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Abstract We developed a generalized linear model of
QTL mapping for discrete traits in line crossing experi-
ments. Parameter estimation was achieved using two
different algorithms, a mixture model-based EM (expec-
tation—maximization) algorithm and a GEE (generalized
estimating equation) algorithm under a heterogeneous
residual variance model. The methods were developed
using ordinal data, binary data, binomial data and Poisson
data as examples. Applications of the methods to simulated
as well as real data are presented. The two different algo-
rithms were compared in the data analyses. In most situa-
tions, the two algorithms were indistinguishable, but when
large QTL are located in large marker intervals, the mix-
ture model-based EM algorithm can fail to converge to the
correct solutions. Both algorithms were coded in C++4 and
interfaced with SAS as a user-defined SAS procedure
called PROC QTL.

Introduction

Interval mapping (Lander and Botstein 1989) is the most
commonly used method for mapping quantitative trait loci
(QTL). The method usually applies to quantitative traits,
i.e., traits that have a continuous distribution. In agricul-
tural crops, the phenotypes of some traits are measured as
discrete variables. Ordinal traits, e.g., disease resistance in
plants and animals, are typical examples of such discrete
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traits. These traits are usually modeled by a multinomial
distribution. Traits measured as counts, such as liter size in
pigs and tiller number in rice, are usually modeled by the
Poisson distribution. Binomial traits are also common in
agricultural experiments, such as the ratio of germinated
seeds to the total number of seeds planted. These traits are
not normally distributed. Although some transformations,
such us the log transformation or the more general Box—
Cox transformation (Box and Cox 1964), can be used to
improve the normality of the traits, not all traits can be
transformed. For example, a binary trait has no appropriate
transformation to make it normal.

The generalized linear model approach (McCullagh and
Nelder 1989; Wedderburn 1974) is the most appropriate
method for analyzing traits with non-normal distribution
and it has been widely used in statistics for parameter
estimation. Generalized linear model takes advantage of all
theory and methods developed in the usual linear model
methodology (Searle 1997). It has been applied to QTL
mapping for some special traits, e.g., binary traits (Deng
et al. 2006; Xu and Atchley 1996; Yi and Xu 1999a, b,
2000), ordinal traits (Hackett and Weller 1995; Rao and Xu
1998) and Poisson traits (Cui et al. 2006; Cui and Yang
2009). Depending on the special characteristics of the
traits, distribution-specific generalized linear models have
been developed for these traits. These methods are not
sufficiently general to extend to all traits that can be
modeled by the generalized linear model. For example, the
EM algorithm developed by Xu et al. (2003, 2005) only
applies to binary and ordinal traits. They treated both the
marker genotypes and the latent variable as missing values.
Although parameter estimation under the EM algorithm is
simple, the information matrix of the estimated parameters
is difficult to calculate. A more comprehensive analysis of
the generalized linear model applied to QTL mapping is
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the seminal paper by Lange and Whittaker (2001). They
adopted the generalized estimating equations (GEE)
approach to analyze multiple traits with arbitrary combi-
nation of continuous and discrete trait components. The
method replaces the unobserved QTL genotypes by the
conditional expectations of the genotype indicator variable
given flanking marker information. The uncertainties of the
genotype indicator variables are ignored. In addition,
detailed formulas for the partial derivatives of the expec-
tation of the data with respect to the parameters are not
given.

When there are no missing values, commercial software
packages are available to estimate parameters under a wide
range of distribution of the traits, e.g., SAS (SAS Institute
1999) and GENESTAT (PHOEBE Biostatistics Group
2007, http://www.genestat.org). Although these programs
may handle missing values using the imputation algorithm
or the EM algorithm (Dempster et al. 1977), the missing
patterns handled by these commercial programs are usually
different from that of QTL mapping. In interval mapping,
genotypes are missing for every individual at a putative
QTL position unless the QTL overlaps with a fully infor-
mative marker. Special mixture models are required in
QTL mapping (Lander and Botstein 1989). Hackett and
Weller (1995) and Xu and Atchley (1996) were the first
group of people to use the EM algorithm to estimate QTL
parameters for ordinal traits, but they did not investigate
the variance—covariance matrix of the estimated QTL
effects. Hackett and Weller (1995) took advantage of an
existing commercial software (GENESTAT) for general-
ized linear model analysis by iteratively calling the sub-
routine for generalized linear model with non-missing
genotypes and calculating the weight (posterior probability
of QTL genotype). The attractive property of that method
is that users do not have to write their own code for the
maximization step, which is conducted by the commercial
software. They only incorporated the expectation step into
the existing program for parameter updating. As a result,
no variance—covariance matrix of the estimated parameters
was provided. Xu et al. (2003) developed an EM algorithm
for binary data and used the Monte Carlo simulation
approach to obtain the Louis’ (1982) information matrix.
The variance—covariance matrix of the estimated parame-
ters can be approximated by the inverse of the information
matrix. This method is computationally intensive due to the
use of Monte Carlo simulation for approximate integration.

In the statistics literature, generalized linear model with
missing covariates is often handled with the EM algorithm
(Horton and Laird 1998). However, other methods are also
available, as summarized by Ibrahim et al. (2005), who
reviewed four general approaches: maximum likelihood
method implemented via the EM algorithm by the method
of weights (Horton and Laird 1998), multiple imputation
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(Rubin 1987), fully Bayesian (Ibrahim et al. 2002) and
weighted estimation equation (Robins and Ritov 2001).
Ibrahim et al. (2005) concluded that the most accurate
method is the fully Bayesian method, although the method
is associated with a high cost in terms of computing time.
The second best method is the EM algorithm via the
method of weights. Application of this method to interval
mapping has not been analyzed.

The mixture model-based maximum likelihood estima-
tion of parameters has a slow convergence speed. The
computational intensity is high within each round of the
iteration. Therefore, an approximate method that improves
the computational efficacy with little loss in power may be
desirable. Xu (1998) developed a weighted least square
approximation for QTL mapping of normally distrib-
uted traits. Recently, Han and Xu (2008) made a further
improvement of the weighted least square estimation. Their
idea can be applied to the generalized linear model. There-
fore, we will present an approximate method to improve the
computational efficiency over the mixture model maximum
likelihood method.

