
UCLA
UCLA Previously Published Works

Title
Massive Parallelization Boosts Big Bayesian Multidimensional Scaling

Permalink
https://escholarship.org/uc/item/0wv8d79z

Journal
Journal of Computational and Graphical Statistics, 30(1)

ISSN
1061-8600

Authors
Holbrook, Andrew J
Lemey, Philippe
Baele, Guy
et al.

Publication Date
2021-01-02

DOI
10.1080/10618600.2020.1754226

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0wv8d79z
https://escholarship.org/uc/item/0wv8d79z#author
https://escholarship.org
http://www.cdlib.org/

Massive parallelization boosts big Bayesian multidimensional
scaling

Andrew J. Holbrook1, Philippe Lemey2, Guy Baele2, Simon Dellicour2, Dirk Brockmann3,
Andrew Rambaut4,5, Marc A. Suchard1,6,7

1Department of Biostatistics, University of California, Los Angeles

2Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven

3Institute for Theoretical Biology, Humboldt University Berlin

4Institute of Evolutionary Biology, University of Edinburgh

5Fogarty International Center, National Institutes of Health

6Department of Human Genetics, University of California, Los Angeles

7Department of Biomathematics, University of California, Los Angeles

Abstract

Big Bayes is the computationally intensive co-application of big data and large, expressive

Bayesian models for the analysis of complex phenomena in scientific inference and statistical

learning. Standing as an example, Bayesian multidimensional scaling (MDS) can help scientists

learn viral trajectories through space-time, but its computational burden prevents its wider use.

Crucial MDS model calculations scale quadratically in the number of observations. We partially

mitigate this limitation through massive parallelization using multi-core central processing units,

instruction-level vectorization and graphics processing units (GPUs). Fitting the MDS model using

Hamiltonian Monte Carlo, GPUs can deliver more than 100-fold speedups over serial calculations

and thus extend Bayesian MDS to a big data setting. To illustrate, we employ Bayesian MDS to

infer the rate at which different seasonal influenza virus subtypes use worldwide air traffic to

spread around the globe. We examine 5392 viral sequences and their associated 14 million

pairwise distances arising from the number of commercial airline seats per year between viral

sampling locations. To adjust for shared evolutionary history of the viruses, we implement a

phylogenetic extension to the MDS model and learn that subtype H3N2 spreads most effectively,

consistent with its epidemic success relative to other seasonal influenza subtypes. Finally, we

provide MassiveMDS, an open-source, stand-alone C++ library and rudimentary R package, and

discuss program design and high-level implementation with an emphasis on important aspects of

computing architecture that become relevant at scale.

Keywords

Massive parallelization; GPU; SIMD; Hamiltonian Monte Carlo; Bayesian phylogeography

Corresponding author Andrew J. Holbrook aholbroo@uci.edu.

HHS Public Access
Author manuscript
J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

Published in final edited form as:
J Comput Graph Stat. 2021 ; 30(1): 11–24. doi:10.1080/10618600.2020.1754226.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1 Introduction

The integral that so often arises from the application of Bayes’ theorem exacerbates the

general difficulties of big data statistical inference. Bayesian statisticians use the language of

conditional probability to piece together large, flexible models with ease. Perversely, the

integral and its myriad workarounds become less feasible as model complexity grows. Brute

force computing rarely suffices for big Bayesian inference, the doubly dangerous collision

between big data and massive model. As a field, Bayesian phylogeography illustrates the

challenges presented by big Bayes and the practical payoff in overcoming these challenges.

The speed of transport in the global economy is matched by the complexity of travel

patterns, which affect the emergence and spread of pathogens (Bloom et al., 2017).

Scientists, epidemiologists, and policymakers must quickly visualize, draw actionable

conclusions and make predictions from huge swaths of viral sequence data collected from all

around the world. Although various approaches exist to study the spread of infectious

diseases, recent developments for rapidly evolving pathogens take a probabilistic perspective

simultaneously on the spatiotemporal spread and pathogen sequence mutation process. Here,

phylogenetic diffusion models represent relatively simple and computationally efficient yet

flexible tools to connect spatial dynamics to sequence evolution, and specific

implementations of random walk models are available for both discrete and continuous

location data for the sampled sequences (Lemey et al., 2009, 2010).

The discrete approach models transitioning between a limited set of discrete states

throughout the ancestral history of the pathogen sequences according to a continuous-time

Markov chain process and has facilitated the study of global movement patterns of influenza

viruses, with most efforts for human flu focusing on influenza A/H3N2 (Bahl et al., 2011;

Nelson et al., 2015). A recent study has broadened the focus to all four seasonal influenza

viruses, including two influenza A subtypes (H3N2 and H1N1) and two influenza B

subtypes (Yamagata and Victoria) (Bedford et al., 2015). This study shows the viruses

varying in their degree of persistence and discretized-location switching frequency, with A/

H1N1 evincing lower switching rates compared to A/H3N2 and the two B subtypes showing

even lower rates. The study associates these differences with how quickly the viruses evolve

antigenically. A key element in the connection between antigenic drift and global movement

are differences in age distributions of infection and age-specific mobility patterns: viruses

capable of evolving faster antigenically will be better at infecting adults, who tend to travel

more frequently than children, providing more opportunities for the virus to spread (Bedford

et al., 2015).

Discrete phylogeographic reconstructions have important limitations such as their sensitivity

to sampling biases and the need to specify arbitrary spatial partitions. The continuous
diffusion model offers an interesting alternative in this respect, but geographic space is ill-

suited for tracking pathogens in humans and other hosts that frequently travel long distances.

However, a recent modeling study has demonstrated that complex spatiotemporal patterns of

spread evince surprisingly simple and regular wave-like patterns for distances measured

along transport networks instead of spatial distances (Brockmann and Helbing, 2013).

Holbrook et al. Page 2

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We use this concept of ‘effective distance’ to perform phylogeographic inference in latent

effective space by adopting a Bayesian MDS approach that enables the quantification and

comparison of differences in the rate at which the different seasonal influenza variants travel

the air transportation network. Bayesian MDS (Oh and Raftery, 2001) probabilistically

projects relationships between high dimensional objects onto low-dimensional space and

thus accounts for uncertainty by integrating over constellations of latent locations. To adjust

for shared evolutionary history between viral samples, Bedford et al. (2014) combines

Bayesian MDS with a latent phylogenetic diffusion model. With pairwise distances between

flu samples arising from biochemical assays, those authors used their Bayesian phylogenetic

MDS model to draw insights into the changing antigenicity of the four major seasonal

influenza subtypes.

Unfortunately, the Markov chain Monte Carlo (MCMC) computations required for a

Bayesian MDS (phylogenetic or otherwise) analysis are onerous. The MDS likelihood

prevents Gibbs sampling, and complexity of the likelihood evaluations necessary for

Metropolis-Hastings grows quadratically with the data. Fosdick et al. (2019) circumvent

MCMC computations by fitting the MDS model with an optimization routine. Bedford et al.

(2014) partly avoid the issue by completely leaving out the truncation term on the non-

negative pairwise distances—the computational bottleneck of the likelihood evaluation—and

effectively draw inference based on an incorrect model. Those authors witness high

autocorrelation between Markov chain states regardless. Hamiltonian Monte Carlo (HMC)

(Neal, 2011), an advanced MCMC algorithm that uses gradient information to craft

proposals, could help improve this poor mixing, but the log-likelihood gradient evaluations

required by HMC also scale quadratically with the data.

Nonetheless, we assert that correct inference from Bayesian MDS is possible, even scalable,

with the help of massively parallel computing that we exploit here to quickly calculate the

MDS likelihood and log-likelihood gradient in the context of HMC. We are not the first to

investigate parallel implementations in statistical computing: Suchard and Rambaut (2009),

Suchard et al. (2010a) and Suchard et al. (2010b) apply graphics processing unit (GPU)

computing to optimization and Bayesian inference for phylogenetics and flow cytometry;

Lee et al. (2010) perform sequential Monte Carlo with the aid of GPUs; Zhou et al. (2010)

leverage GPUs for statistical optimization; and Beam et al. (2016) compute the likelihood

and its gradient for a multinomial model with GPUs and thus accelerate HMC for that

model.

While GPUs also deliver the greatest speed gains for the inference problem considered here,

we find that multi-core central processing units (CPUs) combined with on-chip vectorization

follow closely behind in scaling Bayesian MDS for millions of data points. To facilitate

adoption of both GPU- and CPU-based parallel computing for Bayesian MDS, we provide

the open-source library MassiveMDS http://github.com/suchard-group/MassiveMDS both as

an R package and as a stand-alone C++ library. Section 2.6 contains further information on

MassiveMDS and related software that we provide readily available online. We now

introduce Bayesian MDS and its phylogenetic instantiation.

