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NEUROSCIENCE

RESEARCH ARTICLE
J. Lu, S. K. Sorooshyari / Neuroscience 510 (2023) 1–8
Machine Learning Identifies a Rat Model of Parkinson’s Disease via

Sleep-Wake Electroencephalogram

Jun Lu a* and Siamak K. Sorooshyari b*
aStroke Center, Department of Neurology, 1st Hospital of Jilin University, Changchun 120021, China

bDepartment of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA

Abstract—Alpha-synuclein induced degeneration of the midbrain substantia nigra pars compact (SNc) dopamin-
ergic neurons causes Parkinson’s disease (PD). Rodent studies demonstrate that nigrostriatal dopamine stimu-
lates pallidal neurons which, via the topographical pallidocortical pathway, regulate cortical activity and
functions. We hypothesize that nigrostriatal dopamine acting at the basal ganglia regulates cortical activity in
sleep and wake state, and its depletion systemically alters electroencephalogram (EEG) across frequencies dur-
ing sleep-wake state. Compared to control rats, 6-hydroxydopamine induced selective SNc lesions increased
overall EEG power (positive synchronization) across 0.5–60 Hz during wake, NREM (non-rapid eye movement)
sleep, and REM sleep. Application of machine learning (ML) to seven EEG features computed at a single or com-
bined spectral bands during sleep-wake differentiated SNc lesions from controls at high accuracy. ML algorithms
construct a model based on empirical data to make predictions on subsequent data. The accuracy of the predic-
tive results indicate that nigrostriatal dopamine depletion increases global EEG spectral synchronization in wake,
NREM sleep, and REM sleep. The EEG changes can be exploited by ML to identify SNc lesions at a high accuracy.
� 2022 IBRO. Published by Elsevier Ltd. All rights reserved.
Key words: Parkinson’s disease, machine learning, electroencephalogram, sleep-wake cycle, dopamine, biomarker.
INTRODUCTION

Alpha-synuclein induced degeneration of pigmented

dopaminergic neurons in the midbrain substantia nigra

pars compact (SNc) is responsible for hallmark motor

and non-motor symptoms of Parkinson’s disease (PD).

Prior animal studies have established the neural circuitry

of SNc dopamine control of the cerebral cortex.

Specifically, nigrostriatal dopamine acting on D2

receptors at the presynaptic sites of striatopallidal axons

activates the external globus pallidus (GPe) GABAergic

neurons that, via pallidocortical projections, regulate

cortical activity and functions (Chen et al., 2015; Qiu

et al., 2016b, 2019; Guo et al., 2017). Furthermore, selec-

tive 6-hydroxydopamine lesions of SNc dopaminergic

neurons have been found to increase cortical activity as

shown by c-Fos expression and increased total wakeful-

ness in rats (Qiu et al., 2014, 2016b, 2019). These obser-

vations and the neural circuitry of SNc dopamine control

of the cerebral cortex suggest that nigrostriatal dopamine
https://doi.org/10.1016/j.neuroscience.2022.11.035
0306-4522/� 2022 IBRO. Published by Elsevier Ltd. All rights reserved.
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loss (SNc lesion) causes extensive elevation in global cor-

tical activity of electroencephalogram (EEG). Although

unusually high beta EEG power has been reported in

human and rat PD models (Sharott et al., 2005; Deffains

and Bergman, 2019), it has not been determined if EEG

changes occur at other frequencies, whether the EEG

changes persist during wake and sleep states, and if

machine learning (ML) can distinguish EEG changes in

sleep-wake caused by the SNc lesions. We made selec-

tive ablations to SNc dopamine neurons and systemically

examined 0.5–60 Hz changes in EEG during wake,

NREM sleep, and REM sleep. Compared to human PD

that has lesions far beyond the nigral dopaminergic neu-

rons, the rat PD model of 6-hydroxydopamine lesions is

confined to SNc dopaminergic neurons, thus a rat PD

model is appropriate for analyzing the changes of SNc

lesions. The ML analysis is supervised since our algo-

rithm is provided with data, the outputs that the data

should produce, and then the algorithm is asked to clas-

sify unencountered data based on what it has learned.

