. The NDX is a special codata file which
contains a list (usually sorted) of KEY values for all records, and
which serves as an index to the binary data file. Each key value set
has a block number pointer to the starting position of the
corresponding compressed record in the binary data file plus a
byte count for the record. Since each compress.ed record starts on
a block boundary this makes it easy to calculate how many blocks
or bytes need to be read for a given record. There may be multiple
NDX files for a single data file, and in some cases, the NDX and data
files may be brokE!!n down into subsets (e.g., state groupings of
county-level records). [A more complete discus~ion of this physical
storage implementation and possible enhancements will be the
subject of another paper]

Sample Codata me
The example below illustrates current useage of the existing DDL in
a standard, fixed format codata file (DDF followed by the DF it
describes).
F1LE=*sample codata file*·
NDE=4
AREAS=4
CARD LENGTH=40
TYPE=d
usE=d

· • this is a sample data base
DE='FIPS.STATE

TYPE=i
USE=key
START=l
LENGTH=3

DE= area. name
TYPE=a
USE=stub
START=4

· LENGTH=lO
DE=population

START=14
LENGTH=B

DE=pop.density
HEADER=: total population: per:
HEADER=:sqi.lare mile:
START=23
LENGTH=5

END DDF
1alabama 10000
4arizbna 310012
6cq..l ifornia22000000.
9washington 4000

February 20, 1982 version

5.32
25. 1

170.5
23.8

·page 5

Codata DDL Enhancements DRAFT Specs . John L. McCarthy

Primary Proposed Codata DDL Enhancements
One of the great strengths of the current codata implementation is
its relativ~ simplicity of structure, grammar, and syntax (with the
exception of a few minor problems which should he easy to
correct). Most people find codata files relatively easy to
understand and use. In considering possible enhancements, we
should try to preserve this simplicity as much as possible. At the
very least, use.rs should be able to continue using the present
simple structures and syntax for simple data files. More
complicated metadata should be optional.
The following sections propose a nwnber of enhancements to the
codata DDL, includi.ng some extensions and changes to the
grammar as well as new metadata elements. Although none of the
proposed enhancements calls'for radical changes in the basic
codata file design, some of them will require major software
changes. Insofar as that is true, it would probably be a good idea to
use the opportunity to also clean up some of the minor (but
sometimes frustrating) problems with the current codata

· · implem~ntation. , · · ·

Although a number of specific additions to the list ofcodata
metadata elements are proposed below, the major change that we
need to make to the codata DDL is not addition or change of
particular metadata elements, but rather enhancement of our
basic underlying ability to add or change metadata definitions
quickly and easily. No set of metadata descriptions, however
comprehensive, will be adequate for long. We will always be
thinking of new things that would be useful to have, and ways that
current definitions ought to be refined. We therefore need DDL
facilities that will allow us to make such enhancements in the
future without additional programming. With that gener.al point in
mind, let us turn to the specific DDL enhancements that are
particularly needed for the 1980 Census Project.

:Metadata Names and Aliases
As noted above, the present codata implementation requires that
the first letter of each metadata element be unique, since that is
the only part of the name that is currently examined by the
program(s) that read DDF's. If we want to add a number of new
metadata elements, it is awkward at best to constrain ourselves to
names that have unique first letters. It would b'e a better idea to
modify the routines that read metadata (principally CRDEF) to
look at the entire metadata element name, and drop the
requirement that first letters be unique. ·'

Truncation or Explicit Aliases
The question arises whether we should permit truncation of names
to unique strings or insist on designation of explicit "aliases" or
synonyms wherever users wish to employ something other than the
primary name. Our tentative recommendation is to require explicit
aliases and not support truncation to unique strings.
In any case, we should support aliases or synonyms for metadata
names (using only the first letter in effect accomplished the same
thing in a less direct way). This will permit both long, descriptive
names that help the user understand what each metadata element
is, and short abbreviations to facilitate data entry and preparation
of long data definition files. If we rewrite the program(s) that read
metadata information, it shouldn't be too much additional work to

February 20, 1982 version page 6 ...

'"

.,

Codata DDL Enhancements DRAFI' Specs John L. McCarthy

incorporate code which permits several different syriony1ns or
----aliases-t-o be used-fer-a-g-iven-metadat-a--elernent-name; For - ---

example,

DE = data...eteme_nt = element = data...element.....na'me
Codata write routines should continue to do some cosmetic
reformatting of DDF's on output, such as converting aliases to
primary names, indenting names to reflect nested metadata
structures, etc.
Naming Conventions
Names should not contain embedded blanks. When: separate words
are required for clarity, underline characters can be used as
connectors. We may not want to permit use of periods as simple
connectors in names in order to reserve the period as a structure
member operator (as it is inC and a number of database query
languages). On the other hand, there are already a number of
SEEDIS data element-names containing periods, and people are
rather used to using periods rather indiscriminately. Perhaps it
would be better to use some less common character, such as"@"
for the structure member operator.
Names of data elements and metadata elements need not be
completely unique. They need only be unique within the data
structure in which they appear. Thus a fully qualified data element
name is preceded by all of the structures within which it is nested,
ordered from highest to lowest, left to right. ·
It is proposed that each of these individual components can be up
to 32 characters long. The total length of a fully qualified name,
including all structure members connected by struCture member
operators, should not exceed 256 characters. - '

Long Data Elements and Continuation Conventions
Since the present codata standard does not permit any -field to
cross unit record boundaries, there has been no need for
continuation conventions. In order to accommodate lengthy
textual metadata items, such as descriptions, it might be a good
idea to relax this requirement and permit character fields {but not
numeric fields) to cross unitrecord boundaries. If so, there are
two continuation conventions that we could honor and support.
First, routines which read metadata could look for an equal sign as
the second token on each line. All situations where that is not the
case could be recognized as continuation lines. If some
pathological piece of text contains an equals sign at that point, the
text would have to be surrounded by quotation marks to work
correctly. -

Second, as an alternative for those who wish to avoid the possibility
of pathological cases, users could specify and use an explicit
continuation character, such as "-", at the end of each line to be
continued. The continuation character itself could be defined as
one of the global (file level) metadata elements at the beginning of
a ddf. ~he syntax might be:
continuation = <global continuation character for this codata file>
For maximum flexibility and consistency, the continuation
character should not cause automatic insertion of white space
when such lines are concatenated, so users would have to be
careful to put such spaces where desired.