Holbrook et al. Page 3

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://github.com/suchard-group/MassiveMDS

2 Methods

2.1 From dissimilarity to a latent space

Multidimensional scaling (MDS) encompasses a class of ordination methods that project a

collection of objects into a low-dimensional Euclidean space based on dissimilarity

measurements between pairs of objects (Kruskal, 1964). Through MDS, objects with smaller

dissimilarity generally find themselves nearer in L2 distance to each other in this latent space

than objects with larger dissimilarity. While MDS traditionally has found use as an

exploratory data analysis tools, model-based MDS variants exist within the Bayesian

framework (DeSarbo et al., 1998; Oh and Raftery, 2001). One posits that each object’s latent

location is a random variable, translates the MDS projection into a probability model on the

observed dissimilarities given distances between latent locations (Ramsay, 1982) and

specifies an appropriate prior distribution over these locations. Previously, such distributions

have remained arbitrary and relatively uninformative. In this paper, however, the stochastic

process that gives rise to the latent location prior distribution is highly-structured and well-

informed. Further, the parameters that characterize the process are of chief scientific interest.

We are interested in a finite collection of N items. For any two distinct items i and j we

follow Oh and Raftery (2001) and model the observed dissimilarity yij as conditionally

independent, normal random variables, truncated to be positive

yij N(δij, σ2)I(yij > 0) for i > j, (1)

where the expected dissimilarity δij = ‖xi − xj‖ is the L2 norm between latent locations

xi = xi1, …, xiD
t and xj = (xj1, …, xjD)t in a low-dimensional, real coordinate space ℝD.

Given all latent locations X = (x1, …, xN)t, the conditional density of the observed data Y

becomes

p(Y ∣ X, σ2) ∝ (σ2)
N(1 − N)

4 exp − ∑
i > j

rij

rij = (yij − δij)2

2σ2 + logΦ δij
σ ,

(2)

where Φ(⋅) is the cumulative distribution function of a standard normal random variable.

Motivation behind this probabilistic transformation from observed dissimilarity into a

Euclidean space rests on present limitations in drawing inference about diffusive processes

(such as those outlined below) over irregular landscapes (Billera et al., 2001). Inference over

irregular landscapes often necessitates extensive data augmentation or numerical integration

(Manton, 2013; Nye and White, 2014) to closely approximate the density function of a

partially observed sample-path, as the density function is a solution of the stochastic

differential equation that governs the diffusion. On the other hand, in a latent Euclidean

space, simple Brownian diffusion (Brown, 1828; Wiener, 1958) and its scale mixtures

generalization (Lemey et al., 2010) offer closed-form density functions. Further, these

Holbrook et al. Page 4

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

functions yield conveniently to the analytic integration necessary to track the multiple end-

state locations X of dependent diffusion processes.

2.2 Highly-structured Brownian process prior

Consider a collection of M molecular sequence alignments, where each alignment Sm for

m = 1, …, M contains sequences from Nm evolutionarily related viruses, Ne additional

unsequenced viruses from unsampled locations and an N × N symmetric, dissimilarity

matrix Y for N = ∑m = 1
M Nm + Ne, where in general N ≫ Ne. Each entry yij of Y reports a

non-negative dissimilarity measurement between virus i and j for i, j = 1, …, N. We follow

standard Bayesian phylogenetics hierarchical approaches (Suchard et al., 2003) to model the

sequence data s = (s1, …, sM) that include, among other parameters ϕ not critical to the

development in this paper, phylogenetic trees G = G1, …, GM which may be known a prion

or random. Each tree Gm is a bifurcating, directed graph with Nm terminal degree-1 nodes

(v1
m, …, vNm

m) that correspond to the tips of the tree, Nm − 2 internal degree-3 nodes

(νNm + 1
m + ⋯, v2Nm − 2

m), a root degree-2 node v2Nm − 1
m edge weights (t1m, …, t2Nm − 2

m) that

report the elapsed evolutionary time between nodes. To simplify notation later, let

G(i) ∈ {1, …, M} indicate the alignment to which virus i belongs, with 0 indicating i

unsampled. We assume conditional independence between S and Y given G. Interested

readers may explore, for example, Suchard et al. (2001) or Suchard et al. (2018) for detailed

development of p(S, ϕ, G).

Our model posits that a multivariate Brownian diffusion process along the branches of the

trees in G (Lemey et al., 2010) gives rise to X. The Brownian process asserts that the latent

location value of a child node vcm in tree Gm is multivariate normally distributed about the

latent value of its parent node V pa(c)
m with variance tcm × Σ. The unknown K × K matrix Σ

parameterizes the dispersal rate in the latent space after controlling for correlation in latent

values that are shared by descent through Gm. This construction generalizes univariate

Comparative Methods (Cavalli-Sforza and Edwards, 1967; Felsenstein, 1985) approaches to

model the evolution of continuous-valued random variables first into a multivariate setting

and second across multiple trees. Figure 1 illustrates one possible realization of this process

for a single tree with Nm = 4 tips.

We assume that the latent values at all M root nodes v2Nm − 1
m and for the Ne unsequenced

viruses are a priori multivariate normally distributed with mean μ0 and variance τ0 × Σ or

τe × Σ, respectively. Following Cybis et al. (2015), we can ascribe that jointly X is matrix

normally distributed, with probability density function

p X|VG, Σ, μ0, τ0, τe =
exp − 1

2 tr Σ−1 X − μ0
tVG

−1 X − μ0

(2π)ND/2 |Σ |N /2 |VG|D/2 , (3)

Holbrook et al. Page 5

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where VG = {vij} is a block-diagonal N × N matrix. Specifically, if virus i is unsequenced,

then vij = τe and vij = 0 for all j ≠ i. The trees in G define the remaining M blocks. We define

dF(u, w) to equal the edge-weight sum along the shortest path between node u and node w in

a tree Gm. Then, within block m, diagonal elements vi′i′ = τ0 + dF(v2Nm − 1
m , vi′), the elapsed

evolutionary time between the root node and tip node i′, and off-diagonal elements

vi′j′ = τ0 + dF(v2Nm − 1
m , vi′) + dF(v2Nm − 1

m , vi′) − dF(vi′, vj′) /2, the elapsed time between the

root and the most recent common ancestor of tip nodes i′ and j′.

To complete our model specification, we assume a priori

Σ−1 Wishart(d0, T0) and
σ−2 Gamma(s0, r0), (4)

with degrees of freedom d0, rate matrix T0 shape s0 and rate r0. Finally, we specify fixed

hyperparameters (μ0, τ0, d0, T0, s0, r0) in our example.

2.3 Inference

We use Markov chain Monte Carlo (MCMC) to learn the posterior distribution

p(Σ, σ2, G, ϕ ∣ Y, s) ∝ p(Y ∣ Σ, σ2, G) × p(Σ) × p(σ2) × p(S, ϕ, G)
= (∫ p(Y ∣ X, σ2)p(X ∣ Σ, G)dX) × p(Σ) × p(σ2) × p(S, ϕ, G) (5)

with a random-scan Metropolis-with-Gibbs scheme and the development of a

computationally efficient transition kernel to sample the latent values X. We exploit standard

Bayesian phylogenetic algorithms (Suchard et al., 2018) based on Metropolis-Hastings

sampling for the tree G and other phylogenetic parameters ϕ. These latter transition kernels

are not rate-limiting.

Sampling G necessitates evaluating p(X ∣ Σ, G). Equation (3) suggests a computational order

O(N3) where N = max
m

Nm to form the matrix inverse VG
−1. However, we follow Pybus et al.

(2012) who develop a dynamic programming algorithm to evaluate Equation (3) in O(ND2)
via parallelizable post-order traversals of the trees in G. Freckleton (2012) and Ho and Ané

(2014) propose similar linear-time algorithms, but the underlying idea of message passing

on a directed, acyclic graph extends back at least to Cavalli-Sforza and Edwards (1967) and

Pearl (1982). Sampling ϕ is, likewise, linear in N and also conveniently computable on

massively parallel devices (Suchard and Rambaut, 2009).

On the other hand, sampling X stands as the rate-limiting operation for posterior inference.

To appreciate why, the full conditional distribution p(X ∣ Y, G, Σ, σ2) is not of standard form,

eliminating Gibbs sampling. Any sampler for X must therefore evaluate or approximate

logp(Y ∣ X, σ2) or its derivatives. This log-density is a sum over N(N − 1)/2 terms, where each

involves O(D) operations, such that complete evaluation is O(N2D). Its gradient is N

Holbrook et al. Page 6

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

summations over N − 1 terms that also involve O(D) operations. Again, complete evaluation

is O(N2D).

Bedford et al. (2014) describe a previous attempt at fitting a related Bayesian MDS model

with a phylogenetically informed prior. Restricted to a modest N low 100s similar to the

problems that Oh and Raftery (2001) attack, this previous work has relied on a low-

dimensional random-walk transition kernel applied at random to a single element Xi or even

xik of X. The advantage here exploits caching the O(N2) terms, since changing the value of a

single xi invalidates only N − 1 terms. The disadvantage lies in the potentially extreme auto-

correlation of the MCMC sample that grows with increasing N The auto-correlation arises

out of the posterior dependence between xi and for xj that our highly-informative

phylogenetic prior p(X ∣ Σ, G) exacerbates.

