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Abstract
Previous research has shown that our subjective sense of cer-
tainty doesn’t always accurately reflect the strength of the ev-
idence that has been presented to us. We investigate several
key factors that drive children’s certainty using a Boolean con-
cept learning task. We created an idealized learning model
to predict children’s accuracy and certainty during the experi-
ment, given past evidence that they have seen in the task, and
we compared its predictions with our behavioral results. Our
results suggest that while predictors from the idealized learn-
ing model capture children’s accuracy, behavioral predictors
generated by the behavioral data can better predict children’s
certainty. We also show that younger children’s certainty can
be explained by the idealized learning model, while older chil-
dren’s certainty is primarily predicted by how well they ob-
served themselves doing in the experiment.
Keywords: certainty; confidence; concept learning

Introduction
Certainty directly determines what agents learn and believe.
Past research has shown that certainty guides attention and
also moderates the way information is encoded (Wade &
Kidd, 2019): if you think you know a lot, not only do you
stop seeking out new information, but even when new infor-
mation is presented to you, you do not encode the information
the same way as if you were uncertain. In the context of learn-
ing, certainty serves as a general-purpose metacognitive sig-
nal that guides learning (Kidd & Hayden, 2015; Baer & Kidd,
2022). Human infants (Kidd, Piantadosi, & Aslin, 2012;
Piantadosi, Kidd, & Aslin, 2014), children (Cubit, Canale,
Handsman, Kidd, & Bennetto, 2021; Wang, Yang, Macias,
& Bonawitz, 2021), and adults (Kang et al., 2009) prefer to
direct their attention and engage in learning when they are
moderately uncertain about the stimuli. Certainty also guides
learning in non-human species. For instance, studies have
shown that macaques exhibit a similar pattern: they show
preferential attention to moderately complex events (Wu et
al., 2022).

Research shows that subjective sense of certainty (how
confident participants feel) and objective measures of cer-

tainty (the probability that participants are correct, given
the strength of the evidence) can be two distinctive signals
(Pouget, Drugowitsch, & Kepecs, 2016; Martı́, Mollica, Pi-
antadosi, & Kidd, 2018). Furthermore, a subjective sense of
certainty can depend on many factors other than the objec-
tive measures of probability. For instance, research has found
that subjective certainty, or confidence, can be influenced by
participants’ competence (Kruger & Dunning, 1999), the dif-
ficulties of tasks (Larrick, Burson, & Soll, 2005), and the
amount of information available (Tsai, Klayman, & Hastie,
2008).

In the present study, we present an experiment to look at
factors driving children’s subjective certainty when they per-
form a Boolean concept-learning task. Concept learning is
the process of learning categorization from examples. The
Boolean concept-learning tasks we used involve learning con-
cepts whose membership is determined by a combination of
binary features (Shepard, Hovland, & Jenkins, 1961). They
were widely used to study concept learning because the com-
plexity of these Boolean concepts can be measured easily
(Feldman, 2000). They also allow researchers to construct a
learning model with a simplified hypothesis space (Goodman,
Tenenbaum, Feldman, & Griffiths, 2008; Martı́ et al., 2018).

Our Boolean concept-learning task requires children to
conduct rational inductive learning within that simplified hy-
pothesis space. Inductive reasoning ability is important be-
cause it is required for many cognitive tasks, such as mak-
ing abstractions and deriving rules (Perret, 2015). Previ-
ous research has shown that children, as young as 4 years
old, can use their inductive reasoning abilities to infer causal
structures from evidence (Gopnik & Schulz, 2004; Bright &
Feeney, 2014; Sobel, Tenenbaum, & Gopnik, 2004). How-
ever, no experiment has measured and explained children’s
change of certainty in this inductive learning process. In this
paper, we present experimental and modeling evidence that as
children age, the factors that drive their certainty shift from
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Figure 1: Experimental design. Left: participants see 12 trials
that measure their accuracy and certainty. Right: feedback
was given after each trial.

Table 1: Concepts and their corresponding rules.

Concept Rule
1 red ∧ square
2 red ∨ square
3 red
4 ((red ∧ triangle) ∨ (green ∧ square))
5 ((red ∧ square) ∨ (green ∧ triangle))

the strength of the observed evidence to how well they ob-
serve themselves doing in the course of learning.

