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ABSTRACT OF THE DISSERTATION

FPGA-Based Acceleration: From Cloud to Edge

by

Amin Kalantar Chahouki

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2023

Professor Philip Brisk, Chairperson

Increasingly, FPGAs have shown promise of high processing power in various fields

such as machine learning, computer vision, high frequency trading, and others thanks to their

basic nature of configurable system. However, this question remains unanswered: “When

will FPGAs become popular and mainstream?” Although hardware description languages

are notoriously challenging to design with, current software toolchains play a major role

in hindering the adoption of FPGAs. This dissertation investigates performance gains by

accelerating time series prediction on different FPGA platforms–from smaller edge computing

devices to high end data center cards– as well deploying FPGAs as SmartNICs to data

centers, and analyzes the challenges and limitations of current FPGA design flow (through

both HDL and High Level Synthesis development).

First, we present FA-LAMP, an FPGA-accelerated implementation of the Learned

Approximate Matrix Profile algorithm, which predicts the correlation between streaming data

sampled in real-time and a representative time series dataset used for training. We expose

several technical limitations of Xilinx DPU for convolutional neural network acceleration
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on FPGAs, while providing a mechanism to overcome them. Furthermore, we show how

Learned Approximate Matrix Profile algorithm can be deployed on data center FPGA cards.

We implement two different versions of FA-LAMP for high throughput and low latency

applications- and show how to integrate DPU on the Alveo card with an Ethernet module

that allows for processing real-time data streams delivered over a network. We discuss

different strategies to connect the Ethernet IP to the DPU and present methods to further

increase network throughput.

Finally, we show how FPGAs can be used as SmartNICs to ensure consistency

in data centers. We implement different consensus protocols on the FPGA that leverage

Remote Direct Memory Access (RDMA) to replicate user requests in memory and to fail-over

the system with negligible latency. We evaluate the throughput and response time of our

design for three scenarios: No failure, leader failure, and replica failure. We also leverage

SMT solvers to come up with an optimal memory layout to allocate replication logs.
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Chapter 1

Introduction

Due to their promising advantages such as fast time-to market, reduced Non-

Recurring Engineering (NRE) costs, as well as flexibility to fast implementation and modifi-

cation of digital designs, Field-Programmable Gate Arrays (FPGAs) are gaining popular

usage in a diverse range of use-cases from embedded systems to cloud applications. Although

FPGAs are widespread, they cannot be randomly deployed as part of the system. A number

of choices must be made in order to make the most efficient use of available hardware re-

sources on the FPGA. These choices include the architecture parameters such as the number

of pipeline stages; constraints like hardware area and the memory bandwidth; and most

importantly the method of developing.

Two different methods for developing accelerator designs are High Level Synthesis

(HLS) and Register Transfer Level (RTL). Both of these methods have advantages and

disadvantages: RTL exposes a lower level of abstraction to the programmers which can

increase the performance and efficiency of the system at the cost of lower productivity. On
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Table 1.1: Comparison between Ultra96-V2 and Alveo U280 FPGA specifications.

Alveo U280 Ultra96V2

INT8 Peak Throughput 24.5 TOPS 691 GOPS

HBM2 Capacity 8 GB N/A

HBM2 Bandwidth 460 GB/s N/A

DDR Capacity 32GB 2 GB

DDR Bandwidth 38GB/s 25 GB/s

Look-Up Tables 1,304k 70,560

DSP Slices 9,024 360

Block RAMs 2,016 432

UltraRAMs 960 N/A

Price $7,500 $250

the other hand, HLS offers a faster development cycle while limiting the developers to only

high level pragma optimizations.

The purpose of this dissertation is to investigate the challenges of deploying FPGAs

in two areas: Convolutional Neural Network (CNN) inference and FPGAs as SmartNIC with

Remote Direct Memory Access (RDMA) capabilities. The FPGA platforms that we use in

this dissertation are Xilinx Ultra96-V2 and Alveo U280. Table 1.1 compares the resources

provided by the two platforms. The Alveo card is 30× more expensive than the Ultra96-V2
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board, while providing considerably more logic, memory, and DSP resources and higher

off-chip memory capacity and bandwidth.

The rest of this dissertation is organized as follows. Chapter two discusses related

work for FPGA-based neural network acceleration, FPGAs as SmartNICs, and RDMA-based

object replication in distributed systems. We classify FPGA-based deep neural network

(DNN) studies within three areas (a) optimization techniques for an FPGA-based DNN

accelerator design (b) automated frameworks for deploying trained DNN models on the

FPGAs; and (c) overlay architectures for DNN acceleration.

Chapter three presents FA-LAMP, an FPGA-accelerated implementation of the

Learned Approximate Matrix Profile (LAMP) algorithm, which predicts the correlation

between streaming data sampled in real-time and a representative time series dataset used

for training. FA-LAMP lends itself as a real-time solution for time series analysis problems

such as classification. We present the implementation of FA-LAMP on both edge- and

cloud-based prototypes. On the edge devices, FA-LAMP integrates accelerated computation

as close as possible to IoT sensors, thereby eliminating the need to transmit and store data

in the cloud for posterior analysis. On the cloud-based accelerators, FA-LAMP can execute

multiple LAMP models on the same board, allowing simultaneous processing of incoming

data from multiple data sources across a network. LAMP employs a convolutional neural

network (CNN) for prediction. This chapter investigates the challenges and limitations of

deploying CNNs on FPGAs using the Xilinx deep learning processor Unit (DPU) and the

Vitis AI development environment. We expose several technical limitations of the DPU,

while providing a mechanism to overcome them by attaching custom IP block accelerators
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to the architecture. We evaluate FA-LAMP using a low-cost Xilinx Ultra96-V2 FPGA as

well as a cloud-based Xilinx Alveo U280 accelerator card and measure their performance

against a prototypical LAMP deployment running on a Raspberry Pi 3, an Edge TPU, a

GPU, a desktop CPU, and a server-class CPU. In the edge scenario, the Ultra96-V2 FPGA

improved performance and energy consumption compared to the Raspberry Pi; in the cloud

scenario, the server CPU and GPU outperformed the Alveo U280 accelerator card, while the

desktop CPU achieved comparable performance; however, the Alveo card offered an order of

magnitude lower energy consumption compared to the other four platforms.

In chapter four we use the Alveo U280 and U250 FPGA cards as SmartNICs to

replicate user requests in a data center. To ensure consistency, we base our work on an

RDMA-based hybrid consistency model Hamband [43]. Hamband divides the methods of an

application into three categories based on whether they require strong or weak consistency and

whether they are summarizable and declares coordination requirements for each category. We

extend an already existing RDMA stack for FPGAs (StRoM) [88] and implement Hamband’s

coordination protocols on the FPGA to keep the replication states as close as possible to

the network stack. We evaluate our design for different scenarios (no failure, leader failure,

replica failure) for various use-cases including Convergent and Commutative Replicated

Data Types (CRDTs) and three relational schemata: project management, courseware, and

movie. We compare the throughput and response time of our design with similar CPU-based

replication systems, namely, Mu [3] and Hamband [43]. Our design improved the throughput

by 1.48× and 6.62× compared to Hamband and Mu for CRDTs and reduced the response

time by 2.14× and 1.49×, respectively. For a use-case containing method calls in all three

4



categories of semantics, our design improved the throughput by 1.22× and 1.45× compared

to Hamband and Mu.

Finally, chapter five concludes this dissertation.

5



Chapter 2

Related Work

2.1 Accelerating Neural Networks on FPGAs

We classify previous FPGA-based Deep Neural Network (DNN) studies along three

axes: (a) techniques to optimize accelerator design from the perspective of computing engine

or memory system; (b) user-accessible frameworks that deploy DNNs on FPGAs; and (c)

overlays for DNN acceleration.

2.1.1 Optimizing Accelerator Design

Zhang et al. proposed a novel CNN accelerator architecture that performs loop

tiling and transformation to explore the design space and balance computation and memory

bandwidth [116]. Another recent accelerator architecture [103] implements a large-scale ma-

trix multiplication algorithm that statically allocates constant weights to physical multipliers,

allowing the design to operate at a near-peak FPGA clock rate. A similar, yet effective,

strategy for FPGA-based edge acceleration is to pack parameter memories into groups that

6



optimize BRAM usage, enabling the accelerator to be synthesized onto a smaller FPGA

while maintaining throughput compared to a larger device [75].

Colangelo et al. extended Intel’s FPGA Deep Learning Acceleration (DLA) Suite [7]

to accelerate networks with 8-bit and sub 8-bit activations and weights [18]. Similar techniques

achieve high throughput in FPGA-based CNN inference by either quantizing the model’s

weights or training the model with lower bit precision [78, 81, 110].

We take inspiration from these studies in implementing our handcrafted kernels.

We employ loop tiling [116], data reuse [38, 37, 16], and quantization [18] to improve their

efficiency.

2.1.2 Automated Frameworks for DNN Compilation

A number of domain-specific DNN compilers translate a high-level description of

a model into synthesizable RTL coupled with an execution schedule. They facilitate DNN

deployment on FPGAs but limit opportunities for further optimization, as the generated

HLS/RTL code is hard to interpret.

HeteroCL [56] is a Python-based domain-specific language (DSL) extended from

TVM [14] that maps high-level specifications of designs to hardware implementations, target-

ing systolic arrays and stencil architectures. It has been reported that deeply pipelined kernels

designed in this framework result in routing congestion in large FPGAs [51]. DNNWEAVER [87]

generates target-specific Verilog code for FPGA-based DNN accelerators using hand-optimized

design templates; however, the framework can only handle conventional CNNs and does not

support quantization. Other automatic DNN generation frameworks include: HLS4ML [26],

which targets low-power applications; fpgaConvNet [96] which achieved the best throughput
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per DSP unit in a recent survey [97]; VTA [14], which uses a TVM-based compiler stack;

and FINN [95] which is developed and maintained by Xilinx.

Many similar frameworks that map DNNs onto FPGAs have been published; how-

ever, they tend to suffer from other shortcomings such as performance deficiencies [118, 115,

114] or untenable resource utilization [99, 96, 107]. The framework proposed in LUTNet [98]

implements the desired network model using LUTs as inference operators. Cloud-DNN [15]

maps a trained CNN model specified in Caffe [48] to a cloud-based FPGA. Similar frame-

works have been proposed that map neural networks onto FPGAs using either HLS: FP-

DNN [34], Caffeine [115], and AutoDNNchip [108], RTL: DeepBurning [99], CaFPGA [107],

DNNBuilder [118], TuRF [120], and the frameworks in [114, 66], or RTL-HLS hybrid: fp-

gaConvNet [96]. [34, 115, 108, 15], RTL: [99, 107, 118, 120, 114, 66], or RTL-HLS hybrid:

[96, 98]. References [99, 96, 107] produce desirable throughput and latency results; however,

their resource utilization in these works is untenable. References [87, 99, 115, 96, 34] achieve

appealing performance at the cost of low flexibility and can only handle conventional CNNs.

On the other hand [118, 115, 114] support versatile models in exchange for performance

deficiencies. Large number of DRAM accesses in [66] leads to unwanted amount of energy

consumption. Kernels designed in [56] suffers from routing congestion in large FPGAs.

2.1.3 Xilinx DPU

Recently, Xilinx introduced the Deep Learning Processor Unit (DPU), a pro-

grammable engine optimized for CNNs [104]. The DPU supports a variety of deep learning

models, including, but not limited to ResNet [117], VGG [89], YOLO [82]. Programmable

parameters allow the FPGA designer to control the degree of parallelism and resource
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utilization of the DPU IP, as we have done in this study. Operations not supported by the

DPU can be offloaded to a CPU or to custom IP kernels.

Project Brainwave [29] translates a pre-trained DNN model specified in a graph-baed

intermediate representation and partitions it for execution on multiple FPGAs in a datacenter.

The tool compiles the FPGA sub-graph to Neural Processing Unit (NPU) instruction set

architecture (ISA) binary. The NPU ISA supports matrix-vector and vector-vector operations.

Intel DLA [1] applies the Winograd transformation [58] to optimize the performance and

bandwidth of convolutional and fully connected layers. Lastly, Light-OPU [113] uses a single

uniform computation engine to accelerate light-weight convolutional neural networks.

One key challenge that we faced was that the Xilinx DPU could not execute the

three final stages of our FA-LAMP CNN. This required us to design custom kernels to

accelerate those functions. It remains an open question as to whether the cost of extending

the DPU architecture and ISA to support these functions would be justifiable.

2.2 FPGAs as SmartNIC

Deploying FPGAs as SmartNICs has gained increasing attention in recent years

due to the growing demand for high-performance and low-latency networking in data centers.

FPGAs can be customized to perform specific tasks, making them ideal for accelerating

network functions such as packet processing, filtering, and routing. In the context of

SmartNICs, FPGAs can be used to offload network processing from the CPU, reducing the

load on the server and improving network performance.

9



KV-Direct [60] leverages FPGAs as programmable NIC to extend RDMA primitives

to enable remote direct key-value access to the main host memory. StRoM [88] provides an

open source RDMA stack for the FPGAs that can be integrated with user kernels such as

cardinality estimation and data shuffling to allow in-network processing of RDMA streams.

The work proposed in [47] designs an atomic broadcast (consensus) protocol based on the

TCP for the FPGAs. The goal of the paper is to push down the consensus protocol into

the network in an efficient manner remove it process from the critical path of the CPU

performanc. The nanoPU provides a fast path between the network stack and the application

that bypasses the cache and memory hierarchy [46]. The work targets specific datacenter

applications: those that utilize many small Remote Procedure Calls (RPCs) with very short

(µs-scale) processing time.

FPGAs have been utilized as SmartNICs in data centers as well. Microsoft Azure

[28] uses FPGAs to implement Azure Accelerated Networking (AccelNet) which enables

VM-VM TCP connections with a significant high throughput of 32 Gbps. NVIDIA provides

an FPGA-based smart NIC to improve the efficiency and scalability of the network in AI,

HPC, and security applications [71].

2.3 RDMA-based Consensus Protocols

RDMA enables high-speed data transfer with low latency and reduced CPU overhead

making it an attractive choice for microsecond-scale [11] replicated services whose availability

and low-latency are critical in applications such as finance and control.
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Mu [3] uses one-sided RDMA operations (READ and WRITE) to implement a

consensus protocol for strong consistency based on paxos [57]. Mu is capable of replicating

requests in less than 1.3 microseconds and takes less than a millisecond to fail-over the system.

Hamband [43] avoids synchronizing the operations that do not require strong consistency. It

divides the methods of an object into three categories based on whether the operations require

strong or relaxed consistency and whether they are summarizable. All three categories of

methods are replicated using one-sided RDMA operations. Hermes [53] presents a broadcast-

based reliable replication with last-write-wins policy and using timestamps for each write.

Kite [32] provides the first highly available key-value stores (KVSs) by using the release

consistency (RC) model. ECROs [22] based on the replicated data types (RDTs) model,

statically analyzes and reorders conflicting operations to have minimal coordination.
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Chapter 3

FA-LAMP: FPGA-Accelerated

Learned Approximate Matrix Profile

for Time Series Similarity Prediction

3.1 Introduction

The proliferation of IoT sensors and the volume of data that they generate creates

unique challenges in edge computing [72]. One motivating application, among many, is

real-time seismic event prediction, which can inform hazard response strategies and enhance

early warning systems [68, 4, 84]. In this case, the relevant question is whether or not

the most recent seismic measurements strongly correlate to the relatively short window of

time leading up to a previously observed seismic event. Such a system could benefit from
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increasing the throughput of the near-sensor raw data processing, and acceleration using an

FPGA represents one potential avenue to do so.

This dissertation describes an FPGA-based accelerator for a streaming time series

prediction scheme called the Learned Approximate Matrix Profile (LAMP) [127]. Given the

most recent window of data points, LAMP uses a Convolutional Neural Network (CNN)

to predict whether or not a similarly correlated pattern occurred in the time series used

to train the model. Exact methods to compute these correlations are impractical due to

the requirement that the streaming time series be archived, and the fact that computing

the correlations entails execution of an 𝑂(𝑛2) algorithm on a time series of ever-increasing

length [126]. It is certainly more practical to perform inference on a moderately sized CNN;

nonetheless, the overhead of CNN inference remains a computational bottleneck that limits

the achievable sampling rate. Embedded CPU-based solutions are state-of-the-art, but higher

performance and lower energy consumption could be achieved through FPGA acceleration.

