Lawrence Berkeley National Laboratory Recent Work

Title

Pion-Pion Interactions
Permalink
https://escholarship.org/uc/item/0wr7w289

Journal

Review of Modern Physics, 33(3)

Authors

Anderson, Jerry A.
Bang, Vo X.
Burke, Philip G.
et al.
Publication Date
1961-02-01

UNIVERSITY OF CALIFORNIA

Ernest O. Saurence

 Radiation SaboratoryTWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA

UNIVERSITY OF CALIFORNIA
 Lawrence Radiation Laboratory
 Berkeley, California

Contract No. W-7405-eng-48

PION-PION INTERACTIONS
Jerry A. Anderson, Vo X. Bang, Philip G. Burke, D. Duane Carmony, and Norbert Schmitz

February 1961

-2. PION-PION INTERACTIONS * \dagger
Jerry A. Anderson, Vo X. Bang, Philip G. Burke
D. Duane Carmony, and Norbert Schmitz
Lawrence Radiation Laboratory
University of Callfornia
Berkoley. Coliformia

UCRL-9585

February 1961

An experiment is being carried out at Lawrence Radiation Laboratory in the Alvarez 72 -inch bubble chamber, using $a \pi^{+}$and π^{-}beam designed by Professor Frark Crawford at 1.03 Eev/c. The choice of this energy was motivated by the $\Sigma-K$ threshold, which lies in thio energy region. It also coincides in energy with the third pion-nucleon resonance. It is hoped that these effecta will not significantly affect the investigation of the final-btate interactions carried out here.

The experiment was inspired by a prescription given by Chew and Low, ${ }^{1}$ who considered the following diagram.

The statement is that the matrix element for this diagram has a pole at $p^{2}=-\mu^{2}$ with residue $\propto\left\{x\right.$ Af $w_{4} \pi$, where $f=$ pion-nucleon coupling constant and $A(\pi-\pi)=$ pion-pion scattexing amplitude. All other diagrams contributing to the process $\pi+N \rightarrow \pi+N+\pi$ contribute to a branch cut from $p^{2}=-9 \mu^{2} \rightarrow \infty$.

The complex P^{2} plane thus looks like the setch below.

In terms of cross gections we can write

$$
\begin{equation*}
\lim _{p^{2} \rightarrow-1} \frac{\partial^{2} c}{\partial p^{2} \theta \omega^{2}}=\frac{p^{2}}{\left(p^{2}+1\right)^{2}} \frac{r\left(\omega^{2}\right)}{q_{i L}^{2}} \sigma_{\pi \pi}\left(\omega^{2}\right) \frac{f^{2}}{2 \pi} . \tag{1}
\end{equation*}
$$

where p^{2} is in units of μ^{2}. the pion mass squared.
It is interesting to note shat a succes ful application of this method has been carried out by a Yale uroup, ${ }^{2}$ who obtained the $n^{+}-p(3,3)$ resonance by looking at the process $p+p \rightarrow n+p+\pi^{+}$.

The possible reactions in hydrogen and the corresponding final-state $\pi-\pi$ I-spin amplitudes are
(a) $\pi^{-}+p \rightarrow p+\pi^{-}+\pi^{0}$ 。

$$
\text { (b) } \quad \rightarrow n_{3}+\pi^{-}+\pi^{+}
$$

$$
\begin{array}{r}
\frac{1}{2} A_{1}+\frac{1}{2} A_{2} . \\
\frac{1}{3} A_{0}+\frac{1}{2} A_{1}+\frac{1}{6} A_{2} .
\end{array}
$$

$$
\text { (c) } \quad-n+\pi^{3}+\pi^{0}, \quad-\frac{1}{3} A_{0} \quad+\frac{1}{3} A_{2}
$$

$$
\text { (d) } n^{\frac{1}{2}}+p \rightarrow p+\pi^{+}+\pi^{0} . \quad+\frac{1}{2} A_{1}+\frac{1}{2} A_{2} \text {. }
$$

$$
\text { (e) } \quad \rightarrow n+\pi^{+}+\pi^{+}, \quad A_{2}
$$

Hom the combined data of the above experimente it is possible in principle to separate the three I-spin amplitudes. The amplitude A_{1} is important from a theoretical point of view in order to explain the observed nuclear isotopic vector form factor and the low-energy pion-mucleon phase shifte. ${ }^{3}$ It is suggested by Bowcock et al.4 that $\left|A_{1}\right|^{2}$ ghould show a rescnance somewhere in the region $\omega^{2} \approx 22 \beta^{2}$.

