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Abstract 

Highly accurate finite difference schemes 'are developed for 

Laplace's 'equation with the Dirichlet boundary condition on general 

b ded . l·~l Rn. oun reglons ~ A second order accurate scheme is combined 

with a deferred correction or Richardson extrapolation method to 

increase the accuracy. The Dirichlet condition is approximated by 

a method sU8gestcd by Heinz-Otto Kreiss. A'convergence proof of 

his, previously not published, is given which shows that, for the 

interval size h, one of the methods has an accuracy of at least 

O(h5 .5 ) in L2 • The linear systems of algebraic equations are 

solved by a capacitance matrix method. The results of our numeri-

cal experiments show that highly accurate solutions are obtained 

with only a slight additional use of computer time when compared 

to the results obtained'by second order accurate methods. 

AMS (MOS) subject classifications. Primary 65305, 65N15; 

secondary 65F05, 65N20. 
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§l. Introduction 

It is the purpose of this paper to develop some highly 

accurate finite difference methods for the Dirichlet problem for a 

general bounded region 0 in Rn. The most accurate of these has 

an L2 ,error of order at most h5~5, see §4. Our basic schemes use 

the standard (2n+I)-point formula for the interior mesh points and 

are therefore only second order accur~te. The increased accuracy 

is achieved by two steps of a deferred correction or Richardson 

extrapolation procedure. We also discuss the computer implementa-

tion of these methods in some detail. 

The use of deferred correction and Richardson extrapolation 

methods is justified by finding asymptotic expansions of the error. 

vlasow [20] has shown that no' usef'ul expansions of this kind exist 

if the boundary conditlon is approximated to a low order of 

accuracy. An obvious remedy for this problem, already mentioned by 

Was ow, is to use higher order interpolation or extrapolationformu-

las at any irregular mesh point, i.e. a mesh point in the open set 

o which fails to have all its next neighbors in the closure of O. 

Volkov [19] proposed the use of high order one-dimensional Lagrange 

polynomials for this purposeo Because of the change of sign of the 

interpolation coefficients the matrix representing the difference 

scheme will then, in general, not be of positive type. The stan-

dard convergence proof based on a discrete maximum principle, see 

Forsythe and Wasow [7], w-lill therefore generally not apply. But by 

allowing the use of values of the mesh functions many mesh 1engths 

away from the boundary, Volkov succeeded in designing schemes with 



diagonally dominant matrices. His schemes may however lead to an 

unacceptably small mesh size even for very simple geometries. 

Numerical experiments, see Pereyra [13] and the last 

section of this paper, clearly demonstrate thE need for higher 

order accuracy at the irregular mesh points if improved solutions 

through Richardson extrapolation or deferred correction methods 
. 

are required. In his 1966 paper, Pereyra also reported on 

successful numerical experiments with methods based on Lagrange 

interpolation in one variable and employing only mesh points close 

to the boundary. At that time no convergence proof was knovm for 

such methods. 

In June of 1968, Kreiss announced an interesting result on 

the convergence of methods of this type. His result was never 

published. His schemes are constructed as sums of difference 

approximations of one-dimensional problems. At the interior mesh 

points each of these problems is discretized by ~ three-point 

formula while at the irregular mesh poifits this basic formula is 

combined with high order Lagrange extrapolation. For a detailed 

. description see §2. Kreiss found a method of proof which provides 

an alternative to the classical technique previously mentioned. 

His method depends heavily on the special structure just described. 

We learned about his results from several conversations and 

his unpublished notes which were kindly made available to us. Our 

interest in these methods was recently renewed when we realized - . 
that the capacitance matrix, or imbedding, method developed by 

Proskurowsk.i and Widlund [18] could be adapted for the di.fference 

schemes considered by Kreiss. 
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In this paper,we describe Kreiss' sChemes, give detailed 

proofs of convergence and existence of error expansions and 

discuss their implementation. We have exclusively used a deferred 

correction method in our nwnerical experiments rather than Richardson 

extrapolation. Our reason is that the deferred correction method, 

especially for problems in several dimensions, has often proveo 

less costly, see Pereyra [13] and also § 5 of this paper. One 

advantage is that, in contrast to Richardson extrapolation, 

deferred correction methods require only one mesh size. The 

capacitance matrix method allows us to solve the same system of 

linear equations repeatedly at an expense which decreases con

siderably once the first problem has been solved. 

