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ABSTRACT
7 The nature of the pomeron and 'xjelated effects are studied
. within the framework of Veneziano's topological expa.hsion.:_ At the’
second, or cylinder, level it is found that no new poles:a'.re generated
V but. that first-level (planar) poles with I = O a.r.e shifted by the
cylinder, the shifts being in opposite directions forv positive and

negat:h}e charge conjugatior;. The planar f , in particular, is shifted

upward and may be interpreted near t = O as the pomeron--with couplings

lying roughly midway between the ideal mixing of a pla.nar f and an SU.
singlet. The pomeron intercept and couplings (mi#ing coefficients_)

together with corresponding intercepts and coru_piings for w, £' and ¢

are sen_xi-qha.ntité.tively related through a single parameter to the prop-

.erties.of p - A2. In the positive-t physical-particle regidn corre-

* sponding relations'succgssfully correlate the breaking of the Iizuka:
Okubo-Zweig rule to the p - @ mass difference. Compérisbﬁ of thg.
cylinder shift 1n_thi§ large t region to that near t = O rgveals the
phenomenon of "asymptotic planarity'--the cylindef perturbation dying

‘out rapidlvaith increasing t. It 1s pointed out that fhe small
pomeron slope as well as certain physical effects attributed in field
theory to‘asymptbtic freedom are éonseqﬁences of aé&mptoﬁic planarity.'

.

" hadronic quantum numbers that allows the hadronic S mtfix to be

3 .

" pomeron but to identify other aspects of the hadronic S matrix that

-

I. INTRODUCTION

The duality-diagram topological expansion recently proposed by
Venezianol pi'ovides a potential basis for understanding previously
obscure aspects of hé.d:ron dynamics, inciuding the constellation of
effects surrounding‘ the term "pomeron." Veneziano discovered a small
dimeﬁsionless parameter related to the number of coﬁserved internal _
topologically decomposed--in such fa.shidn fha.t ‘successiv'e levels of «
increasing topological complexity are plausibly of decreasing impor-‘v e
tanée. The phenomenon characterized by'the term "pomeron” is absent &

from the first level but promises to appear at the second. -Although £

the physical picture of the pomeron given by the topological expansion B

is equivalent to the -diffraction model of Chan, Paton and Tsou,2 the g~

latter authors do not concern themselves with any motivating small -

R

.

perameter and ignore a variety of pomeron-related second-level consid-

£

" erations. The object of the present paper is not only to elucidate the

ks

arise through the same topological second-level mechanism. An
abbreviated account of some of our reS_uits bas been given in Ref. (3)..
Although the pomeron discussed here is an approximate concept,
it shares:such' a status with all other physically useful notions. The
topological expansion, i‘urﬁhermore; prbvideé a basis for assessing the
éécuracy of the appi‘oximtion in terms of the motivating smal_l'
pafa.meter. This paper'does not address the slippery question of
whether the pomeron intercept is exactly equal to 1 or what may be the
strict mathematical structure of high-energy asymptotic .limits. Such

questions are inaccessible to physical measurement; physically -
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answerable questions about the pomeron all seem approachable through
the topological expansion.

Veneziano has characterized the first level of his expansion‘
by‘the term."planar” and the second by "cylinder"; we shall adhere to
this terminology The most interesting conclusion we reach is that
cylinder poles correspond to shifted plapar poles and not to a new set
- of singularities. The pomeron and f traJectories,lin particular,
turn out to be one and the same. This unconventional identification,
while clashing with some heretofore cherished notions, does not con-
flict with experimental facts. Qn the contrary, experiment supports
the unified picture we achieve of the six leading trajectories’

(¢, o, A w, f', P) and their coupli s--nondegenerate at the
> y 'y ng

2}
cylinder level but mutually related through a well-defined pattern.
Our results together with those of Chan, et al.,u are so successful
with respect to experimental data and their theoretical motivation by
Veneziano s0 attractive that we believe a major step forward in hadron
physics is being realized.

In the next section we review essential features of the planar
S matrix and proceed in Section III to establish an integral equation
for the cylinder correction. Section IV shows how the cylinder shifts
planar poles of both even and odd charge-conjugation symmetry without
generating new singularities, features independently discovered by
C. Schmid and C..Sorensens although interpreted by these authorsras
pathological. Section V deals with the qualitative behavior of the ‘
six.leading planar trajectories affected by the cylinder, and Section
VI discusses the dualitative viability of the proposed new picture

for these trajectories with respect to currently available experimental

b

information. Finally in Sec. VII we employ a simple explicit model to
emphasize the wealth of detailed physical content present in the

cylinder. One striking outgrowth of this semi-quantitative investiga-

tion is recognition of a comnection with physical'effects attributed

-in field theory to asymptotic freedom.

II. THE PLANAR S MATRIX
‘ The Veneziano topological expansion begins with a planar
approximation, defined through discontinuity formulas that can be
graphically depicted in a plane. The idea of planarity enters in two
ways. First'of all, at this level.of approximation the connected

part itself is planar in the sense of Harari-Rosner6’7

duslity
diagrams. A five-line connected part, for example, is a sum of

components each representable as

(11.1)

XBL757-6433
where i, Jj, *** are quark indices for internal quantum numbers. How

many different values each index is allowed to take (i.e., how many

.different kinds of quarks need be included) and how much internal

'symmetry exists may be left as open qiestions, perhaps to be dec1ded

by the discontinuity formulas. The essential aspect of the.quark lines
is that they correspond to the boundary of an orientable two-dimensimal
surface. The reader i1s cautioned not to identify the planar approx-

imation with the tree approximation to the dual resonance model--which
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ignores branch 'points in connected parts and keeps only poles. The
Pplenar S matrix is profoundly dependent on the discontinuities across
its \_rarious branch cuts.

