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Laurel Taylor Sebastian, 997594975 

 

Plant Traits, Diversity Metrics, and Environmental Factors Shape Soil Carbon Dynamics in a 

Restored Grassland  

Abstract 

In the era of unprecedented biodiversity loss and a subsequent loss of ecosystem function, a core 

goal of restoration ecology is to identify planting strategies to restore ecosystem functions like 

soil carbon sequestration. Plant diversity, functional groups and functional traits can all be 

leveraged to improve ecosystem function, but there are major gaps in our understanding of which 

strategies are most impactful for increasing soil carbon (C). In this study, we seeded common 

California grassland species in 210 experimental plots and examined how plant functional 

groups, functional traits and diversity metrics influenced five unique soil carbon pools. We also 

evaluated effects of precipitation and land use history treatments on soil C pools across two years 

to examine how environmental conditions mediate plant-soil interactions, and if there are time 

lags in those effects. Land use history was the biggest single predictor of soil C, with the 

duration of shrubs on the site prior to our experiment outweighing the effects of all other 

variables. In linear mixed-effects model comparisons, environmental variables (precipitation, 

land use and year) alone best explained particulate organic carbon (POC), while adding species 

diversity metrics improved predictions for total carbon (TC), microbial biomass carbon (MBC) 

and mineral-associated organic carbon (MAOC). However, functional and species diversity 

correlated negatively with soil C pools in some environmental conditions, showing that diversity 

itself may not always boost soil C levels. Water-extractable organic carbon (WEOC) did not vary 

with any plant or environmental model. Analyzing effects of individual variables, we found that 

diversity, functional trait, and functional group correlations varied across soil C pools, 
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environmental context, and the year of vegetation measured. These results suggest that different 

plant strategies contribute to soil C pools through disparate pathways on various timescales. Our 

study highlights how dynamic soil C is in grassland systems and that additional work is needed 

before restoration managers can use trait-based approaches to sequester soil C in various site 

contexts.  
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Introduction  

Restoration ecology seeks to maintain or improve core ecosystem functions by restoring 

biotic and abiotic conditions (Palmer et al. 1997). Two main approaches in plant-based 

restoration aim to restore function: reintroduce a diverse mix of plant species, or introduce plant 

species or functional groups known to improve a given ecosystem function (Cardinale et al. 

2012, Carlucci et al. 2020). In recent decades, ecologists have also employed functional trait 

approaches to guide restoration, with the assumption that traits (measurable characteristics like 

rooting depth) provide a mechanistic understanding of how plants affect their environment (Funk 

et al. 2008, Laughlin 2014). However, many gaps remain in our knowledge of which functional 

groups and traits most impact ecosystem functions, and how they compare to biodiversity-based 

approaches (Poirier et al. 2018, Carlucci et al. 2020). As climate and land use changes progress, 

we have the added challenge of identifying restoration strategies that succeed across different 

environmental conditions (Harris et al. 2006). Continued research on the roles of traits, 

functional groups, and diversity on ecosystem functions will bring us closer to deploying more 

effective planting strategies to meet restoration targets.  

A restoration goal of great interest is building soil carbon (C) to help mitigate climate 

change and regulate other critical ecosystem services including soil stability, nutrient 

availability, and water holding capacity (Follett and Reed 2010, Booker et al. 2013). Soil C may 

also increase the financial stability of working landscapes through its sale on emerging carbon 

markets (Follett and Reed 2010, Eastburn et al. 2017). However, soil C is a highly dynamic 

carbon pool composed of unique soil carbon components, and much is still unknown about how 

plant functional traits, functional groups, and environmental conditions interact to alter soil C in 

short and long term carbon pools (Butenschoen et al. 2011, Conant et al. 2017, Poirier et al. 
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2018, Carlucci et al. 2020). Knowledge gaps in soil C formation and loss are crucial to address in 

grasslands since grasslands represent one of the largest carbon pools (50 tons C/ha; Dondini et al. 

2023), store most of their carbon long-term underground (Paruelo et al. 2010), and are imperiled 

globally (Bai et al. 2008). In particular, California grasslands need further research since they 

have different biotic and abiotic conditions than commonly-studied mesic grasslands (Booker et 

al. 2013), but cover over 10% of the state (Corbin et al. 2007) and may offer a more stable 

carbon sink than forests under climate change (Dass et al. 2018). 

The five soil C components included in this study stem from diverse plant-soil 

interactions and vary in their long-term stability and contribution to C sequestration (Poirier et al. 

2018, Dynarski et al. 2020). Total carbon (TC) is the most commonly measured form of soil C 

and encompasses all the pools described below. TC is therefore not as closely linked to any one 

plant-soil interaction or timeline of persistence in the soil, but it can be tracked over time to 

determine if an ecosystem is acting as a net carbon source or sink (Conant et al. 2011). 

Particulate organic carbon (POC) consists of fragments of plant matter that are vulnerable to 

decomposition, but feed the soil C cycle and can persist for 1-50 years (Lavallee et al. 2020, 

Cotrufo and Lavallee 2022). Water extractable organic carbon (WEOC) represents a relatively 

small but active pool of bioavailable carbon derived primarily from root exudates and labile 

tissues, and is important in stimulating microbial growth (Bolan et al. 2011, Haney et al. 2012, 

2018). Microbial biomass carbon (MBC) reflects the live soil microbial community. While 

microbes themselves are short lived, microbial processing of plant C into chemically and 

physically stable forms is the primary mechanism for long term C sequestration in many systems 

(Cotrufo and Lavallee 2022). Mineral-associated organic carbon (MAOC) is the pool of carbon 

derived from that microbial processing as well as direct adsorption of C molecules onto minerals 
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in the soil, and is thought to remain in the soil for 10-1000 years (Cotrufo et al. 2019). However, 

MAOC can reach a saturation point depending on the mineral surface area of the soil type, which 

can limit expected plant contributions to this pool (Cotrufo and Lavallee 2022). The unique 

characteristics of each pool are key in understanding how management influences soil C and 

how, together, they determine long-term soil C sequestration and climate change mitigation 

(Dynarski et al. 2020). 

Recent studies have attempted to find mechanistic links between soil carbon and various 

plant functional trait measures, with increasing focus on root traits as the drivers of soil C 

formation and loss (see Table 1). Based on the mass-ratio hypothesis, community weighted mean 

(CWM) trait values help identify when dominant species or traits in a community drive a desired 

function (Grime 1998, Wang et al. 2021). Some researchers have found that trait values of slow-

growing, resource conservative plants (e.g. high leaf mass per area (LMA), high root tissue 

density (RTD), low photosynthetic rate (Asat)) are linked to recalcitrant litter that decomposes 

slowly and builds up as POC (Aerts and Chapin 2000, De Deyn et al. 2008). Opposite trait 

values associated with a more resource acquisitive strategy and labile plant tissues may increase 

soil C by stimulating microbial growth and processing of carbon into more stable pools like 

MBC or MAOC (Poirier et al. 2018, Lavallee et al. 2020, Hanisch et al. 2020). Therefore, part of 

the challenge in pinpointing traits that broadly boost soil C arises because various trait values can 

specifically enhance different soil C pools (Poirier et al. 2018). Beyond individual traits, the total 

functional niche space occupied by a community (functional richness, FRic) and the evenness of 

that trait distribution (functional evenness, FEve) can improve ecosystem functions (Díaz et al. 

2007, Wang et al. 2021). Functional trait diversity can increase soil C via increased plant 

biomass due to more efficient resource use (niche complementarity), as well as enhanced 
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resources for microbes through a diversity of root and litter types (Chen et al. 2020). Careful 

examination of various functional trait measures and particular carbon pool components can help 

tease apart which mechanisms are driving soil C change (Billings et al. 2021).  

In other cases, plant species diversity or the presence of specific functional groups can 

also play a positive role in building soil C (Díaz et al. 2007, Chen et al. 2020). Similar to 

functional diversity, higher species diversity tends to increase soil C sequestration rates and 

stocks via increased plant productivity and litter inputs (Fornara and Tilman 2008). However, it 

can also cause C loss by additional fresh C inputs stimulating microbes to accelerate 

decomposition of more stable C (i.e. priming effects) (Chen et al. 2020). While a global review 

showed a net positive effect of species diversity on soil C, results are not consistent across all 

environmental conditions and there is a lack of data on Mediterranean grasslands (Chen et al. 

2020, 2022). Similar to a trait-based approach, targeting functional groups (e.g. forbs vs. grasses) 

can offer a simple and mechanistic strategy to restore ecosystem function (Reich et al. 2004, 

Fornara and Tilman 2008). For example, perennial grasses have been shown to aid in carbon 

sequestration through their deep and abundant root biomass and conservative resource use 

strategy (Koteen et al. 2011, Anacker et al. 2021). Annual forbs and grasses are studied less 

frequently, but are more likely to have an acquisitive, drought-escape strategy in California in 

which less biomass is allocated belowground (Welles and Funk 2021). More research is needed 

on whether such acquisitive annuals lead to a net C loss via priming or an efficient conversion of 

C into the MAOC pool (Dynarski et al. 2020, Wen et al. 2021). Many grassland studies testing 

trait or species effects on soil C are conducted in perennial-dominated grasslands (Fornara and 

Tilman 2008), and rely on measurements of current vegetation at the time of soil collection (Zuo 

et al. 2016). In annual grassland systems, however, the plant composition can vary significantly 
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between years (Young et al. 2005), which could have subsequent effects on the buildup of soil C. 

Moreover, carbon inputs from plants move through different soil C pools on various timescales 

(Fossum et al. 2022), so it may be important to consider the effects of both the current and prior 

year plant composition on soil C pools in annual-dominated grassland systems.  

While examining plant effects on soil C, it is also crucial to test how these relationships 

shift across environmental conditions including precipitation and land use history. Some authors 

caution that strategies to increase soil C in mesic grasslands may not hold up in arid or semiarid 

grasslands where primary productivity can be low (Booker et al. 2013). Climate change induced 

drought may turn grassland carbon sinks into sources by stimulating microbial stress and 

respiration (Hoover and Rogers 2016), but others find consistent resilience to drought (Zhang 

and Xi 2021). Under the stress gradient hypothesis, one recent study suggests that plant diversity 

may aid ecosystem function most under stressful conditions, meaning a diversity-centered 

strategy would be even more important under drought (Maestre et al. 2009, Chen et al. 2022). In 

the restoration context, land managers also contend with prior land use histories of a site 

influencing baseline soil carbon stocks and soil structure. For example, shrub encroachment is 

common in grasslands globally and can increase soil carbon while cultivation usually depletes 

soil carbon stocks (Zavaleta and Kettley 2006, Conant et al. 2017, Luong 2022). Such land use 

history can change plant and microbial access to soil organic matter and shift the subsequent 

sequestration and cycling of soil carbon (England et al. 2016, Haddix et al. 2020, Wang et al. 

