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Behavioral/Cognitive

Having More Choices Changes How Human Observers
Weight Stable Sensory Evidence

X Sirawaj Itthipuripat,1,2,3 Kexin Cha,4 X Sean Deering,4,5 Annalisa M. Salazar,4 and X John T. Serences3,4,6

1Department of Psychology and Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, Tennessee 37235, 2Learning Institute,
King Mongkut’s University of Technology Thonburi, Bangkok, 10140, Thailand, 3Neurosciences Graduate Program, University of California–San Diego, La
Jolla, California 92093-0109, 4Department of Psychology, University of California–San Diego, La Jolla, California 92093-1090, 5Health Services Research and
Development, Veteran Affairs San Diego Healthcare System, La Jolla, California 92161, and 6Kavli Foundation for the Brain and Mind, University of
California, San Diego, La Jolla, California 92093-0109

Decision-making becomes slower when more choices are available. Existing models attribute this slowing to poor sensory processing, to
attenuated rates of sensory evidence accumulation, or to increases in the amount of evidence required before committing to a decision (a
higher decision threshold). However, studies have not isolated the effects of having more choices on sensory and decision-related
processes from changes in task difficulty and divided attention. Here, we controlled task difficulty while independently manipulating the
distribution of attention and the number of choices available to male and female human observers. We used EEG to measure steady-state
visually evoked potentials (SSVEPs) and a frontal late positive deflection (LPD), EEG markers of sensory and postsensory decision-
related processes, respectively. We found that dividing attention decreased SSVEP and LPD amplitudes, consistent with dampened
sensory responses and slower rates of evidence accumulation, respectively. In contrast, having more choices did not alter SSVEP ampli-
tude and led to a larger LPD. These results suggest that having more options largely spares early sensory processing and slows down
decision-making via a selective increase in decision thresholds.

Key words: decision threshold; divided attention; event-related potential; evidence accumulation; multiple-choice decision-making;
steady-state visually evoked potential

Introduction
Humans can adaptively evaluate information about competing
choice alternatives to optimize goal-based decision-making.

However, the speed of decision-making decreases as more
choices are available, a phenomenon referred to as Hick’s Law
(Hick, 1952; Hyman, 1953; see also Roe et al., 2001; McMillen
and Holmes, 2006; Bogacz et al., 2007; Niwa and Ditterich, 2008;
Furman and Wang, 2008; Albantakis and Deco, 2009; Leite and
Ratcliff, 2010; Churchland and Ditterich, 2012; Ratcliff and
Starns, 2013). This effect of having more choices is often modeled
as an accumulate-to-bound process, in which slower response
times (RTs) are due either to a reduction in the rate of sensory
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Significance Statement

When more choices are available, decision-making becomes slower. We tested whether this phenomenon is due to poor sensory
processing, to reduced rates of evidence accumulation, or to increases in the amount of evidence required before committing to a
decision (a higher decision threshold). We measured choice modulations of sensory and decision-related neural responses using
EEG. We also minimized potential confounds from changes in the distribution of attention and task difficulty, which often covary
with having more choices. Dividing attention reduced the activity levels of both sensory and decision-related responses. However,
having more choices did not change sensory processing and led to larger decision-related responses. These results suggest that
having more choices spares sensory processing and selectively increases decision thresholds.
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evidence accumulation or to an increase in the total amount of
sensory evidence required before committing to a decision,
which is typically associated with an increase in the decision
threshold (see also Laming, 1968; Link and Heath, 1975; Buse-
meyer and Townsend, 1993; Smith and Ratcliff, 2004; Lo and
Wang, 2006; Gold and Shadlen, 2007; Brown and Heathcote,
2008; Churchland et al., 2008; Luce, 2008; Ratcliff and McKoon,
2008; Ho et al., 2012a,b; Purcell et al., 2012; Wang, 2012; Ester et
al., 2014; Keuken et al., 2015). Such an increase in the decision
threshold has been proposed as an adaptive strategy to combat
increased uncertainty that often accompany decisions with more
alternatives (for review, see Churchland and Ditterich, 2012;
Banca et al., 2015).

To test these different theoretical accounts, Churchland et al.
(2008) examined the impact of having more choices on the firing
rate of decision-related sensorimotor neurons in the lateral intra-
parietal (LIP) area. First, having more choices caused activity in
LIP neurons to start at a lower baseline firing rate before increas-
ing to a fixed response threshold. Second, activity in these neu-
rons was slower to rise, which is consistent with a decrease in the
buildup rate of evidence accumulation. Other studies also found
that having more choices reduced the overall firing and accumu-
lation rates of neurons in the LIP and the frontal eye field (FEF)
(Balan et al., 2008; Cohen et al., 2009; Purcell et al., 2012). To-
gether, these previous results suggest that having more choices
attenuates over all neural responses measured in postsensory ar-
eas and reduces the rate of evidence accumulation.

So far, existing studies have not examined modulations in
sensory cortex, so it is unclear whether choice-related reductions
in neural activity in postsensory areas are inherited from earlier
biases in sensory processing. Moreover, previous studies did not
isolate the effects of having more choices from concomitant
changes in the number of sensory inputs, the distribution of at-
tention, and overall task difficulty. Controlling these additional
factors is critical for several reasons. First, increasing the number

of sensory inputs can increase neural inhibition via divisive nor-
malization, which may then reduce overall neural activity during
sensory processing and decision-making. Importantly, divisive
normalization has been shown to occur even in passive viewing
tasks as well as behavioral tasks where visual stimuli were not
relevant to current decision-making goals (Heeger, 1992; Caran-
dini and Heeger, 2011; Louie et al., 2013; Itthipuripat et al., 2015).
Therefore, previous results might be driven largely by sensory
rather than choice-related modulations. Second, divided atten-
tion and increased task difficulty are known to drive effects in
parietal and frontal cortex that resemble the modulations attrib-
uted to increases in the number of choices. For example, dividing
attention leads to reduced accuracy and longer RTs, and is asso-
ciated with attenuated sensory responses and reduced decision-
related neural activity in sensorimotor areas (Mangun and
Hillyard, 1987, 1988; Palmer, 1994, 1995; Mangun and Buck,
1998; Awh and Pashler, 2000; Eckstein et al., 2000; McMains and
Somers, 2004; Toffanin et al., 2009; Eckstein, 2011; Pestilli et al.,
2011; Hara and Gardner, 2014; Itthipuripat et al., 2014a, 2017;
Gardner, 2015; Wyart et al., 2015; Mayo and Maunsell, 2016;
Arcizet et al., 2017; but see White et al., 2017).