We call our approach FPGA-Accelerated LAMP, or FA-LAMP, for short. We

implemented our design on both edge- and cloud-based accelerators. We compiled the

LAMP model to run on a Xilinx Deep Learning Processing Unit (DPU) using the Vitis

AI development environment and executed it on a Xilinx Zynq UltraScale+ MPSoC edge

device as well as Xilinx Alveo U280 cloud-based accelerator card. Several layers of the CNN

were not compatible with the DPU; to complete the system, we implemented these layers

as custom hardwrae IP blocks. One challenge involved the output layer, which computes

a sigmoid activation function; we considered two approximations and evaluated them in

terms of accuracy, performance (latency and throughput), resource utilization, and energy
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consumption on three time series datasets from the domains of seismology, entomology,

and poultry farming. Our highest-performing FA-LAMP system configuration on the Zynq

device achieved throughput of 453.5GOPS with an inference rate 10.7× faster and an

15.8× improvement in energy consumption compared to running LAMP on a Raspberry

Pi. Our highest-performing design on the Alveo U280 accelerator card achieved throughput

of 5.53TOPS and demonstrates a 12.3% higher inference rate in comparison to a high-end

CPU, while consuming one order of magnitude less energy. Using a dataset obtained from

the entomology domain, we show how FA-LAMP can be combined with a post-processing

classifier to better understand insect feeding behavior. We also demonstrate how DPU on

the Alveo U280 accelerator can be connected to an Ethernet module to process the incoming

network data while bypassing the host CPU; this capability allows FA-LAMP to process

streaming data coming from external sources across the network. We also present the results

for the edge-based FA-LAMP implementation on the Xilinx Zynq UltraScale+ MPSoC.

3.2 Related Work

Most FPGA-based deep neural network studies focus on accelerator design, compi-

lation frameworks, and/or domain-specific overlays. Our work borrows ideas from all three

areas. Our HLS-generated IP blocks employ optimizations such as loop tiling [116], data

reuse [38, 37, 16], weight-stationary multiplication [103], memory packing [75], fixed-point

numeric formats [18], and model weight quantization [111, 78, 70, 6, 81, 110].

Commercial frameworks, such as Xilinx’s Vitis AI framework, which we used, or

Intel’s Deep Learning Acceleration (DLA) suite [7], take inspiration from general-purpose
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languages and frameworks such as HeteroCL [56, 51], as well as frameworks specific to neural

networks [87, 118, 115, 114, 99, 107, 108, 120, 66, 96, 15, 14, 98, 34].

We used the Xilinx programmable DPU overlay [104], which was optimized for

well-known convolutional neural networks [117, 89, 82]; similar overlays include Microsoft’s

Project Brainwave [29], Intel DLA [1], and Light-OPU [113]. Our work includes mixed use

of a programmable overlay and custom IP blocks designed using HLS, and a fairly detailed

analysis of how to implement the sigmoid activation function.

3.3 FA-LAMP System Overview

3.3.1 Background: Time Series and the Matrix Profile

A Time series 𝑇 = ⟨𝑡1, 𝑡2, . . . , 𝑡𝑛⟩ is an ordered sequence of 𝑛 scalar data points. A

subsequence of length 𝑚 starting at position 𝑖 is denoted 𝑇𝑖,𝑚 (or just 𝑇𝑖 if 𝑚 is known from

context, an assumption that we make here). The Pearson correlation1 between subsequences

𝑇𝑖 and 𝑇𝑗 , which measures their similarity, is denoted 𝑐𝑖,𝑗 (𝑐𝑖,𝑗 values closer to 1 indicate strong

correlation; values closer to 0 indicate no relationship; values closer to -1 indicate negative

correlation). Once we obtain all of the 𝑐𝑖,𝑗 values, we can extract the nearest neighbor of 𝑇𝑖 in

𝑇 . Subsequence 𝑇𝑗 is defined to be the nearest neighbor of subsequence 𝑇𝑖 if 𝑐𝑖,𝑗 ≥ 𝑐𝑖,𝑘, ∀𝑘 ≠ 𝑗.

The Matrix Profile (MP) [126] (Figure 3.1) is a vector that contains the correlations of the

nearest neighbors of each subsequence in 𝑇 : 𝑃 (𝑇 ) = ⟨𝑐𝑚𝑎𝑥
𝑖 | 1 ≤ 𝑖 ≤ 𝑛 − 𝑚 + 1⟩, where

𝑐𝑚𝑎𝑥
𝑖 is the maximum correlation between 𝑇𝑖 and any other subsequence 𝑇𝑗 ∈ 𝑇 , excluding

1Historically, Euclidean distance between z-normalized subsequences is used as the distance function for
time series data mining tasks [112]; the use of Pearson correlation, which limits the range of correlation values
to [-1, +1], is more recent [126, 127] and is arguably more intuitive as the maximum Euclidean distance value
is unbounded.
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Matrix 
Profile

subsequence of length m:

Exclusion Zone

Figure 3.1: Matrix Profile (MP) computation for subsequences of length 𝑚: 𝑐𝑖,𝑗 denotes the
Pearson Correlation between the 𝑖𝑡ℎ and 𝑗𝑡ℎ subsequences, 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 for all 𝑗, excluding
an exclusion zone surrounding 𝑇𝑖,𝑚. The maximum Pearson Correlation value 𝑐𝑚𝑎𝑥

𝑖 is stored
as the 𝑖𝑡ℎ entry in the MP.

subsequences in an exclusion zone surrounding 𝑇𝑖. Once we compute the MP (correlation

to the nearest neighbor of every subsequence), determining time series motifs (repeated

patterns) and time series discords (anomalies) becomes trivial [124].

3.3.2 Background: LAMP

The MP is itself a time series; while the MP can be computed efficiently with GPUs

[126], doing so is not amenable to streaming data. While the time complexity to compute

the MP is 𝑂(𝑛2𝑙𝑜𝑔𝑛) [112], in the streaming context, the time complexity of updating the

MP for each newly sampled data point is 𝑂(𝑛𝑙𝑜𝑔𝑛) as 𝑛→∞. In other words, not only is

it necessary to store the entire time series as it grows over time, but each new data point

requires a super-linear pass over all of the data points that have been stored. To sidestep

this issue, the Learned Approximate Matrix Profile (LAMP) [127] predicts the maximum
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Figure 3.2: Illustration of the parameters used for LAMP inference on a streaming time
series.

correlation between the mostly recently-sampled length-𝑚 window of streaming data points

to a representative time series used to train the model. This enables real-time analytics, such

as anomaly detection and classification, using predicted MP values. The objective of this

article is to accelerate LAMP inference using an FPGA.

Figure 3.2 illustrates the LAMP inference process. Each input consists of J z-

normalized (zero mean and unit variance) subsequences of length M, extracted with stride S.

This scheme defines an extraction window in the data, W, where ||W|| = J · S+M− 1. We

slide W across the time series and extract a new input for the model for each position of W.

This procedure generates vectors of length M with J channels as inputs to LAMP’s neural

network (a CNN), shown in Figure 3.3. For each input, the model predicts J · S LAMP

values, one for each subsequence in W.

LAMP’s CNN is a simplified version of ResNet [117] for time series classification [100,

127]. Model inputs and outputs are modified to support concurrent predictions. The first

layer in the LAMP CNN is batch normalization (omitted from Figure 3.3 for simplicity); each

convolutional layer in the model is followed by a batch normalization layer (also omitted from
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Figure 3.3: The CNN used for LAMP inference. Batch normalization layers are omitted to
simplify the presentation.

Figure 3.3), which are aggregated by Addition layers followed by ReLU activation functions.

The final three layers are Global Average Pool (GAP), a fully-connected layer, and a sigmoid

activation function. Figure 3.3 reports the kernel dimensions and number of filters used

below each convolution layer.

3.3.3 Xilinx DPU: Objective and Technical Challenges

The Xilinx DPU is a programmable architecture that accelerates many common

CNN operations, such as convolution, deconvolution, max pooling, and fully connected layers

[104]. The objective of this work to accelerate LAMP neural network inference on the Xilinx

Ultra96-V2 and Alveo U280 FPGA boards, leveraging the DPU to achieve a balance between

performance and programmability. The on-board Xilinx Zynq UltraScale+ FPGA features

two Arm CPUs, and has sufficient capacity to realize at most one DPU, with additional

logic remaining to implement custom IP block accelerators; the larger capacity UltraScale+

FPGA in the Alveo U280 card can fit multiple DPU instances.

We ran into several technical challenges. First, the DPU does not support the

Global Average Pooling (GAP) and sigmoid layers, shown on the right-hand-side of Figure

3.3; these layers must be implemented in software running on one of the Arm CPU cores
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Figure 3.4: Zynq DPU architecture.

(UltraScale) or as custom hardware IP block accelerators (Ultrascale or Alveo). Second,

implementing the fully connected layer, which sits between the GAP and sigmoid layers,

would entail significant data transfer overhead between the DPU and the Arm CPU / IP

block. Third, the DPU for Ultra96-V2 board uses different configurations to perform the

convolutional layer (including accumulation and ReLUs); with space for just one DPU,

dynamic reconfiguration during inference would be needed to support the fully connected

layer; the alternative, which we adopted, is to implement the fully connected layer externally

on the CPU or as an IP block. This approach worked well for both platforms.
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3.3.4 DPU for Edge Processing

Figure 3.4 depicts the DPU architecture for Zynq devices. The DPU features

user-configurable parameters to optimize resource utilization and to select which features

are needed for a given deployment scenario. For example, our implementation does not

use softmax, channel augmentation, or depthwise convolution. Seven DPU variants exist,

which differ in the amount of parallelism provided by the convolution units, with IDs ranging

from B512 (smallest, 512 operations per clock cycle) to B4096 (largest, 4096 operations

per clock cycle); the largest variant that fits onto the Ultra96-V2 board is the B2304. The

DPU compiler translates a neural network model into a sequence of DPU instructions. After

start-up, the DPU fetches these instructions from off-chip memory to control the compute

engine’s operations. The compute engine employs deep pipelining and comprises one or more

processing elements (PEs), each consisting of multipliers, adders, and accumulators. DSP

blocks can be clocked at twice the frequency of general logic.

The DPU buffers input, output, and intermediate values in BRAM to reduce

external memory bandwidth. It directly connects to the Processing System (PS) through the

Advanced eXtensible Interface 4 (AXI4) to transfer data. The host program uses the Xilinx

Deep Neural Network Development Kit (DNNDK) to control the DPU, service interrupts,

and coordinate data transfers. In our design, data transfers were necessary as the final three

layers of the CNN (GAP, fully connected, and sigmoid) were performed outside the DPU.
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Figure 3.5: High-throughput DPUCAHX8H architecture, comprising three DPU instances
with multiple batch engines for parallel data processing.

3.3.5 DPU for Cloud Acceleration

Two different DPU architectures are currently available that support the High

Bandwidth Memory (HBM)2 on the Alveo FPGA card, one is high-throughput (Figure 3.5)

and the other is low-latency (Figure 3.6). The Alveo DPUs are named DPUCAHX8 as they

are targeted towards CNN applications (C) for the Alveo platform with HBM (AH) using

8-bit quantization (X8). The two variants are named DPUCAHX8H (high-throughput) and

DPUCAHX8L (low-latency) respectively. Both architectures are provided as device binary

files and cannot be further configured. The high-throughput architecture is configured with

three DPUCAHX8H DPUs; the low latency architecture is configured with two DPUCAHX8L
2While FA-LAMP is optimized for streaming time series generated by external sensors, we evaluate

FA-LAMP by loading the time series into the HBM and streaming it directly into the FPGA.
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Figure 3.6: Low-latency DPUCAHX8L architecture, comprising two DPU instances with
one convolution engine, scheduler, and code FIFO units.

DPUs. The DPU compiler for Alveo allows the user to partition the inference model (a graph)

between the FPGA and the host. We use the default partitioning option which divides the

model between the layers that are supported by the DPU and those that are not.

Figure 3.5 depicts high-throughput DPUCAHX8H DPU microarchitecture. The

DPUCAHX8H consists of shared weights control logic, an instruction scheduler to fetch,

decode and dispatch jobs, a control register bank that provides a control interface between the

DPU and host CPU, and can be configured with four or five batch engines that allow the DPU

to process multiple input data streams simultaneously. The DPU requires all of the batch

engines in a kernel to execute the same neural network; the weight buffer, the instruction

scheduler, and the control register bank can serve all of the batch engines. The batch engine

contains a compute engine which comprises two sub-engines: a convolution engine and a

MISC engine, along with a local memory pool that stores trained model parameters (weights).

The convolution engine executes regular convolution/deconvolution operations, and the MISC

engine handles other operations such as ReLU, pooling, etc. Each batch engine communicates

with the device memory through AXI read/write master interfaces.
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Figure 3.6 depicts the low-latency DPUCAHX8L microarchitecture. This microar-

chitecture comprises convolution and MISC engines and control bank registers, but omits

the batch engine and local memory pool. The low-latency architecture is compatible with

compiler optimizations such as kernel fusion, which can achieve higher throughput via

pipeline-level parallelism.

3.3.6 HLS Kernel

This subsection summarizes the steps taken to design an IP accelerator that performs

the GAP, fully connected, and sigmoid layers using High-Level Synthesis (HLS).

(1) Global Average Pool (GAP): The output of the final convolutional layer in

Figure 3.3 is an array of feature maps 𝐷 ∈ R𝑀×𝑁 corresponding to each of the 𝑁 channels.

The GAP generates an 𝑁 -dimensional vector 𝑞 ∈ R𝑁 consisting of the average value of each

feature map. In other words,

𝑞𝑗 ←−
1

𝑀

𝑀∑︁
𝑖=1

𝐷𝑖,𝑗 , 1 ≤ 𝑗 ≤ 𝑁. (3.1)

The vector 𝑞 is then passed to the fully connected layer.

(2) Fully Connected Layer: The input to the fully connected layer is a feature

vector 𝑞 ∈ R𝑁 . The fully connected layer left-multiplies a weight matrix 𝑊 ∈ R𝑁×𝑀 by 𝑞

and adds a bias vector 𝑏 ∈ R𝑀 , to the result, yielding a new feature vector 𝑧 ∈ R𝑀 .

𝑧 ←− 𝑞𝑊 + 𝑏. (3.2)

Initially, we set 𝑧 ←− 𝑏 in BRAM. We then process each feature 𝑞𝑖, 1 ≤ 𝑖 ≤ 𝑁 and multiply it

by the element in the 𝑖𝑡ℎ row of the weight matrix, 𝑊𝑖,𝑗=1...𝑀 , adding each scalar product
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term to 𝑧𝑗 , i.e., 𝑧𝑗 ←− 𝑞𝑖𝑊𝑖,𝑗 , once again, storing the accumulated sum in BRAM (We store

the weights, biases, and accumulated sum in UltraRAM in our Alveo implementation). This

scheme allows the execution of the fully connected layer to start as soon as the first element

𝑞1 produced by the GAP layer arrives; likewise, each feature 𝑞𝑖 can be discarded as soon as

all of its intermediate products are computed.

We use row-wise vector-matrix multiplication and tiling [79] to optimize performance.

We tile the weight matrix 𝑊 into small 𝑛𝑐 × 𝑛𝑟 blocks as shown in Figure 3.7; each vector

element is multiplied by 𝑛𝑟 matrix elements, allowing the accelerator to perform 𝑛𝑐 × 𝑛𝑟

scalar multiplication operations per cycle. Parameter 𝑛𝑐 must be chosen to make sure that

the latency of GAP layer is greater than the number of cycles required to process 𝑛𝑐 vector

elements; 𝑛𝑟 is chosen to be as large as possible to increase system parallelism, subject to

resource constraints. We set 𝑛𝑐 = 8 and 𝑛𝑟 = 4 for the Ultra96-V2 implementation and set

𝑛𝑐 = 16 and 𝑛𝑟 = 16 for the Alveo card in our experiments.