2021). With the increased variation in annual precipitation (Berg and Hall 2015) and the extreme 

variation in land use histories, it is more important than ever to test how plant-soil interactions 

change across environmental conditions (Butenschoen et al. 2011). 
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In this study, we explore how plant diversity, traits and functional groups correlate with 

five unique soil C pools under different environmental conditions. We leveraged a restoration 

experiment that seeded 32 common grassland species in various combinations across 210 plots 

subjected to either 50% or 125% of average annual precipitation and two land use history 

conditions (two or six years of prior shrub occupation). We then tested whether models built 

from functional groups, trait, or diversity metrics best predict five pools of soil C, and which 

variables were significantly correlated with each of the soil C pools. We also evaluated whether 

the current or prior year plants drive those correlations, and how the plant effects are changed by 

environmental conditions. We hypothesized that soil C pools would correlate positively to plant 

diversity but would vary in their relationships to certain traits and functional groups and in the 

timelines of their responses to plant inputs. We also expected more precipitation and longer 

shrub land use to increase soil C levels on average, and to alter the relationships of plant 

variables with soil C pools.   

 

Materials & Methods 

Experimental design 

We established 210 experimental plots in 2019 at the UC South Coast Research and 

Extension Center in Irvine, CA (33º41'N, 117º43'W) in a Mediterranean climate (330mm mean 

annual precipitation, 16.9C mean annual temperature). The site was established on San Emigdio 

sandy loam soils with a flat slope, moderate alkalinity (pH ~8.2), and <5% calcium carbonate 

(USDA n.d.). Bulk density at the site averaged 1.20g cm-3 at 0-15cm (standard deviation = 0.05, 

n=30). The experiment followed a factorial block design with the 210 grassland plots distributed 
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across 15 precipitation shelters that experienced one of two precipitation treatments and one of 

two land use histories (see treatment sample sizes and plot layout in Appendix A).  

To assess how precipitation alters plant-soil interactions, we conducted the experiment in 

a 30 × 30m area in 15 rainout shelters (3m (w) × 7.3m (l) × 2.6m (h)) containing 14 0.56 m2 

plots each. Eight shelters received 50% of average January-April rainfall (110mm) and seven 

shelter received 125% (275mm) of average January-April rainfall. These treatments represent 

typical low and high rainfall amounts during dry and wet years, respectively. We controlled 

precipitation by deploying transparent tarps above all shelters during major rainfall events 

(>0.25mm) between January and April, and then irrigating plots (two to three times per week) to 

reach target values (emitter height 1.5 m; flow rate 14 mm/h; >75% distribution uniformity). If 

tarps were not deployed in time for rain, irrigation was adjusted to reach target values. However, 

with historic rains in 2023, 50% plots appeared to absorb additional water from surrounding 

soils. Soil moisture sensors (EC-5 sensor, Decagon Devices, Pullman, Washington) installed 15 

cm below the soil surface in each shelter tracked actual soil moisture readings (see Appendix A, 

Figure A4). Tarps were removed entirely between May and December each year, although 

rainfall during the summer month was minimal. During the October-May growing seasons, local 

weather varied from 177mm rainfall and 17.0C in 2021/2022 to 466mm rainfall and 17.6C in 

2022/2023.  

The precipitation shelters were originally constructed and planted in two phases for 

previous studies on short-lived shrubs (Funk et al. 2021, Atamian and Funk 2023), which 

resulted in two distinct land use histories before the start of our study. Native shrubs were grown 

for six years (2013-2019) in nine shelters, and two years (2017-2019) in six shelters (see 

Appendix A for more details on prior studies). Prior to shelter construction and shrub planting, 
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the areas were disced yearly and planted with barley, so the shelters with six years of shrub land 

use history were also removed from tilling four years earlier. During the summer of 2019, we 

cleared shrubs from all plots, tilled and raked the soil, and removed much of the large taproots 

from the top 15cm of soil, but deeper roots and shallow fine roots likely remained. Due to the 

significantly higher soil C values registered in our plots with the six years of shrub land use 

history (Appendix A, Figure A5), we included “land use” as a treatment with two levels (two 

years of shrubs and six years of shrubs) throughout our study (Figure 1). These two land use 

conditions mirror restoration scenarios in which the prior site history (e.g., shrub-encroached 

grassland vs. tilled cropland) may result in different soil C conditions, which may moderate 

subsequent plants and plant effects on soil C. Although the previous studies also had 

precipitation treatments, the precipitation treatments varied in their levels and locations between 

each study and did not seem to influence soil C pools (data not shown). Any lingering 

precipitation treatment effects from prior studies are controlled for by including the precipitation 

shelter as a random effect.   

We seeded each of the plots in fall of 2019 with 10 native California grassland species 

out of a 32 species pool (Appendix A). The 10 native species were originally seeded at unique 

ratios modeled to meet four target functional trait ranges as explained in Laughlin et al. (2018). 

However, we found no differences in community composition and trait averages between those 

four groups after the initial seeding and they did not significantly correlate with any soil C pool 

(data not shown). Therefore, the trait groups are not examined in this work and will be published 

separately. Rather, this study examines the actual species composition and trait values achieved. 

In December 2020, we also seeded half of the plots with an invasive grass (Festuca perennis) to 

assess the effects of a common invader. Due to low initial recruitment, we repeated the invasive 
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seeding treatment in 2021 and allowed two other invasive grasses (Bromus diandrus and Bromus 

madritensis) to recruit naturally in the same plots. We weeded all other species out of plots 

throughout the growing season. The presence of invasive species did not have a direct effect on 

any soil C pool, so these species are analyzed in the same way as all others in the study. Eight 

Festuca perennis monoculture plots were excluded in our final analyses, leaving 202 total mixed-

species plots in our analyses.  

A single observer estimated percent cover of each of the 35 species (32 natives and 3 

invasives) each spring from 2021 to 2023 (as in Funk et al. 2015). For the 31 species (29 natives 

and 3 invasives) that remained in the experiment in 2022 and 2023, percent cover estimates were 

summed within functional groups: perennial grasses (n=8), annual grasses (n=5), perennial forbs 

(n=5) and annual forbs (n=13) (see Appendix A, Table A1 for species). To explore the 

relationship between plant functional traits and soil carbon pools, we obtained average trait 

values for each species from prior studies (Appendix C) (Funk et al., in review). We included ten 

traits (Table 1) that are commonly measured, are theorized to affect soil carbon or other major 

ecosystem functions in grasslands (Hanisch et al. 2020), and were available for all 31 species.  
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Table 1: Functional traits included in this study and their expected effect, increase (+) or decrease (-), on soil carbon 

in grasslands. *These traits were included in the multi-trait model used for model comparisons due to their lack of 

collinearity (correlation factors < 0.5).    

 

Functional Trait Predicted 

Effect 

Predicted Mechanism of Impact on Soil Carbon Sources 

Leaf mass per area 

(LMA, g m-2) * 

+ Dense leaves of resource-conservative plants create 

more recalcitrant litter and buildup of POC. 

(De Deyn et al. 2008, 

Zuo et al. 2016) 

Leaf nitrogen 

content (LNC, g N 

kg-1) 

+ / - LNC facilitates photosynthesis; high LNC plants are 

generally fast-growing and release more exudates 

underground which can stimulate MBC. MBC is 

essential for MAOC formation but can also drive 

priming (decomposition/ release of CO2). 

(De Deyn et al. 2008, 

De Vries et al. 2016, 

Chen and Chen 2018, 

Hanisch et al. 2020, 

Wen et al. 2021) 

Light saturated 

photosynthetic rate 

(Asat, μmol CO2 

m-2/sec)  

+ / - Correlated with LNC and similar impacts as above. 

Low Asat plants are also more drought tolerant, 

possibly allowing for more contribution to soil C in 

drought conditions.  

(See above and 

Nguyen et al. 2016) 

Water use 

efficiency (WUE, g 

C kg H2O-1) 

? High WUE plants sequester more carbon per unit of 

water and can maintain growth in dry conditions, 

which may be important for soil C effects in drought 

conditions. (No studies on soil C and WUE found).  

(Ge et al. 2019) 

Root tissue density 

(RTD, g cm-3) * 

 + / -  

 

Dense root litter of resource-conservative species is 

more recalcitrant and promotes POC, but reduces root 

exudation that stimulates WEOC/MBC/MAOC. 

(Craine et al. 2005, 

De Deyn et al. 2008, 

De Vries et al. 2016) 

Root length density 

(RLD, m root cm-3 

soil) * 

+ Abundant roots of resource-acquisitive species 

provide habitat for microbes (MBC); root hairs help 

form microaggregates, which stabilizes POC/MAOC. 

(Gould et al. 2016, 

Poirier et al. 2018) 

Root mass fraction 

(RMF, g root g-1 

plant) * 

+  

 

Resource-conservative species allocate more biomass 

underground, and root litter is generally more 

recalcitrant than shoots, building POC and providing 

more root surfaces for MBC.  

(Craine et al. 2005, 

De Deyn et al. 2008) 

Root diameter 

(Rdiam, mm) * 

+ / - Thick roots build POC through recalcitrant litter, but 

thin roots can increase soil aggregation and C 

stabilization through MBC. Weigelt et al. (2021) also 

place Rdiam/SRL on a separate “collaboration 

gradient” to describe mycorrhizal associations, but 

that has not been clearly linked to soil C in 

grasslands.  

(Poirier et al. 2018, 

Hanisch et al. 2020, 

Weigelt et al. 2021) 

Specific root 

length (SRL, cm 

root g-1 dry root) 

+ / - Thin roots of resource-acquisitive species are 

dispersed throughout the soil and exude more carbon, 

stimulating MBC to decompose or stabilize C. 

(De Vries et al. 2016, 

Poirier et al. 2018, 

Wen et al. 2021) 

Seed mass, (SM, g)  ? No known correlation to C, but SM has been 

associated with drought-survival in seedlings and 

community biomass.    

(Roscher et al. 2013, 

Harrison and 

LaForgia 2019, 

Hanisch et al. 2020) 

Functional richness 

(FRic) and 

Functional 

evenness (FEve) 

+ FRic indicates the amount of multidimensional niche 

space of the plant community. FEve is the evenness 

of the abundance distribution in the filled niche space. 

Both relate to trait diversity and niche 

complementarity and have been found to enhance soil 

C. 

(Díaz et al. 2007, 

Butterfield and 

Suding 2013, Wang 

et al. 2021) 
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Soil collection & analysis 

We collected soils during the third (2022) and fourth (2023) years of this project during 

peak growth (March-April). We cleared litter from the soil surface before collecting 2cm 

diameter soil cores (two in 2022 and three in 2023) at 0-15cm from each plot. Probe locations 

were randomly selected from a 36-cell grid within the plot at least 10cm from the plot edge while 

avoiding destruction of plant crowns and prior probe holes.  

We determined the concentration of total carbon (TC) via elemental combustion analysis 

(Costech 4010, Pioltello, Italy) on 15mg of sieved (2mm) and oven dried (60C) soil. We 

extracted WEOC within three weeks of field collection and froze extracts at -20C for less than 3 

months before analysis (Haney et al. 2012, 2018). For WEOC analysis, we combined 4g fresh 

soil with 40ml distilled water, shook for 10 minutes on a mechanical shaker at 210rpm, and 

centrifuged for 10 minutes at 3500rpm before vacuum filtering the supernatant through 0.45μm 

Cytiva Whatman mixed cellulose ester membrane filters (Rees and Parker 2005, Haney et al. 

