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Reproducibility Summary

Scope of Reproducibility

Nigam et al. (2020) report a genetic algorithm (GA) utilizing the SELFIES representation (Krenn et al., 2020) and also
propose an adaptive, neural network-based penalty that is supposed to improve the diversity of the generated molecules.
The main claims of the paper are that this GA outperforms other generative techniques (as measured by the penalized
logP) and that a neural network-based adaptive penalty increases the diversity of the generated molecules.

Methodology

We re-used the code published by the authors after minor refactoring and re-ran the key experiments on a typical
workstation (two 16 core Intel Xeon Gold 5218s, Quadro RTX 6000) within two weeks using more recent versions of
the dependencies. In particular, we used a new, major version of the SELFIES library and also quantified the diversity
of the generated molecules and the effect of different hyperparameters. All of our experiments were tracked on the
Weights and Biases platform (Biewald, 2020).1

Results

Overall, we were able to reproduce comparable results using the SELFIES-based GA—but mostly by exploiting
deficiencies of the (easily optimizable) fitness function (i.e., generating long, sulfur containing chains). In addition, we
also reproduce results showing that the discriminator can be used to bias the generation of molecules to ones that are
similar to the reference set.

What was easy

Reproducing all the key results (including the plots) was easy since the authors provided code with pre-defined settings
and useful comments for every relevant experiment. Hence, it did not require complete implementation from scratch.

What was difficult

Without the provided code, reproducing some parts of the papers would have been significantly more time-consuming
as the paper did not provide the complete settings required to reproduce the data. In the original article, there was also
no indication of how the hyperparameters (e.g., architecture of the discriminator model, weighting of different parts of
the fitness function, choice of discriminator loss) were optimized.

1interactive visualizations are available at https://bit.ly/3oqhzZl

Preprint. Under review.
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Communication with original authors

We contacted the authors to clarify some questions about discrepancies with the baseline experiment and also provided
them with a draft of this report. The original reacted appreciative to the draft of our report.
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1 Introduction

The accelerated discovery of new materials and molecules requires efficient techniques to explore chemical space. Since
chemical design space is vast, simple enumeration and brute-force screening approaches with experimental testing are
unfeasible. For example, Polishchuk et al. (2013) estimated the number of drug-like molecules to be between 1023 and
1060.

To address this problem, generative techniques such as generative adversarial neural networks (GANs) (Goodfellow
et al., 2014; De Cao and Kipf, 2018), variational autoencoders (VAEs) (Kingma and Welling, 2013; Gómez-Bombarelli
et al., 2018; Kusner et al., 2017; Liu et al., 2018) and genetic algorithms (GAs) (Devillers, 1996; Supady et al., 2015)
have received mounting attention from the chemistry community as means to efficiently perform “inverse design”
(Sanchez-Lengeling and Aspuru-Guzik, 2018). That is, rather than exhaustively searching through chemical space,
inverse design allows one to optimize chemical design based on a desired target property. A limitation of these
approaches, however, lies in the fact that they often use a conventional string-based molecular representations known as
simplified molecular-input line-entry notation system (SMILES), which require careful treatment to ensure the validity
of the generated molecules, as most SMILES do not correspond to valid molecules. To remedy this problem, Krenn
et al. (2020) proposed SELFIES, a string representation for which the random arrangement of characters corresponds
to a valid molecules. This property has been recently exploited by Nigam et al. (2021) to efficiently interpolate in
chemical space and was also proposed by Nigam et al. (2020) for use in GAs.

Similar to the previous works of Jensen (2019) and Brown et al. (2019), the results by Nigam et al. (2020) suggest
that conventional approaches such as GA can outperform generative machine learning models and are therefore an
important reference for future advancement in the field.