Model and methods
Generalized linear model

We will use ordinal trait QTL mapping as an example to
introduce the generalized linear model. Extension to other
traits will be given later. Suppose that a disease phenotype
of individual j(j=1,...,n) is measured by an ordinal
variable denoted by 7T; = 1,...,p + 1, where p + 1 is the
total number of disease classes and n is the sample size. Let
Y;={Yy}, Vk=1,...,p+1,bea (p+1) x 1 vector to
indicate the disease status of individual j. The kth element
of Y; is defined as

1 if Tj=k
ij:{o !

it T £k (1)
Note that the phenotype of the ordinal trait has been
formulated as a multivariate Bernoulli variable (or
multinomial variable with sample size one). Different
link functions can be used to describe the relationship of
the observed ordinal phenotype and the genetic effects of
QTL. The most commonly used link functions are the logit
and probit link functions (McCullagh and Nelder 1989).
Here, we described the probit link function and leave the
logit link function in Appendix D for interested readers.
Under the probit link function, the expectation of Yy is

e =E(Yy) =@ (o +X;p+2Z7) =@ (w1 +XiB+27)  (2)

where oy (oc(): —ooand a4 :+oo) is the intercept, f§ is a
q x 1 vector for some systematic effects (not related to the


http://www.genestat.org

Theor Appl Genet (2010) 121:47-63

49

effects of QTL), and y is an r x 1 vector for the effects of a
quantitative trait locus. The symbol @(-) is the standardized
cumulative normal function. The design matrix X; is
assumed to be known, but Z; may not be fully observed
because it is determined by the genotype of individual j for
the locus of interest. We will defer the definition of Z; to
the next section. Because the link function is probit, this
type of analysis is called probit analysis. Let u; = {1} be
a (p+1)x1 vector. The expectation for vector Y; is
E(Y;)=y; and the variance-covariance matrix of Y; is

Vi = var(Y,-) = diag(ﬂj) - NjﬂjT 3)

The method to be developed requires the inverse of matrix
V;. However, V; is not of full rank (see Appendix C for
proof). We can use a generalized inverse of Vj, such as
V= diag™! (#4;), in place of V! (see Appendix C for the
generalized inverse). The weight matrix is

W; = diag™" (1) (4)

The parameter vector is denoted by 0 = {a, 8, y} with a
dimensionality of (p + ¢ + r) x 1. Once ;and W; and are
defined, the reweighted least square method of Wedderburn
(1974) can be used to estimate the parameters.

Mixture model maximum likelihood estimation

When the design matrix Z; is fully observed, the maximum
likelihood solution of parameters can be solved in a
straightforward manner using the reweighted least squares
approach (Wedderburn 1974). For the paper to be self
contained, the iteration equation and the information
matrix in the situation of no missing value is briefly
described. The Newton—Raphson iteration is

0+ = 9 4 AP (5)
where

-1
AO =

fﬁ#%@—wﬂ (6)

n
T
>_DWiD;
j=1

is the iteratively reweighted least squares formula for
parameter updating (increment of the parameter from
iteration ¢ to t + 1). Matrix D; is the partial derivative
matrix of y; with respect to 0,
ou ou: Oy,

D=5 5 & ™)
with a dimensionality of (p+ 1) x (p + g+ r). Once the
iteration process converges, the information matrix is
automatically given, as it is the coefficient matrix in the last
step of the iteration (Wedderburn 1974),

1(0) = zn:DjTWij (8)
=1

From this information matrix, the variance—covariance
matrix of estimated parameters is calculated because
the inverse of the information matrix approximately
equals the variance—covariance matrix of the estimated
parameters.

In QTL mapping for ordinal traits, the generalized
linear model in its original form can be applied if one is
interested in individual marker analysis because, at
markers, the genotypes are observed and thus matrix Z; is
known. In interval mapping, however, effects of QTL that
are located between markers should also be estimated. In
this case, the genotypes of QTL are not observed and
must be inferred using flanking marker genotypes. This is
a typical missing value problem. The missing value Z; can
be inferred from linked markers. We now use an F,
population as an example to show how to handle the
missing value of Z;. Let

pi(8) = Pr(Z; = Hy|marker), Vg=1,2,3 )

be the conditional probability of QTL genotype given
marker information, where the marker information can be
either drawn from two flanking markers (interval mapping,
Lander and Botstein 1989) or multiple markers (multipoint
analysis, Jiang and Zeng 1997). For an F, population,
matrix H, is defined as the gth row of matrix H, where

+1 0
H=|0 1 (10)
-1 0

Corresponding to the definition of H, the QTL effect vector
y is defined as y = [a d]" where a and d represents the
additive and dominance effects, respectively. When Z; is
missing, the generalized linear model becomes a
generalized linear mixture model. Under the mixture
model approach, we need to define the genotype-specific
expectation, the genotype-specific variance matrix and the
genotype-specific derivatives for each individual. Let

i (g) = E(Yxlg)
= O(oy + X; + Hyy) — (o1 + X + Hyy)
(11)

be the genotype-specific expectation of Y}, when j takes the
gth genotype for g = 1, 2, 3. The corresponding genotype
specific weight matrix is

W;(g) = diag™" [11:(g)] (12)

Let D(g) be the genotype-specific partial derivatives of the
expectation with respect to the parameters,

o (9 o
Di(s) = %P P | (13)

The closed form of matrix Dj(g) is given in Appendix A.
The increment of parameters in the iteration is
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(14)
<> p}(g)Df(g)VVj(g)(lG—uj(g))]

where p;(g) is the posterior probability of QTL genotype
after the phenotype information is incorporated and is
given by

pi(g)r(Yjlg)

() — 15
P = @ re) 19)
where
p+1
p(Ylg) = H i ( "1(g) (16)

is the multinomial probability. Derivation of the EM
algorithm (Eq. 14) is given in Appendix B.

