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Abstract

Highly accurate finite difference schemes are developed for
Laplace's equation with the Dirichlet boundary condition on general
bounded regioné in R®. A second order accurate schéme is combined
with a deferfed correction or Richardson eXtrapolation method to
increase the accuracy. The Dirichlet condition is approximated by
a method suggesfed by ﬁeinz—Ottd Kreiss. A .convergence proof of
nis, preViously not published, is given which shows that, for the
interval size.h, one of the methods has an accuracy of at least
| O(h5'5) in Lz. The linear sy;tems of algebraic equations are
solved by a cépacitance matrix method. The results of our numeri-
cal experiments show that highly accurate solﬁtions are obtained

with only a slight additional use of computer time when compared

to the results obtained:by second order accurate methods.

AMS (MOS) subject classifications. Primary 65305, 65N15;

secondary 65F05, 65N20.



§1. Introduction

It is the purpose of this paper to develop some highly
accurate finite differehce methods for the Dirichlet problem for a
general bounded region.o in.Rn. The most accurate of these has
an L2‘error of order at most,h5’5, see §M.» Our bagic schemes use
the standard (2n+l)-point_fprmula for the interior mesh points and
are therefore only second order accurate. The increased accuracy
is achieved by-two steps of a deferred correction or Richardson
extrapolation procedure. We also discuss the computer implemenﬁa-
tion of theSe methods in some detail.‘

The use of deferred correction and Richardson extrapolation
methods is Jjustified by finding asymptotic expansions of the error.
Wasow [20] haé shown that no-useful expansions of this kind‘exist
if the boundary condition is approximated to a low order of
accuracy. Ah dbvious remedy for this probiem, already mentioned by
Wasow, 1is to.use higher order interpolation or extrapolation formu-
las at any i;regular mesh point, i.e. a mesh point in the open set
0 whiéh faiis ﬁo have all its next neighbors in the closure of Q.
Volkov [19] proposed the use of high order one-dimensional Lagrange
polynomials for this purpose. Bécause of the change of sign of.the
interpolation coefficients.the matrix representing the difference
scheme will then, in general, not be of positive fype. The stan-
dard convergence proof based on a discrete maximum principle, see
Forsythe andvWasow [7], will therefore generally not apply. But by

allowing the use of values of the mesh functions many mesh lengths

away from the boundary, Volkov succeeded in designing schemes with



diagonally dominant matrices. His schemes may however lead to an
unacceptably small mesh size even for very simple geometries.

Numerical experiments, see Pereyra [13] and the last
section of this’baper, clearly demonstrate the need for ﬂigher
order aééuracy at the irregular mesh pointé if improved solutions
through Richardson extrapolation or deferred correction methods
are required. In his 1966 paper, Pereyra also reported on
successful numerical experiments with methods'baéed on Lagrange
interpolation in one-variable and employing only mesh points close
to the boundary. At that time no convergence proof was known for
such methods. |

In June of 1968, Kreiss announced an interesting result on
the convergence of methods of this type. His result was mever
published. His schemes are'constrﬁcted as sums of difference
approximations orf one-dimensional problems.‘ At the interior mesh
points each of these problems is discretized by a three-point
formula while at the irregular mesh poihts this basic formula is
combined with high order Lagrahge extrapolation. For a detailed
.description see'§2. Kreiss found a method of proof which provides
an alternative to the classical technique prev1ously mentioned.
His method depends heavily on the special btructure just described.

We learned about his results from several conversations and
his unpublished notes which were kindly made available to us.- Cur
interest in thesevmethods was recently renewed when we realized
that the capacitance matrix, or imbedding, method developed by

Proskurowskl and Widlund [ 18] could be adapted for the difference

schemes considered by Kreiss.



In_this paper, we describe Kreiss' schemes, give detailed
proofs of convergence and existence of erfor expansions and )
discuss their implementation. We have exolusiVely used a deferred
correction method in our numerical experimenfs'rather than Richardson
extrapolation. Our reason is that the defefred correction method,
especially for problems'in several dimensions, has often provea
less costly; see Pereyra [13] and also § S}of'this paper. One
adventage is that in contrast to Rlchardson extrapolation,
deferred correctlon methods require only one mesh size. The
capacitance matrix method allows us to solve the same system of
linear equations repeatedly at an expense whichﬂdecreases con-
siderably once the first problem has been solved.

Our.oombination of a deferred correction and an imbedding
method is quite convenient from a programming point of view. We
have also developed a new, practical way of calcuiating the
required diffefence approximations to the terms of the expansion
of the trunceﬁion error. 'This method resolves a long-standing
.problem in the theoretical justification for the use of more than
one deferred oorrection'step for boundary value problems of this
type. The imbedding of the region in a rectangle allows us to use
certain programs prev1ously developed to perform deferred correc-
tions for problems on rectangular regions.