Here, we isolated the effects of having more choices on both
sensory and later decision-related processes by independently
manipulating the number of choices and the distribution of at-
tention while equating task difficulty across conditions (Fig. 1).
Early sensory processing was indexed using the amplitude of
steady-state visually evoked potentials (SSVEPs) following previ-
ous studies (Müller et al., 2006; Kim et al., 2007; Andersen and
Müller, 2010; Kelly and O’Connell, 2013; Störmer et al., 2013;
Itthipuripat et al., 2014b; Störmer and Alvarez, 2014; Norcia et al.,
2015). The accumulation of sensory evidence during decision-
making stage was indexed by the late positive deflection (LPD)
component, which has been linked to postsensory decision-
related processes (Hillyard et al., 1972; Squires et al., 1973, 1975;
Mangun and Buck, 1998; O’Connell et al., 2012; Kelly and

Figure 1. The 2AFC and 4AFC contrast discrimination tasks. a, In the 2AFC task, subjects determined whether the inner or the outer segment of the target stimulus contained a contrast increment.
b, In the 4AFC task, subjects determined which of the 4 segments of the target stimulus contained a contrast increment. Across these two choice tasks, each trial started with either a focused or a
divided attention cue. The focused attention cue pointed directly to the target stimulus, whereas the divided attention cue pointed to all stimuli (1 target and 3 nontarget stimuli). Feedback, which
indicated the exact position of the contrast increment, was presented in blue for correct responses and in red for incorrect responses. The pedestal contrast of target and nontarget stimuli was
pseudo-randomly and independently chosen from 0%, 3.75%, 7.5%, 15%, 30%, and 60% Michelson contrasts. Percentage values indicate pedestal contrast values of individual target and nontarget
stimuli in example trials. Task difficulty was equated at �76% across choice tasks, attention conditions, and contrast levels. To simultaneously measure SSVEPs evoked by individual stimuli, the
visual stimuli on the upper left, upper right, lower left, and lower right quadrants were flickered at 30, 17.1, 20, and 24 Hz, respectively.
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O’Connell, 2013; Itthipuripat et al., 2014a, 2015, 2017; Twomey
et al., 2015; Wyart et al., 2015; Loughnane et al., 2016; Nelli et al.,
2017; Rungratsameetaweemana et al., 2018). The connection be-
tween the LPD component and the properties of the evidence
accumulation process depends on the relationship between
changes in the LDP amplitude and changes in RTs. Past studies
have interpreted a reduction in LPD amplitude, which is accom-
panied by an increase in RTs, as an accumulator having a reduced
accumulation rate (Mangun and Buck, 1998; Itthipuripat et al.,
2014a, 2017; Twomey et al., 2015). Accordingly, we expected that
dividing attention should first lead to a decrease in SSVEP ampli-
tude, and that this decrease in SSVEP amplitude should in turn
lead to a reduction in the rate of evidence accumulation, a lower
LPD amplitude, and increased RTs (see Fig. 2). If having more
choices impacts sensory and decision-related processes in the
same way as dividing attention, increasing the number of choices
should also leads to a similar constellation of effects: smaller SS-
VEP amplitude, smaller LPD amplitude, and longer RTs (Fig.
2a– c). However, if having more choices increases RTs because of
higher decision thresholds and thus more total evidence accumu-
lation, we would expect no changes in SSVEP signals and an
increase in LPD amplitude (see Fig. 2d–f). Consistent with the
latter prediction, we found that, when task difficulty was under
experimental control, having more choices did not alter SSVEP
signals and it led to an elevation of the LPD. These results suggest
that having more choices makes decisions slower by selectively
increasing decision thresholds.

Materials and Methods
Subjects. Twenty and 10 neurologically healthy human observers (age
range, 19 – 44 years) with normal or corrected-to-normal vision partici-
pated in the main EEG experiment (mean � SD age: 23.25 � 5.53 years,
10 male, all right-handed) and the behavioral control experiment, re-
spectively (mean � SD age: 20.20 � 1.813 years, 5 male, all right-
handed). They were recruited from the University of California–San
Diego community. All subjects provided written informed consent as
required by the local Institutional Review Board at University of Califor-
nia–San Diego (IRB#110176). They were compensated for $10 and $15
per hour for participating in behavioral and EEG recording sessions,
respectively.

Stimuli and tasks. Stimuli were controlled by a PC running Windows
XP using MATLAB (The MathWorks) and the Psychophysics Toolbox
(version 3.0.8) (Brainard, 1997; Pelli, 1997). Subjects were seated 60 cm
from the CRT monitor (which had a gray background of 34.51 cd/m 2,
120 Hz refresh rate). All behavioral experiments were conducted in dark
rooms in a quiet experimental area. All EEG experiments were conducted
in a dark, sound-attenuated, and electromagnetically shielded room
(ETS Lindgren).

EEG experiment. In the main EEG experiment, subjects performed
either a 2-alternative forced choice (2AFC) or 4-alternative forced choice
(4AFC) contrast discrimination task (Fig. 1). In both 2AFC and 4AFC
tasks, each trial started with either a focused or a divided attention cue.
The focused attention cue pointed to one of the four visual quadrants
that contained a target stimulus, whereas the divided attention cue
pointed to all four quadrants and a target stimulus was equally likely to
appear in any of the four quadrants. At 400 – 600 ms after the cue onset,
an array of four checkerboard wedge stimuli appeared for 1500 ms (the
distances from the fixation to the inner and outer edges were 7.03 and
13.46 degrees visual angle, respectively; the two lateral edges were 79.44
degrees apart). The spatial frequency of the wedge (from the fovea and to
peripheral segments) was adjusted to match the cortical magnification
values measured in human primary visual cortex (Cowey and Rolls,
1974; Sereno et al., 1995; Engel et al., 1997; Duncan and Boynton, 2003).
The pedestal contrast (or baseline contrast) of the target stimulus was
pseudo-randomly drawn from 6 contrast levels: 0%, 3.75%, 7.5%, 15%,
30%, and 60% Michelson contrasts. These contrast values were com-

puted based on the values of the black and white portions of the check-
erboards (i.e., minimum and maximum luminance values, respectively)
following this equation: (Imax � Imin)/(Imax � Imin) � 100. According to
this equation, the luminance of the background does not affect the Mi-
chelson contrast value. Moreover, we controlled the mean luminance
between Imax and Imin for all pedestal contrast levels to match the mean
luminance of the background. The target stimulus contained a contrast
increment in one of the segments that formed that stimulus. The contrast
increment appeared for the entire stimulus duration of 1500 ms. In
addition, three of the four stimuli were nontarget stimuli. For each non-
target stimulus, all of its segments had the same contrast value, indepen-
dently and randomly drawn from one of the six values (0%, 3.75%, 7.5%,
15%, 30%, and 60% Michelson contrasts).

We used a full range of pedestal contrast levels for the following rea-
sons. First, a full range of contrasts was needed to measure stimulus-
evoked responses (i.e., SSVEPs) as a function of stimulus contrast,
yielding contrast-response functions (CRFs). Moreover, in the divided
attention condition, subjects did not have any knowledge about which of
the four stimuli in the display contained the target stimulus. Their task
was to attend to all four of the visual stimuli and then to discriminate
which stimulus segment at the target location contained a slight contrast
increment. In our current design, the pedestal contrast values of the
target and nontarget stimuli were randomly drawn from a full range of
contrast values, so subjects had to use top-down attention to monitor all
stimuli to find the target stimulus. However, if we had used only one
pedestal contrast level for all stimuli, subjects could have simply used a
bottom-up attentional capture strategy to detect a contrast increment of
the target that would be more salient than all other stimuli rendered at
the same pedestal contrast. Randomizing the pedestal contrasts of all
visual stimuli thus prevented subjects from using this bottom-up atten-
tional strategy.