Unfortunately, the information matrix under the EM
algorithm is not identical to the coefficient matrix of the
reweighted least squares equation; rather, it has to be
adjusted for the information loss due to the uncertainty of
QTL genotypes. The Louis’ (1982) adjustment of the
information matrix is

ZE (012)] Zvar[ (02) } (17)
The first term in the above expression (Eq. 17) is
B;(0/2))] Zp, W;(2)D;(g) (18)

which is the expected value of the negative Hessian matrix.
The second term of Eq. (17) is

ZPJ

T

var[S;(0|Z)] S;(01g) — S;(0)] [S;(0lg) — S;(0)]

(19)
which is the variance matrix of the score vector, where
Si(6lg) = D} (&)W;(e)(Y; — 1(2)) (20)

and

Zp, S;(6]g) (21)

Approximation under the heterogeneous variance
model

The EM implemented mixture model approach described

above is computationally intensive due to (1) the mixture
model itself and (2) the extra step in calculating the
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information matrix of parameters. Here, we introduce an
approximate method that replaces the mixture model by a
heterogeneous residual variance model. Let

3
= ij(g)Hg

be the conditional
information and

(22)
expectation of Z; given marker

3

%) =var(2) = Y i) (Hs

g=1

T
—U) (H = Uj) (23)
be the corresponding conditional variance—covariance
matrix of Z;. If Z; were observed, we would have

i = E(Yi) = ®(ox + X;B+ Zy) — (o1 + X;8+ Z)
(24)

When Z; is missing, we can replace Z; by U; and adjust for
the over dispersion caused by the substitution,

Hi = E(Yie)
(D{ (o + X; B + U,y)} () Llf(ak_l +X;B + Uyy)
| (25)
where

af =y"Zy+1 (26)
is the heterogeneous dispersion (see Xu 1998).

We are now in a position to explain the over dispersion.
It makes more sense to introduce the liability model before
we explain the overdispersion. Let

li = XiB+Zy + ¢ (27)

be the liability for individual j, where ¢ ~N(0,0?) is the
residual error of the liability. The liability is a latent
variable that controls the observed ordinal phenotype
through a series of thresholds o = [ocl, . oc,,] with
T =kif gy <[j<oy. The residual error variance is not
estlmable and thus we set 6> = 1. When Z; is replaced by
Uj;, the variance of the liability becomes

2

0 = var(l) =y Var(Zj)y + Var(sj) = yTij +1 (28)

Because aj > 1, the model is called overdispersion. Since
o7 varies from one individual to another, the model is also
called the heterogeneous residual variance model. To
adjust for the heterogeneous overdispersion, we replace
o +X;p + Uy by ai/(ock + X+ ij) This adjustment
serves as a way to standardize the liability so that the
adjusted liability has a mean Uil(ock + X+ UJ/) and a unity
variance.

Unlike the mixture model, the expectation y; is no
longer a function of g. Similarly, the weight matrix is
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W; = diag™ (1) (29)

This modification leads to a change in matrix D;, the partial
derivatives of p; with respect to the parameters, which is given
in Appendix A. The same iteration equation given in Eq. (6) is
used here for the heterogeneous residual variance model. The
attractive property of this approximation is that as the infor-
mation matrix is given in Eq. (8) no adjustment is required
because EM algorithm is not used here for the approximation.

Extension to other traits

Ordinal traits are the most commonly observed discrete
traits in QTL mapping experiments. Other discrete traits
also commonly seen in QTL mapping experiments are
binary traits, binomial traits and Poisson traits. This section
is dedicated to these commonly observed discrete traits. The
mixture model algorithm and the heterogeneous variance
approximation apply to all traits as long as the traits can be
analyzed under the generalized linear model. To apply the
algorithms to any specific trait, we only need to find: (1) the
distribution of the trait (probability density of the data
point), (2) the expectation of the data point, (3) the weight
(inverse of the variance) of the data point and (4) the partial
derivative of the expectation with respect to the parameters.
We now introduce these discrete traits and leave the details
of the formulas in Appendix A for interested readers.

Binary traits

Binary traits can be treated as a special case of ordinal
traits with p = 1. Without any modification, the method
developed for ordinal traits can be applied to binary traits
with ¥; = [Y-l sz]T defined as a 2 x 1 vector. Each of the
two components is defined as a binary variable and the two
components are perfectly correlated. Here, we simplify the
problem by defining Y; as a univariate binary trait. This
univariate treatment not only saves computing time but
also simplifies the notation. We now use the univariate
definition to define the binary phenotype,

Y, = { 1 for presence of the trait (30)

0 for absence of the trait

The expectation and variance of the phenotype given the
parameter value are

E(Y)) = w; = ®(X;B + Z) (31)
and

var(Yy) = Vj = (1 — ) (32)
respectively. The probability distribution is

(1) =w' (1-p)"" (33)

Details for the mixture model and the heterogeneous
variance model are given in Appendix A.

Binomial traits

Let n; be the number of trials observed from individual j
and m; be the number of events happened to individual ;.
The binomial phenotype for individual j is defined as Y; =
m; / n; (expressed as a fraction so that 0 < ¥; < 1). Under
the probit model, the expectation and the variance of the
phenotype are

E(Y)) = gy = ®(X6 + Z) (34)
and
var(1;) = V; = Ly (1 — ) (35)

respectively. The weight is
ny

Wy=vil=— (36)
(- )
The probability distribution is
n;)! nY; n(1—;
pl) = ) (37)

Details regarding the partial derivatives of the expectation
with respect to the parameters both in the mixture model and
in the heterogeneous variance model are given in Appendix A.

Poisson traits
Let ¥; =0, 1,...,00 be the phenotype of a Poisson trait.

The expectation and the variance of the phenotype are
equivalent, E(Y;) = var(Y;) = w;,, where

W =V, = exp(X;f + Z) (38)

The weight is

W=V (39)
exp(X;B + Z;)

The probability density is
Y

P(K)==Z%$Texp(—¢9) (40)

Details regarding the partial derivatives of the expectation
with respect to the parameters both in the mixture model and
in the heterogeneous variance model are given in Appendix A.

Hypothesis tests

Two different hypothesis tests are provided, the likelihood
ratio test and the Wald test (1949). The likelihood ratio test
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requires evaluation of different likelihood functions (full
model and reduced model). The Wald test is much simpler
than the likelihood ratio test statistic because it requires
only var(f) ~1-'(0) and the estimated parameters to
form the test statistics. Let V, = var(j) be the subset of

matrix var(0), the Wald test statistics for the null hypoth-
esis, Hy : 7y =0, is

Wald = 5"V."5 (41)

Recall that y = [a d]|” represents both the additive and
dominance effects. Under the null hypothesis, the Wald test
follows approximately the Chi-square distribution with two
degrees of freedom. Therefore, the Wald test is comparable
to the likelihood ratio test statistics (McCullagh and Nelder
1989). When testing a single parameter (either a or d), the
Wald test statistics is equivalent to the Chi-square test with
one degree of freedom. Therefore, some people used the
Wald test and the Chi-square test interchangeably (e.g.,
Han and Xu 2008).