Feactions (a) and (d) are being investigated in the 72-inch chamber; 1275 events of the former and 450 events of the latter type have been found so far. We are thus looking at the arnplitude $\left(\frac{1}{2} A_{1}+\frac{1}{2} A_{2}\right)^{\prime}$. The 72 -inch chamber is a particularly convenient instrument for this investigation, in which we are interested mainly in events with $p^{2} \leqslant 9 \mu^{2}$. This corxesponds to recoil proton momenta below about $400 \mathrm{Mev} / \mathrm{c}(\leqslant 60 \mathrm{~cm}$ range). Events in which the proton stops and goes forward of 70 deg (lab) are of necessity inelastic (two or more pions in the final state), and there is a one-to-one correspondence between p^{2} and ω^{2} and the measured range and lab angle of the proton. Snly events in which the protom stops are accepted, and an in 104 correction prograrn corrects for the fact that not all protons that would have had a range $<60 \mathrm{~cm}$ atop in the chamber. The ecanning tablemeasurement does not distinguish between events with two pions and those with more than two pions in the final state. Those with more than two pions can occur for $\omega^{2} \geqslant 9 \mu^{2}$ and form a background contamination to our events. hose with three pions in the final state do not have a pole at $p^{2}=-\mu^{2}$ but save a branch cut starting at $p^{2}=-4 p^{2}$, white those with foor pions in the final state have a pole at $p^{2}=-4^{2}$ and a branch cut atarting from $p^{2}=-9 \mu^{2}$. These four-pion events contribute to the total $\pi-\pi$ crosa section for $\omega^{2} \geqslant 16 \mu^{2}$. sanckensten measurements can eliminate events with more than wo pions in the final state and are now being carried out. We are now scanning film at an incident moinenturn of 1.275 jev/c so that we may study the higher ω^{2} region and reduce the extrapolation distance at $\omega^{2}=20$.

In order to carry out the extrapolation it is necessary for theory to provide some analytical form for the nonpole terms. A reasonable assumption for the behavior of the cross section is

$$
\begin{equation*}
\frac{d^{2} \sigma}{d p^{2} d \omega^{2}}=\sum_{8 \text { pins }}\left|\frac{\vec{\sigma} \cdot \overrightarrow{p^{\prime}}}{\left(p^{2}+1\right)^{2}} A+B_{0}+B_{1}(\vec{\sigma} \cdot \vec{p})+\cdots\right|^{2} \tag{2}
\end{equation*}
$$

where the terms $E_{0}+\vec{S}_{1}(\vec{\sigma} \cdot \vec{p})+\cdots$ represent the effect of the branch cut at $p^{2}=-9 j^{2}$ in the physical region. Equation (2) leads us to use a fitting procedure,

$$
\begin{equation*}
\left(p^{2}+1\right)^{2} \frac{d^{2} 0}{d p^{2} d \omega^{2}}=A_{0}+A_{1}\left(p^{2}+1\right)+A_{2}\left(p^{2}+1\right)^{2}+\cdots \tag{3}
\end{equation*}
$$

and, using (1) and (3), we get

$$
\sigma_{\pi \pi}\left(\omega^{2}\right)=-A_{0} \frac{2 \pi}{f^{2}} \frac{q_{1 L}^{2}}{\theta^{2}\left(\omega^{2}\right)}
$$

Wigure 1 shows the least-squares fit obtained to $\left(p^{2}+i\right)^{2} d^{2} o / d p^{2} d \omega^{2}$ for eight. equal intervals of ω^{2} varying from $5.5 \mu^{2}$ to $27.8 \mu^{2}$. Oniy the π^{-}data are included in these plots. The end of the physical region is marked on each graph as an extended heavy line on the p^{2} axis. Only in the first plot does the fitted curve go through the p^{2} axis before the end of the physical region. We constrained this curve, therefore, to go through the end of the physical region. For the second and third plots a quadratic fit was found necessary; for the fourth plot, however, it was not inmediately obvious whether a quadratic was better than a linear fit. We show both fits. For the four last plots a linear fit was definitely adequate even though there were more events for the fifth and sixth plots than for the second and third plots where quadratic fits were required. The eighthplot is shown although it is rather insignificant because of lack of data and distance of the extrapolation.

Figure 2 shows the value of the π° " π^{0} crose mestion an a furaction of ω^{2}. the values being obtained from the sitted curver at $p^{2}=-\mu^{2}$. If we accept the extrapolation procedure used, then we men increane in $\sigma_{\pi}\left(\omega^{2}\right)$ beginaing at $\omega^{2} \approx 15$ to $18 \mu^{2}$. rising to about 200 rab at ω^{2} a 20 to $22 \mu^{2}$. However, ond must remember is is just in this region of wis thet our extrapoiation distance begine to get larger, making the extrapolation procedure lew conclumive. Also if more data in this region show that a quadramic cerm is dofinitely required in the fit, then the resuit may be modified.

