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Abstract 

The full power of Yoshida's technique is exploited to produce an 

arbitrary order implicit symplectic integrator and multi-map explicit 

integrator. This implicit integrator uses a characteristic function 

involving the force term alone. Also we point out the usefulness of the 

plain Ruth algorithm in computing Taylor series map using the 

techniques first introduced by Berz in his "COSY-INFINITY" code. 

1 This work is supported by the U.S. Department of Energy under Contract No. DE

AC03-76SF00098 



1. Introduction 

The derivation of explicit symplectic integrators has followed a 

remarkable path since it was first introduced by R. Ruth [11 in 1983. 

After Ruth initial derivation for Hamiltonians of the form 

H= A(p)+V(q) (1 .1 ) 

Forest[21 and Neri [31 rederived the Ruth's integrator using Lie Methods. 

These methods simplified the derivation to the point that Forest was 

able to get a 6th order integrator[41. More importantly however, it 

revealed the generality of Ruth's integrator: if H is reducible into two 

exactly solvable parts H1 and H2 then the integrator of Ruth can be used 

[2,41 . In addition, the result applies to any Lie group. Therefore one 

gained far more than just a compact derivation. 

In this paper, we want to point out that a similar outcome emerges 

from carefully looking at Yoshida's elegant derivation[51 of Ruth's 

integrator. In section 2 , we extend Yoshida's assumptions to encompass 

a wider class of systems. In section 3, we point out the existence of an 

arb itrary order implicit integrator involving the force alone, which is a 

direct consequence of Yoshida's work. In section 4, we describe the 

mUlti-maps explicit integrator in the light of Yoshida's work. In the last 

sections , we apply the older Forest-Ruth point of view to the problem of 

Taylor series production by Hamiltonian exponentiation. Section 5 



contains a description of this technique which was first introduced by 

Berz. In sections 6 and 7, we apply explicit integration to problems 

where this technique is only approximate. 

2. General Rephrasing of Yoshida's Method 

Consider a time independent Hamiltonian H , its Lie operator :-H: and it 

associated symplectic map M('t) which results from integrating the 

equation of motion for a time 't. 

dM(t)/dt = M(t) :-H: => M('t) = exp('t:-H: ) (2 .1 ) 

Let us assume that by some method, we find a symplectic 

approximation T 2n('t) of M('t), which contains no even powers of 't in the 

Lie exponent, or equivalently T 2n('t)T 2n('tr1 = I : 

T 2n = M('t) + O('t2n+1) = exp('t :-H: + 't2n+1 R('t2n )) (2.2) 

Yoshida's prescription is to construct a 2n+2 integrator as follows : 

(2.3) 



Using (2.2) , quoting Yoshida, one gets: 

z __ -,2"-.1/...:..(2_n+_l),-

0- 2_21/(2n+ l) 
z _ 1 

1 - 2 _21/(2n+l) 
(2.4) 

In addition, Yoshida derived a 6th and 8th order integrator using the 

second order approximate map T 2. 

In his paper, Yoshida gave the impression that his results are 

applicable only to a Hamiltonian of the form 

(2.5) 

as in the Forest-Neri generalization of Ruth's method. In fact, a careful 

reading of Yoshida's paper reveals the remarkable generality of all his 

integrators. We exploit this feature in the next section . 

3. Arbitrary Order Implicit Integrator with only the Force Term 

In some complex problems, the explicit integrator of Ruth cannot be 

used: one cannot split the Hamiltonian into two solvable parts. For these 

type of problems, one can write a generating function which 

approximates M('t): 

(3.1 ) 

or, 



(3 .2) 

and so on. The general case involves higher and higher derivatives of H 

[61 . This can now be avoided by using Yoshida's techniques. 

By constructing a second order approximation T 2 of the form (2.2), we 

can use directly Yoshida's formulae. This approximation is famous and 

originally due to Poincare : 

f aH (q+qf p+pf) 
p = P - 't aX1 -2- '-2- . (3 .3) 

Here, x1 and x2 refer to the arguments q and p of the original 

Hamiltonian H. 

Because of the symmetry between initial and final variables in (3 .3) 

under time reversal. this map has all the properties needed in the 

construction of the Yoshida integrator. Hence formula (2.3) is directly 

app.Jicable as well as all the other formulae in Yoshida's paper. Such 

integrators are constructed from (3.3) by repeated applications of the 

formula with zn't appropriately substituted for 't o 

Recently. in an internal report, one of the authors[71 built a fourth order 

integrator using (3.3) and got equation (2.4) with n=1. However, lacking 



the insight provided by Yoshida's paper, he did not see the connection to 

the old Ruth integrator. 

Finally, by extending phase space (see section 6) and applying (3.3), we 

see that the time dependent case is obtained by evaluating (3.3) in the 

middle of a given time step. 

L dH (q+qf p+pf tS) 
q -q+'t 2' 2 ' 2 ' 

dX2 

4. Multi-Map Explicit Integrators 

In the reference 2, section 5.4, Forest and Ruth point out the a 

symmetrized product of exact solutions is always quadratic. In fact, it 

has no terms of even powers in 'to Therefore if the Hamiltonian can be 

split into N exactly solvable parts a high order explicit integrator of the 

Yoshida type can be built following equation (2.3). The map T 2 will have 

the following form: 

N.= exp( :- Hi:) 
I 

(4.1 ) 



This trivial result may be very useful for certain Hamiltonians. 