In the 2AFC task, subjects reported whether the foveal or the periph-
eral segment had the contrast increment (Fig. 1a, bottom). In the 4AFC
task, a target stimulus was segmented into four parts (the most foveal,
foveal, peripheral, the most peripheral) and subjects reported which of
the four parts contained a contrast increment (Fig. 1b, bottom). In the
2AFC task, half of the subjects used the right index and pinky fingers for
the foveal and peripheral targets, respectively. The other half used right
middle and ring fingers for the foveal and peripheral targets, respectively.
In the 4AFC task, all subjects used right index, middle, ring, and pinky
fingers for the most foveal, foveal, peripheral, the most peripheral targets,
respectively. At 300 ms after the stimulus offset, placeholders on both
sides of the target segment that contained a contrast increment changed
from black to blue, red, or yellow, informing subjects if their response
was correct, incorrect, or too slow (slower than 1500 ms after stimulus
onset). The feedback period was then followed by a 300 –500 ms intertrial
interval. Any jittered time variables were drawn from the uniform distri-
butions. To simultaneously monitor SSVEPs evoked by individual stim-
uli, the visual stimuli on the upper left, upper right, lower left, lower right
quadrants were flickered on-off at 30, 17.1, 20, and 24 Hz, respectively.

On the first day, subjects participated in a 2.5 h behavioral training
session where the method of constant stimuli was used to estimate con-
trast discrimination thresholds (or contrast increments required to
maintain an accuracy level of �76%) for each AFC task, each attention
condition, and each pedestal contrast level. These thresholds were used
on the first day of EEG recording. On each of the 4 d of the EEG experi-
ment, subjects underwent three sessions of the 2AFC task and three
sessions of the 4AFC task (with task order counterbalanced across sub-
jects). Each experimental session contained 192 trials, which were broken
up into 3 blocks, where all experimental conditions were counterbal-
anced: for the 2AFC task, 2 attention conditions � 4 target locations � 6
pedestal contrast levels of target � 2 increment locations � 2 repetitions;
for the 4AFC task, 2 attention conditions � 4 target locations � 6 ped-
estal contrast levels of target � 4 increment locations. Trial order was
pseudo-randomized. The contrast threshold (�c) for each attention con-
dition and each target pedestal contrast was adjusted after each experi-
mental session (every 3 blocks) so that accuracy was maintained at �76%
across all experimental conditions. Across 4 d of EEG recording, each
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subject performed 36 blocks of the 2AFC task and 36 blocks of the 4 AFC
task (4608 trials in total).

Behavioral control experiment. In the main EEG experiment, the entire
area of each wedge checkerboard stimulus was identical across the 2AFC
and 4AFC tasks. Thus, the resolution of the contrast-increment segment
stimulus in the 2AFC task (termed low-spatial-resolution 2AFC) was
unavoidably lower than that in the 4AFC task (termed high-spatial-
resolution 4AFC). We did this because we wanted to carefully control for
the spatial extent of overall sensory inputs. To ensure that any behavioral
difference across the 2AFC and 4AFC tasks in the main EEG experiment
was due to the difference in the number of choices rather than the differ-
ence in spatial resolution of the target stimulus, we conducted an addi-
tional behavioral control experiment. In this experiment, there were
three main experimental conditions. These included low-spatial-
resolution 2AFC (same as 2AFC in the main EEG experiment), high-
spatial-resolution 4AFC (same as 4AFC in the main EEG experiment),
and the high-spatial-resolution 2AFC (a new condition). In the high-
spatial-resolution 2AFC condition, the spatial resolution of the contrast-
increment segment was the same as the high-spatial-resolution 4AFC
condition, but subjects had 2 choices instead of 4 choices. However, at the
beginning of each high-spatial-resolution 2AFC block, subjects were in-
formed that the increment contrast could appear only at one of the two
foveal segments (foveal high-spatial-resolution 2AFC) or one of the two
peripheral segments (peripheral high-spatial-resolution 2AFC). Task
timing was identical to that in the main EEG experiment. The pedestal
contrasts of these four stimuli in all attention, choice, and target resolu-
tion conditions were independently and pseudo-randomly drawn from 3
contrast levels: 5%, 20%, and 60% Michelson contrasts. Here, we used 3
instead of 6 contrast levels to keep the experimental protocol approxi-
mately the same length given that the number of experimental manipu-
lations (not including the contrast manipulation) in the behavioral
control experiment was higher than that in the main EEG experiment.
Subjects completed 3 d of this experiment. Each day contained 2 sessions
of low-spatial-resolution 2AFC, 2 sessions of high-spatial-resolution
4AFC, 2 sessions of foveal high-spatial-resolution 2AFC, and 2 sessions of
peripheral high-spatial-resolution 2AFC. Each session had 3 blocks and
contrast thresholds were adjusted every 3 blocks to maintain accuracy at
�76%. Each block contained 64 trials, and the entire experiment across
3 d contained 4608 trials per participant. The order of these choice tasks
was randomized within each individual participant.

Behavioral analyses: main EEG experiment. Contrast thresholds (i.e.,
contrast increment values averaged across sessions) and RTs on correct
and incorrect trials were plotted as a function of pedestal contrasts sep-
arately for the focused attention and divided attention in the 2AFC and
4AFC tasks. Here, the plot of contrast thresholds against pedestal con-
trasts is termed the threshold-versus-contrast (TvC) function. Repeated-
measures ANOVAs were used to examine the effects of attention and the
number of choices on contrast thresholds, RTs on correct trials, and RTs
on incorrect trials.

In addition, the TvC plots were fit using a combination of d� and
Naka–Rushton equations (see Eqs. 1–3 below). Following previous work,
we assumed that behavioral contrast sensitivity (d�) was limited by the
difference in neural responses evoked by pedestal and incremental stim-
uli (�R) divided by the magnitude of sensory noise (�) (Legge and Foley,
1980; Ross et al., 1993; Boynton et al., 1999; Gorea and Sagi, 2001; Huang
and Dobkins, 2005; Pestilli et al., 2011; Hara and Gardner, 2014; Itthipu-
ripat et al., 2014a, 2017; Itthipuripat and Serences, 2016) as follows:

d� �
�R	c


�
�

R	c
 � R	�c	c



�
(1)

Here, c is stimulus contrast and �c(c) is the contrast threshold (or con-
trast increment) at each contrast level that is required to maintain an
accuracy level of �76%. R(c) is a hypothetical contrast response function
derived from a Naka–Rushton equation as follows:

R	c
 � Gr

cq

cq � Gc
q � b (2)

In this equation, Gr is a multiplicative response gain factor that controls
the vertical shift of the CRF, Gc is a contrast gain factor that controls the
horizontal shift of the CRF, b is the response baseline offset, and q is the
exponent that controls the speed at which the CRF rises and reaches
asymptote. With the combination of the d� and Naka–Rushton equations
(Eqs. 1–2), the contrast threshold (�c) can be estimated based on the first
derivative (i.e., slope) of the hypothetical CRF (Boynton et al., 1999) as
follows:

�c	c
 �
�R	c


dR

dc

(3)

Here, dR/dc is the derivative of the underlying CRF. In the 2AFC task, �R
and � were set to 1 to keep d� at 1 (�76% accuracy for 2AFC � �1),
which was possible because Gr, �R, and � are codependent (i.e., they
jointly control the vertical shift of the TvC function). Because �76%
accuracy for 4AFC corresponds to a d� of �1.72, �R was set to 1.72
(Stanislaw and Todorov, 1999). For both tasks, b was set to zero because
changes in b do not affect the slope of the TvC function. Last, we fit the
TvC functions of individual attention and choice conditions with Equa-
tions 1–3 with MATLAB’s fminsearch function (Nelder–Mead method;
nonlinear least squares) with Gr, Gc, and q as free parameters. We used 5
initial seed values for Gc (i.e., 1%, 10%, 20%, 50%, and 100% contrast)
and 5 initial seed values for Gr (i.e., 1, 10, 20, 50, and 100 in arbitrary
units) and 5 initial seed values for q (i.e., 1, 2, 3, 4, and 5). We then
selected the best fit for each experimental condition. In addition, the
fitting procedure was constrained so that 0% � Gc � 100% contrast.