The ML techniques’ accuracy on unencountered data will

dictate the efficacy of the analysis as well as whether the

data contains categorical structure. Our results show that

SNc lesions increased 0.5–60 Hz EEG power, and that

the computed features used to train a support vector
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machine (SVM) are able to distinguish the lesioned ani-

mals from controls at a high accuracy.
METHODS

6-hydroxydopamine (6-OHDA) lesions of SNc
dopamine neurons

The SNc lesioned and control Sprague-Dawley rats

(300 g male, Harlan) used in this study have been

examined for sleep-wake changes where 6% 6-

hydroxydopamine (6-OHDA) injections in the ventral

pallidum bilaterally ablated more than 80% of the SNc

dopamine neurons and significantly reduced sleep

amounts with sleep-wake fragmentation. The animals

were 8 weeks old (w.o.). The Institutional Animal Care

and Use Committee of Beth Israel Deaconess Medical

Center approved all protocols. The methods for 6-OHDA

injection, SNc lesion, EEG/EMG/video recording, and

sleep-wake changes were reported previously (Qiu

et al., 2016b). Breifly,100 nl 6% 6-OHDA (Sigma) injected

into the ventral pallidal region was taken up by the

dopaminergic terminals and killed dopaminergic neurons

in the SNc and their dorsal striatum terminals yet spared

the ventral tegmental area (VTA) and ventral striatum.

This method effectively ablated about 80–90% of the

SNc. EEG/EMG signals were amplified (AM systems,

USA), digitized and recorded (256 Hz sampling) using

vital recorder software (CED ltd. Cambridge, UK) and

sleep-wake analyses were done by SleepSign. Wake

(12 s per episode) was identified by online low EEG ampli-

tude and high EMG and posture on synchronized video;

NREM sleep (12 s per episode) was identified by high

EEG amplitude and low EMG and sleep posture. REM

sleep (12 s per episode) was identified by extremely high

ratio of theta power/delta power and very low EMG and

sleep posture. However, spectral analysis was not per-

formed on the EEG. In the present study, extracted data

from EEG of nine SNc lesioned animals and nine sham

controls were used for statistical analyses and as inputs

to a machine learning (ML) algorithm to determine

whether the SNc lesioned animals could be distinguished

from the controls.

Feature analysis. After 2-week recovery from the

surgery of bilateral 6-hydroxydopamine injection at the

ventral pallidal region (N = 9) or sham surgery (N = 9),

rats were connected to EEG/EMG recording for 1 day of

acclimation and EEG/EMG/video was then recorded for

24 h. The EEG/EMG was collected at a sampling rate of

256 Hz. The 0-Hz measurement was discarded and

artifact removal was performed by deleting all samples

that exceed a threshold set to five times the mean value

of the measured power at 0.5 Hz. The power levels at

the frequencies were consolidated into seven bands:

delta (0.5–4 Hz), theta (4.5–8 Hz), alpha (8.5–12 Hz),
beta (12.5–20 Hz), high-beta (20.5–30 Hz), low-gamma

(30.5–40 Hz), and high-gamma (40.5–60 Hz). For each
sample, the mean power was computed by averaging

across the frequencies that comprised the spectral

bands – this resulted in seven power levels per time

instant. While the 24-h recordings were collected at a
256 Hz sampling rate, each mean power value was

calculated by averaging over 12 s. A second level of

artifact removal was applied by discarding samples with

a value in any of the seven frequency bands that

exceeded 10 mV2/Hz. This was done while being

cognizant of the inverse power law of the

electrophysiological power spectral density (Buzsaki and

Draguhn, 2004). Specifically, the high threshold was

selected to remove rare events (i.e. artifacts) and not

affect the underlying relation between the power levels

of each band. The EEG power of each animal across

the seven frequency bands were separated based on

whether they occurred during wake, REM, or NREM.

