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Settling of cohesive sediment:
particle-resolved simulations

B. Vowinckel1,†, J. Withers1,2, Paolo Luzzatto-Fegiz1 and E. Meiburg1

1Department of Mechanical Engineering, University of California, Santa Barbara, CA 93116, USA
2The University of Queensland, School of Mechanical and Mining Engineering, Brisbane,

Queensland 4072, Australia

(Received 16 April 2018; revised 18 September 2018; accepted 18 September 2018)

We develop a physical and computational model for performing fully coupled,
grain-resolved direct numerical simulations of cohesive sediment, based on the
immersed boundary method. The model distributes the cohesive forces over a
thin shell surrounding each particle, thereby allowing for the spatial and temporal
resolution of the cohesive forces during particle–particle interactions. The influence
of the cohesive forces is captured by a single dimensionless parameter in the form
of a cohesion number, which represents the ratio of cohesive and gravitational
forces acting on a particle. We test and validate the cohesive force model for
binary particle interactions in the drafting–kissing–tumbling (DKT) configuration.
Cohesive sediment grains can remain attached to each other during the tumbling
phase following the initial collision, thereby giving rise to the formation of flocs.
The DKT simulations demonstrate that cohesive particle pairs settle in a preferred
orientation, with particles of very different sizes preferentially aligning themselves
in the vertical direction, so that the smaller particle is drafted in the wake of the
larger one. This preferred orientation of cohesive particle pairs is found to remain
influential for systems of higher complexity. To this end, we perform large simulations
of 1261 polydisperse settling particles starting from rest. These simulations reproduce
several earlier experimental observations by other authors, such as the accelerated
settling of sand and silt particles due to particle bonding, the stratification of cohesive
sediment deposits, and the consolidation process of the deposit. They identify three
characteristic phases of the polydisperse settling process, viz. (i) initial stir-up phase
with limited flocculation, (ii) enhanced settling phase characterized by increased
flocculation, and (iii) consolidation phase. The simulations demonstrate that cohesive
forces accelerate the overall settling process primarily because smaller grains attach
to larger ones and settle in their wakes. For the present cohesive number values, we
observe that settling can be accelerated by up to 29 %. We propose physically based
parametrization of classical hindered settling functions introduced by earlier authors,
in order to account for cohesive forces. An investigation of the energy budget shows
that, even though the work of the collision forces is much smaller than that of the
hydrodynamic drag forces, it can substantially modify the relevant energy conversion
processes.
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6 B. Vowinckel, J. Withers, P. Luzzatto-Fegiz and E. Meiburg

1. Introduction
The term ‘cohesive sediment’ commonly refers to particles with diameters smaller

than 63 µm (Grabowski, Droppo & Wharton 2011). At this size, cohesive van
der Waals (vdW) forces can dominate over gravitational forces and trigger particle
aggregation or flocculation. These cohesive forces result from correlations in the
fluctuating polarizations of nearby particles, and they play an important role in such
environments as rivers (Seminara 2010), lakes and estuaries (De Swart & Zimmerman
2009), fisheries and coastal ecosystems, and benthic habitats near the seafloor (Rhoads
1974). Owing to the modified particle–particle interaction, the dynamics of cohesive
sediment is significantly more complex than for its non-cohesive counterpart.

Even though the concept of vdW forces dates back to the late nineteenth century,
the physical mechanisms responsible for these forces were not explained until the
development of the theory of quantum mechanics, as reviewed by Visser (1989).
First scaling laws were presented by Hamaker (1937) for the idealized situation of
spherical particles. This author suggested that cohesive forces on an individual particle
under dry conditions scale as Fcoh ∝ AHRp/(6ζ 2

n ), where the Hamaker constant AH
accounts for particle properties such as mineralogy and surface coating, Rp denotes
the particle radius, and ζn is the gap size between two approaching particles. These
forces can lead to the formation of flocs through the binding of individual particles,
thereby resulting in much larger aggregates. Since gravitational and hydrodynamic
forces scale as Fg∝R3

p and Fh∝R2
p, respectively, flocculated aggregates typically settle

more rapidly than the Stokes settling velocity of the individual particles (e.g Mehta
et al. 1989; Zinchenko & Davis 2014). Several investigations have addressed the
impact of the ambient fluid properties such as salinity (e.g. Aberle, Nikora & Walters
2004; Sutherland, Barrett & Gingras 2015) on flocculation. In these studies, it was
found that the magnitude of the cohesive forces, along with the related flocculation
behaviour, can depend strongly on the salinity. However, reliable predictive tools
for the sedimentation and erosion characteristics of cohesive sediment have not yet
been developed (Debnath & Chaudhuri 2010). For example, it remains unclear how
sediment composition (Aberle et al. 2004), salinity (Sutherland et al. 2015), the grain
size distribution (te Slaa et al. 2015), or a combination of these (Huang 2017) affect
the settling rate of fine-grained sediments.

This lack of predictive tools can be attributed to difficulties in precisely measuring
cohesive forces on the grain scale in natural systems, such as silt settling in water.
In principle, the Hamaker constant can be derived from the Lifshitz theory depending
on the properties of the particles and the ambient fluid. For example, Visser (1972)
reported values up to AH = 1.8 × 10−18 J for ionic crystals in water, Bergström
(1997) found AH = 1× 10−20 J for quartz in water, while Lick, Jin & Gailani (2004)
measured a value of AH = 6.4 × 10−23 J for silicate particles in water, which spans
a range of five orders of magnitude. However, the actual vdW forces must then be
derived by integrating the electromagnetic fluctuations at microscopic scales over
the volume of the particles. This can be done for engineered colloids of spherical
shapes but is less trivial for natural silica materials with complex shapes. The issue
of parametrizing cohesive forces has, hence, been the subject of an ongoing debate in
the literature (e.g. Israelachvili 1992; Ho & Sommerfeld 2002; Leong & Ong 2003;
Lick et al. 2004; Liang et al. 2007; Righetti & Lucarelli 2007; Kosinski & Hoffmann
2010; Breuer & Almohammed 2015).

Our incomplete understanding of how cohesive forces depend on the experimental
conditions prevents us from deriving universal scaling relationships for the settling
rates of flocculated sediments. Numerical investigations have attempted to tackle
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Settling of cohesive sediment 7

this issue by employing point-particle approaches in conjunction with a hard-sphere
model to account for particle–particle interactions (e.g. Ho & Sommerfeld 2002;
Kosinski & Hoffmann 2010; Breuer & Almohammed 2015; Sun, Xiao & Sun 2018).
The hard-sphere model resolves collisions instantaneously by changing the particle
velocity according to a restitution coefficient for inelastic collisions. This approach
has well-known deficiencies when dealing with denser systems such as flocculated
sediment, since the empirical relationship for computing the hydrodynamic drag of
a particle is typically based on undisturbed flow conditions (Loth 2000). A more
realistic approach that has gained popularity for non-cohesive sediment in recent
years involves fully coupled particle-resolving direct numerical simulations (DNS)
(Balachandar & Eaton 2010). In particular, computational tools have been developed
that are able to capture the dynamics of very dense, polydisperse systems with a
minimal number of tunable parameters (Biegert, Vowinckel & Meiburg 2017a). It
is hence desirable to extend this computational approach to include cohesive forces.
For example, Gu, Ozel & Sundaresan (2016) proposed a cohesive force model that
scales inversely with gap size and is capped at a critical value, but only at the cost
of changing the stiffness of the spring–dashpot system for the underlying soft-sphere
model.

In the present study, we extend the particle-resolved DNS framework developed
by Biegert et al. (2017a) to include cohesive forces for macroscopic particles,
i.e. within the range of 2 µm 6 Dp 6 63 µm, where Dp is the particle diameter.
Subsequently, we will employ this computational approach in order to study the
influence of cohesive forces on binary particle–particle interactions, such as the
classical drafting–kissing–tumbling (DKT) scenario of two settling particles (Fortes,
Joseph & Lundgren 1987). This case will provide insight into the physical mechanisms
by which interacting, cohesive particles arrange themselves into steady-state settling
configurations. The knowledge gained from this simple test case is then applied to the
more complex situation of a large ensemble of polydisperse sedimenting particles, for
which we will compare numerical observations with experimental studies investigating
fine sand (Lick et al. 2004) and silt (te Slaa et al. 2015), respectively, albeit on a
much smaller spatial scale.

The paper is structured along the following lines. We briefly state the governing
equations of motion for the fluid and the particles in § 2, where we also summarize the
numerical approach underlying the fully coupled, particle-resolving DNS simulations,
including the collision model for cohesionless grains. A novel computational model
for cohesive forces is introduced and validated in § 3. By distributing the cohesive
forces over a thin shell surrounding each particle, this model allows for their spatial
and temporal resolution during particle–particle interactions, while preserving certain
integral properties. It thus enables us to analyse the influence of the cohesive forces
on the processes by which kinetic and potential energies are converted into each
other, in terms of a dimensionless cohesion number. The implications of cohesive
forces on binary particle interactions are discussed in § 4. By focusing on the
well-known DKT problem, we identify preferred quasi-steady geometric configurations
in which cohesive particle pairs tend to settle, as a function of the particle size ratio.
A polydisperse ensemble of 1261 settling particles is analysed in § 5, for different
values of the cohesion number. We find that cohesive forces accelerate the settling
process, primarily because smaller grains attach to larger ones, which speeds up
their downward motion. For the parameter values of the present study, we find that
settling is accelerated by up to 29 %. Based on the simulation results, we propose a
parametrization of the hindered settling function for cohesive sediment. In addition, we
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8 B. Vowinckel, J. Withers, P. Luzzatto-Fegiz and E. Meiburg

carry out a detailed investigation of the energy budget, in order to obtain quantitative
information on the work performed by the hydrodynamic and collision forces. We
observe that the preferred settling configurations of isolated particle pairs remain
influential even within the large ensemble. Finally, § 6 summarizes the main findings
of the investigation.

2. Computational method
2.1. Fully coupled grain-resolving simulations

We solve the unsteady Navier–Stokes equations for an incompressible Newtonian fluid,
given by

∂u
∂t
+∇ · (uu)=−

1
ρf
∇p+ νf∇

2u+ f IBM, (2.1)

along with the continuity equation

∇ · u= 0, (2.2)

on a uniform rectangular grid with grid cell size 1x = 1y = 1z = h. Here,
u= (u, v,w)T designates the fluid velocity vector in Cartesian components, p denotes
the pressure, νf is the kinematic viscosity, t the time and f IBM represents an artificial
volume force introduced by the immersed boundary method (IBM; Uhlmann 2005;
Kempe & Fröhlich 2012b). This volume force, which acts on the right-hand side
of (2.1) in the vicinity of the interphase boundaries, connects the motion of the
particles to the fluid phase. We integrate equations (2.1) and (2.2) by a third-order
low-storage Runge–Kutta (RK) scheme and a finite differencing approach in time and
space, respectively. The pressure is treated with a direct solver based on fast Fourier
transforms.

