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Abstract

This paper presents a novel hierarchical nuclei segmentation algorithm for isolated and overlapping cervical

cells based on a narrow band level set implementation. Our method applies a new multiscale analysis

algorithm to estimate the number of clusters in each image region containing cells, which turns into the

input to a narrow band level set algorithm. We assess the nuclei segmentation results on three public

cervical cell image databases. Overall, our segmentation method outperformed six state-of-the-art methods

concerning the number of correctly segmented nuclei and the Dice coefficient reached values equal to or higher

than 0.90. We also carried out classification experiments using features extracted from our segmentation

results and the proposed pipeline achieved the highest average accuracy values equal to 0.89 and 0.77 for

two-class and three-class problems, respectively. These results demonstrated the suitability of the proposed

segmentation algorithm to integrate decision support systems for cervical cell screening.

Keywords: cervical cell, cluster estimation, hierarchical algorithm, narrow band level set, nuclei

segmentation.

1. Introduction

Cervical cancer no longer occupies a visible place on the list of diseases dreaded by Western women [1],

however it is estimated that over a million women worldwide currently suffers from this disease [2]. Over

the past three decades, cervical cancer rates have decreased in most developed countries, mainly due to
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the effectiveness of the Papanicolaou screening test (Pap smear test) [2]. In this test, cytologists, using a5

microscope, search for very early changes in the uterine cervix cells (also called pre-cancer), before cancer

develops [2, 3].

Recent works [4, 5, 6, 7, 8, 9] have focused on automatic cell analysis, including more accurate seg-

mentation methods for microscopy images, since the visual interpretation is time-consuming and requires

high-level experienced observers [10]. Furthermore, changes in the cell nucleus morphology, nuclear texture10

and hyperchromasia are highly informative to recognize abnormal cells [11, 12, 13]. In cell classification

tasks, information about nucleus plays a key role because it may reveal significant changes in shape and

chromatin distribution [14, 15, 16]. Thus, efficient and accurate methods for nuclei segmentation are decisive

to design reliable computational tools for cervical cancer screening.

Although nucleus, cytoplasm and background are the three main regions in cervical cells, Pap test images15

may contain blood cells, inflammatory cells, cell fragments, debris, overlapping cells, etc. In addition, changes

caused by Human Papilloma Virus (HPV) can generate dense cell clusters. This is a challenging scenario

where multiregion segmentation is required and level set is an efficient approach to handle it. The original

level set provides binary segmentation and it is a robust and accurate method for image segmentation [17] of

a wide range of applications. For example, Rebouças et al. [18] introduced an algorithm for graphite nodule20

segmentation and Alarifi and Alwadain [19] proposed a level set algorithm to detect dental cancer. Wu and

He [20] proposed a variational level set model and a pointwise convergent numerical scheme for the purpose

of two-phase segmentation. Liu et al. [21] proposed a variational model in a binary level set framework

for segmenting two-phase images with impulse noise. Nevertheless, the original level set formulation is

computationally expensive and to overcome this drawback Ushizima et al. [22] used the fast marching25

method [17] for vessel segmentation. This method is faster and shares a common theory and numerical

methodology with the level set method. However, the fast marching embodies a curve that advances only

monotonically, i.e., forward or backward. Our proposed algorithm has the advantage of moving a curve in

both directions to delimit a region of interest. Thus, we adopted a fast binary level set, introduced by Braga

et al. [23], with a narrow band implementation [17]. The main reason for this new implementation is that30

it reduces the computational cost as it performs only in a narrow band of the propagation curve.

The generalization of the original level set to multiple regions usually comprises several level set functions.

However, according to [24], the design of efficient propagation models for multi-region segmentation is a hard

task when the number of regions is unknown. For instance, global level set approaches driven by subtle

contrast differences between cytoplasm regions and nuclei tend to misclassify the nuclear regions. Undesirable35

2



results may occur such as the intersection of regions or sets of regions which do not cover the image domain.

Alternatively, hierarchical level set methods can perform multi-region segmentation [25, 26].

Inspired by [26], our hierarchical algorithm for nuclei segmentation recursively processes the whole image

and outputs two new regions. The hierarchical segmentation criterion is based on a multiscale analysis

over each region histogram to estimate the number of clusters for the next splitting step. Henceforth,40

the algorithm performs image segmentation if the current region comprises two or more clusters. Thus,

at each step of the hierarchical process, it searches for cell nuclei based on six features of the segmented

regions: size, mean gray level, difference between mean gray level and neighborhood gray level, circularity,

minor and major axis ratio and area ratio between nucleus and cytoplasm. The main contributions of this

work are as follows: (a) development of a novel hierarchical narrow band level set algorithm for cervical45

cell nuclei segmentation that does not rely on prior information about the number of image clusters; (b)

implementation of the median filter regularized level set algorithm proposed in [23] in narrow band, here

called median narrow band level set; (c) design of a new multiscale method for cluster estimation to support

the hierarchical process and to initialize the median narrow band level set algorithm.

In this paper, we carried out experiments on images from three public cervical cell databases presented50

in [6] (Extended Depth of Field (EDF) images), [27] (ISBI 2014 challenge) and [28] (Herlev) and appraise

the accuracy of six cervical cell segmentation methods. In addition, we assess the accuracy and impact

of the segmentation results on classification tasks, that rely on feature extraction, using the Herlev data

set that contains labelling information about the cell images. Hence, based on texture and shape features

obtained from the nuclei segmentation results, we perform classification experiments into two classes (normal55

and abnormal) and three classes (normal, Low-grade Squamous Intraepithelial Lesion (LSIL) and High-

grade Squamous Intraepithelial Lesion (HSIL)) in accordance with the Bethesda system which is used for

diagnosis. Overall, our segmentation results promote a set of features extracted from cell nuclei quite similar

to the ones extracted from the ground truth images, in cervical cell classification experiments. It means

that accurate nuclei segmentation preserves and encompasses intrinsic shape and texture differences among60

cells. Furthermore, the proposed algorithm deals with three cell image databases that present remarkable

differences concerning resolution, contrast, imaging source, images with single cells and clump of cells with

different degrees of overlap real and synthetic images, to name a few.