Figure 3.8 depicts the hardware architecture for the fully connected layer. The

design starts by reading 𝑛𝑐 elements from the previous layer (GAP) and inserting them into 𝑛𝑟

FIFOs. During each iteration, a tile of size 𝑛𝑐×𝑛𝑟 of the weights is read from the BRAM and

is multiplied by the corresponding vector, which is provided by the GAP layer. The vector is

reused until the final column of the weight matrix is processed; then the next 𝑛𝑐 elements are

read from the GAP layer and the process repeats. The Multiply-Accumulate (MAC) module

executes 𝑛𝑐 × 𝑛𝑟 parallel multiplications per clock cycle3, storing the accumulated sums in a
3A single-cycle multiplier is acceptable for our design because we use an 8-bit fixed-point data format;

increasing the precision or switching to a floating-point data format may necessitate multi-cycle or pipelined
multipliers.

24



×

Vector Weights Matrix

nc

nc

nr

=

Results BRAM

nr

z
0 z

1

Figure 3.7: Column-wise vector-matrix multiplication tiling scheme.

BRAM. The MAC module outputs a vector of length 𝑛𝑟 which is added to the bias values

stored in a separate BRAM; the resulting sum is then transmitted to the Sigmoid layer.

(3) Sigmoid Activation: The LAMP CNN applies the sigmoid activation function

to each scalar element of the feature vector 𝑧 produced by the fully connected layer. To

simplify notation, we present the sigmoid function of a scalar input 𝑥 which can represent

any of the scalars 𝑧𝑖 ∈ 𝑧:

𝑓(𝑥) =
1

1 + 𝑒−𝑥
(3.3)

Computing the sigmoid function directly on an FPGA is impractical due to the cost of

division and exponentiation. Informed by extensive studies regarding sigmoid approximations

[31], we chose two variants to evaluate: ultra_fast_sigmoid, a piece-wise approximation used

in the Theano library [12]; and sigm_fastexp_512, which expands the exponential function

for an infinite limit [92].

There are inherent tradeoffs among these approximations in terms of accuracy,

throughput/latency, area, and energy consumption; additionally, their implementation differs

radically, depending on the chosen precision and whether they are implemented using fixed-
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or floating-point arithmetic4. A thorough survey of the tradeoffs involved is beyond the

scope of this article. The final design, which we evaluate in the following section, uses 8-bit

fixed-point arithmetic.
4Alternative implementations, such as logarithmic number systems or Posits, are also possible, but are

neither discussed nor evaluated here.
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The ultra_fast_sigmoid approximation is defined as follows:

𝑓(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5(
1.5𝑥
2

1+ 𝑥
2
+ 1) 0 ≤ 𝑥

2 < 1.7

0.5(1 + 0.935 + 0.045(𝑥2 − 1.7)) 1.7 ≤ 𝑥
2 < 3

0.5(1 + 0.995) 𝑥
2 ≥ 3

0.5(−
−1.5𝑥

2

1− 𝑥
2

+ 1) −1.7 ≤ 𝑥
2 ≤ 0

0.5(1− (0.935 + 0.045(−𝑥
2 − 1.7))) −3 < 𝑥

2 ≤ −1.7

0.5(1− 0.995) 𝑥
2 ≤ −3

(3.4)

Due to the relative simplicity of the operations compared to directly computing the sigmoid

function, ultra_fast_sigmoid can be implemented as a low-latency kernel.

The sigm_fastexp_512 approximation expands the exponential function in terms

of an infinite limit (𝑛 −→ ∞), using a value of 𝑛 = 512 to render the approximation

computable [92]:

exp(𝑥) =
𝑙𝑔(𝑛)∏︁
𝑘=1

(1 +
𝑥

𝑘
)𝑘, 𝑛 = 512 (3.5)

sigm(𝑥) =
1

1 + exp(−𝑥)
(3.6)

We implemented our sigmoid layer in HLS using a loop that takes 𝑥 as an input from

the fully connected layer and approximates the sigmoid using either Eq. (3.4) or Eq. (3.6).

In both scenarios, we pipelined the loop with an Initiation Interval (II) of 1; the latency of

the loop for sigm_fastexp_512 is higher due to the complexity of the operations.
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Figure 3.9 shows the sigm_fastexp_512 and ultra_fast_sigmoid approximations,

along with their associated errors, defined as the squared difference between them and an

exactly-computed sigmoid function. Neither is uniformly more accurate than the other for

all reported values of 𝑥, but ultra_fast_sigmoid has noticeably higher error closer to zero.

This error is tolerable for classification problems [23], where results are normally determined

through comparison, not exact values. The error has a greater impact for regression systems

that subsequently process the neural network’s calculated output.

(4) HLS Optimizations: We optimized our design using directives provided by

Vivado HLS and through manual redesign of the fully connected layer. As shown in Figure

3.10, we achieved a 20× speedup over our baseline implementation, while increasing resource

usage by 1.5×:

∙ Baseline : our starting point design using a 32-bit floating-point data format.

∙ Unroll : unrolls the inner loops of the GAP and fully connected layers.

∙ Pipeline : pipelines the outer computation loops and I/O interface loops to infer burst

reads/writes; the three layers execute as a pipeline to maximally overlap computation.

∙ Fixed-Point: is the design implemented in an 8-bit fixed-point (ap_fixed<8, 3>) data

format which reduces the resource utilization by 3× [30].

∙ Loop-Tiling-𝑛𝑟 tiling the fully connected layer (see Figure 3.7), while retaining the

8-bit data format.
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Figure 3.9: (a) Approximation functions for sigmoid and (b) their error. Both charts were
computed using an 8-bit fixed-point data type.

The average resource axis in Figure 3.10 is the average percentage of BRAMs, LUTs, DSP

blocks, and registers used for each design. Most of the speedup arises from pipelining and

unrolling loops, which increases the number of DSP blocks and registers used in a design.

Figure 3.11 shows the overall design on the Ultra96-V2 board. The HLS kernel

implements the GAP, fully connected, and sigmoid layers while the rest of the neural network

runs on the DPU. The DPU and HLS kernel connect to the processing system via AXI4

ports to allow access to the DDR memory space. The Zynq UltraScale+ processing system

in our platform has four High-Performance (HP) ports and two High-Performance Cache

coherent (HPC) ports. The DPU I/O interfaces and HLS kernel connect to the HP ports,

which provide lower latency than the HPC ports; the DPU instruction fetch port connects to

an HPC port.
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Figure 3.10: Improvements in custom kernel latency and resource utilization due to HLS
optimizations.

Figure 3.12 shows the Alveo U280 FPGA configured to run the high throughput

DPUCAHX8H architecture. The host CPU, which pre-processes the input time series,

communicates with the Alveo card via the PCIe bus. The FPGA is partitioned into static

and dynamic regions. The static region is a fixed logic partition that contains the board

interface logic and cannot be programmed by the user. The dynamic region contains memories,

memory interfaces and user kernels compiled using the Xilinx Vitis compiler. The resources

in the dynamic region are further divided into three Super Logic Regions (SLR0-2). The

DPU architecture consists of three DPUCAHX8H instances, each of which is mapped to a

separate logic region. The DPUs in SLR1 and SLR2 are configured with five batch engines

for maximum parallelism; the DPU in SLR0 contains four batch engines, in order to leave

space for our custom kernel, which implements the GAP, fully connected, and sigmoid

layers, and the AXI switch network and HBM controller to connect the device memory. The
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Figure 3.11: The FA-LAMP edge implementation comprises a Zynq UltraScale+ processing
system, DPU IP, and custom HLS kernel; the HLS kernel implements the GAP, fully
connected, and sigmoid layers.

switch network connects to all three DPU instances, providing 7, 7, and 6 HBM AXI ports

respectively, and provides two additional ports to the custom kernel in SLR0.

3.4 Experimental Setup

Figure 3.13 depicts the LAMP model training process and DPU deployment work-

flow; a detailed explanation follows.

3.4.1 Model Training

FA-LAMP deployment on an FPGA begins by training the model. We set the

number of subsequences J to 32 [127], the length of window M to 100, and the stride S to 8.

We used the Adam [54] optimizer to train the model using stochastic gradient descent with a

learning rate of 1e-3 and a batch size of 128. The training objective is to minimize the mean

squared error loss between the predicted and exact MP values for the training data set. We
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Figure 3.12: Alveo architecture programmed with the high throughput DPU.

removed the first batch normalization layer from the LAMP CNN [127]: the Vitis compiler

merges each convolutional layer followed by a batch normalization layer followed by a ReLU

layer; a CNN with a batch normalization layer preceding the first convolutional layer caused

an error, because the Vitis compiler interpreted the CNN as consisting of a sequence of batch

normalization layers followed by convolutional layers. Removing the initial convolutional

layer was the most straightforward way to rectify the problem.

We rearranged the layers in the original LAMP CNN design [127] so that each

convolutional layer is followed by a batch normalization layer followed by a ReLU layer; this

enables batch normalization to merge with the convolution layer in the DPU.
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Figure 3.13: Overview of deploying a LAMP model on a DPU.

We trained a LAMP model for each dataset offline using the TensorFlow quantization-

aware training API on an Nvidia Tesla P100 GPU. This API improves the accuracy of the

model prior to quantization to INT8, which is performed post-hoc by downstream tools (Vitis

AI Quantizer in our case). The model is then calibrated and partitioned in two using Vitis

AI: (i) the layers to be executed on a custom kernel (GAP, fully connected, and sigmoid),

and (ii) the rest of the model, which runs on the DPU. The custom kernel code includes a

header that contains the weights and activations of the fully connected layer for high-level

synthesis; the GAP and sigmoid layers do not feature any trained parameters. The second

sub-graph of the model is stored in the h5 format file.

3.4.2 Model Inference

DPU Deployment

We use Vitis AI 1.3 to quantize and compile the trained LAMP model. AI Quantizer

converts all of the model weights and activations into a fixed-point INT8 format. The Xilinx

Intermediate Representation (XIR)-based Compiler then maps the model to the DPU
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instruction set and data flow. We specified the custom kernel (fully connected, GAP, and

sigmoid layers) in Vitis HLS using C++ and the ap_fixed<8, 3> data type. We synthesized

the custom kernel using Vivado HLS 2019.2 and integrated the resulting IP block with the

DPU using Vitis 2019.2.

We evaluated the LAMP CNNs on a Xilinx Ultra96-V2 development board and

Alveo U280 card. The Ultra96-V2 integrates two Arm CPUs (an 1.5 GHz Arm Cortex A-53

and a 600 MHz Cortex-R5) with a Xilinx Zynq UltraScale+ MPSoC featuring 70,560 LUTs,

360 DSP slices and 7.5 MB of BRAM. We used a 16 GB SD card to store an embedded Linux

image created with PetaLinux 2019.2 along with the input time series datasets for the design

that we will use for inference. We wrote a host program in C++ that uses the DNNDK API

(VART for Alveo) to communicate with the DPU IP core.

We inserted the Alveo FPGA card into a Dell PowerEdge R730 Rack Server which

contains a 6-core 2.60GHz Intel Xeon E5-2640 processor. The host connects to the FPGA

through a PCI Express 4.0 interface. The server features 32 GB of DDR and 8 GB of HBM

with 460 GB/s of bandwidth.

In the standard DPU flow, unsupported layers can be offloaded to a host CPU as an

alternative to utilizing custom IP blocks. The Zynq FPGA on the Ultra96-V2 development

board features two integrated Arm Cores: a Cortex-A53 and a Cortex-R5. As a baseline for

comparison for the edge deployment scenario, we implemented the custom kernel layers on

the Cortex-A53, which supports a higher clock frequency than the Cortex-R5. The source

code running on the Cortex-A53 employs the same 8-bit fixed-point data type as we used

on the FPGA. We use the C++ built-in exp() function (from the <cmath> library) to
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compute the sigmoid and a for-loop to compute the global average pool layer. For the cloud

deployment, we evaluated the software performance of the custom kernel on the Intel Xeon

E5-2640 CPU, noting that the latency over the PCIe communication channel is significant.

LAMP Deployment on CPU and GPU

In order to quantify FA-LAMP’s performance in the cloud scenario, we implemented

LAMP inference on a server CPU, a desktop CPU, and a GPU. The GPU platform comprises

two NVIDIA GeForce RTX 2080 cards inserted into a Rack Server containing 16 Intel Core

i9-9900 processors operating at 3.1GHz; the Server CPU includes the 6-core Intel Xeon

E5-2640 server described earlier; and the Desktop CPU is an Intel Core i7-8750 CPU with

six cores running at 2.2 GHz. All the platforms mentioned above execute CNN inference in

Python 3.7 using Keras’ Predict Generator class with multiprocessing enabled.

Raspberry Pi3 and Edge TPU

We also ported the LAMP inference engine to run on a Raspberry Pi 3 board,

which provides a 100% software baseline that is representative of edge computing. We wrote

a short Python script that converts the pre-trained LAMP model saved in the Keras format

to TensorFlow Lite with 8-bit full integer quantization and we configured the optimizer to

minimize latency. We performed inference using the trained model on the Raspberry Pi

using the TensorFlow Lite Interpreter. The Raspberry Pi 3 features a Quad Core 1.2GHz

Broadcom BCM2837 CPU. Ideally, we would have run the full LAMP model in software on

either of the two Arm cores on the Ultra96-V2 board; however, it was not possible to do so,

as Keras does not support the Ultra96-V2 board at the time of writing.
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We also executed LAMP inference on a Coral USB Accelerator [64] which contains

a Google Edge TPU coprocessor [65], an ASIC optimized for AI inference. We first quantized

the LAMP model to an 8-bit format using TensorFlow quantization-aware training; we then

exported the quantized model as a frozen graph, converted it to a TensorFlow Lite model, and

used the Edge TPU compiler to convert it to the supported format for the USB accelerator.

The Edge TPU allows pipelining to decompose a large model into segments spread across

multiple Edge TPUs; this is particularly important for models whose data segments exceeds

the Edge TPU cache capacity. Our LAMP model fits within the Edge TPU on-chip memory

(8MB), allowing us to run two models on two Coral USB accelerators concurrently. We

inserted the two Coral USB accelerators into two USB 3.0 ports on a desktop PC running

Ubuntu 18.04 Linux. We installed the Edge TPU runtime version 13 on Ubuntu and used

the increased frequency option, which is known to increase power consumption. We loaded

the model and data onto the Edge TPUs using the PyCoral API with Python 3.7.

Comparison to Recent CNN-to-FPGA Compilation Frameworks

In order to quantify DPU’s performance, we deployed our LAMP model on several

state-of-the-art FPGA edge-based and cloud-based CNN frameworks: HLS4ML [26], fpga-

ConvNet [96], VTA [14], and FINN [95]. All of these frameworks can target the Ultra96-V2

development board, but only fpgaConvNet and FINN can target the Alveo card.

HLS4ML is a Python package that converts a trained neural network in the ONNX

format into an HLS project for synthesis onto an FPGA; layers are implemented by choosing

and configuring HLS modules from a template library. We trained and quantized the LAMP

model using Tensorflow, and then converted it to ONNX using tf2onnx [67]. HLS4ML
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performs integer scaling during quantization and can be configured on a per-layer basis. To

ensure that the model was synthesizable, we limited the amount of loop unrolling. We also

corrected some compilation errors that occurred because HLS4ML did not define the correct

AXI Stream interface between modules. We set the precision of all weights as biases to 8-bit

fixed-point and used the default resuse factor value. While HLS4ML supports the sigmoid

layer using a lookup table implementation, we replaced the last three of the CNN with our

own custom layers to ensure a fair comparison.

Similar to HLS4ML, fpgaConvNet converts a trained model in the ONNX format

into an HLS project, propagating model quantization settings into its internal representation.

samo [69], a design space exploration tool, can optimize the model implementation on the

FPGA using simulated annealing; we used samo’s rule-based optimizer and selected the

latency performance objective.