Hamiltonian Monte Carlo—We rely on HMC (Duane et al., 1987; Neal, 2011) to

efficiently simulate from the posterior distribution with respect to latent data X. HMC is an

advanced MCMC methodology that employs deterministic Hamiltonian dynamics to

intelligently generate proposal states. We couple each trajectory with a Metropolis accept-

reject step that renders the target distribution invariant. The upshot is an algorithm that has

aided Bayesian analysis by facilitating posterior inference for models of unprecedented

dimension and hierarchical structure.

Specifically, let π(x) be the probability density function of the target distribution for generic

random variable x with continuous support. Further, assume that π(⋅) be differentiable, as is

the case for the application considered here. HMC works by augmenting the ‘position’

variable x by an independent, auxiliary ‘momentum’ variable p with Gaussian density ξ(p).
An energy function is constructed as the negative logarithm of the density for the joint

distribution over (x, p):

H(x, p) = − log(π(x)ξ(p)) ∝ − log π(x) + 1
2pTM−1p . (6)

Here, M is the covariance of p, but it is also interpretable as the mass matrix for the

dynamical system associated to Hamiltonian H(x, p) and described by the system of

equations

x = ∂
∂p H(x, p) = 1

2M−1p

p = − ∂
∂x H(x, p) = ∇ log π(x) .

(7)

By Liouville’s theorem, Hamiltonian dynamics conserve the energy H(x, p). It is a corollary

that perfect simulation of the Hamiltonian system is equivalent to perfect sampling from the

canonical distribution exp(− H(x, p)) = π(x)ξ(p), i.e., for any stopping time t, the Metropolis-

Hastings acceptance criterion is

Holbrook et al. Page 7

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

min 1, exp(−H(xt, pt))
exp(−H(x0, p0)) = min(1, 1) = 1. (8)

Exact simulation is rarely available, but the discretized leapfrog algorithm (Leimkuhler and

Reich, 2004) has proven effective for simulating the Hamiltonian dynamics. The

discretization does lead to errors which cause the Hamiltonian evaluated at the proposed

state (x*, p*) to differ from that of the current state, so an accept-reject step remains

necessary. On the other hand, the discretized dynamics preserve volume just like the true

Hamiltonian dynamics, so we need no Jacobian corrections to calculate the Metropolis

acceptance criterion. We do, however, need to evaluate the log-likelihood gradient at

multiple points along the trajectory.

The log-likelihood gradient—In the notation for Bayesian MDS, HMC requires the

gradient of the log-likelihood with respect to latent locations X. The gradient of the log-

likelihood with respect to a single row xi of the matrix X is

∂
∂xi

logp(Y ∣ X, σ2) = ∂
∂δij

logp(Y ∣ X, σ2)∂δij
∂xi

= − ∑
j ≠ i

(δij − yij)
σ2 + ϕ(δij/σ)

σΦ(δij/σ)
∂δij
∂xi

= − ∑
j ≠ i

(δij − yij)
σ2 + ϕ(δij/σ)

σΦ(δij/σ)
(xi − xj)

δij
: = − ∑

j ≠ i
rij .

(9)

Here, ϕ(⋅) is the probability density function of a standard normal variate, and rij is the

contribution of the jth location to the gradient with respect to the ith location.

2.4 Model selection

We use cross-validation when it is difficult a priori to motivate a modeling decision. In

particular, we are interested in judging the ‘correct’ number of dimensions available for the

latent diffusion process. In turn, we interpret this latent dimensionality as a rough

quantification of the complexity for the air-traffic space in junction with the pathogen’s

evolutionary dynamics.

In cross-validation (Geisser, 1975), the practitioner systematically excludes a fixed

proportion of observations, trains the model on those remaining observations and uses the

fitted model to predict the held-out data. We repeat this process over a number of ‘folds’ and

ascertain the prediction error over the different folds. The model with the smallest total

prediction error is deemed best.

Recall that, for MDS, our data is a large distance matrix Y, and observations correspond to

off-diagonal elements yij. A cross-validation fold consists of the held-out observations YIJ
f

Holbrook et al. Page 8

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and the remaining observations Y−(IJ)
f for some multi-index IJ depending on f. Let s index

an MCMC state corresponding to a single draw from the target posterior and denote the

complete set of latent locations and model parameters (X, Θ)sf for s = 1, …, Sf. We use the

empirical log pointwise predictive density (lpd) as measure of predictive accuracy and model

fit (Vehtari et al., 2017). The log pointwise predictive density is

lpd = ∑
f

∑
i < j

i, j ∈ IJ

logp(yij
f ∣ Y−(IJ)

f)

= ∑
f

∑
i < j

i, j ∈ IJ

log∫ p(yij
f ∣ (X, Θ))p((X, Θ) ∣ Y−(IJ)

f)d(X, Θ)

≈ ∑
f

∑
i < j

i, j ∈ IJ

log 1
Sf ∑

s = 1

Sf
p(yij

f ∣ (X, Θ)sf)p((X, Θ)sf ∣ Y−(IJ)
f) = lpd .

Given two models with differing latent dimensions, we choose the model with smaller lpd.

For more on Bayesian model selection, see Gelman et al. (2013).

2.5 Massive parallelization

HMC is a powerful tool for Bayesian learning, but the likelihood and gradient evaluations it

necessitates become overly burdensome for Big Data inference. Efficiently computing

logp Y ∣ X, σ2 and its gradient with respect to X remains a critical and rate-limiting step at

O(N2D) for each evaluation. When N is large, the key insights for effective parallelization of

these evaluations are three-fold.

The first is most important: for the likelihood, there are a massive number of stereotyped,

and seemingly independent, operations in evaluating rij for all i > j(a transformation); for the

gradient, there are a massive number of stereotyped, and seemingly independent, operations

in evaluating rij for all i>j (again, a transformation). For both rij and rij, the floating point

operations required to evaluate Φ(⋅) are rate-limiting, so a useful computing strategy limits

wall time spent performing these operations by applying the functions in parallel across a

range of inputs.

The final two insights are often missed in statistical computing. The above transformations

offer a high degree of data-reuse; for example, rij and rij for all j depend on xi and yij and rij

and rij for all i depend on xj and yij. A good computing strategy stores these values in a way

that facilitates fast reuse. Finally, the realized values of rij and rij are never actually needed,

only their sum (a reduction). A good strategy avoids storing intermediate values in costly

memory.

Parallelization strategies—The simultaneous execution of multiple mathematical

operations through parallelization continues to enable computation to keep pace with

Moore’s Law that posits processing power doubles approximately every two years.

Holbrook et al. Page 9

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Parallelization is growing into a dominant theme in large-scale statistical inference (Suchard

et al., 2010b) and on hardware including clusters of independent compute nodes, on-chip

vector instructions, multithreaded multi-core processors and parallel co-processors such as

GPUs. Capitalizing on these hardware features in software implementation could emerge as

the most important task facing a computational statistician.

Cluster computing is the most familiar form of parallelization and often scales up to 1000s

or more of nodes that contain their own CPUs and random access memory (RAM), linked

loosely together through an Ethernet or InfiniBand network. In total, 1000s of CPUs and

massive quantities of RAM can comprise a single cluster; however, sharing information

between individual nodes has high latency in these distributed-computing environments.

Communication latency can severely affect the theoretically achievable speed-up of

parallelization.

Assume a computing task has an overall execution cost c0 and can be evenly distributed

across S parallel devices, each executing a thread of work. Then, an ideal implementation

will still require actual time c0/S + c1, where c1 is the incurred time of communication or

additional non-parallelizable computation. The speed-up on this ideal system often falls far

short of S-fold. Further, the overhead parameter c1 often scales with S. The high latency of

clusters, therefore, suggests coarse-grain decomposition with larger and relatively

independent threads assigned to each compute node to minimize the parallelization

overhead. Further, many statistical model fitting algorithms, including high-dimensional

optimization and MCMC, are iterative such that ci also scales by the number of iterations.

While several tools stand out for cluster-based statistical computing (Schmidberger et al.,

2009), we often find that significant financial investment in purchasing or renting a large

cluster yields only modest speed-up. For example, Suchard et al. (2010a) benchmark a

related MCMC inference problem involving millions of observations, yielding an

approximate 20-fold speed-up on a 100-node cluster costing about $250,000 in 2008, or

about $3,600 for a month of compute-time today on a cloud-based service.

In this paper, we avoid the high latency cost of iterative algorithms on clusters and instead

raise awareness on exploiting parallelization in less expensive shared-computing

environments. Specifically, we explore two prominent and one often unrecognized avenues

of parallelization to evaluate logp(Y ∣ X, σ2) (Equation (2)) and its gradient with respect to X

(Equation (9)), our rate-limiting steps in inference. On the prominent side, these avenues

harness the multiple, multithreaded processing cores cast onto CPUs in standard desktop

computers and the extreme number of cores working in tandem on GPU cards now

ubiquitous as high-performance computing add-ons. Under appreciated stands single-

instruction, multiple-data (SIMD) integer or floating-point operation parallelization available

within standard CPU cores.