Note that gravity has been omitted from the equation of motion for the fluid (2.1),
because the contribution from hydrostatic pressure is not relevant to the problems
presented in the following. Gravity is, however, explicitly accounted for in the
equations of motion for the particles. Within the framework of the IBM, we calculate
the motion of each individual spherical particle by solving an ordinary differential
equation for its translational velocity up = (up, vp,wp)

T,

mp
dup

dt
=

∮
Γp

τ · n dA︸ ︷︷ ︸
=Fh,p

+ Vp(ρp − ρf )g︸ ︷︷ ︸
=Fg,p

+Fc,p, (2.3)

and its angular velocity ωp = (ωp,x, ωp,y, ωp,z)
T,

Ip
dωp

dt
=

∮
Γp

r× (τ · n) dA︸ ︷︷ ︸
=Th,p

+Tc,p. (2.4)

Here, mp denotes the particle mass, Γp the fluid–particle interface, τ the hydrodynamic
stress tensor, ρp the particle density, Vp the particle volume, g the gravitational
acceleration, Ip = 8πρpR5

p/15 the moment of inertia, and Rp the particle radius.
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Settling of cohesive sediment 9

Furthermore, the vector n represents the outward-pointing normal on the interface Γp,
r = x − xp is the position vector of the surface point with respect to the centre of
mass xp of a particle, and Fc,p and Tc,p indicate the force and torque due to particle
collisions, respectively. For the sake of brevity, we denote the hydrodynamic force
and torque as Fh,p and Th,p, respectively, and the gravitational force as Fg,p. We use
an RK scheme that subdivides the three-step procedure of the fluid into a total of
15 substeps per fluid time step to integrate the particles’ equations of motion (2.3)
and (2.4) in time. It was shown by Biegert et al. (2017a) that this is a necessity to
resolve short-range effects of lubrication forces in time.

The fluid–particle interaction was validated in Biegert et al. (2017a) by comparing
our simulation results to experimental data for a settling sphere in a large container
(Mordant & Pinton 2000), and for a particle settling above a wall (Ten Cate et al.
2002), yielding excellent agreement.

2.2. Cohesionless particle–particle interaction
The computational approach for modelling cohesionless particle–particle interactions
is described in detail in Biegert et al. (2017a), and validation results are provided
for normal and oblique binary collisions, as well as for the collective motion of a
sediment bed sheared by a Poiseuille flow. In order to keep this paper self-contained,
we provide a brief summary in the following.

The particle–particle interaction comprises short-range hydrodynamic effects due to
lubrication forces Fl, as well as forces acting in the normal and tangential directions
for direct particle contact, denoted as Fn and Ft, respectively. The resulting collision
force on particle p is the sum off all these effects,

Fc,p =

Np∑
q,q 6=p

(Fl,pq +Fn,pq +Ft,pq)+Fl,pw +Fn,pw +Ft,pw, (2.5)

where the subscripts pq and pw indicate interactions with particle q or a wall,
respectively. In what follows, we present the algebraic expressions for particle–particle
interaction only. Analogous formulations for particle–wall interactions can be found
in Biegert et al. (2017a). Consistent with the findings of Cox & Brenner (1967), we
model the unresolved component of the lubrication forces in our simulations as

Fl,pq =

−
6πρfνf R2

eff

max(ζn, ζmin)
gn 0< ζn 6 2h,

0 otherwise,
(2.6)

where gn = up − uq is the relative velocity of the two colliding particles. To prevent
the unresolved lubrication forces from diverging to infinity with decreasing gap size,
the force is limited by ζmin, which can be interpreted as a surface roughness of the
particles. The value of ζmin = 3 × 10−3Rm was calibrated in Biegert et al. (2017a)
for particle–wall collisions to match the rebound trajectories of the experiments by
Gondret, Lance & Petit (2002). The mean radius becomes Rm = Rp and Rm = (Rp +

Rq)/2 for particle–wall and particle–particle interactions, respectively. The effective
radius Reff is defined as Reff = RpRq/(Rp + Rq), where we set Rq = ∞ for particle–
wall collisions. We also note that (2.6) only accounts for the part that cannot be
resolved with the IBM as ζn becomes smaller than 2h. We have conducted detailed
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10 B. Vowinckel, J. Withers, P. Luzzatto-Fegiz and E. Meiburg

tests repeating the test case of Ten Cate et al. (2002) for the particle sizes of interest
here. Our results show that the particles rapidly decelerate as soon as they come as
close as ζn= 2Dp, illustrating that nearly all of the work required to squeeze the fluid
out of the gap is fully resolved in our simulations.

Direct particle contact is accounted for by a normal and a tangential component
of the collision force. The repulsive normal component is represented by a nonlinear
spring–dashpot model for the normal direction,

Fn,pq =−kn|ζn|
3/2n− dngn,cp, (2.7)

where gn,cp denotes the normal component of the relative velocity at the surface
contact point (Kempe & Fröhlich 2012a). Furthermore, kn and dn represent stiffness
and damping coefficients that are adaptively calibrated for every collision as described
by Biegert et al. (2017a), in order to yield a prescribed restitution coefficient
edry = −uout/uin. Here, uout and uin indicate the normal components of the relative
particle speed immediately after and right before the particle impact, respectively.
The forces in the tangential direction are modelled by a linear spring–dashpot model
capped by the Coulomb friction law as

Ft,pq =min(−ktζ t − dtgt,cp, ‖µFn‖t), (2.8)

where µ represents the coefficient of friction between the two surfaces and ζ t is the
tangential displacement integrated over the time interval for which the two particles
are in contact. The tangential stiffness and damping coefficients kt and dt are adapted
to account for zero-slip rolling or sliding according to the Coulomb friction law
(Thornton, Cummins & Cleary 2013). For all of the simulations to be presented
in the following, we have chosen edry = 0.97 and µ = 0.15, which is a common
parametrization for silicate materials (e.g. Joseph et al. 2001; Joseph & Hunt 2004;
Vowinckel, Kempe & Fröhlich 2014; Biegert et al. 2017a; Vowinckel et al. 2017a,b).

3. Cohesive forces in particle-resolving simulations
3.1. Physical background

To derive a cohesive force model suitable for the framework of the IBM, we start
with the classical Derjaguin–Landau–Verwey–Overbeek (DLVO) theory (Derjaguin &
Landau 1941; Verwey & Overbeek 1948). This theory was derived for colloids and
is based on the assumption that there are two dominant short-range forces that can
be interpreted as opposing potentials surrounding particles with grain sizes in the
micro- to nanometre range. On one hand, there exists a repulsive force when equally
charged surfaces are in close proximity. On the other hand, as one particle causes
correlations in the fluctuating polarization of a nearby particle surface, an attractive
force is generated. The former effect is usually called the repulsive ‘double-layer’
(DL) force, while the latter effect is commonly referred to as van der Waals (vdW)
force. These forces become important for gap sizes ζ0<ζn<ζ∞, where ζ0 defines the
microscopic size of surface asperities and ζ∞ is the distance for which these forces
decay to zero (Israelachvili 1992). The repulsive DL force and the attractive vdW
force due to polarization scale as Frep∝ e−ζn and Fatt∝ ζ

−2
n , respectively. Note that the

quadratic scaling of Fatt applies to radii much larger than ζ0 (Kosinski & Hoffmann
2010; Breuer & Almohammed 2015), while linear scaling of vdW forces has been
reported for cylinders of smaller size (Israelachvili 1992). A qualitative sketch of
the DLVO theory is given in figure 1(a). We elaborate further on the shape of this
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Settling of cohesive sediment 11
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FIGURE 1. (Colour online) Schematic of short-range forces versus gap size: (a) force
profiles according to the DLVO theory; (b) the model ansatz given by (3.2). The red
vertical lines in (a) indicate the range considered by the model ansatz shown in (b).

figure in appendix A. The superposition of the two potentials yields a net force as
a function of the gap size ζn. Depending on the properties of the particles’ surface
charge and the salinity of the ambient fluid, this net force exhibits several distinct
characteristics. Hence, figure 1(a) displays the characteristics of silica particles with
small to medium surface charge (Wu, Ortiz & Jerolmack 2017) and rather low salinity:
(i) For larger gap sizes, there exists an outer range where attractive forces dominate
over repulsive forces. (ii) Within this outer range the net attractive force displays a
maximum. (iii) In the inner range with a maximum, a force barrier dominated by the
repulsive double-layer force can be found. (iv) Finally, the attractive forces diverge
to infinity for gap sizes smaller than ζ0. The latter condition is equivalent to merging
two separate objects into one, although evidence suggests that this condition is never
reached for rough surfaces, since asperities on the particle surfaces prevent them from
coming into such close contact (Parsons, Walsh & Craig 2014).

The DLVO theory holds only for gap sizes in the nanometre range. Since we
cannot resolve this length scale in simulations involving hundreds of micrometre-size
particles, we instead employ a simplified algebraic expression for the vdW forces that
reproduces its integral properties. The most common expression for vdW forces scales
linearly with the particle diameter, as reviewed by Visser (1989) and Israelachvili
(1992),

FvdW =
AHReff

6ζ 2
0

n. (3.1)

Owing to its simplicity and ease of implementation and interpretation, this scaling
assumption has been popular in discrete element methods (DEMs) and point-
particle approaches, as well as for experimental analysis (e.g. Ye, van der Hoef
& Kuipers 2004; Pandit, Wang & Rhodes 2005; Righetti & Lucarelli 2007; Breuer
& Almohammed 2015). However, such methods do not resolve the gap size, and
cohesive forces effectively act only when particles come into contact. This approach
is hence equivalent to lowering the restitution coefficient of the inelastic collision, in
line with the underlying hard-sphere collision model. The hard-sphere model modifies
the velocity right after the impact as uout=−euin, where e is the restitution coefficient
of the collision and uin denotes the normal component of the impact velocity. Hence,
accounting for cohesive forces using the hard-sphere model involves manipulating
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12 B. Vowinckel, J. Withers, P. Luzzatto-Fegiz and E. Meiburg

uout and introducing thresholds for particle escape, but it prevents quantifying the
intergranular stresses or work required for floc breakup.

Recently, various models for cohesive collisions were tested in the framework of
a DEM by Thornton, Cummins & Cleary (2017). The authors report that piecewise
cohesive force models that distinguish between approach and rebound give rise
to unphysical properties. In particular, this approach leads to an overestimation
of the tensile forces during the rebound process. As a consequence, flocculation
may be overestimated because of unphysical sticking conditions at high impact
velocities. Hence, studies treating the particles as mass points that collide according
to a hard-sphere model are difficult to interpret physically, because this approach
does not capture and quantify the forces associated with cohesive particle–particle
interaction. Consequently, it becomes impossible to distinguish between the different
contributions to particle–particle interactions, such as repulsive collision, tangential
friction and lubrication forces as outlined in § 2.2, as repulsive collision forces and
cohesive forces are lumped into the inelastic restitution coefficient.

Derksen (2014) carried out particle-resolving simulations using a finite-size square-
well potential to account for flocculation. This square-well potential considers two
particles attached as soon as uin falls below a critical threshold and, vice versa, to
break up if the escape velocity lies above a critical threshold. For the case of floc
breakup, this model converts the effect of cohesion from potential to kinetic energy.
This treatment represents an improvement over point-particle approaches, although it
does not allow for the space-resolved computation of the cohesive forces and stresses
acting on flocculated particles. Similarly, Gu et al. (2016) proposed a cohesive force
model that scales inversely with ζn. We tested this approach and found it to be prone
to numerical instabilities when dealing with rather stiff particles, as it introduces large
attractive forces for small gap sizes that are discontinuously shut off at a minimal gap
size.