The paper unfolds as follows: Section 2 presents the related works. Section 3 introduces the hierarchical

narrow band level set algorithm for nuclei segmentation and the multiscale algorithm for cluster detection.65

In Section 4, we perform the comparative evaluation of the proposed approach with the methods introduced
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by [6], [29], [30], [31], [3] and [32]. Section 5 presents the results, evaluates and discusses them. Finally,

Section 6 draws conclusions and future developments.

2. Related Work

Efforts to apply multiple level set functions for cervical cell segmentation [6] enabled the analysis of nuclei70

and cytoplasm from both free-lying and overlapping cells. Lu et al. [6] obtained a super-pixel image using

the quick shift algorithm. Then, it detected edges and builded a convex hull. In order to achieve the final

regions of cell clumps, the algorithm performed an unsupervised binary classification. These cell clumps are

used as inputs to the Maximally Stable Extremal Regions (MSER) algorithm to detect stable connected

components that contain the nuclei. Finally, to obtain the individual cytoplasm regions, the detected nuclei75

are used to estimate the initial segmentation and the shape prior to the subsequent level set optimization.

Here, we further refer to this cell segmentation method as MSERLS. Ushizima et al. [29] developed an

algorithm for cell clump segmentation by merging regions based on pixel adjacency and intensity similarity

using a graph-based algorithm, followed by a global search cutoff approach on the superpixel image. Here,

we named this algorithm LTSN. It applies a local thresholding algorithm to segment nuclei inside cell clumps80

and, based on the identified nuclei, it divides the image into convex polygons through Voronoi diagrams to

separate overlapping cytoplasm.

The Radiating Gradient Vector Flow snake (RGVF) [30] method achieved relevant results on images

with single cervical cells. This method roughly divides an image into nucleus, cytoplasm and background

regions by using a spatial K-means algorithm and the contours extracted from these initial results are the85

inputs for the RGVF snake [30]. Chankong et al. [31] introduced a cell segmentation method that combines

the fuzzy C-means (FCM) clustering technique and a median filtering step, and hence we named it MFCM.

FCM is responsible for dividing the filtered image into 7 clusters which are classified into three final clusters,

i.e., nucleus, cytoplasm, and background.

More recent cervical cell nuclei segmentation algorithms based on deep learning [3, 33, 34, 35, 36] are90

available in literature. The main drawbacks of these algorithms are the reliance on a large number of images

for training and the high computational cost. Tareef et al. [3] designed an automatic algorithm based on

deep learning and dynamic shape model for individual nuclei and cytoplasm segmentation from Pap smear

images. The simple linear iterative clustering technique (SLIC) [37] generates image patches or superpixels

taking into account the intensity similarities and spatial proximity. Then, it classifies the image patches95

into three cellular components, i.e., nuclei, cytoplasmic mass, and background using a convolutional neural
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network (CNN). The level set algorithm refines the contours of regions. It separates the individual cytoplasm,

for each detected nucleus, inside each cellular mass in a variational segmentation framework with a learned

shape that is iteratively updated. Here, we further refer to this cell segmentation method as DeepCNN1.

Gautam et al. [32] proposed a new approach for nuclei segmentation based on selective pre-processing. This100

approach provides image patches to deep convolutional neural networks for pixel-wise 3 class labelling as

nucleus, edge or background. This nuclei segmentation approach was named here DeepCNN2.

3. Proposed Hierarchical Algorithm for Nuclei Segmentation

The proposed nuclei segmentation algorithm, named hierarchical median narrow band level set algorithm

(HMLS), follows the scheme displayed in Figure 1. It starts splitting the input image, i.e., a cervical cell105

image, into foreground (cellular mass) and background regions by using the binary median level set [23]

with a narrow band implementation, called median narrow band level set, where the data are updated only

within a narrow band around the curve, as Figure 2 shows. Then, each cellular mass segment is, recursively,

partitioned into new ones which are inputs again for the median narrow band level set. Our hierarchical

algorithm also provides a new multiscale cluster detection algorithm for the median narrow band level110

set initialization and to guide the hierarchical division process. Figure 3 exhibits the steps of the cluster

detection algorithm.

The proposed hierarchical algorithm for nuclei segmentation uses the same binary median level set, but

implemented in narrow band [17], of the hierarchical algorithm in [23], which was proposed for multi-region

segmentation of synthetic aperture radar (SAR) images. In this algorithm, the stopping condition is based115

on the arithmetic–geometric distance and the propagation function is based on the G0
I distribution. Here, we

use the information from the cluster detection algorithm in the stopping criterion and the front propagation

of the narrow band level set evolves according to the likelihood function based on the Gaussian distribution.

Based on the nuclei segmentation results, we can compute shape and texture features for classification

experiments in image databases that contain the true class labels for each sample image. Although the120

proposed method was developed for cervical cell nuclei segmentation, this classification stage can be used

to assess the accuracy and impact of the segmentation results on cell image classification. In this paper,

we classify the cervical cells into two and three classes, in accordance with the Bethesda system used for

diagnosis. We calculated the average values of the classification measures, presented in Section 4.1, by

carrying out 100 executions, where for each execution, we have divided, randomly, the data set into two125

independent subsets, i.e., the training set with 70% of data and the test set with 30% of data.
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Figure 1: Flowchart of the proposed hierarchical median narrow band level set (HMLS). In the illustrations that contain single
cell or clump of cells, the white regions are not considered in the current division and the arrows, in examples 1 and 2 of the
hierarchical division, indicate that the segments are identified as nuclei.
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3.1. Median Narrow Band Level Set

The level set theory in [17] states that a closed curve ~φ : R2×R+ → R evolves with a velocity field (±F~η),

where (±~η) is the unit vector that is perpendicular to ~φ. The movement of this curve is a consequence of

the surface ψ(x) motion, in which one is embedded in accordance with:130

~φ(s) = {x|ψ(x) = 0}, x ∈ Rn, (1)

where s ∈ R2 is the coordinate of the parametric curve ~φ. In the discrete domain, this process is expressed

as

ψk+1 = ψk +4t× (F + εK) · |∇ψk|, (2)

where ψk is the level set function, 4t is the time step, and |∇ψk| stands for the gradient magnitude. The

two speed terms refer to the front regularization εK and propagation F = d~φ
dt , where F should minimize a

cost function.135

The numerical implementation of Eq. (2) is given by [17]

ψk+1 = ψk −∆t×
(
max(F, 0)∆+ + min(F, 0)∆− + εK

∣∣∇ψk∣∣) , (3)

where ∆+ and ∆− are the forward and backward derivatives of ψk, respectively.