2012). Within six weeks of soil sample collection, we analyzed MBC using the chloroform 

fumigation extraction method (Horwath and Paul 1994). Briefly, 6g of field-moist soil were 

fumigated with chloroform for 24 hours before extraction with 20ml of 0.5M K2SO4. In parallel, 

we extracted a set of non-fumigated samples. Extracts of fumigated and non-fumigated samples 

were filtered through Fisherbrand Q5 filter papers, and frozen at -20C until analysis within nine 

months. We acidified WEOC and MBC extracts to pH 2 using sulfuric acid (H2SO4) before 

analysis on a TeleDyne-Tekmar Fusion total organic carbon analyzer (Mason, Ohio) at the 

University of Wyoming (Rees and Parker 2005, Rhymes et al. 2021). We calculated MBC as the 

difference between the amount extracted from the fumigated and unfumigated soil, divided by a 

0.35 extraction correction factor (Voroney et al. 2007). We determined POC and MAOC by size-
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fractionation (> or <53µm, respectively) using a Fritsch Analyzette 3 (Pittsboro, NC) after 

shaking 10g of air-dried soil, five glass beads and 30ml 0.5% sodium hexametaphosphate for 18 

hours at 210rpm (Cotrufo et al. 2019). We then dried both fractions at 60C and ran 30mg of 

hand-ground samples through a combustion analyzer (as above). Sample sizes for each soil C 

pool varied due to financial and time constraints. After monoculture plots (n=8) and outliers 

were removed, we had the following sample sizes for each soil C pool in each year: TC (197 in 

2022, 199 in 2023), MBC (49 in 2022, 189 in 2023), POC (89 in 2022, 192 in 2023), MAOC (96 

in 2022, 198 in 2023), and WEOC (0 in 2022, 196 in 2023).  

 

Statistical analysis 

We performed statistical analyses in R (https://www.r-project.org/) using linear mixed-

effects regression (LMER) models. We log-transformed TC in all analyses to fit assumptions of 

normality. We examined and removed outliers beyond two standard deviations in all soil C 

pools. However, we retained WEOC measures below two standard deviations because the low 

values were all from the same precipitation shelter and were therefore more likely due to site 

variation than measurement error. Because functional trait values were more variable, we 

removed trait values beyond three standard deviations. We also log transformed RLD and SM 

trait values to fit assumptions of normality before we scaled all traits. Functional groups and 

diversity metrics were also scaled around zero to aid in comparing effect sizes. In all models 

except WEOC, we included year, precipitation and land use as fixed effects, and the precipitation 

shelter (hereafter ‘shelter’) as a random effect. Precipitation and land use were included as 

interaction terms to see how they moderated other variables, but year was only included as a 

https://www.r-project.org/
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main effect since it is included in models mostly to control for the repeated measure of each plot. 

WEOC was only measured in 2023, so we did not include year in any WEOC models.   

Our first round of analyses set out to test whether functional traits, functional groups, 

functional trait diversity, or species diversity metrics improved the prediction of each soil C pool 

over models that only contained the environmental variables (year, precip, and land use). We 

also built a null model (C pool ~ 1 + (1|Shelter)) for each soil C pool and evaluated models using 

AIC (Akaike information criterion) values (Table 2) (Akaike 1998). The set of four LMER 

model groups was replicated twice: once with all variables calculated from the plant community 

the same year the soil was collected (“current year”), and once with all variables calculated from 

the prior year plant community (“prior year”). This means that (i) 2023 soil C values were 

compared to 2023 and 2022 plant species and traits, and (ii) 2022 soils were compared to 2022 

and 2021 plant species and traits. The functional traits values used are community weighted 

mean (CWM) values calculated as the average trait value in the plot, weighed by the species 

cover percentages (Conti and Díaz 2013). We narrowed traits for the multi-trait model from ten 

traits to five traits that span above and belowground measures by removing the most collinear 

traits until all traits had correlation factors < 0.5 (included traits: LMA, RTD, RLD, RMF, Rdiam). 

Functional groups were calculated by summing the percent cover of all species in each group per 

plot. Legumes were tested in preliminary functional group models, but they were mostly 

insignificant (except a positive correlation with MBC; data not shown), so we removed legumes 

to avoid double counting those species in the annual forb group. The functional diversity model 

included both functional richness (FRic) and functional evenness (FEve) (calculated using the 

‘FD’ package in R), while the species diversity model included species richness and evenness. 

To compare AIC values between models with the same sample size for each soil C pool, we 
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removed all rows with NA values (from outlier removal) in any of the predictor variables above 

(samples sizes are reported in Table 2).  

Our second set of analyses examined soil C correlations with individual predictor 

variables, since we could not run collinear traits in the same model and individual correlations 

can be obscured in multi-variate models. We ran LMER models for each soil C pool against 

percent cover for each of the four functional groups, CWMs for the 10 functional traits, species 

richness, species evenness, FRic, and FEve. Each of those models retained precipitation, land use 

and year as main effects, structure as a random effect, and interaction terms with precipitation 

and land use. These regressions were also analyzed in two groups: once for the current year 

value and once for the prior year value. The models were run on the full dataset available for 

each soil C pool, and only significant model terms (p-value < 0.05) are reported below (Table 3; 

Figures 1-5). However, sample sizes for significant models varied by 1-10 rows based on the 

number of NA values for each variable, so the dataset was reduced until each significant model 

in Table 3 had the same sample size for each soil C pool. This allowed us to compare R2 and 

AIC values within each C pool. Any terms that were no longer significant (<0.05) in the slightly 

smaller dataset were not included in results below. All reported R2 values are marginal.  

   

Results 

Environmental treatment effects on soil C pools and vegetation  

The environmental treatment variables included in all models (year, precipitation, and 

land use) were significant predictors of all soil C pools except WEOC (Figure 1, Table 3). Land 

use was the strongest single predictor for all soil C measures except WEOC; plots with six years 

of prior shrub history had higher soil C values for TC (p=<0.001, F=31.43), MBC (p=0.022, 
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F=6.88), POC (p=0.001, F=33.32), and MAOC (p=<0.001, F=30.85). Year was significant for 

MBC (p<0.001, F=47.17) and POC (p=0.022, F=5.31), with both measures showing a greater C 

value in 2023. Precipitation only had a significant effect on MAOC (p=0.021, F=6.97), with 

125% precipitation plots having higher MAOC values. Precipitation and land use also interacted 

significantly with other explanatory variables and those results are reported below (Figures 2-5).  

Vegetation also varies with these three environmental variables. Graphs of the percent 

cover of each functional group by year, precipitation treatment and land use history are shown in 

Appendix A, Figure A3. Briefly, total cover and annual grass and forb cover was higher in 2023 

while perennial grass cover was higher in 2022. All cover categories were higher in 125% 

precipitation plots except annual forb cover was higher in drought plots. There was no difference 

in plant cover between land use types except a higher percent cover of perennial grasses in plots 

with only two years of shrub land use history.  

 
Figure 1: All effects of year and land use history, and the one significant effect of precipitation on soil C pools. 

Every soil C pool except water extractable organic carbon (WEOC) was higher in the plots with six years of shrub 
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land use history. Microbial biomass carbon (MBC) and particulate organic carbon (POC) were significantly higher 

in 2023 than 2022. Only mineral-associated organic carbon (MAOC) was significantly higher in wetter (125% 

precipitation) plots. Diamonds show means for each year, land use history, or precipitation treatment, depending on 

graph. See Table 3 for significance statistics. Stars indicate significance levels of p-values from simple T-tests and 

vary slightly from multi-variate p-values reported in Table 3. * p<0.05, ** p<0.01, ***p<0.001 

 

Model comparisons within each soil C pool  

For each of the five soil C pools, we tested whether null, environmental, functional 

group, functional trait or diversity models performed best by comparing AIC values (Table 2). 

Environmental models including year, precipitation and land use had significantly lower AIC 

values than null models for each soil C measure other than WEOC. For WEOC, the lowest AIC 

value is associated with the null model. Prior year species diversity models best predicted TC 

and MBC, although the prior year functional group model performed nearly as well for MBC. 

MAOC was best predicted by current year species diversity, although the AIC value was only 

slightly lower than the environmental model. Trait-based models were also significantly different 

than environmental models for MBC and MAOC, but the higher AIC values indicated that the 

slight predictive benefit of including functional traits does not outweigh the cost of additional 

model complexity. POC was best predicted by the environmental variables alone, meaning no 

other additional variables improved the model. Significant model terms and R2 values and for 

each model and are included in Appendix B.  
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Table 2: Model AIC comparisons for each soil carbon pool. The environmental model is built with only 

precipitation, land use and year, and each model line below that adds in the elements listed in the model variables 

column. Lowest AIC values are bolded. P-values in the environmental variables row compare the environmental 

model to the null model in an ANOVA test. All other p-values are from ANOVA comparisons between the model in 

that row and the environmental model, so they represent whether there is any significant difference in model 

prediction by adding the variables in that row. The five traits are leaf mass area, root tissue density, root length 

density, root mass fraction, and root density. The functional groups are perennial forbs, annual forbs, perennial 

grasses, and annual grasses. FEve is functional evenness and FRic is functional richness. Vegetation year refers to 

whether the variables in that row are calculated with current or prior year plant cover data. Additional model details 

are available in Appendix B. 

 

Model Type 
Model 

Variables 

Vegetation 

 Year 
Model AIC and P Values 

      

TC 

(n=333) 

MBC 

(n=201) 

POC 

(n=236) 

MAOC 

(n=246) 

WEOC 

(n=171) 

Null model 1 + (1|Shelter) Both -123.90 2141.1 553.43 547.61 1469.7 

Environmental 

Variables 

(included in all 

models) 

Precip + 

Year + Land 

Use + 

(1|Shelter) 

Both -139.50 

(p<0.001) 

*** 

2104.0 

(p<0.001) 

*** 

532.97 

(p<0.001) 

*** 

528.71 

(p<0.001) 

*** 

1473.5 

(p=0.911) 

Functional 

Traits (CWM) 

+ (5 Traits) * 

 (Precip + 

Land Use) 

Current -123.16 

(p=0.682) 

2121.2 

(p=0.617) 

548.13 

(p=0.462) 

531.68 

(p=0.028) 

* 

1492.5 

(p=0.749) 

+ (5 Traits) * 

 (Precip + 

Land Use) 

Prior  -118.86 

(p=0.858) 

2108.9 

(p=0.049) 

* 

553.56 

(p=0.854) 

548.33 

(p=0.795) 

1493.9 

(p=0.844) 

Functional 

Groups (% 

Cover) 

+ (4 Func. 