February 20, 1982 version page 7

Codata DDL Enhancements DRAFI'Specs . JQhn h McCartJ;ly

New Metadata Elements for Arrays

.. ·

In order to handle 1980 Census Project data, it is almost
imperative to have a means of describing and manipulating multi
dimensional tables. Otherwise we have to treat each individual cell
of multidimensional census tables as a distinct data element.
Since many census tables contain hundreds of cells, this would add
substantially to the cost of preparating and maintaining DDF' s,
data dictionaries, etc. ·

Proposed syntax for multidimensional tables is described below.
Syntax for data manipulation operations on arrays and subsets of
arrays will be described in a separate paper. The minimum
metadata information for an array element will be simply its name,
celUength, and either array....size or one or more dimension names.

structure = array I simple
This new metadata element Within the global section or
under a particular data element Will denote an array with
fixed dimensions and the ~:;arne homogeneous type of data
values in each of its cells. To begin with, arrays .in codata
files will be permitted to contain only homogeneous, fixed
length cells (just as sirriple data elements can only be fixed
length). The default value of the structure meta data
element will be "structure=simple" for simple, single-valued
data elements. At a later. time we might incorporate
"structure=complex" to describe more .general str1.1ctures
consisting of arbitrary sets of data elements (some of which
might themselves be arrays or structures, nested several
levels deep). Eventually, we might also wish to add
description of arrays whose components might themselves
be complex data structures. To begin with, however, arrays
could contain only simple, homogeneous sets ofdata values.

array_size ·= <n*m* ... *r>
This gives the size of each dimension in an array-structured
data element. n,m, ... ,r must be integers and must agree
with information for each named dimensio:q_, if present. If
this meta data element is not included for· an element whose
structure=array, it will be automatically calculated and
inserted in the DDF, based on information in the named
component dimensions.

celUength ::::: <integer>
the fixed length of each component cell in the array, used
(in conjunction with card..length and array....size) to
automatically calculate individual cell storage locations for
the entire array. (Alternatively, one can use the length
specification under the "cell" directive described below.)

cell = <subscript expression for a cell, range, or list of cells>
Any me~adata item that can normally appear under a simple
data element can appear below this directive to qualify
certain cells or groups of cells in ah array element (e.g.,
suppression flags and group headers for census data).

The subscript expression will containa list of one or more
sub-expressions, one for each dimension in the array,
separated by commas. Each sub-expression will be either
an integer, a pair of integers separated by a colon (to

February 20, 1982 version pageB

: ~.

.. ~

';iJ

Codata DDL Enhancements DRAFT Specs John L. McCarthy

indicate a range); a colon {to indicate the entire range of
values in that dimension), or a list of values and/or ranges

1
separated by commas and surrounded by parentheses. The
last (or rightmost) dimension will vary most rapidly, as in
standard mathematical notation and PL/I (but just the
opposite from FORTRAN). Subscripts will start at 1 (as in
FORTRAN), rather than 0 {as in C). For example, cell=
3,(1,5:9) would refer to six values drawn from the third
"row" of a two dimensional array.

The cell metadata element can occur multiple times to
permit different information about different cells in an
array.

dimension = <name>
this will describe a component dimension of the array.
There may be multiple dimensions for a given
array..£lement, and if there is more than one dimension, the
sequence of dimensions will implicitly provide sequential
dimension numbers for array notation, etc.

Metadata items concerning each dimension are described below. If
there is no additional metadata information about that dimension
immediately following a dimension directive, then such information
should be located either

(a) in a previous dimension description, or
(b) in a global SEEDIS dimension description

The following new metadata elements could recur under each
dimension directive.

category = <name>
component category of the dimension. Each dimension will
have two or more categories, and categories Will be
implicitly numbered by sequential order. Additional.
information about each category will be described in

. descriptive metadata elements described below.

category_group = <name>
Name for a set of categoriys which may be grouped together
for some purpose, such as higher level labels (for census
data) or crosswalk procedures between one dimension and
another simHar (but not identical) dimension or
value_labeL.set. Unlike categories and values in a dimension
or value_labeL.set, category_groups would not have to be
mutually exclusive or exhaustive. . . .

category_group....component = <category name>
This multiply occuring item would provide the names of
categories in a named group.

Descriptive Items for Various Metadata Levels
In order to provide finer gradations of descriptive information for
1abeling and documentation, we propose that databases,
data_elements (including array elements), dimensions,
value_labeL.sets, categories, category_groups, and
data_element_groups each be permitted to have one or more of
the following descriptive metadata elements:

February 20, 1982 version page 9

Codata DDL Enhancements DRAFT Specs John L. McCarthy.

alias = <name>
an alias or synonym to be used as an alternative name for
the main name. There can. be multiple instances of alias-
one for each alternate name.

occurrenceJtumber = <integer>
this subscript or sequence number would normally be
derived implicity from the sequential order of the item
(element, dimension, ·etc.),.but could be specified or
requested explicitly. ·

header...lahel = <text string of up to 512 characters>
used to label output, etc. Should be as concise as possible,
with abbreviations OK. May include information about
universe (until other aspects of SEEDIS are revised), but
should not duplicate information from "file" or other higher
level headers -- since those headers will be concatenated on
output (e.g., the database header "1980 Census STF1A"
would be prepended to each data element header of that
database, and category headers would get appended for
individual cells of an array). May contain special intrafield
break character to indicate default line separators.

class = <name>
One of a restricted set of names recognized by SEEDIS, used
to indicate broad classes of dimensions, value...labeuets,
entities, etc, (e.g., geography, time).

subject = <key Word or phrase> . .
A multiply occuring metadata element, each ofwhose values
will be chosen from a restricted vocabulary set of key words
and phrases --perhaps organized in hierarchical thesaurus
form. These subject terms could pe subsequently used to
produce a cross-database subject index fo_r all of SEEDIS.

group = <group name>
Name of a group (e.g., category_group, data....eilement_group)
to which this item pertains (see above).

description = <up to twenty-three 78-character lines of text>
one screen of descriptive information-'- a:s complete as
possible. More lengthy text can be put in supplementary
occurences of this metadata element.

note = <unlimited amount of text>
special informationthat should be highlighted or
emphasized and printed along with any description

footnote = <integer or alpha code>
reference to one or more numbered footnotes kept
elsewhere

comment = <unlimited amount of text> remarks relevant only for
data. installers, database administrators, etc. (not normally
displayed to users). As at present, comments can occur at
any point in the DDF.