The implementation of the narrow band level set in [17] enables it to update data only in the neighborhood

of the curve, which can greatly reduce the computational cost. Here, we use the fast binary level set algorithm

proposed in [23] with the narrow band implementation introduced in [17]. This fast level set algorithm [23]140

performs curve regularization with a nonparametric median filter that reduces the computational cost,

instead of using the curvature. Furthermore, it also replaces the numerical derivatives ∆+ and ∆− by the

morphological erosion and dilation operations to induce curve propagation. Thus, the fast level set algorithm

evolves according to the model

ψk+1
r̄ = ψk + ∆t×

(
max(F, 0) · (ψk ⊕ E) −min(F, 0) · (ψk 	 E)

)
, (4)

where ⊕ and 	 denote morphological dilation and erosion operations, respectively, with a disk-shaped145

structuring element E, and ψr̄ refers to the non-regularized front. At each step of the hierarchical process,

we used a disk of radius 1, as in [23], ∆t = 0.5 according to [17], [23] and [38], and an initial level set function
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or initial surface ψk=0 obtained by applying the algorithm presented in Section 3.2.

Finally, the front regularization is given by

ψk+1 = MedianFilt
[
ψk+1
r̄

]
, (5)

where the operator MedianFilt [·] is the median filter.150

We performed statistical hypothesis tests with several distributions, and the image regions better fitted

to a Gaussian distribution fN (x;µ, σ2). Therefore, the binary median narrow band level set embodies a

likelihood cost function defined in [24]

F = log fN (x;µ1, σ
2
1)~η − log fN (x;µ2, σ

2
2)~η, (6)

where the parameters (µ1, σ
2
1) and (µ2, σ

2
2) are the mean and variance of the two detected clusters by

applying the cluster detection algorithm in Section 3.2.155

The median filter, embodied in our median narrow band level set implementation, is applied only to the

narrow band for curve regularization. Similarly, the likelihood cost function F is only updated within the

narrow band. Figure 2 shows a narrow band around the propagation curve of a user-defined width WNB ,

that corresponds to the width, in pixels, from the curve to each narrow band boundary. As stated in [17],

we used WNB = 3 and when the front touches the edge of the narrow band, the calculation stops, and the160

algorithm builds a new narrow band with the front at the center.

Figure 2: Example of a narrow band (in white) around the propagation curve (in red).

3.2. Proposed Cluster Detection Algorithm for Level Set Initialization

Clustering algorithms commonly divide sample points into a predefined number of clusters. In Pap test

images, it is not a trivial task to associate different cell structures, especially the nucleus, cytoplasm, and

background to different clusters. In general, image regions are divided into more than three clusters to165
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generate satisfactory nucleus segmentation results. Therefore, the number of clusters is required a priori,

which poses an additional challenge to cluster-based segmentation algorithms. Inspired by [39, 40], we

propose an algorithm that overcomes these shortcomings and estimates the number of clusters and centroids

according to the number of peaks in the histogram of the original cell image. Figure 3 exhibits the steps of

the proposed cluster detection method.170
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Figure 3: Cluster detection procedure: a) the smoothed image histogram (W0); b) first level of the à trous wavelet detail
coefficients (W1); c) correlation signal (corr0); d) detected clusters indicated by (∗); and e) the original image histogram with
points that represent the cluster centroids (◦).

The algorithm performs a low-pass Gaussian filtering on the original image histogram and, then, it

decomposes the smoothed histogram (W0) (Figure 3a) and correlates W0 with W1 (Figure 3b), which is the

first level of the à trous wavelet detail coefficients. The correlation signal (corr0) (Figure 3c) is derived from

the product between W0 and W1 according to [40]. The algorithm compares the correlation signal with the

magnitude of the first level of wavelet detail coefficients. Furthermore, it maps the points that satisfy the175

condition corr0 > |W1| [40] into the filtered histogram. Figure 3d displays points (marked with asterisks) in

the histogram which represent clusters that support the estimation of centroids. We estimate these centroids

in the original histogram by adopting the local maximum of each cluster. Figure 3e illustrates the centroids.

In this paper, we set the 1-D Gaussian filter bandwidth to L = 6σ, as suggested in [41], where σ is the

standard deviation. Thus, the smoothing process can be defined as a scale-space representation, where σ is180

the scale parameter. The higher the σ value, the lower the number of clusters. Initially, we set σ = 1, and

increase it, with step 1, until the algorithm detects only the two main clusters.

The fast level set algorithm [23], described in Section 3.1, requires an initial surface. This initialization

consists of an image composed of two regions (background and foreground), where the boundary between

the regions represents the propagation curve. In this paper, the initial surface is calculated by thresholding185
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the image histogram at the mid graylevel between the centroids of the two detected clusters, as depicted in

Figure 4b. The region inside the curve consists of all pixels whose gray values are lesser than the threshold,

whereas the outside region corresponds to its complement. This procedure to obtain the initial surface is

used in the cellular mass segmentation stage and in the following steps of the hierarchical process. Figure 4c

shows the initial surface which is the output image of the thresholding technique. In fact, this surface, which190

is close to the final segmentation result, leads the level set algorithm to converge within a few iterations. It

is worth mentioning that, at each step of the hierarchical process, the histogram is calculated only in the

current region as well as the thresholding technique is applied only to this currently analyzed region. For

example, in the illustrations containing cells in Figure 1, the white regions are not considered in the current

division.195

(a) Cell image. (b) Threshold and the two de-
tected centroids (marked as ◦).

(c) Initial surface.

Figure 4: Obtaining the initial surface by image thresholding.

