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The modulatory effect of adaptive deep brain
stimulation on beta bursts in Parkinson’s
disease

Gerd Tinkhauser,1,2,3 Alek Pogosyan,1,2 Simon Little,4 Martijn Beudel,5 Damian M. Herz,1,2

Huiling Tan1,2 and Peter Brown1,2

Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed

stimulation all the time, as currently performed. In patients with Parkinson’s disease, elevations in beta activity (13–35 Hz) in the

subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback

control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation

may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences

between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal

dynamics of beta activity. The latter is not constantly increased in Parkinson’s disease, but comes in bursts of different durations

and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst

duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta

bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower

amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with

the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations.

Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the un-

stimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas con-

ventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain

stimulation provides a rationale for why this approach could be more efficacious than conventional continuous deep brain

stimulation in the treatment of Parkinson’s disease, and helps inform how adaptive deep brain stimulation might best be delivered.
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Introduction
Deep brain stimulation (DBS) is a well-established treat-

ment option for advanced Parkinson’s disease (Deuschl

et al., 2006; Hariz, 2012). Conventional DBS, as it is cur-

rently available, involves the continuous delivery of fixed

and high frequency (�130 Hz) stimulation. Its widespread

adoption as a treatment has motivated attempts to further

improve the effectiveness, efficiency and therapeutic

window of DBS. Presently, research in this regard has

focussed on three fields; the exploration of alternative

stimulation pulse durations, shapes and patterns (Moro

et al., 2002; Reich et al., 2015), the development of stimu-

lation electrodes with the capacity for current steering

(Timmermann et al., 2015) and the delivery of closed-

loop, adaptive stimulation instead of the current open-

loop treatment (Little and Brown, 2012). The increasing

evidence that exaggerated oscillatory synchronization in

the beta frequency band (13–35 Hz) in Parkinson’s disease

can be consistently seen in the local field potential (LFP)

picked-up in DBS target structures and that this is corre-

lated with motor impairment in Parkinson’s disease, has

qualified it as a potentially suitable feedback signal for

adaptive DBS (Abosch et al., 2012; Little and Brown,

2012; Little et al., 2013). In a first proof-of-principle

study in patients with Parkinson’s disease, it was shown

that using the beta band activity as a feedback signal for

unilateral adaptive DBS led to an improvement in contra-

lateral motor performance superior to that achieved with

conventional DBS, while battery consumption was

reduced by about half (Little et al., 2013). This has been

followed by a further patient series confirming the efficacy

of bilateral adaptive DBS (Little et al., 2015) and a case

report demonstrating a reduction in dyskinesias in

Parkinson’s disease with adaptive DBS using a different

control algorithm (Rosa et al., 2015). Moreover, in

acute trials, it has recently been shown that speech intel-

ligibility is preserved during adaptive DBS, while speech

deterioration was observed during conventional DBS

(Little et al., 2016).

The working principle of adaptive DBS in the two patient

series described above was based on the observation that

beta activity in the LFP is not consistently elevated, but

comes in bursts. Indeed, even in the physiological state,

beta activity in motor cortico-basal ganglia loops comes

in bursts, and it has been suggested that changes in beta

activity averaged over long periods or around repeated vol-

untary movements reflect changes in the probability of beta

bursts rather than any smooth modulation of beta activity

(Feingold et al., 2015). In healthy non-human primates,

bursts of beta oscillations are generally only a few cycles

long (Murthy and Fetz, 1992, 1996; Feingold et al., 2015).

Although burst durations in human basal ganglia (both

healthy and in Parkinson’s disease) are not reported in

the literature, the exaggerated mean beta activity levels in

Parkinson’s disease raise the possibility of more frequent

and/or longer bursts in this condition. Indeed, we might

also speculate that the correlation between mean beta

power and motor impairment, and treatment-induced

changes in mean beta power and corresponding changes

in motor impairment might actually partly reflect changes

in beta burst frequency and/or duration.

During adaptive DBS, as introduced by Little et al.

(2013), high frequency stimulation switches on solely

when the amplitude of beta rises above a preset threshold

and stimulation switches off when amplitude falls below

this threshold. The presumption is that the elevated beta

in these bursts is serving to index key circuit dysfunction

at these times. A candidate for this dysfunction is the very

synchronization of incoming signals and local neural ac-

tivity that, through spatiotemporal summation, underlies

the beta activity in the LFP, based on the notion that ex-

cessive synchronization compromises information coding

capacity and circuit performance (Brittain and Brown,

2014).

So what does adaptive DBS do? Does it act by changing

the frequency of beta bursts or by changing the distribution

of durations of bursts? And should the latter be borne out,

why might the duration of beta bursts be critical? Here we

assess these questions, and in so doing, provide important

insights in to the dynamic nature of the underlying circuit

disturbance in Parkinson’s disease and into the optimal

control policies needed to interact with these circuits for

maximal therapeutic advantage.

Materials and methods

Subjects and surgery

We investigated the effect of adaptive DBS compared to no
stimulation (noStim) and conventional DBS on bursts of beta

activity in 13 patients (16 hemispheres) with advanced

Parkinson’s disease undergoing DBS surgery of the subthala-

mic nucleus (STN) (Table 1). All subjects gave their written
informed consent and the local ethics committee approved the

study. The average age was 56.8 � 2.3 years and the preopera-

tive score on the motor section of the Unified Parkinson’s
Disease Rating Scale (UPDRS), was 41.5 � 3.4 OFF medica-

tion and 16.7 � 1.9 ON medication. The mean disease dur-

ation at the time of the surgery was 8.2 � 0.8 years.
Ten of the subjects have been previously reported, seven

of them in a unilateral adaptive DBS study (Little et al.,
2013) and three of them in a bilateral adaptive DBS study

(Little et al., 2015). These previous publications focused on

clinical effects and power savings during adaptive DBS.

