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RESEARCH ARTICLE
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Abstract

A fundamental question in biology is how sharp boundaries of gene expression form pre-

cisely in spite of biological variation/noise. Numerous mechanisms position gene expression

domains across fields of cells (e.g. morphogens), but how these domains are refined

remains unclear. In some cases, domain boundaries sharpen through differential adhesion-

mediated cell sorting. However, boundaries can also sharpen through cellular plasticity, with

cell fate changes driven by up- or down-regulation of gene expression. In this context, we

have argued that noise in gene expression can help cells transition to the correct fate. Here

we investigate the efficacy of cell sorting, gene expression plasticity, and their combination

in boundary sharpening using multi-scale, stochastic models. We focus on the formation of

hindbrain segments (rhombomeres) in the developing zebrafish as an example, but the

mechanisms investigated apply broadly to many tissues. Our results indicate that neither

sorting nor plasticity is sufficient on its own to sharpen transition regions between different

rhombomeres. Rather the two have complementary strengths and weaknesses, which

synergize when combined to sharpen gene expression boundaries.

Author Summary

In many developing systems, chemical gradients control the formation of segmental

domains of gene expression, specifying distinct domains that go on to form different tis-

sues and structures, in a concentration-dependent manner. These gradients are noisy

however, raising the question of how sharply delineated boundaries between distinct seg-

ments form. It is crucial that developing systems be able to cope with stochasticity and

generate well-defined boundaries between different segmented domains. Previous work

suggests that cell sorting and cellular plasticity help sharpen boundaries between seg-

ments. However, it remains unclear how effective each of these mechanisms is and what

their role in sharpening may be. Motivated by recent experimental observations, we
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construct a hybrid stochastic model to investigate these questions. We find that neither

mechanism is sufficient on its own to sharpen boundaries between different segments.

Rather, results indicate each has its own strengths and weaknesses, and that they work

together synergistically to promote the development of precise, well defined segment

boundaries. Formation of segmented rhombomeres in the zebrafish hindbrain, which

later form different components of the central nervous system, is a motivating case for

this study.

Introduction

The specification of segmental domains of gene expression is a fundamental aspect of animal

development and a critical first step in bilaterian body plan organization [1, 2]. Within these

domains, differential gene expression determines the functional properties of cells. For exam-

ple, alternating domains of pair rule gene (e.g. fushi tarazu, even skipped [eve]) expression in

the early Drosophila embryo organize the segmented body plan [3, 4]. In vertebrates, segmen-

tally-organized somites form muscle segments and the vertebrae of the backbone [5–7]. In

both cases, cells acquire their segmental identities along the anterior-posterior (A-P) axis

through the functions ofHox genes. Further anteriorly,Hox paralogue groups 1–5 specify seg-

ments of the hindbrain (rhombomeres) [8–10]. How these segmented domains form has been

the subject of intense investigation.

Morphogen gradients control the formation of segmental domains of gene expression,

specifying distinct domains in a concentration-dependent manner. In the Drosophila embryo,

maternal gradients of bicoid and caudal promote expression of different gap genes [11–15]. In

vertebrates, secreted signaling molecules such as Fibroblast growth factor 8 (FGF), Wnt3a, and

retinoic acid (RA) form gradients that influence somite formation [16–20]. Similarly, in the

developing hindbrain, a network of FGF, Wnt and RA induce differential expression of Hox

genes and Krox20 in adjacent rhombomeres [20–28]. However, morphogens are unlikely to be

the only mechanism controlling segmentation in each of these cases. In particular, cell rear-

rangements are known to play a role. Steinberg’s differential adhesion (DA) hypothesis (DAH)
predicts that cell sorting can generate distinct cell aggregates [29]. This mechanism works par-

ticularly well if cells of adjacent segments differ in the number or type of adhesion proteins

they express, such as E-cadherin [30]. Similarly, contact-mediated repulsion can promote sort-

ing. Repulsion between cells expressing Eph and Ephrin receptors is required for proper

boundary formation between segments in both somites [31, 32] and rhombomeres [33–36].

When these two surface receptors come into contact, they elicit bi-directional signaling that

causes cells to repel each other [37].

Wolpert’s classic French flag model posits that morphogens form well-defined gradients

and that cells can precisely read the level of the signal at their location [38]. However, like any

biochemical signal, morphogens are inherently noisy and the process of transducing the signal

is stochastic. Noise can lead to mis-specification of cells, which will in turn produce a rough

transition region between segments where multiple cell types co-exist in a salt-and-pepper

arrangement. Actin cables or other physical barriers form at the interface between tissues in

systems such as developing germ layers in early embryos [39], the Drosophila embryonic epi-

dermis [40], or the zebrafish hindbrain [41] (reviewed in [42]). Thus, it is paramount that tran-

sition regions sharpen prior to the formation of these structures. The question thus becomes,

how can a morphogen-organized system cope with stochasticity and generate refined, seg-

mented zones of different cell types.
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Cells may physically sort but the effectiveness of sorting is unclear, particularly in cases

involving relatively small numbers of cells. For example, in the embryonic zebrafish hindbrain,

rhombomeres are comprised of tens to a few hundred cells, depending on the stage [33, 34].

Very few cells occupy the local region near the interface between segments. The DAH assumes

that tissues are liquid-like cell aggregates and that a sorted state is achieved as the system mini-

mizes a tension/adhesion free energy. This however is primarily valid at macroscopic scales

with large cell numbers [29, 30]. Furthermore, tissues do not necessarily behave as immiscible

fluids [43]. Thus it is important to determine the effectiveness of cell sorting at smaller scales

where the macroscopic assumptions of the DAH are not necessarily valid.

Previous work in the zebrafish hindbrain suggests that while cell sorting is important [33,

34, 36, 40, 44], cellular plasticity (e.g. transcription of target genes–hoxb1a and krox20) in re-

sponse to morphogens (e.g. RA, Fgf and Wnt) also promotes sharpening of segment bound-

aries [45, 46]. Here, we use computational modeling to investigate the influences of these two

different mechanisms. Since it involves both mechanical (e.g. adhesion, repulsion) and bio-

chemical (e.g. gene transcription) processes, we develop a multi-scale model that accounts for

both. Using this framework, we investigate each mechanism individually as well as in combi-

nation with others to determine effectiveness and potential interactions. Agent-based models

treat each cell as a discrete entity with dynamically evolving properties [47, 48], while the Potts/

Glazier-Graner-Hogeweg (GGH) model [49, 50] uses a lattice-based approach to account for

dynamically evolving cell shapes [51] and cell-cell interactions. We use a sub-cellular element

method (SCEM), which is similar to GGH, but allows more explicit descriptions of forces aris-

ing from cell-cell interactions [52, 53]. Each cell is treated as a collection of elements that inter-

act according to user-defined forces. This has been used successfully to study the dynamics of

epithelia [52, 53], the influence of Notch signaling on cell division [54], and homeostatic regula-

tion in intestinal crypts [55]. We use SCEM to build a multi-scale, stochastic model of rhombo-

mere boundary sharpening and investigate the effectiveness of cell sorting and plasticity (based

on a stochastic description of hoxb1a and krox20 in cells). We show that adhesion, repulsion,

and plasticity all have a role in this process, none of which sharpens boundaries efficiently on its

own. Instead, each has benefits and weaknesses, which are complementary and appear to work

synergistically to accomplish this goal.