Groups) * 

(Precip + 

Land Use) 

Current -126.63 

(p=0.469) 

2113.4  

(p=0.265) 

537.89 

(p=0.839) 

538.30 

(p=0.217) 

1482.0  

(p=0.278) 

+ (4 Func. 

Groups) * 
(Precip + 

Land Use) 

Prior  -121.87 

(p=0.968) 

2102.3  

(p=0.012) 
* 

549.13  

(p=0.087) 

537.24 

(p=0.276) 

1482.5 

(p=0.578) 

Functional 

Diversity 

+ (FRic + 

Feve) * 

 (Precip + 

Land Use) 

Current -135.60 

(p=0.231) 

2110.8 

(p=0.515) 

535.11 

(p=0.131) 

531.14 

(p=0.144) 

1477.5 

(p=0.242) 

+ (FRic + 

Feve) * 

 (Precip + 

Land Use) 

Prior  -135.15 

(p=0.265) 

2112.0 

(p=0.675) 

542.46 

(p=0.867) 

538.78 

(p=0.922) 

1482.0 

(p=0.748) 

Species 

Diversity 

+ (Evenness + 

Richness) * 

(Precip + 

Land Use) 

Current -133.07 

(p=0.473) 

2108.5  

(p=0.276) 

537.27 

(p=0.0260) 

527.63 

(p=0.042) 

* 

1482.5 

(p=0.807) 

+ (Evenness + 

Richness) * 

(Precip + 

Land Use) 

Prior  -141.21  

(p=0.033) 

* 

2102.2 

(p=0.032) 

* 

542.10 

(p=0.824) 

533.49 

(p=0.301) 

1481.9 

(p=0.734) 
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Functional trait and functional diversity effects on each soil C pool 

In single-trait linear regression models for each of the ten CWM trait values against each 

C pool, traits rarely predicted soil C (Table 3). Of the ten traits tested, TC was negatively 

associated with current CWM values for root mass fraction (RMF) (p=0.038, F=4.35; Figure 2). 

Only the light saturated photosynthetic rates (Asat) of prior year plant communities were 

positively correlated with WEOC (p=0.031, F=4.75; Figure 2). No traits from current or prior 

year plant communities significantly predicted MBC, POC or MAOC consistently across 

environmental conditions, but MBC and MAOC had interactive correlations with environmental 

treatments and traits. Although the precipitation treatment only directly correlated with MAOC, 

precipitation and prior year leaf nitrogen content (LNC) did have an interactive correlation with 

MBC (p=0.013, F=6.27; Figure 2). MBC showed a more positive correlation with this 

acquisitive trait under well-watered conditions than drought conditions.  

 
Figure 2: Significant functional trait correlations with total carbon (TC) and water extractable organic carbon 

(WEOC), as well as a significant trait and precipitation interaction in the microbial biomass carbon (MBC) pool. 
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Root mass fraction (RMF) of current year plants and TC had a slight negative correlation, while prior year 

photosynthetic rate (Asat) and WEOC had a positive correlation. Leaf nitrogen content (LNC) had a more positive 

correlation with microbial biomass carbon (MBC) in 125% precipitation plots. Statistics (P-values, F-values and R2) 

are listed in Table 3.  

 

The land use history of the plots had three significant interactive correlations with traits in 

the MAOC and MBC pools (Figure 3). MBC showed a disparate trait response to log 

transformed root length diameter (RLD) between land use treatments. RLD had a negative 

correlation with MBC in six year shrub plots, but a positive correlation in two year shrub plots 

(p= 0.012, F=6.45). In the MAOC pool, land use interacted with current year root diameter 

(Rdiam) (p=0.024, F=5.13) and log transformed seed mass (SM) (p=0.012, F=6.42). There was 

little to no trait correlation with MAOC in the relatively carbon rich plots with six years of prior 

shrub land use history, and a slight negative trait correlation in the two year shrub plots.  

While the POC pool did not correlate with any individual functional traits, it did correlate 

with functional evenness (FEve) and functional richness (FRic) (Figure 3). Current year FEve 

correlate positively with POC in plots with two years of shrub land use history, and negatively in 

plots with six years of shrub occupation (p=0.019, F=5.53). POC also had a positive relationship 

with current year FRic in drought plots, but a neutral to negative relationship in watered plots 

(P=0.019, F=5.53). Overall, functional trait and functional diversity correlations varied 

substantially between each soil C pool, and correlations were mostly dependent on the 

environmental context.   
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Figure 3: Significant land use and precipitation interactions with community weighted mean trait values, functional 

evenness (FEve) and functional richness (FRic) for mineral-associated organic carbon (MAOC), microbial biomass 

carbon (MBC), and particulate organic carbon (POC). Traits are root diameter (Rdiam), and log transformed seed 

mass (SM) and root length diameter (RLD).  Trait and functional diversity correlations were context dependent.  
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Table 3: Significant correlations between individual variables and soil C pools. Each model related to every line 

below contained the environmental variables, and interaction terms between the given variable and precipitation and 

land use treatments. For example, the first line shows that current year RMF (root mass fraction) was significant in 

the model for that variable (log(TC) ~ Year + Precipitation*RMF_C + Land use*RMF_C + (1 | Shelter)), but 

environmental interactions with RMF were not significant, so they are not listed in the table. The R2 and AIC values 

reflect the entire model for that variable, including interaction terms. Estimates are scaled in that each explanatory 

variable is scaled around zero.  

 

Soil C 

Measure 

Model 

Additions 

Current/ 

Prior 

Year 

Scaled 

Estimate 

P-

value 

F-

value 
R2 AIC 

Environment

al Variables  

(P-value, F-

value) 

TC 

(n=383) 
log(TC) ~ Precip + Year + Land use + (1 | Shelter)  0.202 -128.46 

Year (0.055, 

3.71), Precip 

(.946, 0.01), 

Land use 

(<0.001, 

31.43) 

Traits RMF Current -0.02 0.038 4.35 0.218 -110.00 
 

Functional 

Groups 

Annual Grass Current -0.02 0.024 5.12 0.216 -110.58 
 

Diversity Sp. Richness * 

Precip 

Prior 0.02 (125%), 

-0.05 (50%) 

0.007 7.23 0.222 -113.01 
 

MBC 

(n=232) 
MBC ~ Precip + Year + Land use + (1 | Shelter)  0.261 2403.55 

Year (<0.001, 

47.17), Precip 

(0.090, 3.42), 

Land use 

(0.023, 6.88) 

Traits LNC * Precip Prior 8.06 (125%), 

-8.12 (50%) 

0.013 6.27 0.277 2386.81 
 

log(RLD) * 

Land Use 

Prior 6.01 (6 yrs), 

9.78 (2 yrs) 

0.012 6.45 0.281 2387.62 
 

Functional 

Groups 

Perennial Forbs 

* Precip 

Current 7.94 (125%), 

-9.20 (50%) 

0.039 4.29 0.272 2386.96 
 

 
Annual Forbs * 

Precip 

Prior -10.7 (125%), 

12.3 (50%) 

< 

0.001 

14.41 0.296 2377.59 
 

Diversity Sp. Evenness * 

Precip 

Prior -0.38 (125%), 

-13.69 (50%) 

0.028 4.89 0.293 2380 
 

POC 

(n=272) 
log(POC) ~ Precip + Year + Land use + (1 | Shelter)  0.406 625.27 

Year (0.022, 

5.31), Precip 

(0.935, 0.01), 

Land use 

(0.001, 33.32) 

Traits None - - - - - - 
 

Functional 

Groups 

Perennial 

Grasses * 

Precip 

Current -0.06 (125%), 

0.21 (50%) 

0.030 4.75 0.417 635.71 
 

Diversity Func. Evenness 

* Land Use 

Current -0.07 (6 yrs), 

0.13 (2 yrs) 

0.019 5.53 0.416 635.95 
 

Func. Richness 

* Precip 

Current -0.16 (125%), 

0.08 (50%) 

0.019 5.53 0.427 633.93 
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MAOC 

(n=279) 
MAOC ~ Precip + Year + Land use + (1 | Shelter)  0.307 611.12 

Year (0.193, 

1.70), Precip 

(0.021, 6.97), 

Land use 

(<0.001, 

30.85) 

Traits Rdiam * Land 

Use 

Current 0.032 (6 yrs), 

-0.25 (2 yrs) 

0.024 5.13 0.317 621.32 
 

log(SM) * Land 

Use 

Current 0.045 (6 yrs), 

-0.24 (2 yrs) 

0.012 6.42 0.327 619.65 
 

Functional 

Groups 

Annual Grasses 

* Land Use 

Current -0.16 (6 yrs), 

0.11 (2 yrs) 

0.004 8.49 0.329 616.98 
 

Diversity Sp. Evenness * 

Precip 

Prior -0.13 (125%), 

-0.05 (50%) 

0.031 4.68 0.326 619.92 
 

 
Sp. Evenness * 

Land Use 

Current -0.05 (6 yrs), 

-0.16 (2 yrs) 

0.011 6.63 0.333 615.08 
 

WEOC 

(n=194) 
WEOC ~ Precip + Land use + (1 | Shelter)  0.006 1640.88 

Precip (0.758, 

0.10), Land 

use (0.852, 

0.04) 

Traits Asat Prior 4.79 0.031 4.75 0.027 1629.43 
 

Functional 

Groups 

Annual Forbs Current 8.33 0.046 4.05 0.022 1630.59 
 

Diversity Species 

Richness 

Prior 2.96 0.030 4.76 0.029 1629.35 
 

 

Functional group and species diversity effects of each soil C pool 

In linear mixed effect models including percent cover for each plant functional group, all 

groups had some significant correlation with a soil C pool, but most of those correlations varied 

across environmental conditions (Table 3). Only two functional groups were significantly 

correlated with soil C pools across environmental conditions: current year annual grasses were 

negatively correlated with TC (p=0.024, 5.12) and current year annual forbs were positively 

correlated with WEOC (p=0.031, F=4.75) (Figure 4). Effect estimates are reported in Table 3. In 

other cases, the correlations between functional groups and soil C pools depended on the 

precipitation and land use history. Current year perennial forbs had a more positive correlation 

with MBC in 125% precipitation conditions (p=0.039, F=4.29), while prior year annual forbs had 

a more positive correlation with MBC in the 50% precipitation treatment (p=<0.001, 14.41; 

Figure 4). Current year perennial grasses had a more positive correlation with POC in the 50% 
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precipitation conditions (p=0.030, 4.75; Figure 4). Lastly, current year annual grasses only had a 

positive correlation with MAOC in the newer plots with 2 years of prior shrub history (p=0.004, 

8.49; Figure 4).  

Figure 4: Species functional group correlations with microbial biomass carbon (MBC), particulate organic carbon 

(POC), and mineral-associated organic carbon (MAOC). Groups tested were annual (ann.) grasses and forbs, and 

perennial (per.) grasses and forbs.  