Methods
Participants
76 children between the ages of 4 to 8 years old participated
in the experiment either in person or on Zoom. Data from
5 participants were removed due to missing information on
their precise age at the testing date. The analysis is done on
the remaining 71 participants (Mean age = 6.36, SD = 1.35).

Design
We asked children to perform a standard Boolean concept-
learning task, in which we measured their knowledge of a hid-
den concept and their certainty throughout the learning pro-
cess. In this experiment, participants were shown positive and
negative examples of a target concept “daxxy”, whose mean-
ing was determined by a latent rule on two feature dimensions
(the category and the color of a shape), following experimen-
tal work by Shepard et al. (1961) and Feldman (2000). The
latent rules participants were required to learn varied across
various logical forms. We tested each child on just one of 5
possible latent rules, chosen at random. Thus, each child had
to infer only one rule for a set of objects. The conceptual rules
are shown in Table 1. Concept difficulties are calculated by
the complexities of the Boolean logical operations that define

the concept (Feldman, 2000). Some concepts are simpler be-
cause they contain fewer logical operations and fewer shape
parameters. For instance, concept 3 is the simplest because
its rule contains no logical operations and only one shape pa-
rameter. Some concepts are harder because they contain more
logical operations and more shape parameters, like concepts
4 and 5.

The experiment contains 12 trials. In each trial, partici-
pants see one of the four possible shapes (red square, red tri-
angle, green square, green triangle) and provide their guess on
whether the shape belongs to the concept ”daxxy” or not. Af-
ter that, they also provided their certainty-how confident they
are that a shape is or isn’t ”daxxy”. In our experiment, the
confidence level was measured using a 3-point scale accom-
panied by pictures of a child expressing high, medium, and
low confidence in their answer (Hembacher & Ghetti, 2014).
Participants were trained to point to the low-confidence op-
tion if they were ”not so sure”, the medium-confidence option
if they were ”a little sure”, and the high-confidence option if
they were ”really sure”.

Before they did these 12 test trials, the researchers did pre-
task training with participants using a different training con-
cept that was very easy to learn so that they became famil-
iar with Boolean concept-learning tasks. Participants also
received training and practice using the confidence scale to
make sure that they felt comfortable expressing their certainty
with this scale and that they understood what each option
meant.

Analysis
For the analyses, we proposed several factors that could ex-
plain participants’ uncertainty and compared them to deter-
mine the best ones. These predictors can be classified into
two broad categories: model-based predictors, and behavioral
predictors. Model-based predictors were calculated using our
idealized learning model, and behavioral predictors were cal-
culated using the behavioral data. Since logarithmic transfor-
mations are common in psychophysics, many of our predic-
tors were considered in their standard form, as well as under
a logarithmic transformation. Examples of top-performing
model-based and behavioral predictors and their definitions
are shown in Table 2.

We created a model to determine how confident a learner
should be, given past evidence they have seen in the experi-
ment. We call the model an idealized learning model because
it acts as a rational learner that considers the strength of all
the past information and weighs each new piece of evidence
when determining which of all possible rules in a hypothe-
sis space is more likely to be the concept. Our implementa-
tion was developed using the Language Of Thought library,
LOTlib (Piantadosi, 2014).

To use this modeling technique, we first define a probabilis-
tic context-free grammar (PCFG) with a set of primitives that
contains logical primitives (and, or, not), category primitives
(triangle, square), and color primitives (red, green). We can
combine these primitives to form latent rules such as those
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Table 2: Key behavioral predictors and their definitions (shaded) as well as key model-based predictors and their definitions
(unshaded)

Predictor Description
Local Accuracy Performance on previous N trials (N = 2, 3, 4, 5)
Local Accuracy Current Performance on previous N trials (N = 2, 3, 4, 5) and a guess on the current trial
Total Accuracy Total number of correct trials so far
Trial Number of trials participants have seen so far
Entropy Model uncertainty over hypotheses regarding what the concept is
Domain Entropy Model uncertainty over which objects belong to the concept
MAP The probability of the best hypothesis
MAPNoPrior The probability of the best hypothesis ignoring the prior probability

used in concepts shown in Table 1. Each rule that this gram-
mar can generate serves as a hypothesis of what the concept
could be. Together, these rules span an infinite hypothesis
space. We also defined the probability distribution such that
there is a uniform prior over each basic rule in the grammar.
As a result of the multiplication of compositional rules, sim-
pler rules are favored over more complex ones.