2 Scope of reproducibility

We chose to address the following main claims from the original paper:

Claim 1: Genetic algorithms operating on SELFIES outperform state-of-the-art generative models Nigam et
al. showed that their algorithm could achieve higher penalized logP scores than all references they considered. The
penalized logP score is hereby defined as logP coefficient penalized with the synthetic accessibility score (SA), and a
ring penalty

J(m) = logP(m)− SA(m)− ring penalty(m). (1)
The logP coefficient is an estimator of the solubility, synthetic accessibility score is a heuristic reported by Ertl and
Schuffenhauer (2009) that estimates the ease of synthesis (a lower score means easier synthetic accessibility), and the
ring penalty penalizes cycles larger than six. Hence, molecules with higher J(m) are thought to have a more drugable
profile than those with low J(m). In addition, Nigam et al. also demonstrated that a GA on SELFIES can perform well
on optimization of other objectives such as similarity-constrained optimization or optimization of two conflicting goals.

Claim 2: A neural network derived discriminator term, D(m), added to fitness (J(m) + βD(m)) increases the
diversity of the generated molecules Nigam et al. did not quantify the diversity of the generated molecules beyond
an unsupervised analysis of the GA trajectory, but achieved higher penalized logP scores than compared to those
without the discriminator term—especially when employed in a time-adaptive setting.

In addition to analyzing the reproducibility of these claims, we also attempted to quantify the evolution of the diversity,
understand the influence of some hyperparameters, and propose improvements to the adaptive penalty.

3 Methodology

We based our replication study on the code provided by Nigam et al.2 We used one workstation to run all experiments,
which are mostly CPU-bound (requiring around 3 s to 8 s per GA generation on our workstation). The code we used,
including the analysis code, is available in a GitHub repository.3

3.1 Algorithm

We re-used the GA implementation from the original paper and the discriminator model architecture (two-layer feed-
forward network with sigmoid activations trained on the binary cross entropy loss using the Adam optimizer (Kingma

2http://github.com/aspuru-guzik-group/GA
3https://anonymous.4open.science/r/041b3ae6-3bc2-4228-b56f-59e799f2c430/
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and Ba, 2015) with learning rate set to 0.001 and weight decay set to 1× 10−4; model artifacts are available on the
Weights and Biases platform). Nigam et al. (2020) did not report how they selected this architecture and parameter
setting. For this reason we ran additional experiments using logistic regression as the discriminator model.

3.2 Datasets

We used the ZINC dataset (Irwin et al., 2012) provided in the GitHub repository associated with the original paper
for some baselines and constrained improvement experiments.4 The J(m) scores are normalized with respect to this
dataset (logP: mean 2.47, standard deviation 1.42, SAS: mean 3.05, standard deviation 0.831, ring penalty: mean 0.038,
standard deviation 0.224).

3.3 Hyperparameters

Details about hyperparameter tuning were not provided in the original paper. Hyperparameters were set for all ex-
periments in the code provided by the original reference and were re-used in this work. Furthermore, we performed
some additional experiments in this work to better understand the influence of the β parameter, model architecture, and
training setup.

3.4 Experimental setup

The code used for this study is available on GitHub5. All experiments (including the failed attempts) were tracked
using the Weights and Biases platform6.

3.5 Computational requirements

The experiments do not necessarily need to be run on GPU for high performance, since only some of them use the
neural network-based discriminator and since the model that is employed is small. The computational burden lies
much more in the CPU-bound GA operations. Each GA generation takes 3 s to 8 s to run on one core (note that the
original implementation already included some parallelization for the score calculation, and we used a population size
of 500 for all experiments). Also the process memory requirements are low (< 100MB). It is pratical to parallelize the
score evaluations, especially for the Guacamol benchmark. Exact timings for all experiments and traces of hardware
utilization can be found in the dashboard on the Weights and Biases platform.

4 Results and Discussion

Based on the code provided by the authors, we could reproduce results showing that a SELFIES-based GA can create
molecules with high J(m) (numerically higher than the references considered by Nigam et al. (2020)) and that the
adaptive penalty can bias the generation of molecules that are similar to a reference set. We could also show that the
SELFIES-based GA can outperform relevant baselines in some aspects but lacks intra-population diversity.