 

Species diversity metrics, like functional groups, also had minor and varied effects on 

soil C pools. The positive correlation between WEOC and prior year species richness (p=0.030, 

F= 4.76; Figure 5) was the only species diversity correlation found across environmental 

conditions. When interaction effects were tested, there were three species diversity interactions 

with precipitation and one with land use (Figure 5). TC was significantly affected by an 

interaction between precipitation and prior year species richness (p=0.045, F=4.060). In both 

precipitation treatments, TC had a slight negative correlation with prior year species richness. 

However, the magnitude of the differences between precipitation treatments was likely not 
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ecologically relevant (Figure 5). MBC (p=0.028, F=4.89) had a positive relationship with prior 

year species evenness in 125% precipitation plots and a negative relationship in the drought 

plots. MAOC had a similar positive correlation with prior year evenness in 125% precipitation 

plots, but a neutral correlation in 50% precipitation plots (p=0.031, F=4.68). Only MAOC had a 

significant interaction between land use and a species diversity metric. MAOC and current year 

species evenness had a negative correlation in plots with two years of shrub occupation and a 

neutral correlation in plots with six years of shrub occupation (p=0.011, F=6.63).  

Figure 5: Significant species (sp.) diversity correlations with total carbon (TC), microbial biomass carbon (MBC), 

mineral-associated organic carbon (MAOC) and water extractable carbon (WEOC). 

 

 

Discussion 

We set out to test whether plant functional groups, functional traits or diversity metrics 

would have a greater effect on five different soil C pools, and whether precipitation and land use 

history would moderate those effects in semi-arid grasslands. We expected to see evidence of 
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acquisitive traits promoting WEOC, MBC and MAOC through root exudation and labile litter, 

and conservative traits promoting POC and TC with recalcitrant litter (De Deyn et al. 2008). 

Land use history was the biggest single predictor of soil C, with the duration of shrubs on the site 

prior to our experiment (two vs. six years) outweighing the effects of all variables calculated 

from our herbaceous species. Otherwise, species diversity models explained the most soil C 

variation, although some diversity correlations were negative. Significant individual predictors of 

soil C pools are explored below, but effects were often particular to each C pool and explained 

little of the total variation. Throughout our results, precipitation and land use history significantly 

influenced the effects of functional groups, functional traits, and diversity, indicating that these 

plant-soil relationships are highly context dependent.  

 

Environmental treatment effects on each soil C pool 

The environmental treatment variables (year, land use and precipitation) all had direct 

significant effects on soil carbon pools (Figure 1; Table 3). It is not surprising that year did not 

significantly affect TC, as this experiment was not designed to track soil C over time and we 

expected this pool to change gradually (Yang et al. 2019). The fact that POC showed an increase 

within one year shows promise for building soil C quickly via this pool, although POC is not as 

stable as MAOC. The accumulation of POC in non-tilled systems is one reason why the 

restoration of cropland to grassland is a leading strategy to increase soil C stocks (Conant et al. 

2017). The increase in MBC in one year also aligns with findings that microbes respond quickly 

to environmental change (Gordon et al. 2008), even though the full recovery of MBC to 

disturbance can take years to decades (Potthoff et al. 2005, Rosenzweig et al. 2016). However, 

considering we detected no trait and species correlations with MBC that were consistent across 
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environmental conditions, our data do not directly elucidate why the significant increase in MBC 

occurred. It is possible the year effect on MBC is partially driven by two non-experimental 

factors— first, 2023 was a historically wet year (see methods), causing some additional moisture 

in all plots that may have stimulated microbial growth (Supplement A, Figure A4) (Liu et al. 

2009). Second, the MBC samples, although frozen in both years, were processed 8 months 

sooner in 2023, which may have contributed to higher MBC readings despite literature showing 

the storage length should not matter (Rhymes et al. 2021).  

Across all results, the strongest determinant of soil C was the land use history, although 

we cannot say exactly why carbon was higher in the plots with six years of prior shrub history. 

Further research would be needed to tease apart whether this effect resulted directly from the 

longer duration of shrubs, the break in tilling for four years while the two year shrub plots 

continued to get disced annually (Rosenzweig et al. 2016), or differences in the exact species 

combinations planted (Appendix A). Regardless, the land use history that more closely 

resembled croplands (four years of cover crop and two years of shrubs) had significantly lower 

soil C than the land use history resembling shrub-encroached grasslands (six years of shrubs and 

annuals). Although we expected higher soil C in the six year shrub plots based on the 

combination of factors above (Zavaleta and Kettley 2006, Conant et al. 2017), it is worth noting 

what a strong, persistent effect this treatment had in four of the five soil C pools. The fact that we 

did not see an effect of land use in WEOC mirrors prior studies (Zhang et al. 2019), supporting 

the idea that this labile carbon pool is more connected to recent carbon inputs than older soil C 

(Bolan et al. 2011). We recommend researchers take extreme care in controlling land use history 

variation in order to elucidate the subtle changes in soil C due to traits and species diversity. 

However, since land use history interacted with many variables in our study, more multivariate 
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research is also needed to understand how the effects of certain traits, functional groups, or 

diversity metrics depend on the prior land use and soil C. Such research will help restoration 

practitioners select soil C management strategies relevant to their site context.   

We expected the 125% precipitation treatment to significantly increase soil C pools 

through additional plant and microbial biomass growth, and root exudation. In particular, MBC 

and MAOC were expected to respond positively to precipitation because microbial growth is 

strongly dependent on soil water content, and MAOC is microbially derived (Liu et al. 2009, 

Lavallee et al. 2020). The effect of precipitation on MAOC supports this conclusion, but MBC 

results only trended in this direction (p=0.090, F=3.42, estimate=24.64). Since we do not have 

baseline soil C measures from before the experiment began, we cannot say whether MAOC 

increased in the 125% treatment (as in Follett et al. 2015), decreased under drought conditions or 

both. This detail will be important to clarify with future research since MAOC is the primary 

pool of stable soil C (Cotrufo and Lavallee 2022). For MBC, it is possible that microbes were 

bolstered in drought plots by increased root biomass allocation and exudation by plants 

experiencing drought (Zhang and Xi 2021), which would have weakened the effect of the 

precipitation treatment. The lack of precipitation effects on WEOC, despite it being a labile and 

sensitive pool, could be due to leaching of WEOC in wetter plots below our 0-15cm probe depth, 

or to the challenges of detecting changes that vary on quicker and finer scales than captured by 

our study (Gordon et al. 2008). Otherwise, the lack of significant differences in precipitation 

treatments indicate other soil C pools may be relatively stable under conditions of similar 

drought severity (50% average precipitation for 3 years). This result supports the continuation of 

grassland sequestration and storage efforts despite increasing drought with climate change.  
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Model comparisons within each soil C pool  

Although treatment effects and AIC differences were small, models including species 

diversity metrics did the best at explaining TC, MBC and MAOC variation, while the 

environmental variables alone (year, land use and precipitation) best explained POC and no 

models predicted WEOC. The AIC value for the MBC prior year functional group model is also 

two points lower than the environmental model, but this slight improvement is usually not 

considered significant for AIC values (Akaike 1998). Otherwise, adding multiple traits, 

functional groups or functional diversity metrics to the environmental model did not predict any 

soil C pool better than the environmental variables alone (Table 2).  

We did not find the expected positive contribution of species diversity to soil C pools (Chen 

et al. 2020). Rather, species diversity correlations varied with environmental conditions. The 

significance of TC’s relationship to prior year species diversity is hard to decipher, as species 

diversity metrics were not individually correlated to TC (Table 3), and only showed weak 

interaction effects with precipitation (Figure 5). Regardless, the slight negative effect of prior 

year species richness in both precipitation treatments fails to support the theory of species 

complementarity in diverse mixes (Loreau and Hector 2001). However, we may need more time 

to show clearer relationships between the TC pool and the variables we tested, since TC changes 

slowly when plant communities are first established and the slight variations in trait and species 

composition are less extreme than differences in land use history (Conant et al. 2017, Yang et al. 

2019).  

We expected our results to align with studies showing that diverse plant communities support 

MBC through diverse and consistent food resources and overlapping canopies that retain more 

consistent soil moisture (Lange et al. 2015, Thakur et al. 2015). Rather, it seems that the 
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correlation between evenness and MBC depended on precipitation, being negative in dry plots 

and neutral in 125% precipitation plots (Figure 5). The negative effect of both leaf nitrogen 

content (LNC) (Figure 2) and evenness on MBC in dry plots may indicate that under water-

stressed conditions, species with an acquisitive resource strategy outcompete microbes for scarce 

water – or at least they fail to support microbes through the water stress (Dijkstra et al. 2010). 

Conversely, the more positive correlations with LNC and evenness in 125% precipitation plots 

shows that under well-watered conditions, labile and diverse plants tissues from the prior year 

may benefit microbes, in line with prior research (Lange et al. 2015, Poirier et al. 2018).  

Although the lowest model AIC for MAOC was found in the current year species diversity 

model, this is only one point lower than the environmental model, indicating that current species 

diversity is a weak predictor overall and may be no better than the environmental variables alone. 

The significance of this model seems to come from the fact that MAOC had a slight negative 

correlation with current year species evenness in plots with two years of prior shrubs and a 

neutral response in plots with a six year land use history of shrubs (Figure 5). Rdiam and log(SM) 

correlate positively with current year evenness, and are also negatively correlated with MAOC 

(Figure 3), suggesting that these traits could be driving this pattern (effects of these are traits are 

discussed below). Similarly to MBC, MAOC showed a positive correlation with prior year 

species evenness only in 125% precipitation plots (Figure 5). This parallel relationship could be 

due to the fact that MAOC is primarily derived from microbial activity (Lavallee et al. 2020). In 

these wetter plots with higher percent plant cover (Appendix A), diverse and abundant 

aboveground litter might be converted more quickly by microbes from POC to MAOC (Follett et 

al. 2015).  
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Despite finding some individual correlations between plant variables, POC, and WEOC, 

models including multiple traits, functional groups or diversity metrics generally failed to predict 

these pools. Here, we should point out that WEOC had the lowest sample size and was only 

measured in one year, decreasing our ability to detect correlations with that pool. Otherwise, 

functional group models may have performed poorly since each soil C pool only correlated 

weakly with a subset of the four functional groups (Figure 4), and even species within the same 

functional group may have various effects on soil (Bezemer et al. 2006). Functional trait ecology 

aims to address this issue by summarizing complex plant communities into a few core 

mechanistic traits. However, our functional trait models failed to achieve that goal in that the 

functional trait models performed worse than functional group models except in one case—for 

MAOC in the current year. A different selection of traits could likely improve the models, but 

identifying that selection is the challenge. For example, a recent review suggests that chemical 

and symbiotic trait measures may capture plant and soil C dynamics better than morphological 

and architectural traits (Poirier et al. 2018). Added to the challenge of detecting trait effects in 

speciose systems is that traits respond to their physical and biotic enviornments (Zhang and Xi 

2021), so there may be some error in CWM calculations based on species averages.  