Each animal’s per-state recording was then input to in-

house MATLAB scripts to compute the features that were

used as inputs to the ML analysis.
Computed features. Five statistical features were

attained for each of the seven spectral bands in a

recording by computing the mean, variance, median,
minimum, and maximum of the EEG signal. This was

performed after the EEG signal was filtered in each of

the bands. We also computed the number of deviations

(ND) by Z-scoring the signal and declaring a deviation-

low when the signal was less than �2r and a deviation-

high when the signal exceeded 2r. The number of low

and high deviations were normalized by the number of

samples in the recording with the results being referred

to as ND-low and ND-high, respectively. The deviation

features are a measure of the burstiness or paroxysmal

nature of the EEG signal. It should be noted that the

features have been selected to be simple, reflective of

the temporal properties of the EEG signal, while not

being redundant of one another – i.e. none of the

features can be faithfully reproduced from the remainder

of the features. Thus, five statistical and two deviation-

based features were collected for each of the seven

frequency bands of an animal during REM sleep, NREM

sleep, and wakefulness.
Statistical analysis. A Kolmogorov-Smirnov (KS) test

was performed to assess the possibility of features

being sufficiently different among the EEG recordings

from the two groups of animals. The p-value associated

with each feature rejecting the null hypothesis of being

different among the SNc lesioned and control cohorts is

reported via the same technique. In the specific case of

the increase in a paroxysmal feature in the high gamma

band during REM sleep, a KS test was used to assess

statistical significance (p-value < 0.05) between SNc

lesioned animals and controls. The result was conveyed

via a box-and-whisker plot with the lower and upper

quartiles as the edges of the shaded box and the

whiskers corresponding to the minimum and maximum

values. A Shapiro–Wilk test was applied to the temporal

recordings across the seven frequency bands of all

animals (N = 18, SNc lesioned and controls) for each

of the three sleep/wake states to assess the normality

of the signals. Nearly all (374/378) outcomes rejected

the null hypothesis (p-value < 0.05) of the EEG signal

being Gaussian.
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Machine learning analysis. The features computed

across the different EEG frequency bands from each

sleep-wake state of an animal were arranged in a vector

and used either as training or test data in the ML

analysis. The ML technique used was a support vector

machine (SVM) with a linear kernel and a binary

classifier. The ML and cross-validation techniques were

implemented in R via the e1071 and kernlab packages.

To use a balanced training set, computed EEG features

of eight control and eight PD animals were randomly

selected and used to train the SVM. Subsequently, the

remaining SNc-lesioned recording and control recording

were considered as the two test data points. The trained

machine’s classification decisions were compared to the

ground-truth labels associated with the two left-out data

points. This process was iterated 1000 times to attain a

mean classification accuracy rate. A schematic of the

pipeline is shown in Fig. 1 with the sets A and B

corresponding to the recordings from control and SNc
Fig. 1. The machine learning (ML) pipeline used to predict whether feat
lesioned rats from controls. The sets A and B correspond to features com

notation |.| refers to the number of elements in the set (i.e. cardinality), while ‘‘

workflow was iterated at 1000 independent realizations to arrive at a classific

features prior to being presented with test data in the form of a left-out sampl
by ¼ ytest for a left-out sample from set A or B. The accuracy rate was attaine

were correctly predicted.
lesioned animals. In assessing the results, we refer to

an accuracy rate of 0.65 as being desirable since it is

approximately-one-sigma greater than the chance value

of 0.5 (binary classification). For comparison, the ML

pipeline was repeated with an L1 regularized logistic

regression (L1-LR) used in place of the SVM with the

aim of providing a solution that potentially improves

predictive capability in situations where SVM may be

overfitting. The L1-LR was implemented via the glmnet

package in R with a binomial family and five folds.
RESULTS

To investigate whether and how SNc dopamine depletion

alters cortical activity, we examined the effect of SNc

lesions on the EEG and whether ML was able to

distinguish SNc-lesioned animals from the controls.

Compared to controls, 6-OHDA lesions of bilateral SNc

(nigrostriatal dopamine depletion) produced an increase
ures computed from EEG recordings can be used to distinguish
puted from the EEG recordings of control and SNc lesioned rats. The

^” denotes the predicted value of a label from the test data. The above

ation accuracy rate. Each iteration encompassed an SVM trained on

e from each of the two categories. A correct prediction corresponds to

d by calculating the fraction of times the labels of the left-out samples
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in nearly all (104/105) statistical features across the EEG

spectra with significance (p < 0.05) or near significance

(0.05 < p < 0.1) as seen in Fig. 2(A) and Table 1. The

consistent increase in the statistical features indicated

elevated EEG power across spectra, i.e. increased

positive EEG synchronization in the 0.5–60.0 Hz range.