Applications
Binary traits

This example demonstrates the application of the
generalized linear model to QTL mapping for binary traits
in wheat. The experiment was conducted by Dou et al.
(2009) who made the data available to us for this analysis.
A female sterile line XND126 and an elite cultivar Ga-
ocheng 8901 with normal fertility were crossed for genetic
analysis of female sterility measured as a binary trait. The
parents and their F; and F, progeny were planted at Huaian
experimental station in China for the 2006-2007 growing
season under the normal autumn sowing condition. The
mapping population was an F, family consisting of 234
individual plants. The binary trait was the presence of seed
setting of the female plants. About five-sixth of the F,
progeny had seeded splikelets (phenotype 1) and the
remaining one-sixth plants did not have seeded splikelet
(phenotype 0). This is a typical binary trait regarding the
presence of seeds. Among the plants that had seeded
spikelets, the number of seeded spikelets varied and can be
treated as a binomial trait for further QTL analysis (see
Sect. “Binomial traits” for binomial trait QTL mapping).
A total of 28 SSR markers were used in this experiment.
These markers covered 5 chromosomes of the wheat gen-
ome with an average genome marker density of 15.5 cM
per marker interval. The 5 chromosomes are only part of
the wheat genome.

These chromosomes were scanned for QTL of the bin-
ary trait using both the mixture model and the heteroge-
neous variance model. The LOD profiles of the two
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methods are shown in Fig. 1. Two QTL on chromosome 2
and one QTL on chromosome 5 have been detected with
high LOD score. The chromosome-wise empirical thresh-
old values are lower than LOD 3. With the chromosome-
wise threshold values, we detected one more QTL on
chromosome 1. The estimated QTL parameters are listed in
Table 1. The two models (mixture model and heteroge-
neous variance model) produced very similar results.

Binomial traits

The same experiment conducted by Dou et al. (2009) also
recorded the number of seeded spikelets and the total
number spikelets for each plant. The ratio of the two
records is a binomial trait. The same mapping population
and the same linkage map were used also for the binomial
trait QTL mapping. Again, both the mixture model and the
heterogeneous variance model were used for the binomial
trait analysis. Unfortunately, the mixture model failed to
generate meaningful result. Therefore, the result of the
mixture model analysis was not reported. In chromosome
regions, where there were no QTL, the mixture model
generated result similar to that of the heterogeneous vari-
ance model. For regions with large QTL, the mixture
model approach failed to converge. The possible reason for
the failure will be presented in Sect. “Discussion”. We
now focus on the result of the heterogeneous variance
model. The LOD profile is shown in Fig. 2. First, the
pattern of the LOD profile is similar to that of the binary
trait analysis. There is strong evidence that there is one
QTL on chromosome 1 and two QTL on chromosome 2.
The LOD score here for the binomial trait is not in the
same scale as that of the binary trait. The highest LOD is

a {5 ]

1 2 3 4 5
Chromosome

Fig. 1 The LOD profiles for the female sterility (binary) trait of
wheat. a The upper panel shows the LOD profile for the heteroge-
neous variance model; b the lower panel shows the LOD profile for
the mixture model. The chromosomes are separated by the vertical
gray reference lines
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Table 1 The estimated QTL parameters of the wheat female sterility (binary) trait

Chromosome Position (cM) Support interval LOD score Critical value Effect
Heterogeneous
1 11.88 0.00-38.13 1.94 1.43 0.4489 (3.1510E-2)
2 13.85 4.45-19.15 8.12 1.67 1.1145 (4.1370E-2)
2 28.71 25.60-32.61 13.54 1.67 1.3577 (4.5660E-2)
5 43.15 41.75-48.94 7.52 2.10 0.9414 (3.2080E-2)
Mixture
1 8.91 0.00-40.12 1.80 1.41 0.4375 (2.5957E-2)
2 14.81 11.44-18.18 8.68 1.72 1.1339 (4.4504E-2)
2 28.71 26.51-30.01 13.80 1.72 1.3674 (4.6637E-2)
5 44.12 41.75-50.38 7.53 2.10 1.0129 (4.2112E-2)

The empirical chromosome-wise critical values are also given. The standard errors of estimated QTL effects are given in parentheses

about 1,000, almost a hundred times more than the binary
trait. This inflation of the LOD reflects the increased power
of the binomial data analysis than the binary data analysis.
Regions of other chromosomes also show LOD score
higher than the empirical chromosome-wise threshold
values. These include chromosomes four and five. The
estimated QTL parameters are listed in Table 2.

Poisson traits

This example demonstrates the application of the gen-
eralized linear model QTL mapping for traits with
a Poisson distribution. The data were provided by
Dr. Ganggiang Cao at Zengzhou University, China. The
result has not been published in any form. The mapping
population was a double haploid family of the rice initiated
from the cross between IR64 and Azucena. The trait ana-
lyzed was the tiller number with an assumed Poisson dis-
tribution. The sample size was n = 110 and the number of
markers was 175. These markers covered 12 chromosomes
(2,031 cM in total length) of the rice genome with an
average marker interval of 11.6 cM. This dataset was dif-
ferent from that used by Cui et al. (2006). Both experi-
ments were initialized from the same line cross with the
same linkage map, but the experiments were conducted in
different times and different locations by different inves-
tigators. Interval mappings under both the mixture model
and the heterogeneous variance model were applied to the
data. The LOD score profiles obtained from the two dif-
ferent methods are depicted in Fig. 3. The LOD score from
the heterogeneous variance model is slightly higher than
that of the mixture model, but the difference is almost
negligible. If LOD = 3 was used as the criterion for sig-
nificance, two QTL would have been detected on chro-
mosomes 1 and 4. We used the quick method of Piepho
(2001) to calculate the empirical threshold for each chro-
mosome and used these thresholds to declare significance

300 -

QO 200
(e}
-

100+

04

1 2 3 4 5
Chromosome

Fig. 2 The LOD score profile of the female sterility (binomial) trait
in wheat under the heterogeneous variance model. The mixture model
failed to converge to the correct solution and thus are not presented.
The chromosomes are separated by the vertical gray reference lines

of QTL. The LOD thresholds are substantially less than
LOD 3. Using the chromosome-specific thresholds, we
detected one more QTL at the end of chromosome 12. The
estimated QTL parameters are listed in Table 3. The sup-
porting interval for each estimated QTL position was
determined by the one-LOD drop approach (Ooijen 1992).
The two methods differ slightly in the estimated QTL
positions and the supporting intervals. The supporting
intervals of QTL positions for the heterogeneous variance
model were consistently shorter than those of the mixture
model. Overall, the difference between the two methods is
very small and can be safely ignored for this data analysis.