February 20, 1982 version ~elO

•

..

'
··· Codata DDL Enhancements DRAFI'Specs John L. McCarthy

If a header label were not specified for a given item, the name of
the item woUld become the default header label. If the item were
not named (e.g., a particular categoryin a dimension), the
sequential occurence number would be used as the default name.
Since these descriptive metadata elements could occur at
different levels of the DDF, there could be instances where the
level to which something like "description" or "alias" pertains
might be ambiguous. In such cases, the convention will be that the
metadata elementwill pertain to the structure immediately above
it in the DDF. For example, if a DDF contained the folloWing:
element = tab12 ·
structure = array
dimension = race
description = five major racial groups
the "description" would pertain to the dimension rather than the
element.

Data Element Groups
Sooner or later it may be desireable to be able to reference two or
more data elements as a named set -- in order to minimized
redundant specifications, storage, etc. This. could be done in
several different ways. One of the easiest, at least to begin with,
might be to have a metadata element called dat~lemenLgroup,
which could in turn contain two or more dat~lemenuomponent
items, as follows:

dat~lemenLgroup = <name>
Name for a set of one or more data elements to be treated
together.

dat~lemenL.component = <de name>
Name of a data element defined elsewhere in the DDF which
is to be considered a member of this data.::elemenLgroup.

Data element groups may also contain any of the set of descriptive
metadata items discussed above.

Other Proposed Enhancements to Codata DDL

I

Since the original codata implementations in 1978, a number of
individuals have made some experimental modifications to the
data definition language and extensions to the standards outlined
above (in fact, some of the "standards" outlined above, particularly
those pertaining to SEEDIS Compressed files, were ad hoc
extensions). Other enhancements were proposed in the original
codata design specifications but not implemented universally.
During the past year, Deane Merrill implemented several additional
metadata elements and tested them in an experimental version .
. Most of these enhancements have not beEm incorporated
throughout SEEDIS because doing so would have required changes
in the calling sequences of a number of related programs.
Deane's experience provides some useful insights on the process of
adding new metadata information in general. As he has pointed
out, the process is currently a rather painful one, because each
piece of metadata information is passed as a separate parameter
in a FORTRAN subroutine call. Each time we add a new metadata
element, all programs containing the call have to be changed and
relinked. As a result, we have been quite reluctant to add new
metadata information.

February 20, 1982 version page 11

Codata DDL Enhancements DRAFT Specs John L. McCarthy

Other Global and Element Level Items
New metadata elements that Deane has experimented with are
included below, along with a number of others thatought to be
considered in the present round of enhancements .. These metadata
elements may appear at both the global and individual element
levels. Those that appear iii the global section of a DDF serve as
default values for all elements unless explicitly overridden·within
an individual data element definition.

A number of these elements have values which are <expression>'s.
As used here, an "expression" is an arithmetic expression which
can contairi constants, arithmetic operators, data elemeritnames,
and perhaps function calls. If a data element name appears, the
stored value of that data element from the same data record will
be used (e.g., if "weight= population80" appears as part of the
definition for a data element ~alled· "mortality70", where
"population80" is the name of another. data elementin the same
data record, then each value of "mortality70" will be weighted by
the corresponding value of "populationBO" in each data record.

ddLstyle = 197811982
differentiates old from new ddf's. Later we could add others
(e.g., SPSS) to distinguish particular flavors of DDF's,

universe = <text>
optional description of population universe to which one or
more elements pertain (a standard census metadata item).

weight = <expression>
a mathe'matical funtion referencing one or more other data
elements, which could be used for automatic aggregation,
disaggregation, etc.

missing =<low realvalue> <high real value>
different missing data codes can apply to different
elements, whereas the present codata standard recognizes
"missing" orily as a global, file-level directive.

error = <expression>
In the future this could be used for automatic calculation of
errors as data elements are displayed or used in
computations.

scale factor = <real number>
physically stored data are multiplied by this number prior
to display or use in calculations. Can be used for standard
conversion of data without recompression (e.g., miles to
kilometers,· one geographic coordinate system to another,
etc.). This is currently implemented orily for SEEDIS
Compressed files.

suppression = <expression>
the number of a suppression flag which pertains to this
element (or cell of an array, as in census data), or the name
of another data element containing suppression
information. For the time being its use would be primarily
descriptive~ but it might be used in the future in various
analysis and display modules.

February 20, 1982 version page 12

u

.•.

c

.•

·"

. .. .

Codata DDL Enhancements DRAFT Specs John L. McCarthy

value.Jabel.Bet = <name>
.This name would refer to and/or precede a set-of items
pertaining to labels for individual data values found, in one
or more data elements (or cells of an array). Its structure
would be identical to the dimension metadata structure
described above -- and the names would refer to a common
pool of such structures, but it would be maintained as a
separate type of metadata because a particular array
element might have both dimensions and a value.Jabel.Bet.

Correcting Problems With The Current DDL .
The most serious limitation of the current co data data definition
language is the difficulty of adding new types of metadata or
modifying old ones. The most important change we need to make
is to make addition of new metadata easy in the future. Orice that
fundamental change is.accomplished, we can improve the
undifferentiated way in which descriptive information is handled,
and the lack of facilities for data structures such as vectors and
arrays, using some of the new metadata constructs outlined above.
In addition, although the basic structure and syntax of the codata
DDL are quite simple and clean, there are a few current metadata
elements and codata conventions that.present some problems.

' Cleaning these up should not be particularly difficult, and doing so
would be very much in keeping with the design goal of keeping
things simple and general.