Results

Multiscale and stochastic models for cell sorting and plasticity

How do distinct gene expression domains form in response to noisy positional information

(Fig 1)? To address this question, we developed a set of hybrid computational models to inves-

tigate the effectiveness of different mechanisms at refining gene expression boundaries. Three

possible mechanisms were considered: 1) differential adhesion, 2) cellular repulsion, and 3)

cellular plasticity in gene expression.

We constructed three models–Sorting (S), Plasticity (P), and Sorting + Plasticity (SP).

Model S includes only mechanical interactions such as cell-cell adhesion and repulsion. Model

P assumes cells are stationary but allows for plasticity-mediated changes in cell fate. Model SP

combines both. We used a discrete stochastic model formulation to account for low cell num-

bers. An SCEM framework endows each cell with a size, stiffness, and deformability (Fig A in

S1 Text). The foundations of this method have been explained previously [52, 56]. To describe

the influence of morphogens and gene regulation on cell identity, we constructed a spatial

stochastic model of cell fate regulation. For each model, we utilized similar computational

domains and initial conditions to aid direct comparison of results produced by each set of

analyses. Motivated by rhombomere formation in the zebrafish, we consider a simplified

Cell Sorting Combined with Plasticity Coordinate to Sharpen Gene Expression Domains
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computational domain consisting of a rectangular array of 6 cells in height with varying widths

(Fig 1). We note that while this is a simplification, this dimension is on a similar scale in the

horizontal direction; in the vertical direction, increasing cell numbers is computationally

intensive yet does not give further valuable results, and thus we considered this simplified sce-

nario. In most of our simulation, we compute our simulations in a time window correspond-

ing to 10.7 to 12.7 hours post fertilization (hpf), during which the zebrafish rombomere 3/4

(r3/4) and 4/5 (r4/5) boundaries are sharpened [45].

The models discussed herein are necessarily complex. We thus focus on their aspects that

are most relevant to this discussion. Specifically, we will consider how effective each is at

sharpening gene expression boundaries, and where there are deficiencies, we will assess the

source of that deficiency. Where possible, we will consider the sensitivity of results to model

details. However, we note that given the complexity of these models, an exhaustive sensitivity

analysis is not possible. We thus leave a detailed discussion of the sub-cellular element model

that is the basis of Model S and the gene expression model that is the bases of Model P for

Fig 1. Model Schematic. a) Morphogen M in two spatial dimensions influences fate decisions of cells

governed by a two-gene (A and B) circuit. A and B each promote their own expression and mutually inhibit one

another. The morphogen, which is graded from high levels (red) posteriorly to low (blue) anteriorly, is modeled

as noisy as are the internal genetic processes that transduce that signal. The global profile of the morphogen

is given in Fig I in S1 Text. b) Morphogen M generates an initial transition region (5 cell diameters along the

anterior-posterior axis) between an anterior gene A expression domain (ZA) and a posterior gene B

expression domain (ZB), where cells expressing gene A or B (or some combination of both) are intermingled

in a salt-and-pepper fashion.

doi:10.1371/journal.pcbi.1005307.g001
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references provided herein. Instead, we focus on the qualitative properties of these mecha-

nisms and how they operate individually and in combination.

Model S. Model S incorporates only mechanical cell-cell interactions, specifically adhesion

and repulsion, as a means of cell sorting. It omits cellular plasticity by ignoring the gene regulatory

network (Fig 1). To describe individual cells, their interactions, and the forces that drive mechani-

cal sorting, we utilized the SCEM (Fig A in S1 Text). In this computational formalism, individual

cells consist of sub-cellular elements and interact according to a prescribed intercellular force

potential. This force acts between every pair of elements within a cell, is repulsive at short ranges

(to ensure elements remain separate and maintain an associated “volume”) and attractive at lon-

ger ranges (to ensure they retain a coherent structure). Given the elements that form cells in this

formalism and the forces that connect them are not any direct representative of biophysical enti-

ties, we have chosen these intra-cellular forces so that in the absence of external forcing, the collec-

tion of elements that comprise an isolated cell round up to form a circular structure.

For these models, the manner in which cells physically interact is of critical importance.

This model assumes that cells are one of two distinct types, where cells of the same type have a

short-range attraction (adhesion) and cells of different types locally repel each other. While

intra-cellular forces only act between elements of the same cell, inter-cellular forces act only

between pairs of elements in different cells. If those elements are from the same cell type, the

force is attractive at short range, and if they are from different cell types, it is repulsive. Addi-

tionally, to account for the contact mediated nature of forces in this model, all forces between

pairs of elements are limited to a distance of two characteristic cell diameters (see supplemen-

tary material S1 Text section S1). For simplicity we will assume that there are two types of cells

in this system (A and B). The attractive forces between two like cells is chosen to be the same

independent of whether they are A-A or B-B interactions. These along with the forces between

different cells (A-B interactions) were chosen to be strong enough to ensure cells meaningfully

interact without introducing numerical artifacts that arise when forces become too strong.

In the absence of a gene regulation model, initial conditions for Model S are generated

manually (rather than by a morphogen) by assigning a 3 × 6 zone of cells of one fate (red), a

3 × 6 zone of cells of another fate (blue), and a transition region of size (N−6) × 6 in between,

where half the cells are randomly assigned blue and red fates respectively (Fig 2A). After specifi-

cation of the initial condition, all cells are assumed to be unable to transition between different

states and the only way they can self organize (outlying red or blue cells join other cells of the

same color–Fig 2) is through movement. The domain lengthN varies to mimic wider or nar-

rower initial transition regions. The strength of both adhesion and repulsion is modulated to

determine the relative influence of each in the sharpening process. In all future simulations, we

use the width of the transition region at time T (denoted by TW(T)) to measure the region sharp-

ness. For example, the initial (T = 10.7 hpf) transition region shown in Fig 2A is TW(10.7) = 4,

where space has been scaled so that one unit is a characteristic cell diameter.

Model P. Model P incorporates only gene regulation and plasticity-mediated cell fate

transitions. It omits mechanical forces or any cell movements. The regulation in this model is

an extension of [45], which is informed by zebrafish rhombomere specification (Fig 1). This

model represents a gene regulatory system where hoxb1a and krox20 genes are induced by a

graded RA signal and mutually antagonize one another[28, 57, 58]. While the motivation

comes from this specific context, the elements involved in this system—a morphogen M (rep-

resenting RA in zebrafish rombomeres) and mutually antagonistic regulators A and B (repre-

senting hoxb1a and krox20 in zebrafish rombomeres)—are common in other cell types/tissues.

In this model, a noisy morphogen signal combined with stochastic responses leads to the for-

mation of multiple coherent zones of different gene expression separated by noisy transition

regions (Fig 1).