Where does the idea of a two-dimensional surface arise? We
have here an example of the chicken-egg logic that typifies bootstrap
physics. Some information about the hadronic S matrix must be taken
from experiment before-analysis can be'gi.n, even though all aspects.of..
Ithe S matrix are supposed ultimately to be determined by requirements
of self-consistency. .Historically, Regge behavior and crossing led
through finite-energy ‘sum rules to duality and thence, with the
additional information that low-mass hadrons have low internal quantum
numbers (absence of exotics), to the Ha_rari-Rosner two-dimensional
diagrams. Iater, however, Venezianol found an a msteriori explanation

for the relatively small magnitude of nonplanar S-matrix components, '

relating this smeliness to the existence of conserved internal hadronic

quantum numbers. [Veneziano employed a perturbative framework for his

reasoning that started from a two-dimensional topology.] Although it
remains to be seen whether discontinuity formulas demand the presence
of internal qua.ntum numbers, such a requirement is not out of the
question. The resemblance betvte_en‘ the planar S mtrix and the observed
. hadronic world may thus uitimately emerge as a necessary consequence
tof self-conszstency
. The second wey in which plana.rity enters the picture--with more

apparent dynamical ‘content--is through ‘the .products that prescribe the
-discontinuities of pla.ner connected parts. These productsr are planar

in the sense of the following example of a- four-line comnected-part

discont muity

0o i \IU |.1r zh.l '“ITI ""I.'/i+...
yl__m_lh\ oy Lo Lar I
(11.2)

The dots remind us that intermedmte' states in the bilinear products

o
o

correspond to stable particles, while the @& indicates the side of - -

‘the cut on which the product member is to be evaluated. The essentinl

=

character of the product--where there is no crossing of lines--might
be characterized"as strong ordering. '} It is important that ‘pla'nar
discontinuities, so constructed, occur only in channels built from

adjacent lines, corresponding to the famous "rubber sheet property of .
the Harari-Rosner diagram which guarantees consistency between the Lo

(internal) spectrum of singularities and the entering {external) I 2N

_spectrum of particles. Since poles and normal thresholds occur only B
1in channels with discontinuities, strong ordering limits such sin--
» gu.larities.to chemnels formed from ad jacent lines._ Also implied by

' "planar unitarity" is the exchange degeneracy of Regge singularities

and thus the absence from the planar S matrix of an isolated, leading,

even-charge-conjugation pole immediately identifiable as the pomeron.

Another"important'feature is the absence of Regge branch points, which

do not arise until nonplanar discontinuity products enter at the sub-
sequent levels of the topoiogical expension. We need consider Regge .

.singularities no more complicated than poles. There is, however, no
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implication oflstrict linearity for Regge trajectories. The presence
of normal threshold branch points precludes exact linearity.

Assuning amplitudes to be determined by their discontinuities
(a key aspect of Regge asymptotic behavior) the solution, if any, of

the nonlinear planar discontinuity equations may be taken as a
. definition of the planar S matrix. Despite the absence of any proof
that a solution exists, we are anticipating the above-enumerated
general properties which any solution of the plamar equations must -
possess. | .

The degree of arbitrariness permittcd to the plannr S matrix
by its nonlinear constraining equations is a question of primé impor-
tance. For éxample, there is the question of how arbitrarily the
internal quantum numbers may be assigned, ar wve may ask about the trajec~
tory - intercepts and residues (see Ref. 2, 8, 9, 10). Despite their
obvious importance these are not issues considered in the present paper,
which concerns itself with the reletion between the planar approximatia1
and the first correction thereto. We make the assumption, following
Veneziano, that. the leading plénar Regge poles bear a-recognizébly;
close correspondence with the two leading noncts of roughly exchange-
degenerate physical trajectories (o, f;, w, etc.). The qucstion to
be studied here is how the pomeron manifests itself in a systémﬁtic
first correction to the planar approximation. More specifically, how_
is the pomeron related to the leading planar trajectories? The answer
to this question‘nnavoidably has much to ssy abont physical trajectories

other than the pomeron.
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III. AN INTEGRAL EQUATION FOR THE CYLINDER CORRECTION
TO THE PLANAR S MATRIX

The intermediate-state counting rules that justify the planar
S matrix as a starting approximestion iead to a comparably-simple
prescription for the first correction.thereto. After the plamar
components, the next most important terms to include in a bilinear
discontinuity product are those where matching changes of 1line ordering
occur in the two members of a product; At this level of approx1mation
each product member is itself planar and changes in order can be

representediby a twist notation. For example, if

'(111.1)

XBL757 =4432

~the first corrections to a planar discontinuity product such as

N » ; | . . e

m'j.{%mi"v ]‘(j

i ‘ TN
XBL757-4434

. - ' ) (171.2)

" are-given-by the terms. of the form

i |
e . o S

-
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An essential aspect of the topological expansion is illustrated

P i m i ‘ P by the products in (ITI.3). Comparing to the planar product (111.2)
fm ] ‘m’ * ﬁ \E{ ;m } { m‘ { m ‘ " one sees that fewer intermediute states occur in the cylinder products
* : i b } t m__}

j
Lj . (II1.3), the triple sum over internal indices having been reduced to a

w;/

“ o~ i m s i TN : double sum. FProvided that twists occur in matched pairs, one may

easily verify that any cylinder product--independent of the number of

twists--has one fewer sum over internal indices than the correspondigg:

Py o " . N . N
< \ng;n o 'D¢/ _ -planpar product. The overall cylinder discontinuity thus tends to be g¢=
h/ ?‘ ! hh' ‘ i .ﬁ smaller than the planar discontinuity by a factor of the order of -l/N,
i { m ’ HE B

] T
bd

\;:;::4/
a_
/
\-=o
15

'ﬂcm" L where N is thev pumbe}' of dif_‘ferent values assignable to an internal@'
: m m' j‘ - ‘ index (1.e., the number of differént quarks) Different values of the
XeLI37-4428 . .internal index contribute different proportions of - the sums over
(111.3) B
, intemedi.ate states (e.g., index values carrying zero strangeness are .
quantitatively most important), so the l/N estimate is not precise.
. With SUN symmetry it can be shown that the cylinder éouples only to
the twists on the two sides of the "ladder” always matching in position. N ‘the  SUy singlet; the 1/N factor then xﬁerely reflects the relafivé&fz
It is important to recognize that all such terms share the topology of . weight of this singlet fepresentation. [We wish to thank G. Venezian%’i’;
a cylinder, although the twist notation 1s better suited to relatioms for correspondence -about' this point, which often causes cqnfusion.l G
' ~ that must be e'xpres.sed_ on a plene sheet of paper. We shall referv to. Veneziano showed that products more ‘complicated topélogically than the
| the sum of all terms of_ the type _(iII_.B) as the "cylinder dis;:on- - cylinder lose further sums over internal indices and should cori‘espoﬁd-
' 7 tinuity." That such an entity might be associated ﬁth the pomeron in V . ingly be even smaller, the expected order-of-magnitude reduction factor
a dual unitarity écheme_ was proposed many &ears ago.ll'D The reader, being (1./1\1)m when m internal sums are lost. | -
however, is cautioned not to interpret pictures such as in. (I11.3) in Although— any nonzer ° number of twist-pairs is topologically

i
the perturbative sense (8th order in some coupling perameter) in which equivalent to a single tWist-pair, a meaning can be glven to separate

diagrams of the type (I11.3) by associating each in multlperipheral
such diagrams have often been used in the past. Their meaning here