Behavioral control experiment. Repeated-measures ANOVAs were
used to examine the effects of attention and the number of choices on
contrast thresholds, RTs on correct trials, and RTs on incorrect trials.
Post hoc paired t tests were then used to compare the data between the
low-spatial-resolution 2AFC and the high-spatial-resolution 4AFC con-
ditions, between the high-spatial-resolution 2AFC and high-spatial-
resolution 4AFC conditions, and between the low-spatial-resolution
2AFC and high-spatial-resolution 2AFC conditions (two-tailed).

EEG data acquisition. We recorded EEG data using an ActiveTwo sys-
tem (Biosemi Instrumentation) with 64 channels (sampling rate � 512
Hz) with two reference electrodes placed on the left and right mastoids.
We monitored horizontal eye movements via a pair of external electrodes
affixed near the outer canthi of the left and right eyes and monitored
blinks and vertical eye movements via two pairs of external electrodes
affixed above and below the left and right eyes. The EEG data were
referenced online to the CMS-DRL electrode, and the data offset in all
electrodes were maintained �20 �V (a standard criterion for this active
electrode system).

EEG data preprocessing and analysis. We preprocessed EEG data using
custom MATLAB scripts and EEGLab11.0.3.1b (Delorme and Makeig,
2004). First, we rereferenced the EEG data to the averaged data recorded
from the left and right mastoid electrodes and applied 0.25 Hz high-pass
and 55 Hz low-pass Butterworth filters (third order). Next, we segmented
the continuous EEG data into epochs extending from 500 ms before to
3000 ms after cue onset. Then, we performed independent component
analysis to remove prominent eye blinks (Makeig et al., 1996) and used
threshold rejection and visual inspection to reject trials containing resid-
ual eye movements, muscle activity, drifts, and other artifacts. This re-
sulted in the removal of 10.08 � 5.25% SD of trials across all 20 subjects.
Last, we time-locked the data to stimulus onset and removed the baseline
activity from 0 to 100 ms before the stimulus onset.

SSVEP analysis. First, the stimulus-locked data were sorted into the
following experimental bins: (1) 2AFC: focused attention target stimuli;
(2) 2AFC: focused attention nontarget stimuli (e.g., ignored stimuli);
(3) 2AFC: divided attention stimuli; (4) 4AFC: focused attention target
stimuli; (5) 4AFC: focused attention nontarget stimuli (e.g., ignored
stimuli); and (6) 4AFC: divided attention stimuli.

For each of these bins, trials were also sorted into 24 sub-bins depend-
ing on the contrast and the location of the stimulus of interest (6 contrast
levels � 4 stimulus locations). Next, we averaged the EEG data in all
sub-bins to obtain event-related potentials (ERPs) for each condition.
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Then, we filtered the data with a Gaussian wavelet function with a 0.1
fractional bandwidth to obtain frequency-domain coefficients from 1 to
55 Hz in 1 Hz steps (except at 17.1 Hz where we use the exact stimulus
driving frequency as the center frequency). SSVEPs evoked by individual
stimulus flicker frequencies (17.1, 20, 24, and 30 Hz) were obtained by
computing the absolute value of the coefficients at the center flicker
frequencies. Next, we rescaled the data for individual frequencies using
the unity-based normalization method: (data � datamin)/(datamax �
datamin) (Aksoy and Haralick, 2001) and averaged the rescaled data from
the contralateral occipital electrode where the SSVEP signal peaked
across all four center frequencies (O2 and O1 for left and right stimuli,
respectively). Here, “contralateral” means contralateral to the visual
stimulus of interest (either target or nontarget). For each subject and
each experimental condition (focused attention, divided attention, and
ignored stimuli in 2AFC and 4AFC tasks), the normalized SSVEPs were
averaged across a 0 – 800 ms window and plotted as a function of stimulus
contrast yielding SSVEP-based CRFs. Because mean RTs were �800 –900
ms across conditions, we used a 0 – 800 ms window to minimize potential
confounds from including data after a response had been made. On the
x-axis of the CRFs, the stimulus contrast values for the ignored stimulus
were fixed at 0%, 3.75%, 7.5%, 15%, 30%, and 60% Michelson contrasts.
However, because the target stimuli contained both pedestal and incre-
ment segments, we used the average contrast values between the pedestal
and increment segments for plotting the CRFs in the focused and divided
attention conditions. The within-subject standard error of means (SEM)
of the data for each contrast level was calculated using the approach
described by Loftus and Masson (1994), in which the mean value be-
tween attention and choice conditions was removed from individual data
before computing SEM for each contrast value.

Next, SSVEP-based CRFs for each attention and choice conditions of
individual subjects were fit using the Naka–Rushton equation (Eq. 2),
where R(c) is the normalized SSVEP amplitude as a function of stimulus
contrast (SSVEP-based CRFs). The q exponent was fixed at 2 following
previous studies (Herrmann et al., 2010; Carandini and Heeger, 2011;
Itthipuripat et al., 2014b). Given that past EEG studies of spatial attention
have consistently reported no changes in response baseline of CRFs based
on sensory-evoked responses recorded using EEG (Di Russo et al., 2001;
Kim et al., 2007, 2011; Lauritzen et al., 2010; Wang and Wade, 2011;
Itthipuripat et al., 2014a,b, 2017), b was fixed as the mean of the mini-
mum values of the CRFs across all individual attention and choice con-
ditions. We used 5 initial seed values for Gc (i.e., 1%, 10%, 20%, 50%, and
100% contrast) and 5 initial seed values for Gr (i.e., the difference be-
tween maximum and minimum responses divided by 0.5, 1, 2, 4, and 8).
For, each participant, we selected the seed values for Gc and Gr that
yielded the best fit. In addition, the fitting procedure was constrained so
that 0% � Gc � 100% contrast. We then used a least square error esti-
mation method (fminsearch function in MATLAB) to estimate the max-
imum response or Rmax (the response at 100% contrast minus baseline),
the half-maximum contrast or C50 (contrast at which the response
reached half-maximum). Next, we used repeated-measures ANOVAs to
test effects of attention and the number of choices on the Rmax and C50

parameters.
ERP analysis. We obtained the LPD from the central frontal electrode

(Fpz) where its mean amplitude averaged across all experimental condi-
tions was maximal. Previous studies found that the LPD component
emerged �400 – 800 ms after stimulus (Cravo et al., 2013; Kelly and
O’Connell, 2013; Itthipuripat et al., 2015; Twomey et al., 2015; Nelli et al.,
2017; Rungratsameetaweemana et al., 2018). Accordingly, we averaged
the LPD amplitude across this time window and performed a repeated-
measures ANOVA to test attention and choice effects and their inter-
action. This time window happened before the time of mean RTs
(�800 –900 ms after stimulus); therefore, the selection of this window
also minimized confounds from postdecision data. Here we did not pres-
ent attention and choice effects for each contrast level because there were
no interactions between contrast and any of the attention and choice
factors.