In the last section,we report on numerical experiments
_carried out on a CDC 7600 computervat the Lawrence Berkeley
Laboratory. They show that very high accuracy is obﬁained for
problems with sufficiently smooth solutions; For problems which

fail to have sufficiently many bounded derivatives the corrections



do not spoil the accuracy of the solution. vWé-believe that our
method can be develcped further iﬁto highly efficient and reliable
numerical software. We note that fast Laplace.solvers are used
increa51ngly to enhance the convergence when solv1nc more general
problems, see for example, Bartels ar.d Danlel [1], Concus and Golub

(4,5], Jameson [9], O'Leary [10], Martin [11,12] and Widlund [21].
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§2. Kreiss' Method for Poisson's Equation

We will consider a family of finite difference schemes for

the Dirichlet problem for Poisson's equation;

' n o .
-Au = - %;; (B/bxi) u = f(x)_,., X €,
- (2.1) - . o

ux) =gx), xed,

where the regibn.o is an open, bounded subset of the n-dimensional,
real, Euclidéan space R™ wifh the boundary ). We will make no
detailed assuﬁptions on the smoothness of d0 and the data f and g
buf assume only thét they are sufficiently smooth. As is well
known, the prdblem (2.1) fhen has a unique;°sufficieﬁtly smoothn
solution.
n

A uniform mesh R

h is introduced by

where h > O is the mesh size. The position of the origin of cur
mesh is, of course, arbitrary. We could also have chosen different
uniform mesh sizes in the different coordinate directions without
affecting the fheory or practice of the methods except in some very
minor ways.

The set of mesh points of interest to us is

A n

There are no equations for points on o). The difference equations

are constructed as a sum of approximations of one-dimensional prob-

2 /40 1o k0800



lems éorresponding to the operators -(a/axi)?;{jg;l,...,n. They are
specified by defining a2 linear equation for ééch X'€ Oh. Let the

vectbr e, be the unit vector in the difectionibf'the_positive i-th

coordinate axis.. A mesh point X € Oh is caliéd'regular if all its

closest heighbors x=* hei, i=1,e0.,n, belong;tb.oh. For a regular
mesh point, we éiﬁply use the standard centergd difference

approximation of each of the second derivative$. " This results in

the equation

2nuh(x)1; %i; (uh(x+-hei)+-uh(x-hé;i)l= hgf(x) .

This formulé is combined with»‘pblynomial extrapolatidn.of a
fixed degree k fbr the reméining; irregular, mesh points of Oh.
Let us thus suppose that x €  but that x+—hei:l(ﬁh and that
x--hei,'..,,x--(k-l)hei € Oh. This.last condi#ién can always be
satisfied for a Smooth o0 if h is chosen smalliéhough. Denote by
X; the intersection of the bbundary ) and the éegmentvbetween X
and x-i—hei and by seh the distance between x;_and x-khei. .Thus
O0<s<1. A prO&isional value of uh(x+‘hei)‘is riow defined by the
Lagrange intefpolation formula,

= h . % *
(2.2) | B %;;;<xju (x -(J-l)hei) = u(xi)= 8(Xi) .

The coefficients dj depend caly on s and are given by the formula

ag =TT (s-£)/(3-4) -
2=0
2#£3

h . . - s
The value of u’ at the point x+ hei is now eliminated by combining



(2.2) with the standard three point formuléZfor the point x. The
resulting matrix, which corresponds to the:approximation cof

_(a/axi)2 along a mesh line parallel to ei)th?s typically has the

form
(2.5)
(oralsal), (-1rafal) a/al, venya/fal \
-1 | .2 -1 eea
0 -1 2 ces
e 2 1 0
....'fl 2 -l.
\ ) o 4/ w023 0, (140 a,), (240 /a )

Here a;,..,,a; are the Lagrange interpolation coefficients related

to a second ihtersection between the boundary and the mesh line.

If the mesh line in question intersects o0 in several points, the
matrix reprégehting the difference approximation of -(b/axi)e along
this line will be a direct sum of several matrices of the form (2.3).
The matrix Ai which corresponds to the entire approximation of
-(a/axi)2 ié the direct sum of the matrices iﬁtroduced for the
individual mesh lines parallel to the vector € Finally, the
~matrix A, which represents the approximation of the entire problem

(2.1), is the sum of'P?L‘AiP4 where Pi is(a_suitable permutation

matrix.