Special Characters for Breaks~ Concatenation, etc. . ' . ' . - . ~ .

As mentioned above, the codata tools currently use whatever
character imm.ediate.lyfollows the equal sign as a break character
for the "FILE=" and "HEADER=" metadata elements-- this often
leads to confusion if unwary users try to enter a one 'lirie header
with no break character or leave a blank following the "="; etc. It
would be less error prone if we made this intra-field break
character an explicit metadata element which could be designated
at the global or element level (perhaps something like

. ''intra..fielc:Lbreak = #").
The original codata specifications also provided a mechanism to
specify the character used for assignment -of metadata values
(normally "="). It might perhaps be useful to provide such a
facility with something like "assignmenLcharacter = =", though
this is certainly a lower priority item. ·

We also need a structure or concept delimiter that canbe used to
concatenate different levelsof metadata information (e.g.,
data:.base@data...:elerilent@header). This, too, could be specified at
the beginning of the DDF itself, with something like ·
;'concatenatio~peratcir = @".

. .

. Finally, if we are going to u8e ~pecial symbols to-. denote particular
kinds of delimiters or operations, we also need an esc;;~.pe
character to be able to use those symbols in simple te}{t. Here, too,
the escape character could be defined locally at the beginning of a
DDF (e.g., "escape....character = \ ") ..
Upper and Lower Case Distinctions
The current implementationnot only stores upper and lower case
letters for text fields (which we definitely want to continue doing),
but it also makes distinctions between named entities such as
metadata names depending on case (which is not such a good

February 20, 1982 'version
. . .,

page 13

Codata DDL Enh~cements DRAFT Specs John L. McCarthy ·
,.:-·

idea). For example, names of data elements that are used as keys
have to be capitalized to match corresponding· names in a central
SEEDIS list of recognized key names. It would be preferable to do
automatic translation from upper to lower case for any such
purposes of comparison. It should not make any difference
whether s9meone uses an upper or lower case namefor a
metadata element, a data element name, etc.
Leading and Trailing Blanks
The current implementation forces codata users to right justify
numeric input data or errors will result, It would seem- preferable
to permit placement of nUm.eric data anywhere within a fixed field.
Codata write routines should. continue to reformat such data so
that it gets right justified on output.

Metadata Spectlic to SEEDIS Compressed Files
The "mode = compressed" element is a good one. It could later be
extended to include other physical storage formats, and perhaps
even to permit individual data· elements or sub file structures to
have different modes, such as "transposed" within an over-all
default mode, such as "sequential".
It is not a good. idea to have a.metadata element (such as VAX=)
represent different things depending upon what kind of file it
happens to be in. Nor is it a good idea to have metadata element
names that do not describe the actual use of the element; at least
in a rudimentary way. We therefore should change "VAX =" to two
different metadata elerp.ents --perhaps "data....file =<VMS path
name>" and "ddUile =<vMS path mime>". "Record Size=" also
seems to be a misnomer. While we coilld continue to recognize that
old syntax, a preferable main name might be "blocksize =".
Handlingof Input and Output Data
At present; each of the different versions of the codata write
subroutines handle output in slightly different ways: Some insert
leading zeros and/or blanks while others do not, some insert
explicit decimal points while others do not, etc. ·
One immediate approach to this problem would be to decide on a
standard default means of handling different types of data. A more
general solution might be to incorporate two more metadata
elements that could apply to individual data elements or sets of
elements: inpuLprocessing....rules and outpuLprocessing....rules.
The values of each of these metadata elements would be special
types of expressions specifying how data should be converted and
formatted on input to and output from the database. Scale factors
and weights are, in fact, special cases of such general processing
rules. Other examples might be conversion from integer to binary
representation on input and formatting with two decimal places
and an explicit decimal point on output. Input processing rules

·could also contain validation checks and different types of error
handling speCifications.
Missing Data
The current implementation only permits upper and lower bound
specifications for a single range of missing data codes for numeric
fields. There is not really any concept of missing data for character
fields.· In addition, the way in which missing data specifications
interact with the scale factor specification is not perfectly
straightforward.

February 20, 1982 version page 14

\.,)

. . -~

Codata DDL Enhancements DRAFT Specs John L. McCarthy'· '

Missing data specifications shoUld apply to stored values, rather
than to values after conversion via scale factors, weights, etc.
There needs to be a low-level routine that checks for missing
values prior to other operations, .so that scale factors, etc. do not
get applied to missing data values on output or use incomputation
routines.

We eventually should provide more general missing data
specifications: It may be useful 'in some situations to distinguish
between different types of missing data in character fields. It also

· might be desire able to· have non-:numeric characters specify
missing data in .numeric fields and/ or to permit non-contiguous
missing data codes, which could be handled by multiply occurring
missing data directives .. It also may be desireable to be able to
distinguish between "missing" values p.nd non-existent or null
values for a particular instance of an individual data ~lement .
occurence.

Record/Entity~ Designati~n
In our current implementation, each codata or~ompn:issed data
file can contain· only one record type --i.e., the. set of data ..
elements described by the DDF. S.EEDIS co data files currently
must include a special "comment"line of, the form
"*LEVEL=<n~El>", where <name> specifies one of the geographic
levels.presently,recogrll.zed by .SEEDIS, such \3-S "state" or
"countyBO". SEEDIS compressed file-s can contain· data from ,
muitiple levels, so they have no explicit designation oflevel, but
records carionly differ in terms of the types of entities to which
they pertain-- e.g., counties, states, srnsa~s. tracts-- and npt in
terms ofthedata elements (il1clq.ding keys) each record contains:
Iri fact, in.Ul.tl.ple NDX files can pe used to "point to" different sets of
records in a compressed data file --in order to differentia,te data
from different levels of census data or tq distinguish two slightly
different definitions of the same level (e.g.,-county7ci and
countyBO) without redundant da.ta storage.
For the time being (in the interest ~f simplicity), we will continue
to restrict codata and SEEDJS compressed files,to a single record
type. Inst.ead of designating "level" by means of a special kind of
comment line, however, thatinformation-should be an explicit part
of the DDF. For each separately indexed set of data records (e.g.,
counties, mcd's, places),'there will be three metadata elements, as
follows: · · ·

entity = <name>
Name: of the geographic or other type of 'entity indexed-~
equivalent to the current codata "*LEVE;L=" specification.

key = <data...elemenLnatne>
A multiply occuring metadata element, one or more of
which would give the complete set of.data elements (with
USE= key) required to uniquely identify an instance of this
particular type of entity (e.g., fips.state for state, fips.state
plus fips.county for counties, etc.).

ndx = <VMS file name>
Name of the NDX file used to index and identify individual
instances of this particular type of entity.

