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Abstract Magnetic resonance imaging (MRI) protocoling
can be time- and resource-intensive, and protocols can often
be suboptimal dependent upon the expertise or preferences of
the protocoling radiologist. Providing a best-practice recom-
mendation for an MRI protocol has the potential to improve
efficiency and decrease the likelihood of a suboptimal or er-
roneous study. The goal of this study was to develop and
validate a machine learning-based natural language classifier
that can automatically assign the use of intravenous contrast
for musculoskeletal MRI protocols based upon the free-text
clinical indication of the study, thereby improving efficiency
of the protocoling radiologist and potentially decreasing er-
rors. We utilized a deep learning-based natural language clas-
sification system from IBM Watson, a question-answering
supercomputer that gained fame after challenging the best
human players on Jeopardy! in 2011. We compared this solu-
tion to a series of traditional machine learning-based natural
language processing techniques that utilize a term-document
frequency matrix. Each classifier was trained with 1240 MRI
protocols plus their respective clinical indications and validat-
ed with a test set of 280. Ground truth of contrast assignment
was obtained from the clinical record. For evaluation of inter-
reader agreement, a blinded second reader radiologist ana-
lyzed all cases and determined contrast assignment based on
only the free-text clinical indication. In the test set, Watson
demonstrated overall accuracy of 83.2% when compared to

the original protocol. This was similar to the overall accuracy
of 80.2% achieved by an ensemble of eight traditional ma-
chine learning algorithms based on a term-document matrix.
When compared to the second reader’s contrast assignment,
Watson achieved 88.6% agreement. When evaluating only the
subset of cases where the original protocol and second reader
were concordant (n = 251), agreement climbed further to
90.0%. The classifier was relatively robust to spelling and
grammatical errors, which were frequent. Implementation of
this automated MR contrast determination system as a clinical
decision support tool may save considerable time and effort of
the radiologist while potentially decreasing error rates, and
require no change in order entry or workflow.

Keywords IBMWatson .Machine learning . Artificial
intelligence . Deep learning . Natural language processing
(NLP) . Imaging protocol .Workflow efficiency . Quality
improvement

Abbreviations
IRB Institutional Review Board
MRI Magnetic resonance imaging
NC Non-contrast
NLP Natural language processing
WC With contrast

Background

The appropriate use of magnetic resonance imaging (MRI)
represents a significant challenge in the current healthcare
landscape. MRIs are costly, are time-consuming, and require
considerable effort in protocoling and interpretation [1, 2].
Protocols can often be erroneous or suboptimal given the wide
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variety of possible options in many cases [3–5]. Providing a
best-practices recommendation for an MRI protocol has the
potential to improve efficiency and decrease the likelihood of
a suboptimal or erroneous study. Therefore, there is need for
an algorithm capable of interpreting the clinical indication for
the study and automatically providing an appropriate protocol.
Ideally, such an algorithm would err on the side of caution in
providing contrast and also be capable of flagging a study for
further evaluation by a radiologist when unsure.

We set out to develop such an algorithm based on novel
natural language processing (NLP) techniques and compare
our results to more traditional methods. Briefly, NLP is an
established field of computer science that deals with the inter-
action between computers and human language [6, 7]. In re-
cent years, the field has undergone considerable change attrib-
utable to improved technology, processing power, and in-
creased accessibility of machine learning. Multiple applica-
tions have been developed within radiology alone, including
text mining of clinical narratives, coding, classification, detec-
tion of critical observations, and quality assessment [8–15]. A
powerful tool—IBM’s Watson supercomputer—gained fame
as the Jeopardy! champion in 2011 and has since branched out
into various machine learning tasks, including natural lan-
guage classification [16]. However, to our knowledge, no such
application for MRI protocoling has yet been developed.

The goal of this study was to use IBM Watson to create a
natural language classifier that could automatically assign the
use of intravenous contrast for musculoskeletal MRI protocols
based upon the free-text clinical indication of the study.

Methods

This IRB-approved study included a retrospective analysis of
1544 musculoskeletal MRI exams from a tertiary referral hos-
pital, including their free-text protocols and free-text clinical
indications. Study types included all musculoskeletal MRIs,
includingMRIs of the spine. Original protocols were assigned
by radiology residents and fellows under the supervision of
attending radiologists.