We note that if somé irregular mesh'poiﬁfvx_is very close to
the boundary, i.e. some s is quite close to one,‘the ratic al/ao
will become very large. This will give tﬁé ﬁétrix a very large
diagonal element and the coefficient multiplying g(x;) in the
right—handggide will be of the same order ofvmégnitude. In
practice, we will.therefore always scale thé.rows of the matrix A,

making the diagconal elements equal to 2n.
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§3. Stability of the Finite Difference Methods

As we saw in §2 the matrix A which éprresponds to the full

difference approximation of problem (2.1)'has.the form

i n
A = P;
i=

where the Pi’are suitable permutation matrices and the A; are

direct sums of matrices of the form (2.3). The original problem
(2.1) has a boﬁnded inverse in L,. The aﬁéldgous result is that
the Spectral norm of the inverse of A is bounded by const X h'g.
To establish this result we will study tﬁeiéymmetric part of A,

In this section we will use the Euclidean vector norm and the

spectral matrix norm exclusively.

Lemma l. Let the symmetric part of a matrix A satisfy

—

(a+a¥)/2 >81, & >0.

Then A is nonsingular and IA'll < 1/5.
Proof: Iet Ax = b. Then

,6xTx_: xT(A4-AT)x/2 = (be+-bTx)/2.: o]+ |x] -
‘Thus [x] < |Ax]|/5 which proves. the lemma.
Lemma 2. Iet A = P,

APy where the P, are permutation
1= :

matrices. If
T
(Ai+'Ai)/2~: 61

then
(a+AT)/2 > ndI .

X
1

bosog o b 000



The proof follows from an elementary variational argument. The

proof of the next lemma is equally easy.

Iemma 3. ILet the matrix Ai be the direct sum of certain

matrices Bij' It

(B

T . aq s
ijfBij)/E > 6T , for ail j ,

then
T
(Ai+'Ai)/2~: 51 .

We are nowvready to appiy these lemmas._jSpecifically we will
study matrices of the form (2.3). For technical reasons we will
assume that all these matrices have an order of at least 2k51. .
-This condition can again be satisfied for any smooth o0 if the mesh

size h is chosen small enough. We will reduqé_the study 6f the
_matrix (2.3) to a simpler case which corresponds to imposing a

Neumann condition at one end point.

Lemma 4. Denote by B the matrix defined by formula (2.3).

ILet B, be a matrix of the form

2
1 <1 \
-1 '_2 -1
B, = . . .
-1 ) -1
\

OLK/QO, v .’GB/G'O'. (—1+C(,2/0'.O), (2+al}GQy

1C



and let B1 be a matrix of.the same form genérated by aé,.;.,a&.
Suppose further that the orders of’the matfices Bl’ B2 and B,

denoted by n;, n2 and m respectively,-satisfy the conditions,

n; > k, n, > k, m é'nl+ n2-l .

If . _
(By +B1)/2 > 8T
and : L
T .
(B,+B5)/2 > 61
then '

(B+8T)/2 > 51 .

Proof: - Denote by El the matrix obtained from Bl by reversing

the order of its rows and columns. The proof follows from the
identity,

xT(Bi-BT)x/E = uT(§14-§§)u/2 +_vT(B2-+Bg)v/2 ,

T (x, ,eeesX ). This identity can

1
be verified straightforwardly. Hence, by our assumption,

where ul = (xl,.;.,xn ) and v
1

xT(Bi-BT)x/Q_i 6(uTu + vTv) .

To conclude the proof we'only note that

_uTu + vTV > XTX R
We will next use the LDL® factorization of S = (82 +Bg)/2
to verify that S is positive definite and also give a lower bound

for its eigenvalues. We will write S as a block matrix,



(3.1) | 5 - ,

= (0y4e0,0, ak/an,...,GB/an, —l+-a2/2ao) and

where 321
Spp = 2-+al/do. Tts block factorization takes the form
’, T T
111 (0] I 0 Lll Y/
S = ’
2 1 0 d 0 1
where
/1 \
-1 1
L = y . ’
\ _l' l/

is bidiagonal,
b=sy 11 = (0,+++,0, GK/QGO:(GK+'G 1)/2a 5 e,

(ak+... +a3)/2ao, “1+ (o‘k+ °"+°‘2)/2°‘o) ,

and

d = s, -92% = 2-+al/do -{(ak/an)g-k...
+((ay + ...+03)/2ao)2l-|'- (<14 (a + en+ay)/2a )2 .