Our combination of a deferred correction and an imbedding 

method is quite convenient from a programming point of view. We 

have also developed a new, practical way of calculating the 

required difference approximations to the terms of the expansion 

of the truncation error. This method resolves a long-strulding 

problem in the theoretical justification for the use of more than 

one deferred correctioh step for boundary value problems of this 

type. The imbedding of the region in a rectangle allows us to use 

certain programs previously developed to perform deferred correc-

tions for problems on rectangular regions. 

In the last secti.on, we report on numerical experiments 

carried out on a CDC 7600 computer at the Lawrence Berkeley 

Laboratory. They show that very high accuracy is obtained for 

problems with sufficiently smooth solutions. For problems ~vhich 

fail to have sufficiently many bounded derivatives the. corrections 

!.. a o 0 



do not spoil the accuracy of the solution. We believe that our 

method can be developed further into highly efficient and reliable 

numerical software. We note that fast Laplace solvers are used 

increasingly to enhance the convergence when solving more general 

problems, see for exa..llple, Bartels ar.d Daniel [1], Concus and Golub 

[4,5], Jameson [9], O'leary [10], Martin [11,12] and Widlund [21]. 
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§2. Kreiss' Method for Poisson's Equation 

We will consider a family of finite difference schemes for 

the Dirichlet problem for Poisson's equation, 

-6u f(x) , x€:o , 

(2.1) 

u(x) = g(x) , X €: ~ , 

where the region 0 is an open, bounded subset of the n-dimensional, 

real, Euclidean space Rn with the boundary·~. We will make no 

detailed assumptions on the smoothness of 00 and the data f and g 

but assume only that they are sufficiently smooth. As is well 

known, the problem (2'.1) then has a unique, sufficiently smooth 

solution. 

A uniform mesh R~ is introduced by 

where h > 0 is the mesh size. The position of the origin of cur 

mesh is, of course, arbitrary. We could also have chosen different 

uniform mesh sizes in the different coordinate directions without 

affecting the theory or practice of the methods except i.n some very 

minor ways. 

The set of mesh points of interest to us is 

There are no equations for points on ~O. The difference equations 

are constructed as a swn of approximations of one-dimensional prob-

~ 50 f?' r' (1 . ' 
'.~ 

1" ~ o 0 



lems corresponding to the operators -(%x
i

)2, j.= l, ••• ,n. They are 

specified by defining a linear equa.tion for e'ach x' € 0h. Let the 

vector e i be the unit vector in the direction of the positive i-th 

coordinate a..'{is. A mesh point x € 0h is called regular if all its 

closest neighbors x ± he
i

, i = 1, ••• , n, belong to 0h 0 For a regular 

mesh point, we simply use the standard centered difference 

approximation of each of the second derivatives. This results in 

the equation 

h . 
2nu (x) 

n 

~ 
h h·- 2 

(u (x + he. ) + u (x - he. )) = h f ( x ) 0 

l l 

This formula is combined with polynomial extrapolation of a 

fixed degree k for the remaining,· irregular, mesh points of 0h. 

Let us thus suppose that x € 0h but that x + he i I 0h and that 

x- he., •• o,x- (k-l)he. € 0h. This last condition can always be 
l l 

satisfied for a smooth dO if h is chosen small.enough. Denote by 

x~ the intersection of the boundary ~ and the segment between x 
l 

and x + he. and by s· h the dis tance between x~ and x + he.. Thus 
l l l 

o < S < 1. A provisional value of uh(x + he.) is now defined by the 
l . 

Lagrange interpolation formula, 

(2.2) 
k h 

)"- a. u (x - (j -1 ) he.) = u ( x ~ ) = g ( x ~) • J;;o J l l l 

The coefficients a j depend c.nly on s and are given by the formula 

k 
a j = ~ (s-t)!(j-f) • 

2=0 
ft=j 

The value of uh at the point x+ he i is now elinJinated by combining 

6 
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(2.2) with the standard three point formula.for the point x. The 

resulting matrix, which corresponds to the approximation of 
2 -(d/dx.) along a mesh line parallel to e.,thus typically has the 

1. 1. .' 

form 

(2.3 ) 

-1 2 -1 • • 0 

o -1 2 • • • 

• • • • • • 2 -1 o 

• • • -1 2 -1 

Here a~, ••• ,' a~ are the Lagrange interpolation coefficients related 

to a second intersection between the boundary ruld the mesh line. 