In the parlance of high-performance computing, evaluating Equation (2) is a transformation-

reduction, where the transformation reads from RAM the latent locations X and observed

distances Y and computes rij for all i > j and the reduction then sums together all rij. A first

glance at this computation suggests two separate loops over all i > j; the first presents O(N2)
embarrassingly parallel tasks with floating point math calls, and the second loop has strong

Holbrook et al. Page 10

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

serial dependence. Gradient evaluation requires the N-transformation-reductions given by

Equation (9) for each i. Again, each transformation-reduction suggests two separate loops

over all i > j; here, the inner loop is O(N) with floating point math operations, and the outer

loop again has strong serial dependence.

Rate-limiting are the embarrassingly parallel floating point operations characterized by math

function calls. On account of their heavy cost, it is advantageous to broadcast such expensive

operations across as broad a swath of input data as possible. GPUs efficiently apply

operations to thousands of inputs, and, with the help of SIMD, multi-core CPUs

simultaneously apply a single floating operation to independent inputs in the low hundreds.

Parallel computing of floating point operations is much faster than serial, but an important

caveat of high-performance computing is that a single memory transaction involving a read

or write from RAM may take up to two orders-of-magnitude more time than a numerical

operation applied to a value sitting in a limited number of storage locations called registers

within the CPU or GPU. In practice, multiple consecutive memory transactions occur

simultaneously, moving a block of data between RAM and successive layers of high-speed

memory in close proximity to the processor called caches. As a result, consecutive memory

transactions are considerably faster than random ones, but still pale in speed comparison to

on-chip numerical operations.

To avoid unnecessary memory transactions, it should become common practice in statistical

computing to “fuse” together performance-dependent transformation-reductions into single

loops even if they retain some serial dependence. Through fusion, for example, intermediate

rij values never need to be written to RAM in the transformation, nor read back for the

reduction. Instead, one or more partials sums remain in on-chip registers and get

incremented as intermediate values become available; these may become available in a

parallel fashion and, ultimately, we may reduce either the intermediate values or final

partial-sums in parallel over a binary tree. Given B intermediates or partial-sums, the

computational order of the binary-tree reduction is O(logB), but it carries high inter-thread

communication. On hardware with even modest communication latency between threads,

such as between multiple cores on CPUs, there is often little speed advantage to a binary-

tree reduction. On the other hand, with almost no communication latency between small

groups of threads on GPUs, the final parallel reduction often shines. We return to this point

below.

Multi-core CPUs—Modern laptop, desktop and server computers hold sockets for 1 to 8

separate CPU chips and each chip consists of 1 to 72 independent processing units called

cores that can execute different computing operations simultaneously. Cores on the same

chip share only a small amount of low-level, high-speed cache to facilitate communication,

while cores on different chips often share only high-level, slow-speed cache if any. A

drawback of this architecture is that a single memory bus connects the cache to RAM. The

rate at which data moves across this bus, called the memory bandwidth, is several times less

than the total rate of numerical operations across all cores. For numerically intensive

computation on small amounts of data, this rarely presents a problem. As data sizes grow,

memory bandwidth limitations emerge.

Holbrook et al. Page 11

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Since multi-core hardware is designed to perform independent operations, the operating

system provides tools to coordinate their behavior that the computational statistician

accesses through software libraries that are built into many programming languages.

THREADING BUILDING BLOCKS (TBB) is one popular, open-source and cross-platform

library (Reinders, 2007) that provides a convenient and expressive application programming

interface (API) for multi-core parallelization of transformations and reductions. For

example, the R package RCPP PARALLEL (Allaire et al., 2016) wraps TBB, making it

immediately accessible to R and C++ statistical developers.

In a multi-core CPU environment, effective parallelization of the transformation-reductions

in Equations (2) and (9) first evenly partitions the task into a modest number of parallel

threads S, where S ≤ the total number of cores available. Without SIMD, each thread can

only perform the rate-limiting floating point operations one-at-a-time but benefits from the

large size of the CPU caches that automatically hold multiple copies of all of X close to the

cores. Using TBB, we assign elements rij (for the likelihood) or rij (for the gradient) that

hold j constant to the same thread, such that a core loads xj and yj (the jth column or row of

Y) into an on-chip register and reuses it many times. Beyond our specific task partitioning,

no specialized programming is necessary for a compiler to generate this code. In parallel, the

threads accumulate Spartial-sums that TBB stores to RAM. A final, serial reduction of the

Spartial-sums takes negligible time.

Many-core GPUs—GPUs contain 100s to 1000s of cores on a single chip and come, on

the smaller side, integrated directly into a CPU or, on the larger side, as add-on cards that

interface with laptop, desktop or server computers. Unlike the independent cores in a CPU,

small blocks of GPU-cores must execute the same instructions simultaneously, but on

potentially different data. While this appears to be a strong disadvantage, it greatly simplifies

thread management. Blocks of threads may communicate almost instantly using shared

memory in register-space directly in hardware, and efficiently scheduling many more threads

to execute than cores hides memory transaction latency with RAM, called global memory on

a GPU, because many tasks are in flight simultaneously. Embarrassingly parallel tasks with

no communication and low data reuse, such as independent simulation, run modestly faster

on a GPU than CPU because the total rate of numerical operations across 1000s of GPU

cores is currently larger than 10s of CPU cores, although the gap is narrowing. But GPUs

have limited memory cache, so exploiting the shared memory with many short-lived

cooperative threads leads to the greatest performance boosts.

To evaluate the log-likelihood transformation-reduction on the GPU, we generate S = N × N
threads and task each thread ij with computing only one entry rij. We block threads together

in B × B work-groups, such that each work-group IJ contains threads tasked to consecutive i
and consecutive j (Figure 2). By setting B = 16 to a small power-of-two, threads within a

work-group can communicate via shared memory. First, this reduces the number of memory

transactions to bring X and Y on-chip by a factor of B. For example, the first B threads in

each work-group read in corresponding group entries for xi and the second B threads read in

entries for xj, then all B2 threads have quick access. Most importantly, all threads in a work-

group independently compute each rij (and concomitant rate-limiting floating point

Holbrook et al. Page 12

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

operations) in parallel, for each of the B2ij pairs in the work-group. The threads then use

shared memory again to perform a binary-tree reduction. A single thread from each group

then writes its partial-sum back to global memory. A final, serial reduction on the CPU of

the N2/B2 partial-sums takes negligible time.

Recall that the gradient evaluation consists of N-independent transformation-reductions, one

for the gradient with respect to each xi. On the GPU, we generate S = N × B threads for B a

moderate power of 2 (we choose B = 128). In parallel across all i, we use B threads to

compute the gradient with respect to each individual xi. Each thread uses a for-loop to

compute [N /B] gradient contributions rij across individual js, after which the threads work

in concert to perform a comprehensive binary reduction of all the terms contributing to the

gradient with respect to xi. Besides the serial evaluations within each thread, the GPU

computes the rate-limiting floating point math operations in a massively parallel manner.

Furthermore, GPUs have high memory bandwidth, so it is not a problem that each thread

requires a copy of xi and yi. Finally, every work-group stores its xi and yi in place for

efficient reuse.

We write our GPU code in the Open Computing Language (OpenCL), an open-source

standard maintained by leading hardware vendors, such as AMD, Apple, IBM, Intel and

NVIDIA. The OpenCL framework allows for a “program once, execute across many

heterogeneous platforms,” including CPUs, GPUs and other emerging hardware

accelerators, portable approach using a familiar C-like syntax. In OpenCL, we write a single

function, called a kernel, for the log-likelihood and for the gradient transformation-

reductions, and the library assigns these kernels to each working group independently for

parallel evaluation at run-time.

Within-core vectorization—Multi- and many-core processing mainly benefit from the

concurrent execution of multiple threads of instructions. Commonly overlooked in statistical

computing stands an alternative form of non-concurrent, data-level parallelism called vector

or SIMD processing. In vector processing, a single instruction directs the core to operate

simultaneously on a short vector or packet of data stored consecutively in an extended-

length register. Beginning in the mid 1990s, SIMD processors began arriving in commodity

computers. On Intel x86 hardware, the instruction sets carry the names multiple math

extensions (MMX), streaming SIMD extensions (SSE) and, in its most recent form,

advanced vector extensions (AVX) that operate on 2 to 8 integer or floating-point values. At

the time of writing not widely available, next generation AVX-512 extends AVX from 256 to

512 bit extended registers with availability set to grow over the coming years.

While almost every computer used for statistical computing supports this form of

parallelism, few statistical tools explicitly exploit them, relying on compilers to inject

occasional SIMD instructions through their automatic optimization procedures.