A robustly labeled dataset was created by classifying each
MRI protocol as Bwith contrast^ (WC) or Bnon-contrast^
(NC) using semi-automated techniques with manual verifica-
tion. Twenty-four examinations were excluded due to unre-
solvable ambiguity in the final protocol regarding the use of
contrast, so as to not include training examples for which
ground truth could not be determined. The most common
example of this was a protocol that instructed the MRI tech-
nologist to call the radiologist after initial non-contrast se-
quences to assess the need for administering contrast (i.e.,
BMRI lumbar spine non-con, call radiologist after non-
consequences to determine need for contrast^). For analysis
of inter-reader agreement, each MRI was also classified by a

blinded second radiologist with 4 years of experience.
Classifications were assigned based solely on the provided
clinical indication without access to additional patient data.

From the final 1520 MRI exams, the dataset was randomly
divided into training/validation and test sets containing 1240
and 280 studies, respectively (Fig. 1). Data pre-processing
was conducted using the natural language processing package
in the statistical programming language R [17]. The free-text
fields were stripped of punctuations, whitespace, and com-
monly used words that do not add to the clinical meaning
(e.g. Breason,^ Bwith,^ Band,^ Beval,^ Bfor,^ BMRI,^ Bhas,^
Bplease,^ etc.). Numbers and punctuation were removed, and
if applicable, each word was converted to its radical form.

Traditional machine learning was performed with eight dif-
ferent models using a personal laptop. Using the natural lan-
guage processing libraries in R, including BRTextTools,^ we
pre-processed the texts, created a document term matrix with
term-frequency weighting, and then trained the classification
models [18]. Machine learning algorithms used for the models
were support vector machine (SVM), scaled linear discrimi-
nant analysis (SLDA), boosting, bootstrap aggregating
(Bagging), classification and regression tree (CART), random
forest, Lasso and elastic-net regularized generalized linear
model (GLMNET), and maximum entropy [18–26]. A
majority-vote ensemble of all eight models was created to
further enhance labeling accuracy.

Deep learning-based natural language classification was
conducted using a proprietary natural language classifier from
IBMWatson [16, 27]. The Watson algorithm uses hypothesis
generation, string analysis, and deep learning-based word-
scoring to generate a prediction for class NC and WC [27].
Performance of the classifier was evaluated with the test set.
Inter-reader agreement was calculated using pairwise Cohen’s
kappa between the original protocol and Watson, the second
reader and Watson, and the original protocol and second read-
er. In addition, Watson’s performance was evaluated for the
subset of cases in which the second reader and original proto-
col agreed.

Every disagreement between the original protocol and
Watson was analyzed to attempt to ascertain the source of
error. All data handling was done in BR: A language and
environment for statistical computing,^ including generation
of descriptive statistics and other text mining tasks based on
traditional machine learning algorithms.

Results

Of the 1520 final included MRI examinations, 650 (42.8%)
protocols were class WC and 870 (57.2%) were class NC. A
total of 86.2% studies involved the spine, 3.0% involved the
upper extremity, and 10.8% involved the lower extremity
(Supplemental Table 1). The three most common words in
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the clinical indication were Bpain, weakness, and injury,^ like-
ly relating to origination from a level 1 trauma center with a
high proportion of uninsured care, drug abuse, motor vehicle
collisions, and gunshot wounds (Fig. 2).

Training time with IBM Watson was 46 min compared to
10 s for the eight traditional machine learning algorithms, in
total. Performance on the test set was 1 min and 46 s for
Watson and nearly instantaneous for traditional machine
learning algorithms. These training and testing times are pro-
vided for qualitative understanding of the time required to
implement these algorithms and not intended for direct com-
parison since hardware configurations were not the same.

Inter-reader agreement between Watson and the original
protocol, betweenWatson and the second reader, and between
the second reader and original protocol was 0.66 [0.58–0.75],
0.77 [0.69–0.84], and 0.79 [0.76–0.82], respectively.