VTA uses a template deep learning accelerator consisting of load, store, and compute

(RISC processor) units. We used TVM to translate a trained LAMP model into a Relay

module (TVM’s front end compiler) and applied 8-bit quantization (VTA exclusively supports

the int-8 format). We then applied constant folding to reduce the number operators and

created an object file to load onto the FPGA. The last three layers of the LAMP model are

executed in fp32 on the CPU, as VTA’s front end compiler is not compatible with custom

kernel IP accelerators.

For the FINN framework, we defined our LAMP model in PyTorch and quantized

it using Brevitas [74], which exports the model to the FINN-ONNX format. FINN’s compiler

then converts the model to one or more more FPGA accelerators; the network must be
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redefined with Brevitas layers, which correspond to standard PyTorch layers, e.g., there is a

QuantLinearlayer type. FINN’s non-standard use of ONNX restricted our ability to quantize

the LAMP model. To target the the Ultra96-V2 board, we quantized weights and activations

into a 4-bit representation; to target the Alveo card, we quantized weights and activations

into 1-bit and 4-bit representations respectively. FINN was unable to support our custom IP

kernels, so we implemented them using the fp32 format on the host CPU.

3.4.3 Measurements

We report the throughput and the energy consumption of FA-LAMP CNN inference

by direct execution of the model on the aforementioned platforms using three time series

datasets, which are summarized in the next subsection. The throughput is reported as the

total number of multiply-accumulation operations in the model (7.71GOPs) executed per

second. We also report the inference rate of each platform, which we define to be the number

of Matrix Profile values predicted per second. We measure the Ultra96-V2 and Raspberry

Pi power consumption using a commercially available Kuman power meter, which provides

power measurements for the entire board.

We estimated the power consumption of the FPGA on the Alveo card by periodically

transmitting queries through the xbutil tool. xbutil measures FPGA power consumption, but

does not report the current of the HBM power rails, whichwe omit from our estimation. We

estimated the power consumption of the host Intel Xeon CPU using the PyRAPL software

toolkit [77], while eliminating all other application programs running under Windows; we

could not eliminate any variability arising from the operating system. We report the GPU’s

power consumption using the NVIDIA System Management Interface (nvidia-smi). We

38



estimate energy consumption by multiplying the power measurement by the time required

to perform inference on a batch of size 128. Every batch of data predicts 256 MP values

based on the configured LAMP parameters, for a total of 128×256 predictions per inference.

Batch sizes larger than 128 led to degraded results on the Raspberry Pi. We report resource

utilization results from Vivado’s post-implementation reports.

We evaluated the efficiency of all DPU variants that we could fit onto the Ultra96-V2

UltraScale+ Zynq FPGA, which can fit no more than one DPU core. We set the DPU’s

BRAM and DSP usage to low and disabled the average pool and softmax instructions since

the LAMP neural network does not perform these operations. For the Alveo card, we

evaluated the efficiency of high-throughput and low-latency DPU kernels. The DPU IP

provides two distinct clock inputs: we set the input clock for DSP blocks to 300MHz and

the input clock for general logic to 150 MHz in both evaluated platforms. We set the HBM

clock on the Alveo card to 450 MHz.

3.4.4 Benchmarks

We trained neural networks for three time series datasets and measured the error

of the model’s predictions; this methodology is similar in principle to prior work on LAMP

[127].

(1) Seismology Domain: The Earthquake dataset is obtained from a seismic

station [126]. Real-time event prediction impacts seismic hazard assessment, response, and

early warning systems [68, 4, 84]. We split the time series into 120 million and 30 million

data points for training and inference.
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(2) Entomology Domain: The Insect EPG dataset is obtained from an Electrical

Penetration Graph (EPG) that records insect behavior [126]. This time series is the record

of an insect feeding on a plant and observed behaviors were classified by an entomologist as

Xylem Ingestion, Phloem Ingestion, or Phloem Salivation. Understanding feeding behavior of

insects can help farmers identify vector-bearing pests that may decimate crops. We split the

time series into 2.55 million and 5 million data points for training and inference.

(3) Poultry Farming Domain: The Chicken Accelerometer dataset was collected

by placing a tracking sensor on the back of a chicken [2]. The sensor outputs acceleration

measurements along the x-, y-, and z-axes at a 100 Hz sampling rate. The data was labeled to

classify the chicken’s behavior into one of three categories: Pecking, Preening, or Dustbathing.

This is relevant to disease detection because infected chickens exhibit a marked increase in

preening and dustbathing behavior compared to uninfected chickens. Figure 3.14 depicts a

snippet of the dataset corresponding to the x-, y-, and z-axes and behavioral labels. Using

only the x-axis measurements, we split the time series into 6 million and 2 million data points

for training and inference.

3.4.5 Source code and Data Availability

We have publicly released all of code, data, code, and LAMP inference models used

to produce the results in this article [49].
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Figure 3.14: A snippet of chicken accelerometer data with corresponding labels (Preening:
label height = 3, dustbathing: label height = 4, and pecking: label height = 6).

3.5 Results

3.5.1 Edge: Throughput and Resource Utilization

Table 3.1 summarizes the resource utilization and the measured throughput of

FA-LAMP inference using various system configurations on the Ultra96-V2 FPGA board.

The DPU + Arm columns report results when the custom kernel (fully connected, GAP,

and sigmoid layers) run on the Arm CPU, while the DPU + IP columns report results

for the custom kernel implemented as FPGA IP blocks that connect directly to the DPU;

the largest and best-performing B2304 DPU is used when reporting results for DPU + IP.

Results are reported for the custom kernel implemented using two sigmoid approximations:

ultra_fast_sigmoid (ultra_fast) and sigmoid_fastexp_512 (fastexp_512) to approximate the

sigmoid function.

The DPU + Arm results in Table 3.1 show that system throughput increases as

DPU size and complexity increases, from B512 to B2304. The highest overall throughput
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Table 3.1: Edge Prototype: Throughput (GOPS) and resource utilization comparison between
different DPU architectures; (DPU + IP) uses a B2304 DPU.

DPU + Arm DPU + Arm DPU + Arm DPU + Arm DPU + Arm DPU + Arm

(B512) (B800) (B1024) (B1152) (B1600) (B2304)

Logic Usage 39K (56%) 42K (59%) 46K (65%) 44K (62%) 49K (70%) 52K (75%)

Register Usage 50K (36%) 57K (40%) 65K (46%) 64K (45%) 77K (54%) 87K (62%)

DSP Usage 78 (21%) 117 (32%) 154 (42%) 164 (45%) 232 (64%) 289 (79%)

On-chip RAM Usage 77 (35%) 95 (44%) 109 (50%) 127 (58%) 131 (60%) 171 (79%)

Throughput (GOPS) 70.4 107.0 154.2 167.6 220.2 367.1

Peak Throughput (GOPS) 153 240 307 345 480 691

is achieved for the DPU + IP configurations, as the three custom kernel layers that the

DPU cannot execute are moved from the Arm CPU to a custom accelerator. Data transfer

overhead remains present in both cases between the DPU and Arm CPU / IP block: each

read for an input batch of data takes around 0.12 ms and each write takes around 0.1 ms;

the port throughput is around 850 MB/s.

Table 3.1 also reports the peak (achievable) DPU throughput for each system

configuration; this does not include the throughput of the Arm CPU or IP block because the

inference procedure, at present, does not lend itself to concurrent execution. The percentage

of achievable throughput ranges from 43.6% to 53.1% for the DPU + Arm configurations,

and jumps to 65.6% and 62.0% for the two DPU + IP configurations. Even if a hypothetical

next-generation DPU could support the three custom kernel operations, the overhead of

DPU reconfiguration, which we avoided in the design(s) evaluated here, would also limit the

achievable throughput.

DPU resource utilization depends on the degree of parallelism in the chosen config-

uration; on-chip RAM buffers the weights, bias, and intermediate features. As DPU I/O
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channel parallelism increases, more on-chip RAM is needed to store more intermediate data

and more DSP slices are needed to process that data. When the low DSP usage option is

chosen, the DPU uses DSP slices exclusively for multiplication in the convolution layers and

offloads accumulation to LUTs. This explains the observed increase in LUT usage as DPU

throughput increases.

The custom IP kernels consume additional resources. sigmoid_fastexp_512 performs

more multiplication operations and constant division operations than ultra_fast_sigmoid, not-

ing that the latter performs mostly constant multiplications. As a consequence, ultra_fast_sigmoid

achieves higher throughput and lower resource utilization compared to sigmoid_fastexp_512;

however, as we will see in the next subsection, these benefits come at the cost of lower

accuracy.

3.5.2 Edge: Comparison to a Raspberry Pi 3 and Edge TPU

Next we compare the performance and energy consumption of FA-LAMP neural

network inference running on the Ultra96-V2 FPGA board to a Raspberry Pi 3 and the Edge

TPU device, being representative of a purely CPU-based edge computing systems.

Table 3.2 reports the throughput (inference rate), energy consumption (in Joules),

and performance per power (GOPs/Watt) of processing a single batch of size 128 on each

platform. The runtime of FA-LAMP neural network inference does not depend on the size of

the representative dataset used for training; thus, the inference rate and energy consumption

is identical across all datasets.

Both the inference rate and energy consumption of all three Ultra96-V2 FPGAs

improve by 1 order of magnitude compared to the Edge TPU and ∼6× compared to the
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Table 3.2: Edge Prototype: Inference rate and energy consumption of LAMP neural network
inference on an Edge TPU, Raspberry Pi 3 and Ultra96-V2 board.

Edge Raspberry DPU + DPU + IP DPU + IP

TPU Pi 3 Arm ultra_fast fastexp_512

Inf. Rate (Hz) 824 2.6K 12.1K 15.0K 14.2K

Energy (J) 161.4 58.8 7.2 6.7 9.1

GOPs/Watt 5.8 10.4 107.9 146.1 135.8

Raspberry Pi ; according to our power measurements, the Ultra96-V2 FPGA board consumed

∼3W of power compared to ∼4W for the Raspberry Pi. We consider the nominal power

consumption of 4.5W for the Edge TPU devices as reported in the datasheet. As expected,

the DPU + IP options achieve a higher inference rate than the reported DPU + Arm

configuration. Notably, the DPU + IP option using sigmoid_fastexp_512 consumes more

energy than both the DPU + Arm and DPU + IP using ultra_fast_sigmoid; referring

back to Table 3.1, this occurs due to the higher demand for DSP blocks (36 more than

ultra_fast_sigmoid) which are clocked twice as fast as the FPGA general logic. All of the

evaluated edge platforms exhibit comparable power consumption; however, performance

per Watt corresponds, linearly to the inference rate with Ultra96-V2 outperforming the

Edge TPU by 1 order of magnitude and the Raspberry Pi by ∼6×. The Edge TPU has the

lowest performance among all the edge platforms due to its limited RAM capacity, and its

inability to support batch processing; we conclude that it is not a good option for streaming

applications.
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Table 3.3: Cloud prototype: throughput, latency, inference rate and energy consumption:
LL=Alveo low-latency, HT=Alveo high-throughput.

GPU Server Desktop LL + CPU LL + IP LL + IP HT + CPU HT + IP

CPU CPU (ultra_fast) (fastexp_512) (ultra_fast)

Throughput (TOPS) 92.52 69.57 4.91 2.26 3.04 2.53 4.27 5.53

Latency (ms) 356 227 296 5.68 3.25 3.49 6.29 3.85

Inference Rate (KHz) 3079 2298 163 75 101 84 142 184

Energy (J) 118.32 72.20 38.43 9.15 6.81 8.20 4.86 3.75

GOPs/Watt 1210 740 68 44 57 46 77 98

3.5.3 Cloud Prototype: Throughput and Energy

Table 3.3 details the measured performance and energy consumption of FA-LAMP

in different scenarios. The columns starting with LL and HT report measurements for

the low-latency and high-throughput DPU on the Alveo card. Similar to Table 3.1, in LL

(HT) + CPU columns, the custom kernel (fully connected, GAP, and sigmoid functions) are

offloaded to the CPU, while in LL (HT) + IP columns the custom kernel is implemented

as FPGA kernel that runs on programmable logic. The FA-LAMP program in all Alveo

implementations is multi-threaded to maximize DPU utilization.

Throughput: The server CPU and GPU achieved an order of magnitude higher

throughput than the other systems tested, due to their high core count and parallel processing

capabilities; the desktop CPU achieves comparable performance to the high-throughput DPU

configurations. The high-throughput DPU achieves higher throughput than the low-latency

DPU. Referring back to Figures 3.5 and 3.6, the high-throughput architecture has three

DPUs, each with multiple batch engines, while the low-latency architecture has two DPUs
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with a single compute engine and no local memory pool; the low-latency DPU’s fusion engine

improves latency, but not throughput.

Latency: We report the latency on each platform as the inference time for a single

input. The FPGA-based platforms achieved two orders of magnitude lower-latency compared

to the two CPUs and the GPU. The low-latency DPU performs inference approximately

1ms faster than the high throughput DPU, benefiting from compiler optimizations such

as layer fusion, as supported by its fusion engine (Figure 3.6). The hardware IP kernel

implemented using the ultra_fast_sigmoid approximation runs around 0.2 ms faster than

the sigmoid_fastexp_512 implementation. The FPGA + CPU systems incur the latency

associated transferring data between the FPGA and server CPU, and reprogramming the

DPU at runtime to execute the fully connected layer on the FPGA.

Inference Rate: The inference rate is the number of predictions per second,

which correlates to throughput: the GPU and the Server CPU have the highest inference

rate, while the inference rate of the Desktop CPU is comparable to those of the FPGA

with high-throughput DPU configurations. The high-throughput DPU connected to the

custom kernel with the ultra_fast_sigmoid has the highest overall inference rate among all

DPU implementations; this results from the greater arithmetic parallelism provided by the

high-throughput DPU compared to the low-latency DPU.

Energy Consumption: The Energy row in Table 3.3 reports the energy con-

sumption of processing a single batch of size 128 on each platform. The FPGAs are an

order of magnitude more energy efficient than the GPU or CPUs. The lowest overall

power consumption was achieved using the high throughput DPU and the custom IP kernel
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Table 3.4: FA-LAMP neural network inference accuracy; qa=quantization-aware training,
edge=Ultra96, cloud=Alveo.

Time Series Dataset FA-LAMP Inference Accuracy

Name
Train / Test

Split

32-bit

float

edge:

ultra_fast

edge:

fastexp

qa_edge:

ultra_fast

qa_edge:

fastexp

qa_cloud:

ultra_fast

Earthquake 120M / 30M 97.4% 91.4% 92.5% 93.8% 94.7% 94.3%

Insect EPG 2.5M / 5M 97.2% 90.8% 93.2% 91.9% 94.4% 92.5%

Chicken Accel. 6M / 2M 95.8% 86.9% 91.1% 89.5% 93.1% 90.2%

with the ultra_fast_sigmoid approximation, which requires far fewer arithmetic operators

than sigm_fastexp_512. In terms of performance per Watt, the GPU outperforms all the

other platforms while the high throughput DPU with sigm_fastexp_512 improves CPU’s

performance per Watt by 44%.

3.5.4 Inference Accuracy

Table 3.4 summarizes the accuracy of the FA-LAMP neural network models that

we evaluated in the preceding section. Columns starting with the label “edge” present the

results from our previous implementation [50] and columns labeled with with “qa_edge” and

“qa_cloud” detail the results obtained using quantization-aware training. We include results

for a 32-bit floating-point CPU-only implementation of the FA-LAMP models as a baseline

to quantify the loss in accuracy due to quantization, which is 2.1–2.8 percentage points (pp)

for sigmoid_fastexp_512, and 3.1–6.3 pp for ultra_fast_sigmoid. The 6.3 pp accuracy loss

for the Chicken Accelerometer dataset for ultra_fast_sigmoid can be attributed to the range
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Table 3.5: Performance comparison with other FPGA-based edge and cloud DNN deployment
frameworks.