' fashion with a reglon of phase space where the momentum transfer across
derives only from topological considerations. each twisted 1ink is smell. If the major contribution arises from such
" regions--without important overlap;--the. complete cylinder discontinuity

may be schematically represented as the series
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i3t I

if a meaning can be found for "sewing" together adjacent plapar

AR _i!
XBL757~4430

(III.L4)

discontinuities across a pair of twisted links. It is plausible that
the required meaning.can be achiéved through the. helicity pole expan-
sion that has been used to decompose incluéivé cross sections, the
tﬁist mefeiy feplacing a Regge-link physical signature factor
e-im: t 1 by a factor 1; Chﬁn, et aLf%B have in fact suggested th&f
‘the successive individual terms of (111.%) be interpreted physically
at t = 0 as proportional to the partial cross sections for production
‘of successive numbers of "multiperipheral clusters”--each cluster
corresponding to a complete planaf discontinuity. Although we shall
not attempt in this paper to develop‘a detailed heiicity-bolé
repfesentation of the twisted links,.we take for granted that such a
representation can be found--making the series (III.lL) meaningful.
Given such an assumption we can transform our products into
the J plane by standard projection techniques.lé’17 An anélogous
ppoblem has been solved for multi-Regge models, showing that each
separate discontinuity in a chain of the type (III.%) is tobe evaluated

at the common values of J and t attached to the entire chain.

Since for the purposes of the present paper we do not need the detailed

-12-

Regge-index labeling of the planar discontinuities, we refer the

reader to Refs. (16) and (17) for examples of how the nondiagonal

" labels mey be chosen and then summed and integrated in forming the

product of adjacent discontinuities. Although approiimations are
sometimes intfoduced in hﬁndling the phase spacé 6f multi-Regge models,
the J-plane projection requires no approximation--resting on no more
than Lorentz invariance. Such a projection makes easier the task of
formulaﬁing:an integral equation.' |

It may bé,seen from (III.4) that the cylinder communicates
alopg its éxis only -with states carrying zero additiye quantum numbers

--states that may be classified by a single quark index togeﬁher with

N i N
an orientation. We may have, that is, either < Por —.
. . i 17

. As the quark arrows indicate, if two states are equivalent except for

this orientation they are charge conjugates of one another. Imtroducing

the notion of a twist opergtoi c corresponding to the box in the

1
second term of (III.L), it follows that a single application of cy

on a state of one orientation produces a superposition of states of the
opposite orientation.

. A planar diScontinuity that participates in the cylinder ch&iﬁ

. 1s supposed to be decomposable into simple Regge poles; viz.,

Ay qm = z 0 t}.....l: m
. 14 0(7
— e . } L —
: N r i
XBL757-4429

(111.5)
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the index ¥ labeling the- sequence of poles.corresponding to quafk
type 1 .‘ We'inay attempt: to use these poles as the basis. for a Hilbert
space. - Fach such pole carries an orientation, even though in »the

* planar S matrix the two orientations are squivalent (a manifestation
of “exchange degeneracy), and we have noted that the twist operator
_reverses’ the orientation. Tt is then natural to construct a space of
. __.states that are symmetric or- antisymmetric combinations. of the two ‘
'orientations. The sy'mmetric states are even under charge-conju@.tion E
(c = +).> -while the antisymmetric states are odd (C = -). The twist
__operator Cl doés not mix states of opposite cha.rge'-con,jugation

symmetry, and correslionding matrix ‘elements of C in the two sub-

1
space's‘ have the same magnitude. The relative sign of ”.C:L is, vhowever,

opposite in the two subspaces. That_ is,

+ - _

Cl_ - o - v‘(II-I.6)
Using plansr Regge poles. (of well-defined C) as a basis we

are now in a position‘t'o formulate an integral -equa._tion far -the cyHnder

correction to the plapsr S matrix. Focussing on the t che.nnel (along

the axis of the cylinder), the problem schematically is that of summing.

» the: series',

| XEL757-4431

(111 ._7)

of J eand- 't as well as definite charge con,jugation, the leading

1k

. where it is understood that there are separate series for even and odd.

charge con;)ugation. By attaching appropriate re'sidue-v factors at left
and right and summing over plana.r poles, as in (II1.5), the physical

discontinuity may be constructed. from (III 7), but the analysis will

-be simplified if such "end effects” are deferred until the. final

stage of the calculation. The most ‘essential questions concern the
interior of the cylinder, not the ends. - L
Although the cylinder correction is constituted by all terms <o

of (III.7) beyond the first, it is convenient to study the sum- of .

pispar and cylinder contr_ibutions,' i.e. the entire series. Thinking Fhi
of_ linear operators in the _space of plemar Regge poles, at fixed "iralueﬂgw :
term of (III. 7) may be described as a diagonal propa.gator and .
designated by the symbol P. (P suggests both "planar" and

"propagator"!) Assuming the kernel C.P to be Fredholm (acting on .= %

1

the entire series may ‘be written as an integral equation

.A = P+ PCl_P + PClPClP +
= P + PCA, o
1 (111.8)
with the formal solution,
. .. '_l —‘1 ‘ | .
A= (FT - ) . ' o - (111.9)

Even though this closed form is only schematic, 1t facilitates an .

extremely important inference to which we now turn attention.
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IV. SHIFT OF PLANAR FOLES COMMUNICATING WITH. THE CYLINDER

Where are the poles of A --the sum of planar and cylinder
cvemponentr;vs? To approach this question let us split the space based
on pla.nar poles into two subspaces .according to a criterion of ‘
: communication _with the twist’ operator. Combining the two.indices
i and 7y " into a single index n e.nd desigmting a planar basis
state by [n), we define a. superposition k) of basis s’caf.es.as
nénemicatmg if ¢ ’k) =0. . (For exnmple; when there is SUp
symmetry, the only 1rredué1ble representations that. -coﬁm‘miceie are
SUN : sling.lets.")‘_ By a standard procedure two complementary subspaces
,. im.y then be identified, one containing only noncommunicating etates

while, within the other, all possible superpositions comimica.te vith

: Cl . Within the former subspeee the cylinder Ins no effect apd A =P,

while within the latter subspace cl has no zero eigenve.lues and
thereby possesses an inverse.

By construction the plapar poles reside in the propaga.tor P

while the _twist operator C:L » built from planmar residues, contains

no poles. Within the noncomminicating subspace the poles of A are-.
) ’evidently the same as the plamar poles of P, 'but in the coumnicating

'subspace Eq. (III 9) tells us that plaper poles are uniformly absent

1

from A . That is, P~ tends to zero (i.e. to the mull operator) as

-1
y
cylinder correction annihilates all planar poles tmt,cenmunica'_be with

T ea 80 A tends to the finite limit -C In other words, the

the cylinder. ‘
At the same time the sum A develops new poles:at points
where

det(1 - C;P) = 0, - (1v.1)

~16-

and by examining the limit of small C1 one finds the familiar
q'_uantum-meehanical‘adiabatic:rule that the nevl poles are in one—to-o'ne-.
correspondence ‘with the original pia.nar poles. The cylinder thus may
be considered as‘e perturbation that shifts those planar poles wit'h'.
which it communicates, without g'enereting new poles.