The total number of EEG features with statistical

significance among SNc lesion and control were 18 in

wake, 11 in NREM sleep, and 10 in REM sleep. A
Fig. 2. Statistical and ML analysis on SNc-lesion induced EEG changes
(KS) test was applied to assess seven features (y-axis) from EEG signals bein

SNc lesioned (N = 9, age = 8 w.o.) animals. Five statistical and two deviatio

beta (bH), low gamma (cL), and high gamma (cH) (x-axis) EEG were evaluate

lesions altered statistical and deviation-based features via mostly increasin

arrows). Of the deviation features across all spectra, only the low gamma in w

indicated by white stars) between the two animal groups. ML analysis was pe

lesioned animals during three sleep/wake states (A). It is noted that in the high

REM sleep for SNc lesioned animals in comparison to controls was statisticall

as the edges of the shaded box while the whiskers have endpoints that corres

pipeline differentiated EEG features in sleep-wake states between PD and c

band except for high gamma. The black, dashed line indicates the chance pre

with the L1-LR technique although the predictive capability was degraded in th

different groups of features, barring the deviation features during NREM slee

the spectrum of considered frequencies, the SVM distinguished SNc lesioned

NREM sleep. Similar results were noted with L1-LR except the predictive ca

only the deviation features (D).
significance level of 0.05 < p < 0.1 was seen in 14 of

the features during wake, 21 features in NREM sleep,

and 20 features in REM sleep (Fig. 2(A)). Although

EEG features were increased across spectral bands,

certain bands showed particularly robust increases in

two or all three sleep-wake states. For instance, low

gamma oscillation was noted during wake and NREM

sleep, theta oscillation in wake and REM sleep, and

delta oscillation in REM and NREM sleep. Beta
during wake, REM sleep, and NREM sleep. A Kolmogorov-Smirnov

g sufficiently different between the control (N = 9, age = 8 w.o.) and

n-based features from the delta (d), theta (h), alpha (a), beta (b), high
d during wake, NREM sleep, and REM sleep in the two groups. SNc

g the feature values with a few reductions (indicated by the down

ake and high gamma in REM were statistically significant (p < 0.05 –

rformed on EEG features to distinguish between the control and SNc-

gamma band (40.5–60 Hz) the increase in the ND-high feature during

y significant (KS test, p < 0.05). The lower and upper quartiles appear

pond to the minimum and maximum values (B). Using an SVM, the ML

ontrol animals at an accuracy rate greater than 0.65 at each spectral

dictive value of 0.5 for binary classification. Similar results were noted

e high beta rather than the high gamma band (C). With respect to the

p, when provided with the statistical, deviation, or all features across

animals from controls at high accuracy during wake, REM sleep, and

pability was poor during REM sleep when considering all features or



Table 1. The number of statistically significant EEG features between

SNc lesioned and control rats in sleep-wake states

EEG spectral band Wake REM NREM

Delta (0.5–4 Hz) 1 (1,0) 3 (3,0) 2 (2,0)

Theta (4.5–8 Hz) 5 (5,0) 5 (5,0) 0 (0,0)

Alpha (8.5–12 Hz) 1 (1,0) 0 (0,0) 2 (2,0)

Beta (12.5–20 Hz) 3 (3,0) 0 (0,0) 0 (0,0)

High-beta (20.5–30 Hz) 4 (4,0) 1 (1,0) 2 (2,0)

Low-gamma (30.5–40 Hz) 4 (3,1) 1 (1,0) 5 (5,0)

High-gamma (40.5–60 Hz) 0 (0,0) 1 (0,1) 0 (0,0)

The table entry a(b,c) denotes the total number of statistically significant features

(a) as well as the number of significant statistical (b) and deviation (c) features. A

threshold of p = 0.05 was considered significant for the Kolmogorov-Smirnov test

results in Fig. 2. Across the wake, NREM sleep, and REM sleep states, 38 sta-

tistical features and 2 deviation features (low gamma in wake, high gamma in

REM) were significant.
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oscillation as well as delta oscillation were noted in all

three states (Fig. 2(A), Table 1).