February 20, 1982 version page 15

Codata DDL Enhancements DRAFT Specs John L. McCarthY

Organization of DDX and NDX Files -A Digression
At present,· DDX files are not themselves co data files. It probably
would be a good idea if they were. In addition, neither DDX nor NDX
files are nece'ssarilysorted, and the routines that access them use
serial search methods rather than binary search routines to locate
individual values. This works well enough for small files and
situations where access is essentially serial, but there are ·
substantial pertormance penalties for the DDX or NDX files,
especially in situations where there is. no record instance for the
value b~ing sought (e.g., a geocode or data element name that is

·.riot in the NDX or .DDX file) and search routines thus have to scan
the entire file; ·

We should require that all NDX and DDX files be sorted codata files,
and routines which access them should use binary search routines
for optimal performance. · · ·

Variable Length (and Multiply Occurring) Data Fields
The original codata file design specified a means of descabing a
data file with variable lerigth data fields, in addition to the fixed
format standard that was implemented. Although implementation
of a variable length field scheme may require too much effort for
immediate implementation, some form of handling variable length

·.fields certairily would be desirable as soori as we can manage it. In
the 1978 codata specifications for variable length fields, physical
record 'length remained fixed,' as speCified in the global "record
length" metadata element, but fields could be separated by a DDF
specified break character {Break = <field terminator character>),
rather than (or in addition to) starting position and length. Any
conflicts between break, start, arid lehgth would result in error
messages. Fields could riot span physical records (lines), but
logical records (rows) could contain different mmibers of physical
records (lines). New rows (logicalcrecords) would always begin at a
new physical record. . · · · · .

Missing data could be specified by simply concatenating break
characters as well as by blanks or explicit missing data codes. One
exception to this rule would be if the break character were defined
to be a blank; in such cases, only bne delimiter would be counted
no matter how m:any blanks were found. · ' ·

. . ' . '

There are also situations where it wo.uld be desirable to store .
multiply occuring values for a single data element. The current
"header" metadata element is such a case. One simple means of
doing this would be to use another DDF-specified break character
to indicate multiple occurrences within an individual data field.
As we redesign other aspects of the codata specifications, we need
to bear in mind the possibility of va:ria.ble length and multiply
occuring fields and groups of fields. If efficiency considerations
are the primary barrier to implementation of variable length and
multiply occuring fields, perhaps. we could implement them in the

··context of a different ddf "style".

!i'ebruary 20, 1982 version page 16_

Codata DDL Enhancements DRAFT Specs' John£. Mccarthy

Summary of PropOsed EDhancements
This s'ectioh·summarizes enhancements proposed above by·means
of a hierarchical diagram and two -exam pte tidf'-s in-c-orporating th-e
new proposed metadata elements. · ·

Metadata Structure
As things presently stand, there are three implicit levels of
hierarchy in the current codata: ddl. At the first level, one can

·. -define -a~ -of -global. par-amet-er-s.· At the ~. -or -d-at-a
element level. each de can have several associated types of
.metadata elements such as headers, tYPe. etc., which repeat for
each individual data element. Thus to uniquely identify a
particular header, one must specify.dename@header. In fact, since
headers can occur multiple times for a given data element, there
is a third implicit level, and a full specification would be

. dename@header@instance. . · ·

In. order to accomodate some of the additional metadata elements
proposed in this paper, we propose to permit up to nine levels in
the hierarchy, so that one might have something like
el~ment@dimension@category@label

Internally, this could be handled with unique numbers, ·rather than
names, at each level. · ·· · ·

Exhibit 1 below illustrates the proposed hj.erarchic·al structure for
new and existing metadata elements. Existing metadata elements
are shown in UPPER CASE, and proposed metadata elements are
shown in lower case. The current name is sometLmes shown as an
alias rather than the primary name in cases where it seems that a
new! primary name would be clearer. · ·

Proposed aliases or alternative synonyms for primary metadata
element names are shown to the right of each name, separated by
slashes. Special comments appear in italics {or underlined) to the
right of any aliases.
items. that' are the initial element in:a metadata str~cture are
shown in boldface, and items included within the structure are
_indented below the initial item. A set of items that is repeated for
several different metadata levels is refered to by a !name in
bracketsj after its initial presentation in order to save space.

The letters "m" and "r" to the left are flags to indicate which
elements are required (i.e., must occur) and which may occur
m.uitiple numbers of times in a given structure. Items are optional
(i.e, they need not occur) unless shown as required. Items will only
occur once in a given structure unless indicated as ~ultiple. If an
item is only required for codata files, a (c) follows the r: if it is only
required for Seedis compressed files, a (s)'follows the r. ··
Metadata elements flagged by'an asterisk(*) at the left are those
that deserve top priority for in9lusion on th~ first round of
enhancements. · · ·

For metadata elements whose value~ can only take on a restricted
set of keywords, those keywords are shown following an equals sign
(=), with the default value in italics (i.e., the value that will be
assumed if the metadata element is not present in the input DDF).
For other required metadata items where there is a default, the
value that codata read/write routines would insert is shown in
brackets.