In order to computationally simulate realistic cohesive sediment dynamics, we aim
to resolve in space and time the following three phases of particle–particle interaction,
cf. figure 2: (a) particle approach/flocculation, (b) capture/steady-state contact, and
(c) separation in the presence of external forces. In doing so, we will obtain detailed
information on the work performed by the interparticle forces. We furthermore aim for
a computational model that recovers the original DEM scheme proposed by Biegert
et al. (2017a) for cohesionless grains. These goals will be achieved by the approach
to be described in the following.

3.2. Cohesive force model
To exploit the advantages offered by the soft-sphere model of Biegert et al. (2017a)
for grain-resolving simulations, we develop an approach that is consistent with the
DLVO theory as sketched in figure 1(a), with an attractive interparticle force within
the interval 2 nm6 ζn 6 10 nm that has a local maximum at ζn≈ 4 nm. Note that we
do not wish to resolve the layer of ζn < 2 nm, but instead consider this to be part of
the surface roughness. Ideally, the cohesive forces would decay to zero for ζn = 0 as
the repulsive forces are already accounted for through (2.7). This can be accomplished
by the ansatz of a parabolic spring force with the following properties: (i) it decays
to zero as the gap size goes to zero; (ii) it has a maximum at a gap width orders
of magnitude smaller than the particle diameter; and (iii) it decays to zero for larger
gap sizes, without any discontinuous jumps, cf. figure 1(b). These characteristics are
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Rp

Rq

Ωn

FIGURE 2. Computational scenario for the binary interaction of two cohesive particles.

incorporated by the mathematically simple model

Fcoh =

{
−kcoh(ζ

2
n − ζnλ)n 0< ζn 6 λ,

0 otherwise,
(3.2)

where kcoh denotes the stiffness constant and λ represents the range over which
the cohesive force is smeared. This length scale can be interpreted as a Debye
length, which is typically of the order of several micrometres in DEM simulations
(Mari et al. 2014). As will be shown in § 4.3, the simulation results are insensitive to
the exact value of λ. A reasonable choice that will allow us to resolve the cohesive
force computationally, while limiting it to a range much smaller than the particle
size, is D50/λ= 20, where D50 is the median grain size of a polydisperse ensemble of
particles. Particle-resolving simulations typically employ a resolution of 20 grid cells
of size h per diameter, so that choosing λ≈ h and utilizing the substepping routine as
proposed by Biegert et al. (2017a) guarantees a proper resolution of cohesive effects
in space and time. This modelling approach is also consistent with the experimental
observations of Delenne et al. (2004), who coated rods of D = 8 mm in diameter
with epoxy resin to glue them together. These rods where then put under tension
to determine the cohesive forces. It was found in this study that the cohesive force
increases with gap size ζn to a maximum at D/ζn ≈ 80. For larger gap sizes, the
force decreases and eventually the rods detach at D/ζn≈ 40. For the present study, we
have chosen the latter value as a reference for the largest particles of the considered
polydisperse particle mixtures.

We determine the stiffness kcoh of the model by preserving the energy contained in
the vdW forces,

Ecoh = EvdW . (3.3a)

According to the DLVO theory, the vdW forces (3.1) are defined within the interval
ζn=[ζ0,∞], where the lower boundary ζ0= 0.2 nm is taken from Israelachvili (1992).
On the other hand, (3.2) is defined over the interval ζn= [0, λ]. Taking the endpoints
of the respective intervals as the integration limits yields∫ λ

0
−kcoh(ζ

2
n − ζnλ) dζn =

∫
∞

ζ0

AHReff

6ζ 2
n

dζn, (3.3b)
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14 B. Vowinckel, J. Withers, P. Luzzatto-Fegiz and E. Meiburg

so that
kcoh =

AHReff

ζ0λ3
. (3.3c)

Note that we have replaced Rp by Reff on the right-hand side of (3.3b) to account for
polydisperse particle sizes. Substituting this expression for kcoh into (3.2) provides the
final expression for the dimensional cohesive force model

Fcoh =

−
AHReff

ζ0λ3
(ζ 2

n − ζnλ)n 0< ζn 6 λ,

0 otherwise.
(3.4)

This form enables us to account for cohesive forces in our current IBM–DEM
framework via an additional force term in the collision model (2.5),

Fc,p =

Np∑
q,q 6=p

(Fl,pq +Fn,pq +Ft,pq +Fcoh,pq)+Fl,pw +Fn,pw +Ft,pw +Fcoh,pw. (3.5)

Equation (3.5) will be the basis of the simulations to be discussed in §§ 4 and 5. Note
that this approach treats particles individually and is not modified for the interaction of
clusters. Furthermore, no changes to the computation of Fh,p and Fh,g are necessary,
as these are a direct result of the IBM. The main advantage of this approach lies
in its ability to resolve the particle bonding process in space and time as cohesive
forces act over a finite size shell surrounding each particle. At the same time, it
retains the distinction between the individual interparticle force components via (3.5),
which allows for an in-depth analysis of the different effects governing the particle–
particle interaction. Note that (2.3) and (3.5) together take a form that resembles the
minimal flocculation model proposed by Vicsek et al. (1995), which was developed
for self-propelled organisms. While our particles are passive, their weight Fg provides
a preferred direction of motion (Toner, Tu & Ramaswamy 2005), the collision force
Fc aligns their motion through the competition of repulsion and cohesion, and the
hydrodynamic force Fh introduces a forcing that can cause particles to flocculate or
to break up.

The dimensional form (3.4) still requires the proper parametrization of the Hamaker
constant AH , which implies all of the difficulties mentioned in the introduction. This
issue will be addressed via the rescaling to be discussed in § 3.3.

3.3. Non-dimensionalization of the cohesive force model
For the purpose of conducting numerical simulations, we wish to capture the effects
of cohesive forces by means of a non-dimensional similarity parameter. To this end,
we render the Navier–Stokes equation (2.1) and the particle equation of motion (2.3)
dimensionless in appendix B. For the Navier–Stokes equation, the only dimensionless
parameter to appear is the Reynolds number (Biegert et al. 2017b). For the particle
equation of motion (2.3), the cohesive and lubrication forces combined can be viewed
as a spring–dashpot system for two interacting particles.

As derived in appendix B, by choosing the buoyancy velocity us =
√

g′D50
(appendix C), the characteristic time scale τs = D50/us and the characteristic mass
m50= ρf πD3

50/6, the characteristic force scale for particles settling under gravity in an
otherwise quiescent fluid becomes the specific weight m50g′. Here, D50 is the median
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Settling of cohesive sediment 15

diameter of an ensemble of polydisperse particles, g′ = (ρp − ρf )g/ρf denotes the
reduced gravity, and g represents the gravitational acceleration. To write the algebraic
expression for cohesive forces (3.4) in dimensionless form, we define a cohesive
number as

Co=
max(‖Fcoh,50‖)

m50g′
. (3.6)

It represents the ratio of the cohesive force maximum for particles of diameter D50
to the characteristic gravitational force scale of the problem. A similar characteristic
number was used by Sun et al. (2018) in the framework of a point-particle approach.
A complete derivation for the origin of Co within the present numerical framework is
provided in appendix B.

By design, (3.4) has its maximum at ζn = λ/2, so that we immediately obtain, for
Reff =D50/2,

max(‖Fcoh,50‖)=−
AH

ζ0

D50

2λ3

(
λ2

4
−
λ2

2

)
=

AH

ζ0

D50

8λ
. (3.7)

After specifying max(‖Fcoh,50‖) for a given problem, we combine (3.7) with (3.4) to
obtain the cohesive force as

Fcoh =−
8 max(‖Fcoh,50‖)

D50

Reff

λ2
(ζ 2

n − λζn)n. (3.8)

Owing to the smearing of the cohesive effects over the range λ, the model now
scales with Fcoh ∝ λ

−2 rather than Fcoh ∝ ζ
−2
0 . It is important to note, however, that

this quantity does not reflect a tunable parameter but a constant property chosen in
accordance with the length scales of the physical problem.

It is then convenient to define dimensionless quantities (denoted by tilde) as

Fcoh =m50g′ F̃coh, (3.9a)
Reff =D50R̃eff , (3.9b)

λ=D50λ̃, (3.9c)
ζn =D50ζ̃n, (3.9d)

in order to obtain the set of dimensionless equations that will be solved numerically
(appendix B). By combining (3.8) with (3.9) and normalizing with the gravitational
scale m50g′ we obtain

F̃coh =

−Co
8 R̃eff

λ̃2
(ζ̃ 2

n − ζ̃nλ̃)n 0< ζn 6 λ,

0 otherwise.
(3.10)

The stiffness of our cohesive force model thus becomes k̃coh= 8CoR̃eff /λ̃
2, so that the

cohesive forces for a given physical system scale linearly with the cohesive number
and the effective radius of the two colliding particles, which is consistent with the
considerations of Visser (1989), Lick et al. (2004) and Righetti & Lucarelli (2007).
The characteristics are meant to represent rough macroscopic particles, i.e. Dp> 2 µm,
in saline water. A comprehensive translation of our modelling approach to various
physical systems is given in appendix A.
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16 B. Vowinckel, J. Withers, P. Luzzatto-Fegiz and E. Meiburg

To rewrite the unresolved lubrication forces in dimensionless form, we substitute
dimensional quantities in (2.6) by

Flub =m50g′ F̃lub =
ρf πD3

50

6
g′ F̃lub (3.11a)

and
gn = usg̃n =

√
g′D50 g̃n. (3.11b)

Combining (2.6) with (3.11) then yields

F̃lub =−36
νf

√
g′D50 D50

R̃2
eff g̃n

max(ζ̃n, ζ̃min)
(3.12)

so that we obtain the dimensionless form

F̃lub =

−
36
Re

R̃2
eff g̃n

max(ζ̃n, ζ̃min)
0< ζn 6 2h,

0 otherwise.
(3.13)

Hence lubrication forces scale with the inverse of the particle Reynolds number
Re = D50us/νf , while cohesive forces scale with the cohesive number Co =
max(‖Fcoh,50‖)/(m50g′). By quantifying these two dimensionless similarity parameters,
the physical system is thus fully specified.

3.4. Cohesive force model validation
The key idea behind the cohesive number introduced in (3.6) in § 3.3 is to define a
critical threshold of Co= 1, for which the cohesive forces balance the specific weight
of a particle of size D50. To test and verify this behaviour, we consider a simple test
case of two particles in quiescent fluid. Particle p is held fixed, and particle q is placed
right below it (cf. figure 2). Particle q wants to settle as a result of gravity, whereas
the cohesive force acts to keep it attached to particle p. The governing Reynolds
number is based on the quantities introduced in § 3.3, which yields Re = usD/νf .
We chose the Reynolds number for the test case from the experimental observations
of Lick et al. (2004), who reported that cohesive forces start to alter the erosion
behaviour of silicate particles with a density of ρp = 2650 kg m−3 and a diameter in
the range of 140 µm 6 Dp 6 390 µm, which are submerged in water with a density
and kinematic viscosity of ρf = 1000 kg m−3 and νf = 10−6 m2 s−1, respectively.
Choosing a representative value of Dp = 242 µm yields Re = usD/νf = 15.1. Since
only two particles are involved, we define D50 = (Dp + Dq)/2. Initially, particle q
is at rest and the size of the vertical gap with respect to the fixed particle p is set
to ζn = λ/2, where we chose Dp/λ = 20. Particle q is then free to move. Note that,
for this case of particle q interacting with the fixed particle p, the effective radius
becomes Reff = Rq. The median particle size D50 is discretized by 20 grid cells per
diameter. In order to investigate whether or not particle q will detach from particle
p, a relatively small computational domain of Lx × Ly × Lz = 2.5D50 × 5D50 × 2.5D50
suffices, with gravity acting in the negative y-direction. No-slip walls are imposed in
the y-direction, whereas the x- and z-directions are being treated as periodic.