We also obtained the sustained negative-going potential from the
posterior-occipital electrode contralateral to the focused and divided
target stimuli (PO4 and PO3 for left and right targets, respectively; where

the signal collapsed across all experimental conditions was maximal).
Here, “contralateral” means contralateral to the target stimulus. We per-
formed a repeated-measures ANOVA on the mean amplitude averaged
from 400 to 800 ms. The selection of time window was based on the
timing of the similar ERP component observed in previous studies
(Woodman et al., 2009; Kuo et al., 2012; Tsubomi et al., 2013) and based
on the time of mean RTs to minimize confounds from postdecision data.

Results
Our main goal was to isolate the effects of changes in the number
of available choices from changes in the number of sensory in-
puts, changes in the distribution of selective attention, and
changes in task difficulty. We used the SSVEP-based CRF and the
LPD component as neural markers of sensory and postsensory
decision-related processes, respectively. If having more choices
slows decision-making by reducing sensory responses, much like
divided attention does (Mangun and Hillyard, 1987, 1988; Man-
gun and Buck, 1998; McMains and Somers, 2004; Toffanin et al.,
2009; Pestilli et al., 2011; Hara and Gardner, 2014; Itthipuripat et
al., 2014a, 2017; Wyart et al., 2015; Mayo and Maunsell, 2016), we
expect to see dampened SSVEP responses over visual cortex and a
reduction in LPD amplitude (Fig. 2a– c). However, if having
more choices slows down decision-making by increasing the total
amount of sensory evidence required before committing to a
decision, we expect to see little impact on SSVEP amplitude and
an increase in LPD amplitude (consistent with an elevated deci-
sion threshold; Fig. 2d–f).

In the present study, we used the contrast discrimination task
for several reasons. First, contrast-change detection/discrimina-
tion is a good model task to examine perceptual decision-making
processes because changes in contrast impact the efficiency of
perceptual decisions about the orientation, color, motion, form,
identity, and semantic properties of visual stimuli (Albrecht and
Hamilton, 1982; Hawken et al., 1994; Alitto and Usrey, 2004;
Murray and He, 2006; Herrmann et al., 2010, 2012; Purcell et al.,
2010; Lui et al., 2013; Khayat and Martinez-Trujillo, 2015; Long
et al., 2015; Khastkhodaei et al., 2016; Störmer and Alvarez, 2016;
Wang and Movshon, 2016; Bloem and Ling, 2017; Hermes et al.,
2017; Kay and Yeatman, 2017). Second, manipulating contrast
enables precise control over task difficulty and other cognitive
factors, such as spatial attention (Ross et al., 1993; Boynton et al.,
1999; Gorea and Sagi, 2001; Huang and Dobkins, 2005; Pestilli et
al., 2011; Hara and Gardner, 2014; Itthipuripat et al., 2014a,
2017). Third, previous studies have consistently found atten-
tional modulations of early visual EEG responses (e.g., SSVEP
and the P1 ERP component) using variants of contrast detection/
discrimination tasks (Johannes et al., 1995; Di Russo et al., 2001;
Kim et al., 2007; Lauritzen et al., 2010; Wang and Wade, 2011;
Itthipuripat et al., 2014a, b, 2017). This enabled us to use SSVEP
as a well-vetted EEG marker of early sensory processing to exam-
ine the impact of selective attention and the number of available
options on information processing. Third, a well-established the-
oretical framework based on studies of contrast perception al-
lowed us to apply quantitative methods to fit psychophysical data
and sensory responses (see Materials and Methods; Eqs. 1–3)
(Boynton et al., 1999; Pestilli et al., 2011; Hara and Gardner, 2014;
Itthipuripat et al., 2014a, 2017; Ku and van Schouwenburg, 2015;
Itthipuripat and Serences, 2016). Last, the LPD component has
been widely used to track the accumulation of sensory evidence in
many studies that use contrast discrimination tasks as well as
other perceptual decision-making tasks, including orientation,
motion, color, object, face, and emotion discrimination tasks
(O’Connell et al., 2012; Kelly and O’Connell, 2013; Murphy et al.,

Itthipuripat et al. • Decision-Making with Multiple Alternatives J. Neurosci., October 3, 2018 • 38(40):8635– 8649 • 8639



2015; Loughnane et al., 2016; Twomey et al., 2015, 2016; New-
man et al., 2017; Sun et al., 2017; Rungratsameetaweemana et al.,
2018).

Behavioral results
Main EEG experiment
Overall accuracy across attention conditions (focused/divided at-
tention) and choice tasks (2AFC/4AFC) was successfully equated
at �76% (Fig. 3a). Accordingly, there was no main effect on hit
rates of attention (F(1,19) � 1.63, p � 0.2170) or the number of
choices (F(1,19) � 0.11, p � 0.7488). Given that accuracy was fixed
across conditions, we focused on the impact of attention and the
number of choices on the contrast thresholds that were required
to equate accuracy in each condition (Fig. 3b). The overall pattern
of contrast threshold data in all experimental conditions was con-
sistent with the typical shape of the TvC function, where contrast
thresholds increase as a function of pedestal contrast with a slight
dip between 0% and medium contrast levels (Ross et al., 1993;
Boynton et al., 1999; Huang and Dobkins, 2005; Pestilli et al.,
2011). These data were well fit by a combination of d� and Naka–
Rushton equations (Eqs. 1, 2; Fig. 3d, curve fits and R 2 values).
This suggests that sensory responses increase as a function of
stimulus contrast in a sublinear (sigmoid-like) fashion (see Fig.
7a, observed SSVEP-based CRF data). Importantly, we found
that contrast thresholds were higher in the divided compared
with the focused attention condition, consistent with previous
studies (F(1,19) � 76.28, p � 0.001) (Pestilli et al., 2011; Hara and
Gardner, 2014; Itthipuripat et al., 2014a, 2017). Contrast thresh-
olds also increased as the number of choices increased (F(1,19) �
70.18, p � 0.001). There was no interaction between attention
and the number of choices on contrast thresholds (F(1,19) � 0.13,
p � 0.7202).

Attention and the number of choices also affected RTs (Fig.
3c,d). On both correct and incorrect trials, RTs increased with
divided attention compared with focused attention (correct RTs:
F(1,19) � 44.05, p � 0.001; incorrect RTs: F(1,19) � 11.74, p �

0.0028). RTs also increased as the number of choices increased
(correct RTs: F(1,19) � 60.70, p � 0.001; incorrect RTs: F(1,19) �
72.96, p � 0.001). There was no interaction between attention
and the number of alternative choices on RTs (correct RTs:
F(1,19) � 0.28, p � 0.6020; incorrect RTs: F(1,19) � 0.02, p �
0.8842).