We further quantified the degree of global EEG

spectral synchronization across a frequency band by

taking the ratio of the mean power between the

depleted and control case. This is referred to as the rise

in synchronization and shown in Table 2 for the sleep-

wake states. We noted that the rise in synchronization

was significant across all of the frequency bands in

NREM sleep and nearly all bands during wake and

REM sleep. The greatest rise in synchronization was

noted at the delta and theta frequency bands during
Table 2. The rise in a synchronization metric reflects the increase in

mean power at a frequency band as the measure of global EEG

spectral synchronization

Sleep-wake state Frequency band Rise in synchronization

Wake Delta * 7.02

Wake Theta * 6.28

Wake Alpha * 5.54

Wake Beta * 5.28

Wake High beta * 5.93

Wake Low gamma * 4.85

Wake High gamma 2

NREM Delta * 5.99

NREM Theta * 5.41

NREM Alpha * 5.51

NREM Beta * 5.3

NREM High beta * 6.39

NREM Low gamma * 6.19

NREM High gamma * 3.5

REM Delta * 6.25

REM Theta * 7.04

REM Alpha * 5.25

REM Beta * 5.3

REM High beta * 6

REM Low gamma * 5.04

REM High gamma 3.6

The ratio of mean power levels among SNc lensioned and control animals at a

given frequency band is used to reflect the rise in synchronization in EEG. The

increase in synchronization is observed in the SNc lesioned animals (N = 9,

age = 8 w.o.) in comparison to the controls (N = 9, age = 8 w.o.) at each

frequency band during wake, NREM, and REM. To assess statistical significance,

a Welch’s t-test was applied to the results at each frequency band with * denoting

p-value < 0.05. Of all frequency bands, only high gamma for REM sleep and

wake was not significant.
wake as well as REM sleep. During NREM sleep the

highest value of this metric occurred in high beta. While

in all three states the least degree of synchronization by

the SNc lesions was seen at the high gamma band, the

result was not significant during wake and REM sleep. It

is interesting that the high gamma is the only frequency

band that showed low but not significant increases in

wake and REM sleep. REM sleep, NREM sleep and

wake showed a general trend of increased rise in

synchronization at the lower frequencies with the effect

lessening at the higher frequencies.

A high accuracy rate when using the ML pipeline to

differentiate SNc lesioned animals from control animals

during wake, REM, and NREM sleep indicated robust

differences between the two groups (Fig. 2(C)). The ML

pipeline also provided a high accuracy when considering

all seven features at a single spectral band – namely,

delta, alpha, beta, high beta, and low gamma EEG

during wake, NREM sleep, and REM sleep (Fig. 2(C)).
Using the statistical features of all EEG spectral bands

resulted in an accuracy rate of approximately 0.65 in

wake, NREM sleep, and REM sleep for differentiating

SNc lesioned from controls. The accuracy rate attained

when considering the deviation features across all EEG

spectral bands was 0.748 during wake and 0.637 for

REM sleep while only 0.519 for NREM sleep (Fig. 2(D)).
Similar results were noted with the L1-LR technique

although the predictive capability was degraded in the

high beta band and not the high gamma band. Also,

when using L1-LR, the predictive capability was rather

poor during REM sleep when considering all features or

only the deviation features (Fig. 2(C,D)). Lastly, the ML

pipeline applied to all features form the single frequency

of 40 Hz provided a differentiation of SNc lesioned

animals from the controls. Despite several of the

features being close to but not statistically significant

(Fig. 3(A)), the collective 40 Hz features at wake,

NREM, and REM sleep all yielded accuracy rates

greater than 0.65 (Fig. 3(B)). Similar results were noted

when using L1-LR in the ML pipeline with the exception

of the predictive accuracy during REM sleep not

exceeding 0.65 (AR = 0.636).