Performance of Watson compared to the original protocol,
second reader, and subset of cases for which the second reader
and original protocol agreed is presented in Table 1 and cor-
responding confusion matrices in Table 2. When compared to
the original protocol,Watson correctly assigned 129/140 cases

in class NC and 104/140 cases in class WC, resulting in a
sensitivity of 0.743, specificity of 0.921, positive predictive
value (PPV) of 0.904, negative predictive value (NPV) of
0.782, and overall accuracy of 0.832. Accuracy for the subset
of non-spine cases in the test set (n = 15) was comparable at
0.800.

The performance of Watson compared to the second reader
was higher, with a sensitivity of 0.812, specificity of 0.952,
PPV of 0.939, NPV of 0.849, and overall accuracy 0.886. If
only considering the subset of cases for which the second
reader agreed with the original protocol (n = 251), Watson
demonstrated a sensitivity of 0.836, specificity of 0.961,
PPVof 0.953, NPVof 0.861, and accuracy of 0.900.

Of the 47 total errors, Watson disagreed with both the orig-
inal protocol and second reader in 25 cases (Table 3). In the
remaining 22 errors, Watson disagreed with the original pro-
tocol but agreed with the second reader (Table 4). False-
positives in class NC included a spinous process fracture
and epidural abscess evaluation in a dialysis patient. False-
negatives in class WC included patients with malignancy as
well as cases for which contrast was explicitly requested in the
clinical indication but without a stated clinical reason. The
classifier was otherwise robust to numerous spelling and
grammatical errors, including concatenation of two words
which may be an artifact of our data storage and retrieval
system (Supplemental Table 2).

The eight traditional machine learning algorithms achieved
overall accuracy rate ranging from 70 to 75% as singleton,
described in Supplemental Table 3. Boosting methodology

Fig. 1 Flowchart demonstrating data processing of 1544 free-text MRI
protocols with their respective clinical indications. Initial labels used in
the training and test set were assigned using regular expression searches
and manually verified by the authors. MRI protocols with ambiguous
contrast assignment were excluded from the dataset

Fig. 2 Word cloud demonstrating the most commonly found words in
the free-text clinical indication. Numbers and punctuation were removed,
and each word was converted to its radical form for traditional natural
language processing methods
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demonstrated the worst performance and maximum entropy
demonstrated the best. Majority-vote ensemble was per-
formed on the eight models, which yielded an overall accura-
cy of 0.800.

Discussion

IBMWatson’s Natural Language Classifier enabled relatively
accurate assignment of intravenous contrast for MRI exami-
nations using only the free-text clinical indication and re-
quired little to no technical knowledge. Overall performance
was similar to an ensembling of eight traditional NLP models
using a term-document matrix. Analysis of errors for Watson
can be subdivided into two categories. Twenty-two of 47 er-
rors for whichWatson disagreed with the original protocol but
agreed with the second reader can be attributed to additional
clinical data that influenced the original protocol but was un-
available toWatson and the second reader. It is promising that,
in the absence of this extra information, Watson protocoled
these studies according to the standard practices of the blinded

second reader. This is further demonstrated by a significant
increase in accuracy to 0.900 in the subset of test cases for
which the original protocol and second reader agreed.

In contrast, analysis of the 25/47 errors for which Watson
disagreed with both the original protocol and second reader is
more difficult. Some errors were relatively straightforward
such as spelling, grammar, and ambiguity of language in the
clinical indication. Of these, spelling and grammar errors
could be mitigated by running intelligent preprocessing or
Bspell-check^ although this may prove difficult with medical
terminology. However, other errors were more difficult to
troubleshoot, highlighting the downside of a Bblack-box^ al-
gorithm. For example, the study provided in Table 3, BPOST
OP FOR REMOVAL OF THORACIC TUMOR Reason:
POST-OP FOR THORACIC TUMOR,^ was appropriately
assigned contrast in the original protocol and by the second
reader. However, for reasons that are unclear, Watson did not
assign contrast in this case and gave an overall low confidence
score of 0.53. We could postulate that a low prevalence of
thoracic spine tumor follow-ups biased the classifier to assign
class NC; however, this is only speculative.