Unfortunately, compiler-based automatic loop vectorization remains in its infancy, forcing

developers often to hand-code SIMD instructions at bottlenecks. The learning curve is high

and good documentation is scarse, but the performance pay-off makes exploring SIMD

worth it. Expressive libraries wrapped into the R toolchain, like RcppXsimd and RcppNT2

Holbrook et al. Page 13

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(Ushey and Falcou, 2016), are emerging, making SIMD as good as a free-lunch for

statistical computing.

One trick to successful SIMD parallelism consists of identifying a rate-limiting

transformation in which the input data lie consecutively in memory. For the log-likelihood

and its gradient, the evaluation of Φ(⋅) is easily identifiable as the most rate-limiting set of

operations using an instruction-level program profiler, such as INTEL VTUNE under Windows

and Linux and INSTRUMENTS on a Mac system. We attack this bottleneck by calling the

required floating-point operations on an entire SIMD extended-length register, as opposed to

a solitary floating-value, each time. Using SSE, we effectively evaluate Φ(⋅) over 2 double-

precision floating variables at a time. Using AVX, we effectively evaluate Φ(⋅) over 4

doubles at a time and reduce computing time by more than a half.

We illustrate this technique with the calculation of distance between two vectors. If we

physically order in RAM the floating-values of X as {x11, …, x1D, x21, …} - and pad with 0

between xi and xi + 1 if D is not even (SSE) or not divisible by 4 (AVX) - then the

transformation ‖xi − xj‖ δij is ripe for SIMD parallelism. In the case of SSE, exploiting

these in computing the dot-product in ‖xi − xj‖2 approximately halves the number of

operations. Figure 3 displays the x86 SSE instructions for this transformation when D = 2.

One instruction loads the set of packed doubles (pd) {xi1, xi2} into an extended SIMD

register. The next instruction loads and subtracts {xj1, xj2}, leaving {xi1 − xj1, xi2 − xj2} in

register. A third instruction forms the dot-product (xi1 − xj1)2 + (xi2 − xj2)2 that is a single

double (sd) value and a final non-SIMD instruction returns its square root. SIMD operations

can also lead to super-linear speed-up (> x-fold using X-wide SIMD instructions) because

they can be more cache-efficient and better identify data-dependence between instructions.

This latter feature allows modern CPUs to capitalize on instruction-level parallelism through

pipelining and out-of-order execution.

We have placed the algorithmic details corresponding to this discussion in Section A, where

Algorithm 1 describes our massively parallel implementation of the log-likelihood

computations and Algorithm 2 describes the same for the log-likelihood gradient.

2.6 Software availability

The Bayesian evolutionary analysis by sampling trees (BEAST) software package (Suchard

et al., 2018) stands as a popular tool for viral phylogenetic inference. The package already

implements MCMC methods to explore p(S, ϕ, G) under a wide variety of evolution

modeling assumptions and Cybis et al. (2015) extend BEAST to include p(X, Σ ∣ G). Here,

we provide an open-source, stand-alone library MASSIVEMDS http://github.com/suchard-

group/MassiveMDS that efficiently computes logp(Y ∣ X, σ2) and its gradient and currently

integrates directly into BEAST via a simple application programming interface (API). The

library contains a combination of C++ code for which standard compilers can generate

CPU-specific vectorized instructions at compile-time and OpenCL kernels that the library

constructs and compiles at run-time to facilitate GPU-vendor-specific optimization.

Holbrook et al. Page 14

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://github.com/suchard-group/MassiveMDS
http://github.com/suchard-group/MassiveMDS

Distribution as a stand-alone library source code with a simple API promotes cross-platform

compatibility.

To further ease adoption, we have used the RCPP package (Eddelbuettel and François, 2011)

to make the library available in the R programming language as a rudimentary package so

that R users can exploit massive parallelization without requiring the tool authors to be

experts in parallelization themselves; this design model has served well previously (Ayres et

al., 2019). Finally, we have facilitated R user access to advanced SIMD tools by making the

C++ library Xsimd available with R wrapper package RcppXsimd http://github.com/

OHDSI/RcppXsimd.

3 Demonstration

Each year, seasonal influenza infects at least 10% of the world population, causing as many

as 500,000 deaths. Prior to 2009, four main influenza subtypes circulated among humans. Of

these, influenza A lineages H3N2 and H1N1 are the most prevalent. Influenza B subtypes

Yamagata and Victoria contribute to decidedly less infections. Bedford et al. (2015) related

this difference in epidemic success to differences in the rate of antigenic evolution. Indeed,

H3N2 and H1N1 have higher rates of ‘antigenic drift’ compared to the less prevalent

influenza B counterparts (Bedford et al., 2014). This results in different age-of-infection

patterns that coupled with age-dependent air travel intensity explain different migration rates

(Bedford et al., 2015). Antigenic evolutionary rates were estimated using a Bayesian

phylogenetic MDS model with antigenic distances arising from costly chemical assays

(Bedford et al., 2014). Here, we use a concept of worldwide air traffic space to derive

pairwise distances between individual viral samples. Our goal is to obtain lineage-specific

rates of dispersion through this air traffic space using Bayesian phylogenetic MDS.

To this end, massive parallelization facilitates phylogenetic analysis of huge collections of

viral data with varied strains. We analyze 1370, 1389, 1393 and 1240 samples of type H1N1,

H3N2, VIC and YAM, respectively. The observed sample originates from 189 different

countries, making it ideal for testing the proposed air traffic distance framework.

3.1 Viral mobility from air traffic

We use effective distance (Brockmann and Helbing, 2013) between countries to incorporate

global transport information into our analysis. Effective distances summarize global air

travel patterns as a network of 4069 nodes (airports) and 25,453 edges (direct connections).

Let α and β index two arbitrary nodes on this network. Brockmann and Helbing (2013)

construct pαβ, the probability of traveling from α to β based on flight frequency numbers,

and use this probability to render

dαβ
e = 1 − logpαβ

the effective distance between the nodes. This measure is inversely proportional to the

probability of traveling between nodes, and the log transform guarantees additivity of edge

lengths, a direct corollary of the fact that transition probabilities multiply. On the other hand,

Holbrook et al. Page 15

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://github.com/OHDSI/RcppXsimd
http://github.com/OHDSI/RcppXsimd

dαβ
e does not generally equal dβα

e (consider the probability of traveling from New York to the

Solomon Islands), so we further symmetrize the measure to make amenable to a continuous

latent space representation. Finally we aggregate the distances by country to form our data.

3.2 Dispersal inference

To elicit the prior on the tree-based covariance through time VG for the latent diffusion

process, we incorporate a set of posterior trees from the analysis of Bedford et al. (2015)

into the model as a finite mixture. That analysis assumes the Hasegawa, Kishino and Yano

(Hasegawa et al., 1985) process with discretized rate variation (Yang, 1996) to model

sequence substitution as a continuous-time Markov chain along an unknown tree G. For a

prior distribution over G, Bedford et al. (2015) elect for a flexible, non-parametric

coalescent-based process (Gill et al., 2013) and give each strain its own tree. Bedford et al.

(2015) use Haemagglutinin coding sequences, numbering 9139 H3N2, 3789 H1N1, 2577

VIC and 1821 YAM in total and coming from the 9 geographic regions of USA/Canada,

South America, Europe, India, North China, South China, Japan/Korea, Southeast Asia and

Oceania.

First, we visualize the worldwide air traffic space using a two-dimensional latent space

model. In Figure 4, the posterior medians of 189 countries arrange themselves according to

our worldwide air traffic distances. Continental and otherwise geographic blocks of

countries (given by similar colors) hew together. Within blocks, economic powerhouses tend

toward the center of the space because they are more closely connected by air travel to other

economic giants from other blocks and hence other blocks in general. For example, the

United States (US) ‘represents’ the Americas in red while Japan (JP) and China (CN)

represent East Asia in pink.)

As indicated, the rate of dispersal for each individual viral strain is an important quantity of

scientific interest, and a key question is whether one may accurately infer these rates with a

phylogenetic MDS model trained on latent airspace data. For the multivariate Brownian

diffusion, tr(Σ) is the univariate measure of instantaneous dispersal satisfying

dx, dx = tr(Σ)dt,

where Σ is the same as in Equation (3) and dx is the instantaneous change in x as described

by the stochastic differential equations governing multivariate Brownian motion. To infer

these quantities we must choose the latent dimensionality of our MDS model. As described

above, we use 5-fold cross-validation, which dictates a 6-dimensional latent space: the

average log-likelihoods for latent dimensions 2 through 7 are

−7.1 × 106, − 4.2 × 106, − 3.4 × 106, 3.5 × 106, − 2.8 × 106, and −7.0 × 106.