In summary, SNc lesions (nigrostriatal dopamine

depletion) increased EEG synchronization across

spectra (0.5–60 Hz) during wake, NREM sleep, and

REM sleep. A ML technique trained on EEG features

computed from a single or multiple spectral bands was

able to differentiate SNc lesioned animals from controls

at high accuracy during wake, NREM sleep, or REM

sleep.
DISCUSSION

The basal ganglia regulates cortical activity and functions

via its reciprocal topographical connectivity with the

cerebral cortex. Nigrostriatal dopamine serves as a

critical input to the basal ganglia by tuning cortical

activity. Animal studies have established the neural

circuitry underlying nigrostriatal dopamine control of

cortical activity (Cooper and Stanford, 2001; Vetrivelan

et al., 2010; Chen et al., 2015; Qiu et al., 2019) with



Fig. 3. Differentiations of 40 Hz EEG in sleep-wake states between SNc lesioned and control rats. The Kolmogorov-Smirnov tests indicate

that during the three sleep-wake states two-thirds (i.e. 14/21) of the EEG features between the control (N = 9, age = 8 w.o.) and lesioned groups

(N = 9, age = 8 w.o.) are close to statistical significance. The green arrows denote features that showed a decrease in value for SNc lesioned rats

compared to controls while the white bars denote a feature that did not change in value among the two conditions (A). The ML pipeline with an SVM

applied to the 40 Hz EEG features during wake, NREM sleep, and REM sleep resulted in accuracy rates greater than 0.65 for differentiating SNc

lesioned animals from controls. Similar results were noted when using L1-LR in the ML pipeline except for the predictive accuracy during REM sleep

not exceeding 0.65 (AR = 0.636). The black, dashed line indicates the chance predictive value of 0.5 for binary classification (B).
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nigrostriatal dopamine acting on dopamine D2 inhibitory

auto-receptors at the presynaptic sites of GABAergic stri-

atiopallidal axons to elevate the firing of GABAergic palli-

docortical neurons that inhibit the cortex (Chen et al.,

2015). Thus, removal of nigrostriatal dopaminergic inputs

to the basal ganglia in PD or by SNc lesions in rodents is

hypothesized to increase cortical activity and arousal.

Consistent with this notion, we have shown that SNc

lesions increased total wake amounts and cortical c-Fos

expression in rats (Qiu et al., 2014, 2016b). Conversely,

we have shown that chemogenetic stimulation of SNc

dopaminergic neurons promote sleep (Qiu et al., 2016b,

2019), and deep brain stimulation (DBS) in the GPe pro-

motes sleep in rats (Qiu et al., 2016a). In the current

study, we demonstrated that SNc lesions increased

EEG power across 0.5–60 Hz during wake, NREM sleep,

and REM sleep. We have defined the ratio of mean EEG

power across a frequency band between lesioned and

control animals as an indicator of a rise in the synchro-

nization level. The elevated EEG power and the observed

rise in synchronization is believed to be caused by ele-

vated firing in cortical neurons as single-unit recordings

have shown increased firing in cortical neurons following

SNc lesions in primates (Wang et al., 2018).

The SNc lesions increased EEG synchronization

unevenly across the EEG spectral bands in wake, REM,

and NREM sleep. The wake beta, REM sleep high

gamma, theta during wake and REM sleep, alpha in

wake and NREM sleep, and delta, high beta, and low

gamma in all three states showed such an effect. The

sleep-wake-state dependent EEG synchronization after

the SNc lesions indicates SNc dopamine control of the

basal ganglia and cortical activity in sleep-wake state.

Volition movement is believed to be regulated by a

sequence of neuronal activity consisting of 0.5 s pre-
onset reduction and onset activation shown in beta EEG

in the premotor cortex (Satow et al., 2004) which is signif-

icantly altered by PD (Georgiev et al., 2016). The applica-

tion of DBS in the subthalamic nucleus (STN) which

reciprocally connects the GPe has been shown to correct

abnormal beta EEG and motor symptoms in PD (Anidi

et al., 2018). This suggests that extremely high beta

EEG in the motor cortex during PD causes abnormal

movements. Studies on EEG changes in human and ani-

mal PD models have primarily focused on movement

related beta activity during wake state (West et al.,

2018; Deffains and Bergman, 2019), although elevated

beta activity is also found in NREM sleep in primate PD

(Mizrahi-Kliger et al., 2020). The presented results further

detailed sub-beta EEG changes. More, specifically, the

beta (12.5–20 Hz) features were significantly different

during wake while the high beta (20.5–30 Hz) features

were significantly different in all three states (Fig. 2 and

Table 1). Overall, increased EEG synchronization by

SNc lesions is in line with reduction in EEG complexity

in human PD (Yi et al., 2017; Keller et al., 2020). Although

our analysis did not extend beyond 60 Hz it is conceivable

that elevated synchronization may occur in EEG signals

greater than 60 Hz since EEG changes by selective

SNc lesions in rats are consistent with human EEG

changes in PD. This also supports an assertion that

EEG changes in PD are due to SNc lesions. We remark

that the designations low gamma (30.5–40 Hz) and high

gamma (40.5–60 Hz) are somewhat relative, i.e. they

have been selected from existing literature (Cavelli

et al., 2015; Milikovsky et al., 2017).