If the mesh line in question intersects dO in several points, the 

matrix representing the difference approximation of _(d/ox.)2 along 
1. 

this line will be a direct sum of several matrices of the form (2.3). 

The matrix Ai which eorresponds to the entire approximation of 

-(%xi )2 is the direct sum of the matrices introduced for the 

individual mesh lines parallel to the vector ei,o Finally, the 

matrix A, which represents the approximation of the entire problem 

(2.1), is the sum of P~A.P. where P. is a suitable permutation 
1. 1. 1. 1.. 



We note that if some irregular mesh point x is very close to 

the boundary, i.eo some s is quite close to one, the ratio al/ao 

will become very large. This will give the matrix a very large 

diagonal element and the coeffi.cient multiplying g(x~) in the 

right-hand side will be of the same order of.magnitude. In 

practic~ we will therefore always scale the rows of the matrix A, 

making the diagonal elements equal to 2n. 

El 



§3. Stability of the Fini.te Difference Methods 

As we saw in §2 the matrix A which corresponds to the full 

difference approximation of problem (2.1) has the form 

n T 
A = ~ P.A.P. 

1. 1. 1. 
1.= 

where the Pi are suitable permutation matrices and the Ai are 

direct sums of matrices of the form (2.3). The original problem 

(2.1r has a bounded inverse in L2• The analogous result is that 

the spectral norm of the inverse of A is bounded by const x h -2. 

To establish this result we will study the symmetric part of A. 

In this section we will use the Euclidean vector norm and the 

spectr~l matrix norm exclusively. 

Lemma 1. Let the symmetri.c part of a matrix A satisfy 

5 > 0 • 

Then A is nonsingular and lA-I, ~ 1/5. 

Proof: Let Ax = b. Then 

Thus Ixl~ IAx//5 which proves. the lemma. 

n T 
Let A = ~ P.A.P. where the P. are permutation 

l1.1. 1. . 1.= 
Lemma 2. 

matrices. If 

(A. + A~)/2 > 51 
1. 1.\ -

then 

P l 9 ~ 
9 () ~ . 

f7 ~"'~ p. (} : f ~ n 
i!..1i 0 



The proof follows from a.n elementary variational argument. The 

proof of the next lemma is equally easy. 

Lemma 3. Let the matrix A. be the direct sum of certain 
1 

matrices Bij - If 

(B .. + B~ . )/2 > 5 I , 
l.J . lJ -

for all j , 

then 

(A. + A~)/2 > 51 • 
1 1 -

We are now ready to apply these lemmas. Specifically we will 

study matrices of the form (2.3). For technical reasons we will 

assume that all these matrices have 8-.1.'i order of at least 2k-l. 

rrhis condition can again be satisfied for any smooth dO if the mesh 

size h is chosen small enough. We will reduce the study of the 

matrix (203) to a simpler case which corresponds to imposing a 

Neumann condition at one end point. 

Lem..lJla 4. Denote by B the matrix defined by formula (2 -3) • 

r~t B2 be a matrix of the form 

1 -1 

-1 2 -1 

• • 

• • • 

-1 2 -1 

10 



and let Bl be a matrix of the same form generated by 
, , 

ao' • ... , ~. 

Suppose further that the orders of the matrices Bl , B2 and B, 

denoted by n l , n
2 

and m respectively, satisfy the conditions, 

If 

and 

then 

"-
Proof: Denote by Bl the matrix obtained from Bl by reversing 

the order of its rows and columns. The proof follows from the 

identity, 

, 

T·· T where u = (xl, .•• ,x ) and v = (x , ••• ,x). This identity can n l n l m 

be verified straightforwardly. Hen~e, by our assumption, 

To concludethe·proof we only note that 

We will next use the LDLT factor~zation of S = (B2 +B~)/2 

to verify that S is positive definite and also give a lower bound 

for its eigenvalues. We will write S as a block matrix, 

n 0 



s T.j 21 

, 
s22 

where s21 = (0, ••• ,0, ~/200, ••• ,~/200' -1+02/200) and 

s22 = 2 + °1/°0 • Its block factorization takes the form 

where 

1 

-1 1 

• • , 
• • 

• • 
-1 1 

is bidiagonal, 

and 

By using the fact that 00 + ••• + Ok = 1, we find that 

(3.2) d - 1/ .( 2 . ( ...) 2 _ (_ ) 2} /4 2 - - °0 - Ok + Ok f- Ok -1 ' + 0 0 • -1 ~ f- • o. + ° 2 o· 0 • 

Computer results show that the l'ational function d is strictly 

12 

. " 



" . 

positive for O~s.::.l and all 1<k<6. ForIe = 7 and 8 it changes 

sign in the interval. These results can Of course also be verified 

by a tedious paper and pencil calculation~ We note that d goes 

to positive infinity when s approaches 1 while the components of 

s21 and £ remain bounded. We are now ready to establish a lower 

bound for the, eigenvalues of S. 