To establish a tractable hypothesis space, the model drew
10000 samples from the posterior distribution of hypotheses
using tree-regeneration Metropolis-Hastings and stored the
best 100 hypotheses based on the simplicity and the fit of hy-
potheses. The model also includes a parameter for the noise
in the data (alpha) and a parameter for the power law mem-
ory decay on the likelihood of previous data (beta). We set
the value of alpha to 0.40 and beta to 0 as a result of doing
a grid search and selecting the values that yielded the best fit
for our data.

Results
Accuracy and certainty improve throughout the
experiment
Figure 2 shows participants’ performance over trials of the
experiment, separated by concepts. The red circles represent
the mean accuracy of all participants. Participants become
more accurate throughout the experiment, which indicates
that they gradually learn the concept with more trials. We can
also see that they didn’t learn every concept equally well. In
the first three concepts, participants reached high accuracy,
demonstrating that they learned the concepts. However, the
accuracy of concepts 4 and 5 is significantly lower than that
of other concepts. Therefore, it’s not clear whether children
learned the concepts in these two concepts. This result is con-
sistent with what Shepard et al. (1961) and Feldman (2000,
2003) found, that concepts referring to more dimensions with
more logical operators were harder to learn.

In Figure 2, the blue triangles represent the mean certainty
of all participants. In our analysis, certainty is coded as a
binary variable that can have the value 0 or 1. Certainty
was coded as 0 if the participant pointed to either the low-
confidence option or the medium-confidence option. It was

Table 3: Top three behavioral predictors and their AIC
(shaded) and top three model-based predictors and their AIC
(unshaded).

Predictor AIC
LocalAccuracy3BackCurrent 965.3644
LocalAccuracy1BackCurrent 966.4860
LocalAccuracy2BackCurrent 966.9417
Entropy 987.9356
MAP 988.0496
Domain Entropy 991.0423

coded as 1 if the participant pointed to the high-confidence
option. We coded both the low-confidence option and the
medium-confidence option as certainty being 0 because we
found that children tend to either only use a combination of
the low-confidence option and the high-confidence option, or
use a combination of the medium-confidence option and the
high-confidence option to signal their change in confidence
level.

Figure 2 shows that, in general, participants also become
more confident with their answers through the experiment,
regardless of the difficulty of the concept. However, they only
achieve high certainty when their accuracy is also high, in the
first three concepts.

Idealized learning model predicts accuracy
We used a generalized logistic mixed-effect model with ran-
dom subject and concept effects to determine how well our
model can predict behavioral accuracy. Figure 3 shows
our result. It shows that behavioral accuracy can be well-
predicted by model accuracy (β = .748, z = 30.423, p < .001).
This is an indication that the model can capture children’s
learning behaviors and outcomes reasonably well.

Local accuracy predicts certainty
Next, we aimed to see if our idealized learning model can
also predict participants’ certainty during the experiment. We
ran a generalized logistic mixed-effect model with random
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Figure 2: Mean accuracy (red circles) and mean certainty (blue triangles) throughout the experiment, separated by concepts.
The upward trend of both red circles and blue triangles indicates that participants become more accurate and more certain
over the experiment. However, the relatively low accuracy and certainty in concepts 4 and 5 indicate that concepts with more
complex rules are harder to learn and participants only achieve high certainty when the accuracy is also high.

Table 4: Regression for best predictors with behavioral predictors (shaded) and model-based predictors (unshaded).