Cell Sorting Combined with Plasticity Coordinate to Sharpen Gene Expression Domains
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The morphogen is modeled as a diffusible molecule whose dynamics are encoded in a sto-

chastic partial differential equation:

@½M�out

@t
¼ DD½M�out � ð1þ bÞkM½M�out þ kM½M�in

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f1

þVMðx; tÞ
|fflfflfflffl{zfflfflfflffl}

Production

þ Zout
dooutðtÞ

dt
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Noise

where [M]out(x,t) is the extracellular concentration of the diffusible morphogen and [M]in is

the intracellular concentration. Here, the first term is a standard diffusion term. f1 represents

morphogen production and signaling dynamics (along with morphogen removal from the dif-

fusible domain) with kM denoting the rate of exchange of morphogen between intra and extra

cellular forms, and βkM denoting the degradation rate of extracellular morphogen. The final

two terms encode the production rate and stochasticity in the morphogen, with VM(x,t) theM
production rate at position x at time t (see equation S2.2 in S1 Text). We impose no flux

boundary conditions on the Nx6 computational domain, and focus on the 0� X� 14 region

where plasticity could induce cell transition shown in Fig 1 (for further details of our treatment

of the morphogen, see S1 Text section S9 and Fig I). After an initial transient period, this will

lead to a steady state situation where morphogen levels fluctuate around a fixed spatial profile.

Each cell in the immobilized array is further endowed with the gene regulatory model in

Fig 1A (see S1 Text section S2, equations (S2.3)-(S2.6)), which accounts for internal stochasti-

city of gene transcription. Briefly, this network forms a bistable system where the morphogen

Fig 2. Performance of the mechanical cell-sorting model (Model S). a) Simulations incorporating adhesion only, repulsion only, and both. All

simulations start from the same initial distribution (T = 10.7 hpf), all time units are hpf. Also see S1–S3 Movies. b) Example simulation where cells

become isolated. c) Example where an aggregate of cells (a “clog”) becomes isolated and sharpening fails. When the strength of adhesion and repulsion

interactions is strengthened, the end result improves. d) When the initial transition region is wide, cells are more likely to become trapped and a clear

boundary does not form. Also see S4 Movie. These are snapshots of individual simulations from the data set in Table 1. See Table D in S1 Text for

parameters.

doi:10.1371/journal.pcbi.1005307.g002
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([M]in) concentration determines expression of A and B depending on its levels. The system

describing these dynamics is a set of stochastic ODE’s:

d½M�in
dt
¼ kM½M�out � kM½M�in
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

f2

� ½Sð½M�inÞ�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Degradation

þ Zin
doinðtÞ

dt
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Noise

d½A�
dt ¼

CA½A�
nA þ kA½M�

m
in

1þ ½A�nA þ ½B�nB þ kA½M�
m
in

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
g1

� dA½A�
|fflfflffl{zfflfflffl}
Degradation

þ ZA
doAðtÞ

dt
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Noise

d½B�
dt ¼

CB½B�
nB þ kB½M�

m
in

1þ ½A�nA þ ½B�nB þ kB½M�
m
in

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
g2

� dB½B�
|fflfflffl{zfflfflffl}
Degradation

þ ZB
doBðtÞ

dt
|fflfflfflfflffl{zfflfflfflfflffl}

Noise

where f2 represents the morphogen signaling and degradation dynamics, which is associated

with f1, and g1, g2 describe the regulation of levels of A or B by the intra-cellular concentration

[M]in. [S([M]in)] representsM degradation due to another intracellular signal S (see equation

S2.6 in S1 Text). Since morphogen levels are noisy and gene regulation is stochastic, initial

specification of cell fates will naturally lead to a salt-and-pepper transition region where cells

of different fates are intermingled. Unlike in model M, cell fates are not fixed and cells can

change their gene expression, in this case, the degree of plasticity (how easily they switch

expression between red and blue) is determined by a cell’s location, morphogen levels, and

internal stochastic dynamics of gene regulation.

Model SP. This model combines both models S and P to account for both mechanical

cell-cell interactions and plasticity. In model S, the mechanical properties of each cell depend

on its identity, which remains fixed over time, and the prescribed force interactions between

pairs of cells. In this combined model, those mechanical properties are determined by gene

expression, which is a continuous quantity that varies in time based on position. Thus motions

can influence gene expression and vice versa, introducing potential dependencies. In particu-

lar, gene expression plasticity has two important roles here: 1) it can potentially induce cell fate

transitions as in model P, and 2) the resulting expression levels, in turn, regulate mechanical

properties of cells and their interactions with each other (see S1 Text section S3). This leads to

feedback whereby moving cells respond to different morphogen levels. As with model S, the

mechanical interactions between cells are encoded as forces in a SCEM framework. As with

model P, each cell is endowed with an identical and independent copy of the regulatory system

in Fig 1A (S1 Text section S2, equations (S2.3)-(S2.6)), which determines cell fate. This model

will be used to interrogate the effectiveness of the combination of these processes in refining

spatial gene expression domains.

Sharpness index. We define a Sharpness Index (SI) to quantify the effectiveness of each

mechanism at sharpening the boundary. SI is a measure that takes into consideration both the

degree of mixing of different cell types as well as the straightness of the boundary [45]. It is

defined as the standard deviation of the distance (measured from cell center) to the midline of

the transition region of all mis-located cells. In addition to using SI, we categorize sharpening

results of each individual simulation into three categories: boundary formed, where a clear

boundary forms dividing the two cellular zones; boundary nearly formed, where mostly a

boundary forms with one or two cells mislocated; boundary failed to form (for details of how

they are categorized, see S1 Text section S5). SI is used in relevant figures and these categoriza-

tion results are presented in relevant tables for the different models.

Cell Sorting Combined with Plasticity Coordinate to Sharpen Gene Expression Domains
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Cell sorting is only effective when transition regions are narrow

Model S was simulated under a range of conditions including varied levels of adhesion and

repulsion between cells. With a rectangular array of cells, we considered multiple initial condi-

tions in which we varied initial transition width (ITW = 2, 3, or 4-cell wide transition regions).

We manually populated the transition region with a random array of the two cell types with

precisely a half-half mixture, and performed an ensemble of simulations for each condition. By

comparing either the number of boundary formed and boundary nearly formed simulations

under different conditions, we found (Table 1) that mechanical cell sorting was effective when

the initial transition region was narrow, especially in cases with stronger cell adhesion strength

(see Morse potentials in Fig B in S1 Text). A substantial fraction of these simulations ended

with boundary nearly formed rather than formed. However, most outlying cells were at the

top/bottom edges of the boundary where they have fewer neighbors (due to the structure of

the domain) and are subjected to weaker sorting influences. For wider initial transition regions

(ITW = 3), sharpening was reduced and strongly dependent on the strength of sorting. For

ITW = 4 and wider, mechanical cell sorting was ineffective at boundary sharpening, no matter

how strong the sorting forces.