3.3. Proposed Hierarchical Level Set Implementation

To perform a multi-region segmentation, we introduce a hierarchical implementation based on the binary

median narrow band level set for nuclei segmentation on Pap smear images. In fact, the cluster detection

method embodied in the proposed segmentation algorithm promotes the hierarchical division. Thus, our

segmentation algorithm only performs a new region division if the current region presents two or more clusters200

and, it stops when all regions cannot be further divided. The foreground (cellular mass) and background

regions are obtained in the first step of the segmentation of the whole image. In most cases, the background

and foreground regions are obtained in the first binary division. However, sometimes, cytoplasm parts with

higher mean gray level are misclassified as background. Thus, after the first division, the background region

is recursively divided by the median narrow band level set algorithm. The final segmentation result of the205

background is the region with the highest mean gray level. The final segmentation result of the cellular mass

is the union of the possible segments obtained with the recursive segmentation of the background and the

cellular mass obtained in the first division. The cellular mass segments are, individually, considered as new

regions, and then they are partitioned into new ones, recursively. More specifically, for each cellular mass
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segment, a bounding box is calculated as the minimum rectangle that contains the segment and then this210

region is, recursively, partitioned into new ones. The positions and sizes of the bounding boxes are saved

and the identified nuclei are included in the final segmentation result in the corresponding position.

It is worth mentioning that although the main goal of the segmentation algorithm is to identify nuclei

in cervical cells, background and cytoplasm segments can also be attainable during the hierarchical process.

Thus, at each step of the hierarchical process, we compute features from each segment of the new regions such215

as size (Sn), circularity (Cn), minor and major axis ratio (ARn), mean gray level (µn) and the difference

between mean gray level and neighborhood gray level (Dn), since nuclei regions are smaller, darker and

circular when compared to cytoplasm and background regions [5]. To assign a segment as nucleus, both

in single cell and overlapping cells, the calculated features such as size must be between minimum and

maximum values. The examples 1 and 2 in Figure 1 show the hierarchical divisions in a single cell and in220

overlapping cells, respectively, and the arrows indicate the segments identified as nucleus.

Since images from different databases have different resolutions, we used the minimum and maximum

values in µm (16.26 < Sn < 551.96), inspired by [42]. Thus, given the image resolution (µm/pixels), we

compute the corresponding values in pixels. The feature µn must be less than a maximum value (µn < 200) as

reported in [43] and Dn greater than a minimum disparity value (Dn > 35), which was obtained empirically.225

We achieved a higher number of correctly detected nuclei with the minimum value of disparity equal to 35

by varying it from 0 to 100, with an incremental step equal to 5. To ignore linear structures, the circularity

must be greater than a minimum value (Cn > 0.2), as stated in [44], and the minor and major axis ratio

must be greater than a minimum value (ARn > 0.3), where this minimum value was obtained empirically.

We eliminated a higher number of false nuclei with this minimum value by varying it from 0.1 to 1, with an230

incremental step equal to 0.1. In addition, we computed the area ratio between nucleus and cytoplasm (Rn),

where a nucleus segment must also have (Rn < 0.77), in accordance with [42]. Thus, with the exception of

the minimum and maximum values of the feature (Sn), which are calculated based on the image resolution,

the same values for features (Cn), (ARn), (µn), (Dn) and (Rn) were used in the segmentation experiments

carried out on cervical cells of three image databases. In order to refine the segmentation results, each235

identified nucleus is considered a new region and, if it presents two or more clusters, a new partition is

performed. One of the new regions obtained can also be identified as nucleus. In this case, the region with

greater circularity is considered as nucleus, as Figure 5 illustrates.
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(a) (b)

Figure 5: Refinement of the nucleus segmentation result: (a) first identified nucleus; and (b) second identified nucleus, with
greater circularity, obtained from the division of the nucleus in (a).

4. Experimental Results

For performance assessment of the hierarchical median narrow band level set algorithm (HMLS), we240

carried out segmentation experiments on three image databases which have ground truth images. The first

database has 16 Extended Depth of Field (EDF) images (1024 x 1024 pixels) [6] and it comprises 645 cervical

cells. The second one is the ISBI 2014 challenge data set [27] with synthetic cervical cytology images (512

x 512 pixels). It consists of 45 training images and 900 test images. The third one is the Herlev data

set [28] which contains 917 images of single cervical cells organized into 7 classes: 1-superficial squamous,245

2-intermediate squamous, 3-columnar, 4-mild dysplasia, 5-moderate dysplasia, 6-severe dysplasia and 7-

carcinoma in situ. It is worth mentioning that despite the differences among the three image databases

concerning resolution, contrast, imaging source, images with single cells and clump of cells with different

degrees of overlap, real and synthetic images, we have used the same parameters in the proposed algorithm,

i.e., the median narrow band level set with a disk of radius 1 [23], ∆t = 0.5 [17], [23], [38] and a narrow250

band of width WNB = 3 [17]. The experiments ran on a dual-core processor with 3.2 GHz and 8 GB RAM,

using Matlab on a Windows operating system.

Here, we perform a quantitative evaluation of the nuclei segmentation and, based on the segmentation

results, we compute shape and texture features for classification experiments and performance evaluation.

The main reason for performing these experiments is to assess the accuracy and impact of the segmentation255

results on cell image classification using the Herlev database which contains the class labels for each image.

4.1. Evaluation measures

The quantitative analysis of the nuclei segmentation results is based on the reports in [5, 6], which state

that the result is correct if at least τ percent of the detected object overlaps the ground truth and vice versa.

Similarly to [6], we have adopted τ = 0.6 as the overlap threshold. We have also computed the object-based260
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precision (PREO) and recall (RECO) measures, respectively, as

PREO =
N◦ of correctly detected objects

N◦ of all segmented objects
,

RECO =
N◦ of correctly detected objects

N◦ of all objects in the ground truth
.

(7)

Likewise, the segmentation accuracy of each correctly detected nucleus is calculated in terms of pixel-

based precision and recall according to [5]:

PREP =
TP

TP + FP
; (8)

RECP =
TP

TP + FN
, (9)

where TP (true-positive) is the number of correctly segmented pixels, FP (false-positive) is the number of265

segmented pixels that are not in the ground truth and FN (false-negative) is the number of pixels in the

ground truth that are not in the segmentation result.