Here we focus on the underlying electrophysiological
changes induced by adaptive DBS and how they may

relate to clinical changes. Inclusion criteria in the current

study were the same as in these previous studies, but subjects
also had to demonstrate improvement in motor performance

during adaptive DBS compared to no stimulation, as assessed

with selected items (20, 22, and 23) of the UPDRS Part III.
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Experiments and recordings

The operative procedure and experimental setting have been
described in our previous adaptive DBS studies (Little et al.,
2013, 2015). In summary, the LFP recording took place 3–6
days following the implantation of DBS leads (quadripolar
macroelectrode, model 3389, Medtronic) and prior to intern-
alization of the wires and connection to the subcutaneous im-
pulse generator. All subjects were withdrawn from
dopaminergic medication overnight prior to the recordings.
Bipolar recordings were performed from contacts 0–2 and 1–
3, band-pass filtered between 3 and 37 Hz and amplified using
a 3-stage common mode rejection amplifier. The bipolar con-
tact pair that showed the highest beta band activity (13–35 Hz)
was chosen for further recording. The frequency of the peak
activity within the beta frequency range was determined and
the signal digitally filtered around this peak frequency
(Table 1). The filtered LFP signal was rectified and smoothed
using a moving average filter of 400-ms duration to produce
an online value of beta amplitude. Conventional test stimula-
tion was performed to determine the stimulation voltage that
provided the best clinical benefit, without side effects such as
paraesthesia. During adaptive DBS, stimulation was only de-
livered when the beta amplitude crossed a threshold set to
deliver stimulation �50% of the time. The delay between
threshold crossing and onset of stimulation was 30–40 ms.
To overcome paraesthesia during the switching on and off of
stimulation, stimulation was ramped-up in 250 ms until the
target voltage value was reached. Once the stimulation was
triggered, it was sustained until beta amplitude fell below
threshold again. Stimulation was delivered from the contact
in-between the two used for recording, in a monopolar stimu-
lation mode at 130 Hz, with a pulse duration of 100 ms.

Clinical testing

All patients were clinically assessed during the no stimulation
(noStim) session using the UPDRS and patients were not in-
formed about the order of the randomly assigned experimental

conditions. Those motor UPDRS items that were consistently
tested across all patients were finger tapping (item 23), upper
limb rigidity (item 22) and upper limb rest tremor (item 20) so
these were therefore totalled for the arm contralateral to re-
cording side and used for further statistical analysis.

Between each condition a 5 min washout period took place.
The exact timing of the clinical evaluation has been reported
previously (Little et al., 2013, 2015).

Determination of beta bursts

Figure 1A illustrates the processing steps involved in the dis-
crimination of bursts of beta activity. The digitally filtered and
the rectified bipolar LFP signal that was generated online as a
substrate for thresholding was also recorded for off-line ana-
lysis. Such data were first visually inspected and 200 s of arte-
fact-free rectified signal in each condition was selected using
Spike2 software (Cambridge Electronic Design).

All further signal processing and data analysis steps were
performed using Matlab (version R 2015b; MathWorks,
Natick, MA). Data were downsampled to 200 Hz. To adjust
for potential baseline shifts, we performed a direct current (DC)
correction (20 s time constant) of the selected rectified signal.

Having focused on the variance in the beta signal by the
above processing we compared noStim, adaptive and conven-
tional DBS conditions by using a common threshold definition
for beta bursts across conditions. The duration of the beta
bursts was determined from the time points at which the DC
corrected, smoothed, rectified and filtered beta signal exceeded
a given threshold amplitude and then fell below this threshold.
Thresholds were defined in terms of percentiles of the signal
amplitude distribution. However, as the precise amplitudes of
percentile-defined thresholds could vary between conditions,
the applied threshold was set as the average of the amplitudes
corresponding to the selected percentile, and the same thresh-
old applied to all conditions for a given hemisphere. Thus
when the text refers to, for example, thresholding according
to the 75th percentile, the same threshold equivalent to the
mean of the 75th percentiles across conditions, is applied to

Table 1 Clinical and stimulation details

Subject Stim site Age, yr Disease

duration

Fr range

(Hz)

UPDRS ON/OFF

levodopa

Principal

DBS indication

Stimulation

voltage (V, L/R)

Centre

1 L, R 41 7 21 � 3 50/21 Motor fluctuations 3.4/3.3 London

2 L, R 66 6 20 � 3 42/19 Tremor 3.4/3.4 Oxford

3 L, R 52 8 20 � 6 40/11 Tremor 2.5/2.4 London

4 R 50 4 18 � 3 37/17 Motor fluctuations 2.8 London

5 R 57 8 19 � 3 42/29 Motor fluctuations/dyskinesia 2.7 London

6 R 67 7 26 � 3 43/14 Motor fluctuations/dyskinesia 1.8 Oxford

7 R 67 14 17–22 63/24 Motor fluctuations 2.4 London

8 R 62 10 22 � 3 20/8 Motor fluctuations/tremor 1.8 London

9 L 49 10 17–24 42/6 Tremor 1.6 Oxford

10 R 63 3 31 � 3 18/8 Tremor/ bradykinesia 2.6 Oxford

11 L 49 10 17 � 1 58/23 Motor fluctuations/tremor 2.1 London

12 L 59 12 19 � 3 42/20 Motor fluctuations/tremor/

bradykinesia

2.7 Oxford

13 R 57 8 16–20 43/17 Motor fluctuations 2.7 London

Mean � SEM 56.8 � 2.3 8.2 � 0.8 20.9 � 0.95 41.5 � 3.4/ 16.7 � 1.9 2.6 � 0.15

Stim = stimulation; yr = year; R = right; L = left; SEM = standard error of the mean; Fr = frequency.
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each condition. The same mean percentile threshold amplitude
was applied to all the different conditions to allow for the
potentially greater variance of the signal during adaptive
DBS due to the mixing of on and off stimulation periods.
Had we not done this, a given percentile threshold may have
been of higher amplitude in adaptive DBS than in conventional
DBS, and therefore burst duration potentially relatively under-
estimated in adaptive DBS. However, common thresholds were
not applied when comparing burst amplitudes between condi-
tions (see below). Here bursts were classified according to the
condition-specific amplitude percentile threshold (threshold
was not averaged across conditions). This was necessary so
as to not overestimate burst amplitude during adaptive DBS
due to different noise floor levels between conditions.

The selection of a given percentile amplitude threshold ac-
cording to the distribution of signal dynamics is somewhat
arbitrary. Empirical findings indicate that a minimum beta ele-
vation of �50% is sufficient to have a satisfactory clinical
effect, but could not exclude similar effects with higher thresh-
olds (Little et al., 2013, 2015). Accordingly, we looked for a
consistent change in distributions of beta bursts defined by a
range of different percentile thresholds above this minimum
(55, 60, 65, 70, 75, 80, 85, 90th percentiles) and integrated
these in our results. In addition, in the results we present the
findings for the 75th percentile threshold in more detail, as
exemplar.

The distribution of burst durations was considered by cate-
gorizing them into nine time windows of 100 ms starting from
100 ms to 4900 ms in duration (Fig. 1B). Note that the last
time window (4900 ms) includes bursts with a broader range
of duration. This was necessary as longer bursts became pro-
gressively less frequent and in this way we ensured sufficient
burst numbers in each window. We did not consider bursts
with durations shorter then 100 ms (less that about two cycles
in duration) to limit the contribution of spontaneous fluctu-
ations in amplitude due to noise.