Lemma 5. Let d. denote the minimum of the function d(s) mln 

defined by formula (3.2). Then there exists a strictly positive 

constant C, independent of the mesh size h and the region 0, such 

that 

S > 5I 

where 

Proof: By using the notations previously introduced in this 

section, we find 

Since d = 1 for s = 0, xTSx > d . /LTx/ 2 • To obtain a lower bound 
- mln 

for /LT~/ we will compute an upper bound for /L-Ty/. Partitioning 

T "'T . ' 
the vector so that y = (y ,y ), we flnd . n. 

Therefore, if we use the fact that £ has a uniformly bounded norm, 

we find 

9 /.. 11 "i l~ h' ~J' (1 
,,;.t.. 
;,- J 
',. o a 



-1 The norm of Lll 'equals the square root of the reciprocal of ',he 

T smallest eigenvalue of LllLll • Now the matrix 

t~ 
-1 

T 2 -1 ... J 
Lll Lll = 

.. 

-1 2 . 

has an order m < diam (O)/h. As is easily checked, the 

smallest eigenvalue 'of LllLil equals 4 sin2 (1T/2(2m+l))corresPOnding 

to an eigenvector with the components cos (1T(J:-l/2)/(2rn+l)), 

j = 1, •• D,m. This concludes the proof. 

By combining our five lemmas and the results from our compu-

tation of d . , we obtain, what essentially is Kreiss' result, mln .' 

Theorem 1. For k ~ 6 there exist constants Ck , ind~pendent 

of h, such' that, 

14 
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§4. Convergence and Asymptotic Expansions of the Error 

In this section, we will prove the convergence of the schemes 

introduced in §2 and simultaneously establish asymptotic expansions 

for the error. We will concentrate on the case k =·6, which is 

the most accurate of the schemes known to be stable. We will 

assume throughout that the solution u(x) is sufficiently smooth. 

We make the Ansatz, 

(4.1) 

The functicns e(l)(x) and e(2)(x) will be chosen as solutions of 

Poisson's equation in a way which will make the remainder rh(x) 

a term of higher order. 

Asymptotic expansions of this form are basic for the justift-

cation of Richardson extrapolation and deferred correction methods. 

They also easily enable us to give estimates for the rate at which 

difference quotients of the solution of the discrete problem uh(x) 

converge to the corresponding derivatives of the solution u(x). 

Let us denote by h2~ the difference operator which has the 

matrix representation A, see §§2 and 3. The linear system of 

equations therefore_has the form 

(4.2) 

A component of the right-hand side Fh, which corresponds to a 

regular mesh point, has the form h2f(x) whereas a component, con'8-

sponding to an irregular mesh point, is a sum of h2f(x) and terms 

of the form g(x~')/a (s.). Here a (s.), 0 -< si -< 1, is a Lagrange 
1. 0 1 0 1 -

t. l R 



polynomial coefficient introduced in §2o To derive equations for 

the error functions e(l)(x) and e(2)(x), we substitute the expres

sion (4.1) into the equation (4.2) and expand the truncation error 

in the customary way. We first ignore the contributions from the 

interpolation formulas used for the irregular mesh points. By 

setting the fourth and sixth order terms of the resulting expres-

sions equal to zero, we obtain the Poisson equations 

and 

Because of the high order accuracy with which the boundary condi-

tion is approximated, it is appropriate to equip these equations 

with zero Dirichlet boundary conditions 

X E: en . 

are, by a standard result on 

elliptic equations, suffiCiently smooth functions. 