By using the fact that ao+-...+ o = l, we find that

Ve

(3.2)  d=1/a-(al +(a + Faeut (ot ees +0)?) /M2

k-1
Computer results show that the rational function d is strictly

12



positive for. 0<s<1 and all 1 <k <6. Ffﬁ)lr.‘:‘_k =7 and 8 it changes
sign in the interval. These results canbof course also be verified
by a tedious paper and pencil calculation: We note that d goes

to positive ihfinity when s approaches 1 while the components of

] and 2 remain bounded. We are now ready.to_establish a lower

21
bound for the eigenvalues of Se

Lemma. 5. Let dmin denote the minimum of the function d(s)

defined by formula (3.2). Then there exists a strictly positive
constaﬁt c, independent of the mesh size H‘and the region ), such

.

that

S > 8T

where

& = Cdpyp

h2/(diameter (O))e .
Proof: By using the notations previously introduced in this

section, we find
T T

_ T . T_,2
X Sx = x IDL'x > min (dmin’l)'L x|< .

T

Since d = 1 for s = 0, x Sx > IL?XIQ. To obtain a lower bound

d_ .
min
for ILTxl we will compute an upper bound forvlL-Tyl. Partitioning

' T ~T .o
the vector so that y = (y ,yn), we find

T -1 ~ -1
y L = ((Fl-y )1y, -

Therefdre, if we use the fact that £ has a uniformly bounded norm,

we find

STy2 Ly -1y2, 2 2 _ 12 2
L™ y] i;’?ll' Uyl +ly lele)® +y; < c(In 71" + 1)y [° .

&

e L8t P OO OO



The norm of Lii‘equals the square foot'of the reciprocal of ‘he

smallest eigenvélue of L11L$1° Now the matrix

1 -1

T -1 2 -1

has an order m < diam (0)/h. As is easily checked, the

smallest eigenvalue of Llngil equals 4 sinz(v/2(2m+1))corresponding

to an eigenvector with the components cos (w(j-1/2)/(2m+1)),
J=1,¢0c,m. This concludes the proof. | ,

By combining our five lemmas and the results from our compu-

tation of dmin"we obtain, what essentially is Kreiss' result,

Theorem 1. For k =< 6 there exist constants C ind~pendent

k’
of h,such that, .

|a~t] < ¢ (aiam 0)2 xn™% .

s



§4. Convergence and‘Asymptotic Expansions of the Error

In this eection, we will prove the cenvergence of the schemes
introduced in §2 and simUltaneously establieh asymptotic expansions
for the error; We will concentrate on the case k =6, which is |
the most aceurate of the schemes known to be stable. We will
assume throughout thét the solution u(x) is sufficiently smooth.

We make the Ansatz,

(4.1) WP(x) = u(x) +n2e (1) (x) +nte (@) (x)+ N(x) .

The functicns é(l)(x) and e(e)(x) will be chosen as solutions of
Poisson's equation in a way which will make the remainder rh(x)
a term of higher order.

Asymptotic expan31ons of this form are basic for the justifi-
cation of Rlchardson extrapolation and deferred correction methods.
They also =asily enable us to give estimates for the rate at which
difference quotients of the solution of the discfete problem uh(x)
converge to the corresponding derivatives of the solution u(x)e.

ILet us dehote by h2Lh the differencevoperator-which has the
matrix representation A, see §§2 and 3. The linear system of

equations therefore has the form

(4,2) v | o hgihuh = Fh .

A component of the right-hand side Fh, which corfesponds to a

regular mesh point, has the form hgf(x) whereas a component, corre-
sponding to an irregular mesh point, is a sum of h2f(x) and terms

of the form g(x;)/ao(si).f Here ao(si), 0 < si < 1, is a Lagrange

s/l R B pr0 00



polynomial coefficient introduced in §2. Tovderive equations for
the error functions e(l)(x) and e(g)(x), we sﬁbstitute the expres-
sion (4.1) into fhe equation (4.2) and expand the truncation error
in the cuStomary way. We first ignore the contributions from the
interpolation formulas used for the irregularrmesh points. By
setting the fourth and sixth order terms of the resulting expres-

sions equal to zero, we obtain the Poisson eqqations

ae(1) (1/12) i (a/axi)“u
i=

and

“8e(®) = (1/360) }_n—I (3/3x,)%u+ (1/12) g_n; (3/3x, e (1)
. . 1= - 1=

Because of the high order accuracy with which the boundary condi-
tion is approximafed, it is appropriate to equip these equations

with zero Dirichlet boundary conditions

-
~

Mxy=o, ®lx)-0, xecom.

The functions e(l)(x) and e(e)(x) are, by a standard result on
elliptic equations, sufficiently smooth functions.
We now derive a difference equation for fhe remainder term

rh(x)° This equation has the form

Gh .