As noted above, the rectified signal was filtered around the
individual beta peak frequency. To investigate if small shifts in
the beta frequency peak within a subject or condition could

affect the results of the burst distribution, the described algo-
rithm to derive beta bursts was also applied on the Hilbert
envelope of the broadly filtered signal (13–30 Hz) and key
analyses were repeated (see below).

For eight subjects (Cases 6–13) that were drawn from the
unilateral adaptive DBS study a random DBS condition was
also available (Little et al., 2013). Random periods of DBS
were delivered with a duration distribution and frequency
that was similar to that delivered during adaptive DBS,
except that in the latter case stimulation periods were triggered
by elevated beta activity in the STN region LFP. Beta bursts
during random DBS were derived with the same above-
described algorithm.

The motivation for focusing on beta burst duration was that
this is the obvious factor that adaptive DBS may change.
Thereby we hoped to identify if and how any change in the
distribution of beta burst duration might impact on the clinical
state. Previous studies have shown that conventional DBS sup-
presses the level of beta activity relative to the unstimulated
OFF medication state when activity is averaged over long per-
iods (Eusebio et al., 2011; Quinn et al., 2015; Neumann et al.,
2016). Whether adaptive DBS does the same has not been
explicitly reported (Little et al., 2013, 2015; Rosa et al.,
2015), perhaps because, in our experience, this form of stimu-
lation can be associated with a change in the effective noise
floor of the amplifiers used. A similar problem can also be seen
with continuous high frequency stimulation, due, in part to an
increase in 1/f noise during stimulation (Afshar et al., 2012;
Stanslaski et al., 2012). However, this problem may be exa-
cerbated in the case of adaptive DBS because stimulation is
intermittent. In particular, in some patients we observed a
low frequency component to the signal at the onset and
offset of each burst of stimulation, which may possibly reflect
a capacitance change at the brain electrode interface or an
amplifier transient. It was not observed at the onset and
offset of conventional DBS, but this is most likely because
conventional DBS was ramped up over several seconds.

In the current study, irrespective of overall beta levels, we
explore whether there is any change in the distribution of the

Figure 1 Steps of burst determination. (A) The analogue LFP signal was filtered around individual beta peak frequency (Table 1). The signal

was rectified and smoothed to obtain the envelope of the beta activity. For each condition a threshold was then set at the 75th percentile of the

beta amplitude. The onset of a burst was defined as when the rectified signal crossed the threshold amplitude and the end of the burst defined as

when the amplitude fell below threshold. (B) All bursts with a duration longer than 100 ms were considered. Bursts were further categorized

according to their duration into nine time windows (see ‘Materials and methods’ section). Example of burst scatterplot with burst shown up to

1000 ms (Subject 3, left side).
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beta bursts; in effect we focus on an aspect of the beta signal
variance rather than on its mean. This was achieved by DC
correction of the rectified smoothed signal. The 20 s time con-
stant of this correction made allowances for any slow shifts in
the mean baseline level of beta, thereby further focusing our
analysis on the more dynamic elements of the signal variance,
the beta bursts. A practical benefit of the above approach is
that it also limited any impact of changes in the effective noise
floor of the amplifier upon which biological changes in LFP
activity are superimposed. This noise floor may potentially
vary between adaptive and conventional DBS, particularly at
low frequencies, as discussed above.

An alternative approach to our DC correction method might
have been to normalize the stimulation conditions by the
noStim data. However, this approach has the disadvantage
that the results may have been affected by any change in the
effective noise floor of the amplifier in and between stimulation
conditions. It would also fail to limit the effect of any slow
shifts in the mean baseline level of beta during stimulation.
Note that in practice, there was no difference in the mean
amplitude of the threshold level between conditions across
subjects in our data (see ‘Results’ section).

Data analysis and statistics

The burst results were derived at the level of each hemisphere.
To investigate the distribution of bursts with different dur-
ations between the conditions, we performed a two-way re-
peated measures ANOVA with a 9 � 3 design (nine time
windows, three conditions). Additionally, for each hemisphere
the total number of bursts was calculated and compared using
a one-way repeated measures ANOVA. The burst distribution
was further analysed as a dichotomized distribution consisting
of short bursts (100 ms to 600 ms) and long bursts (4600 ms)
and two-way repeated measures ANOVA repeated on these
data with a 2 � 3 design (two time windows, three condi-
tions). In a second step the burst distribution was replaced
with the total time spent during short and long bursts and
the same analyses applied. To investigate the total number of
bursts and total time spent in short and long bursts, we aver-
aged the dichotomized burst distributions derived from each
percentile threshold (percentage normalization to the sum of
the number or total duration of all bursts across time win-
dows) and performed a two-way repeated measures ANOVA
with a 2 � 3 design (two time windows, three conditions).
Significant main effects and interactions were further investi-
gated with post hoc tests.

The mean amplitude of the bursts with different duration
time windows and different stimulation conditions was also
calculated. The relation between burst amplitude and burst
duration was assessed by applying Spearman bivariate correl-
ation (rs = Spearman’s rho), separately at the group level and
within hemispheres. The same bivariate correlation was re-
peated for each threshold, and the average r’s for each condi-
tion, as well as the number of significant correlations out of 16
cases, are reported. To investigate the effect of stimulation
condition on the overall burst amplitude, we averaged the con-
dition-specific amplitude across all duration time windows for
each hemisphere. We then compared the means by applying a
one-way repeated measures ANOVA. For the comparison of
the amplitude suppression across the different thresholds, we
again averaged the condition-specific amplitude across all

duration time windows for each hemisphere, followed by a
percentage normalization (to the sum amplitude across the
conditions) to permit comparison across thresholds.

To explore the effect of stimulation on the integrated burst
amplitude with different time windows, we separately multi-
plied the window-specific averaged amplitude with the corres-
ponding burst probability within the 200 s analysis epoch for
noStim, adaptive and conventional DBS. Thereafter, the time
window-specific values were normalized in order that the sum
of the integrated amplitude of all the time windows per con-
dition was equal to 100%. To compare the means, we applied
a two-way repeated measures ANOVA. For the comparison
across threshold we averaged the normalized integrated data
from each threshold and repeated the two-way repeated meas-
ures ANOVA.

For the noStim condition we investigated the relationship
between burst characteristics and motor performance by
applying Pearson’s correlation analyses. We used the percent-
age amount of bursts for each time window and correlated
them with the clinical impairment, to determine the overall
relationship between burst duration and motor performance
(see ‘Results’ section). The motor performance was given by
the sum of UPDRS Part III items 20, 22 and 23 contralateral
to the stimulated side and bursts as percentage of short bursts
and long bursts relative to all the bursts from 100 ms to
4900 ms.