Conditioning on the finite mixture of trees within a Gibbs sampler, we use a GPU to

generate 2 million HMC states in roughly 48 hours. GPU based HMC accelerates sampling

over latent locations, but we generate a large number of Markov chain states because

changes in tree topology and branch lengths result in an array of posterior geometries, all of

which require exploration. With a fixed tree, one needs to generate an order of magnitude

Holbrook et al. Page 16

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

fewer samples for similar problems at similar scale. Gibbs steps for both the MDS scale

parameter σ2 and the low-dimensional covariance Σ are straightforward and do not slow

sampling of other model parameters. Using this MCMC sample, we obtain empirical

posterior densities for strain-specific dispersal rates and present them in Figure 5. In order,

the posterior modes of the evolutionary diffusion rates for the four subtypes are 900, 700,

640 and 550 squared effective distance units per year for H3N2, H1N1, VIC, and YAM,

respectively. The relative distributions are in line with discrete migration rate estimates

between worldwide regions obtained by Bedford et al. (2015), and they largely follow

differences in posterior means for antigenic drifts for the same lineages (1.01, 0.62, 0.42,

and 0.32 for H3N2, H1N1, VIC, and YAM, respectively, Bedford et al. (2014)). That

scalings between the studies are different should not be surprising: one set of distances arises

from biological measures; another comes from transportation metrics. Nonetheless, our

result corroborates the results of the former study in terms of relative evolutionary rates.

Distinct relative rates of dispersal cohere to qualitatively different phylogenies. We present

posterior modes of inferred strain-specific trees obtained from the same MCMC sample in

Figure 6. The trees belonging to the subtype B lineages and H1N1 are much bushier than

that of H3N2. The latter lineage maintains a steady rate of evolution, and the former lineages

display a periodic switch between years characterized by long and short branch lengths.

Short branches indicate small effective population sizes – a result of rapid population

turnover – while long branches indicate large effective population size. Indeed, Bedford et

al. (2014) infer similar phylogenies.

Of the four subtypes in our study, YAM has the oldest most recent common ancestor

(MRCA), which takes place around 1994. VIC, the other influenza B subtype, has the next

oldest MRCA (circa 1997), followed by the influenza A subtypes H1N1 (circa 1998) and

H3N2 (circa 2000). Rooted at their MRCAs, the trees extend through worldwide air traffic

space: Figure 6 colors each by position with respect to the first latent dimension. As a relic

of its rapid dispersion, H3N2 has branches that quickly oscillate between brown, green and

red as the lineage travels through the latent space. On the other hand type B viruses (and to a

lesser extent H1N1) have entire clusters characterized by a single locality in air traffic space,

as indicated by slowly changing hews.

3.3 Parallelization

To produce the CPU results in this section (as well as Section B), we use an iMac Pro with a

10-core Intel Xeon processor clocked at 3.0 GHz, 32 GB DDR4 memory (2666 MHz), and

23.75MB cache. With hyperthreading (× 2 instructions per cycle) and AVX (× 4), it achieves

240 Gflops peak double-precision floating point performance. For the GPU results, we use

an NVIDIA Quadro GP100 with 3485 single-precision floating point CUDA cores and 16

GB HBM2 memory, achieving roughly 5 Tflops double-precision floating point

performance.

Table 1 compares GPU, multi-core, and single core implementations of log-likelihood and

log-likelihood gradient evaluations for 5,338 samples or approximately 14 million pairwise

distance data points. We also compare SSE vectorization and no SIMD against AVX

vectorization for a single core. For each processor setting, we perform 100 evaluations and

Holbrook et al. Page 17

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

report the average speedup. Reported speedups are relative to AVX-based, single-core

processing for each evaluation type (likelihood or gradient).

Single core, SSE computations are slightly slower (likelihood: 590 ms; gradient: 950 ms),

and non-vectorized computations are significantly slower (likelihood: 1,016 ms; gradient:

1,715 ms), than single core, AVX CPU computations. For multi-core CPU processing, we

find relative speedups that scale roughly linearly with the number of cores. With 12 cores,

AVX averages 44 ms per likelihood evaluation and 77 ms per gradient evaluation, roughly

10 times faster than the respective 420 and 716 ms per evaluation for single core AVX.

Again, these results arise from an application with 5338 locations, so they are particularly

encouraging given that we use a CPU with roughly 24MB cache, maxing out at N ≈ 1730 6-

dimensional locations (XN × 6) and their pairwise observations (YN2) stored in double-

precision. Nonetheless, we posit that a top-of-the-line, modern CPU with 70MB cache

capable of holding roughly 2955 locations and concomitant observation matrix could deliver

even greater speed.

Averaging 4.5 ms for the likelihood and 4 ms for the gradient, GPU implementations are

reliably around 100 times faster than single core, AVX implementations. For inference for

the illustration with H1N1, H3N2, VIC, and YAM, the GPU requires 48 hours to generate 2

million HMC states. Back of the envelope calculation shows the same posterior inference

requiring almost a full solar revolution for the single core AVX implementation. We place

additional scaling studies in Section B of the Appendix.

Finally, we allow that there are many criteria by which to judge software and respective

hardware implementations. The NVIDIA Quadro GP100 we use is top-of-the-line and

typically represents a purchase additional to whichever computer one might be working

with, whereas the majority of CPUs do not. We also recognize that such technology

advances at great speeds, gradually becoming less expensive and proliferating in use. For

these competing reasons we have developed software to exploit the strengths of both CPUs

and GPUs, whether through vectorized, multi-core or many-core processing.

4 Discussion

We developed Bayesian phylogenetic MDS to visualize pathogen diffusions and learn

related scientific quantities. We used ‘airspace distance’ between viral samples to model the

dispersion of four different strains of flu: H1N1, H3N2, Victoria and Yamagata. Doing so,

we obtained established strain-specific diffusion rates.

But inference for large collections of viral samples is not easy. We showed that Bayesian

MDS is ripe for parallel computation, and that massive parallelization provides massive

speedups for likelihood evaluations, likelihood-gradient evaluations and, hence, HMC

iterations. In particular, GPU-based calculations were over 100 times faster than respective

single-core based calculations and over 20 times faster than respective multi-core

calculations. In practical terms, massive parallelization can finish in a day what a single core

can do in a year! Moreover, these massive accelerations are available to Bayesian MDS in

general and not limited to phylogenetic MDS.

Holbrook et al. Page 18

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We note that there are other models that are worth exploring: Hoff et al. (2002) outlines

latent space approaches that are alternatives to MDS; Ramsay (1982) provides alternatives to

the truncated normal such as, e.g. the inverse-Gaussian; Oh and Raftery (2007) employ a

mixture of Gaussians as prior over latent positions. All three of these directions would be

amenable to phylogenetic extensions similar to that of MDS developed here. Indeed, a

phylogenetic extension of Oh and Raftery (2007) would be useful for clustering pathogens,

and, hence, predicting evolutionary dynamics. For viral samples accompanied by metadata

labels, one might use latent locations as predictors of, e.g., patient outcomes. In this case,

Holbrook et al. (2017) provides a road map for joint inference over the hierarchical model’s

MDS and predictive components.

A different kind of question is whether one might make GPU and multi-core SIMD

speedups available for a broader class of Bayesian models. Li et al. (2019) use neural

networks to approximate an arbitrary model’s log-posterior gradient and thus avoid

expensive HMC gradient computations in a Big Data setting. On the other hand, GPUs

greatly accelerate fitting and evaluation of deep neural networks (Bergstra et al., 2011). It

seems natural to combine these insights to power HMC based Bayesian inference on a

massive scale.

Less straightforward are geometric extensions to phylogenetic MDS. For example, Zhou et

al. (2018) rely on the similarities between hyperbolic space and tree space as defined in

Billera et al. (2001) (i.e. negative curvature) to visualize tree structure using the Poincaré

ball. Inference for a respective Bayesian model could be done using an intrinsic version of

geodesic Monte Carlo (Holbrook et al., 2018). Another interesting, geometrically inspired

model is Lorentzian MDS (Clough and Evans, 2017). Here, time between samples would

contribute negative distance while space between sequences would contribute positive

distance, leading to visualization with non-symmetric axes. Geometric and otherwise, all the

above directions are potentially fruitful for Bayesian phylogenetic inference.

Acknowledgments

The research leading to these results has received funding from the European Research Council under the European
Union’s Horizon 2020 research and innovation programme (grant agreement no. 725422-ReservoirDOCS) and
from the National Institutes of Health (R01 AI107034, R01 HG006139 and LM011827) and the National Science
Foundation (IIS 1251151 and DMS 1264153). We gratefully acknowledge support from NVIDIA Corporation with
the donation of parallel computing resources used for this research. The Artic Network receives funding from the
Wellcome Trust through project 206298/Z/17/Z. PL acknowledges support by the Research Foundation - Flanders
(‘Fonds voor Wetenschappelijk Onderzoek – Vlaanderen’, G066215N, G0D5117N and G0B9317N). GB
acknowledges support from the Interne Fondsen KU Leuven / Internal Funds KU Leuven under grant agreement
C14/18/094. AJH is funded by NIH-NIAID grant K25AI153816.