‘It 1s straightforvard in fact to derive from (IV.1) & familiar- -
loqking_pertﬁrbet_ipn expe.hsion for the shift of a trajectory originally

at a : R
n "

(a lo)] 0¥ Ie;| w)

Ao = (n ’cll‘n) + . o
n n'
(1v.2)

Here we mean by |n) a state in the cylinder-communicating subspace--
vhich mey be a superposition of the origimel plamer states if there 1s
degeneracy of the latter. Note that because C,” = -Cl+ the first
order shif‘t of an even charge-conjugation trajectory is opposite to
that of the carresponding odd charge-conjugation trajectory although,
to the extent that second and higher order terms in the expansion
(1v.2) are apprecuble, th,ere will be an asymetry in the magnitudes
of upward and downverd shifts. In any event, exchange degeneracy is
lifted. A

At the same time that the cylinder shifts the position of a
planar tmjectory there will be a modification of residue. In the
original plenar basis the residue mtrix_ for each pole is (vy

construction) of the form

(n" anPl 9'5 = B B - (1v.3)
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After the cyliﬁder shift, the residue of each pole is still fac-

torizable:

114 ] —_ n n
(n anl ') = gy Epis (Iv.4)

but a mixing has been introduced--given to lowest order by the familiar-

looking formula

n a' loy| )

v =~ 5
&, n‘#l (1Iv.5)

La -,
n n ;

In Section VII we discuss a nonperturbative calculétion of the
shifts in tréjectory and residue when the cylinder coupling between
only a small number Of.planarApoles is included. Near t = O the
shifts turn out to be sufficiently large that it is worth going beyond
the lowest order of a Weak-coupling‘éxpansion but the qualitative
picturexat t = 0 can still be aescribed as a perturbation. In any
event the megnitude of the cylinder shift depends.upon t and, as
discussed below, the shift becomes.extremely smll for t 2 1 GeV.
The one-to-one connection between shifted and unshifted poles is
’therefore'guaranteed to be unambiguous if traced to the regiqn where

physical particles appear on Regge trajectories.

V. THE LEADING PLANAR TRAJECTORIES AND THEIR CYLINDER SHIFTS
For t near 0 and 0 SJ S 1 it is believed that for each
charge conjugation there exist three planar trajectdries. These
correspond to the conserved internal quantum numbers, electric charge
and strangeness, a possible way of attaching the qgark index i to the

quantum-number combinations being as follows:

-18-
i Q s
1 0 0
2 1 6]
3 0 : 1 .

Nothing is gained by employing fractional charge and strangeness so
long as we do not attempt to consider baryon number. Making integral

assignments may help to emphasizeé that the boundary lines of dual

X

diagrams are not équivalent to thé quarks in naive models. To under-
stand the experimental significance of the cylinder shift of these g;’
trajectories, ;t is essential to considgr SU2 and SUS symmetry, L
because it will turn out that the shift is larger than the breaking L
of SU, symmetry (at least near t = 0) but smaller than- SU5 £
symmetry breaking. 802 symmetry makes 1 =1 eéuivalent to 1=2 &

e

while SU3 - symmetry makes all three values-of 1 equivalent to each .

other. For our purposes it is appropriate to impose the former cdndi-<>¢

tion but not the latter. P
) e
labeling the three leading planar trajectories by the quark r

index 1 =1,.2, 3, those two corresponding to i =1 and 2

‘(no strange quark) will thus be taken as degenerate at ao(t), while

the third (strange quark) trajectory will be designated as oy (%),
Symmetric and antisymmetric combinations of 1 =1 and i =2
correspond to I =0 amd I =1, respectively, and since, with 8U,

2
symmetry of po;e residues, the twist operator ql is symmetric under

'14472 interchange, the cylinder communicates oﬁly with I =0 and

the ' I =1 trajectory undergoes no cylinder shift. Neglécting non-

planar shifts of order higher than the cylinder, we are then led to
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identify the planar trajectory ab(t)‘ with the physically-observed
exchange-degenerate p and A2 trajectories, [We emphasize once again
that planar trajectories are not required to be linear.] An unambig-
uous base is thereby secured--from which all shifts may be measured.
There is unfortunately no such direct way to fix ai(t)
(which is purely I = 0). It is empirically obsefved, however, --from
the near degeneracy éf w and p masses,.as welljas f and A2
masses--that for t 1 GeV2 the cylinder shift is small. We may
confidently assume, tﬁerefore, tﬁat the observed ¢ and f' particles
lie close to the (strange-quark) planar trajectory Q3(t), and one
thereby finds an interval of about O.4 in J between ao(t) aﬁd—
aB(t) in the region of moderate t , with the former (nonstrange
quark) trajectory lying higher. The origin of this substantial gap
remains unknown, but the fact that o, < «

3 0
tenets of the topological expansion. Conceivably, the gap may turn out

does not contradict any

to be a consequence of planar unitarity when the full cpntent of this
nonlineér and difficult-to-analyze constraint becomes understood. The
fact that al ~ Qé simplifies our task and must be recognized in
confronting the data but neither SUé nor SU3 symmetry is essential
to the topological expansion. ’ ‘
" Let us now consider how the four leading I = O plapar

trajectories--two of each charge conjugation--are shifted by the
cylinder; Recall that the leading pair has a common trajeétory ad(t)
--degenemte with the physical p - Aa trajectory. The positive
charge conjugation member of this pair we call f while the negative

charge conjugation member we call w , since the physical f(2+) and

w(1”) particles lie close to ao(t). Which goes up and which down as
a result of the cylinder shift?
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At t = O the positive definiteness of the discontinuity
products from which we started translates unequivocally into an upward
displacement for the leading trajectory of even charge conjugation.
Thus £ moves above p - A2 while «w moves pgggg, the upward dis-
placeﬁentbaccordingvto (Iv.2) being larger in magnitude than the
downward. If SU, symmetry were exact, i.e, if a3 = ao s it can be

3
shown that there would be no downward shift of the ® at all. This

‘point is illustrated in Sec. VII. The shifted f at t = O thus

plays the role of the pomeron, while the same cylinder mechanism that
endows the pomeronIQith its special prominence breaks p - w degeneracy
--pushing o déwn, although not as far as f is pushed up.