Statistical analyses were performed using IBM SPSS Statistics
Version 23. All data are presented as means � SEM, unless
otherwise stated. The assumption of a normal distribution
was tested by visual inspection of the QQ-plots. For all re-
peated measures ANOVAs, if Mauchly’s test indicated that
the assumption of sphericity was violated, Greenhouse-
Geisser corrections were applied. In this case, corrected F
and P-values with corrected degrees of freedom were reported.
Post hoc paired t-tests were Bonferroni corrected. All reported
P-values from the correlation analyses have been corrected for
multiple comparisons using the false discovery rate procedure.

Results

Change in distribution of burst dura-
tions during adaptive deep brain
stimulation

Figure 2A illustrates the number of bursts within the 200 s

analysis epoch across different durations and conditions

when bursts were defined as beta amplitude exceeding the

75th percentile for a minimum of 100 ms. A repeated measures

ANOVA showed the following effects on the number of bursts

in the 200 s recording: stimulation condition F(2,30) = 2.568,

P = 0.093, burst duration F(2.6,39.4) = 55.139, P5 0.001 and

interaction between stimulation condition and burst duration

F(4.3,64.7) = 4.754, P = 0.002. For the post hoc comparison

between adaptive DBS and noStim we found that the number

of short bursts (200–300 ms and 300–400 ms) was higher

during adaptive DBS compared to noStim [t(15) = 2.750,

P = 0.045; t(15) = 3.126, P = 0.049]. The opposite was

observed for the long bursts (600–700 ms and 800–900 ms)
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where the number of bursts during adaptive DBS was

lower compared to noStim [t(15) =�2.883, P = 0.034;

t(15) =�2.707, P = 0.006]. Between adaptive and conven-

tional DBS we found a similar difference in the burst distribu-

tion pattern. The number of short bursts (200–300 ms) was

higher during adaptive DBS compared to conventional DBS

[t(15) = 3.250, P = 0.016], while the number of long bursts

(800–900 ms) was lower in adaptive DBS compared to con-

ventional DBS [t(15) =�4.753, P = 0.001].

However, the details of distributions of beta bursts will

depend on the criteria used to define an amplitude eleva-

tion. Empirical findings indicate that stimulating once a

minimum beta elevation of �50% is sufficient to have a

satisfactory clinical effect, but could not exclude similar

effects with higher thresholds (Little et al., 2013, 2015).

Accordingly we looked for a consistent change in distribu-

tions of beta bursts defined by different thresholds above

this minimum. The number of beta bursts of different dur-

ation per 200 s in a given stimulation condition for

different thresholds over 55–90% are shown in

Supplementary Fig. 1A–H.

Figure 2B summarizes the data from different thresholds

by showing how often the number of bursts of a given

duration during adaptive DBS significantly differed from

those of the same duration during noStim or conventional

DBS. The figure suggests that beta bursts shorter than

600 ms tended to increase in their frequency during adap-

tive DBS, whereas beta bursts longer than 600 ms tended to

reduce in their frequency during adaptive DBS. By way of

comparison, only one significant difference in the distribu-

tion of burst durations was found between noStim and

conventional DBS in a similar comparison across different

thresholds. The selective suppression of longer bursts

during adaptive DBS is in line with the delivery of adaptive

DBS, which involves delays due to signal filtering and

smoothing (using a 400 ms moving window average), and

due to the ramping nature of stimulation once triggered so

that it takes a further 250 ms before clinically effective

Figure 2 Beta burst distributions during noStim, adaptive and conventional DBS. (A) Number of bursts of different durations during

noStim, adaptive and conventional DBS, where bursts are defined as periods of beta activity that exceed the 75th percentile for longer than

100 ms. For adaptive DBS the number of shorter bursts (200–400 ms) is higher and the number of longer bursts (600–700 and 800–900 ms) is

lower compared to noStim. The comparison between adaptive and conventional DBS similarly shows a higher number of short bursts (300–

400 ms) and a lower number of long bursts (800–900 ms) during adaptive DBS. The number of bursts of different durations did not differ between

noStim and conventional DBS. Values are represented as mean + SEM; *P5 0.05. (B) Summarizes the data from different thresholds by showing

how often the number of bursts of a given time window during adaptive DBS significantly differed from those of the same time window during

conventional DBS or noStim (Supplementary Fig. 1). aDBS = adaptive DBS; cDBS = conventional DBS.
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voltage levels are reached. Figure 3 shows some examples

of asymmetric longer beta bursts consistent with abrupt

termination after �600 ms by the triggered high frequency

DBS.

Although there was a trend for adaptive DBS to have a

higher total number of bursts (regardless of their duration

over 100 ms) than conventional DBS or noStim over the

different thresholds, this was not significant in an

ANOVA with threshold and stimulation as main effects

(Supplementary Fig. 2). However, this could hide a differ-

ent distribution of bursts of different duration in the three

conditions. Consequently, and in line with the above find-

ings, we divided burst durations according to whether they

were less than or greater than 600 ms in duration. Figure

4A illustrates the results for the 75% threshold. The re-

peated measures ANOVA on this dichotomized burst dis-

tribution defined at this threshold showed a significant

main effect on the interaction between stimulation condi-

tion and burst duration [F(1.5,21.8) = 9.111, P = 0.003].

Consistent with the previous results, the post hoc tests

showed an increased number of short bursts in adaptive

DBS compared to noStim [t(15) = 2.976, P = 0.028] and

conventional DBS (t = 2.647, P = 0.055), although the

latter did not quite reach statistical significance after cor-

rection for multiple comparisons (corrected P-values given

here and elsewhere in the text). The opposite was true for

long bursts, here the number decreased during adaptive

DBS compared to both noStim [t(15) = �2.979,

P = 0.028] and conventional DBS [t(15) = �3.385,

P = 0.012]. No difference was found between noStim and

conventional DBS, for either short bursts [t(15) = 0.596,

P = 1] or long bursts [t(15) = 0.792, P = 1].