4.1 Baselines

Nigam et al. computed the penalized logP score for random SELFIES and found an impressively high score of
6.19± 0.63, outperforming many other generative techniques such as VAEs, (Gómez-Bombarelli et al., 2018; Dai
et al., 2018) and Monte-Carlo Tree Search (MCTS) (Yang et al., 2017). We were able to reproduce the result when
using the exact same version of the SELFIES library (v0.1.1). However, we obtained considerably lower scores when
running this experiment using the latest version of the SELFIES library (v1.0.2), for which some bugs have been fixed
and modifications such as kekulization as well as an extended alphabet have been added (i.e., more complex molecules
can be assembled). To ensure compatibility of the latest SELFIES version with the old one, we ran experiments using
the same alphabet (of 21 characters) as in the original study and an extended alphabet (of all 61 semantically robust
characters), while keeping the constraints in both experiments to a maximum of 81 characters.

4The dataset is available as artifact on the Weights and Biases platform https://wandb.ai/kjappelbaum/ga_replication_
study/artifacts/raw_data/zinc_dearom/569e6cb67973e9983697/files

5https://anonymous.4open.science/r/041b3ae6-3bc2-4228-b56f-59e799f2c430/
6https://wandb.ai/kjappelbaum/ga_replication_study
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our results (v1.0.2, original alphabet)

Nigam et al.

our results (v0.1.1, original alphabet)

2 4 6 8

J(m)

our results (v1.0.2, extended alphabet)

Figure 1: Penalized logP (J(m)) distributions for different baseline experiments. Dashed lines in the violins indicate
the quartiles. The dotted line indicates the best of dataset baseline (on the ZINC dataset used for this study), which is
the most relevant baseline, as one wants to improve upon existing datasets with generative models.

The reasons for the high baseline score reported in the original paper is clear when one compares a few randomly
sampled molecules: Using the original approach, the molecules have a higher density of aromatic rings, which increases
the penalized logP score.

We suspect this high baseline is achieved due to an inductive bias introduced by the code, as we have found that some
SELFIES created with the 21 character alphabet could not be decoded into valid SMILES using SELFIES version 0.1.1.
We could decode those SELFIES using v1.0.2. and found J(m) = −4.30± 2.73 (averaged over 50 000 SELFIES that
raised errors in v0.1.1. but could be successfully decoded into SMILES without RDKit warning/error with v.1.0.2.)
For this reason, we used version 1.0.2 of the code for all subsequent experiments. More importantly, our results show
that choosing a relevant baseline is nontrivial as, for example, the choice of the alphabet can be thought of as inductive
bias. Hence, following Brown et al. (2019), we suggest that the “best of dataset” is a more relevant baseline as any
good generative model should outperform the training set or starting population. Furthermore, we find that comparing
algorithm performance based on penalized logP scores without setting a limit to molecular size can be misleading, as
this score can be maximized by simply increasing the molecular size, whereas from a practical point of view such large
molecules have limited potential as a drug molecule (for example, very large logP values can lead to pharmakokinetic
problems). We note that Nigam et al. (2020) did apply a relatively high threshold limit to the maximum molecular size
(81 characters). In contrast, Jensen (2019) applied a threshold of 39.15± 3.50 non hydrogen atoms for their GA.

4.2 SELFIES GA without discriminator (Claim 1)

Using the GA, Nigam et al. (2020) could achieve nearly double the highest reported penalized logP score reported so
far by evolving SELFIES seeded with a methane molecule. As noted earlier, Nigam et al. applied a higher threshold
on the maximum number of heavy atoms than some other previous works. We find a comparable score of J(m) =
11.911± 1.262 (averaged over 10 runs) using the same approach as in the original paper, albeit the highest-scoring
molecules have a heavy atom count of 58.800± 9.775.
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(a) Random sample of molecules created in the base-
line experiment by the original authors.