It is easy to show that a cocmponent of Gh, corresponding to a

regular mesh point, is of the form,

16



8 ((1/20160) 2:; (3/3x, ) u+(1/36o) " (3/0x, 16 (1)

1...

+ (1/12) - (a/axi)“e(g))+o(h1°)
T= :

A component of Gh, corresponding to an irreguiar mesh point is the
sum of a term of this form and of one or.mbfe seventh order error
terms of the Lagrange interpolation formulas (2.2). The latter
terms are multiplied by factors l/do(si)(which grow as
const,/(l-si) when s; — 1. It can, however, be shown, by a
straightforward calculation, that this increasing factor l/do(si)
is fully compensated by a decreasing factor'in the error bbund for
- Lagrange interpolation, see Isaacson and Keller [8 , p. 190].
These coﬁponents of Gh are therefore uniformly O(h7) for all
sufficiently sﬁooth solutionsvu(x).

| We are_nbw ready to use Theorem 1 to obtain a bound for

rh(x). It is natural to work with the norm,

2)1/2

Ir”2 }___hlr()l

2

for which the»éstimate of Theorem 1 still holds. We first estimate

h

”Gh”2° The components of G~ are O(h8) for the regular mesh points

and O(h7) for the irregular mesh points. Since there are only of

-(n-1)

the order h irregular'points,”Gh”2 = O(h7'5). We use Theorem

1 to establish,
Theorem 2. ILet uh(x) bz the solution of the finite difference

scheme with k = 6 and let u{x) be the sufficiently smooth solution

of the differential equation (2.1). Then there exist two

g /8t 00000



sufficiently smocth functions e(l)(x) and e(g)(x) such that
uh(x) = u(x)-+h2e(l)(x)+-h4e(2)(x)+-rh(x) B X e,

where %he IQ.horm of rh(x) is O(h5'5).

Similar results hold for smaller values of k. We expect that
Theorem 2 1is not sharp.' We conjecture that the remainder term
should be of the form =

P(x) = 1) (x) +o(n")
in the maximum-hbrm. ,We-are led to this conjecture by results,
previously established by Bramble and Hubbard [ 2], for the opera-
tors of strictly positive type which result when Kk = 1 and 2. . If
the estimate of Theorem 2 can be sharpened in this way, we would be
justified in applying Richardson extrapolation three times to

obtain a seventh order accurate method.

18



§5. Methods of Increasing the Accuracy

Richardéon extrapoiation aﬁd deferred correction methods are
available to improve the second order accufacy of the basic solu-
tioh uh(x).b We will again concentrate on:thé case k = 6. We will
first discuss the Richardson extrapolation method which is simpler
bofh conceptﬁally and in terms of its implementation.

The solution is first found on a‘basic mesh.()h and then for

a sequence of refined meshes Oh s where hi‘= ho/ri’

1<ry < Ty < ees o It is verylimportant»that the sequence (ri]
'growé slowly for multidimensibnal problems since the number of
variables grows rapidly. The improved solution is obtained only on
the intersection of the meshes th, If weirequire the improved
solution at all points of Oh and use two extrapolation steps, the
number of mesh points on the finest mesh will be at least abOué
nine (twenty seven) times larger in two (three) dimensions. Core
storage éan therefore easily be exhausted and less advantage can
also be taken of the Savings which often can be realized when
direct methods are used to solve linear systems repeatedly.

If enough terms of an asymptotic error expansion, in even

powers of h, exist, we obtain improved solutions ﬁg by the recur-

sion formula,

"'J 1 ~j-1 2
NCRE 1+3/ri\) u341)/(1 - (ry45/74)7)
~o hi ‘
with u; the restriction of u to the intersection of the meshes
Qp . The error ﬁg- u will be of the order h23+2. A useful

i
a posteriori error bound,

‘ ’\’.. ,, L f‘«j .v 2
U.‘.] "u ~ (u;]_ —ui—l)/(l— (ri+,_'j/ri) ) L .

1

& /L8 b 0800



can also be computed, for details see Bulirsch and Stoer [3].

By using Theorem 2, we can easily shwathat two steps of
Riqhardéon extrapolation will give an accuracyvdfvthe order h5'5
if we use the scheme with k = 6. |

The deferred correction mgthod requires only one mesh. The
" method has beeﬁ discussed in detail in a number of papers, see for
example Pereyré [13-17].+ Here, approximations:of the leading terms
of the local truncation error of the discrete:operator h2Lh are
computed and é cdrrected solution is then fouﬁd by solving an addi-
tional system of’linear equations with the same matrix A as before.
Further cOrrectiéns may be obtained in s similar way.