For Co < 1, the weight of particle q is larger than the maximum of the cohesive
force at ζn = λ/2, so that we expect particle q to detach from particle p. This is
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FIGURE 3. (Colour online) Gap size versus time: (a) different runs with varying cohesive
number; (b) different runs with varying ratio of the two particle radii with Co= 1.

confirmed by figure 3(a), which shows the gap size versus non-dimensional time
t/τs. In addition, the detachment happens more slowly as the cohesive number
approaches its critical value. For the critical cohesive number Co = 1, the particles
remain stationary at a constant gap size ζn = λ/2. Increasing the cohesive number
even further causes particle q to move closer towards particle p, as the maximum of
the attractive forces increases. Since the cohesive force approaches zero as the gap
decreases, particle q will find an equilibrium position within the interval 06 ζn 6 λ/2
at which the cohesive force is balanced by the weight of the particle. Also note
that, even if we do not explicitly resolve the nanoscale over which cohesive forces
typically act, the smearing of the cohesive potential over λ bonds particles at a
constant gap size of ζn 6 Dp/40, which is sufficiently small to reproduce physically
realistic behaviour. Particles can remain a finite distance apart during flocculation
under the influence of divergent forces (Israelachvili 1992; Thornton et al. 2017), and
they can experience friction while in direct contact during collisions.

Corresponding tests can be carried out for polydisperse particles. Here we set the
cohesive number to Co = 1 while varying the ratio of the two particle radii, Rp/Rq.
The median grain size D50 = (Dp +Dq)/2 serves a basis for calculating the similarity
parameters Re and Co. The results are shown in figure 3(b). If the radius ratio is
smaller than unity, particle q is larger than particle p and its weight causes particle
q to detach. On the other hand, if particle q is smaller than particle p they stay
in contact at a constant gap size ζn < λ/2. This test case validates the arguments
underlying (3.10) for polydisperse particles.

The above analysis demonstrates that our computational model allows for the
precise control of cohesive forces. Since Biegert et al. (2017a) showed that the
present computational approach also yields excellent agreement with experimental
data for cohesionless particles, we expect it to reproduce the settling dynamics of
cohesive particles with high fidelity.

4. Binary interaction
4.1. Drafting, kissing, tumbling

In order to assess the influence of cohesive forces under simplified conditions, we
focus on the classical DKT experiment of two particles settling under gravity, which
has been explored in depth for cohesionless grains (e.g. Fortes et al. 1987; Glowinski
et al. 2001). The initial configuration is shown in figure 2. Two particles with a
density greater than that of the ambient fluid are placed above each other in a tank
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0
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g

FIGURE 4. (Colour online) Cohesionless particles undergoing DKT: (a) kissing at t/τs =

10, and (b) tumbling at t/τs= 50. Contours show the downward fluid velocity component.

of quiescent fluid, with an initial gap size that is substantially larger than the distance
of the short-range lubrication and cohesive forces. As the particles are released and
settle under the influence of gravity, the trailing particle is drafted by the wake of
the leading particle, so that it experiences reduced drag. The two particles touch (or
kiss, figure 4a) and subsequently rearrange themselves (tumble) into a side-by-side
configuration. In the absence of cohesive effects, hydrodynamic forces eventually
push them apart, and they start to separate laterally (figure 4b).

To investigate the DKT scenario for cohesive particles, we employ the same
physical set-up and the same numerical parameters as described in § 3.4, i.e. Re=15.1,
Dp/h = 20 and D50/λ = 20. Since we are dealing with grains that should resemble
the characteristic of natural silt, the Reynolds number of our system is substantially
lower compared to the studies of Fortes et al. (1987) and Glowinski et al. (2001).
Decreasing the Reynolds number results in slower dynamics of the interacting particles
and increases the time scales to observe the DKT motion. Hence, we choose a rather
long computational domain of Lx×Ly×Lz=120D50×5D50×5D50, with gravity acting
in the negative x-direction. The boundary conditions assume periodicity in x, and free
slip in y and z, and everything is at rest initially. Owing to the low Reynolds number,
the domain length in the x-direction is sufficiently large for particles to establish a
steady-state configuration. We begin by considering two equal-sized spheres that are
initially placed at xp = (xq + D50 + 2h, yq + 0.5h, zq)

T, which is sufficiently close to
trigger the DKT behaviour, but far enough apart for lubrication and cohesive forces
to be unimportant initially. We remark that the simulation results do not depend on
the exact initial conditions, as long as ζn 6 Dp, so that DKT is initiated. The initial
horizontal offset of 0.5h in the y-coordinate triggers the physical instability, leading
to the particle rearrangement during the kissing phase.

The results for the monodisperse case are presented in figure 5(a,b), which show the
gap width ζn of the two particles as a function of time. Consistent with the classical
observations by Fortes et al. (1987), for Co = 0 the cohesionless particles approach
each other (figure 5a), touch for approximately 20 time units and then separate in a
tumbling behaviour (figure 5b). Increasing the cohesive forces speeds up the drafting
phase, and slows down or prevents the subsequent separation of the particles. The fact
that the particles remain in steady-state contact for Co<1 indicates that hydrodynamic
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FIGURE 5. (Colour online) DKT results for equal-sized spheres with different cohesive
numbers showing separation width ζn for (a) drafting phase, (b) tumbling phase, and
(c) steady state.

forces are not as effective in pulling them apart as gravity was in § 3.4. Figure 5(c)
demonstrates that already a cohesive number value of Co= 0.35 suffices to maintain
the steady-state bond between the particles.

4.2. Settling of cohesive particles of different size
To investigate the impact of polydispersity on the settling behaviour of cohesive
particles, we repeat the above simulations for a fixed cohesive number value of Co=1,
while varying the ratio of the particle radii Rp/Rq in the range 0.25 6 Rp/Rq 6 4. For
Rp/Rq< 1, the lower particle is larger and tends to settle faster than the upper, trailing
particle. However, already for a ratio of Rp/Rq= 0.6, the wake of the leading particle
is sufficiently strong to draft the trailing particle into the DKT motion. Corresponding
behaviour was also reported for two-dimensional simulations of cohesionless settling
circular disks by Wang, Guo & Mi (2014), who found that there exists a critical value
for Rp/Rq to initiate DKT for a smaller particle trailing a larger one. To analyse the
particle positions relative to each other, we define the vector connecting the particle
centres as rpq= xp− xq. We then plot the distance between these two centres, as well
as the horizontal and vertical separation components,

‖rpq‖ = ζn +D50 =

√
(xp − xq)2 + (yp − yq)2 + (zp − zq)2, (4.1a)
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FIGURE 6. (Colour online) DKT results for spheres of different size with Co = 1 and
different ratios of Rp/Rq: (a) Rp/Rq=0.6, (b) Rp/Rq=0.7, (c) Rp/Rq=1 and (d) Rp/Rq=4.
Circles indicate the initial and final particle configuration, respectively.

ζh =

√
(yp − yq)2 + (zp − zq)2, (4.1b)

and
ζv =

√
(xp − xq)2, (4.1c)

respectively. Note that particles touch when ‖rpq‖/D50= 1. The temporal evolution of
these quantities is shown in figure 6. For the ratio Rp/Rq= 0.6, which was found to be
the approximate threshold for drafting, the particles initially separate but then quickly
approach each other and touch. The horizontal distance between the particle centres is
seen to increase slowly throughout the simulation (figure 6a), which suggests that the
pair rotates into an oblique configuration, although the simulation time is too short for
a quasi-steady state to be reached. For Rp/Rq = 0.7 this rotation occurs more rapidly,
and a quasi-steady oblique configuration emerges (figure 6b). When the particle radii
ratio is close to, but not equal to, unity, we are in the regime for which cohesionless
particles repeatedly undergo DKT interactions as reported by Shao, Liu & Yu (2005).

For equal-sized particles the vertical distance between the centres decays to zero,
while their horizontal distance approaches the particle diameter (figure 6c), indicating
that the particles align horizontally while touching. This observation is consistent with
the classical kissing behaviour of the monodisperse case described in the literature
(Fortes et al. 1987; Glowinski et al. 2001). Increasing the ratio even further, so
that the trailing particle p becomes larger than the leading particle q, causes the two
particles to swap positions by rotating around each other, since particle p has a bigger
settling velocity than particle q (figure 6d). They subsequently align approximately
vertically with ζv≈‖rpq‖, and only a small horizontal separation width. Corresponding
observations of larger trailing particles swapping positions with smaller leading ones
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(a) (b) (c) (d)
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FIGURE 7. (Colour online) Sketch of the asymptotically steady settling configuration of
polydisperse, cohesive particles, as illustrated in figure 6: (a) Rp/Rq= 0.6, (b) Rp/Rq= 0.7,
(c) Rp/Rq = 1 and (d) Rp/Rq = 4. The colour coding of the connecting lines corresponds
to figure 6.
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FIGURE 8. (Colour online) Settling velocity in the DKT scenario as a function of time
for monodisperse cohesionless and polydisperse cohesive particles as shown in figures 6
and 7.

were reported for cohesionless grains in both two- and three-dimensional simulations
(Wang et al. 2014; Liao et al. 2015). It is interesting to note that, even though
particles do not bond for Rp/Rq 6 0.5, they do form a lasting bond for the more
disparate size ratio of Rp/Rq= 4 via this swapping mechanism. This demonstrates that
the ability of the particles to form flocs strongly depends on their initial configuration.
The quasi-steady settling configuration of cohesive particle pairs undergoing DKT is
sketched in figure 7. Particle pairs of very different sizes tend to align vertically
(figure 7d), while the alignment becomes increasingly horizontal as the particle sizes
approach each other.