(b) Random sample of molecules created in our base-
line experiment.

(c) Random sample of molecules created in our base-
line experiment with extended alphabet.

(d) Random sample of molecules that could not be
decoded to valid SMILES using SELFIES v0.1.1, but
could be decoded using SELFIES v1.0.2.

Figure 2: Randomly sampled molecules for our different baseline approaches.

4.3 SELFIES GA with discriminator (Claim 2)

In the original paper, the discriminator neural network is trained jointly on mutated SELFIES strings, and data from the
reference as a binary classifier, where molecules from the reference set are labeled with 1. Increasing β hence means
biasing the GA to create molecules that are similar to the reference set. This also means that molecules that survive
for longer times will tend to reduce D(m). The intuition behind this is that a large discriminator term will force the
chemistry to be similar to the reference set and cause long-surviving families to die. Note that in this study we also
investigated negative β, which effectively penalizes molecules that are similar to the reference database.

Similar to Nigam et al. we find that large β yields J(m) around zero (Figure 3), as the scores are normalized with
respect to the reference set. From Figure 4, we can clearly see that if we reward similarity to the reference set (large β),
the generated molecules are more complex and contain a larger variety of functionalities. It also interesting to use large,
negative β. This effectively penalizes similarity to the reference set. For β = −100 we observe that the GA generates
small molecules, e.g. nitrous oxide, that often do not contain any carbon.

Our GA runs outperform the ones reported in the original paper in terms of J(m), but also in our case, the GA exploits
deficiencies in the scoring function.

4.3.1 Internal diversity quantification

Nigam et al. emphasize the importance of diversity in the generative molecules in qualitative terms. It is instructive to
quantify how the different generative approaches discussed in this work influence the diversity. To do this, we follow
the approach proposed by Benhenda (2017) and calculate the mean pairwise Tanimoto distance Td(x, y) of the Morgan
fingerprints (Rogers and Hahn, 2010) of the set A best-performing molecules obtained in the last generation, that is

internal diversity =
∑

(x,y)∈A×A

Td(x, y)/|A|2. (2)

From Figure 5 we see that a low β increases the similarity between subsequent best performing molecules within a
generation, whereas high, positive β decreases the similarity between the highest-scoring molecules—but also forces
J(m) to be near the mean of the reference set (Figure 3).

For some applications it is important to generate a diverse set of high performing molecules, for example, as in the case
of drug discovery where the chances of commercialization of an early lead structure are quite low. For this reason, we
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Figure 3: J(m) evolution as a function of β. The means and the 1σ interval of multiple runs are shown by the solid
lines and shaded regions, respectively.
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Figure 4: Evolution of the best performing structures generated by the GA for different β. The means and the 1σ
interval of multiple runs are shown by the solid lines and shaded regions, respectively.
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Figure 5: a) Evolution of internal similarity as a function of β. Mean pairwise Tanimoto similarity of the Morgan
fingerprints of the best performing molecules in the last five generations. In general, the GA converges to the creation
of similar molecules except for high β > 10. b) Evolution of the heavy atom count as a function of β. For high β > 10,
the generated molecules are significantly shorter than those for low β. The means and the 1σ interval are shown by the
solid lines and shaded regions, respectively.

analyzed how many unique and diverse molecules the GA generates. From Figure 6 we see that the fraction of unique
molecules and the diversity within a generation is decreasing as the optimization progresses. For the fraction of unique
molecules, we find that all positive and small negative values of beta β show similar behaviors, yielding about 40%
unique molecules after 500 generations. Only the lowest values of β do not reach more than 20% unique molecules.
In terms of intra-population diversity, we find that high values of β biases the generation to more diverse populations.