In the remaining sections, we switch our attention to the computation of 

Taylor series maps. 



5. Automatic Differentiation Integrators 

In recent years Berz has been promoting a new approach to compute 

Taylor series maps[81. Whenever it is appropriate to use such maps as 

the main ingredient of tracking, simulation and analysis (we will not get 

into this debate here), Berz has proposed the following scheme to get the 

Taylor series to order No: 

Under the following assumptions 

1) time independent H (usually a length variable in beam dynamics) 

2) H sends the origin of phase space into itself 

i.e. H = L Hn , where the Hn are homogeneous polynomials in (q ,p), (5.1) 

n=2 

one can get the Taylor series map to order No by expanding the operator 

exp(:-'t H : ) and letting it act on the phase space variables (q,p) : 

M 

(qf,pf) = ~i:oo L ( '-'tI: H ·r 
• n=2 n. (q,p) + ... 0 (l(q,p)INo+1) 

k! 
(5.2) 

k=O 



On a computer, the coefficients of the Taylor series converge rapidly and 

only a few Poisson brackets are needed. This approach is extremely 

useful as the spread of software using this technique indicates[9,1 0, 11l. 

But what if assumptions 1 or 2 are relaxed? Then one must integrate the 

Taylor series and again, the Ruth algorithm fits the technique like a 

glove. 

We now show to apply the Ruth-Yoshida technique to improve the 

accuracy of the Taylor series when assumption 1) is relaxed. 

6. Time-dependent Exponentiation 

The trick used is well-known. We extend the dimensionality of phase 

space: 

(q,p) 

H 

goes to (q,p,t,Pt) 

goes to K = H + Pt 

(6.1 ) 

(6.2) 

In the Taylor series integrator context of the previous section, the 

series generated by exp(:-'tH :) and exp( :-'tPf) are exactly solvable. Hence 

the Hamiltonian can be split into two exactly solvable parts. Therefore 

the formulae of Ruth-Yoshida[5j or Forest[4j are directly applicable. We 



start with the general form of a two map integrator acting on (q,p,t ,Pt) : 

N 

exp(:-1:K:)(q,p,t,Pt) ~ {II exp(:-1: 1
j H:) exp(:-1:2j Pf )}(q,p ,t,Pt) 

j = 1 

(6.3) 

By inserting a sequence of identity maps, we can move all the time 

translations inside the function H: 

N N 

{II exp(:-1: 1
j H:) exp(:-1:2j Pt : )}= 

j = 1 

{II exp( :-1:1
j H(t+oj): )}exP( :-1: Pf) 

j=1 

where 

When acting on (q,p,t), the results is just: 

N 

exp( :-1:H:)(q,p,t) ~(II exp(:-1: 1
j H(t+oj):) (q,p) , t+1: ) 

j = 1 

(6.4 ) 

(6 .5) 

In this new expression all the quantities are evaluated in the original 

non-extended phase space. 



7. Non Zero Reference Orbit 

Finally, one may be interested in systems where the reference orbit is 

not the origin of phase space. Let us examine the time independent case first. 

Obviously, the Taylor series is given by equation (5.2). However, the 

coefficients of the various monomials are not computed exactly. More 

specifically, for an arbitrary Hamiltonian, the coefficient of a monomial of 

degree k in (q,p) will have an error of order 'tNo+1-k. Clearly, the zeroth 

order monomial is the orbit itself and it will be known to order 'tN 0+ 1. For 

high values of the maximum order No, one gets very accurate results for the 

low order monomials and therefore there is little value in trying to modify 

the straight forward exponentiation of equation (5.2)2. However, for low 

order calculations, it may be desirable to use a Ruth-Yoshida integrator of an 

order comparable to No. 

The derivation of the procedure starts with the assumption that we 

know the zeroth order orbit. Let us denote it by r(t)=(q(t),p(t)) . Then the 

Hamiltonian generating motion around r(t) is given by: 

Hr = H(XH) - x·VH I r (7.1) 

Unfortunately, Hr is time dependent and the function r(t) is an 

2Time independent polynomial Hamiltonians of order less than No are exactly 

computed by regular expone~tiation . 



unknown function of time. Temporarily, ignoring this last glitch, we can 

apply to (7.1) the results of section 6. In fact, we simply re-copy equation 

(6.5): 

N 

exp(:-'tK:)(q,p,t) ~(II exp(:-'t 1
jHr(t+oj):) (q,p) , t+'t ) 

j = 1 

here, Hr(t+oj) = H(X+r(t+oj)) - x-VH I r(t+Sj) 

(7.2) 

(7.3) 

We are left with the problem of computing r(t+oj) with an accuracy 

comparable with the method of integration. This can be done with equation 

(5.2): one simply extracts the zeroth order of the map. Also we can use a 

standard integration method. 

Finally, it is clear from the form of equation (7.3) that the 

assumptions 1 and 2 of section 5 can be relaxed simultaneously and still a 

Ruth-Yoshida integrator can be constructed. 
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