We have also applied the Dice similarity coefficient (DSC) or Zijdenbos similarity index [45] to measure

the segmentation accuracy, which is defined as

DSC = 2
#{OGT ∩OSR}

#{OGT }+ #{OSR}
=

2TP

2TP + FP + FN
, (10)

where OGT denotes the ground truth region, OSR the segmented region, and #{·} the number of pixels270

in a region. DSC values greater than 0.7 indicate an adequate matching between the ground truth and

segmented regions [45].

To evaluate the classification results, we have followed the methodology introduced in [8]. Thus, we have

computed the precision or positive predictive value (PPV ), sensitivity (SENS), specificity (SPE), F-score

(FS) and accuracy (ACC) measures, respectively, as defined in [46]:275

PPV =

∑N
i=1

tpi
tpi + fpi
N

; (11)

SENS =

∑N
i=1

tpi
tpi + fni
N

; (12)
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SPE =

∑N
i=1

tni
tni + fpi
N

; (13)

FS = 2
PPV ∗SENS
PPV + SENS

; (14)

ACC =

∑N
i=1

tpi + tni
tpi + tni + fpi + fni

N
, (15)

where tpi (true-positive) is the number of correctly recognized examples of class Ci, tni (true-negative) is

the number of correctly recognized examples that do not belong to the class Ci, fpi (false-positive) is the

number of examples that either were incorrectly assigned to the class Ci, fni (false-negative) is the number

of examples that were not recognized as class Ci and N denotes the number of classes.

4.2. Segmentation experiment 1: EDF images and ISBI 2014 challenge data set280

We carried out experiments on the 16 EDF images and 900 test images of the ISBI 2014 challenge data

set to evaluate the HMLS. Both data sets contain overlapping cells which also pose difficulties for nuclei

segmentation. Moreover, we compared our method to MSERLS [6] and LTSN [29] on the 16 EDF images.

In addition to these two methods, we also compared it to DeepCNN1 [3] on the test images of the ISBI

2014 challenge data set, where the values of the evaluation measures are reported in [3]. The training step285

of DeepCNN1 was conducted on the 45 training images of the ISBI 2014 challenge data set, each with 441

patches. The publicly available code in [6], implemented in Matlab, was used to run MSERLS. Here, we

applied the code provided by Ushizima et al. [29] to run the segmentation method in [29], implemented

using Fiji. Figure 6 illustrates EDF images and test images of the ISBI 2014 challenge data set.

Table 1 shows the evaluation metrics of the experiments performed on 16 EDF images. Concerning the290

object-based nuclei detection, our method outperformed MSERLS and LTSN in terms of PREO and RECO

measures. The good results achieved by HMLS were due to the higher number of correctly segmented nuclei

and the smaller number of false nuclei. Our pixel-based results were evaluated in terms of PREP , RECP

and DSC. Despite obtaining the lowest precision value, our method achieved the higher recall and DSC

values in comparison with the results of the method introduced in [29] and similar to the ones obtained in295

[6]. Regarding the mean computation time, our algorithm and the ones proposed in [6] and [29] achieved

28.62 s, 36.56 s and 3 s, respectively.
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(a) (b)

Figure 6: Cervical cell images: (a) EDF images (1024 x 1024) and (b) test images (512 x 512) of the ISBI 2014 challenge data
set.

Table 1: Comparison of nuclei segmentation results of the 16 EDF images.

Algorithm PREO RECO PREP RECP DSC

HMLS 0.81 0.86 0.95 ± 0.07 0.90 ± 0.08 0.92 ± 0.05
MSERLS 0.73 0.85 0.96 ± 0.06 0.90 ± 0.08 0.92 ± 0.05
LTSN 0.72 0.79 0.97 ± 0.05 0.86 ± 0.09 0.91 ± 0.05

Table 2 presents the evaluation metrics of the segmentation results on the test images of the ISBI 2014

challenge data set. Concerning the object-based nuclei detection, despite the lowest precision value PREO,

our method outperformed MSERLS, LTSN and DeepCNN1 in terms of the RECO measure. In pixel-based300

evaluation, HMLS achieved higher recall and DSC values than the LTSN method and higher recall and

similar DSC values to MSERLS, despite the high precision values of MSERLS and LTSN methods. The

best results were obtained by DeepCNN1 and our results achieved values comparable to this method. With

respect to the mean computation cost, HMLS, MSERLS, LTSN obtained 3 s, 8.10 s and 1.98 s, respectively.

Tareef et al. [3] reported that the DeepCNN1 algorithm spent 8 s running on a computer with Intel Core305

i5 3.2 GHz and 8 GB RAM [3]. The configuration of this computer is similar to the one used to run our

experiments.

Table 2: Comparison of nuclei segmentation on the ISBI 2014 data set.

Algorithm PREO RECO PREP RECP DSC

HMLS 0.95 0.93 0.93 ± 0.08 0.93 ± 0.07 0.92 ± 0.04
MSERLS 0.98 0.88 0.94 ± 0.08 0.91 ± 0.08 0.92 ± 0.05
LTSN 0.96 0.90 0.97 ± 0.06 0.87 ± 0.07 0.91 ± 0.04
DeepCNN1 0.99 0.91 0.94 ± 0.06 0.95 ± 0.06 0.94 ± 0.04
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4.3. Segmentation experiment 2: the Herlev data set

We carried out this experiment on individual cell images to evaluate our method and compare it to RGVF

[30], MFCM [31] and DeepCNN2 [32], which were designed for single cell image segmentation and applied to310

the Herlev database in these original articles. The publicly available code in [30], implemented in Matlab,

was used to run RGVF while to MFCM, we applied a 7× 7 median filter on grayscale image and used the

Matlab function fcm, with its standard parameters, to divide the filtered image into 7 clusters based on the

gray levels. Each cluster is represented by its value of center (mean gray level) and the clusters whose values

of center are less than the nucleus threshold (80% of the mean of cluster centers) are considered as nucleus.315

The clusters with the values of center between the nucleus threshold and cytoplasm threshold (120% of the

mean of cluster centers) are considered as cytoplasm. The remaining clusters are considered as background.