4.4 Time-adaptive penalty (Claim 2)

A typical issue with GAs is that they can get stuck and only return the same molecule for multiple iterations. To
mitigate this problem, Nigam et al. proposed a time-adaptive penalty in which they added a 1000D(m) term to the
fitness function only if the maximum fitness stagnated at the exact same maximum fitness value for the last five
generations. The authors could significantly increase the maximum J(m) found by the GA using this approach but did
not justify their choice of β. We also performed this experiment with different β and quantified the evolution of internal
diversity and molecular sizes. From Figure 7 we find that the time-adaptive penalty frequently reduces the J(m) and
mean Tanimoto similarity, after which both quickly recover. This, on average, reduces the mean Tanimoto similarity of
the best performing molecules with increasing β. Notably, this average is higher than for the case in which the same
β is applied all the time. By analyzing multiple independent runs we can quantify how the generator stagnates under
different β. Stagnation is defined here in the same way Nigam et al. defines it in their code, i.e., if maximum J(m) has
not changed for five generations. From Figure 8, we see that runs at low β have a higher chance of getting stuck for a
substantial number of generations due to the penalty not having a large enough effect on the fitness function. In one
case (β = 200), the generator stagnated for 80% of generations.

4.5 Constrained optimization

A common benchmark task for generative models is to generate molecules that are similar to some target. Nigam et
al. adapted the experimental framework from You et al. (2018) in which one aims to improve the J(m) for 800 low
performing structures from the references set. Similar to Nigam et al. we performed this experiment with two similarity
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Figure 6: a) Fraction of unique molecules per generation for different β. b) Internal diversity (estimated using the
mean Tanimoto distance of radius 2 Morgan fingerprints) of the population per generation for different β. To make the
estimation of the internal diversity more efficient we calculate it on a random subset of 100 out of 500 molecules from
the population.

thresholds δ = {0.4, 0.6} between the Morgan fingerprints of the target molecule and the GA output, but limited our
study to 285 molecules for δ = 0.4 and 120 for δ = 0.6. Overall, our findings agree with the ones of Nigam et al., even
though we observe slightly lower success rates (we count a run as success when the improvement in the score > 0).
More specifically, we fail to improve J(m) for more molecules than Nigam et al. and could not achieve the perfect
success rate of 100%. For a similarity threshold of δ = 0.4, we find an average improvement of 4.11± 1.58 and a
success rate of 99%. For the larger tolerance of δ = 0.6, we find an average improvement of 1.87± 1.32 and a success
rate of 100%. We find that the mean improvements agree to within the error margins of those reported by Nigam et al.
(2020).

4.6 Optimization of multiple properties

To demonstrate the versatility of their approach, Nigam et al. also incorporated the quantitative estimate of drug-likeness
(QED) score (Bickerton et al., 2012) into their loss function. This is an interesting problem as solubility indicator, logP,
and the QED score cannot be maximized at the same time, i.e., one would like to recover the Pareto front. From
Figure 9a) we see that the best performing molecules in a generation quickly converge to one point of the Pareto
front, i.e., after 100 generations we do not observe much evolution of the properties of the top scoring molecules. From
Figure 9b) we find that the molecules in the final generation have a good Pareto front coverage, but only in few instances
outperform the original Pareto optimal molecules from the ZINC dataset (we find the hypervolume of the Pareto front
of the ZINC database to be 7.37 and the one found by the GA to be 7.14 w.r.t. the nadir point of the ZINC dataset).