Appendix A.: Algorithms

We present Algorithms 1 and 2 for parallel computing of the likelihood and log-likelihood

gradient, respectively. Algorithmic details remain the same for multi-core CPU and GPU

approaches, but implementations do not. Also, for the CPU implementation, B is the size of

the SIMD extended register, but it is the size of the work group for the GPU implementation.

Holbrook et al. Page 19

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Algorithm 1

Parallel computation of likelihood

1: parfor IJ ∈ {1, …, ⎣ N /B ⎦ } × {1, …, ⎣ N /B ⎦ } do

2: parfor ij ∈ {1, …, B} × {1, …, B} do

3: if I × B + i < N and J × B + j < N then

4: copy xi, xj to local ⊳ first 2 B threads

5: calculate δij ⊳ all B2 threads, using SIMD Figure 3

6: copy yij to local

7: locally compute rij

8: end if

9: end parfor

10: compute partial sum rIJ ⊳ binary tree reduction on chip

11: write rIJ to global memory ⊳ using single thread

12: end parfor

13: p(Y ∣ X, σ2) σN(1 − N)/2exp −∑IJ rIJ ⊳ on CPU

Algorithm 2

Parallel computation of gradient

1: parfor i ∈ {1, …, N} do

2: copy xi to local ⊳ B threads

3: parfor J ∈ {1, …, ⎣ N /B ⎦ } do

4: j ← J

5: while j < N do

6: copy xj to local ⊳ B threads

7: Δij xi − xj ⊳ first two steps of SIMD Figure 3

8: calculate δij ⊳ final two steps of SIMD Figure 3

9: copy yij to local

10: ∇iJ ∇iJ −
(δij − yij)

σ2 +
ϕ(δij/σ)

σΦ(δij/σ)
Δij
δij

11: j j + B
12: end while

13: end parfor

14: ∂
∂xi

logp(Y ∣ X, σ2) ∑J ∇iJ ⊳ binary tree reduction on chip

15: end parfor

Holbrook et al. Page 20

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Appendix B.: Additional scaling studies

First, we provide insight into one of the main computational challenges of the MDS

likelihood: the truncation term

∑
i < j

logΦ(δij/σ) .

This term is computationally intensive because of its O(N2) floating point operations. Since

the term is the sum of a single simple function applied independently to all δij,

parallelization should deliver significant speedups. Figure 7 shows relative speedups (over

no SIMD, single core) of likelihood computation using SIMD vector processing, multi-core

CPU and GPU processing. In 100 independent iterations, we generate 5,338 samples

(approximately 14 million data points) and time the likelihood and gradient evaluations.

When the truncation term is not calculated, the 12-core implementation is only 4 times faster

than the single core without SIMD, and GPU calculations are only 16 times faster. But when

truncation is included (i.e., the correct model), 12-core implementation is more than 16

times faster, and GPU 200 times faster, than the single core implementation without SIMD.

Figure 8 shows seconds per likelihood and log-likelihood gradient evaluations for GPU and

multi-core implementations. Results are based on the two-dimensional latent space model

and distances arising from randomly sampled Gaussian points. Speeds are averaged over 100

independent tests. Lower values correspond to less computing time. Both for the likelihood

and the gradient, GPU evaluation speed (bottom) stays orders of magnitude faster than

multi-core and single core evaluation speeds.

References

Allaire J, Francois R, Ushey K, Vandenbrouck G, Geelnard M, and Intel. 2016. RcppParallel: Parallel
Programming Tools for ‘Rcpp’. R package version 4.3.19.

Ayres DL, Cummings MP, Baele G, Darling AE, Lewis PO, Swofford DL, Huelsenbeck JP, Lemey P,
Rambaut A, and Suchard MA 2019. BEAGLE 3: Improved Performance, Scaling, and Usability for
a High-Performance Computing Library for Statistical Phylogenetics. Systematic Biology 68:1052–
1061. [PubMed: 31034053]

Bahl J, Nelson MI, Chan KH, Chen R, Vijaykrishna D, Halpin RA, Stockwell TB, Lin X, Wentworth
DE, Ghedin E, et al. 2011. Temporally structured metapopulation dynamics and persistence of
influenza A H3N2 virus in humans. Proceedings of the National Academy of Sciences 108:19359–
19364.

Beam AL, Ghosh SK, and Doyle J. 2016. Fast Hamiltonian Monte Carlo using GPU computing.
Journal of Computational and Graphical Statistics 25:536–548.

Bedford T, Riley S, Barr IG, Broor S, Chadha M, Cox NJ, Daniels RS, Gunasekaran CP, Hurt AC,
Kelso A, et al. 2015. Global circulation patterns of seasonal influenza viruses vary with antigenic
drift. Nature 523:217–220. [PubMed: 26053121]

Bedford T, Suchard MA, Lemey P, Dudas G, Gregory V, Hay AJ, McCauley JW, Russell CA, Smith
DJ, and Rambaut A. 2014. Integrating influenza antigenic dynamics with molecular evolution. Elife
3:e01914. [PubMed: 24497547]

Bergstra J, Bastien F, Breuleux O, Lamblin P, Pascanu R, Delalleau O, Desjardins G, Warde-Farley D,
Goodfellow I, Bergeron A, et al. 2011. Theano: Deep learning on GPUs with Python. Pages 1–48 in
NIPS 2011, BigLearning Workshop, Granada, Spain vol. 3 Citeseer.

Holbrook et al. Page 21

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Billera L, Holmes S, and Vogtmann K. 2001. Geometry of the space of phylogenetic trees. Advances
in Applied Mathematics 27:733–767.

Bloom DE, Black S, and Rappuoli R. 2017. Emerging infectious diseases: a proactive approach.
Proceedings of the National Academy of Sciences 114:4055–4059.

Brockmann D. and Helbing D. 2013. The hidden geometry of complex, network-driven contagion
phenomena. science 342:1337–1342. [PubMed: 24337289]

Brown R. 1828. A brief account of microscopical observations made in the months of June, July and
August, 1827, on the particles contained in the pollen of plants; and on the general existence of
active molecules in organic and inorganic bodies. Philosophical Magazine 4:161–173.

Cavalli-Sforza LL and Edwards AW 1967. Phylogenetic analysis. models and estimation procedures.
American Journal of Human Genetics 19:233–257. [PubMed: 6026583]

Clough JR and Evans TS 2017. Embedding graphs in Lorentzian spacetime. PloS one 12:e0187301.
[PubMed: 29107967]

Cybis G, Sinsheimer J, Bedford T, Mather A, Lemey P, and Suchard M. 2015. Assessing phenotypic
correlation through the multivariate phylogenetic latent liability model. Annals of Applied
Statistics 9:969–991.

DeSarbo WS, Kim Y, and Fong D. 1998. A Bayesian multidimensional scaling procedure for the
spatial analysis of revealed choice data. Journal of econometrics 89:79–108.

Duane S, Kennedy AD, Pendleton BJ, and Roweth D. 1987. Hybrid Monte Carlo. Physics letters B
195:216–222.

Eddelbuettel D. and François R. 2011. Rcpp: Seamless R and C++ integration. Journal of Statistical
Software 40:1–18.

Felsenstein J. 1985. Phylogenies and the comparative method. American Naturalist 125:1–15.

Fosdick BK, McCormick TH, Murphy TB, Ng TLJ, and Westling T. 2019. Multiresolution network
models. Journal of Computational and Graphical Statistics 28:185–196. [PubMed: 31447541]

Freckleton RP 2012. Fast likelihood calculations for comparative analyses. Methods in Ecology and
Evolution 3:940–947.

Geisser S. 1975. The predictive sample reuse method with applications. Journal of the American
statistical Association 70:320–328.

Gelman A, Stern HS, Carlin JB, Dunson DB, Vehtari A, and Rubin DB 2013. Bayesian data analysis.
Chapman and Hall/CRC.

Gill MS, Lemey P, Faria NR, Rambaut A, Shapiro B, and Suchard MA 2013. Improving Bayesian
population dynamics inference: a coalescent-based model for multiple loci. Molecular biology and
evolution 30:713–724. [PubMed: 23180580]

Hasegawa M, Kishino H, and Yano T. 1985. Dating the human-ape splitting by a molecular clock of
mitochondrial DNA. Journal of Molecular Evolution 22:160–174. [PubMed: 3934395]

Ho LST and Ané C. 2014. A linear-time algorithm for Gaussian and non-Gaussian trait evolution
models. Systematic Biology 3:397–402.

Hoff PD, Raftery AE, and Handcock MS 2002. Latent space approaches to social network analysis.
Journal of the american Statistical association 97:1090–1098.

Holbrook A, Lan S, Vandenberg-Rodes A, and Shahbaba B. 2018. Geodesic Lagrangian Monte Carlo
over the space of positive definite matrices: with application to Bayesian spectral density
estimation. Journal of Statistical Computation and Simulation 88:982–1002. [PubMed: 31105358]

Holbrook A, Vandenberg-Rodes A, Fortin N, and Shahbaba B. 2017. A Bayesian supervised dual-
dimensionality reduction model for simultaneous decoding of LFP and spike train signals. Stat
6:53–67. [PubMed: 28529731]

Kruskal JB 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.
Psychometrika 29:1–27.