Finally, morphological operations, i.e., opening and closing, were applied successively (10 iterations) with

a disk-shaped structuring element with 7-pixel radius according to [31]. In addition, we also compared our

method to DeepCNN2 [32], where the values of the pixel-based evaluation measures were obtained directly320

in [32]. It is worth noting that the authors in [32] did not conduct an object-based assessment.

HMLS accomplished a higher number of correctly detected nuclei for classes 1, 2, 3 and 7. Table 3

summarizes these results. It is worth mentioning that nuclei detection is a crucial task for other processing

steps such as feature extraction and classification. Table 4 presents the pixel-based evaluation metrics of the

experiments performed on images from the Herlev data set and the bold values point out the best average325

results. In accordance with these results, our method accomplished high average precision and DSC values,

despite the high average recall value of RGVF algorithm. In fact, the hierarchical method succeeded due to

the higher number of correctly segmented pixels (TP ). Nevertheless, the RGVF algorithm presented lower

values of false-negative (FN). Figure 7 shows the results on images from the Herlev database. Regarding

the mean computation time, HMLS, RGVF and MFCM spent 0.99 s, 11.41 s and 1.62 s, respectively.330

Table 5 presents the quantitative comparison of the segmentation results obtained by the proposed

method and DeepCNN2 in terms of PREP , RECP and DSC computed from the segmentation results of

all images, as in [32]. HMLS achieved higher average PREP and RECP values and similar average DSC

value.

4.4. Classification experiment335

We performed classification experiments on images from the Herlev database since it contains annotated

images, each one with a manually segmented version that can be used as ground-truth. The inputs of the
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Table 3: Number of correctly detected nuclei on the Herlev data set.

Class Class name Class size
Algorithm

HMLS RGVF MFCM

1 Superficial squamous 74 73 57 58
2 Intermediate squamous 70 70 53 64
3 Columnar 98 84 81 70
4 Mild dysplasia 182 153 156 127
5 Moderate dysplasia 146 127 135 105
6 Severe dysplasia 197 178 182 143
7 Carcinoma in situ 150 138 134 92

Total 917 823 798 659

Table 4: Comparison of nuclei segmentation results on the Herlev data set. The pixel-based measures were calculated from the
correctly detected nucleus for τ = 0.6 and the classes are numbered as in Table 3.

Class
Precision (PREP ) Recall (RECP ) DSC

HMLS RGVF MFCM HMLS RGVF MFCM HMLS RGVF MFCM

1
µ 0.87 0.87 0.89 0.98 0.98 0.96 0.92 0.92 0.92
σ 0.10 0.09 0.12 0.05 0.02 0.06 0.05 0.05 0.06

2
µ 0.91 0.88 0.92 0.98 0.99 0.97 0.94 0.93 0.94
σ 0.07 0.06 0.09 0.04 0.01 0.04 0.04 0.03 0.04

3
µ 0.92 0.83 0.89 0.94 0.98 0.91 0.92 0.90 0.89
σ 0.10 0.09 0.11 0.08 0.02 0.10 0.06 0.06 0.07

4
µ 0.96 0.90 0.95 0.95 0.99 0.92 0.95 0.94 0.93
σ 0.07 0.08 0.08 0.08 0.04 0.10 0.05 0.05 0.07

5
µ 0.96 0.89 0.94 0.93 0.97 0.90 0.94 0.93 0.91
σ 0.08 0.09 0.10 0.08 0.06 0.12 0.06 0.06 0.07

6
µ 0.96 0.91 0.95 0.93 0.96 0.89 0.94 0.93 0.91
σ 0.07 0.08 0.09 0.08 0.06 0.10 0.05 0.05 0.06

7
µ 0.93 0.91 0.94 0.93 0.94 0.85 0.92 0.92 0.88
σ 0.10 0.08 0.09 0.08 0.08 0.12 0.06 0.06 0.08

Average
µ 0.93 0.88 0.93 0.95 0.97 0.92 0.93 0.92 0.91
σ 0.08 0.08 0.10 0.07 0.04 0.09 0.05 0.05 0.06
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(a) Ground Truth

(b) HMLS

(c) RGVF

(d) MFCM

Figure 7: Cell images from Herlev data set, the Ground truth and the segmentation results for each method. (a) Ground truth
of cell nuclei, (b) HMLS, (c)RGVF and (d) MFCM.
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Table 5: Comparison of nuclei segmentation on the Herlev data set. The pixel-based measures were calculated from the
segmentation results of all images and the classes are numbered as in Table 3.

Class
Precision (PREP ) Recall (RECP ) DSC

HMLS DeepCNN2 HMLS DeepCNN2 HMLS DeepCNN2

1
µ 0.87 0.94 0.98 0.79 0.92 –
σ 0.11 – 0.05 – 0.06 –

2
µ 0.91 0.90 0.98 0.92 0.94 –
σ 0.07 – 0.04 – 0.04 –

3
µ 0.87 0.87 0.92 0.91 0.88 –
σ 0.17 – 0.14 – 0.14 –

4
µ 0.93 0.87 0.91 0.97 0.89 –
σ 0.14 – 0.20 – 0.19 –

5
µ 0.94 0.93 0.89 0.96 0.89 –
σ 0.12 – 0.20 – 0.18 –

6
µ 0.94 0.78 0.92 0.97 0.92 –
σ 0.11 – 0.12 – 0.11 –

7
µ 0.90 0.92 0.90 0.87 0.89 –
σ 0.17 – 0.17 – 0.15 –

Average
µ 0.91 0.89 0.93 0.91 0.90 0.90
σ 0.13 – 0.13 – 0.12 –

classification algorithms are features based on shape and texture, as in [8]. From the segmentation results,

we have extracted 5 shape features from the nucleus, namely, area, perimeter, eccentricity, compactness,

and circularity which compose the vector fShape. Thus, we generated the vector fShape for the ground340

truth nucleus (GT) and the corresponding segmentation results obtained from HMLS, RGVF, and MFCM.