The deviation features in the EEG spectra were less

altered by SNc lesions than the statistical features. An

exception was the ND-high feature at high gamma EEG

in REM sleep. Since the statistical features in high
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gamma EEG during REM sleep were not significantly

increased, the alteration in the deviation features points

towards the role of dopamine at inducing high gamma

oscillations during REM sleep. High gamma oscillation is

generated by the hippocampus during REM sleep

(Buzsaki et al., 2003) while SNc dopamine neurons dis-

charge in a bursting pattern that may increase dopamine

release in bursting mode during REM (Dahan et al.,

2007). The loss of SNc dopamine may increase high

gamma EEG spike amplitudes, resulting in increased

ND-high values. Due to the absence of direct anatomical

connections between the basal ganglia and the hip-

pocampus, SNc dopamine may control the hippocampus

via the entorhinal cortex that closely communicates with

the hippocampus. As the entorhino-hippocampal complex

generated theta and high gamma oscillations process

emotional memory during REM sleep (Murkar and De

Koninck, 2018), high theta and gamma EEG power by

entorhinal cortex and the hippocampus (Chrobak and

Buzsaki, 1998) may contribute to cognitive and mental

declines in PD (Weintraub and Mamikonyan, 2019; Zhu

et al., 2019) as well as the vivid dreaming in PD

(Otaiku, 2021).

The topographic connections of the basal ganglia and

the cortex are consistent with the increased

synchronization across global EEG spectra in sleep-

wake states following the removal of nigrostriatal

dopamine inputs to the basal ganglia. The presented ML

analysis on the EEG features computed across all

spectral bands during wake, NREM, and REM identified

SNc lesions with high accuracy. Furthermore, the ML

pipeline with features computed at the single frequency

of 40 Hz in sleep-wake state identified SNc lesions at

high accuracy. Although beta EEG power increase has

been studied as a biomarker of PD (Bore et al., 2020),

studies have shown that beta EEG alone is not a sufficient

biomarker (Connolly et al., 2015; Zhang et al., 2021). Our

findings suggest that multiple EEG bands exhibit a larger

and more patent difference than a single frequency band

in PD. The onset of the motor symptoms associated with

PD typically start when there is substantial SNc neuronal

loss totaling 70–80% (Savica et al., 2010). Thus, it is likely

that EEG changes start in the pre-motor stage and wor-

sen in the motor stage of PD. It has been established that

REM sleep behavior disorder (RBD) is a biomarker of pre-

motor PD (Schenck et al., 2003; Barone and Henchcliffe,

2018). However, there are substantial (i.e. 20–70%)

cases of RBD without PD, as well as an estimated 75%

of PD cases that are not accompanied with RBD (Zhang

et al., 2017a; 2017b). Nevertheless, PD-like traits in

EEG signals during wake and sleep have been reported

in people with RBD (Hackius et al., 2016). We believe that

PD-like traits shown in EEG recordings would predict pre-

motor PD more accurately than RBD. This is in light of

considering that RBD is an indicator of synucleinopathies

including PD, multiple system atrophy (MSA), and

dementia with Lewy bodies while the rise in EEG synchro-

nization during sleep-wake states is unique to the SNc

lesions. This is consistent with high beta power reported

in EEG recordings in Wilson’s disease (Dierks et al.,

1999; Tamas et al., 2011). Our analyses suggest that
PD-like EEG features may detect other basal ganglia dis-

orders such as Wilson’s disease (copper accumulation in

the basal ganglia) and Farh’s Disease (calcification in the

basal ganglia). A future avenue will encompass exploiting

neural signals by using ML to identify other EEG features

as well as considering greater than 60 Hz frequencies in

SNc lesioned animals. The results are indicative of EEG

being a powerful biomarker for other basal ganglia and

cortical dysfunctions such as Huntington’s disease and

dementia.
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