February 20, · 1982 version 'l>age.17

Codata DDL Enhancements DRAFT Specs John L. M;cGarthy

Exhibit 1: Hierarchical Structure of Proposed Metadata Elements . .
flag name[=defaultjvalue2j ...] /alias/alte~te riame(s)/

Database Metadata
m comment
r "d:df...:style-= nJ?Bj1~2
r ddLauthor
r datELddi...created [= system]
r date....ddLlasL.modified [= system]

assignmenLcharacter [= = ~
-CGnti~I'~I'{;-
escape.;.£haracter [=]

· inter_lield.J>reak [= ;]
intra-lield.J>reak
concatenation [= @]
MODE=codatalcompressed

r elemenLcount
r record._bount

~~~~ data...file 
· ddUile 

r(s) blocksize 
· r(c) record..length · 
r(s) ACCESS=sequentialldirect 
•r database 

!Description Set! 
• !Data Element Default Set! 

Entity Me tadata 
rm entity 
rm key 
r ndx' 

' fDescriptionSet! 

!Description Set! 
• occurence...number [=system] 
•m alias 
•m label 
•m description 
•m note 
•m footnote · 
m ·subject· 
m group 

class 

!Data Element Default Set! 
r data....type=alphalintldec 
r USE=datalkeylstublsort 
r MISSING [ = :.999?] 

SCALE...F ACTOR [ = 1. 0] 
r structure =simplelarraylgroup 

weight [ = 1.0] 
error 
universe 
valiualU:es 

• suppression..ilag 

February 20, ~982 version 

/*/ 
/styte/ 
/author/ 
/create/ 
/modified/ 
I assignment! 
1~1 

/escape/ 
/fielcL.break I 
/line_break/ 

I storage...mode I 
!NDE /number_oLde 's I 
I AREAS /records I 
!VAX! 
!VAX! 
/RECORD_sizE I 
/CARD..J...ENGTH I 

I database...name I 

I entity ....type I 

/index/ 

/subscript/ 

· /HEADER/title/ 

/keyworcLphrase I 

!TYPE! 

pagelB 

'-'' 



Codata DDL 'Enhai.tcedtents DRAITSpecs John L. McCarthy 

--------------m--data::.element.::group,---------~;1-degroupt'--------

f!Jescription Setj 
m data..elemenLcomponent I de_component I 

JJahJ. Elemm:J1 Metqdqfa 

rm DATA..ELEMENT /de/element! 

r(c) 
de) 

m 

* 
m 

*m 

*m 

*m 

m 

February 20, 1~ version 

f!Jescription Set! 
~Data Element Default Setj 
START 
LENGTH • _, 
value..J.abeLset _ 

fDes'criptian Setj 
value 

!Description Setj 

array ...size 
celUength 

/category/ 

cell I cells I celupecificatios/ 
fDescription Setj 
fData Element Default Setj 
[any items under de 
may also appear here] 

dimension 
!Description Setj 
category /value/ 

!Description Setj 
category _group /cgroup I 

~Description Setj 
category_group_component I ~gitem/ 

·page 19 



Codata DDL Enhancements DRAFT Specs John L. McCarthy 

Exhibit 2: Example Census Codata IDe With Minimal Metadata 
style= 1982 
author = Deane Merrill 
create = 2-feb-1982 18:13:32 
modified= 2-feb-1982 18:45:16 
database = stfla.fragment 

MODE = codata 
NDE = 5 
AREAS= 5 
CARDLENGTH = 70 
MISSING= -21 -1 
label= 1980 U.S. Census of Population 
universe =U.S. Population, 15-apr-1980 

entity = state 
key = fips.state . 
ndx = disk$seedis001:[seedata.census80.stfl.county80]s44.ndx 

DE = fips.state · 
TYPE= alpha 
USE =key 
START= 1 
LENGTH= 2 

DE= fips.county80 
TYPE= alpha 
USE= key 
START= 3 
LENGTH= 3 

DE = stub.geo 
TYPE= alpha 
USE= stub 
START= 6 
LENGTH= 33 

DE= tab12 
structure = array 
array....size = 5*4 
celUength = 9 
TYPE= int 
USE= data 
START= 39 
universe = persons 
dimension= race1 

class= race 
category = total 
category = white 
category = black 
category = indian 
category = asianpi 

dimension = age2 
class= age 
category = under5 
category = 5to1 7 
category = 18to64 
category = over64 

cells = 1,: 
suppression = supflg01 

cells = 2,: 
suppression = supflg02 

cells = 3,: 

February_ 20, ~982 version -~e20 



• 

.. 

<:!4/ 

Codata DDL Enha~ceinents DRAFT specs 

suppressioh = s\ip'flg03 
cells = 4,: 

suppression = supflg04 
cells= 5,: 

suppression = supflg05 
DE= tab13 

structure = array 
array_size = 3*4 
TYPE= int 
USE= data 
START =·238 · 
celUehgth = 9 · 
universe = Persons of Spanish Origin .· 
dimension = race2 

class= race 
category = total 
category = white 
category = black 

dimension = age2 
cells = 1,: 

suppression = supflg06 
cells = 2,: 

suppression '= sU:pflg07 
cells = 3,: 

suppression = supflg08 
.END DDF 
44001RI Bristo1 · 

5865 2566 
87 8 
45 109 
50 
-8 

44003RI 
17570 
359 
178 
82 
-8 

44005RI 
9240 
1770 
194 
78 
2 

44007RI 
84649 
13181 
'596· 
998 
31 

44009RI 
9598 
481 
121 
55 
-8 

156 

Kent 
9294 
42 

383 
256 

Newport 
4797 

191 
390 

210 

Providence 
28696 

1272 
2100. 
2202 

Washington 
6001 

57 
423 
107 

Febniarj 20, 1982 version 

9427 
5 

18 
428 

32346 
3 

35 
541 

15714 
47 
26 

532 

97091 
146 

209 
5226 

18342 
73 
23 

275 

·26ll 
28587 5833 

11 23 
52 164 
67 -8 

9435 
93353 'T7465 

32 100 
89 284 

59 -8 

5336 
47241 . 8978. 

67 156 
116 299 
86 6 

33089 
322242 82430 

413 844 
1880• 4140 
559 126 

6221 
56858 9431 

267 460 
. 75.· 149 
42 -8 

· Johil L. McCarthy · 

9541 28925 
4' 18 

0 18 
459 68 

-8 -8 

32774 94384 
'55 149 

10 52 
630 64 
-.8 -8 

16871 49936 
. 320 731 

12 77 
754 96 
22 36 

107955 345656 
2365 6238 

150 270 
9150 765 

175' 454 

19018 58480 
59.·. 197 

79 36 
427 46 
-8 -8 

page 21 · 



Codata DDL Enhancements DRAFf Specs . . John L. McCarthy, 

Exhibit 3: Example Census Codata File With Full Metadata 
style=1982 
author = Deane Merrill 
create = 2-feb-1982 19:26:25 
modified= 2-feb-1982 20:12:14 
continuation = -
escape = \ 
intra.liel~reak = ; 
database = stf1a 

label = sample 1980 stf1a codata file 
note =level is county80 (1980 Census counties) 
comment = county area calculated from geographic base tnap 