4.7 Similarity-triggered adaptive penalty

Nigam et al. used the time-adaptive penalty to encourage explorative behavior. They measure estimated stagnation
based on constant maximum fitness. We anticipated that better results with greater molecular diversity could be achieved
by using a penalty that is applied based on an explicit structure similarity criterion. Therefore, we implemented an
adaptive penalty based on the internal molecular similarity of the best-performing molecules in the last five generations
(measured in terms of the average pairwise distances of the Morgan fingerprints (Rogers and Hahn, 2010) as proposed
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Figure 7: Evolution of J(m), similarity, and molecular size under a GA with the time-adaptive penalty proposed by
Nigam et al. Thick horizontal lines in panel b) indicate the mean Tanimoto similarity after generation 100. The means
and the 1σ interval of multiple runs are shown by the solid lines and shaded regions, respectively. Note that the standard
deviations between runs increase with increasing β.
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(β). Stagnation is defined here in the same way Nigam et al. defines it in their code, i.e. if maximum J(m) has not
changed for five generations.
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Figure 9: a) Evolution of QED and penalized logP for the best-performing molecules in a generation. b) Distribution
of penalized logP and QED for the molecules of the final generation compared to the distribution in the ZINC dataset.

by Benhenda (2017)). In contrast to Nigam et al., who started to impose this penalty after 100 iterations, we started
imposing this adaptive penalty after 20 generations. We did this based on the consideration that after 20 generations,
the GA should have enough time to evolve away from the methane starting point to some decently performing molecule
(see for example Figure 9a); note that we did not tune this hyperparameter).

From Figure 10 we see that the success with this penalty highly depends on the similarity threshold. If it is chosen too
small (i.e., close to non-significant following Vogt and Bajorath (2020)) the fitness does not improve. We find that by
using the similarity-triggered penalty we can keep the similarity between subsequent top-performing molecules under a
user-defined threshold. Interestingly, we also observe that this does not necessarily compromise J(m). We find scores
comparable to the highest ones shown in Figure 3—however, we do not converge to a similarity of close to unity using
the similarity-triggered penalty.

4.8 Influence of the labeling convention

In the setup proposed by Nigam et al. long-surviving molecules will return low discriminator scores D(m). One
extension of this approach can be to penalize long-surviving molecules, i.e., subtract a penalty from the fitness for
molecule classes that are long-surviving. This can be achieved by reversing the way in which the discriminator model
is trained, i.e., predicting a score > 0.5 for long-surviving molecules (instead of 0 in the original approach). Figure 11
shows some results under this framework. We see that with the reversed labeling convention, J(m) is not as sensitive
to changes to β than compared with the labeling convention chosen by Nigam et al. (2020). This is also consistent with
what we observe in the evolution of the discriminator scores (Figure 12). The reversed labels fail to reach this objective
(for large β in the original labeling convention we can bias the GA to the generation of molecules with large D(m)) .
We suspect that this behavior occurs, because it is easier for the model to learn the similarity to the reference set than
it is to learn the stagnation, potentially due to low intra-population diversity. These observations might imply that the
discriminator term rather works via biasing to similarity to a reference set rather than by penalizing long-surviving
molecules.

To understand this behavior better, we compared the evolution of the best performing molecules for different β. We find
that the D(m) penalty encourages exploratory behavior in the first few generations. After 100–200 generations, the GA
begins to recognize patterns (long chains with sulfur) that it can easily exploit and outperforms J(m) that have been
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Figure 10: Evolution of properties using similarity-triggered discriminator penalty. Solid lines indicate means of
independent runs, shaded regions indicate 1σ regions.
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Figure 11: Evolution of properties under GA with discriminator trained with reversed labels. The means and the 1σ
interval of multiple runs are shown by the solid lines and shaded regions, respectively.
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Figure 12: Evolution of discriminator scores D(m) with continuously applied βD(m) term under the original labeling
convention (a) and flipped labeling convention (b). The means and the 1σ interval of multiple runs are shown by the
solid lines and shaded regions, respectively.

previously reported. Again we note, however, that this is mainly attributed to the larger molecular size (see Figure 11c).
For large β (i.e., encouraging similarity) we find that the scaffold mainly evolves by elongating linear chains.

In comparison to Figure 4, we also observe that molecules do not contain functionalities as complex as those found for
large β with the original labeling, with which we can explicitly reward similarity to the reference set. Note that with
the flipped labels, the molecules from the reference set will yield a discriminator score of D(m) = 0.