HLS4ML [26] fpgaConvNet [96] VTA [14] FINN [95] DPU fpgaConvNet [96] FINN [95]

FPGA Platform Ultra96 Ultra96 Ultra96 Ultra96 Ultra96 Alveo U280 Alveo U280

Precision fix-8 fix-8 int-8 fix-4 int-8 fix-8 mix

DSPs 256 220 186 220 326 451 1865

BRAMs 132 164 152 101 174 230 412

Throughput 156GOPS 198GOPS 101GOPS 471GOPS 453GOPS 2.37TOPS 6.12TOPS

of values in the input numbers to the sigmoid kernel. Referring back to Table 3.3, we note

that sigmoid layer’s input values line in the range [-0.12 1.85], where ultra_fast_sigmoid has

the largest error, when inference is performed on this dataset.

Compared to our previous work [50], the results reported in Table 3.4 achieved

1.6–2.6 pp improvement in sigmoid_fastexp_512 accuracy and 1.7–3.3 pp improvement in

ultra_fast_sigmoid, which are due to the use of quantization-aware training in this study.

The differences in accuracy reported for the Ultra96-V2 and Alveo implementations is due to

different model compilation flows for the two platforms, and potential microarchitectural

differences, noting that neither fixed-point nor floating-point addition and multiplication are

associative.

3.5.5 Comparison to Recent CNN-to-FPGA Compilation Frameworks

We deployed our LAMP model on several state-of-the-art FPGA edge-based and

cloud-based CNN frameworks and compared their performance; Table 3.5 reports the resource

utilization and throughput of each framework.
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For the Ultra96-V2 board, the DPU column represents the results for the DPU

integrated with our custom kernsl using ultra_fast_sigmoid; for the Alveo card we picked

the high-throughput DPU with ultra_fast_sigmoid as this combination yielded the best

performance in our prior experiments. FpgaConvNet achieved a throughput of 164GOPS,

outperforming both HLS4ML and VTA by 1.26× and 1.96× respectively. fpgaConvNet’s

higher throughput seems to be due to its streaming architecture, which outperforms single

computation engine frameworks for large batch sizes. fpgaConvNet also benefits from

the design space exploration performed by the samo optimizer. While FINN outperforms

fpgaConvNet and the DPU by 2.37× and 1.03×, its low-precision architecture degrades

accuracy by more than 30%, which we consider to be unacceptable from the application

perspective.

On the Alveo card, the DPU outperforms fpgaConvNet by 2.33×; upon inspection

fpgaConvNet was unable to fully utilize the resources provided by the larger FPGA (in

comparison to the Ultra96-V2). FINN achieved throughput 1.10× higher than the DPU,

while implementing an (almost) binary neural network, whose accuracy was around 55%,

which is non-competitive for our purposes.

3.5.6 Case Study: Interpreting the FA-LAMP Output

The Matrix Profile can be computed using existing methods in an offline context

[126], whereas LAMP is used to predict it on streaming data [127]. Regardless of how the

Matrix Profile is obtained, subsequent post-processing steps are needed to extract actionable

information from it.
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As a representative example, we explain how FA-LAMP neural network inference

can help a scientist to classify the behavior of an insect in real-time. First, we take the

training data (2.5M data points, collected over 7 hours) from an insect feeding on a plant.

We then create two classes [102]:

Class A: Xylem Ingestion/Stylet Passage

Class B: Non-Probing

We take a representative dataset from each class (RA and RB) and train two distinct

FA-LAMP models, which we respectively denote as MA and MB. Let S be a subsequence

of streaming data. If MA(S) > MB(S), we predict that behavior A is occurring; if

MA(S) < MB(S), we predict that behavior B is occurring; otherwise, the prediction is

inconclusive.

For evaluation data we consider the inference data (2.5M data points, collected

over the next 5 hours from the same insect), whose behavior has also been labeled by

an entomologist to provide ground truth. We observed 98.2% accuracy in the results

of classification using FA-LAMP. Figure 3.15 shows the time series and the actual and

predicted labels reported by the FA-LAMP model for a snippet of test data. To simplify the

representation, the time series is rearranged so that the first half represents class A and the

second half represents class B. Figure 3.15 shows a snippet of the first half.
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Class A

Class B

Insect Data Predicted Label Actual Label

Figure 3.15: A snippet of insect EPG time series dataset along with the actual and predicted
behavior (Class A: label height=1; Class B: label height=0).

CMAC

GT QSFP

ref clk

250 MHz

100 GbE
Network Kernel
100 G TCP/IP

250MHz

Custom 
Kernel

512-bit AXI4-stream

S
LR

0

rx

tx

H
B

M
 A

X
I [

2
0:

2
1]

H
B

M
 A

X
I [

1
4:

1
8]

HBM Banks

Figure 3.16: The SLR0 in the Alveo card configured with the Ethernet subsystem and the
custom kernel IPs.

3.6 DPU Integration with Ethernet

In a real world cloud-scale deployment, a plurality of Alveo cards in a server would

be connected through a network switch, allowing them to receive data from external sources.

For example, multiple edge devices may transmit sensor data to the server in real time

over the Internet. To address the needs of such a deployment, this section describes the

integration of a high-throughput DPU with a 100G Ethernet IP allowing an Alveo-based

deployment to receive and process data.
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Figure 3.17: Ethernet module throughput on the Alveo card as a function of payload size.

We built our design on top of the Xilinx TCP stack IP repository [105], which

comprises an UltraScale+ Integrated 100 Gb/s Ethernet (CMAC) and a network layer kernel.

The CMAC kernel is connected to the Alveo’s GT pins exposed by the Vitis shell and it runs

at the frequency of a 100 G Ethernet Subsystem clock, i.e., 322 MHz. It exposes two 512-bit

AXI4-Stream interfaces (𝑆_𝐴𝑋𝐼𝑆 and 𝑀_𝐴𝑋𝐼𝑆) to the user logic, which run at the same

frequency as the kernel. Internally it has clock domain crossing logic to convert from kernel

clock to the 100G Ethernet Subsystem clock. The network kernel is a collection of HLS

IP cores that provide TCP/IP network functionality, consisting of TCP, ICMP, and ARP

modules clocked at 250 MHz. The network kernel exposes AXI4-Stream interfaces to enable

the user kernel to open and close TCP/IP connections and to send and receive network data.

Figure 3.16 depicts the Ethernet subsystem and custom kernel IPs implemented in

SLR0 in the Alveo card; due to resource constraints, we had to remove the DPU kernel with

four batch engines in SLR0 to fit the CMAC and network layer kernels. As mentioned in

Section 3.3.6, the DPUCAHX8H can be configured to have multiple batch engines which
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execute model inference in parallel. Each batch engine connects to the global HBM memory

using a AXI4 memory mapped interface. The DPU also has a 𝑠_𝑎𝑥𝑖_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 interface is

used to start running a task on a DPU core, wait for the task to finish and clear the DPU’s

status. Since the network kernel provided by Xilinx has AXI4-Stream interfaces, we cannot

directly connect the kernel to the DPU input ports. One solution would be to transmit the

network data to the host and then to the DPU using the VART API; however, this would

lead to sub-optimal performance.

To address this bottleneck, we added a memory arbiter module to the network

kernel that writes the incoming network data to the memory address used by DPU batch

engines. This frees up HBM memory channels 14-18 which the memory arbiter uses to divide

the incoming network data into equally sized batches and writes the data to memory channels

0-6 for DPU kernel 2 and memory channels 7-13 for DPU kernel 1. The memory arbiter also

provides two memory mapped AXI master interfaces that connect to the 𝑠_𝑎𝑥𝑖_𝑐𝑜𝑛𝑡𝑟𝑜𝑙

interfaces of the two DPU kernels.

After writing the input data to the corresponding addresses of the five batch engines

for each DPU, the memory arbiter starts the execution of that DPU kernel by setting the

𝑟𝑒𝑔_𝑎𝑝_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 register to 1 through the 𝑠_𝑎𝑥𝑖_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 interface. This allows the Alveo

card to process incoming network data without CPU involvement. The memory arbiter waits

for DPU’s interrupt before it signals the start of a new batch.

We tested the DPU integrated with Ethernet system by directly connecting two

Alveo U280 cards through their Quad Small Form-Factor Pluggable (QSFP) ports. We

programmed one of the Alveo cards as a producer of data, combining the CMAC and network
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layer kernel with a custom user TCP kernel. The TCP kernel opens a TCP connection to

provide the IP and TCP port of the destination and to transmit the data over the network.

To transmit data, a Tx control handshake is required before each payload transfer. The

user kernel first transmits the session ID and the payload size and, upon receiving a positive

acknowledgment from the TCP module, transmits the data. The second Alveo card is

programmed as a consumer, with two DPU kernels, CMAC, and the modified network kernel

which includes the aforementioned memory arbiter module.

In order to achieve 100 Gbps, we pipelined the control handshake and payload

transfer between the user kernel and the network kernel in the producer FPGA. Since

the control handshake is required for each payload transfer and requires 10 to 30 clock

cycles, a sequential control handshake-payload transfer may stall. To pipeline the process,

we established 32 concurrent connections and pinned them to different threads using the

OpenMP API; further increasing the number of concurrent connections yielded no further

improvements in our experiments. Next, we transmitted packets whose sizes were a positive

integer multiple of 64 bytes. The transmission process buffers portions of the payload in the

global memory for retransmission in the event that packet loss and/or memory accesses with

unaligned addresses decreases the bandwidth.

Figure 3.17 shows that the 100 Gigabit QSFP port saturates the available bandwidth

at a sufficiently large payload size. We achieved a peak throughput of 86 Gbit/s for payloads

larger than 4KiB, which is feasible because the DPU and our custom kernel can achieve an

initiation interval of 1, meaning that no stall cycles occur in the design pipeline. At smaller

payloads, the control handshake required for each payload transfer impedes throughput. To
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maximize the Ethernet throughput, optimizations on both the producer and consumer sides

are required: in the producer’s software code, we leveraged concurrent TCP connections

to hide the control handshake latency, and in the consumer’s hardware deployment, we

implemented a memory arbiter module to initiate execution of DPU kernels as soon as

network data is received.

3.7 Conclusion

This article explored FPGA accelerator architectures for time series similarity

prediction using CNNs. We integrated a custom IP accelerator block using different Xilinx

DPUs to enable whole-model acceleration of the FA-LAMP CNN on two platforms: a Xilinx

Ultra96-V2, which is representative of FPGA-accelerated edge computing, and Alveo U280

FPGA, which is representative of a cloud-based system. Compared to a Raspberry Pi 3

and an Edge TPU, our edge design achieved 5.7× and 18.2× higher inference rate and

improved the energy efficiency by 8.7× and 24× respectively. We compared the cloud-based

accelerator performance with LAMP running on a high-end desktop CPU as well as server

CPU processors and a GPU. While the FPGAs could not compete with the server CPU

in terms of throughput or inference rate, they reduced latency by two orders of magnitude

and energy consumption by one order of magnitude. We also compared the performance

of the DPU running FA-LAMP to four state-of-the-art frameworks for CNN compilation

onto FPGAs; the result of this experiment showed that the DPU achieves the highest overall

performance, with the exception of one framework (FINN) that uses much lower precision

and therefore suffers from significant degradation in inference accuracy. Lastly, we integrated
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the DPU with a Xilinx 100Gb/s Ethernet module on the Alveo card, demonstrating the

ability process streaming data obtained directly from the network without the involvement

of a host CPU.
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Chapter 4

Ensuring Consistency in Data Centers

using RDMA-Enabled Consensus

Protocols on FPGAs

4.1 Disclaimer

This chapter contains work which has not (as of the writing of this dissertation)

been peer-reviewed. While we have made our best effort to present only facts in this chapter,

the reader should assume that the claims presented in the following sections could be proven

incorrect upon further experimentation.
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4.2 Introduction

Data replication is a critical aspect of datacenter design and management as it

ensures high availability, scalability, and fault tolerance of applications. Replication refers

to the process of creating multiple copies of an application and distributing them across

multiple servers or datacenters. This allows for load balancing and the ability to quickly

recover from failures, ensuring uninterrupted service to end-users. In addition, replication

can improve application performance by allowing for local data access and reducing network

latency. Ensuring consistency in data replication is critical for maintaining data integrity

and avoiding data loss or corruption. For example, in a distributed database where data

is replicated across multiple nodes, consistency is essential to ensure that queries return

accurate results, and updates to the data are propagated correctly to all nodes.

While strong consistency ensures that all nodes in a distributed system see the

same data at the same time, it comes at the cost of increased latency and reduced availability.

Relaxed consistency, on the other hand, allows for faster updates and improved scalability

but may result in temporary inconsistencies in the data as it forgoes the total order of

operations across replicas. To address this, Convergent and Commutative Replicated Data

Types (CRDTs) have been introduced which formally define replicated data types that

converge under relaxed consistency. However, not all operations can preserve convergence

and integrity under relaxed consistency. To strike an appropriate balance between the

two notions of consistency, several projects [41, 33, 10, 8, 9, 61] considered hybrid models

where each operation is executed under either relaxed or strong consistency based on its

semantics. All these projects utilize the traditional message-passing network model which
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incurs intolerable response time for applications whose availability and latency is critical

such as control and finance.

To tackle this issue, several works leveraged Remote Direct Memory Access (RDMA)

network interfaces to implement consensus and broadcast protocols [3, 43, 76]. RDMA is

a network protocol that works by bypassing the operating system and network stack to

access memory directly, allowing for efficient data transfer between nodes in a server. The

RDMA-based replication designs implemented on CPUs take the processing power away

from the main task due to significant cost of coordination. Hence, the choice of a specialized

networking hardware to implement consensus while boosting performance and reducing

overall overhead seems attractive. Specifically, Field Programmable Gate Arrays (FPGAs)

as they offer the opportunity of low energy consumption and do not suffer from some of the

traditional limitations that conventional CPUs face in terms of data processing at line-rate.

In this work we propose an FPGA-based architecture that implements different

coordination protocols based on operational semantics introduced in Hamband [43]. Given

an object, Hamband divides the methods of the object class into three categories: reducible,

irreducible conflict-free, and conflicting, and declares distinct coordination requirements

for each. We build our design based on an already existing open source RDMA stack for

FPGAs. We reinforce the RDMA stack with the missing RDMA semantics to implement the

coordination protocols for the three categories of methods.

We implemented our design on Xilinx Alveo accelerator cards using High Level

Synthesis (HLS) and Hardware Description Language (HDL) and executed our experiments

on a state-of-the-art compute cluster. Our implementation showed significant improvement
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in the throughput and response time compared to CPU-based designs. Furthermore, our

experiments show that our design is highly scalable and performs with negligible throughput

or latency loss in the case of a node failure.

In summary, this paper makes the following contributions:

∙ It introduces an FPGA architecture that is capable of implementing hybrid replicated

data types based on one-sided RDMA operations. The design is highly pipelined and

allows convenient integration with user-defined use-cases.

∙ It presents a method for memory allocation of replication logs that optimizes the

throughput and response time using SMT solvers.

∙ It empirically shows that the design outperforms the throughput, response time,

and power consumption of existing implementations by evaluating various scenarios

(leader failure, follower failure, no failure) across a comprehensive CRDT use-cases and

relational schema.

4.3 Background

4.3.1 RDMA and RoCE

RDMA is a direct memory access from the memory of one node into that of another

without involving the processor. RDMA enables the communication using queue pairs: a

set of a send queue, receive queue, and completion queue. Send and receive queues are

always managed by the same queue pair. Read or write requests are generated by posting

a work request to the receive or the send queue respectively. Once a request has been

processed, a work completion is placed into the Completion Queue. Applications allocate
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local memory for remote access by registering local virtual memory regions with the RDMA

driver. Both memory regions and queue pairs have access modes (read-only, write-only,

read/write) enabling remote nodes having different access rights for each other. These

access permissions are specified when initializing memory regions and queue pairs and can

be changed later. RDMA is available over network fabrics such as Infiniband or Ethernet

(RoCE). RoCE allows Inifiniband packets to be transmitted as Ethernet frames.

RDMA provides two categories of communication primitives: (1) one-sided primi-

tives i.e. READ, WRITE, and ATOMIC; and (2) two-sided primitives i.e. SEND and RECV.