The same pattern was seen using the 75% threshold def-

inition if the total number of bursts was replaced by the

total time spent in each of the two burst duration windows

(Fig. 4B). The time spent in short bursts in noStim totalled

on average 27.9 s (ranging from 5.5 s to 37.6 s), in adaptive

DBS 35.3 s (ranging from 8.7 s to 46.1 s) and in conven-

tional DBS 27.2 s (ranging from 10.5 s to 39.0 s). For long

bursts the average total duration during noStim was 18.7 s

(ranging from 4.9 s to 48.3 s), during adaptive DBS 10.7 s

(ranging from 0.61 s to 40.7 s) and during conventional

DBS 17.8 s (ranging from 6.5 s to 29.6 s). The repeated

measures ANOVA again confirmed a significant interaction

between stimulation condition and burst duration

[F(2,30) = 9.525, P = 0.001]. Post hoc tests revealed a

longer total burst duration for short bursts in adaptive

DBS compared to noStim [t(15) = 3.388, P = 0.012] and

conventional DBS [t(15) = 2.707, P = 0.049]. The opposite

was found for the total duration of long bursts, which

was lower in adaptive DBS compared to both noStim

[t(15) = �2.416, P = 0.087] and conventional DBS

[t(15) = �2.472, P = 0.078], although the corrected P-

values of the latter two comparisons did not reach statis-

tical significance. Again no difference was found between

noStim and conventional DBS, for either short bursts

[t(15) = 0.296, P = 1] or long bursts [t(15) = 0.323, P = 1].

How did the dichotomized burst distribution look if, in-

stead of considering the representative 75th percentile

threshold only, we also included the burst distribution

from lower and higher thresholds? As the total number

of bursts depended on the selected threshold, we expressed

the number of bursts of short or long duration as a % of

the total number of bursts for each threshold to avoid

group average data being dominated by the results from

lower thresholds. Figure 4C shows the result of this ana-

lysis for the dichotomized burst durations in each stimula-

tion condition averaged across hemispheres and thresholds.

The corresponding repeated measures ANOVA confirmed

an interaction between stimulation condition and burst dur-

ation [F(2,30) = 6.627, P = 0.004], due to more short bursts

and fewer long bursts during adaptive DBS than noStim or

conventional DBS. The result was similar if the per cent of

the total number of bursts was replaced by the time spent

Figure 3 Burst trimming effects of adaptive DBS illustrated on a series of beta bursts. Subject 11, left side. The top row shows a

consecutive sequence of beta bursts observed during adaptive DBS. The bottom row shows the stimulation pattern as induced by the corres-

ponding bursts above. Bursts appear terminated by the triggered stimulation and bursts with black arrows do end relatively abruptly, coinciding

with the ramp-up of stimulation. aDBS = adaptive DBS.
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in each burst window as a per cent of the total duration of

all bursts (Fig. 4D). The corresponding repeated measures

ANOVA again confirmed an interaction between stimula-

tion condition and burst duration [F(1.4,21.6) = 9.648,

P = 0.002]. Corresponding post hoc tests for the dichoto-

mized distribution across thresholds are illustrated in Fig.

4. Thus adaptive DBS caused a shift from longer to

shorter bursts relative to noStim and conventional DBS,

despite the lack of change in the overall number of bursts

in any condition. The balance of short and long bursts did

not change during conventional DBS relative to that

during noStim.

Change in burst distribution during
adaptive deep brain stimulation is not
altered if filtering of beta bursts is
relaxed

As part of the signal processing to derive beta bursts we

digitally filtered the STN region LFP around the frequency

of the peak activity in the beta band (Table 1; mean pass

band centred on peak was�21 � 5 Hz wide). This raises

the possibility that, rather than a genuine shift in beta

bursts from long to short duration during adaptive DBS,

Figure 4 Dichotomized distribution for short and long bursts during noStim, adaptive and conventional DBS. (A) The number of

normalized bursts (categorized into short bursts: 100–600 ms and long bursts: 4600 ms) for the 75% threshold, which confirms a similar pattern

with a higher number of short bursts in adaptive DBS (compared to noStim) and a lower number of long bursts in adaptive DBS (compared to

conventional DBS and noStim). (B) The total burst duration of the normalized bursts for the 75% threshold. This confirms a higher total time of

short bursts for adaptive DBS (compared to noStim and conventional DBS) and a lower total time of long bursts in adaptive DBS (compared to

noStim and conventional DBS). (C) The burst distribution as percentage normalized bursts for noStim, adaptive and conventional DBS across the

various thresholds (see also Supplementary Fig. 1). The corresponding repeated measures ANOVA again confirmed an interaction between

stimulation condition and burst duration [F(2,30) = 6.627, P = 0.004], the corresponding post hoc tests indicate a higher amount of shorter bursts

in adaptive DBS compared to noStim [t(15) = 3.056, P = 0.024] and conventional DBS [t(15) = 2.643, P = 0.055], while the number of longer bursts

is lower in adaptive DBS compared to noStim [t(15) = � 3.056, P = 0.024] and conventional DBS [t(15) = � 2.643, P = 0.055]. No difference in the

distribution for short and long bursts was found between noStim and conventional DBS [t(15) = 0.188, P = 1; t(15) = � 0.188,P = 1]. (D) The

percentage distribution of the total burst duration for the normalized bursts across the various thresholds. The repeated measures ANOVA

confirmed again a significant interaction between condition and duration of bursts [F(1.4,21.6) = 9.648, P = 0.002]. The post hoc tests showed a

longer total duration for short bursts in adaptive DBS compared to noStim [t(15) = 3.303, P = 0.014] and conventional DBS [t(15) = 3.336,

P = 0.014], while the total duration for long bursts was reduced in adaptive DBS compared to noStim [t(15) = � 3.303, P = 0.014] and conven-

tional DBS [t(15) = � 3.336, P = 0.014]. Again no difference in the total duration for short and long bursts was found between noStim and

conventional DBS [t(15) = 0.641, P = 1; t(15) = � 0.641, P = 1]. Values are represented as mean + SEM; *P5 0.05. Asterisks in brackets: P-value

significant before correction for multiple comparisons (Bonferroni) only.
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there may have been a frequency shift brought about by

adaptive DBS that meant that burst frequency during long

duration bursts wandered out of the relatively narrow pass

band used in the analysis. To militate against this possibil-

ity, we therefore repeated the signal processing, but with a

much broader beta pass band from 13–30 Hz (width

18 Hz). The number of bursts and the corresponding total

burst duration for the representative threshold of 75% are

shown in Supplementary Fig. 3A and B. ANOVAs based

on these data confirmed an interaction between factors

stimulation condition and burst duration (Supplementary

Fig. 3). These data suggest that shifts in burst duration

could not be fully explained by shifts in burst frequency

during DBS.

Burst distribution during adaptive
deep brain stimulation differs to that
during random stimulation

Could the reduction in long duration bursts during adap-

tive DBS be somehow related to stimulation artefact and

amplifier noise floors, which potentially differ between

adaptive and conventional DBS? Most likely, any potential

contamination of bursts by stimulation-related artefact

would have only served to increase the number of beta

bursts with durations 4600 ms during adaptive DBS.