file. pop. density calculated with Query module .. , 
MODE = codata · · 
NDE = 7 
AREAS= 5 
CARDLENGTH = 60 
TYPE= dec 
USE= data 
weight= 1.0 
MISSING= -8 
error= 0.01 
universe =U.S. Population, 15-apr:-1980 

entity = county80 
key = fips. state 
key = fips. county80 
ndx = disk$seedis001:(seedata.census80.stfl.county80]s44.ndx 

DE = fips.state · · · 
TYPE ::::= alpha. 
USE= key 
·START= 1 
LENGTH= 2 
label = FIPS state code 
description = ,1980 FIPS state code 

DE= fips.county80 
TYPE= alpha 

. USE= key ···. 
START= 3 
LENGTH= 3 
label = 1980 Cen.sus county code 
note = county codes are.only unique within a state, so they must 

be used in conjunction with-state codes · 
DE= are~ame 

TYPE= alpha 
USE =·stub · 
START= 6 
LENGTH= 35 
label = state abbreviation; and; 1980 Census county name 

DE = populatio~ensity 
TYPE= dec 
START= 41 
LENGTH= 8 
intra.iiel~reak = # 
HEADER = total population#per 
HEADER = square mile 
note = calculated as stfl.tab1(1)/ctyarea.area.nickel (pop per 

sqkm) 

February 20, 1~82 version 

~; 



Codata DDL Enhancements DRAFT Specs John L. McCarthy 

scaleJactor = 2.59 
------- -------

Qpmment = V(!lU!')_s_t.Q:r'f;)_d_in_this Jile_is_per_sq_km ____ _ 

• 

comment = value displayed will be per sq mi, 2.59 times as 
large 

missing = -1 
DE= tab12 

TYPE= int 
START= 49 
celUength = 9 
array_size = 5*4 
universe = persons 
dimension= race1 

alias = major races 
description = major racial groups, including hispanic 
class= race 
category = total 

comment = default label is category name 
category = white 
category = black 
category = indian 

label = American Indian, Eskimo, and Aleut 
category = asian_pi 

label = Asian and Pacific Islander· 
description = In 100-percent tabulations, Asian and Pacific 

Islander includes "Japanese", "Chinese,", . "Filipino," "Korean," 
''Asian Indian,'' ''Vietnamese,'' ''Hawaiian;'' ·''Guamanian,'' and 
"Samoan." In sample tabulations it includes these groups plus per
sons who have a write-in entry of an Asiari or Pacific Islander group 
in the "Other" category. 

footnote= 4 
cell= 1,: 
comment= note how":" indicates all values in that dimension 

suppression·= supflg01 · · 
missing= -1 

cell= 2,: 
suppression = supflg02 
missing= -2 

cell= 3,: 
suppression = supflg03 
missing= -3 

cell= 4,: 
suppression = supflg04 
missing= -4 

cell= 5,: 
suppression = supflg05 
missing= -5 

dimension = age2 
alias = age...Agroups 
class = age 
category = under5 

label = Under 5 years 
category = 5to17 

label = 5 to 17 years 
category = 1Bto64 

label = 18 to 64 years 
group = adults 
comment = group...label can be printed out just above the 

category under which itis listed · 

Februarj 20, 1982 version ' page 23 



Codata DDL Enhancements DRAFf.Specs 

category = over64 
label = 65 years and· over 

DE= tab13 . 
structure =-array 
array_size = 3*4 
alias = racebyage 
label = Race (3) by Age ( 4) 
TYPE= int 
START= 250 
celUength = 9 
universe = Persons of Spanish Origin: 
dimension = race2 

class= race 
category·:: total 
category = white 
category = black 

dimension.= age2 . . . . . . 

John I.: McCarthy 

comment= age2 is defined above, so this merely refers back 
cells= 1,1:4 

suppression = supflg06 
missing = -6 ; . 

cells=2, 1:4 
suppression = supflg07 
missing = -7 . · 

cells=3, 1·: 
Sl,lppression = supflgOB 
missing = -8 ., 

. DE= .tab15 
structure = array 
TYPE= int 
START= 370 
c13lUength =. 9 · 

~ ., .. -· 

label = Household Type and Relationship (9) 
comment = array_size will be calculated from dimensions 
universe = Persons 
note = Categories may not be mutually exclusive 
suppression = supflg01 
missing= -1 
dimension = hhtype....rel 

class = householcU:.ype_and....relationship . 
category = householder · 

group = family 
category = spouse 
category = other....relatives 

footnote= 5 
category = nonrelatives 

footnote= 6 
group = nonfamily 

category = male...householder 
category = female...householder 
category = nonrelatives 

footnote= 6 
category = inmate 

label = Inmate of institution 
group = group .... quarters 

category = other 
category~roup :::: family 

cgitem = householder, spouse; other....relatives 

February 20, 1962 version 

• 



.• 

CodataDDL Enhancements DRAFT Specs John L. McCarthy 

category_group = nonfamily 
cgitem =-male-householder 
cgitem = female-householder 
cgit~m = nonrelatives 

category_group = group_quarters 
cgitem = inmate 
cgitem = other 

END DDF 
44001RI BRISTOL 358.336 2611 

9541 28925 5865. ·2566 9427 28587 
5833 4 18 87 8 5 

11 23 0 18 45 109 
18 52 164 459. 68 50 
156 428 67 -8 -8 -8 
-8 12385 10681 18029 242 1129 

1914 412 804 _1346 
44003RI KENT -1.0 9435 

32774 94384 17570. 9294 32346 93353 
17465 55\ 149 359 42 3 

32 100 10 52 178 383 
35 89 284 630 64 82 

256 541 59 -8 -8 -8 
-8 41678 35119 60324 1141 4970 

7489 1809 981. 652 
44005RI NEWPORT 206.556 5336 

16871 49936 9240 4797 15714 47241 
8978 320 731 1770 191 47 

67 156 12 77 194 390 
26 - 116 299 754 96 78 

210 532 86 6 22 36 
2 20599 .16959 '29579 692 3255 

4392 172i . 602 3584 
44007RI PROVIDENCE 510.589 33089 

107955 345656 84649 28696 97091 322242 
82430 2365 .· 6238 13181 1272 146 

413 844 . 150 270 596 2100 
209 1880 4140 9150. 765 998 

2202 5226 559 126 175 454. 
31 147434 116516 211335 4235 23736 

38528 9191 8799 11575 
44009RI WASHINGTON 107.756 6221 

i9018 58480 9598 6001 18342 56858 
9431 59 197 481 57' 73 
267 460 79 -36 121 423 