Simulation studies
Binomial traits

This simulation experiment was to demonstrate the dif-
ference between the mixture model and the heterogeneous
variance model for binomial trait QTL mapping. For the
female sterility trait of wheat, the mixture model approach
failed to converge for the binomial data analysis but
succeeded for the binary data. Binomial data were sup-
posed to be more informative than the binary data, but
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Table 2 Estimated QTL parameters for the wheat female sterility (binomial) trait from the heterogeneous variance model analysis

Chromosome Position Support interval LOD score Critical value Effect
(cM)

1 15.00 9.50-20.50 48.40 2.11 0.4803 (1.040E-03)
1 74.53 68.53-75.89 18.19 2.11 0.2401 (7.063E-04)
2 14.96 14.46-15.46 201.45 2.31 0.8922 (1.033E-03)
2 28.97 28.47-29.47 303.53 2.31 1.0484 (1.030E-03)
4 20.15 18.42-20.15 14.02 1.53 —0.2117 (6.890E-04)
5 30.31 27.50-34.81 4.03 2.27 —0.1203 (7.746E-04)

The empirical chromosome-wise critical values are also given. The standard errors of estimated QTL effects are provide in parentheses

more information turned out to do more harm than good to
the mixture model, a typical problem of inconsistency has
occurred. The problem happened in the calculation of the
posterior probability of QTL genotype. The binomial
density is equivalent to the product of multiple independent
Bernoulli trials. This density is extremely sensitive to the
change of genotype from one form to another, especially
when the number of trials is large. The super sensitiveness
of binomial density to the QTL genotype change led to
degeneracy of the posterior probability of QTL genotype.
We conducted a small-scale simulation experiment to
demonstrate the problem of the mixture model. We simu-
lated a QTL at position 55 cM of a chromosome with
100 cM in length. Five markers were placed evenly on the
chromosome with 20 cM per marker interval. The sample
size was 500 for an F, population. The binomial trait
phenotype was simulated for each plant with a constant
number of trials for all plants. We simulated the following
number of trials in four experiments: 20, 40, 80 and 160.
The LOD score profiles obtained from the mixture model
and the heterogeneous variance model are shown in Fig. 4
for all the four experiments. We can see that when the
number of trials were 20 and 40, the LOD profiles of the
two methods are very similar. As the number of trials
increased to 80 and 160, the differences between the two
models are dramatic, with LOD profile of the mixture
model drastically deviated from that of the heterogeneous
variance model when the putative QTL position off the
marker position. The strange leaf-like pattern of the mix-
ture model LOD profile reflects the instability and failure
of the mixture method.

Poisson traits

This simulation study was to evaluate the differences
between the EM implemented mixture model and the
heterogeneous residual variance model of interval mapping
for Poisson traits. The simulation experiments were much
more comprehensive than the previous one. The criteria of
evaluation include the statistical powers, the test statistic
profiles, the estimation errors of QTL parameters, the
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Fig. 3 LOD profiles for the tiller number of rice (Poisson trait) QTL
mapping. a The upper panel shows the LOD profile for the
heterogeneous variance model; b the lower panel shows LOD profile
for the mixture model. The chromosomes are separated by the vertical
gray reference lines

biases of the estimation and the computational times. The
factors considered are the marker density (A), size of the
QTL (B), mean of the trait (C), the sample size (D) and the
QTL position (E).

A single chromosome with 100 cM in length was sim-
ulated for an F, population derived from the cross of two
inbred lines. The chromosome was covered evenly by the
following number of markers: 101, 51, 21, 11 and 6. These
correspond to 1, 2, 5, 10 and 20 cM per marker interval.
The size of the QTL (additive effect a) was investigated at
the following five levels: 0.142, 0.324, 0.471, 0.707 and
0.926. These five levels of the additive effects correspond
to the following levels of the heritability (4%): 0.01, 0.05,
0.10, 0.20 and 0.30. For simplicity, dominance effect was
not simulated and also not included in the model for data
analysis. The mean of the Poisson trait was determined by
the non-QTL effect f (intercept, a scalar because no other
non-QTL effects were simulated). The five levels of the
intercept (ff) were —1.0, —0.5, 0.0, 0.5 and 1.0. The sample
size was investigated at the following five levels: 100, 200,
300, 500 and 600. The simulated QTL was located at the
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Table 3 Estimated QTL parameters using the mixture model and the heterogeneous variance model for the tiller number (Poisson) trait QTL

mapping experiment

Chromosome Position (cM) Support interval LOD score Critical value Effect
Heterogeneous
1 196.41 183.09-209.72 4.569 1.975 0.2014 (1.848E-3)
4 115.16 96.82-130.45 3.290 1.878 0.1570 (1.553E-3)
12 106.62 89.88-113.58 1.791 1.663 0.1032 (1.271E-3)
Mixture
1 194.44 173.48-216.30 3.543 1.933 0.1549 (1.419 E-3)
4 109.23 94.84-130.45 2.955 1.841 0.1350 (1.345E-3)
12 104.63 88.93-113.58 1.715203 1.656 0.0979 (1.207E-3)

The empirical chromosome-wise critical values are also given. The standard errors of estimated QTL effects are given in parentheses
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Fig. 4 Comparison of the LOD profiles for the mixture model (dotted
line) and the heterogeneous variance model (solid line) for a binomial
trait of a simulation experiment. The sample size was 500 and the
chromosome size was 100 cM long covered by 6 evenly distributed
markers (20 cM per marker interval). The binomial trait is measured
as the ratio of the number of events to the number of trails. a The
number of trials per plant was 20; b the number of trials per plant was
40; ¢ the number of trials per plant was 80; d the number of trials per
plant was 160

following different positions: 10, 25, 50, 75 and 90 cM.
The true QTL parameter values and the experimental
parameters for this comprehensive simulation experiment
are summarized in Table 4.