One conclusion that can be drawn from our data is that arawer Fulco resonance at $\omega^{2} * 10$ to $12 \mu^{2}$ if very hatd to understand. Our data are very close to the pole in thi ω^{2} region, so that extrapolation does not premeat the same problems at higher enexgies. Alarge crose section haposible in this region only if there is a strong cubic texm with positive aign in our expanaion (3). We see no evidence for thin at preacne.

On the other hand Bowcock et al. found on a later analybin of the nucleon electromagnetic structure and the lownenergy pionmucleon phate shift that the Frazer-Fulco resonance mould be shifted to mbout $\omega^{2}=22$, This is consintent with our present resulte. If we assume that aur data peak at $u^{2}=20$ to 22 (our incident energy is insurficient to esamine the high-energy aide of the peak), then the height ia in accord with $(2 J+1) 4 \pi x^{2}$ for an p-state resonance. Our half width (obtained from the lovimemergy wide) h approximately 5 mas $_{2}^{2}$ of course our data
 which juet happena to satisfy $12 \pi \pi^{2}$ at $\alpha^{2}=22$.

In Fig. 3. we show the rexult of including our $450 \pi \pi^{+}$-p evente in the
 reaidue at the pole alchough hawing very disfersnt contributione coming from
the branch cut. The general characteristics of the $\pi-\pi$ cross section is unmodified and the errors are reduced siightly.

If the $\pi-\pi$ cross section does show an increase in the region $w^{2}=17$ to $22 \mu^{2}$. then it is expected to be reflected in the behavior of our reactions in the near-by pnysical region, F. If we assume that only the pole term is significant for $p^{2} \leqslant 9 \mu^{2}$, then we san ivrite, using sq. (I),

$$
\begin{equation*}
\sigma_{\pi \pi}^{p}\left(\omega^{2}\right)=\frac{2 \pi}{f^{2}} \frac{q_{1}^{2}}{F\left(\omega^{2}\right)}\left\langle\frac{\left(b^{2}+1\right)^{2}}{p^{2}} \frac{d^{2} \sigma}{d p^{2} d \omega^{2}}\right\rangle \tag{4}
\end{equation*}
$$

where the hexagonal brackets indicate an average over our range of $p^{2} \leqslant 9 \mu^{2}$: Eigure (4) shows $\sigma_{\pi \gamma \pi}^{P}\left(\omega^{2}\right)$ plotted for the π^{-}data and Eig. (5) shows $\sigma_{\pi \pi}^{P}\left(\omega^{2}\right)$ plotted for the combined $\pi^{+} \pi^{-}$data. In both figures very little effect is noticeable. Certainly there is no rise in the $\sigma_{\pi \pi}^{P}\left(\omega^{2}\right)$ to the order of magnitude (200 mb) that our extrapolation suggests is the value of $\sigma_{\pi \pi}\left(\omega^{2}\right)$ in the region of $\omega^{2} \approx 20$ to $22 \mu^{2}$. An alternative but illuminating way of boking at the physical-region data is shown in Fig. (6). Here we plot the number of events with $p^{2} \leqslant 9 \mu^{2}$ and also $f\left(\omega^{2}\right) d p^{2} d \omega^{2}$ arbitrarily normalized to have the same maximum value. If there were only the pole term then any departures of the data from the theoretical curve would be evidence for a variation in the $\pi-\pi$ cross section. We see no such evidence in the physical region.

If course if we believe that $\sigma_{\pi \pi}\left(\omega^{2}\right)$ does increase to about 200 mb at $\omega^{2}=20$ to $22 \mu^{2}$. then the reason for the nonappearance of such gross effects as considered in $\mathcal{F i g s}$. (4), (5) and (6) is the appearance of higher-order terms in the expansion (2). For example final-state pion-nucleon interactions could cause
trouble, as represented in the diagram below.

This diagrami represents one of the many contributions from the branch cut. If the final fion and nucleon relative momenta are correct then we may expect a large contribuion in the physical region from a final-state pion-nucleon $(3,3)$ resonance interaction. We are looking into such effects.

If we had the pole term alone, then our expansion would reduce to

$$
\begin{equation*}
\left(p^{2}+1\right)^{2} \frac{d^{2} \sigma}{d p^{2} d \omega^{2}}=A_{0}-A_{0}\left(p^{2}+1\right) \tag{5}
\end{equation*}
$$

and our data would be fitted by a curve that goes through the origin. Figure 1
shows that this behavior certainly does not apply to our experimental data. That is, we are seeing evidence for a strong nonpole contribution to the physicalregion benavior.