The mechanism governing the particle orientation has important implications for the
settling speeds of the interacting particles. Figure 8 compares the situations addressed
in figures 6 and 7 by showing the settling velocity upq = 0.5(up + uq) of the two
interacting particles p and q as a function of time. Note that the settling velocity is
normalized by us, which is identical for all of the cases shown here since we only
change the ratio of Rp/Rq but not the sum Rp+Rq. This allows for a direct comparison
of the settling velocities for the different radii ratios. Figure 8 shows only the first
passage of the two particles through the periodic domain, in order to exclude any
effects from perturbations that might be caused by the particle wake flows. Owing to
the rather long domain employed for this study, this is equivalent to more than 140τs
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FIGURE 9. (Colour online) Quasi-steady configuration of cohesive particle pairs
undergoing DKT for different particle radii ratios Rp/Rq: (a) orientation angle θ (θ =
90◦, horizontal alignment; θ = 0◦, vertical alignment), and (b) settling speed. The dotted
horizontal line in (b) indicates the undisturbed settling velocity.

even for the fastest-settling particles. As soon as the monodisperse, cohesionless grains
tumble apart (at t/τs ≈ 40), their settling speed decreases. As expected, introducing
cohesive forces increases the settling velocity, as the particles remain in contact, which
reduces their total drag. This is true for both monodisperse and polydisperse particle
configurations. For polydisperse particles, the settling speed is ultimately governed by
the larger, leading particle. The kink for Rp/Rq= 4 at t/τs≈ 11 reflects the situation of
the two particles swapping their leading/trailing configuration. Subsequently, these two
particles acquire the largest settling velocity among all of the cases presented here. As
Rp/Rq approaches unity, the settling velocity decreases. These results clearly illustrate
the effect of polydispersity on particle settling speeds.

The relationship between the quasi-steady particle alignment and the settling
speed is displayed in figure 9 for the parameter range 1 6 Rp/Rq 6 4. When this
ratio exceeds 2, the particles are aligned approximately vertically, while oblique
configurations are observed for smaller ratios, as indicated by the orientation angle
cos θ = ζv/‖rpq‖. The orientation angle is seen to decrease approximately linearly
between 1 6 Rp/Rq 6 2.

To investigate whether the particle settling is accelerated, we estimate the
undisturbed settling velocity ura by using Rayleigh’s drag equation (appendix C).
Figure 9(b) displays the settling velocities up and uq normalized by their respective
undisturbed settling velocity ura. Equal-sized particles, i.e. Rp/Rq = 1, are seen to
settle with a velocity that is slightly higher than their undisturbed settling velocity.
For increasing ratios Rp/Rq, we find that the settling of the smaller particle q is
substantially accelerated by the stable bond, whereas the larger particle p still settles
approximately with its undisturbed settling velocity ura. Hence the centre of mass
of a cohesive particle pair with a stable bond settles more rapidly than that of two
cohesionless particles.

4.3. Sensitivity of cohesive force range
While the model proposed in § 3 replaces the empirical constants AH and ζ0 by
the physically meaningful dimensionless cohesive number Co, it still contains the
dependence on the cohesive force range λ. To test the sensitivity of the simulation
results on this parameter, we conducted simulations with Rp/Rq= 1 and Rp/Rq= 4 and
different values of λ. The results are shown in figure 10. For the equal-sized particles,
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FIGURE 10. (Colour online) Influence of the cohesive force range λ on the settling
velocity of two interacting particles: (a) Rp/Rq = 1 and (b) Rp/Rq = 4.

the settling velocities for all values of λ collapse onto a single curve. The same is
true for Rp/Rq = 4 and λ6 3h. However, for λ= 4h the particles start to separate at
t/τs ≈ 20. The reason for this detachment is that λ is now equal to the radius Rq of
the smaller particle, so that the range of the cohesive force is no longer much smaller
than the particle radius, which violates the assumptions underlying the model of § 3.
In summary, we find that, as long as λ is significantly smaller than the smallest
particle radius, the simulation results are independent of λ. The analysis presented in
this section also provides evidence that decreasing the steady-state separation distance
by increasing the cohesive number does not affect the hydrodynamics of the two
interacting particles.

5. Settling of a large ensemble
5.1. Computational set-up

In order to explore the influence of cohesive forces on the sedimentation process of
a large, polydisperse ensemble of particles, we reproduce the experiments by te Slaa
et al. (2015), albeit on a smaller spatial scale. These authors investigated the hindered
settling of silt particles, with diameters in the range 2 µm 6 Dp 6 63 µm. To this
end, we place a polydisperse mixture with a homogenous particle volume fraction of
15 % in a tank of quiescent fluid (figure 11a). As before, it is convenient to define the
reference velocity based on the buoyancy velocity us=

√
g′D50, where D50 denotes the

median grain size of the entire particle size distribution. The characteristic time scale
based on the buoyancy velocity and the median diameter then becomes τs =D50/us.

Consistent with the experiments, we choose a Reynolds number of Re = 1.35.
As in the experiments of te Slaa et al. (2015), the computational grain sizes obey
a cumulative log-normal distribution (1/2) + (1/2) erf[(ln(Dp −µ))/

√
2 σ ] around

the median diameter D50, with the arithmetic moments µ=−1.33 and σ = 0.34
(figure 11c). This yields a total of 1261 particles with maximum size ratio of
max{D}/min{D} = 4, which is smaller than it was in the experiments of te Slaa
et al. (2015). Our computational approach of particle-resolved simulations, however,
requires us to resolve even the smallest grain size by at least eight grid cells per
diameter (Uhlmann 2005). Hence, it was concluded from § 4 that a size ratio of 4
is plenty to account for polydispersity but remain computationally feasible. The
small deviations from the analytical log-normal distribution stem from the fact that
we slightly rearranged the particle distribution due to the initial random particle
placement. This became necessary as the rather small computational domain yielded
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FIGURE 11. (Colour online) (a) Initial particle distribution, (b) initial particle volume
fraction distribution, and (c) cumulative distribution function of the particle diameter, along
with the log-normal distribution.

Lx/D50 × Ly/D50 × Lz/D50 ρp/ρf s/D50 max{D}/D50 min{D}/D50 Re=
√

g′D3/2
50

νf
Np

13.1× 40.0× 13.1 2.6 0.365 2.4 0.6 1.35 1261

TABLE 1. Parameters for simulations of a large ensemble, where Lx, Ly, Lz indicate the
domain size, and s represents the standard deviation of the grain size.

large variations in volume fraction over the vertical extent of the domain. To smooth
out the horizontally averaged volume fraction profile, we applied a two-step procedure:
first we removed larger particles from y-locations with higher concentrations, and
subsequently we replaced them with exactly the same volume of a few smaller
particles in y-locations with lower concentrations at random x- and z-positions. This
procedure yields an almost uniform particle volume fraction φv = Vp/V0 ≈ 0.155
(figure 11b), where Vp and V0 denote the volume occupied by the particles and the
computational domain size, respectively. Note that this rearrangement of particles
would not have been required for a much larger tank and many more particles, but
this would have been prohibitively expensive computationally. The computational
domain is of size Lx × Ly × Lz = 13.1D50 × 40.0D50 × 13.1D50, with gravity pointing
in the negative y-direction. We assume periodic boundary conditions in the x- and
z-directions, respectively, along with a no-slip condition at the bottom wall and
a free-slip condition at the top wall. The median particle size is discretized by
D50/h= 18.25 grid cells.

Three simulations were performed for different values of the cohesion number
Co: (i) cohesionless grains with a cohesive number Co = max(‖Fcoh,50‖)/m50g′ = 0,
(ii) mildly cohesive sediment with Co= 1, and (iii) strongly cohesive sediment with
Co= 5. For all simulations, the particles are released from rest in quiescent fluid, and
subsequently settle under the influence of gravity. The key simulation parameters are
listed in table 1. The particle collisions are inelastic with edry = 0.97 < 1, and they
experience friction through (2.8).
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5.2. Hindered settling behaviour
The impact of cohesive forces on the settling behaviour is illustrated by figure 12.
During the early stages, the particle distributions are very similar for all three
simulations. Over the course of the simulations, however, the cohesive sediment is
seen to settle faster than its non-cohesive counterpart. This qualitative observation is
confirmed by the concentration profiles of figure 13. At t= 17.6τs, when the particle
phase has its maximum kinetic energy (cf. § 5.3), the profiles for all three simulations
remain nearly identical, as cohesive forces have not yet had sufficient time to cause a
noticeable change. As time progresses, the concentration profiles remain very similar
in the dilute region near the top of the tank, where the volume fraction remains
below 5 % so that particle–particle interactions are negligible (Capart & Fraccarollo
2011), cf. figure 13(b). In the lower part of the tank, differences begin to emerge,
as cohesive forces result in the formation of flocs with larger settling speeds, so
that particles accumulate at the bottom of the tank more quickly. Also, note that
the undulations in the profiles are milder for larger cohesive forces. At the final
simulation time (figure 13c), cohesive sediment has a lower volume fraction at the
very bottom of the tank at (0 6 y 6 2D50), as compared to cohesionless grains. This
reflects the impact of cohesive forces on the consolidation process, as larger cohesive
forces yield stable flocs, whereas cohesionless sediment rearranges itself into a denser
configuration under the weight of the overlying sediment (Been & Sills 1981). Above
the dense layer of sediment at the very bottom of the tank (0 6 y 6 5D50), there
exists a layer of loosely flocculated particles with a lower volume fraction, which
increases in depth over time. This observation holds for both Co= 1 and Co= 5, and
is consistent with experimental observations of freshly sedimented flocs with larger
pore spaces above older sediments (e.g. Winterwerp 2001). At the final simulation
time, we observe a sharp decrease in particle volume fraction near y≈ 10D50 for the
cohesive sediment, which is more pronounced for the simulation with larger cohesive
forces. The cohesionless sediment, on the other hand, shows higher volume fractions
at y> 10D50, as a result of the unfinished settling process.

As the particles settle, they replace fluid at the bottom of the tank and generate an
upward counterflow. For the current simulations, this counterflow is sufficiently strong
to sweep smaller particles upwards. It represents one reason for hindered settling and
for the separation of the grain sizes for very large water columns (te Slaa et al. 2015).
This effect is illustrated in figure 14, which shows the final volume fraction profiles
for the smallest, intermediate and largest third of the particles. Figure 14 demonstrates
that small and intermediate cohesive particles settle much more rapidly than their
non-cohesive counterparts, consistent with the observation of Lick et al. (2004), who
found intermediate-sized particles to be most strongly affected by cohesive forces.
These types of grains have their peak concentration in the interval 3D50 < y< 10D50.
In contrast, large cohesive grains have a lower volume fraction near the bottom of the
tank than large cohesionless grains (figure 14c). As a consequence, the effect of size
segregation is less pronounced for cohesive grains, as flocculation results in particles
of different sizes settling with the same velocity (Mehta et al. 1989).