The total number of combinations for all the five
factors is 5° = 3,125. If each combination was simulated
1,000 times, the work load would be very intensive.
Therefore, we decided to evaluate a small subset of the
treatment combinations to draw conclusions. We chose
sample size n = 300, marker interval 5 cM, QTL size
a = 0.471 (h* = 0.10), non-QTL effect # = 0.0 and QTL
position at 50 cM as the basic experimental setup (central
level for each of the five factors). Under the basic setup
of the experiment, we then evaluated one factor at a time
by expanding to all the five levels for the factor of
interest with the remaining factors held at the basic levels.
This reduced the total number of experiments from 3,125

Table 4 Annotation of the simulation experiments

Label Treatment Level

1 2 3 4 5
A Marker interval (cM) 1 2 5 10 20
B Heritability (%) 1 5 10 20 30
C Intercept —-1.0 -05 0 0.5 1.0
D Sample size 100 200 300 500 600
E QTL position 10 25 50 75 90

to 5 x 44+ 1 =21. Each of the 21 treatment combina-
tions was replicated 1,000 times to examine the empirical
statistical powers and estimation errors of parameters for
comparisons of the two models. The critical value for
QTL detection was determined by simulating additional
1,000 samples under the null QTL model (¢ = 0.0) for
each of the treatment combinations. The empirical power
for each experiment was the proportion of the samples in
which the QTL was detected out of the 1,000 replicates.

Before we discuss the biases and errors of the estimated
QTL parameters, let us look at Fig. 5 which shows the
average LOD test statistic profiles from the 1,000 replicates
for all the experiments. The solid and dotted curves rep-
resent the LOD score profiles for the heterogeneous vari-
ance model and the mixture model, respectively. The
straight horizontal lines are the critical values used to
declare QTL significance for power studies. These critical
values were drawn from 1,000 additional simulations under
the null model (a = 0). Figure 5 provides a rich source of
information regarding the behaviors of the two models. We
only highlight a few important points here. First, at marker
positions, the LOD scores for the heterogeneous variance
model and the mixture model are identical, as expected, but
off the markers the mixture model consistently produced
higher LOD scores than the heterogeneous variance model.
The higher LOD scores of the mixture model did not
translate into higher powers because the critical values for
the mixture model were also higher than the heterogeneous
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Fig. 5 Average LOD score profiles of the simulation experiments of
QTL mapping for a Poisson trait. The solid curve represents the
average LOD score profile of the heterogeneous variance model while
the dotted line represents the average LOD score profile of the
mixture model. The solid and dotted horizontal lines denote the
empirical critical values under a Type I error of 0.05 used to declare
the significance of the QTL for the heterogeneous variance model and

variance model. Second, the leaf-like patterns of the LOD
score profiles of the mixture model became more severe
when the marker interval was increased. This reflected an
intrinsic flaw of the mixture model. In contrast, the heter-
ogeneous variance model produced much more smoothed
LOD profiles.

We now compare the empirical statistical powers for the
two models (see the top panels in Fig. 6). The solid and
open symbols represent the powers for the heterogeneous
variance model and the mixture model, respectively. In all
cases, the heterogeneous variance model had a slightly
higher power than the mixture model, although the
difference was almost negligible. Some factors had large
effects on the powers and others had small effects on the
powers. In general, the power declined as the marker
interval increased. Sample size and the size of QTL are
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the mixture model, respectively. Labels A, B, C, D and E represent
five different factors (treatments) that affect results of QTL mapping.
These factors are marker density (a), QTL size measured in
heritability (b), intercept (c), sample size (d) and QTL position (e).
Numbers 1, 2, 3, 4 and 5 stand for five levels within each factor.
Detailed information about the factors and levels within each factor
can be found in Table 4

most influencing factors on the powers. Intercept and
position of the true QTL had little influence on the powers.

Let us turn into the panels in the second row of Fig. 6 to
examine the factors that affect the estimated QTL positions.
The solid and open symbols indicate the average estimated
QTL positions for the two models obtained from the 1,000
replications. The vertical bars represent the standard devia-
tions of the estimated QTL position calculated from the
1,000 replicated experiments. The red horizontal lines indi-
cate the true positions of the simulated QTL. Both models are
unbiased and the standard deviations of the estimated posi-
tions are very similar for the two models. The size of the QTL
and the sample size had the largest influence on the accuracy
of the estimated QTL position.

Panels of the third row of Fig. 6 show the average
estimated intercepts and the standard deviations obtained
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from the 1,000 replicated simulations. The two models had
very similar estimated intercepts, but both models were
biased upwardly.

The panels at the bottom of Fig. 6 show the results of
the estimated QTL effect (a) for the two models. The
heterogeneous model was unbiased but the mixture model
was consistently biased upwardly. The bias for the mixture
model was more serious as the marker interval increased.

Overall, the heterogeneous variance model performed
consistently better than the mixture model. This observa-
tion was not expected. Our original purpose of proposing
the heterogeneous variance model was to improve the
computational efficiency. We did not anticipate that the
mixture model was not consistent and performed poorly.
The simulation experiments did show that the heteroge-
neous variance model took, on average, about one-third of
the computing time of the mixture model. To our surprise,
the heterogeneous variance model outperformed the mix-
ture model in all cases considered in the experiments.