Predictor Beta Standard Error z Value Pr(>|z|)
Intercept 0.14 0.07 1.93 0.054
LocalAccuracy3BackCurrent 0.60 0.14 4.14 < 0.001
log(totalCorrect) -0.02 0.22 -0.07 0.943
log(Trial) -0.11 0.15 -0.75 0.455
Entropy -0.73 0.47 -1.55 0.120
MAP 0.05 0.23 0.22 0.822
Domain Entropy 0.52 0.38 1.46 0.174

subject and concept effects for every model-based predictor
and behavioral predictor. We ranked these models by their
Akaike information criterion (AIC), which quantifies the fit
of each model while penalizing its number of free parameters
(a model with a lower AIC is considered to be better). Ta-
ble 3 shows the top 3 behavioral and model-based predictors
and their AIC. We found that the best group of predictors is
LocalAccuracyCurrent. This means that the performance of
the previous few trials and a guess of the current trial can best
capture the changes in participants’ certainty. Among this
group of predictors, LocalAccuracy3BackCurrent, the accu-
racy averaged over the past 3 trials and a guess on the current
trial has the best performance. This indicates that participants
report higher certainty when they performed more accurately
over the past 3 trials.

We also found that, in general, behavioral predictors out-
perform model-based predictors. As Table 3 shows, the AIC
of our top behavioral predictors is significantly lower than
that of our top model-based predictors.

We created a single regression model using the top three
behavioral predictors and the top three model predictors to
determine the unique contributions of each predictor when
multiple predictors are allowed in the same model. We used
LocalAccuracy3BackCurrent as the representative predictor

of all predictors from LocalAccuracy and LocalAccuracyCur-
rent group, and we added predictors totalCorrect and Trial to
the regression model since they yielded the next best individ-
ual model in our previous analysis. Table 4 shows our regres-
sion results. As it shows, LocalAccuracy3BackCurrent sig-
nificantly outperforms all other predictors in its contribution
to certainty. All other predictors were not significant when
controlling for LocalAccuracy. This result aligns with the re-
sult from individual generalized logistic mixed-effect models
that LocalAccuracy predicts certainty.

Our results mirror Martı́ et al. (2018)’s study, which shows
that adults’ certainty is also primarily driven by local feed-
back. Martı́ et al. (2018) employed a similar but more com-
plex Boolean concept-learning task with adults. The results
showed that adults’ certainty can also be predicted by Lo-
calAccuracy as opposed to model-based predictors from the
idealized learning model. These results, together, suggest
that while an idealized learning model that only considers the
strength of past evidence can capture participants’ overall per-
formance, it does not predict participants’ certainty. Instead,
their certainty is predicted by how well they perceive them-
selves doing during the experiment based on their feedback.
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Table 5: Top three behavioral predictors and their AIC (shaded) and top three model-based predictors and their AIC (unshaded)
for younger, older, and all participants.

All participants Younger participants Older participants
Predictors AIC Predictors AIC Predictors AIC

LocalAccu3BackCurrent 965.36 log(MAP) 527.77 LocalAccu1BackCurrent 450.68
LocalAccu1BackCurrent 966.49 log(MAPNoPrior) 528.26 LocalAccu2BackCurrent 452.82
LocalAccu2BackCurrent 966.94 Entropy 528.36 LocalAccu3BackCurrent 453.33

Entropy 987.94 LocalAccu4BackCurrent 528.50 Entropy 480.18
MAP 988.05 LocalAccu3BackCurrent 529.31 Domain Entropy 483.35

Domain Entropy 991.04 log(LocalAccu3BackCurrent) 530.28 MAP 485.80

Figure 3: Behavioral accuracy as a function of accuracy pre-
dicted by the idealized learning model.

Younger children’s certainty is predicted by the
idealized learning model and older children’s
certainty is predicted by local feedback

We were interested in whether the primary factors that
drive children’s uncertainty change throughout development.
Therefore, we split the dataset by age in order to compare
trials from younger participants (N = 35, Age = 4.05 - 6.29,
mean = 5.18, SD = 0.66) to those from older participants (N
= 36, Age = 6.4 - 8.98, mean = 7.51, SD = 0.69). We also
ran a generalized logistic mixed-effect model with random
subject and concept effects for all model-based and behav-
ioral predictors separately, as we have run before, on these
two datasets. Table 5 shows our modeling results for all par-
ticipants, younger participants, and older participants. As it
shows, while older participants’ certainty is primarily driven
by predictors that are related to local feedback, younger par-
ticipants’ certainty can be well-predicted by our model-based
predictors.