We now derive a difference equation for the remainder term 

rh(x). This equation has the form 

It is easy to show that a ccmponent of Gh, corresponding to a 

regular mesh point, is of the form, 

16 
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h
8 

( (1/20160) 1:1 (!l/Oxi )8u + (1/360) 1:1 (il/ilxi )6 e (1) 

+ (1/12) i:1 (il/ilxi)J~e(2»+0(h10) • 

A component of Gh , corresponding to an irregular mesh point is the 

sum of a term of this form and of one or more seventh order error 

terms of the Lagrange interpolation formulas (2.2). The latter 

terms are multiplied by factors lla (s.) which grow as 
, 0 1. ' 

const I (l-Si) when si - 1. It can, however, be shown, by a 

straightforward calculation, that this increasing factor l/aO(si) 

is fully compensated by a decreasing factor in the error bO\.U1d for 

. Lagrange interpolation, see Isaacson and Keller [8 , p. 190]. 

These components of Gh are therefore uniformly 0(h7 ) for all 

sufficiently smooth solutions u(x). 

We are now ready to use Theorem 1 to obtain a bound for 

rh(x). It is natural to work with the norm, 

for which the estimate of Theorem 1 still holds. We first estimate 

II Gh"2. The components of Gh are 0(h8 ) for the regular mesh points 

and 0(h7 ) for the irregular mesh points. Since there are only of 

the order h-(n-l) irregular points, IIGh"2 = 0(h7 •5 ). tie use Theorem 

1 to establish, 

Theorem 2. Let uh(x) b2 the solution of the finite difference 

scheme with k = 6 and let u(x) be the sufficiently smooth solution 

of the different.ial equation (2.1). Then there exist two 

e l g o 0 



sufficiently smooth functions e (1) (x) and e (2) (x) such that 

where the ~ norm of rh(x) is O(h5 •5 ). 

Similar results hold for smaller values of k. We expect that 

Theorem 2 is not sharp. We conjecture that t~e remainder term 

should be of the form 

in the maximum norm. _ We are led to this conjecture by results, 

previously established by Bramble and Hubbard [2], for the opera

tors of strictly positive type which result when k = 1 and 2. If 

the estimate of Theorem 2 can be sharpened in this way, we would be 

justified in applying Richardson extrapolation three times to 

obtain a seventh order accurate method. 

\ 
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§5. Methuds of Increasing the Accuracy 

Richardson extrapolation and deferred correction methods are 

available to improve the second order accuracy of the basic solu

tion uh(x). We will again concentrate on the case k = 6. We will 

first discuss the Richardson extrapolation method which is simpler 

both conceptually and iIi terms of its implementation. 

The solution is first found on a basic mesh 0h and then for 
o 

a sequence of refined meshes 0h.' where hi = holri' 
1. 

I < r l < r 2 < ••• 0 It is very important that the sequence (ri ) 

grows slowly for multidimensional problems since the number of 

variables grows rapidly. The improved solution is obtained only on 

the intersection of the meshes 0h. If we require the improved 
i 

solution at all points of 0h and use two extrapolation steps, the 
o 

number of mesh points on the finest mesh will be at least about 

nine (twenty seven) times larger in two (three) dimensions. Core 

storage can therefore easily be exhausted and less advantage can 

also be taken. of the savings which often can be realized when 

direct methods are used to solve linear systems repeatedly. 

If enough terms of an as~nptotic error expansion, in even 

powers of h, exist, we obtain improved solutions ~i by the recur

sion formula, 

with 

°h. · 
1. 

h 
~~ the restriction of u i to the intersection of the meshes 

The e;rror ~i - u will be of the order h~j+2. A useful 

a posteriori error bound, 

~uj ~.(~j ~j )/( ( 1)2 
1.
, - u ~ u. - u. 1 I - r. + ." r. ), 

1. J.- . 1. J 1. 

6 L 9 



can also be computed, for details see Bulirsch and stoer [3]. 

By using Theorem 2, we can easily show that two steps of 

Ri~hardson extrapolation will give an accuracy of the order h5 •5 

if we use the scheme with k = 6. 

The deferred correction method requires only one mesh. The 

method has been discussed in detail in a number of papers, see for 

example Pereyra [13-17]. Here, approximations of the leading terms 
. 2 

of the local truncation error of the discrete operator h ~ a~e 

computed and a corrected solution is then found by solving an addi

tional system of linear equations with the same matrix A as before. 

Further corrections may be obtained in s similar way. 

We will describe the variant of the method which we have used 

in our experiments. In the first step we take into account only 

the first truncation error terms, resulting from the approximation 

of (%xi)2, i = l, ... ,n, by the three point approximations. We 

know from §4 that these leading terms are 

i = 1, •• 0, n • 

·We attempt to approximate them to within 0(h6 ) by using centered 

five point differences of the second order accurate solution uh • 

For a periodic problem this procedure is very Simple, but for a 

region with a boundary special one-sided differentiation formulas 

must be used for the mesh points which are within 2h of the bound-

ary along a mesh line. One-sided formulas can introduce additional 

error terms for the corrected solution through the special contri

butions to the truncation error at the points where these formulas 

are employed. An additional correction step may be justified by an 

20 

• 

• 



• 

,. 