Discussion

The most commonly used algorithm for missing values in
generalized linear model is the EM algorithm (Horton and
Laird 1998). We extended the EM algorithm to interval
mapping, where the independent variable (genotype indi-
cator variable) is missing for all individuals. We also

T T T T
B C D E
Treatment

developed a heterogeneous variance model to approximate
the mixture model. Both the binary data and the Poisson
data analyses showed that the two methods generated
similar results, but the heterogeneous variance model is
computationally faster than the mixture model-based EM
algorithm. To our surprise, the mixture model approach is
not always better than the heterogeneous variance model in
terms of better estimation of QTL parameters. The bino-
mial data analysis showed that the mixture model approach
failed to converge to the correct values for some marker
intervals while the heterogeneous variance model worked
very well. The failure is due to several possible reasons:
(1) low information content for large marker intervals,
(2) large QTL effects and (3) inconsistency of the EM
algorithm. For the first reason, a large marker interval
means that QTL position in the middle of the interval has
little information regarding the genotype of the putative
QTL. The posterior probability of QTL genotype is largely
determined by the data and the current parameter values. In
the end, the posterior probabilities become degenerated
(probability equals unity for one genotype and zero for all
other genotypes) for all individuals. This phenomenon was
observed only for large intervals. The second reason of the
failure is due to large QTL effects. We noticed that the
failure of the mixture model approach did not happen in
intervals that do not have QTL, even though some of those
intervals are very large. It is the combination of large
interval with large QTL effects that caused the failure. The
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third reason of the failure is due the inconsistency (intrinsic
flaw) of the mixture model. More extensive simulation
experiments using the Poisson data further justified the
heterogeneous variance model for interval mapping.

Most QTL mapping experiments in the future will be
done with a high marker density. In that case, the mixture
model and heterogeneous variance model will have neg-
ligible difference in efficiency, with the latter slightly
more preferable than the former due to its light compu-
tational load. Theory and methods of interval mapping
under the mixture model are well developed both for
normally distributed traits and for discrete traits. Vari-
ance—covariance matrix for the estimated parameters is
also available, but only for normally distributed trait
interval mapping (Kao and Zeng 1997). This research is
the first attempt to develop the covariance matrix of
estimated QTL parameters under the generalized linear
mixture model. With the availability of the variance—
covariance matrix of estimated QTL effects, we have a
choice to perform either the Wald test or the likelihood
ratio test. The two test statistics are asymptotically the
same, with the latter slightly more preferable when the
sample size is small (Frank 2001).

The approximate heterogeneous variance model was
originally developed by one of us for normal trait QTL
mapping (Xu 1998). We demonstrated here that it worked
equally well for the generalized linear model. Simulation
experiments and real data analysis all demonstrated that the
approximation is very close to, and sometimes better than,
the mixture model. The advantage of the approximate
method is the avoidance of mixture model and thus
avoidance of the EM algorithm. As a result, computing the
variance—covariance matrix of the estimated parameters
becomes straightforward, a by-product of the iteration
process. In addition, the heterogeneous variance model
appears to be more robust and stable compared with the
mixture model-based EM algorithm according to our
binomial data analysis and the simulation study.

Both the mixture model maximum likelihood and the
heterogeneous variance approximation have been coded in
an existing QTL mapping program called PROC QTL (Hu
and Xu 2009). This program is a user-defined SAS pro-
cedure. Users need to specify the distribution of the data.
The default distribution is normal. The current version of
PROC QTL can handle binary, binomial, ordinal and
Poisson distributions. More distributions will be added in
the future, depending on the availability of the data. The
program is downloadable from our Web site (http://www.
statgen.ucr.edu).
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Appendix A: partial derivatives

(1) Ordinal data with observed genotypes

Let g =1, 2, 3 index the three genotypes for an F,
population derived from the cross of two inbred lines. The
expectation of Y conditional on the parameters for geno-
type g is
w(8) = E(Yielg)

= O(oy + X;B + Hyy) — O (o1 + X; + Hy)
(42)

T
Define 15(g) = [11(8) #(8), -y (8)] a5 @ (p+
1) x 1 vector for the expectation of ¥;. The D matrix for

genotype g is

0, 0, ou;
Difg) = | % L W] (43)
where
du.
B8) e X84 Hy)
0oy
ou;
8) _ X+ Hy) (44)
aO(k
a:ujk(g)
= l#4£k—1k
60(] Oa v 7é ’
a,u'k(g)
55 =5 [9(ut X+ Hey) = d(ocr + X + Hey)]
(45)
and
.
) BT [ o+ X+ Hir) = (o1 + X8+ Hi)]

(40)

(2) Ordinal data under the heterogeneous variance model
(approximation)
The expectation of Y conditional on parameters is
W =E (Yi)
1 1
~ (D{;(O‘k + X + Uf/)] - @ |:_(O‘k1 +XiB+ Up)
J

(47)

T
Let y; = {,uj] s - - .,yj(pH)} be a (p+ 1) x 1 vector for
the expectation of Y;. The D matrix is defined as
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% =0,V 1#{k—1,k} (5) Poisson data with observed genotypes
Oy The expectation of ¥; given genotype g is
a@%‘k ;d{ (o + X8+ UV) X! w(8) = E(Yjlg) = exp(X;B + Hyy),Vg=1,2,3  (60)
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L Jj 1
=E(Y;) = X; Un 63
(3) Binary data with observed genotypes Hi (¥j) ~ exp [ (Xif + /)} (63)
Let g = 1, 2, 3 index the three genotypes and define the L
. . The D matrix is
genotype-specific expectation of Y; by
ou; Oy
1(8) = E(Yjlg) = OB + Hy) (2 Di=|o %] (64)
The D matrix for genotype g is where
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where ) 1 (65)
Oy _ e #Inlky)
op;(8) T oy o’ o 4§77
o5 X; ¢(X;B + Hyy) (54) :
and
o, Appendix B: derivation of the EM algorithm
) o068 + H s AP :

(4) Binary data under the heterogeneous variance model
Define the expectation of Y; by

1= E(Y;) ~ @ B(Xjﬁ + Ujv)] (56)
The D matrix is
where

Since the ordinal phenotype has been presented as multi-
variable Bernoulli variable and the parameter vector has
been partitioned into three blocks, it is a little bit tedious to
derive the EM algorithm for parameter estimation. There-
fore, we only used the Poisson data as an example for the
derivation. The derivation applies to generalized linear
model for any distributions. Let G; = 1, 2, 3 be a discrete
variable for the genotype of 1nd1v1dual J. Let §;=

[5 (Gj, 1) 5(Gj, 2) 5(Gj, 3)] be a vector of three indicator
variables of the genotypes for individual j following a
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multinomial distribution with sample size one. The rela-
tionship between G; and J; is
1 G=g

for g =1, 2, 3. When the genotype of individual j is
known, the complete-data log likelihood function for the
parameters is