However, to address this question more directly, we con-

trasted data from those eight patients who had both trials

of unilateral adaptive DBS and random DBS drawn from

Little et al. (2013). In the latter study, random periods of

DBS were delivered with a duration distribution and fre-

quency that was similar to that delivered during adaptive

DBS, except that in the latter case stimulation periods were

triggered by elevated beta activity in the STN region LFP.

Adaptive DBS still had fewer long beta bursts than random

DBS when using a common amplitude threshold (mean of

75% percentiles) to define bursts across the two conditions

[number of bursts 4600 ms, 12.8 � 3.2 and 16.9 � 3.2

over 200 s, respectively; t-test, t(7) = 2.601, P = 0.035].

Short and long duration bursts
comprise only a fraction of the
subthalamic nucleus region local field
potential

The total duration of time spent out of the 200 s recordings

in either short or long bursts, with these defined as less

than or greater than 600 ms in duration, clearly depended

on the amplitude threshold used. Supplementary Fig. 4 il-

lustrates this across the different thresholds. However, the

summed duration of short burst durations was greatest,

and that of long burst durations shortest for adaptive

DBS (seen for the 60 to 90 percentile thresholds)

(Supplementary Fig. 4).

Burst amplitude increases with
burst duration

In summary, adaptive DBS changed the distribution of beta

bursts so that there were fewer long bursts, and more short

bursts in adaptive DBS than in conventional DBS or

noStim. This was also reflected in the accumulated duration

of such bursts over the 200 s recording. But why should the

frequency of long bursts matter? This may be explained by

a significant positive correlation between burst duration

and burst amplitude. Figure 5A illustrates the relationship

at a group level across conditions using the same represen-

tative threshold of 75% as elsewhere. A significant positive

correlation was consistently present within hemispheres

for noStim (14/16 hemispheres significant, mean

rs = 0.8350 � 0.0393), adaptive DBS (11/16 significant,

rs = 0.8144 � 0.0281) and conventional DBS (13/16 signifi-

cant, rs = 0.8451 � 0.0247), and when repeated for other

thresholds between 55 and 90% (Supplementary Fig. 5A

and B). Thus bursts with longer duration had higher aver-

age amplitudes. Supplementary Fig. 6 shows representative

time frequency spectra of the three conditions and demon-

strates that high amplitude bursts were reduced during

adaptive DBS relative to conventional DBS, although beta

activity was generally suppressed in this latter condition.

Burst amplitude averaged over all
burst durations is suppressed

Hitherto we have used a common threshold across stimu-

lation conditions, defined by the average of the amplitudes

corresponding to the specified percentile threshold across

these conditions. This was to avoid the potential for under-

estimating burst duration during adaptive DBS, which may

have had a higher variance given the mixing of on and off

stimulation periods. However, this approach might lead to

an overestimation of burst amplitude during adaptive DBS.

To militate this possibility, we compared the burst ampli-

tude averaged across hemispheres and time windows sep-

arately for all three conditions using the condition-specific

threshold of 75%. Figure 5B illustrates for all three condi-

tions, burst amplitude averaged across hemispheres and

time windows. There was a significant main effect for con-

dition in the one-way repeated measures ANOVA

[F(2,16) = 19.709, P50.001]. Post hoc tests confirmed a

higher amplitude in noStim compared to both adaptive

DBS [t(8) = 4.4597, P = 0.005] and conventional DBS

[t(8) = 6.611, P = 0.001]. The mean amplitude for conven-

tional DBS was not different to that for adaptive DBS

[t(8) = 1.109, P = 0.899]. Thus, when averaged across all

durations, bursts did not differ in amplitude between adap-

tive and conventional DBS, although both differed from the

amplitude of bursts in the unstimulated case. The findings

were similar across different threshold definitions of bursts

(Supplementary Fig. 7A and B). The comparable amplitude

suppression during adaptive and conventional DBS, as
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illustrated in Fig. 5B, is most likely explained by the fact

that conventional DBS reduced the amplitudes of both

short and long bursts, whereas the adaptive DBS algorithm

used only reduced the long bursts, which also have higher

amplitudes. This effect of adaptive DBS was partially offset

by the increase in the numbers of lower amplitude, short

bursts during adaptive DBS, so that overall, mean burst

amplitude averaged across hemispheres and time windows

was similarly suppressed during adaptive and conventional

DBS.

Similar average burst amplitude in
adaptive and conventional deep brain
stimulation belies a shift in contribu-
tion of short and long bursts

Figure 2A and B confirms that the distribution of short and

long bursts changes in adaptive DBS as compared to both

noStim and conventional DBS. What happens if both mean

amplitude of different burst durations and their frequency

are simultaneously considered? Figure 5C illustrates the

integrated and normalized amplitude of short and long

bursts for the representative threshold of 75%. In a two-

way repeated ANOVA we found a significant main effect

for the interaction between condition and burst duration

[F(1.3,20.2) = 10.682, P = 0.002]. Post hoc tests showed

that the percentage of integrated amplitude of short

bursts (% of the sum of the integrated amplitude across

all the time windows) was higher in adaptive DBS com-

pared to noStim [t(15) = 4.747, P = 0.001] and conven-

tional DBS [t(15) = 3.310, P = 0.014]. The opposite was

true for longer bursts, where the percentage of integrated

amplitude from longer bursts in noStim and conventional

DBS was higher than in adaptive DBS [t(15) = �5.019,

P50.001; t(15) = �3.264, P = 0.016]. No difference was

found between noStim and conventional DBS, either for

short bursts [t(15) = 0.761, P = 1] or for longer bursts

[t(15) = �0.647, P = 1]. Accordingly, the integrated ampli-

tude for bursts of different duration was increased for short

bursts and reduced for long bursts in adaptive DBS. This

further underscores that, although both adaptive and con-

ventional DBS have a lower amplitude compared to

noStim, bursts of short and long duration make different

contributions to the total amplitude in the different condi-

tions. The findings were similar across different threshold

definitions of bursts (Supplementary Fig. 7C).

Clinical correlation

Given the differences seen at the level of burst duration we

considered whether the distribution of burst durations was

linked to Parkinsonian impairment. To investigate whether

bursts of different durations might be correlated with clin-

ical impairment and to confirm how consistent this might

be across different thresholds, we correlated all burst time

windows from all different thresholds with the clinical

impairment (Fig. 6A). Bursts of a shorter duration tended

to be negatively correlated with the clinical impairment,

whereas the opposite was true for longer bursts. Example

scatter plots are shown in Fig. 6B and C. Note that al-

though these scatter plots show significant correlations be-

tween burst duration and clinical impairment there was no

such correlation between burst duration and average recti-

fied amplitude (r = 0.22, P = 0.48 and r = �0.19, P = 0.48,

respectively). The above clinical correlations were similar

when taking the integrated and normalized amplitude of

bursts rather than the number of bursts (Supplementary

Fig. 8).