The former functions similarly to the conventional message-passing model where one node

sends a message through a send operation, and the receiving node must perform an explicit

receive operation to retrieve and handle the message. On the other hand, the latter operates

similarly to the shared memory model, where a node can write or read directly to another

node’s memory without engaging its CPU. One-sided communication tends to have a shorter

response time as it avoids involving the network and operating system stack.

4.3.2 Alveo Accelerator Cards

FPGAs are integrated circuits designed to be highly customizable, allowing users to

configure the circuitry to perform specific functions or tasks. Unlike traditional Application-

Specific Integrated Circuits (ASICs), which are hard-wired for a specific purpose during

fabrication, FPGAs offer a flexible and programmable alternative. This makes them ideal

for a range of applications, from digital signal processing and computer vision to artificial

intelligence and machine learning. With FPGAs, users can rapidly prototype, test, and
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deploy their designs, making them an increasingly popular choice for engineers and developers

looking to accelerate the development of complex hardware solutions.

Recently, Xilinx introduced the larger capacity UltraScale+ Alveo FPGAs targeting

data center and cloud-based applications. Alveo cards consist of a static region and a

dynamic region. The static region enables communication with external PCIe host and

provides basic clocking and reset for card operation. The accelerated kernels are placed in

the dynamic region which consists of resources for implementing user functions (LUTs, DSPs,

etc.). Some of the Alveo cards benefit from a High Bandwidth Memory (HBM) e.g. Alveo

U280 incorporates two 4 GB HBM stacks. Each stack consists of 16 pseudo channels which

can access the memory in parallel.

4.3.3 Coordination and Hamband

Coordination is a fundamental concept in distributed systems that ensures compo-

nents work together effectively. Distributed systems require coordination mechanisms that

allow different components to cooperate and communicate to achieve their objectives [20].

Coordination can involve ensuring that requests are executed in the same total order across

replicas to provide strong consistency. This can be achieved through a range of mechanisms

such as State Machine Replication (SMR) [85].

Hamband [43] introduces hybrid replicated data types for the RDMA network

model. The proposed operational semantics divides methods of a given object into three

categories: reducible, irreducible conflict-free, and conflicting. A method is reducible if it is

conflict-free, dependence-free and summarizable. The deposit method for a bank account is

an example, since two deposit calls can be summarized to a single deposit with an amount
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equal to the sum of the two amounts without having any conflicts or dependencies with the

other methods (e.g. withdraw). A method is irreducible conflict-free if it is conflict-free but

either not summarizable or not dependence-free. As an example, in a grow-only set with

methods contains and add (to add an element), the method add is irreducible conflict-free.

Finally, the conflicting calls have a conflict with another method e.g. the method withdraw

in the bank account example.

Hamband also declares distinct coordination requirements for each of the method

categories. In particular, the reducible calls can be summarized at the issuing process and

propagated to other processes by a single remote RDMA WRITE. Similar to reducible

methods, the irreducible conflict-free methods can avoid synchronization. Each process

replicates a buffer of calls for all the irreducible conflict-free calls of other processes. When

a process p issues an irreducible conflict-free call, it remotely appends it to the buffers

that each other process stores for p (via remote RDMA WRITEs). Finally, the other

processes periodically traverse their buffer, locally apply the calls and then discard them.

The conflicting methods are broken into synchronization groups (each connected component

of the conflict graph is a group). Each synchronization group has a leader process that

replicates the calls using a consensus protocol. Similar to irreducible conflict-free, each process

replicates a buffer of calls that traverses periodically; however, each buffer corresponds to a

synchronization group rather than a process.

In order to preserve the dependency between the calls, Hamband stores a mapping

A for each method u that keeps track of the number of locally applied calls on u for a

process p. If a call is sent to a remote buffer, it is accompanied by information about its
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dependencies. The dependency map D for a call on a method u is determined by projecting

the applied map A of the issuing process onto the methods that u depends on. To ensure

that dependencies are respected, a process only applies a call while traversing a buffer if its

local applied map A is point-wise greater than the dependency map D that comes with the

call. When a call is applied, the local applied map A for the issuing process is updated.

4.4 Design Overview

4.4.1 RDMA Replicated Data Types

In this section we present a summary of the operational semantics of RDMA

replicated data types introduced in Hamband [43]. The semantics divides methods into

three categories, reducible, irreducible conflict-free, and conflicting, and presents dedicated

coordination requirements for each.

Two methods 𝑢 and 𝑢′ are considered conflicting if there exist arguments 𝑣 and 𝑣′

that result in conflicting calls of 𝑢(𝑣) and 𝑢′(𝑣′). If a method has no conflicting method,

it is referred to as conflict-free, otherwise, it is considered conflicting. Also, a method is

dependent on another if a call to the former relies on a call to the latter. The set of methods

that a method depends on is denoted by 𝐷𝑒𝑝(𝑢). If a method has no dependencies, it is

referred to as dependence-free.

Calls to conflicting methods need to maintain the same order across different

processes. The relationship between conflicting methods forms an undirected graph called

the conflict graph. The synchronization group 𝑆𝑦𝑛𝑐𝐺𝑟𝑜𝑢𝑝(𝑢) of a method 𝑢 is the connected
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component of the method in the conflict graph. Synchronization groups consist of methods

that synchronize with each other.

The summary of two calls 𝑐 and 𝑐′, written as 𝑆𝑢𝑚𝑚𝑎𝑟𝑖𝑧𝑒(𝑐, 𝑐′), is a call 𝑐′′ iff for

all states 𝜎, 𝑐 ∘ 𝑐′(𝜎) = 𝑐′′(𝜎). For example, the summary of 𝑑𝑒𝑝𝑜𝑠𝑖𝑡(3) and 𝑑𝑒𝑝𝑜𝑠𝑖𝑡(4) is

𝑑𝑒𝑝𝑜𝑠𝑖𝑡(7). A group of methods is called a summarization group if the calls made to them

can be summarized into a single call. This means that a sequence of calls to the methods in

the group can be summarized into one single call. A method is considered summarizable if

it belongs to a summarization group, which is represented as 𝑆𝑢𝑚𝐺𝑟𝑜𝑢𝑝(𝑢). If a method

is not a member of any summarization group, it is referred to as not summarizable, and

we write it as 𝑆𝑢𝑚𝐺𝑟𝑜𝑢𝑝(𝑢) = ⊥. A method is considered reducible if it is conflict-free,

dependence-free, and summarizable. If it does not meet these conditions, it is considered

irreducible.

The semantics used in Hamband take advantage of the remote write feature of

RDMAs to allow for direct communication between processes when updating state information.

Each process maintains a local replica of the state to ensure fault tolerance and low latency

for query methods, and only performs remote writes (not remote reads). The methods in

the system are divided into three categories: conflicting methods, irreducible conflict-free

methods, and reducible methods. Each category requires different coordination methods.

For conflicting methods, a leader process is assigned to each synchronization group

and all processes replicate a buffer of calls for each group. The leader orders the calls and

remotely appends them to the buffer of each process using a consensus protocol. Other

processes periodically traverse their buffers and apply the calls locally.
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Irreducible conflict-free methods do not require synchronization and each process

autonomously issues and propagates them. Each process replicates a buffer of calls for all

the irreducible conflict-free calls of other processes. When a process issues a call, it remotely

appends it to the buffers that each other process stores for it. Other processes periodically

traverse their buffers, apply the calls, and discard them.

Reducible methods are special because they can be reduced together locally and

then remotely written for other processes. Each process replicates a single call for each

summarization group of methods and a process, instead of a buffer of calls. This saves space

and time because it eliminates buffer traversals by the target processes. Direct RDMA writes

are used so that other processes receive updates without receiving and traversing messages.

Each summarization call is written by only a single remote process and is only read by the

local process.

4.4.2 FPGA Architecture

Figure 4.1 shows the high level FPGA architecture. Three main building blocks

of our design are CMAC, Network Handler, and Coordination Engine. The CMAC kernel

comprises the UltraScale+ Integrated 100 Gb/s Ethernet which is connected to the Alveo’s

GT pins exposed by the Vitis shell and it runs at the frequency of a 100G Ethernet

Subsystem clock, i.e., 322 MHz. It exposes two 512-bit AXI4-Stream interfaces (𝑆_𝐴𝑋𝐼𝑆

and 𝑀_𝐴𝑋𝐼𝑆) to the user logic, which run at the same frequency as the kernel. Internally it

has clock domain crossing logic to convert from kernel clock to the 100 G Ethernet Subsystem
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Figure 4.1: Proposed FPGA architecture.

clock. The Network Handler is a collection of HLS IPs that consist of ARP, ICMP, and more

importantly RDMA stack (RoCE).

The Coordination Engine comprises several modules. Clients send their requests

from host to the Application Engine. The Application Engine serializes the requests and

forwards them to the Replication Engine. The Application Engine also executes the incoming

method calls. The Replication Engine is responsible for generating RDMA WRITE commands

based on the method call type. For the reducible and irreducible conflict-free methods, the

Replication engine looks up the log address for each remote node, generates the request based

on the address and the payload handed down by the Application Engine, and finally sends the

request to the RDMA stack. The Replication Engine also runs a consensus protocol (based

on Mu [3]) to serialize calls for the conflicting methods. The Leader Heartbeat periodically

scans the leader’s counter to detect a failure. In the case of leader failure, the Permission
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Handler manages handing the write permission to the synchronization logs to the newly

elected leader.

4.4.3 Log Allocation Optimizations

In order to increase the throughput of the system, we assign a thread to each

replication log. These threads synchronously traverse the logs and process the method

calls. Furthermore, based on the call frequency of methods we assign priorities to these log

processing threads. A log with a higher priority will have more elements processed in a unit

of time compared to a log with lower priority. However, choosing priorities for the replication

logs is not straight forward.

Another design parameter that we have to choose is the type and amount of memory

that we allocate for each log. Besides the on-chip BRAM memory, Alveo U280 card offers

two off-chip memories: DDR and HBM. DDR and HBM are shared between the FPGA and

the CPU. By default, we store the replication states that are frequently used in BRAM. This

includes the queue pairs information, minimum proposal number, and the first undecided

offset (used by Mu’s replication algorithm). Naturally, we want to keep the replication logs

as close as possible to the replication engine (on the FPGA); however, the BRAM is limited

and we have to reuse the logs (circular logs) or offload some of them to the off-chip memory.

In order to find these parameters (log priority, memory type, and log size) we define

a proper set of constraints and use SMT solvers to come up with optimal answer. We take

into consideration the latency and size of each memory type, the latency to process a method

call as well as the frequency and priority of each method call (defined by the client) to define

these constraint. The objective is to maximize the throughput (defined as number of method
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Figure 4.2: RDMA Queue Pair states and the possible transitions.

calls processed in a second) of the design. Given the constraints and the object, the SMT

solver comes up with the optimal mentioned parameters.

4.5 Design Methodology

4.5.1 RoCE Stack

We implement the RDMA protocol on the FPGA by using StRoM [88] as our

RDMA implementation core. StRoM is an open source, extensible RDMA stack for FPGAs

that is available over RoCE and supports different RDMA semantics such as queue pair

operations and one-sided READ and WRITE. The architecture of the RDMA stack consists

of two data paths: one for incoming and one for outgoing packets. The following protocol

headers are processed in both datapaths at each stage: IP, UDP, BTH (Base Transport
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Header), RETH (RDMA Extended Transport Header) and AETH (ACK Extended Transport

Header).

At each stage the current packet header is processed and the useful metadata is

extracted and then the remaining packet is passed to the next stage. Packet processing is

pipelined to achieve line-rate bandwidth. The final stage in the outgoing path processes

the RETH and AETH headers and based on the RDMA op-code decides to whether issue

DMA commands and requests to generate response packets. For the incoming path a request

handler generates the DMA command before moving to the RETH/AETH processing stage.

For data transfers, the DMA IP core is configured with two 32-byte streaming interfaces.

One stream for writing data to memory and the other to retrieve data from memory.

Although StRoM provides an RDMA stack, it lacks three major capabilities that

are needed for our replication engine: (1) Queue Pair states; (2) Access flags; and (3) Hybrid

memory support. In the following, we describe how we integrate these two features to the

already existing stack.

Queue Pair States

Each Queue Pair (QP) maintains several states during its lifetime. Figure 4.2 shows

these states and the possible transitions from each one. Every QP start from the Reset

states at which it is not associated with any endpoints and cannot send or receive data.

In the Init state, the QP is associated with a remote endpoint and they exchange certain

information such QP’s attributes and its address. In the Ready to Receive (RTR) and Ready

to Send (RTS) states a QP can receive or send and recieve data, respectively. The Send

Queue Drained (SQD) state ensures that all the work requests are completed before the QP
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can process any new incoming requests. A transition from a state to another happens when

one calls the modify QP API except for the error states (Error and SQE) where transition

happens automatically when an error occurs in the send or receive queues. Otherwise, the

Queue Pair maintains its state.

To add support for the QP states, we store an array called State Table on the BRAM.

Each row stores the state for a corresponding QP. We also add a function modify_state_table

that exposes three AXI Stream buffers to interact with the State Table: One for updating a

row, and two for querying the state of a QP and returning the response. The update requests

to the State Table can originate from the host or within the RDMA stack. The request

is checked to make sure the transition is valid and upon success the corresponding row is

updated. The response buffer simply returns the state of a QP requested in the query buffer.

In the transmit path of the RDMA stack, right after receiving RDMA READ or

WRITE requests, we check the QP state of the issuing request against the State Table. If

the operation is not allowed, the request is silently dropped without returning any errors.

We assume that the issuing function ensures the requests are valid; otherwise, there is no

guarantee whether the request is processed. By doing so, we invalidate the request before it

reaches to the packet generation pipeline.

In the receive path the destination QP is extracted after the IP and UPD headers

are processed (in the BTH processing stage). Similar to the transmit path, we check the

QP’s state and drop the request if the QP is not in the valid state to send or receive data.
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Access Flags

After the creation of a QP, access flags can be configured for that QP that indicate

whether the local or remote node has read or write access to that QP. This is an important

attribute for our replication engine, since each node only has write access to its own log on a

remote node for non-conflicting operations. Furthermore, it ensures that each time only one

leader has write access to the replicas for synchronizing conflicting methods. The access flags

are stored in the State Table as well when a QP is created. We reinforce the already existing

checks for the QP states with the access flag checks and drop the request if the check fails.

Hybrid memory support

The last modification we make in the RDMA stack is regarding the routing to

different memory types. Since our design allows log allocation in DDR, HBM, or BRAM we

need a mechanism to differentiate between these memories. In order to do so, we encode

the memory type in the virtual address of the RDMA packet. Each entry in the Translation

Lookaside Buffer (TLB) stores one 48 bit physical address corresponding to a 2 MB page

which is contiguous in the physical address space. The TLB has 16,384 entries which allows

the FPGA to address up to 32 GB of memory. This means that we only need 16 bits to index

the TLB. The last two bits of the virtual address in our design correspond to the type of

memory that the request must be routed to (00 for BRAM, 01 for DDR, and 10 for HBM).

During the AETH processing stage we check the 2 bits of the virtual address

corresponding to the memory type. If it’s a request for BRAM, we route the request to the

AXI Stream FIFOs connected to the BRAM. Otherwise, we push the request to the FIFOs
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Figure 4.3: Application Engine comprises memory manager, request scheduler, and app
processor units.

connected to the AXI DMA Controller. The memory command merger demultiplexes the

request based on the 2-bit opcode and decides whether to push the request to DDR or HBM

DMA controller.

4.5.2 Application Engine

We implement the client applications on the FPGA. An application is

a class of objects that is replicated on the set of processes p. Any pro-

cess p can accept and issue update calls u or query calls q. Clients can re-

quest method calls at every process, and the processes coordinate these calls.
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void appliction_kernel (

stream<memCmd>& hbmCmdOut,

stream<memCmd>& ddrCmdOut,

stream<ap_uint<512> >& ddrDataIn,

stream<ap_uint<512> >& hbmDataIn,

stream<ap_uint<512> >& requestDataOut,

ap_uint<128> *bramDataIn);

Listing 4.1: Function interface of a kernel.