We will describe the variant of the method which we have used
in our experiménts. In the first step we take-into account only
the first truncation error terms, resulting from the approximation
of (a/axi)2, i = 1,...,n, by the three point approximations. We

know from §4 that these leading terms are

(5.1) o h4(1/12)(a/axi)4u',, 1= 1,00e,n &

We attempt to appfoximate them to within O(h6) by using centered
five point differences of the second order accurate solution uh.
For a periodic problem this procedure is verybsimple, but for a
region with a bodndary special one-sided differentiation formulas
must be used for the mesh points which are within 2h of the bound-
ary along a mesh line. One-sided fotrmulas can introduce additional
error terms for the corrected solution'through.the special contri-
butions to the truncation error at the points where these formulas

are employed. An additional correction step may be justified by an

20



asymptotic error expansion of the corrected:solution, but note that
an unfortunate choice of one-sided differéntation formulas would
lead to difficulties very similar to thosé:already discussed by
Wasow [20]. |

This pfdblem can be avoided in a systematic way. Let x be
the irregular‘mesh pdint introduced in our discussion in §2. we
will use high order ILagrange extrapolation, employing only values
of the mesh function uh at x, x-hei,...,,to*obtain provisional
values of uh at x+hei and x+2hei. The same centered five point
differentiation fdrmula can then be used fdr all points in.oh, see
further discuSSion in §6. The expansion of the truncation error
which is due to the use of the five point approximation of the
fourth derivative (B/Bxi)4 will have the same leadihg terms and
differ only in a higher order term. The order of this higher order
term will of course depend onlfhe degree of‘the Lagrange extrapola-
tion polynomial. The Lagrange polynomial coefficients are the same
at évefy point since we uée valueé at mesh points onliy. The
approximation of the expressions (5.1) are added to the original

h

datg F" and the linear system of equations is solved a second time.

In a second correction step

(5.2) h“(l/iz)‘(a/axi)uu +h6.('1/36o)(a/axi')6u , i=1,e4.,n ,

is approximated'by a centered seven point formula with an errcr
which is O(h8) for a sufficiently smooth function. We thus use
the once corrected solution and high order extrapolated values

thereof in a way very similar to the previous step to obtain a new



right-hand side and a second'corfected solutioﬁ,'see further
discussion in §6. |

Our errof bounds for the deferred correction method are
ratherlweak. When we estimate the truncatioh error due to the dis-
cretization of the expression (5.1), we findfthat the three first
terms ofuﬁhe exbansion given in Theorem 2 give-a contribution of
the order h®. Since the operator h2Lh has anfinverSe bounded by
const h™° they contribute a term of the order.h4 to the error of
the corrected solution. In contrast the undivided differences of
the remainder term of rh create difficulties. Since undivided
difference.operators are bounded, independenfly of h, the contribu-
tions of rh tovthe truncation error and the effor of the.corrected.
solufion are bounded by h5'5 and h3'5, respecfiVely. In order to
prove a result as strong as that for the Richardson extrapolation
method this loss of two powers of h must be eliminated. This would
be achieveq if we were able to give as sharp a bound for the norm
of the second order divided differences of theveolution as for the
norm of the solution itself. The analogue of fhis desired estimate
holds for second order elliptic equations on regiens with suffi-
ciently smooth bo_imdaries° We have not been able to obtain this
result in the diserete case. A modification of the argument of §3
leads to an impreved bound for divided differences of the first
order. This proves that at most one power of h can be lost in each

connection step. For numerical evidence see §7.



§6. The Capacitance Matrix Method

All our experiments have been cérried:out for regions ih the

plane and we will therefore confine our diScﬁssion to that case.

We have used a modification'of the capacitance, or imbedding,
method which was devéloped by Proskurowski~énd Widlund [18] to
solve our linear systems of equations. We refer to that paper for’
a detailed discussion of the method. Here we will éonfihe our-
selves to a few brief remérks on the method'concentrating on the
changes required by the deferred correction algorithm.

| A main part of any capacitance matrix program is a fast
Poisson solver:on a region for whichvseparation of the variables
can be appliéd. Our subroutine, SOLVE, implements a Fourier-
Toeplitz method on an infinite parallel strip with periodic
boundary conditions in one direction, see Rroskurowski and wWidlund
[18, Section 6] and Fischer, Golub, Hald, Leiva and Widlund [6 ].
Our region O is imbedded in a rectanguiar subset of this strip. The
fast solver requires of the order mn logzn opérations for the exact
solution of the five point discrete Poisson equation. Here n, the
ﬂnumber of meéh’points across the strip, is preferably a power of two
and m is the number of mesh points used along the strip. We will
see belcw that it is convenient to place the region () inside a
‘centered subset, of size (m-6)x (n-6), cf’the_set of m Xn mesh
points. which is used by SOLVE.