Discussion
Here we confirm that the subthalamic nucleus LFP in pa-

tients with Parkinson’s disease is characterized by bursts of

beta activity of varying duration, and show that the amp-

litude of the beta bursts is reduced by both conventional

and adaptive DBS. However, this is accomplished in differ-

ent ways. In adaptive DBS it paradoxically occurs despite

an increase in the frequency of bursts. However, in this

condition there is a shift from long beta bursts to shorter

bursts as long bursts are prematurely terminated by trig-

gered stimulation. This both converts long bursts into

shorter ones and frees up more time for spontaneously

short bursts to occur. Critically, beta burst amplitude

ramps up with burst duration, so that this shift in burst

duration distribution with adaptive DBS explains the over-

all reduction in integrated burst amplitude in this stimula-

tion condition. In contrast, in conventional DBS there is no

change in the frequency of beta bursts and no change in the

distribution of burst durations compared to the unstimu-

lated state. By exclusion therefore, the reduction in inte-

grated burst duration relative to the unstimulated

condition must entail an attenuation of burst amplitude.

This turns out to be equally distributed across short and

long bursts. The contrasting effects of adaptive and conven-

tional DBS are summarized in the schematic given in Fig. 7.

It is important to note that beta bursts were defined in

DC corrected data, thereby removing any offset due to a

general difference in beta amplitudes or amplifier noise

floors between conditions and focusing on dynamic vari-

ations in beta amplitude. The difference in the incidence of

short and long bursts between conditions therefore denotes

a change in the distribution of burst durations.

Nevertheless, the shift in burst duration distribution

during adaptive DBS could have been due to a low beta

amplitude (and hence poor signal-to-noise ratio) so that the

bursts were predominantly driven by noise and accordingly

shorter in duration. Fortunately, the conventional DBS

state provides a control for this: the suppression of beta

burst amplitude averaged across bursts of all durations

was no different from that during adaptive DBS (Fig. 5B).

Thus changes in power and signal-to-noise ratio are insuf-

ficient to explain the shift in burst duration distribution.
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Moreover, the distinct burst distribution during adaptive

DBS relative to noStim and conventional DBS was strongly

supported by the consistency of the findings across different

amplitude thresholds. Key findings with respect to burst

distribution were also reproduced by focusing on total

time spent in short and long bursts, rather than just con-

sidering the number of bursts. In addition, the pattern in

the dichotomized burst distribution was preserved when the

broad band filtered signal (13–30 Hz) was considered in-

stead of a signal narrowly filtered around the beta peak.

The comparison between adaptive and random DBS, which

was possible to conduct in eight hemispheres only (see

‘Materials and methods’ section), confirmed that the trim-

ming of long beta bursts is specific to the adaptive DBS

stimulation paradigm and not due to an intermittent deliv-

ery of stimulation per se.

Significance of short beta bursts

Beta bursts are a well-established feature in the cortico-

basal ganglia loop of healthy non-human primates

(Murthy and Fetz, 1992, 1996; Feingold et al., 2015).

Beta amplitude also increases as burst duration increases

in the healthy striatum, but the vast majority of beta

bursts last no more than two to three cycles (Feingold

et al., 2015). Short duration beta bursts may therefore be

physiological and functionally relevant, and in line with

this, a higher proportion of shorter bursts was associated

Figure 5 Relationship between burst duration and burst amplitude for the representative 75% threshold. (A) The mean amp-

litudes for different durations for noStim, adaptive and conventional DBS. SEMs are shown for noStim only. The strong positive correlation

indicates the longer the burst duration, the higher the burst amplitude. A slight flattening of this relation can be seen during adaptive DBS at longer

burst durations. A second order polynomial was fitted to the data of the three conditions (see equations). Within subjects, a significant

correlation could be found for almost all the hemispheres and conditions (noStim 14/16, adaptive DBS 11/16, conventional DBS 13/16). The

results of the correlation analyses between burst duration and burst amplitude across all the thresholds are shown in Supplementary Fig. 5. (B)

Mean burst amplitude for noStim, adaptive and conventional DBS averaged across hemispheres and time windows. Both adaptive DBS and

conventional DBS show a significant reduction in beta amplitude compared to noStim. However, no difference was found between adaptive and

conventional DBS. (C) Integrated burst amplitude (normalized to 100%, which corresponds to total integrated amplitude summed across all time

windows) for short bursts (100–600 ms) and long bursts (4600 ms). Stimulation conditions show significantly different amplitude effects when

burst duration is considered. Adaptive DBS has a higher integrated amplitude in shorter bursts, while conventional DBS and noStim have a higher

integrated amplitude in longer bursts. Supplementary Fig. 7 illustrates mean amplitude as well as the integrated amplitude across the different

thresholds. Values are represented as mean + SEM; *P5 0.05, **P5 0.01, ***P5 0.001. aDBS = adaptive DBS; cDBS = conventional DBS.
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Figure 6 Clinical correlation between burst duration and clinical impairment. (A) Pearson’s correlations between clinical impairment

and the percentage amount of bursts during different burst time windows across the various thresholds. These show that shorter bursts tend to

be negatively correlated with clinical impairment and longer bursts tend to be positively correlated with clinical impairment. (B) Example scatter

plot of percentage amount of short bursts (of 200–300 ms duration) and clinical impairment (UPDRS Part III items 20, 22 and 23 contralateral to

the recording side). (C) Example scatter plot of percentage amount of long bursts (700–800 ms) and clinical impairment. B and C are data for

representative threshold (75th percentile).

Figure 7 Summary schematic. Beta amplitude profile shown during noStim, adaptive and conventional DBS. Without DBS both short and

long beta bursts occur. During adaptive DBS the longer bursts are trimmed. This in turn affords more space for shorter bursts to occur. During

conventional DBS the distribution of short and long bursts does not change, but overall beta is still suppressed, implying that the amplitude of all

beta bursts is reduced. Note that background levels of beta are shown as similar between conditions as our signal processing is focussed on burst

behaviour. We cannot rule out additional changes in background levels of beta in the subthalamic nucleus, particularly during conventional

DBS, but such changes are difficult to ascertain whilst amplifier noise floors may vary between conditions. aDBS = adaptive DBS;

cDBS = conventional DBS.