.. 

asymptotic error expansion of the corrected solution, but note that 

an unfo!tunate choice of one-sided differentation formulas would 

lead to difficulties very similar to those already discussed by 

Wasow [20] • 

This problem can be avoided in a systematic wayo Let x be 

the irregular mesh point introduced in our discussion in §2. We 

will use high order Lagrange extrapolation, employing only values 

of the mesh function uh at x, x-hei , ••• , to'obtain provisional 

values of uh at x+he i and x+2he i • The same centered five point 

differentiation formula can then be used for all points in 0h' see 

further discussion in§6. The expansion of the truncation error 
\, 

which is due to the use of the five point approximation of the 

fourth derivative (%x.)4 will have the same leading terms and 
1-

differ only in a higher order term. The order of this higher order 

term will of course depend on the degree of the Lagrange extrapola

tion polynomial. ~he Lagrange polynomial coefficients are the same 

at every point since I .. e use values at mesh points only. The 

approximation of the expressions (5.1) are added to the original 

data Fh and the linear system of equations is solved a second time. 

In a second correction step 

i = 1, o •• , n , 

is approximated by a centered seven point formula 'with an error 

which is 0(h8 ) for a sufficiently smooth function. We thus use 

the once corrected solution and high order extrapolated values 

thereof in a way very Similar to the previous step to obtain a new 

\ .. ~ -. O t- 9 
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right-hand side and a second corrected solut'ion, see further 

discussion in §6. 

Our error bounds for the deferred correction method are 

rather weak. When we estimate the truncation error due to the dis-

cretizatli::m of the expression (Sol), we find that the three first 

terms of the expansion given in Theorem 2 give a contribution of 

the order h6. Since the operator h2~ has an inverse bounded by 

-2 4 const h they contribute a term of the order h to the error of 

the corrected solution. In contrast the undivided differences of 

the remainder term of rh create difficulties. Since undivided 

difference operators are bounded, independently of h, the contribu

tions of rh to the truncation error and the error of the corrected 

solution are bounded by h5 . 5 and h3 •5, respectively. In order to 

prove a result as strong as that for the Richardson extrapolation 

method this loss of two power~ of h must be eliminated. This would 

be achieved if we were able to give as sharp abound for the norm 

of the second order divided differences of the 'solution as for the 

norm of the solution itself. The analogue of this desired estimate 

holds for second order elliptic equations on regions with suffi-

ciently smooth boundaries. We have not been able to obtain this 

result in the discrete case. A modification of the argument of §3 

leads to an improved bound for divided differences of the first 

order. This proves that at most one power of h can be lost in each 

connection step. For numerical evidence see §7. 
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§6. The Capacitance Matrix Method 

All our experiments have been carried out for regions in the 

plane and we will therefore confine our discussion to that case. 

We have used a modification of the capacitance, or imbedding, 

method which was developed by Proskurowski and Widlund [18] to 

solve our linear systems of equations. We refer to that paper for' 

a detailed discussion of the method. Here we will confine our-

selves to a few brief' remarks on the method concentra.ting on the 

changes required by the deferred correction algorithm. 

A main part of any capacitance matrix program is a fast 

Poisson solver on a region for which separation of the variables 

can be applied. Our subroutine, SOLVE, implements a Fourier-

Toeplitz method on an infinite parallel strip with periodic 

boundary conditions in one direction, see Proskurowski and Widlund 

[18, Section 6] and Fischer, Golub, Hald, Leiva and Widlund [6 J. 