What is happening to the pair of Regge poles, f' and ¢,
assoclated Qith strange quarks, whose planar trajectory is 03(t)
--about 0.4 units of J  below ao(t)? To the éxtent ﬁhat SU3
symetry bas any meaning (see Sec. VII ), the even charge-conjugation
trajectory is again shifted upward. Thus we expect the physical f£'
to lie above «, and the physical ¢ to lie below, the overall ‘

3
descending order of the six leading trajectories being £, p - A

2)
w, £, §. A semi-quantitative estimate of the various in£ercepts
is given in Sec. VII. [See Fig. 1.]

The residues of the four I =_O poles are also modified by the
cylinder. The mixing given by Formula'(IV.ﬁ) means that the physical

f (the pomeron) will possess some strange-quark content, as does the

physical - w , even though the planar f and w are purely nonstrange.

~ The p and A2 trajectories, on the other hand, will continue to have

purely nonstrange Quark conteﬁt, while £' and ¢ will acquire a

nonstrange admixture into their predominantly strange-quark character.
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Detailed predictions are given in Sec. VII. Here we remark only that

the couplings predicted for the physical f turn out to be entirely

compatible with those observed for the pomeron.

VI. VIABILITY OF POMERON - £ TDENTITY
The identity of pomeron and f 1s not commonly assumed in -

Regge phenomenology; the standard picture contains an f , exchange
degenerate with p, w, Aé, Plus é pomeron whose intercept'is about
0.5 units higher. since the standard picture hés wofked well, the
reader may be skeptical that the picture presented here can be
experimentally viable. Although we have not investigated all possible
confrontations with data, we draw comfort first of all from the
extensive studies of bashl8 and collaborators19 who successfully fit
large quantities of moderate-energy scattering measurements with a
single highflying Regge.vacuﬁm-type trajectory.. A recent anslysis of
total crossbseption data within the even more restrictive framework
describgd in the following section of this paper gives us further
encouragement. At the present time we are unaware of experimental

_facts that conflict with our picture, although, as explained in_

- Appendix B, meésurement of nn total cross sections in the few-GeV
region may distinguish our pictﬁre from the éonventional one.

; An 1mpoftant aspect of the detai;ed predictions in the
following section (see also Ref. (3)) is their compatibility with a.
set of pomeron coupling rules proposed by Carlitz, Green and Zee(CGZ?O

"and known as the ”f-dominatad";oméon?l These rules have been strik-
ingly successful but their motivation as presented by CGZ left.obscure

the status of the physical f . Our approach not only yields the CGZ

rules while clarifying the posture of the f but gives a corresponding '
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set of rules for all six leading trajectories. From the standpoint of
our analysis, in fact, it might be appropriate to speak of a "p-

dominated pomeron,” since physical pomeron properties can in our model

be predicted from those of the physical o . [We are indebted to

Chan Hong Mo for this remark. ]

What is the relation between our picture and that given by the
conventional wéak-cqupling expansion of Dual Resonance Models (DRM).22 o)
The lowest order of the latter--the s§-célled tree’afproximation-—has o

many features in common with the planaer S matrix, while at the next o

Qe

order & nonplanar loop appears--with the topology of a cylinder. This
nonplanar loop intfoduces a nev singularity not present in the tree
approximation, that tentatively has been identified with the pomeron.

| 2

How can we reconcile this conventional picture with that based on the
o
topological expansion?
First of all, a weak coupling expansion is inadvisable accorddné?‘
- 8- Lol
to considerations explored by Veneziano, Chan and collaborators, 10 e
who showed that unitarity together with Regge behavior determines the Gsd

magnitude of the coupling. If arbitrarily weak coupling is excluded, &~

» results from the conventional expansion must be regarded with

skepticism. Secondly, the new singuiarity that.appears in the non-
planar dual idop has in all models to date been a pole only for an
unphysical number of s;acé-time dimensions. The pole intercept,
furthermore, 1s'at J =2, not J=1. In four dimensions the new
singularity is & branch point lying well below 1. It is only an
optimistic conjecture that, as the dual model imppoves, the loop
singularity will not only survive but will have properﬁiesvclose to

those of the physical pomeron.
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On the other side of the coin, we have here failed to prove that

in the topological expansion néw s3ingularities do not arise at the
cylinder level--having begged the questién by assuming the cylinder
kernel to be Fredholm. It is probable that an infinite sequence of
Regge poles (daughters) is needed to satisfy the planar-discontinuity
conditions, and the nondiagonal variablés in our integral equation
(e.g:, reggeon helicities and masses) span an infiniﬁe domain; so
there is room on severgl counts for new singularities to appear in_the.

"solution of the equation. We see no reason, however, for such sin-

gularities to appear near the top of the J spectrum.' Since estimates

~

of the upward shift of the f place its physical intercept in the
neighborhood of J=1 ,h and_since the origin of this shift is .
preclsely the unitarity (diffractivé) mechanism associated with the
- pomeron, we feel identification of pomeron with f to be compélling.
We remark finally that if, after all, a brand new pole with
vacuum quantum numbers is generated by the cylinder, it will be
difficult to avoid a corresponding (even though lower-lying) odd-
charge-conjugation pole. This point has been discussed by Freund and
Nambu?AWho stress the necessity in the conventional picture of finding

a particle like the w but slightly more massive.

ViI. A.SBMPLE MODEL FOR THE CYLINDER
. Having developed a technical framework for the cylinder level -
of the topological ekpaqsion and recognized the broad implications
thereof, let us noﬁ take a more concrete look at the situation. The
model described in this section employs two supplementary.simplificé-
tions: (1) Neglect of the influence on the leading six trajectorieé

from lower-lying trajectories. (2) Assumption of SU;  symmetry for

oL

the matrix elements of the twist operator C., between the six leading

1
states.

The accuracy of the first assumption--that of nearest-neighbor
dominance--can ultimately be checked, since all matrix elements of Cl
are determinable from the plamer S matrix. We have in fact identified

and will discuss elsewhere certain interesting influences on leading
trajectories by trajectories lying just Eelow_the top six, but we
have found nothing to undermine the familiar phenomenon that the
greatest influence on a state arises from nearest neighbors. The
secbnd assumption--assigning all SU,-symmetry breaking to the planar

3

propagator via the difference between @, and a3 --is based on the

6]
belief that planar Regge-pole residues should be relatively more
symmetric than are -pole positioﬁs. The cofrésponding.assumption in
Bfeit-Wigner data fitting has been strikingly successful--reduced
widths showing substantially more accurateASU3 symmetry than do

resonance energies (masses). The difference between ao and a3

s

- will inevitably induce some symmetry breaking in the matrix elements

of C but the effect is less important than in P --where all J

lJ
singularities have been concentrated.