To validate our simulation results, we compare the effect of cohesive forces on
the settling of our polydisperse particles to established empirical relations describing
hindered settling of silt. We can compute the settling behaviour of the particle phase in
a double-averaged sense (Vowinckel et al. 2017a). To this end, we apply an averaging
operator to our Eulerian fluid grid that evaluates instantaneous snapshots of the particle
velocity distribution (φvp), where φ is the part of a cell occupied by solids and vp
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FIGURE 12. (Colour online) Particle configurations during the settling process. (a–f ) Co=
0, (g–l) Co = 1, (m–r) Co = 5. Left column: t = 17.6τs, which corresponds to
the time at which the particle phase has its maximum kinetic energy. From left
to right, the columns are separated by time intervals of 72.5τs. The grey shading
reflects the vertical particle velocity. The cohesive sediment is seen to settle more
rapidly than its non-cohesive counterpart (see also supplementary movie available at
https://doi.org/10.1017/jfm.2018.757).
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FIGURE 13. (Colour online) Horizontally averaged particle volume fractions during the
settling process: (a) at t= 17.6τs, (b) at t= 162.6τs and (c) at t= 380.1τs.
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FIGURE 14. (Colour online) Particle volume fraction profile for different particle radii at
t = 380.1τs: (a) small particles with Dp 6 D33, (b) medium-sized particles in the range
D33 < Dp 6 D66, and (c) large particles with D > D66. Note the different horizontal axis
scalings for the individual panels. The results in (a) and (b) were smoothed by a moving
average with filter width of 1.5D50 for clarity.

is the settling velocity of the particle taking up this space. Note that we assume
rigid-body motion and zero rotation for this analysis. This yields

〈vp〉(y, t)=

∫ Lz

0

∫ Lx

0
φ(x, y, z, t) vp(x, y, z, t) dx dz dt∫ Lz

0

∫ Lx

0
φ(x, y, z, t) dx dz dt

, (5.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

75
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

CS
B 

Li
br

ar
ie

s,
 o

n 
13

 N
ov

 2
01

8 
at

 1
8:

08
:4

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.757
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


28 B. Vowinckel, J. Withers, P. Luzzatto-Fegiz and E. Meiburg

where the angular brackets denote horizontal averaging. These data are then evaluated
for binned values of φ using

〈vp〉(φ)=
1

NtN(φ)

∑
Nt

∑
N(φ)

〈vp〉(y, t), (5.2)

where N(φ) is the number of samples recorded for a given φ, and Nt is the number
of the evaluated datasets in time outputted with an interval of ∆t = 0.25τs. Time
averaging indicated by the overbar is performed from ts = 240τs to te = 380τs,
which is the end of the simulation as displayed in figure 13(c). The averaging time
interval was chosen to start well after the initial stir-up phase, as will be discussed
in detail below. The sample size hence comprises Nt = 560 datasets over a total
time of 140τs, which is long enough to obtain statistically meaningful data of the
well-developed settling behaviour. Similarly, we evaluate the undisturbed settling
velocity vra (cf. appendix C) for the instantaneous particle distribution φ to compute
〈vra〉. As a result, the ratio 〈vp〉/〈vra〉 is still a function of the volume fraction and
can therefore be used to compare with the hindered settling functions available in the
literature.

One of the first hindered settling functions was proposed by Richardson & Zaki
(1954),

〈vp〉

〈vra〉
=

(
1−

φ

φs

)n

, (5.3)

where φs and n are empirical parameters describing the volume fraction of a freshly
deposited sediment bed and the particle size and shape, respectively. As argued by
Dankers & Winterwerp (2007), cohesive sediment such as mud with a significant
amount of clay deposits at the bottom in a gel-like structure with a volume fraction
that is lower than the maximum possible volume fraction φmax. Hence, these authors
define φs<φmax based on measurements of the settling velocity of mud to separate the
effects of hindered settling from the consolidation of the deposited sediment. Owing to
its simplicity, equation (5.3) has been very popular in hydraulic engineering. However,
as described by te Slaa et al. (2015), this function is known to underestimate the
settling velocity for higher concentrations. Instead, these authors have used the
hindered settling function of Winterwerp (2002),

〈vp〉

〈vra〉
=

(
1−

φ

φs

)m

(1− φ)(
1−

φ

φmax

)−5φmax/2
, (5.4)

where the numerator represents the effects of the counterflow and the increased
buoyancy, respectively, while the denominator reflects the increased viscosity of
dense suspensions according to Krieger & Dougherty (1959). Here, m is an empirical
exponent, which plays a similar role to the parameter n in (5.3). It was shown by
te Slaa et al. (2015) that equations (5.3) and (5.4) both yield good agreement with
experimental results for settling coarse silt. The best agreement for (5.3) was shown
for the parameter values n= 4.91 and φs = 1, while (5.4) performs best with m= 1,
φs = 0.5 and φmax = 0.65.

We compare our double-averaged simulation results obtained from (5.2) to the
hindered settling functions as parametrized by te Slaa et al. (2015) in figure 15(a)
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FIGURE 15. (Colour online) Double-averaged settling velocity normalized with the
undisturbed settling velocity. Comparison to empirical relationships (5.3) of Richardson
& Zaki (1954) (RZ) and (5.4) of Winterwerp (2002) (W). (a) Parametrization according
to te Slaa et al. (2015). (b) Same parametrization except for choosing φs = φmax = 0.7
according to the simulation data of figure 13(c).

to validate our simulations. Our results agree well with the two empirical hindered
settling functions, and they demonstrate the enhanced settling velocity due to the
cohesive forces for all concentration values. Unlike the hindered settling functions,
the simulated settling velocities do not approach the undisturbed value for very low
volume fractions. This can be attributed to the finite size of the computational domain
and the limited number of particles. As can be seen in figure 13, these low volume
fractions are typically found in the top part of the tank, where the smallest particles
are still accelerating with a very low Reynolds number. Nevertheless, the agreement
is remarkable, which demonstrates the ability of the current simulation approach to
produce physically realistic results.

Surprisingly, the hindered settling function of Richardson & Zaki (1954) as
parametrized by te Slaa et al. (2015) does not underestimate the settling velocities
of higher volume fractions, and the agreement of (5.3) with our data seems to be
even better than for (5.4). This is because the parameter φs = 1 was calibrated for
best fit to match experimental results. Hence, figure 15(a) serves as validation of our
simulation approach. However, this parametrization is not in line with the definition
of φs as given by Dankers & Winterwerp (2007). Moreover, it is immediately obvious
that the solid content of a freshly deposited sediment bed cannot reach this value.
Hence, to improve the parametrization of (5.3) and (5.4), we propose to choose
φs = φmax since we do not deal with mud but with coarse silt. The consolidation
of the sediment will continue to squeeze out water from the bed until the particle
packing jams. This process will maintain a counterflow over very long time scales (e.g.
Houssais et al. 2016). Based on these observations, we propose to not calibrate φs
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but to parametrize critical volumetric concentrations by the maximum value of our
concentration data as shown in figure 13(c). Using these data, we can immediately
parametrize φs = φmax = 0.7, which is in line with experimental and computational
studies of polydisperse particle packings (Sohn & Moreland 1968; Desmond & Weeks
2014). Note that this value is larger than the volume fraction of a randomly closed
packing of monodisperse spheres, since we are dealing with polydisperse particles and
the operator (5.1) fully resolves the volume fraction over intervals smaller than the
particle diameter. Using this physically based parametrization, we obtain a much better
fit of (5.4) to our data (dotted line in figure 15b), which illustrates the importance
of including the effects of the counterflow, the buoyancy and the increased viscosity
in the formulation of the hindered settling function even during the consolidation
phase. On the other hand, (5.3) underestimates the settling of cohesive sediment, but
is very close to the settling behaviour of the simulated cohesionless sediment. This
was expected, as (5.3) was derived for cohesionless sediments in the first place.

5.3. Energetics of enhanced settling
We now analyse the energetics of the sedimentation process, with a focus on the
conversion of the initial potential energy of the particles into kinetic energy, and on
the modulation of this process by hydrodynamic and collision forces. Corresponding
studies of the energetics of gravity and turbidity currents have provided useful
information for the fluid phase that can facilitate the development of simplified
models (e.g. Necker et al. 2005; Konopliv & Meiburg 2016). By integrating the
particle equation of motion (2.3) along its trajectory, we obtain for the energy budget
of a single particle

1
2 mp(u0

p)
2︸ ︷︷ ︸

=E0
k,p

+ Vp(ρp − ρf )gy0
p︸ ︷︷ ︸

=E0
y,p

=
1
2 mpu2

p︸ ︷︷ ︸
=Ek,p(t)

+ Vp(ρp − ρf )gyp︸ ︷︷ ︸
=Ey,p(t)

−

∫ t

0
Fh,pup dt∗︸ ︷︷ ︸
=Wh,p(t)

−

∫ t

0
Fc,pup dt∗︸ ︷︷ ︸
=Wc,p(t)

. (5.5)

The left-hand side represents the energies of the initial (conservative) budget
E0

p = E0
k,p + E0

y,p, where E0
k,p and E0

y,p denote the initial kinetic and potential energies,
respectively. The right-hand side represents the budget Ep(t) = Ek,p(t) + Ey,p(t) −
Wh,p(t) − Wc,p(t) as a function of time, where Wh,p(t) and Wc,p(t) indicate the work
performed on the particle up to time t by the non-conservative hydrodynamic
and collision forces Fh,p and Fc,p, respectively. To compute this work, these
non-conservative forces are integrated over the entire particle path. The hydrodynamic
forces and collision forces modify the total conservative energy Ek,p + Ey,p.

To assess the energy budget, we store particle information such as position, velocity,
hydrodynamic and collision forces every 1000 time steps. We can then compute the
potential and kinetic energy, along with work performed by the hydrodynamic and
collision forces, based on the integration scheme:

En
k =
∑

Np

1
2

mp(un
p)

2, (5.6a)

En
y =
∑

Np

Vp(ρp − ρf )gyn
p, (5.6b)
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FIGURE 16. (Colour online) Time evolution of the mechanical energy budget of all
particles in the flow, normalized by the initial energy E0

= E0
k + E0

y : (a) potential energy,
(b) work performed by hydrodynamic forces, (c) kinetic energy, and (d) work due to
collision forces.

Wn
h =Wn−1

h +
1t
4

∑
Np

[Fn
h,p +Fn−1

h,p ][u
n
p + un−1

p ], (5.6c)

Wn
c =Wn−1

c +
1t
4

∑
Np

[Fn
c,p +Fn−1

c,p ][u
n
p + un−1

p ], (5.6d)

where n denotes the index of the output dataset. Note that we have dropped the
subscript p for the quantities on the left-hand side of (5.6), as these terms reflect the
sum over the entire ensemble of particles. The integration rule for the external work
employs linear interpolation between the two consecutive output times n − 1 and n.
To monitor the accuracy of our computational analysis, we kept track of the relative
error

ε =
|E0
− E(t)|
E0

(5.7)

over time, where E0
=E0

y and E(t)=Ek(t)+Ey(t)−Wh(t)−Wc(t). This error remained
below 0.0045 for all times, which is sufficiently small to establish confidence in the
results. We furthermore note that the error saturates at an almost constant level for
larger times and is not expected to grow any further as the particles gradually come
to rest at the bottom of the tank towards the end of the simulation.

The results of the energy analysis are shown in figure 16. Integrated over all
particles, the contributions of the kinetic energy and the work performed by collision
forces are orders of magnitude smaller than the contributions of potential energy
and the work of the hydrodynamic forces, which indicates that the initially available
potential energy Ep is primarily used to overcome the viscous drag force as the
particles settle (figure 16a,b). During the initial stage t< 80τs, the curves for cohesive
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and non-cohesive sediment are nearly indistinguishable. Subsequently, however, as
the cohesive sediment forms flocs and settles out more rapidly, its potential energy
decays faster and it performs more work against the viscous drag forces.