Since both differential adhesion and repulsive interactions between cells can lead to sorting

independently [29], we next assessed the relative influence of each (Fig 2). Simulations were

performed starting with identical initial conditions and adhesion or repulsion was either atten-

uated or strengthened. Inclusion of both adhesion and repulsion led to effective boundary

sharpening (Fig 2A, bottom; S1 Movie). Removal of repulsion disrupted sorting, leading to a

transition region that not only did not sharpen, but in many cases actually expanded (Fig 2A,

top; S2 Movie). In contrast, removal of adhesion led to contiguous boundaries between regions

of cells, though the resulting boundaries were far from straight (Fig 2A, middle; S3 Movie).

In cases where boundary sharpening failed, individual cells (Fig 2B) or cell groups (Fig 2C,

top) were isolated from their preferred zone, mainly at the top or bottom edges of boundaries,

as discussed previously. Since the only sorting interactions in this model were physical cell-cell

interactions, once cells became isolated they encountered an isotropic environment with noth-

ing biasing their direction of motion. Increasing the strength of cell-cell interactions reduced

the frequency of these events (Table 1; Fig 2C, bottom). However, since there is a significant

random component to the isolation of these cells, optimizing the properties of cell-cell interac-

tions only marginally improved the outcome. Additionally, the likelihood of cells becoming

isolated strongly depends on initial transition region width (ITW) and its noisiness. This is the

Table 1. Boundary sharpening of cell sorting, starting with different initial transition region width (ITW) and under mild/strong cell sorting.

ITW Strength Boundary Formed Boundary Nearly Formed Boundary Failed to Form

2 Mild (16 total) 4 12 0

Strong (16) 9 6 1

3 Mild (16) 0 12 4

Strong (16) 4 11 1

4 Mild (16) 1 5 10

Strong (16) 4 4 8

ITW is measured in typical cell diameters, for example, ITW = 2 means the initial transition region is 2-cell diameters wide. For each value of ITW, we first

performed 16 simulations with mild cell sorting, then started from the same initial distributions but with strong cell sorting (same repulsion strength but

increased adhesion strength, Morse potentials shown in Fig Ba in S1 Text). Out of the total 16 simulations in each case, the number of simulations that end

up with a sharp boundary, a nearly sharp boundary, and those fail to form a boundary were recorded. For details of how the end states are categorized

please see section S5 in S1 Text.

doi:10.1371/journal.pcbi.1005307.t001
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primary reason that Model S became increasingly ineffective as the ITW increased (Fig 2D, S4

Movie). These results show that both adhesion and repulsion are required for proper sorting,

and that these mechanical processes are only effective in boundary sharpening if the ITW is

relatively narrow.

Cell plasticity effectively narrows wide transition regions but is less

effective at refining boundaries

With model P we asked how effective plasticity alone is at sharpening boundaries between cel-

lular zones (Fig 3). If morphogen signals are noise free and gene regulation is deterministic,

morphogens will always form precisely placed, sharp boundaries. In reality, however, this reg-

ulatory system is stochastic at every level. We have hypothesized that “noise-induced switch-

ing” helps sharpen rhombomeres in the zebrafish hindbrain [41]. This is based on the idea that

while morphogen stochasticity introduces disorder near the boundary between cellular zones

(i.e. a transition region), stochasticity in gene regulatory processes can also help cells to

Fig 3. Performance of the plasticity model (Model P). a) Depiction of the average positions of the anterior and posterior edges of the transition zone

over time for weak (dash line), medium (solid line) and strong (dash-dot line) gene expression noise strength. Results are averaged over 16 simulation

replicates for each model. With medium strength, the boundary is clearly refined but is not fully sharpened. This refinement occurs as red cells in the

transition region gradually change to blue, drawing the right side of the transition region toward the left. Weaker noise is less effective. Stronger noise

leads to erroneous switching of cells from blue to red and the blue region expands at the expense of the red region. We note that all kinetic and morphogen

parameters are the same here and only the noise amplitude changes. b) Simulation initial condition showing the results of initial patterning by the

morphogen with a salt and pepper transition zone between anterior and posterior zones. The schematic “landscape” depicts bistability of the gene

network, with a bias toward the “blue” fate (indicated by the relative depths of the two “wells”). c-e) Time-courses of gene expression noise-regulated

boundary sharpening, starting from the same initial transition region (b), with weak (c), medium (d, also see S5 Movie) and strong (e) noise. The A-to-B

gene switching proceeds from right to left. In the strong noise case, some cells revert their gene expression at the far right (posterior). See Table E in S1

Text for parameters.

doi:10.1371/journal.pcbi.1005307.g003
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transition to the correct gene expression state [41]. To test this in our model, we omitted cellu-

lar motion so that sharpening relied solely on this mechanism.

In this model, initial cell fates were determined by a single morphogen, which was assumed

to direct fate specification by influencing transcription levels of A and B (which for r3-5 of the

hindbrain was modeled as hoxb1a and krox20). Upon application of the morphogenM, two ex-

pression domains formed with an intervening transition region (Fig 3B). Ensemble simulation

results confirmed that the transition region partially sharpened after initial cell specification.

When relatively little stochasticity (noise) in gene regulation was included in the simulations

(gene expression noise strength ηA = ηB = 0.03, see equations S2.4, S2.5 in S1 Text), the transi-

tion region narrowed but did not sharpen (Fig 3C). Too much noise (ηA = ηB = 0.09) over-

whelmed the system (Fig 3E). When moderate noise (ηA = ηB = 0.06) was included, however,

sharpening was more effective (Fig 3D; S5 Movie). Fig 3A shows the average (across simula-

tions) locations of the anterior (red) and posterior (blue) ends of transition regions as a function

of time under different conditions. To ensure cell distributions have reached a steady state,

we double the simulation time. Inspection of each of 16 replicate simulations shows that after

T = 12.03 hpf cell fate transition rates drop and the system achieves a steady distribution of

A and B cells (Fig M in S1 Text). These results confirmed that, for the medium noise case, the

width of the transition region was reduced (but not completely) to about 2 cell diameters in

width. This indicates that noise-driven sharpening can narrow an initially wide transition

region, but is less effective at sharpening it completely.

It is also instructive to consider how this refinement occurs. Fig 3A shows that with moder-

ate or weak stochasticity, sharpening in Model P occurred with the posterior edge of the transi-

tion region steadily moving toward a fixed anterior edge over time, reducing the region’s width.

This results from an asymmetry in the underlying gene regulatory network that generates noise

driven red! blue transitions (with the reverse much more rare). When noise levels are even

higher, this red! blue transition was so prominent throughout the domain, that the posterior

edge converged to the anterior edge and blue zone overtook the red zone over time (Fig 3E).

This contrasted with mechanical sharpening (Model S), where red cells tended to move anteri-

orly and blue posteriorly, leaving a border mostly in the middle of the original transition region

(at least when sharpening occurs)–though it also depended on the numbers of red and blue

cells. This suggests that the cell switching from type A to B that occurs in Model P, but not S,

leads to a fundamental difference in the directionality of boundary sharpening.