Behavioral control experiment
In the main experiment, we controlled the total area of the stim-
ulus in each quadrant across the different choice tasks. However,
the spatial resolution of the target in the 2AFC task was inevitably
lower than that in the 4AFC task (Fig. 1a,b, bottom). Therefore,
we conducted a behavioral control experiment to ensure that the
observed differences in performance between the 2AFC and
4AFC conditions in the main task were not due to changes in the
spatial resolution of the target. A separate set of 10 human sub-
jects performed the main 2AFC and 4AFC tasks plus an addi-
tional 2AFC task in which the spatial resolution of the target
matched the 4AFC task (i.e., high-spatial-resolution 2AFC). Rep-
licating the main results reported above, contrast thresholds, cor-
rect RTs, and incorrect RTs were significantly higher in the 4AFC
block compared with the 2AFC block (Fig. 4; t(9) values � 6.26,
3.04, and 6.81, for contrast thresholds, correct RTs, and incorrect
RTs, respectively; all p values � 0.001). Importantly, these results
held true, even when the spatial resolution of the target in the
4AFC and the 2AFC tasks was matched (high-spatial-resolution
2AFC vs high-spatial-resolution 4AFC: t(9) values � 6.26, 3.04,
and 6.81 with p � 0.001, p � 0.014, and p � 0.001 for contrast
thresholds, correct RTs, and incorrect RTs, respectively). Impor-
tantly, we found no difference in contrast thresholds (t(9) �
0.2829, p � 0.7836), correct RTs (t(9) � 1.66, p � 0.1311), or
incorrect RTs (t(9) � 0.412, p � 0.6849) between the low-
resolution and the high-resolution versions of the 2AFC task.
This control experiment suggests that a change in the spatial
resolution of the targets across the 2AFC and 4AFC conditions

Figure 2. Accumulate-to-bound accounts of the impact of attention and the number of choices on decision-making, along with corresponding predicted amplitudes of SSVEPs and the LPD. Here,
we used SSVEPs to track the amplitude of early sensory signals and the LPD component to track the accumulation of sensory evidence during the buildup to a decision. If increasing the number of
choices dampens sensory responses and decreases the rate of sensory evidence accumulation, as dividing attention does (a), SSVEP and LPD amplitudes should decrease and RTs should increase in
response to both manipulations (b, c). However, if increasing the number of choices spares sensory modulations in visual cortex and increases RTs by elevating the decision threshold or the amount
of accumulated evidence required before making a decision (d), there should instead be little or no modulation in SSVEP amplitude (e) and a selective elevation of LPD amplitude accompanied by
increased RTs (f ).
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was not a major contributor to the observed pattern of behavioral
modulations in the main task.

SSVEP results
SSVEPs evoked by high-contrast stimuli were narrowly tuned to
all four stimulation frequencies, and they peaked over contralat-
eral occipital electrodes (Figs. 5, 6). As expected, the amplitudes
of the SSVEPs differed substantially across different stimulus fre-
quencies (Kim et al., 2011), so we rescaled the SSVEP data for
each stimulus frequency using the unity-based normalization
method (see Materials and Methods) (Aksoy and Haralick,
2001). Then, we collapsed the data across all stimulus frequen-
cies. Next, we plotted the normalized SSVEPs (averaged over
0 – 800 ms after stimulus) from the contralateral occipital elec-
trodes of interest to generate CRFs for individual attention and
choice conditions (Fig. 7a). Because the time of mean RTs was at
�800 –900 ms, we chose an analysis window of 0 – 800 ms to
minimize confounds from postdecision data. Then, we fit each
subject’s CRFs with a Naka–Rushton equation (Eq. 2). This
yielded two key parameters of interest: Rmax, which is the re-
sponse at 100% contrast minus the baseline offset of the CRF (Fig.
7b, top); and the C50, which shifts the CRF horizontally (Fig. 7b,
bottom). Overall, the CRF data were well explained by the Naka–
Rushton equation (Fig. 7a, curve fits and R 2 values).

Consistent with previous studies, there was a significant main
effect of attention on Rmax, such that responses were highest in

the focused attention condition and successively smaller in the
divided attention and ignored conditions, respectively (F(2,38) �
16.20, p � 0.001) (Di Russo et al., 2001; Kim et al., 2007, 2011;
Lauritzen et al., 2010; Wang and Wade, 2011; Itthipuripat et al.,
2014a,b, 2017). In addition, due to the robust response gain
changes with attention (i.e., Rmax), C50 also increased in the fo-
cused compared with the divided and ignored conditions (i.e.,
contrast gain decreased, or the midpoint where the CRF reaches
half of its maximal point shifted to the right, F(2,38) � 10.87, p �
0.001). Interestingly, even though we observed significant differ-
ences in behavioral performance across the 2AFC and 4AFC tasks
(Fig. 3), there was no significant main effect of the number of
choices and no interaction between attention and the number of
choices on Rmax (F(1,19) � 0.73, p � 0.4030, and F(2,38) � 1.12, p �
0.3378, respectively). Similarly, there was no main effect of the
number of choices and no interaction between attention and
the number of choices on C50 (F(1,19) � 0.941 p � 0.3442, and
F(2,38) � 2.04, p � 0.1447, respectively). The decrease in SSVEP
signals with divided attention and no change in SSVEP signals
with more choices are consistent with the prediction shown in
Figure 2e.

ERP results
We observed a robust LPD component over frontal cortex that
emerged at �400 ms and peaked around the time of mean RTs
(�800 –900 ms; Fig. 8a, left, b). Consistent with past studies,

Figure 3. Behavioral results from the main EEG experiment. a, Accuracy was equated at �76% across choice tasks, attention conditions, and contrast levels. b, TvC functions. The data were fitted
using a combination of Naka–Rushton and d� equations (Eqs. 1–3). There were significant main effects of the number of choices (ME-Choice) and attention (ME-Attention) on contrast threshold (b),
RT on correct trials (c), and RT on incorrect trials (d). Error bars indicate within-subject SEM. **p � 0.01, ***p � 0.001.
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dividing attention decreased the amplitude of the LPD compo-
nent averaged over 400 – 800 ms (F(1,19) � 9.85, p � 0.0054)
(compare Mangun and Hillyard, 1988; Mangun and Buck, 1998;
Itthipuripat et al., 2014a, 2017). However, while increasing the
number of choices impaired behavioral performance in a manner
similar to dividing attention (Fig. 3), we observed a significant
elevation rather than a reduction in the amplitude of the LPD in
the 4AFC compared with the 2AFC task (F(1,19) � 6.00, p �
0.0242). In addition, there was no interaction between attention
and the number of choices on LPD amplitude (F(1,19) � 1.1512,
p � 0.2967).

Additionally, we found robust attention modulations of a
slow-going late negativity over posterior-occipital cortex con-
tralateral to the target stimulus (compare Woodman et al., 2009;
Kuo et al., 2012; Tsubomi et al., 2013). Specifically, focused at-
tention induced a more negative deflection from 400 to 800 ms

after stimulus (Fig. 8a, right, b; F(1,19) � 44.51, p � 0.0001). We
did not observe a significant main effect of the number of choice
alternatives (F(1,19) � 2.63, p � 0.1211) or any interaction be-
tween attention and the number of choices F(1,19) values � 0.01,
p � 0.9068). The pattern of this ERP data was similar to the
SSVEP result, further supporting the idea that attention changes
neural signals in occipital cortex, whereas the number of choices
does not. Finally, the attentional modulation of the contralateral
posterior-occipital negativity was very large, spreading over the
posterior-central electrodes. Also, this negative ERP component
and the LPD have opposite polarities. Because of the close prox-
imity between posterior-central and posterior-occipital elec-
trodes and the opposite polarities of the two ERP components,
any expected modulations of the LPD in the posterior-central
electrodes could be canceled out by changes in the contralateral
posterior-occipital negativity (Luck, 2005; Woodman, 2010).