During the initial stage, the kinetic energy data in figure 16(c) collapse for all
simulations, with a distinct peak at t = 17.6τs and a subsequent exponential decay.
This behaviour can be attributed to the fact that particles initially are distributed
throughout the entire domain, so that particles close to the bottom wall immediately
begin to feel the presence of the confinement. These particles will never accelerate
towards their undisturbed settling velocity, and as soon as there are more particles
decelerating than accelerating, Ek starts to decay. Hence, the evolution of Ek reflects
the behaviour of a dissipative dynamical system released from rest, with an initial
supply of potential energy, so that its dynamics resemble the temporal evolution of
the fluid kinetic energy for a lock-release turbidity current propagating in a channel
(Necker et al. 2005) or spreading radially in a basin (Francisco et al. 2018). The
difference in settling velocities of the larger and smaller particles during the initial
stage results in the strong stirring and mixing of both the fluid and the particles.
During the interval 100τs < t < 270τs, the kinetic energy is larger for the cohesive
sediment, reflecting its higher settling velocity. As particles begin to deposit, this
effect becomes less and less prominent since fewer particles remain in suspension
and Ek eventually approaches zero for all simulations. During the final simulation
stages, the kinetic energy is slightly larger for the cohesionless sediment, since almost
all of the cohesive sediment has already settled out.

This behaviour is also reflected in the work performed by the particles against
the collision forces (figure 16d). Even though the forces acting on particles p and
q through equation (3.5) must be opposite and equal, the total work they perform
against the collision forces is non-zero. The cohesive forces modify the amount of
work performed by the particles during collisions, as they tend to align the particles
and reduce their velocity difference. This observation is more pronounced for Co= 5.
Since cohesive sediment settles out more quickly than cohesionless sediment, the late
stages of the cohesive simulations see more collisions of flocculated particles with
deposited particles, so that the work performed against the collision forces is larger
for cohesive sediments.

The above demonstrates that cohesive forces modify the processes by which
potential energy Ey is converted into kinetic energy Ek. As a result, the effective
settling rate of the particle ensemble is altered, as reflected by the vertical velocity
component of the centre of mass,

〈vp〉 =
1

Np∑
p=1

Mp

Np∑
p=1

Mpvp, (5.8)

cf. figure 17(a). Figure 17(b–d) display the ensemble-averaged velocity 〈vp〉,
conditioned by particle size in the same way as in figure 14. These data confirm
that the enhanced kinetic energy of the cohesive sediment during the time interval
100τs 6 t 6 270τs can mainly be attributed to faster settling velocities, rather than
enhanced horizontal velocity fluctuations. After peaking at t = 17.6τs, the settling
process slows down most noticeably for cohesionless sediment. Consistent with our
earlier observations, the settling of medium and small cohesive grains is accelerated
most strongly by cohesive forces (figure 17c,d). We note that for small cohesionless
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FIGURE 17. (Colour online) Average velocity of the particle centre of mass 〈vp〉 as a
function of time: (a) all particles, (b) Dp >D66, (c) D33 <Dp 6 D66, and (d) Dp 6 D33.

grains the ensemble-averaged settling velocity decays almost to zero at t = 110τs, as
a significant fraction of them are swept upwards by the counterflow. Subsequently
these smaller particles settle towards the bottom, reaching a constant settling velocity
over time. By contrast, small cohesive grains attach to larger ones and consequently
settle more rapidly. In addition, the settling velocity of the smaller particles follows
the decelerating behaviour of the larger ones.

The above observations confirm the enhanced settling of cohesive sediment. We can
quantify this effect by computing the relative increase in the settling velocity,

1〈vp〉 =
〈vp〉(Co)− 〈vp〉(Co= 0)

〈vp〉(Co= 0)
, (5.9)

cf. figure 18. After the acceleration phase up to t= 75τs, the cohesive particles with
Co = 1 and Co = 5 settle up to 24 % and 29 % faster than cohesionless sediment.
Beyond t> 250τs, more and more of the cohesive particles have reached the sediment
bed, so that the relative settling velocity increase 1〈vp〉 loses its meaning.

An alternative way of quantifying the enhanced settling behaviour of cohesive
sediment relies on the time Tα it takes for the initial potential energy to decay to a
relative value of α = Ey/E0. We define the relative settling time reduction as

1Ts =
Tα(Co= 0)− Tα(Co)

Tα(Co= 0)
, (5.10)

and show corresponding computational results in figure 18(b). The relative settling
time reduction is larger for lower values of α, as cohesive sediment continues to
settle out faster than cohesionless particles for later times. The speedup is most
pronounced as we compare cohesionless sediment with the cohesive case Co = 1.
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FIGURE 18. (Colour online) (a) Relative settling velocity increase as a function of time.
(b) Relative enhancement of the decay of potential energy for different values of α =
Ey/E0.

A further increase of the cohesive forces to Co= 5 results in only slightly more rapid
settling.

We conclude that the energy budget analysis represents a suitable tool for clarifying
the mechanisms by which cohesive forces accelerate the settling of particles, as
observed in § 5.2 as well as in experiments (Mehta et al. 1989).

5.4. Preferred particle interaction configurations
We proceed to explore if the observations of § 4 for interacting particle pairs can
help explain the origins of enhanced settling for large particle ensembles. There we
had found that, while cohesionless grains tend to undergo the DKT process, cohesive
particle pairs bond to each other in certain preferred geometrical configurations that
depend on the ratio Rp/Rq of the particle radii. With a ratio of Rp/Rq 6= 1, i.e. a
polydisperse size distribution, particles were seen to align obliquely or even vertically.

In the following, we define particle p as having a larger y-coordinate than particle
q, so that yp > yq. To test how much of the behaviour observed for isolated cohesive
particle pairs can still be found in the context of many settling particles, we analyse
the probability density function (PDF) of the angles of interacting particles. Owing
to the symmetry of the problem, we can consider the angle of the contact point with
respect to the vertical coordinate of particle p as

cos θ =
yp − yq

‖rpq‖
, (5.11)

and we can define vertical, oblique and horizontal contacts as having angles 0◦<θ 6
22.5◦, 22.5◦<θ 6 67.5◦, and 67.5◦<θ 6 90◦, respectively. Furthermore, we distinguish
between direct contact (ζn < 0) and cohesive bonding (0 6 ζn 6 λ).

Figure 19 shows PDFs of the particle radii ratio Rp/Rq for horizontal, vertical and
oblique particle interactions, respectively. These PDFs were calculated from all contact
points throughout the simulation between particle pairs with a vertical velocity greater
than 5 % of the characteristic velocity us =

√
g′D50. This conditioning by velocity

is necessary to avoid counting particles that have already settled out. The median
values of the PDFs displayed in figure 19 are summarized in table 2. Figure 19(a,b)
confirm the observation of § 4.1 that particles interacting horizontally preferentially are
of similar size, as the median value of the PDF is very close to unity. This holds
for direct contact as well as for cohesive bonding, and for all three simulations. For
vertical particle interactions, figure 19(c,d) show that cohesive particles interact very
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FIGURE 19. (Colour online) Probability density function of the radii ratio with respect
to their contact angles: (a) horizontal direct contact, (b) horizontal cohesive bonding,
(c) vertical direct contact, (d) vertical cohesive bonding, (e) oblique direct contact, and
( f ) oblique cohesive bonding. Particles bonding horizontally are preferentially of similar
size, while particles in vertical or oblique configurations tend to have different sizes.
Interacting cohesive grains most often have the smaller particle trailing the larger one,
whereas for cohesionless grains the larger particle tends to catch up with the smaller one
from above.

Direct contact Cohesive bonding
Horizontal Vertical Oblique Horizontal Vertical Oblique

Co= 0 1.02 1.54 1.19 — — —
Co= 1.0 1.07 0.94 1.04 0.93 0.64 0.77
Co= 5.0 1.03 0.89 1.05 0.95 0.71 0.80

TABLE 2. Median values of particle radii ratios Rp/Rq at different contact angles and
direct contact and cohesive bonding.
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differently from cohesionless grains. While cohesive particle pairs tend to arrange
themselves with the smaller particle trailing the larger one, cohesionless grains behave
oppositely. This reflects the fact that for cohesionless particle pairs of different size
the larger particle tends to settle more rapidly, so that it catches up with the smaller
one from behind. For cohesive particle pairs, on the other hand, DKT causes the
smaller particle to arrange itself in the wake of the larger one, so that the PDF has
a distinct maximum for particle radii ratios below unity. For oblique contact angles
(figure 19e, f ), the direct contact PDFs have maxima slightly below (above) unity for
cohesive (cohesionless) sediment. For oblique cohesive bonding, on the other hand,
the PDFs have median values clearly below unity, although somewhat larger than for
vertical contact angles. In summary, we find that many of the features observed for
isolated particle pairs in § 4.1 remain relevant within a larger ensemble of sedimenting
polydisperse particles.

6. Conclusions
The present paper develops a physical and computational model for performing fully

coupled, grain-resolving direct numerical simulations (DNS) of cohesive sediment.
This model distributes the cohesive forces over a thin shell surrounding each particle,
while preserving the overall energy of the true physical van der Waals (vdW) forces.
It thus allows for the spatial and temporal resolution of the cohesive forces during
particle–particle interactions, along with direct contact and lubrication forces, thereby
enabling us to conduct a detailed analysis of their influence on the overall dynamics
of the sediment. The influence of the cohesive forces is captured by a single
dimensionless parameter in the form of a cohesion number, which represents the
ratio of cohesive and gravitational forces acting on a particle.

The cohesive force model is tested and validated for binary particle interactions
in the well-known drafting–kissing–tumbling (DKT) configuration. In contrast to
non-cohesive particles, cohesive sediment grains can remain attached to each other
during the tumbling phase following the initial collision, which forms the basis for
the formation of flocs. The DKT simulations demonstrate that cohesive particle pairs
settle in a preferred orientation, which depends on the ratio of the particle radii.
When the particles are very different in size, they tend to align themselves in the
vertical direction, with the smaller particle being drafted in the wake of the larger
one.

The preferred orientation of cohesive particle pairs is seen to remain influential
within much larger simulations of 1261 polydisperse particles released from rest,
for different values of the cohesion number. These simulations reproduce several
earlier experimental observations by other authors, such as the accelerated settling
of sand and silt particles due to particle bonding, the stratification of cohesive
sediment deposits, and the consolidation process of the deposit. We find that cohesive
forces accelerate the overall settling process primarily because smaller grains attach
to larger ones and settle in their wakes, which speeds up their downward motion,
consistently with our DKT simulations. For the cohesion-number values simulated in
the present study, we observe that settling can be accelerated by up to 29 %. Based
on the simulation results, we revisit hindered settling functions proposed by earlier
authors, and propose physically based parametrization that does not involve arbitrary
calibration to account for cohesive interparticle forces. A detailed investigation of
the energy budget provides quantitative information on the work performed by the
hydrodynamic and collision forces. While the work of the collision forces is much
smaller than that of hydrodynamic forces, it nevertheless substantially modifies the
processes that convert potential into kinetic energy and vice versa.
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In summary, the grain-resolving DNS simulations of cohesive sediment dynamics
identify three characteristic phases for the polydisperse settling process: (i) an initial
stir-up phase of increasing particle kinetic energy, during which flocculation remains
limited; (ii) a phase of increased flocculation and enhanced settling as the particle
kinetic energy decays; and (iii) the dewatering phase, during which the freshly settled
sediment flocs consolidate.