 

Functional trait effects on each soil C pool 

While multi-trait models were not the best predictors of soil C pools, some individual trait 

and functional diversity correlations are worth mentioning. Although root traits have been 

theorized to contribute more to soil C (Poirier et al. 2018), we found an equal number of 

correlations with aboveground and belowground traits. The slight negative correlations between 

TC and current year root mass fraction (RMF), and the positive correlation between WEOC and 



 31 

photosynthetic rate (Asat) give some support to a growing understanding that faster growing, 

acquisitive plants can support soil C levels (Dynarski et al. 2020). Since high RMF plants 

allocate more biomass underground, there could have been a priming effect at play where well-

distributed exudates from more abundant roots stimulated microbial processing and 

decomposition of existing soil TC stocks (Chen and Chen 2018). However, others have tied low 

RMF to priming before (Henneron et al. 2020). While we did expect fast growing plants to 

contribute to WEOC through root exudates and labile tissues (Bolan et al. 2011, Wen et al. 

2021), the one-year delay in this effect indicates that prior year decaying tissues likely had a 

greater effect on WEOC than current year exudates (but see the positive correlation with current 

year annual forbs). 

As discussed briefly above, MAOC correlated negatively with Rdiam and SM plots with two 

years of shrub land use history. For Rdiam, this may also support the value of resource-acquisitive 

plant strategies for building soil C. Some recent work places Rdiam on a separate “collaboration 

gradient” in which thick roots allow plants to foster mycorrhizae associations, but we do not yet 

understand how that impacts soil C (Wen et al. 2021). More research is also needed into the 

relationship between SM and soil C. SM has been related more to dispersal strategy and drought 

survival (Harrison and LaForgia 2019), but may be associated with soil C in our study due to its 

strong correlation with Rdiam (Pearson’s correlation= 0.76, Appendix D). Since we did not detect 

a correlation between these traits and POC or MBC, and these correlations were based on current 

year plants, it is possible that much of the carbon from plants with low Rdiam and SM ended up in 

the MAOC pool via direct sorption on mineral surfaces (Sanderman and Amundson 2008, 

Haddix et al. 2020, Cotrufo and Lavallee 2022). The lack of trait correlations in plots with six 

years of prior shrubs (and higher MAOC) could indicate that a MAOC saturation effect is 
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dampening trait effects. However, MAOC saturation is still poorly understood and a study on the 

saturation points across European grasslands and forests found saturation points to be higher than 

the MAOC values in our study (20-50 g C kg-1 soil rather than 15 g C kg-1 soil) (Cotrufo et al. 

2019, Cotrufo and Lavallee 2022).  

MBC correlated with two other traits, but only in certain environmental conditions. We 

already discussed the leaf nitrogen content (LNC) and precipitation interactive correlations with 

MBC, and the idea microbes may grow with labile, high LNC plant tissue only when sufficient 

water is present. Additionally, MBC was negatively correlated to root length density (RLD) in 

plots with six years of shrub land use history and higher relative soil C, but positively correlated 

in plots with only two years of prior shrubs. We expected a higher density of roots to support 

more microbial habitat since more microbes are found in the rhizosphere (Cotrufo and Lavallee 

2022). The two year shrub plots experienced more frequent tilling in recent history and likely 

had lower MBC and more potential to respond positively in high RLD plots. However, the 

negative correlation to RLD in six year shrub plots warrants further study. Perhaps the two land 

use histories selected for different species (e.g. fewer perennial grasses in 6 year shrub plots 

(Appendix A), or other undetected differences) that had disparate root-MBC relationships 

(Bezemer et al. 2006).   

Moving from single traits to functional diversity correlations, POC was the only pool to 

correlate with functional richness and evenness (FRic and FEve). The current year FRic and 

precipitation interactions in POC show that functional richness may be particularly important in 

drought conditions (Figure 2). POC also has a more positive relationship with current year FEve 

in plots with only two years of prior shrub land use history (Figure 3). These patterns may be 

because high functional richness and evenness increase the chance of resource partitioning and 
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of a plot containing the trait values necessary to sustain biomass growth in more stressful 

(drought) or degraded (tilled and low soil C) conditions (i.e. sampling effects) (Tilman et al. 

1997). A recent paper in forests found a similar trend where functional diversity had a positive 

effect on soil C stocks in only drier forests, supporting the extension of the stress gradient 

hypothesis from plant productivity to soil C stocks (Chen et al. 2022). The negative correlations 

with functional diversity in the plots with six years of shrub and more precipitation could also 

occur if more evenly diverse plant communities accelerate the processing of POC into other soil 

C pools in these relatively C rich plots and wet plots, respectively (Chen et al. 2020, Cotrufo and 

Lavallee 2022). This would align with research showing more microbial activity in functionally 

diverse communities (Chen et al. 2020), but we did not detect any parallel significant interaction 

between land use and functional diversity metrics in the MBC pool. Lastly, the fact that MBC 

correlates negatively to species evenness in drought conditions (Figure 5) indicates that these soil 

C pools may have very different relationships to diversity metrics in various environmental 

conditions. 

 

Functional group and species diversity effects of each soil C pool 

Every soil C pool analyzed was correlated with one or more functional group, but the amount 

of variation explained was low and correlations were often dependent on environmental 

interactions. The slight negative correlation between current year annual grasses and TC was 

surprising since we would expect a time lag in effects on TC. Perhaps the rapid growth of 

acquisitive annual grasses in spring was able to stimulate TC loss via priming effects, even if that 

soil C was later replenished at the end of the season (Chen and Chen 2018). WEOC correlated 

positively with current year annual forbs, which fits with expectations since annual forbs tend to 
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be resource acquisitive to escape summer drought in California (Welles and Funk 2021), 

potentially releasing more root exudates during the growing season (Wen et al. 2021). Moreover, 

dominant forbs like Amsinkia sp. and Phacelia sp. were already beginning to senesce and 

accumulate leaf litter at the time of soil collection, which could also contribute to WEOC in the 

same year (Sanderman and Amundson 2008). Perennial forbs had a slight positive correlation 

with MBC, but only in well-watered conditions, suggesting that the benefit of perennial forbs to 

microbes is sensitive to environmental conditions. This aligns with a review showing that added 

precipitation aids MBC growth, but MBC can be resistant to loss under drought (Zhang and Xi 

2021). The opposite direction of MBC trends seen with annual forbs may reflect a tradeoff 

between annual and perennial forb growth strategies; annual forbs generally have a drought 

escape strategy that includes growing quickly and supporting microbes even in dry conditions, 

while conservative perennial forbs could grow slowly in drought conditions, leading to a neutral 

MBC effect.    

POC and MAOC appeared minimally associated with functional groups except for one 

environment-dependent relationship for each pool. POC correlated positively to current year 

perennial grasses in dry plots and negatively in wet plots. The positive correlation in dry plots 

may be because perennial grasses are better able to grow and persist through drought with their 

deep root structures and conservative growth strategies (Koteen et al. 2011). The slightly 

negative correlation with perennial grasses in 125% precipitation plots is possibly because they 

may persist much later in the year than other functional groups (Koteen et al. 2011), delaying the 

contribution of current year tissues into the POC pool. MAOC was only slightly positively 

correlated with current annual grasses in two year shrub plots. Again, this supports the idea that 

MAOC may acquire carbon quickly from acquisitive species, but it may also be more likely to 
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show such a response in low soil C conditions that have not approached saturation (Cotrufo and 

Lavallee 2022).  

Species diversity, like functional diversity, also shows several interacting effects with 

precipitation and land use, as well as three main effects on soil C pools. TC, MBC, and MAOC 

relationships with species diversity were already discussed in the model comparisons section of 

this discussion since species diversity models were most important for those pools. The positive 

correlation between WEOC and prior year species richness is the only positive main effect of 

any diversity metric on any soil C pool. We expected to see this result in more pools, but prior 

studies have shown that the beneficial effects of diversity on ecosystem functions increase over 

time (Meyer et al. 2016, Yang et al. 2019), so it is possible that we would detect more positive 

diversity effects in future years. Overall, species diversity did not have consistent effects across 

land use histories or precipitation treatments in several cases (Figure 5), and these complex 

interactions will need to be tested further to tease apart their implications.  

 

Implications for management 

The fact that two significant species diversity models, two trait correlations, and about 

half of the significant correlations overall were from prior year species data indicates that there is 

often a time lag before these tissues end up in soil C pools (Fossum et al. 2022). In fact, all pools 

except the most labile (WEOC) were most strongly predicted by the land use history of the plots 

three to four years earlier. Stronger prior year effects for some pools make sense since soils were 

collected during the peak growing season, and most current year tissues were still actively 

growing rather than decomposing into soil carbon. MBC, which can respond within a year to 

some site changes (Gordon et al. 2008), related more to prior year measures, supporting the 
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importance of decaying litter inputs and older soil organic matter for microbes (Dynarski et al. 

2020). However, several correlations were related to current year variables, especially for TC 

and MAOC. Although we explained our caution around quick changes in TC, quick changes to 

MAOC support the theory of a direct MAOC formation pathway separate from microbial 

decomposition of POC (Haddix et al. 2020). Overall, we recommend ecologists take care when 

correlating ecosystem effects with only current year CWM trait values, especially in annual 

systems with high interannual variability in species composition. The evaluation of both current 

and prior tissues may elucidate important mechanisms and timelines of soil C formation.  

A few limitations of our study may have hindered our ability to detect the mechanisms 

driving change in soil C pools. First, baseline readings of the different C pools would have aided 

in direct measures of change rather than correlation analyses between all explanatory and 

dependent variables. Rather than plants affecting soil C, it is possible that the predominant 

direction of effect is that preexisting soil C variation in our plots altered soil properties like soil 

infiltration capacity and soil fertility, which in turn influenced plant community compositions 

(Pérès et al. 2013, England et al. 2016, Liu et al. 2019). Although these feedbacks likely exist 

(Liu et al. 2019), prior research in this field has found more abundant evidence of plants 

influencing soil carbon in alignment with our suggested conclusions (De Deyn et al. 2008, Chen 

et al. 2020, Hanisch et al. 2020). Another limitation is that longer term studies are preferred for 

slow-changing pools like TC (Yang et al. 2019). However, other studies have detected rapid 

changes within the other four pools due to environmental and biotic factors (Gordon et al. 2008, 

Keller et al. 2021, Fossum et al. 2022). Finally, since our plots all contain a mix of species, the 

range of CWM trait values and functional group percent covers is inherently dampened, making 

the detection of trends more difficult. The inclusion of monoculture plots for each species or 
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functional group would aid in the detection of effects (Loreau and Hector 2001), but would not 

mirror the species richness naturally found in similar California grasslands. 

 

Conclusion 

 Our study showed that the effects of plants on soil C were often context and C pool 

dependent, highlighting the importance of measuring multiple soil C pools simultaneously in our 

quest to understand and manage soil C dynamics. The most consistent effect across soil C pools 

was the higher soil C levels found in plots with a land use history of six years of shrub growth. 