Additionally, we extracted 6 texture features by using the first order statistics of the histogram, namely,

mean, variance, kurtosis, skewness, energy, and entropy which comprise the vector fHistogram.

Then, the algorithms Least Square Support Vector Machine (LSSVM) [47] (with a radial basis function

kernel), Multilayer Perceptron (MLP) [48] (with 4 hidden layers, logistic activation function and trained345

using the back-propagation algorithm) and Random Forest (RF) [49] (with 60 bags to use for boostrapping)

classified the cervical cells into two and three classes, based on the 11 features fFinal = {fShape, fHistogram}.

For three-class classification experiment, we have divided data into normal (superficial squamous, interme-

diate squamous and columnar), LSIL (mild dysplasia), and HSIL (moderate dysplasia, severe dysplasia and

carcinoma in situ) classes in accordance with the Bethesda system, which is used for diagnosis of precan-350

cerous and cancerous cervical cells. For two-class classification experiment, the last two classes (LSIL and

HSIL) were joined and named as an abnormal class. To compute the average values of the classification
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measures, we carried out 100 executions and for each execution, we have partitioned the data set randomly

into two independent subsets, i.e., the test set with 30% of data and the training set with 70% of data.

Table 6 shows the evaluation measures for the two-class classification results and Table 7 presents the355

evaluation measures for the three-class classification experiment. The italic values point out the results

achieved by the classifiers LSSVM, MLP and RF using the ground truth nucleus. In this paper, we have

assumed these results as a reference for comparison and performance evaluation. The bold values indicate

the best results for each measure and they correspond to the closest results to those obtained with the

ground truth nucleus.360

Table 6: Comparison of classification results on the Herlev data set to 2 classes (normal and abnormal).

Methods SPE SENS PPV FS ACC

LSSVM

GT 0.93±0.02 0.93±0.01 0.94±0.01 0.93±0.01 0.93±0.01
HMLS 0.89±0.04 0.89±0.02 0.91±0.02 0.90±0.02 0.89±0.02
RGVF 0.86±0.05 0.87±0.02 0.90±0.02 0.88±0.02 0.87±0.02
MFCM 0.85±0.05 0.86±0.02 0.89±0.02 0.87±0.02 0.86±0.02

MLP

GT 0.92±0.03 0.93±0.01 0.94±0.01 0.94±0.01 0.93±0.01
HMLS 0.86±0.05 0.89±0.02 0.90±0.02 0.89±0.02 0.89±0.02
RGVF 0.83±0.05 0.84±0.02 0.89±0.02 0.85±0.02 0.84±0.02
MFCM 0.82±0.05 0.85±0.01 0.88±0.02 0.86±0.01 0.85±0.01

RF

GT 0.90±0.03 0.93±0.01 0.93±0.01 0.93±0.01 0.93±0.01
HMLS 0.87±0.04 0.89±0.02 0.90±0.02 0.90±0.02 0.89±0.02
RGVF 0.82±0.04 0.87±0.02 0.88±0.02 0.87±0.02 0.87±0.02
MFCM 0.83±0.04 0.86±0.02 0.89±0.02 0.87±0.02 0.86±0.02

Table 7: Comparison of classification results on the Herlev data set to 3 classes (normal, LSIL and HSIL).

Methods SPE SENS PPV FS ACC

LSSVM

GT 0.89±0.04 0.80±0.04 0.84±0.04 0.81±0.04 0.80±0.04
HMLS 0.87±0.01 0.85±0.01 0.85±0.01 0.84±0.01 0.77±0.01
RGVF 0.82±0.05 0.73±0.03 0.75±0.04 0.73±0.03 0.73±0.03
MFCM 0.83±0.02 0.73±0.02 0.77±0.03 0.74±0.01 0.73±0.02

MLP

GT 0.84±0.02 0.77±0.02 0.79±0.02 0.78±0.02 0.77±0.02
HMLS 0.81±0.03 0.73±0.03 0.76±0.03 0.74±0.03 0.73±0.03
RGVF 0.78±0.04 0.68±0.04 0.74±0.03 0.70±0.03 0.68±0.04
MFCM 0.80±0.05 0.70±0.04 0.75±0.04 0.72±0.04 0.70±0.04

RF

GT 0.85±0.02 0.79±0.02 0.80±0.02 0.79±0.02 0.79±0.02
HMLS 0.84±0.02 0.76±0.02 0.79±0.02 0.77±0.02 0.76±0.02
RGVF 0.82±0.02 0.74±0.02 0.76±0.02 0.75±0.02 0.74±0.02
MFCM 0.81±0.03 0.73±0.02 0.76±0.02 0.74±0.02 0.73±0.02

In addition, we provided the ROC curves and the area under the curve (AUC) for the classification
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experiments with two classes, where the x axis represents the false positive rate (1-specificity) and the y

axis represents the true positive rate (sensitivity). Figure 8 shows the ROC curves of the classification

experiments using features extracted from the ground truth (Figure 8(a)) and segmentation results of cell

nuclei.365
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(a) Ground truth.
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Figure 8: ROC curves and AUC of each method for two-class classification experiments using features extracted from the (a)
Ground truth images and (b) HMLS, (c) RGVF and (d) MFCM image segmentation results.

5. Discussion

Experiments with the 16 EDF images are summarized in Table 1 and indicate more accurate segmentation

results, in terms of PREO and RECO, when using HMLS due to the higher number of correctly segmented

nuclei and smaller number of false nuclei. HMLS was more efficient in regions with low mean gray level

difference between nucleus and cytoplasm that can occur due to inconsistent staining, poor contrast or370
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overlapping cells. These results showed the robustness of the proposed segmentation method to low contrast

cell images and overlapping cell images with different degrees of overlap. HMLS obtained higher values of

RECP and DSC compared to LTSN and similar to MSERLS while the LTSN method achieved the higher

value of PREP . This was due to the higher number of correctly segmented pixels (TP ) obtained by HMLS

and MSERLS algorithms and lower value of false-positive (FP ) obtained by LTSN.375

Table 2 shows the comparison of nuclei segmentation results on the test images of the ISBI 2014 challenge

data set. Due to the higher number of correctly segmented nuclei obtained by HMLS, it outperformed

MSERLS, LTSN and DeepCNN1 in terms of the RECO measure, despite the lowest precision value PREO.