When evaluating the types of errors made by Watson,
the false-negative rate (erroneously not assigning contrast)
was three to four times higher than the false-positive rate
(erroneously assigning contrast), regardless of which
ground truth was used for comparison. Contrast assign-
ment errors have varying degrees of clinical consequences,
though we believe not providing contrast to be the safer of
the two error types. For example, non-administration of
contrast for a tumor follow-up would require a patient to
return for additional sequences and may delay diagnosis;
however, this is typically not considered acutely danger-
ous. Conversely, inappropriate administrat ion of
gadolinium-based contrast to an end-stage renal disease
patient can result in debilitating or fatal nephrogenic sys-
temic fibrosis and Watson did make one such critical error
in the test set. Finally, we note that these results were
achieved without incorporating the requested study type
(e.g., BMRI lumbar spine without contrast^). We suspect
that the inclusion of this data would improve overall accu-
racy; however, this may be at the expense of biasing the

Table 2 Confusion matrices demonstrating Watson’s output when
compared to three different ground truths

Watson predicted class

NC WC

Original protocol NC 129 11

WC 36 104

Second reader NC 140 7

WC 25 108

Concordance cases between
original protocol and
second reader

NC 124 5

WC 20 102

The first matrix demonstrates Watson’s performance against the original-
ly assigned protocol. The second matrix demonstrates Watson’s perfor-
mance against a blinded second reader with no access to additional clin-
ical data. The final matrix demonstrates Watson’s performance on the
subset of 251 cases for which the original protocol and second reader
assignment were in concordance. Performance was highest for this subset

NC non-contrast, WC with contrast

Table 1 Detailed metrics of the
overall performance of Watson
when compared to the various
ground truths

Classifier Sensitivity Specificity PPV NPV Accuracy Number

Watson vs. original protocol 0.743 0.921 0.904 0.782 0.832 280

Watson vs. second reader 0.812 0.952 0.939 0.849 0.886 280

Watson vs. original and second reader
agreed case only

0.836 0.961 0.953 0.861 0.900 251

Positive predictive value and specificity were higher in all cases. The highest accuracy was achieved when
comparing to the second reader and the subset of cases in which the second reader and original protocol agreed.
This can be attributed to Watson and the second reader both lacking access to additional clinical information
which may have affected the original protocol

PPV positive predictive value, NPV negative predictive value
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algorithm into misclassifying the relatively infrequent
cases in which the clinician ordered an incorrect study
(i.e., request for a non-contrast study for osteomyelitis).

Although performance between traditional NLP techniques
and Watson was similar, one immediate advantage of the tra-
ditional machine learning models was an extremely short
training time and minimal hardware requirements. Typical
deep learning algorithms require powerful graphical process-
ing unit to speed up the process of assigning weights to the
neural network, but most traditional machine learning algo-
rithms can be easily run on a basic laptop. Even with minimal

hardware, training time was faster in the range of multiple
orders of magnitude when compared to Watson. Conversely,
a clear advantage of Watson is that it required no pre-
processing or programming experience, and only minimal un-
derstanding of machine learning fundamentals such creation
of valid training and test sets. This convenience, however,
comes at a cost of the black-box problem. IBM Watson is a
closed cloud service with proprietary algorithms that cannot
be released in detail, and as such, most troubleshooting would
need to be done by IBM staff. Algorithmic errors may remain
obscure indefinitely depending on IBM’s willingness to

Table 3 Examples of the 25
classification errors for which
Watson disagreed with both the
original protocol and second
reader

Clinical indication Original
protocol

Second
reader

Watson
prediction

Confidence

POST OP FOR REMOVAL OF THORACIC
TUMOR Reason: POST-OP FOR
THORACIC TUMOR

WC WC NC 0.53

49 M W/ HX OF TB IN PAST WITH 6 MONTH
HISTORY OF GROWING LTHIGH 10X10X10
MASS, HARD, PAINFUL; NEEDS L LEG TOO.
SEE CT SCAN Reason: 49 M W/ 10X10X10
MASS ON LTHIGH

WC WC NC 0.8

S/P MIN TRAUMATIC FX LEFT HUMERUS;
PLS DO CONTRAST MRI FOR EVAL
Reason: EVAL FOR PATHOLOGICAL FX

WC WC NC 0.99

W/ SPINOUS PROCESS FRACTURE
Reason: W/ SPINOUS PROCESS FRACTURE

NC NC WC 0.72

SEA NEW R SCIATICA Reason: L SPINE
TTPNEW R SCIATICA

NC NC WC 0.77

81M ESRD ON HD, WITH STAPH BACTEREMIA
AND NEW CERVICAL SPINE TENDERNESS
TO PALPATION Reason: EVALUATE FOR
EPIDURAL ABSCESS