Since land use history and precipitation also moderated the effects of other variables on soil C, 

we recommend that more studies incorporate environmental treatments to elucidate which 

carbon sequestering strategies are consistent across conditions. For example, MBC seemed to 

respond to species diversity only in wet conditions while POC seemed to benefit from functional 

diversity in dry conditions. Such interactions will be important to consider as we move into a 

future with less stable precipitation. In functional trait models, all pools correlated with an 

acquisitive trait value in at least one environmental context, aligning with a growing 

understanding that labile tissues can feed stable as well as labile soil C pools. The fact that 

variables calculated from the current and prior year vegetation were both linked to soil C pools 

also indicates that researchers need to carefully consider the timing of species composition, 

functional trait, and soil C measures to better reveal these plant-soil relationships.  

Overall, our results align with both selection effects and biodiversity effects, highlighting 

the promise of select functional groups and traits to achieve restoration targets while still 

maintaining high species diversity for the cases in which it does aid in ecosystem function. While 

this study does not outline a simple plan for how to manage soil C, our context dependent results 
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help reveal why we often find conflicting results in literature regarding which traits or other 

biological factors contribute to soil C loss and gain. To tease out such complex mechanisms of 

change, we must continue testing these trends in highly controlled environments alongside more 

complex field trials. A full understanding of the drivers of soil C change is still in progress, and 

we hope further research will bring us closer to implementation of restoration and management 

projects that effectively sequester soil C long term.  

 

Acknowledgements 

Thank you to J. L. Funk, V. T. Eviner, C. Lazcano and V. M. Wauters for advice and review of 

this research. We also acknowledge undergraduate research assistants Alexis Luna, Alex Cao, 

Bianca Pahler, Changtong Wu, Jessica Hernandez, Madeline Do, Mara Guerin, Maria 

Hernandez, Noah Spierings, Rachel Menge, and Yvonne Durand for their help in soil analysis. 

This project was funded by the Garden Club of America Fellowship in Ecological Restoration, 

The Nature Conservancy Oren Pollak Student Research Grant for Grassland Science, the 

California Native Plant Society (CNPS) Student Research Grant Award, the CNPS Orange 

County Chapter Charlie O’Neill Research Grant, the California Native Grassland Society 

Grassland Research Awards for Student Scholarship, the Jastro-Shields Graduate Research 

Award, the Graduate Group in Ecology Fellowship at UC Davis, and the Russell L. Rustici 

Rangeland Research Endowment. There are no conflicts of interest.  

 

  



 39 

Appendix A  

Table A1: Plant species included in the experiment. 

Species Code Common Name 
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Achillea millefolium ACHMIL Common yarrow       X     

Acmispon americanus ACMAME Spanish lotus     X       

Acmispon strigosus ACMSTR Strigose lotus     X       

Amsinckia menziesii AMSMEN Menzies' fiddleneck     X       

Asclepias fascicularis ASCFAS Narrow leaf milkweed       X     

Calandrinia ciliata  CALCIL Red maid     X       

Cirsium occidentale CIROCC Cobweb thistle       X     

Deinandra fasciculata DEIFAS Clustered tarweed     X       

Eschscholzia californica ESCCAL CA poppy     X       

Grindelia camporum GRICAM Common gumplant       X     

Layia platyglossa LAYPLA Coastal tidytips     X       

Lupinus bicolor LUPBIC Miniature lupine     X       

Lupinus microcarpus LUPMIC Chick lupine     X       

Lupinus succulentus LUPSUC Arroyo lupine     X       

Melica imperfecta MELIMP CA melic   X   X     

Phacelia cicutaria PHACIC Caterpillar phacelia     X       

Plantago erecta PLAERE Dotseed plantain     X       

Ranunculus californicus RANCAL CA buttercup       X     

Sisyrinchium bellum SISBEL Blue eyed grass   X   X     

Trifolium willdenovii TRIWIL Tomcat clover     X       

Aristida purpurea ARIPUR Purple three awn           X 

Bromus carinatus BROCAR CA brome grass           X 

Elymus condensatus ELYCON Giant wild rye           X 

Elymus glaucus ELYGLA Blue wildrye           X 

Festuca microstachys FESMIC Small fescue         X   

Hordeum brachyantherum HORBRA Meadow barley           X 

Hordeum intercedens HORINT Bobtail barley         X   

Koeleria macrantha KOEMAC Prairie junegrass           X 

Muhlenbergia rigens MUHRIG Deergrass   X       X 

Poa secunda POASEC One sided blue grass   X       X 

Sporobolus airoides SPOAIR Alkali sacaton           X 

Stipa pulchra STIPUL Purple needle grass           X 

Bromus diandrus BROMAD Ripgut brome X       X   

Bromus madritensis BROMAD Foxtail brome X       X   

Festuca perennis FESPER Italian ryegrass X       X   

 

Species planted (one individual per species per plot) in prior study in 9 shelters (A-I) from 2013-

2016 (Funk et al. 2021):  

 Invasive annuals:  

Avena barbata, Brassica nigra, Bromus madritensis, Medicago polymorpha 

 Native perennial shrubs:  

Artemisia californica, Encelia californica, Isocoma menziesii, Salvia apiana 
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Species planted (one individual per species per plot) in prior study in 9 shelters (A-I) from 2017-

2019 (Gregory Vose, personal communication):  

Malosma laurina, Artemisia californica, Eriogonum fasciculatum, Ericameria palmeri, 

and Salvia mellifera 

 

Species planted (one individual per plot) in a prior study in 6 new shelters (J-O) from 2017-2019 

(Atamian and Funk 2023) 

Artemisia californica 

 

 

Figure A1: Precipitation shelter design and treatment randomization. 
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Figure A2: Plot spacing in each precipitation shelter.    

 
Table A2: Original sample size for each environmental treatment. 

 

This sample size was the same for both years (2022 and 2023). There were 210 plots total but 

eight were planted with a monoculture (of Festuca perennis), which we excluded from analyses 

and the count below. Although soil was collected from each plot each year and analyzed for total 

carbon, a subset of samples was analyzed for other soil carbon pools (see methods).  

 

Land Use Precipitation n (plots) n (shelters) 

6 years shrubs 50% 68 5 

6 years shrubs 125% 54 4 

2 years shrubs 50% 40 3 

2 years shrubs 125% 40 3 
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Figure A3: Total percent cover and average percent cover per plot of each functional group, 

subdivided by the precipitation treatment (125% or 50% of average annual precipitation), land 

use history (two or six years of shrub occupation in the plots prior to our experiment), and year 

of soil sampling (2022 or 2023). NS indicates contrasts that are not significantly different. * 

p<0.05, ** p<0.01, ***p<0.001 in post-hoc comparisons using the ggsignif package in R.  
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Figure A4: Average soil moisture probe readings from shelters targeted to received either 50% 

or 125% of annual average January-April precipitation. 2023 was a historically wet year, with 

heavy rains in December and early January before the shelter tarps began to be deployed. If any 

rain fell during days when tarps could not be deployed (around New Years in 2023), irrigation 

was reduced as needed to reach target January-April values.  

 
 

Figure A5: Mean total carbon in each precipitation shelter. Shelters A-I were included in prior 

experiments for six years, while shelters J-O were only included in prior experiments for two 

years.  
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Appendix B: Detailed multivariate model comparisons for Table 2.  

 

Table B1: To make AIC values comparable, the models below are built from subsets of data that 

culls all NA values for that soil C measure. Therefore, some results are slightly different than 

they are for the full data set used in Table 3. Lowest AIC values are bolded for each soil C pool. 

R2 values are marginal, except the second value for each null model is the conditional R2.  

 

Model Type Model Variables 
Vegetation 

Year 
R2 

AIC  

(p-value) 

Significant parameters 

(P-value, F-value) 

TC (n=333) Null:  log(TC) ~ 1+ (1 | Shelter) 

0.000 

0.264 -123.90 

  

Environmental 

Variables 

log(TC) ~ Precip + Year + Land Use 

+ (1 | Shelter) 

0.200 -139.5 

(p<0.001) 

*** 

Year (0.036, 4.40, 

Precip (0.947, 0.01), 

Land Use (<.001, 26.01) 

Functional Traits 

(CWM) 

+ (5 Traits) * (Precip + 

Land Use) 

Current 0.230 -123.16 

(p=0.682) 

RMF (0.021, 5.40) 

+ (5 Traits) * (Precip + 

Land Use) 

Prior  0.218 -118.86 

(p=0.858) 

- 

Functional 

Groups (% 

Cover) 

+ (4 Func. Groups) * 

(Precip + Land Use) 

Current 0.222 -126.63 

(p=0.469) 

Annual Grass (0.006, 7.55) 

+ (4 Func. Groups) * 

(Precip + Land Use) 

Prior  0.210 -121.87 

(p=0.968) 

- 

Functional 

Diversity 

+ (FRic + Feve) * 

(Precip + Land Use) 

Current 0.214 -135.6 

(p=0.231) 

- 

+ (FRic + Feve) * 

(Precip + Land Use) 

Prior  0.219 -135.15 

(p=0.265) 

Precip*Fric_P (0.036, 4.43) 

Species 

Diversity 

+(Evenness 

+Richness)* 

(Precip+Land Use) 

Current 0.210 -133.07 

(p=0.473) 

Precip*Evenness (0.031, 

4.70) 

+(Evenness 

+Richness)* 

(Precip+Land Use) 

Prior  0.232 -141.21  

(p=0.033) 

* 

Richness (0.010, 6.66) 

MBC (n=201) Null:  MBC  ~ 1+ (1 | Shelter) 
0.000 

0.299 
2141.10   

Environmental 

Variables 

MBC ~ Precip + Year + Land Use + 

(1 | Shelter) 

0.256 2104 

(p<0.001) 

*** 

Year (<0.001, 36.49), 

 Precip (0.072, 3.91), 

Land Use (0.018, 7.39) 

Functional Traits 

(CWM) 

+ (5 Traits) * (Precip + 

Land Use) 

Current 0.277 2121.2 

(p=0.617) 

LMA*Precip (0.039, 4.33) 

+ (5 Traits) * (Precip + 

Land Use) 

Prior  0.337 2108.9 

(p=0.049) 

* 

RTD*Precip (0.003, 9.19) 

Functional 

Groups (% 

Cover) 

+ (4 Func. Groups) * 

(Precip + Land Use) 

Current 0.287 2113.4  

(p=0.265) 

Perennial Forb*Precip (0.013, 

6.30) 

+ (4 Func. Groups) * 

(Precip + Land Use) 

Prior  0.317 2102.3  

(p=0.012) 

* 

Annual Forb*Precip (0.001, 

11.15) 

Functional 

Diversity 

+ (FRic + Feve) * 

(Precip + Land Use) 

Current 0.268 2110.8 

(p=0.515) 

- 

+ (FRic + Feve) * 

(Precip + Land Use) 

Prior  0.257 2112 

(p=0.675) 

- 
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Species 

Diversity 

+(Evenness 

+Richness)* 

(Precip+Land Use) 

Current 0.278 2108.5  

(p=0.276) 

- 

+(Evenness 

+Richness)* 

(Precip+Land Use) 

Prior  0.290 2102.2 

(p=0.032) 

* 

Evenness (0.016, 5.91) 