A high RECO value, indicating high true positive rate, is more important than high PREO since each

nucleus can represent a cell in a possible next step for cytoplasm segmentation. For example, the methods380

in [3, 6, 29] use the nucleus information to then obtain the cytoplasm. Concerning the pixel-based evaluation,

HMLS achieved higher or similar values of RECP and DSC compared to MSERLS and LTSN methods,

although it has obtained the lowest value of PREP , and results comparable with DeepCNN1. As mentioned

in Section 2, DeepCNN1 first splits an image into fixed-size patches, and then it performs CNN-based feature

learning and classification on the patches to identify nuclei, cellular mass, and background. To generate385

image patches, DeepCNN1 uses the SLIC algorithm [37], where its parameter setting (S and r) is very

important and have to be carefully tuned to get the best results. Thus, different values of S (superpixel

size) and r (shape regularity) may be required for different data sets. In [3], the S and r parameters were

set empirically to 25 and 0.01, respectively. An advantage of our cervical cell nucleus segmentation method

is that it can be applied to different data sets without requiring a training stage.390

Table 3 presents the segmentation results of the Herlev data set, and our proposal detected a higher

number of nuclei for most classes. The image results in Figure 7 demonstrated that RGVF and MFCM

achieve less accurate segmentation results on images with more than three clusters and when nucleus,

cytoplasm, and background were poorly defined. It is worth noting that cytoplasm areas with low intensity

tend to be misclassified as nuclei. In addition, these misclassified results may be related to the limit of395

3 classes imposed by RGVF and MFCM to the image regions. Differently, HMLS did not require prior

knowledge about the number of clusters and did not specify a fixed number of them. For each new region,

it searched for two new clusters. Table 5 presents the nuclei segmentation results obtained by HMLS and

DeepCNN2, where HMLS accomplished similar average DSC value and higher average PREP and RECP

values. HMLS succeeded due to the higher number of correctly segmented pixels (TP ).400

The results in Tables 1–5 demonstrated that the proposed hierarchical method is capable of satisfactorily
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segmenting cell nucleus in multiple overlapping cell images as well as in single cell images. In Section 3.3, we

mentioned that the nucleus identification process consists in applying thresholds to six features extracted

from the segmented regions. Each identified nucleus is subjected to a refinement process, in which the

circularity feature is used to obtain the most likely object to be nucleus. However, sometimes the identified405

nucleus corresponds to chromatin regions or darker regions within the nucleus, due to overlapping cells, cell

fragments, etc. This is a shortcoming of our algorithm that should be overcome.

According to the average values of PPV , SENS, SPE, FS and ACC measures in Table 6 and Ta-

ble 7, the proposed hierarchical method for nuclei segmentation outperformed the others for both two-class

and three-class classification experiments using the features extracted from our segmentation results. We410

achieved classification results which are the closest ones to those obtained with the ground truth nuclei. The

better performance of the three classification algorithms in Figure 8(b), when comparing to Figure 8(c) and

Figure 8(d), may be due to nucleus shape and texture features well preserved in the cell images processed

by HMLS. We can affirm that the proposed algorithm was able to preserve subtle details of nuclei shapes,

regardless image differences in resolution, contrast or texture. Overall, our segmentation results have im-415

proved the classification of cell images into normal and abnormal. Figure 8(b) confirms that our method

improved simultaneously the performance of the three classification algorithms when comparing it to the

ROC curves obtained with features extracted from the ground truth of cell nuclei in Figure 8(a). These

experiments demonstrated that classification experiments, driven by nuclei features, to recognize normal

and abnormal patterns of cervical cells benefit from accurate cell nuclei segmentation algorithms.420

6. Conclusion

Automatic nuclei segmentation is a suitable task to reduce analysis time as well as expertise dependency

and integrate decision support systems for cervical cell screening and early detection of cervical cancer. Here,

we propose a hierarchical narrow band level set algorithm for nuclei segmentation that is a crucial step to

perform cervical cell classification experiments that rely on nuclei shape and texture features. The proposed425

hierarchical segmentation algorithm does not rely on prior information about the number of image clusters.

In fact, the reliance upon a predefined number of cluster hinders the ability of cell image segmentation algo-

rithms to achieve accurate results and to deal with different image databases. Our segmentation algorithm

embodies a new cluster detection strategy that guides the hierarchical process. This strategy is used to

initialize the median narrow band level set algorithm which is the core of our algorithm. The proposed430

method is able to segment cells of low contrast more efficiently within this hierarchical approach. This is
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mainly due to the sensitivity of the cluster detection method to subtle graylevel differences when applied

to the smaller image regions that appear later in the recursive partitioning. Our experiments comprised

three cell image databases which are challenging and present remarkable differences concerning resolution,

contrast, imaging source, images with single cells and clump of cells with different degrees of overlap, real435

and synthetic images, to name a few. We evaluated six state-of-the-art cervical cell segmentation algorithms

and the proposed hierarchical segmentation method was capable of identifying nucleus in single cell images

as well as in multiple overlapping cell images, accurately. We also assessed the proposed segmentation algo-

rithm by performing classification experiments, driven by nuclei features, to recognize normal and abnormal

patterns of cervical cells considering differences in shape and chromatin distribution. The performance of440

the classification algorithms improved by using image features extracted from our nuclei segmentation re-

sults and, thus, they accomplished the smallest number of false negatives and the highest average accuracy

values for two-class and three-class problems. In fact, our segmentation results provided a set of features

quite similar to the ones extracted from the ground truth images that led us to conclude that it preserved

intrinsic shape and texture differences among normal and abnormal cells.445

Further work will extend and apply the hierarchical segmentation algorithm to other types of cell images.

We will also approach both cell image segmentation and classification based on nuclei features of overlapping

cervical cells from conventional Pap test with several overlapping cervical cells. Future investigations will

also consider convolutional neural networks as part of schemes for real cell detection and classification.
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