Figure 4. Behavioral results from the behavioral control experiment. In this experiment, there were three task conditions: 2AFC with low-spatial resolution targets (low-spatial-resolution 2AFC;
same as 2AFC in the main EEG experiment), 2AFC with high-spatial-resolution targets (high-spatial-resolution 2AFC; an additional task), and 4AFC with high-spatial-resolution targets (high-spatial
resolution 4AFC; same as 4AFC in the main EEG experiment). a, Hit rates were fixed at �0.76 across all attention and task conditions. b, Contrast discrimination thresholds. c, RTs in correct trials. d,
RTs in incorrect trials. Overall, behavioral performance was impaired (i.e., thresholds and RTs increased) in the divided-attention compared with the focused-attention conditions and also in the 4AFC
compared with the 2AFC tasks with low- and high-spatial-resolution targets. However, there was no difference in contrast thresholds or RTs between 2AFC tasks with low and high target resolution.
This confirms that differences in behavioral performance observed across 2AFC and 4AFC tasks in Experiment 1 were due to the difference in number of choices rather than the difference in target
spatial resolution. Error bars indicate the within-subject SEM across 10 subjects. Pairwise difference between attention conditions: #p � 0.1, *p � 0.05, **p � 0.01, ***p � 0.001. Main effect of
number of choices: †p � 0.05, †††p � 0.001.
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This may explain why significant differences in the LPD were
observed primarily over frontal cortex, unlike some previous
studies that observed robust differences in posterior-central elec-
trodes (Mangun and Hillyard, 1988; Mangun and Buck, 1998;
O’Connell et al., 2012; Kelly and O’Connell, 2013; Itthipuripat et
al., 2014a, 2017, Twomey et al., 2015, 2016; Newman et al., 2017).

Discussion
Both dividing attention and having more choices made percep-
tual decisions slower and required higher perceptual thresholds
to discriminate stimulus contrast with the fixed accuracy level of
�76%. Despite many superficial similarities between behavioral
modulations associated with manipulating the distribution of
spatial attention and increasing the number of choices, these two
manipulations produced dissociable neural modulations of both
early sensory and later decision-related processes. First, dividing
attention decreased the SSVEP gain, but having more choices had
no impact on SSVEPs. This suggests that having more options
does not attenuate sensory responses, as long as changing the
number of choices is not accompanied by a corresponding
change in the number of competing sensory stimuli or task diffi-
culty. Second, dividing attention decreased LPD amplitude, but
having more options elevated LPD amplitude. This dissociation
in the LPD response was observed, even though both manipula-
tions led to a similar increase in overall RTs.

Longer RTs could be driven by a decrease in the rate of sensory
accumulation or by an increase in the amount of evidence re-
quired before making a decision (i.e., an elevated decision thresh-
old; Fig. 2a–f) (Gold and Shadlen, 2007; Brown and Heathcote,
2008). Dividing attention led to lower SSVEP responses and a

lower-amplitude LPD. These findings are consistent with previ-
ous studies showing that divided or distributed attention reduces
early sensory responses (Mangun and Buck, 1998; Pestilli et al.,
2011; Itthipuripat et al., 2014a,b, 2017; Mayo and Maunsell,
2016) and the amplitude of the LPD (Mangun and Buck, 1998;
Itthipuripat et al., 2014a, 2017). This latter result is consistent
with a reduction in the rate of evidence accumulation or a leakier
accumulation processes (Mangun and Buck, 1998; Itthipuripat et
al., 2014a, 2017; Wyart et al., 2015). In contrast, the elevation of
the LPD with an increase in the number of choices, particularly in
the absence of SSVEP modulations, suggests an elevation of de-
cision thresholds (Fig. 2d–f).

Here, the elevation of the LPD amplitude with more choices is
inconsistent with previous reports suggesting that increasing the
number of choices reduces, rather than elevates, neural activity in
postsensory decision-related areas (Churchland et al., 2008;
Cohen et al., 2009; Louie et al., 2011; Purcell et al., 2012). How-
ever, in these studies, the number of sensory inputs, the distribu-
tion of attention, and general task difficulty covary with the
number of choices. For example, Churchland et al. (2008) in-
creased the number of choices from two to four in a variant of the
classic motion discrimination paradigm (Newsome et al., 1989;
Shadlen and Newsome, 2001). In this task, different amounts of
feature-based attention were required to monitor either two or
four precued directions of motion (Churchland et al., 2008).
Moreover, before the onset of motion, the subjects were cued
with either two or four saccade targets, thus requiring different
amounts of spatial attention. Here, task difficulty also increased
markedly as indexed by a sharp decline in behavioral perfor-

Figure 5. Time-frequency plots of evoked oscillatory responses elicited by visual stimuli of different contrast levels. The data were collapsed across attention and choice conditions and were
obtained from contralateral occipital electrodes where SSVEPs peaked (O1 and O2 for right and left quadrants, respectively). Overall, we observed SSVEPs evoked by high-contrast visual stimuli
peaking at all four driving frequencies (red arrows) (see Fig. 6, corresponding topographical maps at the peak frequencies).
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Figure 6. Topographical maps of SSVEP signals at the stimulus flicker frequencies shown in Figure 5. The data were collapsed across attention and choice conditions and were averaged over the
entire stimulus period.

Figure 7. SSVEPs. a, CRFs based on normalized SSVEPs evoked by focused attention, divided attention, and ignored stimuli across 2AFC and 4AFC tasks. The data were averaged over a time
window extending from 0 to 800 ms after stimulus to minimize contributions after a behavioral response was made. The data were fit using a Naka–Rushton function (Eq. 2). b, Fit parameters of
the CRFs shown in a. These include the maximum response (Rmax; top), which is the response at 100% contrast minus the baseline offset of the CRF; and the semisaturation constant (C50; bottom),
which shifts the CRF horizontally. Focused attention increased Rmax and C50 compared with divided attention and ignored conditions. However, there was no main effect of the number of choices on
any of these CRF parameters. Error bars in all subfigures indicate within-subject SEM across 20 subjects. ***Significant main effects of attention ( p � 0.001).

8644 • J. Neurosci., October 3, 2018 • 38(40):8635– 8649 Itthipuripat et al. • Decision-Making with Multiple Alternatives



mance as the number of choices increased. Similarly, Purcell et al.
(2012) manipulated the number of choices by adding more visual
stimuli to the search arrays, thus increasing the distribution of
spatial attention and task difficulty.