NC NC WC 0.99

The Bblack-box^ nature of deep learning algorithmsmade it difficult to ascertain the source of error in many cases.
There was one critical error in assigning contrast to a patient with end-stage renal disease, highlighted here. This
may be due to the lack of sufficient related training examples

Table 4 Examples of the 22
classification errors for which
Watson disagreed with the
original protocol but agreed with
the second reader

Clinical indication Original
protocol

Second
reader

Watson
prediction

Confidence

SEVERE PAIN R RADICULAR Reason: LUMBAR
SPINE

WC NC NC 0.97

SAG SURVEY OF TOTAL SPINE FOR DISC INJURY
Reason: RO T SPINE INJURYNEW T SPINE PAIN,
TINGLINGNUM

WC NC NC 0.99

CAUDA EQUINAVS METS HX CERVICAL CA
Reason: L SPINE PAIN, RETENTIONHXCERVICAL
CA

NC WC WC 0.81

TBI Reason: FOLLOW UP FOR MENINGITIS AND
ABSCESS ON BRAIN AND SPINE

NC WC WC 0.95

ELEVATED WBC AND CRP TENDERNESS OVER
THORACIC VERTEBRAE Reason: RO SPINAL
ABSCESS. HO IVDU

NC WC WC 1

These errors are favored to be due to additional clinical information available to the original protocoling radiol-
ogist, but not toWatson or the second reader. This highlights the importance of integrating additional clinical data
if such an algorithm is deployed clinically

NC non-contrast, WC with contrast

J Digit Imaging (2018) 31:245–251 249



modify the architecture for individual use cases. Furthermore,
any updates to the service may inadvertently result in changes
to the model, potentially resulting in detrimental errors that
can lead to patient harm. On the other hand, in-house and
locally run machine learning algorithms can be more easily
accessed and modified by an on-site expert.

In regards to clinical implementation, a major strength of
our approach is that referring clinicians need not alter their
normal workflow of ordering MRIs. Many previous para-
digms have employed a structured approached, wherein the
requesting clinician must answer a series of questions to arrive
at a pre-determined clinical indication that has a known pro-
tocol. However, this imposes additional work on ordering cli-
nicians who may already be suffering from Bclick-fatigue.^
Additionally, these systems are error-prone because they rely
on the requesting clinician following instructions and clicking
the correct boxes. Our approach does not change referring
clinician workflow and allows them to order MRIs with
free-text clinical indications as they normally would.

An intrinsic limitation in the scalability of our methods at
our institution was the assignment of MRI protocols (which
serves as ground truth) as free-text. Many systems, including
the current system at our institution, now allow the radiologist
to select the protocol from a pre-defined list based on the
ordered study type. This dataset would be much cleaner and
circumvent the issue of manually classifying each protocol for
training. With a large enough sample across multiple subspe-
cialties, it may be possible to assign full MRI protocols rather
than just contrast. It is also conceivable that such a model
could smooth over the variability of individual radiologists’
protocoling patterns. Additional clinical data such as allergies,
renal function, and pregnancy status could be incorporated as
a fail-safe against dangerous false-positives.

Despite stated limitations, IBM Watson’s Natural
Language Classifier allows automated contrast assignment
using solely free-text clinical indications. The performance
of the algorithm was somewhat limited by heterogeneity in
the training data; however, this can be addressed in future
iterations. If successfully integrated into clinical workflow, it
may improve efficiency and one day serve as a decision sup-
port tool for contrast assignment. Such a tool could also be
modified for use by the ordering clinician as a form of clinical
decision support in determining the correct study to order.

Conclusion

We demonstrate that a natural language classification algo-
rithm can be trained with IBMWatson to automatically deter-
mine the need for intravenous contrast in musculoskeletal
MRIs.We propose that this work be further extended to assign
full protocols across a range of subspecialties, helping to im-
prove efficiency and potentially decrease error rate.
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