We make a final note about the role of stochasticity in promoting sharpening. The idea under-

lying the theory of noise-induced plasticity is that cell states (A and B) are represented by stable

wells in an energy landscape (see Fig 3B for a schematic). Depending on the cells local environ-

ment (determined by position in our case), the relative depth (e.g. stability) of those wells may be

different. In this context, for plasticity to aid sharpening, the “correct” state should be a deeper

well and the incorrect a shallower well. In this way, an incorrect! correct (e.g. shallow to deep,

see Fig 3B) transition would be more likely than the reverse. If the two wells are of roughly equal

stability, both transitions would occur with equal likelihood, which would provide no benefit.

Thus a sufficient level of asymmetry is required for noise to aid sharpening. Of course, if both

wells were either too deep or too shallow relative to noise strength, stochasticity would either

have no effect or overwhelm the system (illustrated in Fig 3E). Thus while stochasticity can pro-

vide a benefit, the system must be in an appropriate operating regime to take advantage of it.

Cell plasticity and mechanical cell-cell interactions synergize in sharpening

Our simulations with Models S and P show that mechanical sorting is effective at sharpening

narrow transition regions while plasticity effectively narrows wider transition regions. How
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effective are these two mechanisms when combined? We hypothesized that plasticity narrows

a transition region sufficiently to allow subsequent cell movements to complete sharpening.

To test this, we considered the model SP, which essentially adds local cell-cell interactions that

drive sorting to model P (Table 2; Figs 4 and 5D).

Fig 4C–4F shows temporal snapshots of sorting, where each simulation begins from the

same initial state, which is generated by the morphogen regulatory system (Fig 4C). These

results provide a direct comparison of sorting resulting from plasticity alone (Model P, Fig

4F), mechanical sorting alone (Model S, Fig 4E), and the two combined (Model SP, Fig 4D, S6

Movie). In Model S, after the initial state is specified by the morphogen, the gene regulation

system is turned off, and all cells are unable to alter their gene expression levels. Thus the mor-

phogen system serves only to generate the initial condition for Model S. Results indicate that

boundaries sharpen more effectively with SP than either S or P individually, based on tracking

the average (over 16 simulations) position of the transition region borders and the transition

region width (Fig 4A and 4B). With SP all simulations led to formed or nearly formed bound-

aries and a larger fraction formed completely (Table 2). Tracking the SI changes over time (Fig

5D) showing that model SP is the best among the three (end SI = 0.26), while model S is the

worst that only reduces SI a little (end SI = 0.95), and model P sits in between (end SI = 0.66).

The standard deviation of SI of the model S, P and SP is shown in Fig K in S1 Text. Tracking

the boundaries of the transition region over time also revealed that rather than sharpening to

either the center or one side of the transition region, the final boundaries were within the ini-

tial transition region but biased toward the anterior (Fig 4A). This is consistent with a combi-

nation of the two mechanisms ultimately driving sharpening. Additionally, simulation results

indicated that the final location of the boundary was precise when the sharpening was driven

by cell sorting and/or plasticity (see S1 Text section S7 for further details).

We next sought to determine if the order of action or duration of these different sharpening

mechanisms influence the outcome. To do so, we performed numerical simulations (results in

Table 2) where 1) plasticity was only active early, up to a pre-determined time point (T = 11.37

or 11.7 hpf) after which sorting became active, 2) the reverse, sorting was followed by plasticity,

and 3) the two mechanisms occurred simultaneously and for the full duration of the simula-

tions (i.e. the SP model discussed previously).

When sorting was active early and plasticity occurred later, outcomes (Table 2, “S followed

by P”) were better than with sorting alone and comparable to plasticity alone, but still ineffec-

tive. Sorting followed by plasticity (“P followed by S’) on the other hand yields a substantial

effect (Fig L in S1 Text). This indicates that the early action of plasticity followed by later action

Table 2. Model comparison showing different levels of ZA/B boundary sharpening.

ZA/B Boundary Formed Boundary Nearly Formed Boundary Failed to Form

S (16 Total) 1 8 7

P 5 7 4

SP 11 5 0

P followed by S T = 11.37 (11.7) hpf 5 (8) 10 (7) 1 (1)

S followed by P T = 11.37 (11.7)hpf 5 (5) 10 (10) 1 (1)

We started from the same 16 replicate initial conditions comprising a domain with zones ZA and ZB separated by a noisy transition region ZA/B between

them (Fig 1). The three models under consideration, plasticity and cell sorting (SP), cell sorting alone (S), and plasticity alone (P) are each simulated to

determine their efficacy. Additionally, model SP is simulated with the two mechanisms occurring simultaneously or in sequence. When in sequence, two

times at which the activity of the two mechanisms change are tested (T = 11.37 and 11.7 hpf) to assess the influence of timing. All results are visually

classified at T = 12.7 hpf.

doi:10.1371/journal.pcbi.1005307.t002
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of sorting improves outcomes over either mechanism alone. The combination of the two

(model SP) acting in concert for the full sharpening window however yields yet further

improvement (Fig L in S1 Text). Combined, these results suggest that the two mechanisms,

mechanical sorting and plasticity, can work synergistically with plasticity serving to narrow

transition regions to a manageable width and sorting serving to finalize the sharpening

process.

Comparison of simulation results with experimental data. We compare our model

results with experimental data from [45]. In the zebrafish rombomere, an initial r4/5 transition

region is typically ~40 μm in length along the anterior-posterior axis and later reduced to

Fig 4. Combining mechanical cell sorting and noise mediated fate transitions is effective at fully sharpening the boundary. a) The locations of

the anterior (red) and posterior (blue) ends of the transition region as a function of time, with both plasticity and cell sorting (solid lines), plasticity alone

(dash-dot lines) and cell sorting alone (dashed lines). The results are averaged over 16 simulation replicates for each model. b) The transition width with

both plasticity and cell sorting (solid lines), plasticity alone (dashed-dotted lines) and cell sorting alone (dashed lines). c-f) Time-courses of boundary

sharpening under both plasticity and cell sorting (d, also see S6 Movie), cell sorting only (e) and plasticity only (f), starting from the same initial distribution

(c). See Tables E and F in S1 Text for parameters.

doi:10.1371/journal.pcbi.1005307.g004

Cell Sorting Combined with Plasticity Coordinate to Sharpen Gene Expression Domains

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005307 January 30, 2017 12 / 23



5–10 μm which is ~1 cell diameter [45]. If we take the estimation 1 cell diameter ~ 8 μm, this

information suggests the r4/5 boundary sharpens from ~5 to ~1 cell diameter, which our simu-

lation results compare well to: within the time window from 10.7 to 12.7 hpf, the average tran-

sition width drops from ~4.28 to ~1.38 cell diameters, comparing to an end width of ~3.77 for

model S and ~2.46 for model P (Fig 4B).

Next we inspect the B cell (corresponding to Krox-expressing cells in zebrafish rombo-

meres) distribution at different time point. Fig 5A–5C show the fluorescence measurements of

Krox20 at 11, 11.7, and 12.7 hpf, with the four blue lines of different styles representing four

different experimental samples, which we reproduced from [45]. These data are taken from a

~120 μm region along the anterior-posterior axis of the zebrafish rombomere that contains the

r4/r5 transition region. Our simulation domain corresponds to an approximate window 20–

100 μm centered in this experimental region. Fig 5A–5C show that the approximate transition

width at the three time points are similar between data and simulation results. Further, at the

end of the simulation, the density profile as a function of position for the simulations are com-

parable to observations. There are some small differences between model results and observa-

tions at earlier time points (Fig 5A and 5B). We note however that the model has not been

tuned to match these distributions. Rather we have combined the gene expression model from

[45] with a model of cell motions and find that results nearly match observations.