Listing 4.1 shows the kernel interface in C++, the stream type in Vivado HLS [106] maps to

FIFOs in hardware. To access the HBM and DDR, the kernel can issue DMA commands

consisting of adress and length over the hbmCmdOut and ddrCmdOut, data from the DMA

engine is sent over the hbmDataIn and ddrDataIn, respectively. The interface also consist of

a 128-bit bus to access the logs stored in BRAMs as well as a stream to send out the user

requests.

Figure 4.3 shows the architecture of the application kernel (the dotted line square)

and how it interfaces with the other modules. A memory manager module traverses all the

logs in the system, this includes logs for irreducible conflict-free, and conflicting method

calls in HBM, BRAM, and DDR. The memory manager accesses logs in the HBM and DDR

through Xilinx AXI Direct Memory Access (DMA) IP; for the logs stored in the BRAM it

simply stores a pointer to those logs. The memory manager keeps the head of each log and

once a new request is pushed to a log, it inserts the request to the corresponding FIFO in

the request scheduler (request scheduler keeps a separate FIFO for each log).
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The request scheduler assigns quotas to the logs and processes them based on their

quota. A log with a higher priority gets more quota or in the other words pops requests for

processing more frequently. The enable logic is simply an 𝑁 -bit counter that increments

based on the quota assigned to the logs. For example if we have 32 logs present, the enable

logic is a 5-bit counter passed to a decoder that enables pop from a FIFO at each time. If a

FIFO has higher priority, a delay circuit in the counter forces it to stop counting based on

the quota assigned to that log. In Section 4.5.5 we explain how we can use SMT solvers to

find the optimum number of logs and assign priorities to them.

The request scheduler passes the requests in a single FIFO s_axis_req_in to the

App Processor module. The App Processor is the actual module that implements the object

and applies method calls to it. We only need to swap this module based on the user’s

use-cases. The App Processor is responsible for serializing and de-serializing the requests.

We align the request payload to 512 bits so it matches the network interface bit-width of our

FPGA design. Furthermore, the App Processor checks that the method calls are permissible.

Finally, it returns a response to query methods and executes update methods.

Clients update requests are first routed to the App Processor as well. The App

Processor checks that the request is permissible and if true, serializes the request and sends it

to the replication engine through the m_axis_req_out. The replication engine is responsible

for replicating the method calls by issuing RDMA WRITE requests. We will discuss this

further in the next subsection.
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4.5.3 Replication Engine

As mentioned in the previous subsection, the client requests are first arrived at

the App Processor. When a client makes a call request, there are four potential outcomes

depending on the method’s category. First, if the call is a query, it is performed locally at

the App Processor and the outcome is sent back to the client. Second, if the call is reducible,

it is reduced in the local summary, and the result is sent to the remote summary locations.

Third, if the call is irreducible conflict-free it is executed locally and written to the remote

buffers F. Before propagation, the App Processor assigns a unique id to the call, pairs it with

its dependency arrays and serializes it into a byte stream. Fourth, if the call is conflicting,

the Replication Engine uses a consensus protocol to order the calls in L buffers. In the

following we show how these methods are handled.

Query Methods

Figure 4.4 shows how the App Engine handles user’s query methods in a system with

three replicas (units involved are highlighted in red). The Request Scheduler continuously

traverses all the logs in the system and sends them to the App Engine to execute them and

update its state (𝜎). Upon receiving a query method, the App Engine applies the summarized

calls (𝑆1, 𝑆2, and 𝑆3 in the figure) to the stored state 𝜎 and returns the response.

Reducible Methods

A reducible method can be propagated by simply overwriting the remote summary

location of each node. However, in order to generate an RDMA request, the Replication
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Figure 4.5: Control flow for executing reducible methods.
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Engine needs to know the memory type and the memory address of each remote node. We

store this information in a TLB that the Replication Engine can query by sending the node

number and the method call as shown in Figure 4.3. For each remote node, the TLB stores a

table that contains the corresponding memory type and address for a method call. The TLB

is initialized once at the system startup based on the output of the SMT solver explained in

Section 4.5.5. The memory type for reducible methods is always BRAM as they only occupy

a single cell. Since BRAMs on the FPGA do not have an address, for each log stored in the

BRAM, we assign an id to that log which is stored in the TLB.

Figure 4.5 shows the datapath for executing a reducible method call for a system

with three nodes (only two nodes are shown in the figure for the sake of brevity). The client

issues the call to the node shown on the left by sending the request to the APP Engine.

The App Engine, after checking that the call is permissible, updates its summary cell (𝑆1).

After multiple calls are summarized, the App Engine sends the payload (summary) to the

Replication Engine which in turn issues RDMA WRITES for the other two nodes by sending

the payload and the address (memory address for 𝑆1 cell in each node). The receiving

node (shown on the right in the figure), upon receiving the RDMA WRITE request for the

reducible call, routes the payload to the corresponding summary cell (𝑆1) and overwrites it.

Irreducible Conflict-Free Methods

Similar to reducible method calls, for irreducible conflict-free methods the Replica-

tion Engine queries the TLB to find the memory type and the log address for each remote

node. After that it generates an RDMA WRITE command which is sent to the RDMA
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Figure 4.6: Control flow for executing irreducible conflict-free methods.

stack’s pipeline to generate a packet and send it to the network. Figure 4.6 shows the call flow

for executing irreducible conflict-free methods. The major difference compared to reducible

methods is that Replication Engine, instead of passing a static address to the RDMA stack,

sends the head pointer to the replication log (𝐹1) and after each request increments the

pointer. The RDMA stack in the receiving node demultiplexes the address and based on the

memory type bits writes the payload to the replication log 𝐹1 in either BRAM, DDR, or

HBM. Note that 𝐹1 only exists in one of these memories.

We use a similar approach to Hamband [43] to ensure the agreement property of

reliable broadcast which states that if a message m is delivered by some correct node, then

m is eventually delivered by every correct node. To ensure agreement, the source node keeps

a shared memory location and allows other nodes to read it. The source node writes to
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Figure 4.7: Control flow for executing conflicting methods.

the shared location before remotely writing the message for others and clears the location

afterward. The shared location acts as a backup. Each node has a heartbeat thread that

periodically updates a local counter, which is read by other nodes to check if that node is

still alive. If other nodes detect that the source node has failed, they read the shared location

remotely, retrieve any pending messages, and check if they have already received it. If not,

they deliver the message.

Conflicting Methods

For the conflicting methods, the Replication Engine implements Mu’s consensus

protocol [3]. Mu is a State Machine Replication (SMR) implementation that replicates user
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requests in memory and fail-overs the system to make apps fault-tolerant. In Mu, each

node either takes the role of a leader or a follower. Leader is responsible for replicating

the requests to the remote replicas. The followers are silent and communicate information

passively by publishing it to their memory. Figure 4.7 shows how the conflicting methods

are synchronized in our design. We encourage the readers to refer to Mu [3] for a complete

description of the replication algorithm but in a nutshell, the leader carries out two phases:

Prepare and Accept.

In the prepare phase, the Replication Engine in the leader node reads a minimum

proposal number from each follower’s log and picks a new proposal number higher than any

minimum proposal number seen so far. After that, the Replication Engine writes its proposed

number to all the followers and reads the head pointer’s entry of the replication log (𝐿) for

each follower. If all the entries are empty, the leader enters the Accept phase and writes the

payload to the entries and increments the head pointer; otherwise, it repeats the Prepare

phase by picking a new proposal number. All the steps mentioned are carried out by RDMA

READ and WRITES issued by the leader.

Leader Failover

As mentioned earlier, only one leader has write permission to the conflicting logs.

In order to detect a leader failure, each node has a local heartbeat that is stored in a register

and is incremented every 100 clock cycles. Replicas ensure the liveness of the leader by

periodically sending RDMA READ commands to get the value of the heartbeat. These

heartbeat scans are treated differently compared to the normal RDMA READs in the RDMA

stack. We assign a reserved address (0xffffffff) for these packets. Whenever the leader sees a
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Figure 4.8: RDMA, memory, and consensus commands flow in the system.

packet with this address instead of generating a DMA command, it replies with the value

of the heartbeat register. The followers upon receiving the response update their liveness

score for the leader, if the score falls below a threshold the leader is considered failed. We

use a similar approach to Mu where in case of leader failure where the next replica with the

minimum index is considered the new leader. After being selected as the new leader, the

replica sends a permission request to all the other nodes. The followers revoke the write

permission of the old leader and grant access to the new one by updating the State Table.
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4.5.4 Control Flow

Figure 4.8 shows a summary of interactions between the described modules and how

the commands flow in our design between the client (host), FPGA, and the off-chip memories.

The clients can send a query request from the CPU to the App Engine on the FPGA. Queries

are processed locally and a response is returned to the client. If a client requests an update

method, the App Engine first checks that the method is permissible and then serializes the

payload and sends a request to the Replication Engine. Based on the method category, the

App Engine places the payload in one of the FIFOs. App Engine also executes the requests

from other replicas placed on the off-chip memories. The Replication Engine based on the

type of the method either broadcasts the request or invokes Mu’s consensus protocol to

synchronize the request. Besides the payload coming from the App Engine, the Replication

Engine needs the replica’s log address to generate the RDMA WRITE request. It obtains

the address by sending a query to TLB. During the system startup, the Replication Engine

also sends RDMA READ requests to obtain the head pointer for the replica’s logs. The

Heartbeat Scanner periodically sends RDMA READ requests to read the remote replica’s

heartbeats and update their score. The RDMA stack generates the corresponding packets

from the requests coming from the Replication Engine or the Heartbeat Scanner, and sends

them to the networks by passing the payload to the CMAC kernel. Also, it receives the

RDMA network packets from the CMAC and writes the requests to the memory logs.
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4.5.5 Memory Allocation Optimizations

As mentioned in the previous subsection, the Request Scheduler assigns priorities

to the logs and processes them based on that. Furthermore, as shown in Table 4.1 Alveo

card has three different types of memory with different capacity, throughput, and latency.

Ideally, we would want to allocate all the logs on the BRAM, since it has negligible latency

and the highest throughput; however, the available on-chip BRAM memory is limited and we

might be forced to allocate some of the logs on DDR or HBM. In the following we show how

we can form constraints and objectives and use solvers to find the optimal memory location,

allocated size, and priority for each log.

For the conflicting methods, we have P logs corresponding to P synchronization

groups. For each synchronization group, we want a total order. Based on the frequency of

calls, we might want to merge some of these logs. If we put two of them in the same log,

there will be a total order for all methods in the log, which means a total order for each

synchronization group. For the irreducible conflict-free methods, we have a log per process

for all those methods. Thus, each process will have N-1 logs. Based on the frequency of the

logs, we may want to split these logs.

For maximum flexibility, we consider each synchronization group separately, and

each irreducible conflict-free method separately. In the following, we call each such unit a

method. Methods do not merge but split as much as possible. The size of a log is proportional

to the frequency of the calls that it stores.

We have three different types of memory, let 𝑚 = 1, 2, and 3. We define 𝑆𝑚 to be

the size of memory 𝑚, and 𝑟𝑡𝑚 to be the latency of memory 𝑚, 𝑓𝑖 to be the frequency of
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calls to each method 𝑖, 𝑢𝑖 to be the priority of method 𝑖 (a value between 0 and 1), and

finally 𝑙𝑖 to be the computation load to process a call to method 𝑖. We assume that 𝑓𝑖 and

𝑢𝑖 are provided by the client.

We can calculate 𝑝𝑖,𝑚 the frequency of processing a method 𝑖 on a memory 𝑚. In

other words, the number of calls on the method 𝑖 that the memory 𝑚 can process in one

second.

𝑝𝑖,𝑚 =
1

𝑙𝑖 + 𝑟𝑡𝑚
(4.1)

The goal is to find the following variables: (1) 𝑞𝑖,𝑚: The thread execution quota allocated

for the log of method 𝑖 in memory 𝑚. We take a second to be the total time and this is a

fraction of a second. (2) 𝑠𝑖,𝑚: The space allocated to method 𝑖 in memory 𝑚. We form the

following constraints: First, each method is hosted on only one memory.

𝑞𝑖,1 ̸= 0⇒ 𝑞𝑖,2 = 0 ∧ 𝑞𝑖,3 = 0

𝑞𝑖,2 ̸= 0⇒ 𝑞𝑖,1 = 0 ∧ 𝑞𝑖,3 = 0

𝑞𝑖,3 ̸= 0⇒ 𝑞𝑖,1 = 0 ∧ 𝑞𝑖,2 = 0

(4.2)

The same set of constraints also goes for 𝑠𝑖,𝑚.

For each memory m, we need the sum of the quotas for all methods to be less than one

second. ∑︁
𝑖=1

𝑞𝑖,𝑚 ≤ 1 (4.3)

For each memory 𝑚, we need the size of the logs in that memory to be less than the size of

that memory. ∑︁
𝑖=1

𝑠𝑖,𝑚 ≤ 𝑆𝑚 (4.4)
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Table 4.1: Available memories on the Alveo U280.

Capacity Bandwidth Latency

DDR 32 GB 77 GB/s 70 ns

HBM 8 GB 460GB/s 100 ns

BRAM 43 MB 37 TB/s 1 Cycle

Next, the computation quota must be enough for the frequency of methods for that log.

In one second, the number of processed calls must be more than the number of calls that

appear.

𝑞𝑖,𝑚 × 𝑝𝑖,𝑚 ≥ 𝑓𝑖,𝑚 (4.5)

We need to prevent overflow in the logs during the time it is populated but not processed.

Therefore,

𝑠𝑖,𝑚 ≥ (1− 𝑞𝑖,𝑚)× 𝑓𝑖,𝑚 (4.6)

Finally, we define our objective function to maximize the throughput (the number of processed

calls per second), weighted over the priority of methods:

3∑︁
𝑚=1

∑︁
𝑖=1

𝑞𝑖,𝑚 × 𝑝𝑖,𝑚 × 𝑢𝑖 (4.7)

Solving these constraints will give us 𝑞𝑖,𝑚 and 𝑠𝑖,𝑚 for each method which tells us where and

how much memory to allocate for the method and set the quota for it.
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4.6 Experimental Setup and Results

4.6.1 Hypothesis

We aim to answer the following questions in our evaluation:

1. What is the latency and the throughput of our design? How does it change with

different benchmarks and use cases? How does it perform compared to other CPU-

based solutions?

2. What is the energy consumption of the design? Are there any benefits compared to a

similar implementation on CPUs?

3. What is the impact of optimizations introduced in Section 4.5.5 on latency and

throughput?

4. How does the design perform under failure?

4.6.2 Deployment Platforms and Toolchains

Our design is implemented on top of StRoM [88] using both RTL and HLS. The

network stack and the log scheduler described in Section 4.5.5 are written in Verilog, the

rest of the design is implemented using HLS C++. We used Xilinx Vitis 2022.1 toolchain to

synthesize and generate the bitstream for our design. We used the Z3 SMT solver [21] to solve

the constraints described in Section 4.5.5. The code was written in z3 C++ bindings and

compiled using MSVC++. The host on the FPGA is solely responsible for initializations and

starting the kernels. These initializations include establishing Queue Pairs and exchanging

the Queue Pair ID and memory regions information. Usually, nodes establish a separate
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TCP connection to exchange these information; however, we hard coded these in the host

code, as it does not affect the performance in any way. The host code was written in C++

as well.

We ran our FPGA-based experiments on ETH Heterogeneous Accelerated Compute

Cluster (ETHZ-HACC). ETHZ-HACC is equipped with Xilinx hardware and software

technologies for adaptive compute acceleration research. Table 4.2 details the hardware

configuration of the cluster. Currently, there are four Alveo U280 and six Alveo U250

accelerator cards available on the cluster. Table 4.3 shows the hardware specifications of

these two cards. Alveo U280 supports High Bandwidth Memory (HBM) unlike Alveo U250.

Alveo U250 on the other hand offers slightly more resources and a higher peak throughput.