Consistent with the concern about potential confounds from
task difficulty and attention, the firing rates of LIP and FEF neurons
are reduced as task difficulty was increased, for example, by reducing
the amount of sensory information available about an imperative
stimulus (Gold and Shadlen, 2002, 2007; Roitman and Shadlen,

2002; Purcell et al., 2010, 2012). Past EEG
studies have also shown that the LPD ampli-
tude reduces with increasing task difficulty
as well as decreasing the amount of sensory
evidence (Hillyard et al., 1972; Squires et al.,
1975; Mangun and Hillyard, 1988;
O’Connell et al., 2012; Kelly and O’Connell,
2013; Itthipuripat et al., 2014a, 2017; Sun et
al., 2017). Moreover, dividing attention
across multiple sensory stimuli has been as-
sociated with a reduction in the level of neu-
ral responses in both early sensory and
decision-related sensorimotor areas (Man-
gun and Hillyard, 1987, 1988; Palmer, 1994,
1995; Mangun and Buck, 1998; Awh and
Pashler, 2000; Eckstein et al., 2000; Mc-
Mains and Somers, 2004; Toffanin et al.,
2009; Eckstein, 2011; Pestilli et al., 2011;
Hara and Gardner, 2014; Itthipuripat et al.,
2014a, 2017; Gardner, 2015; Wyart et al.,
2015; Mayo and Maunsell, 2016). Thus, pre-
vious reports showing reduced neural activ-
ity with more choices in decision-related
brain areas may be largely attributed to
changes in the distribution of attention and
task difficulty.

In many previous studies, increasing
the number of choices was also accompa-
nied by a concurrent increase in the spa-
tial extent of the visual stimulus array.
This could reduce neural activity via divi-
sive normalization, a canonical neural
computation observed in many sensory
and postsensory areas along the visual hi-
erarchy (Heeger, 1992; Zoccolan et al.,
2005; Reynolds and Heeger, 2009; Sund-
berg et al., 2009; Carandini and Heeger,
2011; Louie et al., 2011, 2013; Reynaud et
al., 2012; Chau et al., 2014; Itthipuripat et
al., 2014b, 2015; Zhang et al., 2016). Based
on divisive normalization, the output
from a given neuron is a product of the
excitatory activity divided by the suppres-
sive drive pooled from surrounding neu-
rons (Heeger, 1992; Reynolds and Heeger,
2009; Carandini and Heeger, 2011). Thus,
in some displays where more stimuli oc-
cupy a larger proportion of the display,
competition between the stimuli will in-
crease and overall suppressive drive will
increase. In turn, increases in suppressive
drive will lead to an overall reduction in
neural responses. Thus, in studies where the
spatial extent of visual stimuli increases with

the number of choices, reduced neural responses might not be in-
duced by having more options per se but instead by increasing the
spatial extent of the visual stimuli, which drives changes in divisive
normalization (e.g., Purcell et al., 2012; Chau et al., 2014; Keuken et
al., 2015). The main result from our study suggests that this is a
plausible account of some previous findings because, when we
equated the spatial extent of visual stimuli across 2AFC and 4AFC
tasks, we observed no change in SSVEP signals and an elevation
instead of a reduction of the LPD amplitude.

Figure 8. ERPs. a, ERPs time-locked to stimulus onset in the midline frontal and contralateral posterior-occipital electrodes,
respectively (data collapsed across all of the 6 target pedestal contrast levels). Black bars below the ERP traces represent the time
windows where attention and choice modulations were tested (400 – 800 ms). b, Topographical maps showing ERP differences
between divided and focused attention conditions and between 4AFC and 2AFC tasks. Left and right sides of the topographical
maps represent the ipsilateral and contralateral hemisphere, respectively, with respect to the target stimulus. Shading and error
bars indicate within-subject SEM. *p � 0.05, **p � 0.01, ***p � 0.001.
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Many previous decision-making experiments explicitly model
the behavioral data using variants of an accumulate-to-bound
model (e.g., Churchland et al., 2008; Purcell et al., 2012). How-
ever, the present study controlled difficulty across experimental
conditions and is thus not amenable to fitting with this family of
models as different accuracy levels, and RT distributions are re-
quired to dissociate changes in different model parameters. Sub-
jects in the present task had to discriminate a contrast difference
across spatial locations while we adjusted contrast increments (or
�c) to maintain a fixed accuracy level of �76% across all exper-
imental conditions. Thus, subjects had to accumulate evidence
about �c across time. While �c varied across different pedestal
contrast levels, the amount of sensory evidence available to sup-
port decision-making was fixed. As a result, there were no RT
differences across contrast levels (or accuracy differences), and
using a formal accumulate-to-bound model would not yield fur-
ther insights because parameters, such as the drift rate, would be
the same across conditions. That said, we did observe clear evi-
dence showing that attention and choice modulations have dis-
sociable effects on the LPD component, which has been
consistently shown to track evidence accumulation processes
(O’Connell et al., 2012; Kelly and O’Connell, 2013; Twomey et
al., 2015; Loughnane et al., 2016; Rungratsameetaweemana et al.,
2018). Thus, even though formal modeling might not reveal any
interesting differences between model parameters because we
controlled accuracy across conditions, our task still likely in-
volves the same types of information processing mechanisms that
have been previously discussed in the literature.

Finally, it is possible that the discrepancies between the results
from our LPD data and single-unit data in LIP and FEF reported
by previous studies could be due to the diffuse nature of EEG
signals (Churchland et al., 2008; Purcell et al., 2012). That said,
the LPD component is a well-validated marker of decision-
making processes, as it tracks sensory evidence accumulation in a
similar fashion as ramping activity in LIP and FEF neurons
(O’Connell et al., 2012; Kelly and O’Connell, 2013; Twomey et
al., 2015; Loughnane et al., 2016; Rungratsameetaweemana et al.,
2018). Moreover, in the present study, we showed that the LPD
component was a sensitive measure that was modulated by both
changes in the distribution of attention and the number of
choices. Finally, the observation that these two cognitive factors
have opposing effects on LPD amplitude was not due to the dif-
ferential effects in behavioral data as both dividing attention and
increasing the number of choices increased contrast thresholds
and mean RTs by a similar amount.

So far, empirical studies investigating the influence of choices
on perceptual decision-making processes have only used simple
visual stimuli (e.g., Balan et al., 2008; Churchland et al., 2008;
Cohen et al., 2009; Purcell et al., 2012), whereas decision-making
in real life involves more complex stimuli (e.g., selecting a meal
from the menu or buying a shirt from the department store).
Here, we argue that perceptual decision-making is a good, albeit
simplified, model for many other general decision-making pro-
cesses because, in almost all types of decision-making, one has to
ponder some form of sensory evidence and use that evidence to
make a decision. For example, while selecting a meal from the
menu, one could sit at the restaurant for an hour pondering how
the combined sensory experience of all the ingredients will taste
before deciding what to eat. This will likely yield a reasonable
decision and hopefully an enjoyable meal. However, one could
also just base their decision on the anticipated flavor of the first
ingredient and not ponder how all the sensory experiences in-
duced by different ingredients will interact. In this case, the deci-

sion will be fast but far more likely to end in an unpleasant
experience. That said, there is no doubt that our paradigm is a
simplified model for these more complex scenarios, and future
experiments with more real-world stimuli will be needed to aug-
ment the present results.

Overall, our results suggest that previously reported reduc-
tions in neural activity and in accumulation rates in frontal and
parietal cortex may be a result of increases in the distribution of
attention and changes in task difficulty. Importantly, when these
factors were controlled, increasing the number of choices selec-
tively increases decision-related responses over frontal cortex and
does not modulate sensory responses over occipital cortex. To-
gether, this pattern suggests that having more choices changes the
way human observers weight otherwise stable sensory evidence,
and this leads to elevated decision thresholds and slower
decision-making.
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