4.9 Influence of discriminator model architecture

Nigam et al. did not rationalize the choice of the model architecture. To understand the sensitivity of the algorithm
performance to the architecture of the discriminator model, we replaced the neural network with a logistic regression
model (i.e., we use only one hidden layer) and ran experiments with different β. From Figure 14, we see that the simpler
model can also be used successfully as a discriminator and reproduce the same dependence of J(m) on β as seen in
the runs with neural network-based discriminator model. Analysis of the evolution reveals an interesting difference
compared to the deeper model—the logistic regression performs worse in penalizing long-surviving molecules. In other
words, we observe higher similarities of consecutive molecules for high β.

4.10 Performance on the GuacaMol benchmark

As a subsequent benchmark study, we tested the GA on the goal-directed benchmarks from the GuacaMol library,
which have been shown to be more challenging than the optimization of simple molecular properties such as J(m)
(Brown et al., 2019). Furthermore, to test whether the SMILES-based GA (Yoshikawa et al., 2018) can improve over
the “best of dataset” within the GuacaMol benchmark suite, we initialized the GA with the best scoring molecules
from the GuacaMol dataset. Note that we did not perform an exhaustive and systematic hyperparameter optimization7,
wherefore the scores (Table 1) represent a lower limit on the performance of the SELFIES-GA.

7we tested 10, 100, and 400 generations (n), and different β ∈ {0, 100, 1000}, as well as similarity thresholds (δ ∈
{0.2, 0.4, 0.8}), but did not try the extended alphabet in the new SELFIES version, different population sizes, different patience
of the time-adaptive penalty, or multiple random restarts. We only considered the molecules in the final generation for the scoring.
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Figure 14: Comparison of the GA performance with logistic regression as discriminator and a multilayer neural network.
The means and the 1σ interval of multiple runs are shown by the solid lines and shaded regions, respectively.

14



We did not find the SELFIE-bases GA to outperform the best performances in the leaderboard, but—even without
systematic parameter tuning—we did find it to mostly improve beyond the “best of dataset” benchmark, and in some
cases (e.g., Celecoxib rediscovery), also to perform better than the grammatical evolution of SMILES reported by
Yoshikawa et al. (2018) (SMILES-GA baseline). Most striking are the lower scores on the isomer discovery tasks
(C11H24, C9H10N2O2PF2Cl). Even with discriminator-based penalty the GA returns only few unique molecules, which
reflects the findings shown in Figure 6 in which the GA converges to a low number of unique molecules. In the case
of isomer discovery, this issue is exacerbated since all valid isomers will have the same fitness, and hence the same
probability of being replaced with mutations on one of the top-scoring molecules. Additionally, there is no term that
encourages diversity within a population. For these reasons, we observe that the isomer discovery scores improve if we
run the GA for fewer iterations (we see from Figure 6 that the fraction of unique molecules decreases over the course of
the optimization). On the other hand, if only top-1 scores are considered (as in the rediscovery tasks) the SELFIES-GA
outperforms the SMILES-GA baseline. For these tasks, we see that running the GA for more iterations improves the
scores.

5 Conclusions and Future Work

In summary, we could easily reproduce high performance in the optimization of the penalized logP score using the
SELFIES based GA. We could also reproduce behavior showing that an adaptive penalty can be used to bias the GA to
the generation of molecules that are similar to a reference database. Building on top of the work of Nigam et al., we
also quantified the evolution of similarity for different β and investigated the influence of the discriminator model, the
labeling convention, and proposed a new way of applying the time-adaptive penalty, which we found to outperform the
original results.

However, our analysis also highlights the need for fairer comparisons when benchmarking generative algorithms. The
GA mostly outperforms the scores reported so far mainly by exploiting deficiencies of the J(m) scoring function,
which results in the generation of long molecules with unfeasible substructures (e.g., sulfur chains). For this reason, we
also benchmarked the performance of the algorithm on the GuacaMol set of benchmarks.