Our region 0 is imbedded in a rectangular subset of this strip. The 

fast solver requires of the order mn 10g2n operations for the exact 

solution of the five point discrete Poisson equation. Here n, the 

number of mesh points across the strip, is prefera~ly a power of tl'lO 

and m is the number of mesh points used along the strip. We will 

see below that it is convenient to place the region 0 inside a 

centered subset, of size (m-6) x (n-6), cf' the set of m x n mesh 

pOints which is used by SOLVE • 

An extended system of linear equations with a matrix 

A = B+ UZ
T 

is solved. The matrix B corresponds to the five point formula on the 

o 0 



strip while A contains our matrix A, see §§ 2 and 3, as a principal 

minor. The matrices U and Z are sparse and have p columns where p 

is the number of irregular mesh points. The matrix U is chosen so 

that Uv, v any p-vector, is an extension by zero of the corre

spondin~ mesh function v defined only on the~et of irregular mesh 

points. The matrix ZT is thus a compact representation of the 

'" matrix A-B from which zero rows have been eliminated. A change of 

the approximation of the boundary condition involves a change of 

the matrix Z.The ;ight-hand side Fh of our original system of 

equations is extended, in an arbitrary way, t.6 the complement of 0h. 

'" The matrix A is constructed in such a way that the restriction of 

the solution of the extended system to the set 0h is the solution 

of our original system of equations. 

There are two main parts of our capacitance matrix program. 

We execute the first one only once for a particular choice of h 

(a mesh size), k (a member of our family of difference schemes) and 

a region 00 In this first part a px p nonsymmetric dense capaci-

tance matrix C is computed at an expense of one call of the sub

routine SOLVE and of the order p2 additional operations. A solu-

tion for a specific set of data, which is accomplished in the 

second part, requires 'essentially only two calls of the subroutine 

SOLVE and the solution of a capacitance matrix system of equations 

"-of the form C~ = go In our implementation the capacitance matrix 

C is very well conditioned and this equation can therefore be 

solved accurately by a conjugate gradient method at an expense 

2 of the order p operations. W'e have however chosen to use 

Gaussian eliminationo The matrix C is factored only once, at an 
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expense cf the order p3 operations" and the factors are then stored 

and used for any additional set of data. Any subs6)quent problem 

therefore requires only of the order (mn log2n + p2) operations. 

The method is numerically very stable and the linear system of 

equations is solved very accuratelyo 

Two rectangular arrays of the dimension m xn are used to 

store the data and the solution. The first array initially con

tains the original data Fh, arbitrarily extended to the complement 

, of 0h. The second order accurate solution uh is comput.ed and 

stored in the second array 0 This solution is then extended to 

certain exterior points by extrapolation in the xl-direction, see 

§5. A first contribution to the modified right-hand side of the 

equation is then computed by using a five point numerical differen

tiation formula on all mesh lines parallel with the Xl-axis. The 
, h 

resulting mesh function is added to F , the content of the first 

array. This process is now repeated in the other direction. We 

thus extrapolate uh(x) in the x2-direction to t~e appropriate ex

.terior mesh points and use a differentiation formula in the x2-direc

tion to obtain ,the final contribution to the new right-hand side. 

We note that we can simplify the programming by using the numerical 

differentiation formula over the entire rectru~ular region since 

the restriction of the solution on the strip to the set 0h is 

independent of the values of the data outside 0h. The second part 

of the capacitance matrix solver is now used, with the new right

hand side, to produce a fourth order accurate solutiono It is 

stored in the second array which also serves as work space during 

this part of the calculationo The final corrected solution is 

F!, , 2t1 r, , 
0 0 0 0 ~:l , > };' 



computed similarly. The original data Fhis'read into the first 

array and approximations to the expressions in formula (502) are 

added. In this step seven point differentiation formulas are used. 

We note that since we placed 0h inside a rectangle, leaving three 

extra mesh lines on all sides, we can carry out all the necessary 
• 

extrapolations while using only the storage, locations provided for • 

in the second m x n arrayo This admittedly introduces an adeli tional 

constraint on the choice of mesh size for certain nonconvex regions 

but this aspect of the implementation of our method can of course 

easily be changed 0 The extrapolation and numerical differentiation 

steps are very straightforward and require very little computer 

time, see §7. 

26 



• • 

.. 

§7 •. Numerical Experiments 

A FORTRAN program incorporating the ideas of this paper was 

prepared and run in single precision (between 14 and 15 decimal 

digits) on a CDC 7600 computsr at the Lawrence Berkeley Laboratory 

using a RUN 76 compiler. We report on experiments using second 

and sixth order Lagrange interpolation formulas, k = 2 and 6, for 

the irregular mesh points, see §2. In all our experiments the 

region was a circle of radius one centered at the origin and the 

mesh size was h = 1/23. There were 1653 mesh points of which 128 

were irregular and the region was imbedded in a64 x-64 mesh. 