1064 | BRAIN 2017: 140; 1053–1067 G. Tinkhauser et al.



with less clinical impairment. The suggestion that shorter

and hence weaker periods of synchronization in the beta

band may be important in normal motor processing is in

line with the evidence for such physiological activity at the

cortical level (Murthy and Fetz, 1992, 1996; Kilner et al.,

2003) and the evidence pointing to task-dependent modu-

lation of such activity within the basal ganglia

(Courtemanche et al., 2003; Feingold et al., 2015). The

increase in the frequency of short duration bursts during

adaptive DBS may thus be one way in which adaptive DBS

restores motor function, although it remains to be proven

that such short bursts are physiological and functionally

relevant in the human.

Significance of long beta bursts

One of the most robust findings was the ramping up of the

amplitude of LFP oscillations as beta burst duration

increased. This implies the progressive synchronization of

the neural elements summating to give the beta oscillations

in the LFP and if unchecked, i.e. in long duration bursts,

this leads to pervasive local synchronization in the beta

band, with its attendant costs in terms of information

coding capacity and ensemble performance (Brittain and

Brown, 2014). In line with this, the frequency of long dur-

ation beta bursts in the subthalamic nucleus correlated with

contralateral upper limb motor impairment in the absence

of DBS. Conventional DBS also modulated long duration

beta bursts, but not by changing their frequency, rather by

attenuating their amplitude. However, this attenuation was

relatively indiscriminate and affected short bursts as well.

Indeed, this may provide a plausible explanation for the

observation that conventional high frequency DBS can

sometimes itself lead to paradoxical motor impairment

under circumstances where more pathological longer dur-

ation bursts may be scarce or absent, such as in Parkinson’s

disease patients with preserved motor performance off DBS

at the time of testing (Chen, et al., 2006a).

Nevertheless, long beta bursts were uncommon and,

when defined as exceeding the 75th percentile amplitude,

accounted for only �10% of the recorded signal duration.

In this regard it is worth noting the evidence that elevated

periods of beta activity within the motor system may have

functional effects that outlast the elevation, at least in

healthy humans (Gilbertson et al., 2005; Androulidakis

et al., 2006; Lalo et al., 2007).

Clinical relevance of adaptive deep
brain stimulation

The present findings link beta burst duration in the sub-

thalamic nucleus, its modulation and motor performance.

The correlation with motor performance revealed an inter-

esting relationship between burst duration and clinical im-

pairment. The proportion of long duration beta bursts was

positively related to clinical impairment, while the propor-

tion of short duration beta bursts was negatively related to

clinical impairment in the unstimulated state. These results

suggest that a long duration of uncontrolled synchroniza-

tion has an important negative impact on motor perform-

ance, whereas we could speculate that short duration beta

synchronization may impact positively (Eusebio and

Brown, 2009; Brittain et al., 2014). We therefore hypothe-

size that the selectivity and modulatory effect of adaptive

DBS on long duration beta bursts might help explain the

reported (but to be confirmed) wider therapeutic window

of adaptive DBS over conventional DBS in treating motor

symptoms. This could directly follow on from the shift in

the distribution in beta burst duration or be secondary to

the reduced time on stimulation and hence lower total elec-

trical energy delivered, which then helps reduce side effects

such as stimulation-induced speech impairment and dyskin-

esias (Little et al., 2013, 2016; Rosa et al., 2015).

Adaptive deep brain stimulation in
the future

The presented data do not serve as evidence of the clinical

efficacy or efficiency of adaptive DBS, nor of any superior-

ity of adaptive DBS over conventional DBS, or vice versa.

This has to be established through further clinical trials.

Likewise, the findings reported here do not preclude other

innovative approaches to DBS, such as novel pulse param-

eters or coordinated reset (Kühn and Volkmann, 2016).

However, the present findings suggest why adaptive and

conventional DBS might potentially have different thera-

peutic performance, as they affect pathological networks

in different ways. Moreover, they may help guide how

adaptive DBS might be optimally delivered in the future.

Key may be the selective and premature termination of

longer beta bursts. The adaptive DBS system used to

show clinical efficacy in two recent patient series (Little

et al., 2013, 2015) would leave bursts with a duration

5�500 ms untouched because of delays incurred by

signal filtering and averaging, and stimulation ramping.

However, the precise burst duration to be spared needs

further investigation. Based on the present findings we sug-

gest that an adaptive system that aims to shorten the dur-

ation of beta bursts should preferably have a high temporal

resolution and a bang-bang (on/off regulation) control al-

gorithm. A more gradual proportional–integral–derivative

control policy with substantial signal smoothing might

miss burst events and rather suppress beta amplitude

across longer time courses. However, further studies are

required to determine the most efficacious closed-loop con-

trol algorithm and then to compare the clinical perform-

ance of a closed-loop DBS system with the optimized

control algorithm with that provided by established con-

ventional DBS. Finally, long-term adaptive DBS is likely

to need to self-optimize to allow for fluctuations in state

over time. The present findings give more information

about informative optimization targets, such as the match-

ing of stimulation performance to an ideal distribution of
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burst durations or to achieve a given integrated beta burst

amplitude.

Limitations of this study

Bursts can be defined in many ways, and differences be-

tween stimulation conditions are illustrated for bursts ex-

ceeding a representative threshold equivalent to the 75th

percentile of beta amplitude. Nevertheless, other thresholds

were also tested and showed similar differences between

stimulation conditions. Moreover, by concentrating on

bursts of elevated beta activity we cannot comment on

whether periods of lower beta amplitude contribute to

function or dysfunction. Another limitation is that the rela-

tively narrow pass band (3–37 Hz) of our amplifier and the

presence of possible artefact at frequencies under �10 Hz

prohibited the demonstration of any frequency selectivity to

the differences in burst distributions. In addition it should

be taken into account that the stimulation sessions took

place only a few days after operation when stun effects

are common (Chen, et al., 2006b). Accordingly, our con-

clusions about the effects of different burst durations

need to be validated in chronically implanted patients in

whom stun effects have lapsed. Finally, it should also be

noted that due to time constraints, we only tested selected

items of the motor UPDRS related to patient fatigue,

and organizational issues related to hospitalization.

The role beta bursts play in those aspects of motor impair-

ment not captured here, such as gait, remains to be

investigated.

Conclusion
Adaptive DBS may provide a means to relatively selectively

regulate excessive beta synchronization by limiting beta

burst duration, while leaving more shorter bursts of beta

synchrony and beta burst-free periods unaffected. Whether

this is translated into fewer side-effects than with conven-

tional DBS under chronic conditions remains to be proven.

However, the correlation between burst duration and clin-

ical impairment suggests that the selectivity for long dur-

ation bursts might help explain the preliminary reports of

the superior efficacy of adaptive DBS over conventional

DBS in acute studies (Little et al., 2013). There remains

much to be explored about the clinical potential of adaptive

DBS, but the present findings should help inform the design

of optimal adaptive DBS systems for such trials.
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