For the I = O subspace we then have

i.l__. o - / 2 \Vz N
r [Ty [ S

(viz.1)

where Ay a5 and k are each functions of t, while for the.non-

communicating I = 1 subspace,
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PP = —= - ¢ = 0. (viz.2)

The leading six trajectories are thus described by three parameters at

each value of t. The parameter k, as well as «. and Qa_, is

0 3
determined by the planar S matrix (e.g., from planar triple-Regge
»couplings) and has in effect been so calculated at t = O in Ref. (8),
- but wé shall‘here regard k as a free parameter--to be fitted to
experiment. As will be seen in Appendix B, our value at t =0
accords satisfactorily with the calculation of Ref. (8).

The model embodied in (VII.1) and (VII.2) may be viewed as a
refined version of a model proposed_several years agb by H. Lee.ll.
Our improvements are: (1) Recognition of the cylindef as the second
level ip a systematic expansion. (2) Avoidance of unnecessary and
unjustifiable kinematic approximations of the Chew-Pignotti type,
by working in the J plane. (3) Inclusion of SUB-symmetfy breaking.
Point #1 allows us to see that awkward terms in the discoﬁtinuity
product, neglected by Lee without justification,rin'fact correspond to
& level of the topological expansion beyond the cylinder and are
correspondingly smaller b& factors l/N. We furthermore separate.the
simple perturbative problem of the cylinder shift from the far‘more
difficult bootstrap calculation of planar ;arameters.‘ In Lee's model
the planar and cylindef levels were treated as';arallel.

It is straightforward to solve the integral eéuation (111.8)
with the simple forms (VII.1). The reader will recognize our problem
is that of diagonalizing a 2 Y 2 mass matrix in the presence of an

interaction. = Shifts.in trajectories are equivalent to shifts of masses,

26
and one finds two new even churge-conjugation eigenvalues corresponding

to the trajectory positions

1 o L
% g1 = 3 1Jozo tog + 3k d {(aO - o+ k) + 8K ,

ViI.3)

while the two new odd charge-conjugation trajectories (® and #) are
given by a similar formula with' k replaced by -k. It 1s easy to- o

verify that if k is small compared to % - O , expanding (VII.3)&>

yields A
| 232 <

[o7 = O, + 2k + 2k T+ .

t 0 -Q .
0 (1303
VII.3'
2
= _2k Lo
af. = a3 +k - ao = a3 +

D

in accord with the perturbation formula (IV.2), vhereas in the limit ...

LV

where ao - 03 1s small compared to k one has
a, & (2a, + a,) + 3k &
» 3\l * Og) +
(VII.3"T™
PO
@ 3 (ao + 2a3)_.

The correspondihg formulas for the odd charge conjugation trajectories

are

Q
1
9]
]
o
123
+
“+

(Viz.h)
. 2 .
a¢ = a}-k - (T_B- ’ :

for weak cylinder coupling and
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g
Wi

a = (ao + 2a3)
a, » = (ca. +a,) - 3k
(s 30 "3 T

for cylinder couplings larger than SUj-symmetry breaking.

Although at first sight it looks strange in the latter

that o& and «_,, not only are equal but ére independent of k, we

f

‘recall that with SU5 symmetrj the cylinder couples only to SU3

(VII.4")

case

singlets. It is easy to show that in the symmetry limit « and f'

become members of octets and so do not communicete with the cylinder.

In the same limit f and ﬁ “become pure singlets and communicate

maximally. The important fact that f moves up further than

w .

moves down may be attributed fo these symmetry considerations or

altermatively one may apﬁeal to the notion of level "repulsion

" and

observe that all lower trajectories tend to push up the highest

trajectory. Since the self-induced shift of each even charge-

conjugation trajectory is upward the self and mutual shifts here

reinforce, but for the leading trajectory of odd charge conjugation

the self-shift and the mutual shift tend to cancel.

If we designate the original I = O planar basis states by

IO) and !3) , corresponding to the trajectories ao and Q.

s

respectively, the two new states of even charge-conjugation are

]

I£) cos 8 [0) + sin e [3)

l£)

-sin ot |0) + cos e |3),

where by straightforward calculation

(viz.5)

- while ¢
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V8 k

+
tan 20 = —————— (V1I.6)
ao-a§+k

At the same time the odd charge-conjugation states lw) and l¢> are
glven by corresponding formulas with a mixing angle 8 determined
from Formula (VII.6) with k replaced by -k. For many purposes the

following alternative mixing-angle formulas are more convenilent:

‘Jgh(af - 05) Q,, - Q

b 0

. o, - a, ] w/ﬁp(af,'- aj)

£
B

il

| v a -« 2 ( ) (VIIf7)
ne - —m % o Vo)
\ﬁ;(ab f'a5) ' O% - aO

The foregoing form for tan ot corresponds to that.proposed by Carlitz,
Green and Zee if one understands af to be their pomeron trajectory,
o and 03 are the trajectories which they called f aml f,'20
-Following CGZ &e may use Formulae (VII.T), (see Appendix A) to
combute ratios of various Reggeon-particle couplings in terms of
ratios of trajectory disblacements. We present a represéntative
samplé of these fatios in Table I. Note that we are now able to
calculate many more ratios of coupling constants, all with the same

géneral form.

An 1llustrative numerical application of our éimple model is

presented in Appendix B where we review experimental faéts about total

cross sections, all of which are consistent with k(t = 0) lying

"between 0.1 and 0.2. Even this weak cylinder coupling is sufficient to

give the f(pomeron) a dominant position and to force its couplings to
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lie roughly midway between those of an SU, singlet and those of an

>
"ideal" mixture like the physical f-particle. Such a pomeron might
well be described as ”schizophrenic" although not quite in the same
sense as proposed by Chew and Snider.25 |
Our simple model allows trajectory and coupling shifts to be
determined by a single parameter at each value of t , not just at

t = 0. Thus, mass differences between physical perticles (e.g., p

and ) allow the determination of k at appropriate nonzero positive

values of t and Formula (VII.T7) become predictiops fdr mixing angles_
(e.g. H, ®, or f, £' mixing). [We have defined 6% such that
these anglés are rotations toward zero away from the idéal quark
_mixing angle arc cot ’\E .] We are thereby led to recognize that the
symmetry breaking phenomens discussed by CGZ at E_é_g for the pomeron
is but éne menifestation of & general mechanism which is also respon-

26 27

“ible for violation of the Iizuka, Okubo, Zweig28 rule for

physical particles.