ZZ& 2. ¢) Inp(Y;|g) (67)

p(Yilg) = [exp (&'&J;flgy)] Y,

is the Poisson probability. The expectation of the complete-
data log likelihood function is

ZZP,

Jj=1 g=

exp[—exp(X;B+H,y)] (68)

X,B—|—H y) —exp(X ﬂ+Hgy)]

(69)
where

o v pilgprYilg)
21077 = = &0 (18)

is the posterior probability of (G}, g) = 1 given ) = 6. Now
p;(g) is treated as a constant (not a function of the parameters
because the unknown parameter involved in p;(g) has been
replaced by the parameter value at iteration f). The EM
algorithm actually maximizes the expectation of the complete-
data log likelihood function, not the original observed log
likelihood function. The maximum likelihood estimation in the
neighborhood of 0 = 0 can be obtained through Taylor
expansion around 0 = 0 (the Newton-Raphson method),

0+ = 9 + Ap

_g0 [ azl;[ga(g}én} B [aE[La(g, 5)1]

P} (8) = E[o(G; (70)

(71)

Now we only need to prove that

OE[L(0, SNNERS,

OEILO,9)] a(() I > pi(e)D](9)
=1 g=1

and

W)Y — 1(3)]  (72)

62 n 3

aeaeT =22 re) W;()D;(g) (73)

J=1 g=1

The partial derivative of the complete-data log likelihood
function with respect to the unknown parameters is

@ Springer

0E[L(0,0)] _ [t

— B
0 — | OE[L(0,9)]

5 3257 (@)X [Y; — exp(X)6 + Hy)

_ | J=le=l
- n 3
Zl Elp;f (9)HT [Yv; — exp(X;B + Hyy)]
Lj=1¢=
(74)
The second partial derivative is
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(see Eqgs. 61 and 62 in Appendix A) and
W(2) 1 1 (78)
T exp(XiB+ Hyy)  1y(e)
(see Eq. 39 in the main text), we have
Xxr
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8

Substituting X; and H, in Egs. (74) and (76) by Eq. (79),
we have

n 3
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aﬁay 2; ®° a/; Wiler gyt = V- % LR AT (89)
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o E[L n 3 aﬂ (g) Keep in nnnd that the above derivation requires \|/ \|J =1
_— ZZ Wi(g) J and u; \|/ w, =1 for simplification. This concludes the
vav o7 that 0!
=1 g= proof that \IJ is a generalized inverse of matrix V;.
Therefore, In fact, \|J is just ope of an infinite number of gen-
eralized inverses of matrix V;. A general form of the gen-
OE[L(0,5 "G lized i b db
[ a(0 )] _ Z p;‘(g)DjT(g)Wj(g) Y- ()] (82) eralized inverse can be expressed by
. - —1 - —1
J=1 =1 Vi = \Ijj _d\|fj lﬂjﬂj'T\Pj (90)
and where d is a real number (a scalar not a matrix). The
2 n generalized inverse ;' is simply obtained by setting
O°E[L(6,9)] * R )
W = ZP, W;()D;(g) (83) d = 0. The following equation serves as a proof of this
j=1 g=1

This concludes the derivation of the EM algorithm.

Appendix C: generalized inverse of variance matrix

For ordinal traits, the observed data point Y; for individual j
is multinomial with sample size one. Therefore, the vari-
ance—covariance matrix is

V; = var(Y) = diag(s) — pyl =\ — ! (84)

Where y; = diag(,uj). This variance matrix can be rewritten
in a general form as

Vi =+ eny (85)
where ¢ = —1. The inverse of this general form has an
explicit expression (Giri 1996),
-1 _ 1 -1
= \|1j ‘J],—\P Kl \l{,- (86)
The fact that \j; = diag(y;) leads to
p+1
Wy = =1 (87)
k=1
Therefore, the inverse matrix can be written as
S (88)
Since 1/(1 + ¢) is not defined when ¢ = —1, the inverse

matrix Wl does not exist.

We now prove that \Jfl is a generalized inverse of
matrlx V;. To prove thls we only need to show that
Vv, V V; because a generalize inverse V; is defined as

general form of the generalized inverse,
(=] YOy =yl W) (= ]
:(\l’j_:uj:uj ) |:\|jj_ (\l"j_ujuj )_d‘l/j_lﬂjﬂjT j_l (\l/j_ﬂjﬂ}-)}

= (=1 )(1 —\ll]‘ujuf—d\lf,-’lujuf+d\ll]‘ujuf\lf]1ujuf)
== ay]) (1= ] = ]+ )
= (- )(I—dljlujﬂf)
=V =V a1y
=Vt =y a1
:\l’j_ﬂjﬂf (91)

w5

Appendix D: logistic regression

We now use binary trait QTL mapping as an example to
demonstrate the logit link function of the generalized linear
model. Recall that the univariate definition of the binary
phenotype is

Y, = { 1 for presence of the trait (92)

0 for absence of the trait

Under the logit link function, the expectation and variance
of the phenotype given the parameter values are

exp(X;B + %)

0D =1 = exp8 + 29 .
and
ar(Y;) = Vj = (1 — ) (94)

respectively. The probability density is
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¥ 1-Y;
p(Y) = (1 =)' " (95)
The link function is logit because
. 1
;= logit(gy;) = In— =X+ 2y (96)
J

Genotype observed

Let g = 1, 2, 3 index the three genotypes and

_ __exp(XiB + Hyy)
(e) = Ele) = 1o s 97)

be the genotype specific expectation. Let

ﬂj(g) =Xif+ Hgy (98)
and
) = ou(g) _ expln;(g)] (99)

o) {1 +expln(e)]}’

The D matrix for genotype g is defined as

o R}

Di(g) = | ] (100)
where
Opy(8)

o = Sx; (101)
and
Opy(8)

25 = eln)H] (102)
Heterogeneous variance model
Let us define

1
= X+ Up) (103)
J
The expectation of ¥; is
exp(1;)
w=EY)~—" 104
j ( J) 1+3XP(VIJ) ( )
Define
Oy exp(1;)
tl) = o = 2P (105)
M [1+exp(n))]
The D matrix is
o Ou;

D = [% &LT] (106)
where
o 1
I Zep\xT 107
3= 5% (107)

@ Springer

and

O _ Loy lor - Lo v s, (108)
ay_aj i)\ % 012 J =Y
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