Finally we compare the time evolution of the SI between simulation results and experimen-

tal data of zebrafish rhombomere r4/r5 boundary (data taken from [45]). Fig 5D shows the

experimental data of SI in the time window 11 to 12.7 hpf (black dashed line with squares),

together with the average SI of models S (blue line), P (red line), SP (green line), respectively.

This comparison clearly shows that the hybrid SP model most closely matches the sharpening

data from experimental observations.

Relative strength/timescales of plasticity and cell sorting. Here we investigate how the

strength and/or timescales of cell sorting and plasticity influence the sharpening process.

Given the inability to measure and precisely parameterize these aspects of the model, this

serves as a partial sensitivity analysis. Rather than perform a sensitivity analysis with respect to

each parameter of the model, we assess sensitivity with respect to the strength of the critical

features of the proposed mechanism, namely the strength of plasticity and sorting.

In model SP, we first assess the influence of the cell sorting strength while keeping the plas-

ticity component of the model unchanged. Results (Fig 6A) show that stronger cell-cell

Fig 5. Comparison of model results with observations. (a-c) Comparison of Krox-expressed cell distribution near the r4/r5 boundary

in zebrafish rhombomere (blue lines) with B cell distribution from model SP (red lines) at three time points. This figure indicates the

percentage of cells that dominantly express Krox as a function of position along the segment. Experimental data are from [45], four

samples are shown, each with one line style. Simulation results are the average of 16 simulations. d) Average SI over all 16 simulations

from model S (blue line), P (red line) and SP (green line) compared with experimental data from zebrafish r4/r5 boundary sharpening

(black dashed line with squares).

doi:10.1371/journal.pcbi.1005307.g005
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interactions lead to quicker sharpening. This is to be expected since faster cell speeds, which

would be associated with stronger cell-cell interactions, should lead to quicker sorting of cells

under the differential adhesion hypothesis. We note however that the effect here is minor.

Thus fairly large changes in the cell-cell interaction properties have a relatively minor influence

on the sharpening process. In other words, the sharpening process is insensitive to the precise

details of cell-cell interactions.

Next, we keep the cell sorting strength fixed but slow down the plasticity induced gene

expression switching. This is accomplished by introducing a time scale parameter into the

gene regulatory kinetics that can be used to change the speed of the kinetics without changing

the steady states of the system (see S1 Text section S2 for more details). Results clearly show

that slowing down the gene regulatory kinetics leads to much slower and possibly incomplete

sharpening (Fig 6B, S7 Movie). This is consistent with our previous results indicating that plas-

ticity serves to narrow transition regions while sorting, which is only effective for narrow tran-

sition regions, serves to complete the process. Slowing the initial narrowing process renders

the sorting process ineffective. Combined, these results support the conclusion that sharpening

results from a combination of global (plasticity) and local (sorting) processes working

synergistically.

Simultaneous sharpening of two boundaries separating three domains

The zebrafish hindbrain consists of 7 rhombomeres. While these segments utilize different sig-

nals and potentially different mechanisms to form and sharpen, the RA morphogen along with

the Hoxb1/Krox20 regulatory system are vital to the formation of rhombomeres 3–5 (r3-r5)

(Fig 1). Up to this point, we have modeled sharpening between two domains, but we now con-

sider how effectively cell movements and plasticity (Models S, P, and SP) are at forming and

sharpening three cellular zones.

Fig 6. Assessing the influence of sorting and plasticity strengths on sharpening. a) Measuring the influence of cell-cell interaction strengths (which

influences the sorting process) on sharpening. Results show the time dependence of the SI for different interaction strengths: mild cell sorting (blue line, this

force strength is the same as used previously), interaction strengths increased by 40% (red line) and decreased by 40% (yellow line). Stronger interaction

forces speed up sorting process while weaker interactions slows it down. The magnitude of the forces however has little effect on the final sharpness. b)

Analysis of the influence of plasticity properties on sharpening. The blue / green curves depict the SI as a function of time for the normal plasticity model (the

same as used in previous simulations) and with gene expression dynamics slowed down to impair cell fate transitions (also see S7 Movie).

doi:10.1371/journal.pcbi.1005307.g006
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To initialize the domain, the simulated RA morphogen generates a 20x6 domain of cells

(Fig 7), which is similar in scale to the horizontal dimension of the r3-r5 zones at the onset of

hindbrain specification in zebrafish [45]. We scaled the morphogen system such that the read-

out of the Hoxb1/Krox20 gene regulatory system in response to the RA gradient generates

three zones of roughly the same size with transition regions in between. All three models (S, P,

and SP) were simulated and the dynamics of the two transition regions were tracked over

time. The combined model (SP) was highly effective at sharpening the r4/5 boundary (Table 3,

Fig 7A and 7B, S8 Movie). When comparing the three models, models S or P individually were

not as effective as SP, as was the case earlier in the 2-domain models. However, compared to

Fig 7. Representative simulation showing formation of three zones, indicative of rhombomeres r3-5 in the developing

zebrafish hindbrain. a) Simulations of initial conditions depicting the gene expression domains (rhombomeres—r3, r4 and r5) and

the transition regions (r3/4 and r4/5) between them. We use r3-5 notation rather than Za, Zb to identify these zones with

rhombomeres. b-d) The final states of boundary sharpening with plasticity and mechanical cell sorting (b), mechanical cell sorting

alone (c), and plasticity alone (d), all starting from the same initial condition. Also see S8 Movie. See Tables E and F in S1 Text for

parameters. Panels (e,f) show the evolution of the SI for the r45 and r34 boundary respectively for each model.

doi:10.1371/journal.pcbi.1005307.g007
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2-domain models, all three models (S, P, and SP) appeared to be more effective in the

3-domain scenario (Tables 2 and 3, Fig 7E). This results from the fact that the length scale of

the RA morphogen was reduced to generate a sufficiently steep gradient to produce three cel-

lular zones. Since the width of transition regions depends on the relationship between noise in

the morphogen and steepness of the gradient, the transition widths in all 3-domain models

were narrower than in the previous 2-domain simulations.

The dynamics of the r3/4 boundary were however significantly different than r4/5. At this

boundary, plasticity was completely ineffective at sharpening in any simulations (Table 3; Fig

7). This reflects the fact that the interplay between stochasticity and the underlying gene regu-

latory network depends on morphogen levels. At the r3/4 boundary, morphogen levels are too

low for plasticity to induce any state transitions. Models S and SP at this boundary performed

nearly identically–especially when we compare the SI changes (Fig 7F). Additionally, simula-

tions of model S at each of these two boundaries performed nearly identically. These results

suggest that either mechanical sorting is the only manner of sharpening at the r3/4 boundary

or some alternative type of cellular plasticity (e.g. other morphogens, other gene regulatory

networks) is required to sharpen this boundary, unlike r4/5.