Both cards have the same networking infrastructure. In our experiments we increase the

number of nodes from 3 to 7. For experiments running on 3 or 4 nodes we only use Alveo

U280 and for experiments on 5 nodes or more we use the four Alveo U280 cards plus the

remaining Alveo U250 FPGAs.

We compare our work with message-passing CRDTs and RDMA SMRs (i.e. Mu [3]

and Hamband [43]). The experiments for these CPU-based replication designs were conducted

on a cluster consisting of 7 nodes, with each node featuring 8 AMD Opteron 6376 cores and

50 GB of memory. The nodes were interconnected via a 40 Gbps Infiniband network and ran

CentOS 7.4 Linux x86_64 kernel version 3.10. Furthermore, all the programs used in the

experiments were compiled using gcc-7.4.0.
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4.6.3 Measurements

We report the throughput, response time and the energy consumption of our design

by direct execution on the ETHZ-HACC platform the benchmarks summarized in the next

subsection. To calculate the throughput, we divided the overall number of update calls by

the duration it takes for these calls to be replicated across all nodes. To determine the

response time, we compute the average response time of all the calls. We conducted each

experiment three times and report the average results.

We estimated the power consumption of the FPGA on the Alveo card by periodically

transmitting queries through the xbutil tool. xbutil measures FPGA power consumption, but

does not report the current of the HBM power rails, which we omit from our estimation. We

estimated the power consumption of the CPU using RAPL [80].

Unless otherwise specified, all experiments are conducted using 4 million operations.

Method calls are generated randomly, and update calls are evenly distributed among the

updated methods. If there are conflicting method calls, they are automatically redirected to

the leader node(s) responsible for handling them. All other types of calls, such as conflict-free

and query calls, are evenly distributed among the nodes.

4.6.4 Benchmarks

We experimented with and utilized five different CRDTs [86]: Counter, Last-writer-

wins register (LWW), Grow-only set (GSet), Observed-Remove Set (ORSet), and Shopping

Cart. In addition, we also employed three relational schemata [41, 73]: project management,

courseware, and movie. The project management class encompasses five methods, namely,
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Table 4.2: Hardware details of ETHZ-HACC.

CPU 8× Intel Xeon W-2200 @ 3.2GHz

Memory 128 GB

Switch 100 GbE Cisco Nexus 9336c FX2

OS Ubuntu 20.04 LTS

Kernel 5.4.0-144-generic

FPGA Cards Alveo U250, Alveo U280

addProject, deleteProject, worksOn, addEmployee, and query. The addProject, deleteProject,

and worksOn methods are part of the same synchronization group, and worksOn relies on

addProject and addEmployee due to the foreign-key constraint. The movie class comprises four

methods, namely, addCustomer,deleteCustomer, addMovie, and deleteMovie, which operate

on two separate relations, thus forming two synchronization groups. There is no dependency

present in this class. The Courseware class consists of five methods, including addCourse,

deleteCourse, enroll, registerStudent, and query. Conflict analysis revealed a single synchro-

nization group, which comprises addCourse, deleteCourse, and enroll. The enroll method is

dependent on both addCourse and registerStudent methods.

4.6.5 Results

In this Section we present the throughput and response time results for our im-

plementation and compare them with message-passing CRDTs, and two RDMA-enabled
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Table 4.3: Alveo accelerator cards specifications.

Alveo U280 Alveo U250

INT8 Peak Throughput 24.5 TOPS 33.3 TOPS

HBM2 Capacity 8 GB N/A

HBM2 Bandwidth 460 GB/s N/A

DDR Capacity 32GB 64 GB

DDR Bandwidth 77GB/s 77GB/s

Look-Up Tables 1,304k 1,341k

DSP Slices 9,024 12,288

Internal SRAM 43 MB 57MB

Network Interface 2x QSFP28 (100GbE) 2x QSFP28

replication protocols, namely Hamband [43] and Mu [3]. We show how a node failure (leader

or follower) impacts the performance. Furthermore, we show how solving the log allocation

optimizations discussed in Section 4.5.5 provides us with a memory layout that results in

optimal throughput and response time. Finally, we compare the energy consumption of our

design with Hamband and Mu.
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Figure 4.9: Comparison of throughput for reducible methods.

Throughput and Latency

We compare the throughput and response time for four different mix of categories:

(1) use-cases containing only reducible methods, (2) use-cases with irreducible conflict-free

methods, (3) Movie benchmark whose methods form two distinct synchronization groups,

and (4) the project management benchmark which has methods in all three categories. Our

experiments investigate the performance for 5%, 15%, and 25% update call ratios and various

number of nodes (from 3 to 7).

Figure 4.9 shows the throughput for three reducible methods: Counter, Last Writer

Win Register, and Grow Only Set (G-Set). These methods are summarized locally on each

node and then propagated using a single RDMA WRITE. As it can be inferred from the
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Figure 4.10: Comparison of throughput for irreducible conflict-free methods.

figure, our design is highly salable. As the number of nodes or the update increases, our

design shows an increasing trend. Our design outperforms Mu, message-passing (MSG),

and Hamband’s throughput by 6.62, 27.67, and 1.48×, and improve their response time by

2.14, 32.43, and 1.49×, respectively. Storing the summary cell locally on the BRAM, allows

the RDMA stack to access the payload with negligible latency and hence improving the

throughput.

Figures 4.10 and 4.11 compares the throughput and latency of irreducible conflict-free

methods, namely, ORSet, Shopping Cart, and a variation of G-Set that uses buffers instead

of summaries. These methods are not reducible because they are either not summarizeable

or have dependencies. Our implementation shows 3.95, 22.28, and 1.33× improvement in

the throughput, and 37.93, 2.04, and 1.54× reduction in the response time compared to
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Figure 4.12: Comparison of throughput and response time for Movie benchmark.

Mu, MSG, and Hamband, respectively. Similar to Hamband, our implementation avoids

synchronization for irreducible conflict-free methods which leads to higher throughput and

lower response time compared to Mu.

Figure 4.12 shows throughput and latency of the Movie use-case for 2, 4, and 8M up-

date operations. This benchmark only contains conflicting call which require synchronization.

Our design improves the throughput by 1.28 and 2.20× compared to Hamband and Mu and

decreases the response time by 1.15, and 1.11×, respectively. While our implementation runs

a similar consensus protocol to Mu, by storing the replication state locally on the FPGA and
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Figure 4.13: Project management throughput and response time.

as close as possible to the replication engine and the RDMA stack, our design outperforms

Mu in terms of throughput and latency.

Finally, figure 4.13 shows the throughput and response time (per method) for the

project management benchmark for different update call ratios. This benchmark contains

methods in all three categories. Our implementation improves the throughput by 1.22 and

1.45× compared to Hamband and Mu. In terms of response time, our design cuts the query

latency almost in half as it is as cheap as a signle access to local BRAM memories. The

response time for WorksOn calls is higher compared to Mu since they are dependent on

addProject and addEmployee calls and have to wait for them to be delivered.
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Figure 4.14: Effect of failure on the Counter and ORSet use-cases.

Fault Tolerance

In this section we investigate the effect of node failure on throughput and response

time. Node failure is simulated by suspending the node’s heartbeat, which causes other

nodes to suspect it. After a failure, all requests to the failed node are redirected to the

next available node, and in the case of leader failure, conflicting calls must wait for the

leader-change protocol to elect a new leader and hand down the write permissions to the

new leader. The experiments in this section are executed on 4 nodes with 4M operations.

We analyze the node failure effect on two CRDTs which contain no conflicting methods and

use either reliable broadcast protocol or single RDMA writes. Furthermore, we present the

results for the Courseware use-case which contains methods in all three categories.
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Figure 4.14 shows the throughput and latency of Counter and ORSet benchmarks

with and without failure for Mu, Hamband, and our proposed design. In the failure scenario,

Counter and ORSet show only 2.5% and 3% decrease in the throughput and 5.3% and 2.6%

increase in the response time compared to the no failure scenario. The results indicate

that our implementation can withstand failures smoothly for conflict-free use-cases, with

a small decrease in throughput and a moderate increase in response time. Hamband, on

the other hand, suffers from a 5% decrease in the throughput for both use-cases and 15%

and 6% increase in the response time for the counter and ORSet, respectively. The leader

failure detection thread might get de-scheduled by the OS in Hamband which tampers the

performance; however, in our design we offload the thread to the FPGA and ensure that

it is executed periodically. Mu’s throughput is decreased by 72% and its response time is
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Figure 4.16: The effect of failure on the courseware response time per method.

increased by 34% in case of the leader failure. The reason behind this huge performance

decrease is the fact that Mu synchronizes the calls for these two benchmarks; although, they

can be executed without synchronization and the leader failure causes a massive delay in the

system.

Figure 4.15 shows the throughput and Figure 4.16 shows the latency of Courseware

use-case for three different scenarios: no failure, follower failure, and leader failure. The

follower failure impacts the throughput by 3.7% and the leader failure decreases the throughput

by 11.7%. Hamband suffers up to 53% reduction in the throughput in the case of leader

failure [43]. By offloading the heartbeat scan thread to the FPGA and storing all the Queue

Pair metadata locally on the FPGA, our implementation mitigates the throughput loss

drastically. The registerStudent method, which is conflict-free, shows little to no change in

response time even in the event of leader failure. This is because this method does not require

synchronization by the leader, and thus can be easily redirected to follower nodes without

much impact on its response time. However, the response time of conflicting methods, such
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as addCourse, deleteCourse, and enroll, suffers from a 35% increase. This is because these

methods need to wait for the leader-change protocol to elect a new leader, resulting in a

significant delay in their response time.

Log Allocation Optimization

In order to investigate the effect of log allocation optimizations discussed in Section

4.5.5, we take the project management benchmark, assign call frequency and priority to each

method and feed it to the SMT solver. The SMT solver gives us the amount of memory

for each method log, which memory to allocate it in, and the processing quota for each log.

The project management class encompasses five methods, namely, addProject, deleteProject,

worksOn, addEmployee, and query. The addProject, deleteProject, and worksOn methods

are part of the same synchronization group and will be allocated a single memory log. We

assume that these three methods are called with a frequency of 300K calls per second, the

addEmployee with a frequency of 100K and the query method with a frequency of 600K calls

per second. We assign priority values of 0.6, 0.3, and 0.1 to addEmployee, methods in the

synchronization group, and the query.

Figure 4.17 shows the throughput and response time for different allocation scenarios.

Each data point in the plot is represented as a 6-tuple (𝑠𝐵𝑅𝐴𝑀 , 𝑠𝐷𝐷𝑅, 𝑠𝐻𝐵𝑀 , 𝑞𝑞𝑢𝑒𝑟𝑦,

𝑞𝑎𝑑𝑑𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒, 𝑞𝑠𝑦𝑛𝑐ℎ_𝑔𝑟𝑜𝑢𝑝). The 𝑠𝑚𝑒𝑚 shows the amount of logs allocated in that memory

type in Megabytes, and 𝑞𝑚𝑒𝑡ℎ𝑜𝑑 represents the processing quota allocated to that method log.

The dark green diamond on the far right side of the plot is the memory allocation based on

the SMT solver’s output and the rest of the data points are randomly generated.
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Figure 4.17: Effect of log allocation optimization.

The SMT solver assigns query and addEmployee calls to the BRAM with processing

quota of 0.8 and 0.2, and allocates the method calls in the synchronization group in HBM.

This is consistent with the frequency call and the priority assigned to the calls. Query has the

highest frequency call so it would benefit from being as close as possible to the Application

Engine. Next, the solver has to decide whether to put addEmployee or the three conflicting

methods in the BRAM, since all of them would not fit. It seems like based on the priority of

addEmployee, the solver allocates it in the BRAM and assigns the conflicting methods to

HBM. The solver’s output has the highest throughput (1.456 Ops/ms) and lowest response

time(3 /µs) compared to other configurations.

The data point (15, 0, 50, 0, 0.8, 0.2, 1) shows the same allocation as the sovler’s

output but with less memory allocated in the BRAM for the replication log. This data point

has the same response time as the solver’s output; however, the throughput in this allocation

scheme is 26% less than the optimum allocation. We also tried increasing the log size in the

HBM and did not notice any improvements in the performance which shows that the solver’s

output is the optimal value.
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(note the logarithmic scale on the vertical axis).

Energy Consumption

Figure 4.18 compares the energy consumption in units of Watt-seconds (joule)

for Mu, Hamband, and our FPGA implementation. The total energy was calculated by

integrating the power as a function of time that each hardware platform consumes for 4M

operations. We run the experiments for 4 nodes and report the energy consumption of a

single node. As shown in Figure 4.18, the energy gap between the FPGA and Mu/Hamband

increases drastically with the complexity of the benchmark (note the logarithmic scale on

the vertical axis). On average, Hamband and Mu consume 2.31 and 5.94 times more energy

compared to our FPGA implementation.
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Chapter 5

Conclusion

5.1 FA-LAMP Concluding Remarks

Chapter three explored FPGA accelerator architectures for time series similarity

prediction using CNNs. We integrated a custom IP accelerator block using different Xilinx

DPUs to enable whole-model acceleration of the FA-LAMP CNN on two platforms: a Xilinx

Ultra96-V2, which is representative of FPGA-accelerated edge computing, and Alveo U280

FPGA, which is representative of a cloud-based system.

Compared to a Raspberry Pi 3 and an Edge TPU, our edge design achieved

5.7× and 18.2× higher inference rate and improved the energy efficiency by 8.7× and 24×

respectively. We compared the cloud-based accelerator performance with LAMP running on a

high-end desktop CPU as well as server CPU processors and a GPU. While the FPGAs could

not compete with the server CPU in terms of throughput or inference rate, they reduced

latency by two orders of magnitude and energy consumption by one order of magnitude.

We also compared the performance of the DPU running FA-LAMP to four state-of-the-art
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frameworks for CNN compilation onto FPGAs; the result of this experiment showed that the

DPU achieves the highest overall performance, with the exception of one framework (FINN)

that uses much lower precision and therefore suffers from significant degradation in inference

accuracy. Lastly, we integrated the DPU with a Xilinx 100Gb/s Ethernet module on the

Alveo card, demonstrating the ability process streaming data obtained directly from the

network without the involvement of a host CPU.

5.2 FPGA-Based Consensus Concluding Remarks

Chapter four proposed an FPGA architecture which is capable of replicating user

requests with low latency and fail-overing the system within microseconds. We implemented

our design on Alveo U280 and Alveo U250 FPGAs and executed experiments in various

scenarios (no failure, leader failure, follower failure).

Our design improved the throughput by 1.48× and 6.62× compared to Hamband

and Mu for CRDTs with reducible methods and reduced the response time by 2.14× and

1.49×, respectively. For a use-case containing method calls in all three categories of semantics

(reducible, irreducible conflict-free, and conflicting), our design improved the throughput by

1.22× and 1.45× compared to Hamband and Mu.

5.3 Future Work for FA-LAMP

We envision several avenues of future work to improve FA-LAMP. We would like to

more thoroughly explore the space of sigmoid approximation functions, including piecewise

alternatives to ultra_fast_sigmoid, which might be able to reduce its error, and variants of
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sigmoid_fastexp_N for values of 𝑁 other than 512; there is also considerable opportunity to

explore the internal architecture and precision of sigmoid_fastexp_N. We also would like to

demonstrate that DPU-like overlays can efficiently implement global average pooling and

sigmoid approximation functions, which would alleviate the need transfer data out of the

overlay. Long-term, we would like to harden the FA-LAMP inference engine so that it can

be integrated into a system-on-chip (SoC), creating a near-sensor CNN inference system that

can process streaming data.

5.4 Future Work for FPGA-based Consensus

The current existing RDMA stack (based on StRoM) lacks several RDMA semantics

such as Completion Queue, Memory Regions, and Queue Pair configurations such as timeout

and retry count. We would like to extend the network stack with these capabilities to

have a complete RDMA system that closely corresponds to the software RDMA library

(libibverb). We would also like to test our design with larger use-cases which represent real

world applications such as TPC-C and TPC-E. There is also significant opportunity to

explore and optimize the Mu’s consensus protocol implementation on the FPGA or explore

other alternatives for synchronizing conflicting method calls.
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