POC (n=236) Null:  POC  ~ 1+ (1 | Shelter) 
0.000 

0.552 
553.43   

Environmental 

Variables 

POC ~ Precip + Year + Land Use + 

(1 | Shelter) 

0.434 532.97 

(p<0.001) 

*** 

Year (0.034, 4.57),  

Precip (0.888, 0.02),  

Land Use (<0.001, 38.16) 

Functional Traits 

(CWM) 

+ (5 Traits) * (Precip + 

Land Use) 

Current 0.452 548.13 

(p=0.462) 

- 

+ (5 Traits) * (Precip + 

Land Use) 

Prior  0.440 553.56 

(p=0.854) 

- 

Functional 

Groups (% 

Cover) 

+ (4 Func. Groups) * 

(Precip + Land Use) 

Current 0.437 537.89 

(p=0.839) 

- 

+ (4 Func. Groups) * 

(Precip + Land Use) 

Prior  0.465 549.13  

(p=0.087) 

Perennial Grass (0.026, 5.06), 

Annual Forb*Precip (0.028, 

4.92) 

Functional 

Diversity 

+ (FRic + Feve) * 

(Precip + Land Use) 

Current 0.448 535.11 

(p=0.131) 

- 

+ (FRic + Feve) * 

(Precip + Land Use) 

Prior  0.433 542.46 

(p=0.867) 

- 

Species 

Diversity 

+(Evenness 

+Richness)* 

(Precip+Land Use) 

Current 0.452 537.27 

(p=0.0260) 

- 

+(Evenness 

+Richness)* 

(Precip+Land Use) 

Prior  0.433 542.1 

(p=0.824) 

- 

MAOC (n=246) Null: MAOC ~ 1 + (1 | Shelter) 
0.000 

0.393 
547.61   

Environmental 

Variables 

MAOC ~ Precip + Year + Land Use 

+ (1 | Shelter) 

0.324 528.71 

(p<0.001) 

*** 

Year (0.353, 0.87),  

Precip (0.006, 11.12),  

Land Use (<0.001, 39.29) 

Functional Traits 

(CWM) 

+ (5 Traits) * (Precip + 

Land Use) 

Current 0.375 531.68 

(p=0.028) 

* 

RTD (0.037, 4.36), RMF* 

Precip (0.038, 4.37), Rdiam* 

LandUse (0.034, 4.54) 

+ (5 Traits) * (Precip + 

Land Use) 

Prior  0.340 548.33 

(p=0.795) 

- 

Functional 

Groups (% 

Cover) 

+ (4 Func. Groups) * 

(Precip + Land Use) 

Current 0.351 538.3 

(p=0.217) 

Annual Grass*LandUse 

(0.007, 7.334) 

+ (4 Func. Groups) * 

(Precip + Land Use) 

Prior  0.352 537.24 

(p=0.276) 

- 

Functional 

Diversity 

+ (FRic + Feve) * 

(Precip + Land Use) 

Current 0.341 531.14 

(p=0.144) 

- 

+ (FRic + Feve) * 

(Precip + Land Use) 

Prior  0.323 538.78 

(p=0.922) 

- 

Species 

Diversity 

+(Evenness 

+Richness)* 

(Precip+Land Use) 

Current 0.355 527.63 

(p=0.042) 

* 

Evenness*LandUse (0.025, 

5.094) 

+(Evenness 

+Richness)* 

(Precip+Land Use) 

Prior  0.339 533.49 

(p=0.301) 

- 
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WEOC (n=171) Null: WEOC ~ 1 + (1 | Shelter) 
0.000 

0.532 
1469.7   

Environmental 

Variables 

WEOC ~ Precip + Land Use + (1 | 

Shelter) 

0.006 1473.5 

(p=0.911) 

Precip (0.801, 0.067),  

Land Use (0.787, 0.076) 

Functional Traits 

(CWM) 

+ (5 Traits) * (Precip + 

Land Use) 

Current 0.041 1492.5 

(p=0.749) 

- 

+ (5 Traits) * (Precip + 

Land Use) 

Prior  0.039 1493.9 

(p=0.844) 

- 

Functional 

Groups (% 

Cover) 

+ (4 Func. Groups) * 

(Precip + Land Use) 

Current 0.054 1482.0  

(p=0.278) 

Annual Forbs*Precip (0.012, 

6.459) 

+ (4 Func. Groups) * 

(Precip + Land Use) 

Prior  0.040 1482.5 

(p=0.578) 

- 

Functional 

Diversity 

+ (FRic + Feve) * 

(Precip + Land Use) 

Current 0.028 1477.5 

(p=0.242) 

- 

+ (FRic + Feve) * 

(Precip + Land Use) 

Prior  0.019 1482 

(p=0.748) 

- 

Species 

Diversity 

+(Evenness 

+Richness)* 

(Precip+Land Use) 

Current 0.015 1482.5 

(p=0.807) 

- 

+(Evenness 

+Richness)* 

(Precip+Land Use) 

Prior  0.019 1481.9 

(p=0.734) 

- 

 

  



 47 

Appendix C 

 

Table C1: Trait averages used for each species to calculate community weighted mean traits and 

functional richness and evenness. Units and definitions are in Table 1. 

 
Species Code SM LMA N Asat WUE RMF RLD Rdiam SRL RTD 

Achillea 

millefolium 

ACHMIL 0.00017 38.93 5.44 20.77 8.58 0.678 0.04 0.268 138.1 0.139 

Acmispon 

americanus 

ACMAME 0.00364 54.48 3.29 25.03 9.73 0.516 0.093 0.481 91.1 0.061 

Acmispon 

strigosus 

ACMSTR 0.00139 53.76 4.7 30.86 8.27 0.522 0.041 0.454 93.7 0.067 

Amsinckia 

menziesii 

AMSMEN 0.0014 61.37 2.57 21.84 3.62 0.539 0.194 0.32 214.2 0.059 

Asclepias 

fascicularis 

ASCFAS 0.00391 32.87 4.85 20.81 6.86 0.403 0.411 0.63 38 0.09 

Calandrinia 

menziesii 

(ciliata) 

CALCIL 0.00073 59.23 3.4 21.44 6.76 0.475 0.069 0.3 212.5 0.071 

Cirsium 

occidentale 

CIROCC 0.00593 71.44 2.72 25.05 8.84 0.471 0.142 0.382 122.1 0.078 

Deinandra 

fasciculata 

DEIFAS 0.00067 37.05 4.7 32.63 8.21 0.56 0.093 0.407 161.6 0.014 

Eschscholzia 

californica 

ESCCAL 0.00108 35.81 6.03 38.44 8.94 0.63 0.314 0.244 527.2 0.015 

Grindelia 

camporum 

GRICAM 0.00198 46.04 5.8 28.38 9.63 0.742 0.023 0.435 47.5 0.143 

Layia 

platyglossa 

LAYPLA 0.00058 23.87 4.2 18.97 4.84 0.116 0.819 0.337 167.3 0.068 

Lupinus 

bicolor 

LUPBIC 0.00391 42.63 4.89 27.95 6.61 0.592 0.069 0.82 34 0.058 

Lupinus 

microcarpus 

LUPMIC 0.02635 48.82 2.64 25.83 8.52 0.444 0.066 1.273 13.9 0.058 

Lupinus 

succulentus 

LUPSUC 0.0271 61.65 1.79 15.96 6.83 0.415 0.193 0.722 44.8 0.055 

Phacelia 

cicutaria 

PHACIC 0.00082 57.76 1.83 10.25 3.89 0.44 0.267 0.327 375.3 0.018 

Plantago 

erecta 

PLAERE 0.00154 61.93 4.05 28.68 5.93 0.547 0.084 0.328 204 0.059 

Ranunculus 

californicus 

RANCAL 0.00226 37.48 3.49 22.99 4.38 0.464 0.276 0.425 68.9 0.11 

Trifolium 

willdenovii 

TRIWIL 0.00202 28.3 4.23 22.86 5.57 0.212 1.288 0.461 92.6 0.068 

Aristida 

purpurea 

ARIPUR 0.00121 48.23 3.28 13.39 15.28 0.382 0.007 0.268 147.2 0.122 

Bromus 

carinatus 

BROCAR 0.00689 45.44 4 18.91 8.54 0.454 0.077 0.315 96.2 0.135 

Elymus 

condensatus 

ELYCON 0.00223 35.43 5.91 22.36 11.76 0.59 0.088 0.408 98.1 0.022 

Elymus 

glaucus 

ELYGLA 0.00369 43.29 2.44 16.7 5.96 0.331 3.06 0.387 75.9 0.115 

Festuca 

microstachys 

FESMIC 0.00151 48.49 4.28 24.69 8.13 0.594 0.394 0.21 305.6 0.096 
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Hordeum 

brachyan-

therum 

HORBRA 0.00288 30.61 4.04 19.78 5.5 0.403 2.714 0.379 101.6 0.089 

Hordeum 

intercedens 

HORINT 0.00471 42.27 3.08 18.33 12.32 0.6 0.263 0.267 195.5 0.094 

Koeleria 

macrantha 

KOEMAC 0.00022 40.77 3.43 12.53 4.32 0.397 0.579 0.299 205.1 0.072 

Sporobolus 

airoides 

SPOAIR 0.00024 39.65 3.01 28.29 11.3 0.258 0.178 0.211 289.5 0.1 

Stipa 

pulchra 

STIPUL 0.00485 47.1 5.37 12.91 7.14 0.53 0.097 0.357 132.7 0.019 

Bromus 

madritensis 

BROMAD 0.00158 37.97 4.52 19.12 7.57 0.67 0.157 0.273 280.9 0.012 

Festuca 

perennis 

FESPER 0.00325 47.64 3.03 20.39 7.02 0.424 0.231 0.219 228.1 0.117 

 

Figure C1: Trait principal component analysis (PCA) created with the dataset above, overlaid 

with individual species. This shows the general correlations between traits in multidimensional 

space and the alignment of species with high values of that trait.  
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Table C2: Principal component analysis (PCA) loadings for the trait PCA analysis shown in 

Figure C1. 

Trait PC1 PC2 PC3 PC4 

SM 0.46184893 -0.3609243 0.02134796 -0.08218373 

LMA 0.15209049 -0.3030033 -0.57565467       0.17467595 

N -0.44292220 -0.1154592 0.46233984 -0.11112533 

Asat -0.28617080 -0.3074849 0.22299323 -0.19509874 

WUE -0.18077938 -0.2677840 0.11404682 0.52539929 

RMF -0.32831072 -0.4134386 -0.05113052 0.06287973 

RLD 0.18668341 0.4774594 0.24178894 -0.12337547 

Rdiam 0.39957360 -0.3889940 0.28896652 -0.25679403 

SRL -0.37587477 0.1568117 -0.45049352 -0.21074993 

RTD 0.09607044 0.1533996 0.21012590 0.71185904 
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Appendix D 

 

Figure D1: Pearson’s correlation plot of soil carbon pools

 
 

 Figure D2: Pearson’s correlation of functional trait measures 
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