The model developed in the present paper lends itself well to further computational
investigations into the physics of cohesive sediment. Among the interesting issues to
be addressed are the interaction of cohesive sediment with a turbulent flow field, as
well as the erosion of a cohesive sediment bed by an imposed flow. Efforts in these
directions are currently under way.
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Appendix A. Comparison to natural systems
As outlined in § 3.1, the DLVO theory involves both repulsive and attractive forces.

A model incorporating both effects has been proposed by Pednekar, Chun & Morris
(2017):

FDLVO = ARReff exp(−κζn)︸ ︷︷ ︸
Frep

−
AHReff

12(ζ 2
n + ζ

2
0 )︸ ︷︷ ︸

Fatt

, (A 1)

where AR is a repulsive force scale due to the particles’ surface potential for ζn = 0,
κ is the Debye length, AH is the Hamaker constant, and ζ0 is the surface roughness
preventing Fatt from diverging to infinity for vanishing gap size. These four parameters
need to be adjusted according to the physical system. Moreover, (A 1) does not
incorporate an explicit scaling with the median grain size D50. In the following,
we will compare (A 1) to different conditions occurring in different environmental
systems to obtain reasonable parameter ranges for our cohesive force model (3.10),
which conveniently only involves one tunable parameter, i.e. the cohesive number.

As a baseline application, we choose the following parameters: (i) AH = 1× 10−20 J,
which reflects silica materials in water according to Bergström (1997); (ii) Reff =

Rp/2 = 5 µm for monodisperse silt particles of grain size Dp = 20 µm; and
(iii) ζ0 = Rp × 5 × 10−4, which is below the surface roughness ζmin = Rp × 3 × 10−3

of the lubrication model (2.6), but rougher than the values of Rp × 1 × 10−4

reported by Gondret et al. (2002) for glass spheres. (iv) We determine κ using
the approximation for the monovalent salt sodium chloride given by Berg (2010) as
κ−1
= (0.304× 10−9 m−1)/(|z|

√
Csalt) in metres, where z is the valency of the salt
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FIGURE 20. DLVO curve for AH = 1× 10−20 J, Dp = 20 µm, ζ0 = Rp × 5× 10−4, and
Csalt = 35 ppt.

AH (J) System Co Dp (µm) System Co

1.8× 10−18 Ionic crystals in water (Visser 1972) 796.60 2 Clay 13 345
1.0× 10−20 Quartz in water (Bergström 1997) 4.43 6.3 Fine silt 333.23
6.3× 10−23 Silicate in water (Lick et al. 2004) 0.03 20.0 Medium silt 4.43

63.0 Coarse silt 0.05

ζ0/Rp System Co Csalt (ppt) System Co

1× 10−4 According to Gondret et al. (2002) 64.09 0.1 Fresh water 0.51
5× 10−4 4.43 2.5 Oligohaline 3.04
1× 10−3 1.18 12.0 Mesohaline 4.02
3× 10−3 Calibrated by Biegert et al. (2017a) 0.14 35.0 Ocean water 4.43

TABLE 3. Sensitivity of the four material parameters AH , Dp, ζ0 and Csalt entering (A 1).

and Csalt is the salt concentration in mol l−1. Here, we choose the salinity of sea
water with 35 ppt. These parameters yield Csalt = 0.6 mol l−1 and κ = 0.393 nm.
(v) Since a key feature of our model is to have vanishing forces for particle contact,
i.e. ζn = 0, we set AR = AH/(12ζ 2

0 ). The DLVO curve for this case is displayed in
figure 20. In this scenario, the total force FDLVO follows the attractive forces with a
distinct minimum at ζn ≈ 1 nm. The minimum force is |min(FDLVO)| = 3 × 10−10 N,
while the weight becomes Fg = πg(ρp − ρf )D3

p/6 = 6.78 × 10−11 N, where we
set gravitational acceleration, particle density and fluid density to be g= 9.81 m s−2,
ρp= 2650 kg m−3 and ρf = 1000 kg m−3, respectively. This yields a cohesive number
of Co = |min(FDLVO)|/Fg = 4.43, which is within the parameter ranges addressed in
§§ 4 and 5.

To get a better understanding of the applicability of our modelling approach, we
conducted a sensitivity analysis of (A 1) reflecting parameter ranges of our interest.
The results of FDLVO are illustrated in figure 21 and the sensitivity in terms of Co is
summarized in table 3. Out of the four parameters investigated, Dp has the strongest

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

75
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

CS
B 

Li
br

ar
ie

s,
 o

n 
13

 N
ov

 2
01

8 
at

 1
8:

08
:4

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.757
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Settling of cohesive sediment 39

-6

-4

-2

0
(a) (b)

(c) (d)

-10

-8

-6

-4

-2

0

-5

-4

-3

-2

-1

0

-3

-2

-1

0

(÷ 10-8)

(÷ 10-8)

(÷ 10-8) (÷ 10-10)

(÷ 10-9) (÷ 10-10)

F D
LV

O
F D

LV
O

Ωn (m)

0 1 2

AH = 1.8 ÷ 10-18 J
Dp = 2.0 ÷ 10-6 m

Csalt = 0.1 ppt
Csalt = 2.5 ppt
Csalt = 12 ppt
Csalt = 35 ppt

Dp = 6.3 ÷ 10-6  m
Dp = 20.0 ÷ 10-6 m
Dp = 63.0 ÷ 10-6 m

AH = 1.0 ÷ 10-20 J
AH = 6.4 ÷ 10-23 J

Ω0/Rp = 1 ÷ 10-4

Ω0/Rp = 5 ÷ 10-4

Ω0/Rp = 1 ÷ 10-3

Ω0/Rp = 3 ÷ 10-3

3 4
(÷ 10-8)

0 1 2 3 4
(÷ 10-8)Ωn (m)

0 1 2 3 4

0 1 2 3 4

FIGURE 21. Sensitivity of FDLVO with respect to the material parameters entering (A 1):
(a) AH , (b) Dp, (c) ζ0, and (d) Csalt.

influence. This is caused by the dependence of ζmin, and hence AR as well as Fg, on
this parameter. As a consequence, we conclude that our model (3.10) might not be
applicable for very small grains as Co becomes very large. Note that, at this grain size,
particles are also considered to experience Brownian motion (Metcalfe et al. 2012),
which is not incorporated in our simulation approach, either. The Hamaker constant AH
has the potential to change the cohesive number, but we retain the linear dependence
of Co on AH . The big change in Co is mainly because the numbers suggested in
the literature vary by five orders of magnitude. The results also retain their quadratic
dependence on the surface roughness ζ0. Changes in the Debye length as a function
of salt concentration do not strongly influence our system. However, it must be noted
that, if the Debye length exceeds the surface roughness, we no longer obtain a distinct
minimum for FDLVO. We can therefore conclude that this behaviour imposes another
constraint on the model (3.10). This, however, is a reasonable assumption, since we
are dealing with natural sediments of macroscopic silica grains.

Appendix B. Non-dimensional particle equation of motion
To obtain the non-dimensional form of equation (2.3), we scale all variables by

corresponding characteristic quantities:

p= ρf u2
s p̃, (B 1a)
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f IBM = g′f̃ IBM, (B 1b)

u= usũ=
√

g′D50 ũ, (B 1c)

t=
D50

us
t̃=

√
D50

g′
t̃, (B 1d)

L=D50L̃. (B 1e)

Here u represents any velocity vector and L any length appearing in (2.1) and
(2.3). The tilde symbol indicates dimensionless variables. In this way we obtain the
dimensionless momentum conservation and continuity equations,

∂ũ
∂ t̃
+ ∇̃ · (ũũ)=−∇̃p̃+

1
Re
∇̃

2ũ+ f̃ IBM, (B 2)

∇̃ · ũ= 0, (B 3)

where Re=D50us/νf denotes the Reynolds number.
In a similar fashion, we introduce characteristic scales for the hydrodynamic force,

the surface roughness, and the stiffness and damping coefficients:

mp =m50m̃p = ρf V50m̃p, (B 4a)

Vp = V50Ṽp, (B 4b)

Fp,h = ρf g′V50F̃p,h, (B 4c)

max(ζn, ζmin)=D50ζ̃n, (B 4d)

kn = ρf g′
√

V50 k̃n, (B 4e)

dn = ρf

√
g′

D50
V50d̃n, (B 4f )

kt = ρf
g′

D50
V50k̃t, (B 4g)

dt = ρf

√
g′

D50
V50d̃t, (B 4h)

λn =D50λ̃n. (B 4i)

Introducing these into (2.3) yields as the characteristic scale of the forces acting on
the particles Fi =m50u2

s/D50 =m50g′. We thus obtain

m̃p
dũp

dt̃
= F̃p,h + Ṽpeg − 36

νf

D50us

R̃2
eff g̃n

ζ̃n
− (k̃n|ζ̃n|

3/2n+ d̃ng̃n)

− (k̃t|ζ̃ t| + d̃tg̃t,cp)+
max(‖Fcoh,50‖)

m50g′
8 R̃eff

λ̃2
(ζ̃ 2

n − ζ̃nh̃)n. (B 5)
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By defining the cohesive number as Co=max(‖F̃coh‖)/(m50g′) this results in

m̃p
dũp

dt̃
= F̃p,h + Ṽpeg −

36
Re

R̃2
eff g̃n

ζ̃n
− (k̃n|ζ̃n|

3/2n+ d̃ng̃n)

− (k̃t|ζ̃ t| + d̃tg̃t,cp)+Co
8 R̃eff

λ̃2
(ζ̃ 2

n − ζ̃nh̃)n. (B 6)

Here, eg denotes the unit vector pointing into the direction of g. Equation (B 6)
demonstrates that, once the k- and d-values have been specified by the collision
model, the particle behaviour is governed by two dimensionless similarity parameters
in the form of the Reynolds and cohesive numbers.

Appendix C. Definition of the characteristic velocity

For steady-state motion of a single particle in an otherwise quiescent fluid, we
obtain a balance between the hydrodynamic force Fh,p and the buoyant weight Fg,p,

0=Fh,p +Fg,p, (C 1)

where the buoyant weight of a sphere is given by

Fg,p =
4
3πR3

p(ρp − ρf )g. (C 2)

The classical settling velocity value based on Stokes’ drag law (e.g. Biegert et al.
2017b) is limited to Reynolds numbers Re� 1. For higher Reynolds numbers, Lord
Rayleigh formulated the drag equation

Fh,p =
1
2ρf u2

pCd Ap︸︷︷︸
(1/4)πD2

p

, (C 3)

where the drag coefficient Cd depends on the Reynolds number, and Ap denotes the
projected area of the sphere. Substituting (C 3) and (C 2) into (C 1) yields the settling
velocity

vra =

√
4
3

1
Cd

ρp − ρf

ρf
gDp =

√
4
3

1
Cd

g′Dp. (C 4)

Choosing Cd= 4/3 simplifies (C 4) to us=
√

g′Dp, which is the characteristic velocity
used in the present study. We can use the empirical correlation of Clift, Grace &
Weber (2005),

Cd =
24
Re
[1+ 0.1935 Re0.6305

], (C 5)

to obtain the corresponding Reynolds number as Re = vraDp/νf . The definition of
the Reynolds number together with equations (C 4) and (C 5) also define the set of
equations to iteratively determine vra.
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