By Eoo and E2 we denote the maximum and ~ norms of the 

error, i.e., 

and 

= maX I uh ( x) - u ( x) I , 
x~ 

(( liN) y== 'uh(x) _ u(x) ,2} 1/2 , 
X€()h 

where N is the number of points in 0ho 

In Table 1, we report on the solution of 

with boundary values and exact solution equal to u(x) =sin (xl + x2 )o 

This is a problem with a very smooth solution and served basically 

as a test that the program and algorithm really worked. We note 

that we obtain close.to full word accuracy. 

The next problem; see Table 2, was 

o a 



with the boundary values and exact solution equal to 

u(x) = sin (2xl - 7x2). This problem is more difficult than the 

first since the solution is more oscillatory. We tried sixth and 

second order interpolation at the irregular mesh point. According 

to results of Bramble and Hubbard [2] there is an expansion of the 

form 

h 2 (1) . 3 
u (x) = u(x) + h e (x) + O(h ) 

when second order interpolation, k =2, is usedo We note that the 

first correction step gives a smaller improvement in the case k = 2 

than when k = 6 and that the second correction step gives no 
( 

improvement for k = 2. This experiment thus confirms the observa-

tions of Wasow [20], Pereyra [13] and others on the importance of 

the existence of asymptotic error expansions. We also note that 

the two second order methods, obtained before the correctionsteps7 

perform equally wello 

A final series of experiments were carried out to study the 

effects of lack of smoothness of the solutions~ The problems had 

the form 

otherwise 

with the boundary values and exact solution equal to 

othe r'#i se 0 

We tried l = 2, 4 and 60 The solution then has a jump discontinuity 
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in derivatives of order £. The results are given in Table 3 •. The 

performance of the method with k = 2, 2 = 6, is consistent with 

our previous observations. For k = 6 and with t = 2, 4 it appears 

as if a £-th order accurate method is obtained for these solutions 

which'have a jump in the £-th derivatives. Care must of course be 

exercised when trying to draw such conclusions from our very limi-

ted experimental evidence. We feel however that our results are 

encouraging. We note that when the solutions fail to be smooth 

enough the corrections do not destroy the accuracy obtained in the 

previous steps. 

The total CPU-time for a problem with k = 6 was 10.28 

seconds. The first part of the capacitance matrix program, see §6, 

computed the second order accurate solution uh(x) in 8.77 seconds. 

The first correction required an additional 0.66 seconds and the 

second correction took ~~ additional 0.85 seconds. In the correc-

tion steps the extrapolation to exterior mesh points and the 

differentiation steps required less than 10% ·of the time. The 

execution time could be reduced by optimizing our program and by 

-changing to a faster compiler • 

• 

Correction 0 1 2 

EOO' k = 6 1.9 x 10 -5 1.OXIO-9 5.6xIO- 12 

E2 ' k = 6 .1.OxlO -5 5.4 x 10-10 3.4 x 10-12 

'I'able 1 

L2- and maximum-norm errors for a problem with the 

solution u(x) = sin (xl + A2 ). Sixth order inter

polation used at the boundary points • 

n. o . ""\ I,. ;-~n fr 
C7' 

. 0 0 



Correction 0 1 2 

e oo ' k = 2 8.8 xlO -3 1.3 XlO-3 1.4 XlO-3 

E2 · , k = 2 4.7 x 10-3 3.3 XlO-4 3.4 XlO-4 

..... 

Eoo' k = 6 9.2 X 10-3 ' 5.3 XlO-5 1.3 XIO- 5 

E2 , k = 6 4.8 XlO-3 2.8 XIO-5 3.4 XIO- 6 

Table 2 

~- and maximum-norm errors for a problem with the 

solution u(x) = sin (2xl - 7x2). Second and sixth 

order interpolation are used. 

Correction' 0 1 2 

ECO ' J.. = 2, k = 6 9.9 X 10-3 9.9 XlO-3 9.9 x 10-3 

Eoo ' £ = 4, k = 6 1.2 X 10-3 4.8 x 10-6 4 -6 .8 xlO 

6, k 6 7.4xlO-3 9.4 x 10-7 -8 
Eoo ' " = = 707 x 10 

EOO ' " = 6, k = 2 6.7 x 10-3 1.5 X 10-3 1.5 x 10-3 

Table 3 

Maximum-norm error for a problem with the solution 

u(x) = '(xl + x 2 )", if (xl + x2 ) ..:: 0, u(x) = 0 other

wise. Sixth and second order interpolation are used. 
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