In Appendix B it is found that for + 21 GeV2 the value of k
lies between 0.0l and O.OE-Qmuch smaller than at t = 0. We find‘this
empirical fact striking. ThevphenomenOn that as . t becomes more
positive the cylinder correction becomes_smaller and the planar
approximation better shall henceforth be referred to as asymptotic
planarity. In principle this decrease in mégnitude should be predict-
able from a knowledge of the planar S matrix (triple-Regge couﬁlings),

"but no explicit calculation has yet beep performed. We nevertheless
draw encouragement from the following consideration: a smell slope for
"the pomeron trajectory at t = O is implied by the rapid decrease of

k(t). That is to say, if the displacement of f(pomeron) above p
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shrinks to a tiny magnitude by the time »ap reaches J =1, the

~

height of e at ¢ = mpc cannot be much above its height at t =0
(see Fig. 1). Conversely, generation from the planar S matrix of the
small pomeron slope at t = O implies & content within planar

amplitudes thet will produce a rapid decrease of k{(t) as t grows.

The success of Ref. (&) in calculating the pomeron slope is therefore

~ encouraging to the prospect of understanding asymptotic planarity. <

Many of the physical effects associated with the cylinder [
kernel have recently received attention in quark models. where they are:”

associated with gluons. F. Low29 has proposed a model where the

£

L
pomeron is conceived as arising from gluon exchange. Applequist and s
Politzer30 have discussed the validity of the IOZ rule also within thejk
quark-gluon framework. We find it striking that both in the latter“. -
model and in our topological framework the validity of the I0Z rule “
depends on chﬁracteristic couplings becoming weaker as t (or m2) f“ﬁ\
increases. In the field theoretical approach gluon coupling constant;a%
become small (ésymptotiq freedom) while in the S-matrix a.pproach. e
o

cylinder couplings k(t) become small (asymptotic planarity).
The prospect that physical effects attributed to gluons are

to be understood through properties of the planar S matrix increases

dramatically any estimate of the ultimate impact on particle physics

by the topological expension.
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APPENDIX A: Crossing Symmetry and Physical Amplitudes

As in standard DRM, the complete planar N-line connected part
is obtained by summing over the % N - l)l inequivaient external
line permutations of an ordered N-point function of the type .shown in

- (11.1). [Two permutations are equivalent if related by & cyclic or an
anticyclic permutation.] Similarly at th¢ cylinder level, in order to
satisfy crossing symmetry one must sﬁm over several cylinder config-
ufations, although -in the.teit we concentrated on one discontinuity of
a particular cylinder. We were justified in so doing insofar as we
vere studying individual Regge poles. Here ve explain how physical
crossing- symmetrlc amplitudes are to be constructed from the primitive
Planar and cylinder discontinuities discussed in the text. We begin
with the constrﬁction of a physical three-Reggeon vertex, which will
include the "end-effects’ réferred to in Sec. III. In appropriate
pole~-dominant limits where branch points are unimportant, we are then
in a position to construct physical connected-parts.

Suppose we are given the (planar) coupling GP between

abe
three planar Regge pples. What is the corresponding coupling between

cylinder-shifted poles? In terms of the cylinder mixing coefficients

€nt n . the answer 1is evidently

- . a b ¢ P
Sabe T ) Bar B Eo Gy iprer (a.1)

a'b'c’

a

--a straighﬁforward rule that accommodates the consistent cylinder
renormalization of both "internal" and "external' particles. Crossing

symmetry is assured.

. The corresponding nonvenishing planar couplings are Gg¢f, and G
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The construction of the planar couplings G:bc for states of
well-defined isoszpin and cﬁarge conjugation ha; been discussed
recently in Ref. (5), vwhich develops the relation between Chén-Paton
factors and the quark-line boundaries of the planar dual diagram We
have nothing new to propose in this connection.

As an example of the use of (A.1) let us consider the couplings
that control the ratio of high energy total cross sections of w and

f. These would be G¢¢f and G  where each of the BH(w)

f)
trajectories is taken at t = my (qb )} while the f(pomeron) is
taken at t = 0., . In the approximatiop of Sec. VII we have the

following nonvanishing mixing coefficients to consider:

® g

gw =. g¢ = cos ©
s¢w = - safé = sin @
(A.2)
gff = cos 0+
gf,f = sin @

P
awf’
so from (A.1) we have

- 2 - + P 2 .- + P
G¢¢f_ cos™ @ sin © G¢¢f, + sin” @ cos © Cwa
and " ‘ (A.3)
2 - + P L2 - .+ P
qﬂnf = cos © co§ (5} Gmwf + sin” © sin 8 G¢¢f,.

(A.h)

If SU3 symmetry is assumed for the planar couplings, one has addi-

tionally the condition
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& .. = Ve ¢ -~ (A.5)
pper = awf ’ - :
S0

c:¢¢f V2 cos” 9;'(\1'::;(1{) sin 67 (t=0) + sin” 6-(t=m¢2 cos 61(t=0)

Counr cos” 97(t=uh?) cos 6+(t=0) 5 sin® 6 (t*m ) sin © * (= O)
(A.6)
To the extent that 67 is negligibly small at t = m¢ s uh? the

ratio reduces to ﬂ/- 2 tan ©'(t=0) --the result of Carlitz, Green and
: Zee. The ratios listed in Sec. VII are obtained in a similar fashion.
| To construct an amplitude from discontinuities one must add
the contribution from right and left cuts. Not surprisingly, when
this is done for both cylinder and planar discontinuities one finds
the usual signature factors for shifted Regge poles. For example, the
f (pomeron) contribution carries a factor exp[-inaf] + 1, while the
® contribution carries a factor exp[-inub] - 1.

Cylinders élong the s and u axes have not been considered
here. With respect to the J plane for the ‘t chﬁnnel, th;se
‘cylinders give rise to Regge-Regge cﬁts With the FinkelsteinBl selec-
“.tion rulés‘(allbwing certain exotics), but such cuﬁs lie bélow those

singularities that have received attention in this paper.
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APPENDIX B: Preliminary Confrontation with Moderate Energy Date

For two different reasons we confine attentlon to moderate
energies: (1) Terms beyond the cylinder in the topological expansion

increase in importance with energy. FPomeron-pomeron and pomeron-

.reggeon cuts, in particular, have not yet appeared by the cylinder

level--carrying additional l/N factors~--but such cuts are neverthehss

expected to incregse in relative magnitude with energy and ultimately
to play a significantirole. (2) Confinement of attention ﬁo the ‘six
leading trajectories ignores degrees of freedom like bafyon number
that go beyond charge and strangeness. At energies sufficiently high
to excite such additional degrées of freedom the simple model of
Section VII fequires extension. In particular, the experimental fact
that total cross sections.begin to increase at higher energies is not
representable by the six-trajectory model. Inclusion of additional
high-threshold‘degrees of freedom, such as baryon number,_can
accommodate the riseé without altering the méderate'énergy predié-
tiono2?2° [the cylinder coupling with lower-lying trajectories can
push the f above J = 1.], but before making a serious study of such
threshold complications we thought it worthwhile and insﬁructive to
confgont thé-simple model with méderate-energy data.