Alternative possible mechanisms

As we discussed above, contact-based cell sorting only appears to be effective at forming a

sharp boundary when transition regions are narrow. This could of course be the result of sub-

optimal cell-cell interaction parameters. However modulating the strength of inter-cellular

forces does not improve the situation much (Fig J in S1 Text). Furthermore, simulations of

r3-r5 formation, where two boundaries must form and sharpen, suggest that while sorting

may be effective at one boundary, it is unlikely to be as effective at adjacent boundaries. Recent

experimental studies suggest that long ranged cell sorting or chemotaxis may be very effective

at forming a clear and sharp boundary [59, 60]. To investigate the effect of inter-cellular force

range on boundary formation, we perform a similar simulation study with the same parameter

values as in the mild adhesion and repulsion combination, but increase the effective range of

cell-cell interactions to about 3 cell diameters (see S1 Text section S1) to mimic longer range

chemotactic effects. With this addition, boundary formation becomes much more effective

(Fig J in S1 Text): starting with ITW = 3, all 16 simulations ended up with a clear boundary

formed, while with ITW = 4, 13 out of 16 simulations formed a clear boundary, the other 3 fail-

ing as a result of isolated cells that are pushed to corners of the domain.

Table 3. Different sharpening mechanisms at r3/4 and r4/5 boundaries during development of zebra-

fish rhombomeres.

r3/4 Boundary Formed Boundary Nearly Formed Boundary Failed to Form

SP (16 total) 5 6 5

S (16) 5 6 5

P (16) 0 8 8

r4/5 Boundary Formed Boundary Nearly Formed Boundary Failed to Form

SP (16 total) 16 0 0

S (16) 6 8 2

P (16) 10 6 0

All simulations started from the same 16 initial conditions for a domain containing r3-r5 (Fig 7A) with r3/4 and

r4/5 transition regions separating the respective zones. Each of the three models SP, S, and P were

simulated to test their efficacy.

doi:10.1371/journal.pcbi.1005307.t003
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The key observation from these and results above is that local, cell-cell contact based sorting

forces appear to only be effective at sharpening domain boundaries if the initial imperfections

are confined to a narrow band. Our prior results indicate that plasticity based effects could

improve this process by narrowing initially broad transition regions. This is not however the

only possibility. Results here indicate longer range chemotactic forces between cells could play

a similar role. Alternatively, chemotaxis towards or away from an organizing center could pro-

vide the same benefits. While we cannot rule out any of these on the basis of the data available,

we do note that the plasticity based mechanism discussed above would yield qualitatively dif-

ferent predictions than these chemotaxis based mechanisms. The essential failure of the sim-

ple, contact based sorting process is its locality. Each of these additions provides a separate

means of providing more global information to the cells. In the case of chemotactic mecha-

nisms, that global information would drive longer length scale motions of cells. With the plas-

ticity based mechanism on the other hand, narrowing of transition zones would arise from fate

transitions rather than longer length scale motions. Thus the qualitative movement patterns of

cells could provide a means to delineate these mechanisms in future experimentation.

Discussion

Embryonic segments are fundamental building blocks of the body plan of many animals.

While intense research has been directed at elucidating how segmentation occurs [1–10], it

remains unclear how the borders between different segments sharpen. For example, in any

morphogen signaling system that controls segmentation (such as bicoid or RA), noise in both

the morphogen itself and in the transduction of the morphogen signal may reduce precision in

the ability of responding cells to form sharp boundaries between segmental domains, which

could have long lasting effects on development.

To date, multiple theories for boundary sharpening and maintenance have been proposed.

Mechanical structures such as actin cables have been posited to generate tension that robustly

separates segments [40, 42]. These structures however could be a double-edged sword. While

they might help maintain a boundary once it is established, the presence of noise could impair

their development, potentially leading to a permanent inability to sharpen further. Thus, a rel-

atively well-defined boundary should be present before the formation of these structures. The

“Differential Adhesion” (DA) hypothesis [29] argues that mechanical cell-cell interactions pro-

mote segment formation and sharpening. This hypothesis is however most often discussed in

the context of systems containing thousands of cells that can be thought of as an active fluid. It

is thus unclear how effective DA may be when smaller numbers of cells are present, such as in

the zebrafish hindbrain.

Our modeling results suggest that local, contact based adhesion/repulsion mediated sorting

is only effective at sharpening narrow (approximately�3 cell diameters) transition regions

between segments. This is because once individual cells or cell groups become isolated from

their respective aggregate, the local nature of contact-mediated cell-cell interactions cannot

provide sufficient information to direct cells to the correct location. In this sense, an initially

wide transition region is meta-stable state and can only resolve through random movements

over time. Thus, when small numbers of cells are present, purely local, contact based sorting

(e.g. differential adhesion sorting) appears to be insufficient to guarantee robust organization.

There are a number of possible processes that could be layered on top of contact based sort-

ing to improve sharpening. Motility based processes such as chemo-attraction or chemo-

repulsion of like or different cells could provide additional, longer range information to coax

cells toward the appropriate region of the domain [60]. Our results show that this is an effec-

tive mechanism. Chemotaxis toward or away from a pre-existing organizing center could
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serve a similar purpose (as suggested in [59]). Here we investigate an alternative possibility, the

“cellular plasticity” theory, which argues cells can change their fate by up- or down-regulating

the expression of critical genes [45]. This is fundamentally distinct from the motility based

processes discussed above in that long range taxis information is not required. Here we show

that this mechanism has its strengths and weaknesses, but that when combined with local, cell

contact based sorting, the two work together synergistically to promote sharpening.

Plasticity-mediated sharpening can be explained from the standpoint of an energy land-

scape view (Fig 3B) of cell fate regulation [61, 62]. This theory posits that cell fates can be

thought of as, loosely speaking, minima (or wells) in an underlying energy landscape. Each val-

ley in the landscape is associated with a particular fate and thus multiple wells indicate multi-

potency. However, cells do not prefer all of these local energy minima equally (i.e. they differ

in stability). Different depths are associated with relative stability and the greatest minimum is

typically associated with the “correct” fate. In this view, a cell in the wrong fate (based on its

position) simply resides in a different, shallower energy well and stochasticity can drive the cell

to the correct fate. The shallower the minimum, the more likely noise can lead to fate switch-

ing. Thus, cells at a significant distance from the presumptive boundary are quickly driven to

the correct fate in our model by differences in morphogen concentration, narrowing the tran-

sition region. Once it is narrow, however, morphogen differences from cell to cell near the

boundary become small and cells have a nearly equal preference for the two possible states (i.e.

the two fates are represented by wells that have roughly the same depth). This process of course

requires the landscape to have the appropriate structure, which can vary with the state of the

system (represented by parameters). Our sensitivity results however suggest that the qualitative

structure of the underlying landscape does not change dramatically as parameters are changed.

For this reason, plasticity-mediated sharpening is effective at rapidly narrowing a wide tran-

sition region, but is very slow at completing the sharpening process and in many cases fails to

do so. Our results for cell-contact based sorting show the opposite. This mechanism is effective

at sharpening narrow boundaries, but performs poorly for wider transition regions where cells

are intermingled. Thus the two mechanisms have complementary strengths and weaknesses.