Notably, we observed that there is often a relatively low diversity in the molecules within a generation—which leads
to low scores on some of the GuacaMol benchmarks (in which not only the top-1 score is considered). Since a large
pool of diverse molecules is quite relevant for applications with high failure rates (e.g., drug discovery), we propose the
addition of penalty terms of the form 1− internal population diversity to the fitness so that the GA is biased toward
a higher intra-generation diversity.
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Table 1: Scores on the GuacaMol v2 benchmarks (Brown et al., 2019). MPO objectives are multi-property objectives,
and Hop benchmarks aim to maximize the similarity to a target while keeping or excluding specific functionalities.
Median benchmarks optimize the similarity to multiple molecules at once. For all runs, we used a generation size of
500, the alphabet employed in the original paper, and seeded the first population with the best scoring molecules from
the reference dataset provided by the GuacaMol library. “Leading” refers to the best score reported in the leaderboard
(https://www.benevolent.com/guacamol).

benchmark SMILES
GA

leading original
β =
1000,
n =
100

β =
1000,
δ = 0.4,
n = 10

β =
1000,
δ = 0.8,
n =
100

β =
1000,
δ = 0.2,
n =
100

β =
100,
δ = 0.8,
n =
100

β =
100,
δ = 0.8,
n =
400

β =
100,
δ = 0.2,
n =
400

C11H24 0.83 0.99 0.01 0.30 0.01 0.01 0.03 0.01 0.01
C9H10N2O2PF2Cl 0.89 0.98 0.02 0.56 0.02 0.16 0.06 0.00 0.01
Osimertinib
MPO

0.89 0.95 0.39 0.78 0.65 0.43 0.33 0.33 0.37

Fexofenadine
MPO

0.93 1.00 0.36 0.73 0.46 0.52 0.39 0.35 0.40

Ranolazine MPO 0.88 0.92 0.41 0.74 0.34 0.35 0.37 0.34 0.35
Celecoxib redis-
covery

0.73 1.00 0.81 0.58 0.78 0.78 0.78 0.84 1.00

Troglitazone re-
discovery

0.51 1.00 0.64 0.46 0.57 0.70 0.65 0.57 0.64

Thiothixene
rediscovery

0.60 1.00 0.60 0.47 0.69 0.57 0.70 0.57 0.74

Aripiprazole sim-
ilarity

0.83 1.00 0.40 0.58 0.29 0.32 0.33 0.41 0.44

Albuterol simi-
larity

0.91 1.00 0.71 0.66 0.41 0.41 0.59 0.41 0.52

Mestranol
similarity

0.79 1.00 0.35 0.57 0.38 0.35 0.33 0.29 0.29

Median
molecules
1

0.33 0.44 0.13 0.27 0.15 0.15 0.15 0.15 0.15

Median
molecules
2

0.38 0.43 0.13 0.25 0.27 0.17 0.14 0.13 0.16

Perindopril MPO 0.66 0.81 0.51 0.55 0.49 0.31 0.30 0.32 0.27
Amlodipine
MPO

0.72 0.89 0.48 0.62 0.60 0.28 0.56 0.28 0.35

Sitagliptin MPO 0.69 0.89 0.32 0.51 0.31 0.32 0.35 0.31 0.33
Zaleplon MPO 0.41 0.75 0.24 0.50 0.27 0.27 0.25 0.25 0.25
Valsartan
SMARTS

0.55 0.99 0.36 0.69 0.36 0.36 0.36 0.36 0.36

Scaffold Hop 0.97 1.00 0.45 0.66 0.61 0.59 0.66 0.39 0.65
Deco Hop 0.88 1.00 0.55 0.81 0.46 0.86 0.71 0.43 0.44
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