This preliminary snalysis takes its parameters to accord with

cxp(O) = 0.57 t 0.01 and aw(o) 0.43°% 0,01 as determined from total

cross section differences between 4 and 200 GeV.jh These intercepts

are consistent with date confined to energies where baryon-antibéryon
production is negligible, but the displacement ap(O) - qD(O) is not

accurately determined from such energies. This displacément we use to

set the scale' of the cylinder shift at t = 0.

(]
o

£
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A firsﬁ question is whether.such 8 modest downward shift of
w can be compatible with the substantial upward f-shift needed if the
f 1is to be identified as the pomeron. In this connection the precise
value of a3(0) is not crucial. Taking 05(0) = 0.2, together with
ao(0) = @ (0) = 0.5T, we find from Formula (VIL.3) that k(0) = 0.10 .
is required to shift qD(O) from 0.57 down to O.h}. Such a velue for
k(0) moves af(O) up to 0.81. If we wish tovmove df(O) all the way
from 0.57 up to 1.0, onme requires k(0) = 0.17; the o trajectory is
then pushed down only to 0.39. Realizing that Desh and collaboratord®
have been able to fit all available elastic and diffractive-
dissociation data up to 30 GeV with a single vacuum trajectory of
intercept 0.85, we are assured that a value of k(0) somewhere between
0.10 and 0.20 can préduce an adequately prominent pomeron while at the
same time giving the more modest p -w displaceﬁent iﬁdicated by
experiment.

There is at presént no experimental evidenée to support our
prediction that p - A, degeneracy is less broken thamn p - f£. Tests:

2

at t = O based on total cross sections are consistent with p - AE

. degeneracy but are insensitive to trajectory shifts.of the order O.1.
Data for t <O are ekpected theoretically to be more sensitive to
Regge cuts and are found, in fact, to be incompatible with a simple

- degeneracy is there-

2
fore difficult to determine, either for t =0 or for t <O.

Regge-pole description. The éccuracy of p - A

A specific choice for k 1implies, by the considerations of
Appendix A, definite ratios of reggeon couplings to n and K. One

finds, up to a common multiplicative factor,
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A
o _ 2
e T 2 7. = 0
A
P 2
7K - l 7K - l
S + £ +
7ﬂ = 2 cqs C] 7n = «2 8in ©
f L+ + £ + L+
7K = cos ©® +Y2.sin © 7K = - sin 6 +‘V5-cos e
(8.1)
o _ g _
Y, =0 7. = O
7Kw = cos & - V—E- sin 6~ 7K¢ = - sin 6 -\4’5 cos 6 .

Certain of these ratios are reproduced in Table I in terms of the

S

. parameters
Q, - a.
r, = Y2 tan ot = L 9
b : a, - o
f 3
_ (B.2)

a -«
=z I N -

r, = Y2 ten ® = 5 -5
oW >

One may ask whether experiments on #«N and KN total cross sections

are compatible with these ratios when k(0) has a value compatible

with trajectory intercepts. A preliminary study by stevens55 has

given an affirmative answer for energies between h_and 30 GeV,

extending the check already made by CGZ for the most easlly measured
£, f + *

ratio 7K /7n . [Stevens was able to fit K°p and n"p total cross

sections over this moderate energy interval with f, p, A w

2}
trajectories aﬁd residues that are compatible with the model of Sec.
viI if x(0) = 0.15, ay(0) = 0.57, aj(o) = 0.2.]

It is well known that the qualitative behavior of exotic

versus nonexotic total cross sections is nicely explained in terms of
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the conventional pictufe where é pomeron with an intercept near J =1
-1s added to a set of exchange-degenerate trajectories. The difference
between the present formulation of tWwo component duality (the back-
ground is dual to the full cylinder-cpntribution, not just the pomeron
plece) and the traditional formulation can be described as the dif-
ference be£Ween the strong and weak versions of the HBrﬁri-Freund
ansatz. | |
‘ The strongFHBrari-Freund ansatz says thaﬁ exotic'créss_sectioné
iare relatively flat--é statement ﬁhich is a conseduence of exact
exchange degeneracy. The contribution from the Reggeons exactly cancel
eéch other, leaving only the fomeron of intercept approximafely 1. . The
weak version of the.ansat; reqﬁires only that total-cross_seqtions for
nonexotic s-chamnel processes areblarger ﬁhan corresponding exotic cross
sections. In our model we expect exotic cross sections to rise toward:
their asymptotic pomeron-dominated behavior; For_example, in n+n+
and K'n' only the f -and o trajectories contribute, with roughly
equal strength ﬁut opposite sign. Since af(o) is significantly
larger than a (0) even though still less than 1, ve expect these
cross sections té show a rising tendency at ;ow energies thﬁt mey
pfovide a test capable of distinguishing'the two different vers1ons
of the Harari-Freund ansatz. » V | | ‘
If only the weak versién holds how are we to explain the
relatively flét Pp and K+p total cross sections? The.
explanation lies in the circumstance that these reactions involve

a more complicated system of poles and residues. We refer
thé reader to the details of the K+p fit35 for an example of how the

energy variation arising from different components can mutually

compensate..

-38-

Suppose we continue our model to the positive t region and
apply it to the physical-particle mass differences between p and ® and
between f and A2. These differences are sufficiently small that
the first-order perturbation should be amply accurate, and the signsb
of the observed differences are as expected if k(t) does not change
sign, but the differences are 50 small that the finite width of the
resonances becomes a limitation. The complex mess is the poéition of
the'pole, whose real part may be shifted fromvthe Breit-Wigner o

Ko

resonance "mass" quoted in the standard tables by a substantial fraction

iy

of the width. The best that can be done in the absence of more

g

: Ko
precise knowledge of the pole positions is a rough estimate that in

i,
i

this positive-t region 0.0L <k S 0.0,
| Even though the mass shifts are only crudely known, their smaligh
magnitude suffices to explain via Formula (VII.7) the extraordinary “
validity of the I0Z rule. If we turn tﬁe.question around and ask for
the magnitude of the cylinder coupling needed to explain the observedtig*
decay of the § _intobnonstrange particles, we find k(t=m¢2) R 0,02, ~m
Details of this calculation willlbe presented in a separate paper56 L3
that considers a variety_of'physical phenoﬁena related to asymptotic

planarity.
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+
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Formal Expression
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FIGURE CAPTION

Fig. 1. The leading trajectory pattern after the cylinder correction
has displaced the I = 0 states. The scale of the t =0
splitting shown here is fixed by the choice @ - oy = 0.37,

oy - o = 0.1‘h.



QUL o490 134z

| PR T
1622 - $278X
. _ (2A9) 4 |
ON . _ mq_ O._ m_.o. .,v O




LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Energy Research and Development Administration, nor any of
their employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
owned rights.
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