An extended system of linear equationsvwifh a matrix

2 =B+uzl

is solved. The matrix B corresponds to the five point formula on the



strip while_x contains our matrix A, see §§2 and 3, as a principal
minor. The matrices U and Z are sparse and have p columns where p
is the number ofvirreguiar mesh points. The.matrix U is chosen so
that Uv, vV any p-vector, is an extension byA?efo of‘the corre-
spondihg mesh function v defined only on thefset of irregular mesh
points. The matrix ZT is thus a compact representation of the o
matrix K—B from which zero rows have been_elimineted. A change of

the approximation of the boundary condition involves a change of

h of our original system of

the matrix Z. The right-hand side F
equations is extended, in an arbitrary way, téethe chplement of Oh.
The matrix i is constructed in such a way thet?the restriction'of
the soluticon of fhe extended system to the set Oh is the solution
of our original eystem of equationse.

There are two main parts of our capacitance matrix program.
We execute the first one only once for a particular choice of h
(a mesh size), k (a member of our family of difference schemes) and
a region (0. 1In this'first part a pX p nonsymmetric dense capaci-
tance matrix C is computed at an expense of one call of the sub-
routine SOLVE and of the order p2 additional operations. A solu-
tion for a specific.set of data, which is accomplished in the
second part, requires essentially only two cails of the subroutine
SOLVE and the solution of a capacitance matrix‘system of equations
of the form Cu = g, In our implementation the capacitance matrix
C is very well conditioned and this equation can therefore be -
solved accurately by a conjugate gradient method at an expense

of the order pa operations. We have however chosen to use

Gaussian elimination. The matrix C is factored only once, at an
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expsnse cf the order p3 operations,. and the factors are then stored
| and used for any additional set of data. Any subsequent problem
therefore»requires only of the order (mn iogen-kpz) operations.

The method is numerically very stable and the linear system of
equations isvsolved very accurately,

Two rectangular arrays of the dimension m Xn are used to
store the data and the solution. The first array initially con-
tains the ofiginal daté Fh, arbitrarily extended to the complement
'of'oh. lThe second order accurate solution uh is computed and
'stored in the second array. This solution isvthen extended to
certain exterior points by extrapolation in the xl-direction, see
§5. A first contribution to the modified .I;ight-hand side of the
eqdation’is then computed by using a five point numerical differen-
tlatlon formula on all mesh lines parallel with the xl—ax1s. The
resulting mesh functlon is added to Fh the content of the first
array. This process is now repeated in the other direction. We
thus extrapolate uh(x) in the xz-direcfion to tpe appropriate ex-
périor mesh points ahd dse a differentiation formula in the x2-direc-
tion to cbtain the final cdntribution to the new right-hand side.
We note that we can simplify the programming by using the numerical
differentiation formula over the entire rectangular region since
the restriction of the solution on the strip to the set Oh is
independent of:the values of the data outside Oh. ‘The second part
of ths capaciténce matrix sclver is now used, with the new right-
hand side, to produce a fourth order accurate solution. It is
stored in the second array which also serves as work space during

this part of the calculation. The final corrected solution is

zap 1 B0 00



computed similarly. The original data Fh'-is‘;éad into the first
array and approximations to the expressions in formula (5.2) are
added. In this step se?en point differentiatidnfformulas are used.
We note that since we placed Oh inside a recténgle, leaving three
extra mesh 1ineé on all sides, we can carry dut all the necessary
extrapolaticns while ﬁsing only the storage.ldcations provided for
in the second mXn array. This admittedly.intfoduces an additional
constraint on the choice of mesh size for'cerfain nonconvex regions
but this aspect bf the imﬁlementation of ouf-method can of course
easily be changed. The extrapolation and numefiéal differentiation
steps are veryvstraightforward and require very little computer

time, see §7.
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§7. Numerical Experiments

A FQRTRAN program incorporating thé ideas of this paper was
prepared and run in sihgle precision (between 14 and 15 decimal
digits) on & CDC 7600 computar at the Lawrence Berkeley Laboratory
'using a RUN 76 compiler. We report on experiments uéing second
and sixth order ILagrange interpolation formulas, k = 2 and 6, for
the irregular mesh_points,.see §2. In all,our experiments the
region Was'a circle of radius one centeréd at the origin and the
mesh size was h = 1/23., There were 1653 mesh points of which 128
were irregular and the region was imbedded in a 64 x64 mesh. |

By € and g, We denote the maximum and L2 norms of the

error, i.e.,

max |u(x) -u(x)| ,

xedy,
(/M) 5= 1P - w32

xeoh

m -
i

and

€o

where N is the number of points in Oh.