If we expand Eq. (2) we get
$\left(p^{2}+1\right)^{2} \frac{d^{2} v}{d p^{2} d \omega^{2}}=\left|B_{0}\right|^{2}+\left(\left.A\right|^{2}+2\left|S_{0}\right|^{2}+2 \operatorname{Re}\left(A^{+} B_{1}\right)+\cdots\right) p^{2}+0\left(p^{4}\right) ;$
we can thus look at the term E_{0}^{2}. which in terme of our expansion in powers of $\left(p^{2}+1\right)$ is given by

$$
\begin{equation*}
0_{0}^{2}=A_{0}+A_{1}+\cdots \tag{7}
\end{equation*}
$$

B_{0} is the first correction to the pole term coming from the cut. In Fig. 7 we show the variation of $\left|B_{0}(\omega)\right|^{2}$ with ω^{2}. As expected, $\left|B_{0}(\omega)\right|^{2}$ shows a negative increase where our pole term showed a positive increase. We can thus understand the absence of an effect in the physical region as being caused by a cancellation between the pole term and $\left.\int_{G_{0}}(\omega)\right|^{2}$.

Effort is now being put into separating out the - and p-wave dependence of the pion-pion cross section, particularly in the region of $\omega^{2}=15$ to $25 \mu^{2}$. In this way it will in principle be possible to separate the contributions from the $I=1$ and $I=2$ states to our observed cross section. This separation, of course, requires . Franckenstein measurement and fitting of our events, which is being carried out.

We would like to thank Professor Luis W. Alvarez for his great interest and encouragement throughout the experiment. It is also a pleasure to thank Professor Frank S. Crawford'Jr. and Professor Arthur H. Rosenfeld for many stimulating discussions. We are also indebted to Professor Geoffrey F. Chew and Dr. James S. Ball for several interesting theoretical comments and to Professor Herbert M. Steiner for useful ideas. Finally we wish to thank the scanners for their help in finding and analyzing the events.

REFERENCES

*Work done under the auepices of the U.S. Atomic Energy Commision.
${ }^{\dagger}$ Talk presented by Philip G. Burke at the Stroag-Interaction Conference, Berkeley.
§on leave from Vietnam Atomic Energy Office, Saigon, Vietnam.
**N at the Max-Planck-Institut für Physik und Astrophysik Munic.

1. G. F. Chew and F.E. Low, Phys. Rev. 113, 1640.
2. G. A. Smith. Ho Courant. E. Fowler, H. Kraybill, J. Sandweise, and H. Taft, Phys. Rev. Lettera 5, 571 (1960).
3. W. R. Frazer and J. R. Fulco, Phys, Rev. Leters 2e 365 (1959); Phys. Rev. 117. 1609 (1960).
4. F.J. Bowcock, W. N. Cotingham and D. Lurie, Phys. Rev. Letters 5, 386 (1960).

MUB-604-A
Fig. 1. Extrapolation curves $F\left(p^{2}, \omega^{2}\right)$ at fixed ω^{2}
(a) $\omega^{2}=5$ to $8.2 \mathrm{~m}_{\pi}^{2}$,
(e) $\omega^{2}=16.5$ to 19.2
(b) $\omega^{2}=8.2$ to 11 ,
(f) $\omega^{2}=19.2$ to 22 ,
(c) $\omega^{2}=11$ to 13.7 ,
(g) $\omega^{2}=22$ to 24.7 ,
(d) $\omega^{2}=13.7$ to 16.5 ,
(h) $\omega^{2}=24.7$ to 27.5 .

$$
M \cup-22625
$$

Fig. 2. The $\pi^{-}-\pi^{0}$ cross section as a function of the total dipion mass squared as determined by the Chew-Low method. Also shown are the maximum height of a p-state resonance and the shape of the Frazer-Fulco resonance (Fhys. Rev. Lecters 2, 367 (1959), Eq. (10)), assuming the parameters $\quad v_{r}=3.5, \Gamma=.3$.

Fig. 3. The $\pi^{ \pm}-\pi^{U}$ cross section as a function of the total dipion mass squared as determined by the Chew-Low method for the combined data (1725 events).

$M U-22692$

Fig. 4. Physical region ($p^{2} \leqslant 9 \mu^{2}$) plot of the $\pi^{-}-\pi^{0}$ cross section as a function of ω^{2}.

MU-22693

Fig. 5. Physjcal region ($p^{2} \leqslant 9 \mu^{2}$) plot of the combined $\pi^{ \pm}-\pi^{0}$ cross section as a function of ω^{2}.

MU-22694

Fig. 6. Number of events with $p^{2} \leqslant 9 \mu^{2}$ and $F\left(\omega^{2}\right) d p^{2} d \omega^{2}$ arbitrarily normalized as functions of ω^{2}.

MU-22695

Fig. 7. ${\underset{0}{0}}_{\mathrm{B}_{0}}^{2}$, the first correction to the pole term, as a. function of ω^{2}.

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