Lee A, Yau C, Giles MB, Doucet A, and Holmes CC 2010. On the utility of graphics cards to perform
massively parallel simulation of advanced Monte Carlo methods. Journal of computational and
graphical statistics 19:769–789. [PubMed: 22003276]

Leimkuhler B. and Reich S. 2004. Simulating Hamiltonian dynamics vol. 14. Cambridge university
press.

Holbrook et al. Page 22

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lemey P, Rambaut A, Drummond A, and Suchard M. 2009. Bayesian phylogeography finds its roots.
PLoS Computational Biology 5:e1000520. [PubMed: 19779555]

Lemey P, Rambaut A, Welch J, and Suchard M. 2010. Phylogeography takes a relaxed random walk in
continuous space and time. Molecular Biology and Evolution 27:1877–1885. [PubMed: 20203288]

Li L, Holbrook A, Shahbaba B, and Baldi P. 2019. Neural network gradient Hamiltonian Monte Carlo.
Computational Statistics 34:281–299. [PubMed: 31695242]

Manton JH 2013. A primer on stochastic differential geometry for signal processing. IEEE Journal of
Selected Topics in Signal Processing 7:681–699.

Neal RM 2011. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo 2.

Nelson MI, Viboud C, Vincent AL, Culhane MR, Detmer SE, Wentworth DE, Rambaut A, Suchard
MA, Holmes EC, and Lemey P. 2015. Global migration of influenza A viruses in swine. Nature
communications 6.

Nye TM and White M. 2014. Diffusion on some simple stratified spaces. Journal of mathematical
imaging and vision 50:115–125.

Oh M. and Raftery A. 2001. Bayesian multidimensional scaling and choice of dimension. Journal of
the American Statistical Association 96:1031–1044.

Oh M-S and Raftery AE 2007. Model-based clustering with dissimilarities: A Bayesian approach.
Journal of Computational and Graphical Statistics 16:559–585.

Pearl J. 1982. Reverend Bayes on inference engines: A distributed hierarchical approach. Pages 133–
136 in AAAI-82: Proceedings of the Second National Conference on Artificial Intelligence.

Pybus OG, Suchard MA, Lemey P, Bernardin FJ, Rambaut A, Crawford FW, Gray RR, Arinaminpathy
N, Stramer SL, Busch MP, et al. 2012. Unifying the spatial epidemiology and molecular evolution
of emerging epidemics. Proceedings of the National Academy of Sciences 109:15066–15071.

Ramsay JO 1982. Some statistical approaches to multidimensional scaling data. Journal of the Royal
Statistical Society. Series A (General) 145:285–312.

Reinders J. 2007. Intel Threading Building Blocks. First ed. O’Reilly & Associates, Inc., Sebastopol,
CA, USA.

Schmidberger M, Morgan M, Eddelbuettel D, Yu H, Tierney L, and Mansmann U. 2009. State-of-the-
art in parallel computing with R. Journal of Statistical Software 47.

Suchard M, Kitchen C, Sinsheimer J, and Weiss R. 2003. Hierarchical phylogenetic models for
analyzing multipartite sequence data. Systematic Biology 52:649–664. [PubMed: 14530132]

Suchard M. and Rambaut A. 2009. Many-core algorithms for statistical phylogenetics. Bioinformatics
25:1370–1376. [PubMed: 19369496]

Suchard M, Wang Q, Chan C, Frelinger J, Cron A, and West M. 2010a. Understanding GPU
programming for statistical computation: Studies in massively parallel massive mixtures. Journal
of Computational and Graphical Statistics 19:419–438. [PubMed: 20877443]

Suchard M, Weiss R, and Sinsheimer J. 2001. Bayesian selection of continuous-time Markov chain
evolutionary models. Molecular Biology and Evolution 18:1001–1013. [PubMed: 11371589]

Suchard MA, Holmes C, and West M. 2010b. Some of the what?, why?, how?, who? and where? of
graphics processing unit computing for Bayesian analysis. Bulletin of the International Society for
Bayesian Analysis 17:12–16.

Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, and Rambaut A. 2018. Bayesian
phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution 4:vey016.

Ushey K. and Falcou J. 2016. RcppNT2: ‘Rcpp’ Integration for the ‘NT2’ Scientific Computing
Library. R package version 0.1.0.

Vehtari A, Gelman A, and Gabry J. 2017. Practical Bayesian model evaluation using leave-one-out
cross-validation and WAIC. Statistics and Computing 27:1413–1432.

Wiener N. 1958. Nonlinear Problems in Random Theory. MIT Press and Wiley.

Yang Z. 1996. Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol. Evol
11:367–372. [PubMed: 21237881]

Zhou H, Lange K, and Suchard M. 2010. Graphics processing units and high-dimensional
optimization. Statistical Science 25:311–324. [PubMed: 21847315]

Holbrook et al. Page 23

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhou Y, Smith BH, and Sharpee TO 2018. Hyperbolic geometry of the olfactory space. Science
advances 4:eaaq1458.

Holbrook et al. Page 24

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
Multivariate Brownian diffusion along a phylogeny as a latent Gaussian model prior. This

example phylogeny has 4 tips, labeled 1, 2, 3 and 4. We depict the conditionally independent

diffusion realizations in two dimensions along each branch in different colors. The root and

two internal node realizations are colored as gray, blue and brown circles, while the four tip

node realizations X = (x1, x2, x3, x4) are highlighted in purple, green, yellow and red,

respectively. Dynamic programming enables us to integrate over all possible root and

internal node realizations, returning the joint distribution of X as an informed prior. Pairwise

distances between tip realizations relate to the observed dissimilarity distances yij of the

model.

Holbrook et al. Page 25

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Massive parallelization strategy for computing the log-likelihood: each working group

independently reads two separate batches of latent locations data from global memory,

computes location pair specific likelihood contributions in parallel, efficiently adds these

contributions in a binary reduction and writes the resulting partial sum to global memory.

Holbrook et al. Page 26

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Single instruction, multiple data (SIMD) Intel x86 CPU processor instructions to compute

‖xi − xj‖ for D = 2. These SIMD instructions simultaneously act on 2 double-precision

floating-point values. In 4 lines of code, we approximately halve the total number of

instructions executed to compute the distance between two vectors, resulting in almost a 2-

fold speed-up.

Holbrook et al. Page 27

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
Geography of a worldwide, latent air traffic space. A 2-dimensional Bayesian

multidimensional scaling model with effective worldwide air traffic space distances for data

results in 189 country specific posterior medians.

Holbrook et al. Page 28

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
Posterior distributions of strain-specific diffusion rates inferred from 6-dimensional

Bayesian phylogenetic multidimensional scaling with effective worldwide air traffic space

distances for data.

Holbrook et al. Page 29

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
Posterior modes for trees from each strain, colored along first latent dimension of worldwide

air traffic space.

Holbrook et al. Page 30

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
Speedup of graphics processing unit (GPU) and multi-core advanced vector extensions

(AVX) computations over single core implementations of multidimensional scaling (MDS)

likelihood with and without truncation. No single instruction, multiple data (No SIMD;

baseline, black) implementation and streaming SIMD extensions (SSE; colored) occupy the

bottom left corner.

Holbrook et al. Page 31

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.
Seconds to evaluate likelihood and gradient using central processing unit (CPU) and

graphics processing unit (GPU) as a function of data size. For both likelihood and gradient,

computation time grows exponentially for CPU and logarithmically for GPU

implementation.

Holbrook et al. Page 32

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Holbrook et al. Page 33

Table 1

Speedup of graphics processing unit (GPU) and multi-core advanced vector extensions (AVX) computations

relative to single core AVX computing. Single core implementations without single instruction, multiple data

(SIMD) and with streaming SIMD extensions (SSE) occupy the bottom left corner.

Cores 1 2 4 6 8 10 12 GPU

Vectorization None SSE AVX

Likelihood 0.41 0.71 1.98 3.80 5.57 7.29 8.55 9.31 92.25

Gradient 0.42 0.75 1.96 3.73 5.37 7.14 8.46 9.18 177.77

J Comput Graph Stat. Author manuscript; available in PMC 2022 January 01.

	Abstract
	Introduction
	Methods
	From dissimilarity to a latent space
	Highly-structured Brownian process prior
	Inference
	Hamiltonian Monte Carlo
	The log-likelihood gradient

	Model selection
	Massive parallelization
	Parallelization strategies
	Multi-core CPUs
	Many-core GPUs
	Within-core vectorization

	Software availability

	Demonstration
	Viral mobility from air traffic
	Dispersal inference
	Parallelization

	Discussion
	Algorithms
	Algorithm 1
	Algorithm 2
	Additional scaling studies
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Table 1