In Table 1, we report on the solution of
-Au(x) = 2 sin (xl+-x2)

with boundary values and exact solution equal to u(x) =sin (xl+ Xg).
This is a problem with a very smooth solution and served basically
as a test that the pfogram and algorithm really worked. We note
that we obtain.cloSeﬁto full word accuracy. 

The next_problem, see Tablé 2, was

-Au(x) = 53 sin (2xl'~ 7x2)

i
e
o0
i
-
T
2
X



with the boundary vaiues and exact solution equal to

u(x) = sin (2xl -'7X2). This problem is more difficult than the
first since the solution is more oscillatory. We tried sixth and
second order interpolation at the irregular mesh point. According
to results-of Bramble and Hubbard [2 ] there is an expansion of the
form |

Bix) = u(x) +n2e (1) (x) + o(n?)

when second order inferpolation, k =2, is uséd.. We note that the
first correction step gives a smaller improvement in the case k = 2
than when k = 6 and that the second correction step gives no
. r
improvement for kK = 2. This experiment thus confirms the observa-
tions of Wasow [20], Pereyra [13] and others on the importance of
the existence of asymptotic error expansions.. We also note that
the two second order methods, obtained before the correction steps,
perform equally well.

A final series of experiments were carried out to study the
effects of lack of smoothness of the solutions. The problems had
the form |

-24(2-1)(x,+ x )2_2 ‘ ‘if vx +xX, >0
1 2 ? 1 2 — -
=AU =
0 . s otherwise

with the boundary values and exact solution equal to
L .
(xl+-x2) , if (xl+ x2) >0
u(x) = '

0 , otherwise .

Weltried £ =2, 4 and 6. The solution then has a Jjump discontinuity
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in derivatives of order £. The results afé"given in Table 3.. The
performance of the method with k = 2, z‘= 6, is consisient with
our previods observations. For k = 6 and with £ = 2, 4 it appears
as if a z-th order accurate method is obtained for these solutions
which have a jump in the g-th derivatives. Care must of course be
exércised when trying to draw such conclusiqﬁs from our very limi-
ted experimental evidence. We feel howevef'that bur results are
encouraging. We note that when the solutions fail to be smooth
enough the corfectioﬁs do not destroy the accuracy obtained in the
previous steps.

The total CPU-time for a problem with k = 6 was 10.28
seconds. Thevfirst part of the capacitance'matrix program, see $§6,
computed the seCondvorder accurate solution uh(x) in 8.77 seconds.
The first correction required an additional 0.66 seconds and the
second corfection took an additional 0.85 seconds. In the correc-
tion steps thevextrapolation to exterior mesh points and the
differentiation steps required less than 10% of the time. The

execution time could be reduced by optimizing our program and by

«changing to'a fasfer comﬁilerQ'

Correction 0 1 2

e,» k=6 | 1.9x107 | 1.0 x1072 | 5.6 x1071?

€5 > kK =6 | 1.0x107° 5J4xlddo 3.4x1€42
Table 1

L2- and maximum-norm errors for a problem with the
solution u(x) = sin (xl+-xo). Sixth order inter-
polation used at the boundary points.
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Correction 0 1 2

k =2 | 8.8 %1077 | 1.3 x107> | 1.4 x10~>

n

k =2 | 4,7 x10~2 2.3 X110~ 3.4 x107

e , k=6 |09.2x107 | 5.3 x105 | 1.3 x107

k =6 | 4.sax102 | 2.8 x10°2 | 3.4 x10”

Table 2

L,- and maximum-norm errors for a problem with the
solution u(x) = sin (2x1 - 7x2). Second and sixth
order interpolation are used. |

qufection' 0 ' 1 2
er £ =2 k=6 ]9.9x107 | 9.9x107 | 9.9 x107
€Enr £ = 4, ¥ =6 | 1.2x10™ | &.8 xlo’6 4.8210'6
0o ? £ =6, k = 6 | 7.4 %1070 | 9.4 x107 | 7.7 x 10”8
ens L =6, k=2 6.7x107 | 1.5 «1072 | 1.5 x 1072

Table 3

. Maximum-norm error for a problem with the solution
u(x) ='(x1+-x2)3, if (xl+-x2) > 0, u(x) = 0 other-
wise. Sixth and second order interpolation are used.
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