23 75 149··' 427 46 55 
107 275 42 -8 -8 -8 
-8 23032 19664 32903 913 3633 

4416 3040 1337 4379 

Implementation Strategies for Proposed Enhancements 

.- . 

While we discuss which· new metadata elements and other changes 
ought to be added to the codata ddl, we also need to decide on a 
strategy for incorporating such enhancements. If we decide on the 
second strategy outlined below, we could begin implementation 
even before we decide on the final set of new metadata elements to 
be included in the enhanced codata DDL. 

As I understand it, the software for handling metadata information 
(i.e., data definition files), is centralized in CRDEF and CWDEF, 

February 20, 1982 version page 25 



Codata DDL Enhancements DRAFT Specs John L. McCarthy 
... ·. :,.~. ' ~~. '· ·~.::;;:. :· ':.''' 

which read and write information for a single data element, plus a 
small amount of code in· CRINIT and CWDEF; which do a special call 
to the former routines to read and write global, file-level informa
tion. There are at least three different versions of these programs, 
separately maintained by Bill Benson; -Bob Healey,: and Deane Mer
rill, that will have to be modified and/or replaced. 

The choices are basically whether to modify the existing software 
or to rewrite the programs. Some of the considerations are out
lif:~.ed below. , . 

Alternative # 1 - :Modi{y Existing Software. 
CRDEF and related routines currently pass information as separate 
parameters in ·calling sequences.- We could follow the current form 
of these routines, and simply add more parameters to accomodate 
the new types of metadata. This might have the (dubious) virtue 
that if we added new parameters· at·· the erid of the sequence, cal
ling programs might n:ot have to be changed until ·they wanted to 
make use of the new information, and such changes could take 
place incrementally. But this would' involve · having different 
numbers of parameters in calling and called routines -- a 
dangerous practice which VMS FORTRAN may not even permit. As 
has been pointed out, moreover, the calliri:g sequences are already 
too long, and once the current round of changes are incorporated 
it would be even more difficult to add new metadata elements. We 
may even run up against a limit on the length of a FORTRAN param-
eter 'list. · · · · 

Alternative #2 - Redesign tal:J.itig Sequehces 
. :·.' 

The preferable implementation strategy is to adopt a new type of 
calling .. sequence, as proposed by Rik Littlefield and others at PNL. 
The essence of this scheme would be to pass metadata information 
in a character array containing "name = value!' strings. A common 
set of routines woUld be coded to make and crack these strings, so 
they would be, the only things that woUld have·to be changed as new 
meta:data elements were added. This woUld make the gradual addi
tion of new types of meta data much easier .. It might even be possi
ble to generate code for :the common set of read· routines using 
some kind of compiler compiler. • 
More detailed discussion of this new type of calling sequence will be 
presented in another memo (hop-efully within the next; few weeks). 

Recursive Metadata Definition · 

One elegant way to make the definition of metadata elements in 
codata files more open-ended and flexible woUld be to permit de
finition of metadata elements in terms of a subset of "metadata 
primitives", arranged in a· standard ddf format. In order to do this, 
we woUld need to implement variable length and multiply occuring 
data fields. The .. eye-readable version could be compiled into a 
more efficient form, perhaps using a compiler compiler to gen
erate the ddf parser:Jrom the rnetad~ta d,ata definition file. 
If we did this, it woUld mean that the same subroutine calls used to 
request particul.ar iterp_s of dat~ coUld be used to request particu
lar items of metadafa --·a. tidy cin!i pleasing result. I hope to ad
dress this possibilityin another paper, :andperhaps to implement a 
prototype using Sf'IRES. ' . 

February 20, 1982 version pr1ge 26 



... 

Codata DDL Enhancements DRAFT Specs John L. McCarthy 

SELECTED REI''ERENCC3 

COMP81 

EGGE81 

EGGE82 

Computer Science and Mathematics Department, "SEEDIS Release 
Notes version 1.2," June 1981; version 1.3 (preliminary) October 
1981 

Eggers, S., Olken, F., and Shoshani, A, "A Compression Technique 
for Large Statistical Databases," LBL-12353, February, 1981 

S. Eggers, F. Gey, R. Healey, H. Holmes, J. McCarthy, A Shoshani, 
"Physical Database Research at the Lawrence Berkeley Laborato-
ry," IEEE Database EJngineering Newsletter, March, 1982 (forth
coming) 

MARC 81 Marcus, A., "SEEDIS Graphic Design Maq.ual" [in preparation] 

MCCA 81A McCarthy, J., "The SEEDIS Project: A Summary Overview," PUB-424, 
September, 1981 

MCCA81B Mccarthy, J., "Metadata Tools," [draft internal document] July, 
1981 . 

MERR 81 Merrill, D., "CODATA Users' Manual," LBID-021. revised April 1981 

February 20, 1982 version page 27 



.. 

This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regent,s of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval, or recommendation of the 
product by the University of California or the U.S. 
Departmen.t of Energy to the exclusion of others that 
may be suitable . 



~a."- . •·., ' . :S,lT 

TECHNICAL INFORMATION DEPARTMENT 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

'-

"'-

- . , n 
·1.;) =- '- r__t· 