For both age groups, we created a regression model using
the top three behavioral predictors and the top three model-
based predictors, and we compared the results with those of
all participants. Figure 4 shows certainty as a function of
the best behavioral and model-based predictors for younger,
older, and all participants. Our results are consistent with the
previous results from the generalized logistic mixed-effect
model. We confirmed that for younger participants, when
controlling for the effect of top model-based predictors, be-
havioral predictors do not make a significant contribution to
predicting certainty. For older participants, when controlling
for the effect of local feedback, model-based predictors don’t
make a significant contribution to predicting certainty.

Conclusions and Discussion
Our experiment demonstrated that an idealized learning
model can capture participants’ accuracy in a Boolean
concept-learning task. It, however, cannot predict partici-
pants’ subjective sense of certainty during the course of learn-
ing. Instead, we found that predictors derived from local feed-
back have the most predictive power of their certainty. Our
age-analysis results suggest that as opposed to older children
and adults (Martı́ et al., 2018), younger children’s certainty is
best predicted by the model-based predictors that evaluate the
strength of the accumulated evidence. This is interesting be-
cause it suggests that either maturation or experience triggers
a shift in what determines human certainty—and that older
humans are more susceptible to distortion in how certain they
should be derived from feedback as a heuristic.

Past research findings suggest that young children are ca-
pable of understanding and learning from the statistical struc-
ture of information in a way that is consistent with using a
Bayesian framework (Xu & Tenenbaum, 2007; Gopnik &
Schulz, 2004; Griffiths, Sobel, Tenenbaum, & Gopnik, 2011),
much like the idealized learning model we created to cap-
ture the performance of children’s learning. It could be that
children use those inferred statistical structures as an indica-
tion of how confident they should feel, given past evidence.
However, as children grow—and perhaps also as they develop
metacognitive and social awareness—they increasingly rely
on feedback to inform their certainty. The implications of
this age-related difference are many, and include that younger
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Figure 4: Best behavioral and model-based fits for all,
younger and older children. (A) For all participants, localAc-
curacy3BackCurrent is the best behavioral predictor. The
more positive the local feedback, the more certainty partic-
ipants report on the current trial. (B) For all participants,
entropy is the best model-based predictor. Participants re-
port higher certainty when the data has low entropy. (C) For
younger participants, localAccuracy4BackCurrent is the best
behavioral predictor. It is, however, not a strong predictor.
(D) For younger participants, the log of likelihood is the best
model-based predictor. (E) For older participants, localAccu-
racy1BackCurrent is the best behavioral predictor. The more
positive the local feedback, the more certainty participants
report on the current trial.(F) For older participants, entropy
is the best model-based predictor. Participants report higher
certainty when the data has low entropy.

children may be less susceptible to social feedback-related in-
fluences on their beliefs (Orticio, Martı́, & Kidd, 2022).

We also found age-group differences in children’s sensi-
tivity to certainty and the criteria they use to classify dif-
ferent levels of certainty (Baer & Kidd, 2022). For in-
stance, children are usually overconfident in their perfor-
mances (Van Loon, De Bruin, Leppink, & Roebers, 2017),
however, overconfidence tends to decrease as children age
(Schneider, Visé, Lockl, & Nelson, 2000). In our analysis,
we introduced the random subject and concept effects into our
idealized learning model to address these differences, while
maintaining our focus on the contributions of the key factors
that drive children’s certainty during concept learning. Fur-
ther work is needed to disentangle the mechanisms responsi-
ble for these age-related changes, as they could depend upon
maturation, experience, or both.

The observed shift—from younger children’s reliance on
the strength of evidence towards older children’s reliance on
feedback for determining their certainty—makes specific pre-
dictions with profound implications on how and why younger
children’s curiosity and learning may operate differently. Key
implications include that their information-seeking and infor-
mational encoding—both of which are tied directly to their
curiosity (Wade & Kidd, 2019)—are more closely aligned
with what they truly do not know than only what they believe
they do not know. We will further investigate the mechanisms
underlying this shift and its implications in subsequent work.
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