When combined however, their strengths synergistically promote sharpening, plasticity nar-

rows the transition region while cell contact based sorting completes the process.

Given that many segmented tissues (e.g. the zebrafish hindbrain) are comprised of more

than two cellular zones, we further investigated the effectiveness of this joint mechanism at

sharpening the boundaries between multiple zones of different cell types. We found that the

two mechanisms have different roles at different boundaries. Specifically, while plasticity-

induced sorting is effective at reducing the width of transition regions at the r4/5 boundary, it

is ineffective at the r3/4 boundary, a result of different morphogen levels placing the system in

a different dynamical regime of the underlying gene regulatory network.

Given the distinct strengths of plasticity versus sorting, plasticity is of most value early in

the sharpening process while the primary value of sorting becomes apparent later in the pro-

cess (though a model where they are jointly active for the entire sharpening time frame is most

effective). We are not aware of quantitative, time-dependent gene expression data here for the

hindbrain, but in the developing mammalian embryo, cell fate decisions have been found to be

gradual with gene expression diverging over the course of hours and multiple cell divisions

[63]. This gradual fate specification (if present here) could have two effects. First, the relative

ease and frequency of stochastically driven cell fate transitions is related to the level of gene

expression distinctiveness (or in other terms, the level of specialization) of the two fates. That

is, the more distinct two cell fates are, the more difficult it becomes to stochastically drive tran-

sitions between them. Second, it is possible that the difference in adhesion / repulsion proper-

ties between multiple cell types is directly related to distinctiveness of those cell types (e.g.
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more distinctive cells exhibit stronger sorting). Combined, these would lead to a scenario

where plasticity would be more active early while sorting would become active at later times.

We note that Calzolari et al. [40] did not observe cell fate transitions during rhombomere for-

mation. However, they focused primarily on stages when actin cables form between segments,

which occurs near the end of the boundary sharpening process when plasticity effects would

be less likely to be observed. Zhang et al [45] on the other hand report co-expression of hoxb1a
and krox20 posterior to the future r4/5 boundary, consistent with cellular plasticity contribut-

ing to sharpening of this rhombomere boundary.

The most direct test of the hypothesis that plasticity and sorting both contribute to this pro-

cess would be to simultaneously track cell positions and gene expressions from the earliest

stage of rhombomere formation. An alternative, more indirect test of how the sharpening pro-

cess occurs would be to track the spatial location of the resulting boundary as a function of

time. If sorting alone is at work, the final location of a sharpened boundary will be near the

center of the transition region. Alternatively, if plasticity plays a major role, that final boundary

will consistently form near one end of the preceding transition region. Thus, these two mecha-

nisms could potentially be distinguished with a smaller number of experimental observations

and without tracking of individual cells.

We make one final note about the potential differences between these mechanisms. It is

reasonable to expect that in addition to forming well-delineated boundaries, developmental

systems should strive to ensure different segmented domains are the appropriate size. For

example, the size of one rhombomere relative to its neighbors should be consistent (e.g. repro-

ducible) across different embryos at the same developmental stage. A sharpening process that

relies solely on sorting (whether it be contact based and / or chemo-repulsion / chemo-attrac-

tion / chemo-taxis based) of cells will have an inherent level of imprecision since the relative

number of cells initially allocated to each of the cell lineages, which is stochastic, determines

the final location of a boundary. A plasticity-based mechanism however provides a built-in

control that could improve precision (see Fig G in S1 Text) since the final location of the

boundary will be primarily determined by the morphogen itself.

While our results provide a general framework for explaining how initially noisy bound-

aries generated by a morphogen sharpen to form distinct segments, they also raise new ques-

tions. How do multiple segments (e.g. the zebrafish hindbrain or the neural tube) refine all

zones jointly? While plasticity is vital to the refinement of noisy boundaries, the dynamics of

morphogen signal transduction and the influence of stochasticity are highly dependent on the

local levels of morphogen, which depend on position. Furthermore, morphogens have a spatial

range of action limited by rates of diffusion, receptor binding, and the fidelity of signal trans-

duction. In light of this, it is important to ask, can the same mechanisms and machinery be

used to sharpen [1] unwanted transition regions. In large tissues beyond the length scales over

which morphogens can act, other signals must be involved. But what about on smaller scales

(e.g. multiple rhombomeres composed of only tens of cells)? Addressing these questions and

gaining a more comprehensive understanding of how more complex systems organize will

require moving beyond this setting and considering the presence of multiple morphogens (e.g.

RA and Fgf in the hindbrain for example [26, 64–67]), how they function in parallel, and how

they potentially interact in signaling pathways.

Methods

The modeling framework was based on a hybrid approach incorporating both noise-driven

plasticity and sorting-driven mechanics. Plasticity was modeled by stochastic PDEs for the

morphogens and several ODEs for the interaction among gene expression and the morphogen
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evaluated in each cell [45]. The equations were solved using an explicit finite difference

scheme. The mechanics were modeled using SCEM, with forces included to describe both cell-

cell adhesion and repulsion. For model and simulation details, please see supplementary mate-

rial S1 Text.

Supporting Information

S1 Text. Supplementary information including modeling details, parameter values and

additional modeling results are presented in the supplementary material S1 Text.

(PDF)

S1 Movie. Performance of the mechanical cell-sorting model including both adhesion and

repulsion (Model S). Fig 2A bottom are snapshots from this video at T = 11.03 and 12.7 hpf.

(MP4)

S2 Movie. Performance of the mechanical cell-sorting model including adhesion only

(Model S). Fig 2A top are snapshots from this video at T = 11.03 and 12.7 hpf.

(MP4)

S3 Movie. Performance of the mechanical cell-sorting model including repulsion only

(Model S). Fig 2A middle are snapshots from this video at T = 11.03 and 12.7 hpf.

(MP4)

S4 Movie. Performance of the mechanical cell-sorting model with wide initial transition

region (Model S). Both adhesion and repulsion are included. Fig 2D are snapshots from this

video at T = 10.7, 11.03 and 12.7 hpf.

(MP4)

S5 Movie. Performance of the plasticity model with medium noise (Model P). Fig 3B and

3D are snapshots from this video at T = 10.7, 10.83, 11.1 and 12.7 hpf.

(MP4)

S6 Movie. Performance of the combined model (Model SP). Combining mechanical cell

sorting and noise mediated fate transitions is effective at fully sharpening the boundary. Fig 4C

and 4D are snapshots from this video at T = 10.7, 10.83, 11.23 and 12.7 hpf.

(MP4)

S7 Movie. Slowing down gene expression dynamics in plasticity impairs cell fate transi-

tions. For more details, please refer to S1 Text section S2.

(MP4)

S8 Movie. Representative simulation showing formation of three zones, indicative of

rhombomeres r3-5 in the developing zebra_sh hindbrain. Fig 7A and 7B are snapshots from

this video at T = 10.7 and 13.37 hpf.

(MP4)
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