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Abstract of the Dissertation

Order and disorder in superconducting systems

by

Antonio Enrico Russo

Doctor of Philosophy in Physics

University of California, Los Angeles, 2016

Professor Sudip Chakravarty, Chair

An analysis of three kinds of physical systems exhibiting superconducting prop-

erties is presented: the pseudogap regime of the cuprates, chiral p-wave supercon-

ductors, and chiral d-wave superconductors, following a brief overview of super-

conductivity. The effect of disorder on a Z2 symmetry breaking order parameter

is examined in the aforementioned psuedogap regime. Majorana modes in p-wave

superconductors are examined. Finally, currents in both p and d-superconductors

are calculated numerically.

In the pseudogap regime of the cuprates, commensurate charge order breaks

a Z2 symmetry, reflecting a broken translational symmetry. Therefore, the inter-

action of charge order and quenched disorder due to potential scattering, can, in

principle, be treated as a random field Ising model. A numerical analysis of the

ground state of such a random field Ising model reveals local, glassy dynamics in

both 2D and 3D. The dynamics are treated in the glassy limit as a heat bath

which couple to the itinerant electrons, leading to an unusual electronic non-Fermi

liquid. If the dynamics are strong enough, the electron spectral function has no

quasiparticle peak and the effective mass diverges at the Fermi surface, precluding

quantum oscillations. In contrast to charge density, d-density wave order (reflect-

ing staggered circulating currents) does not directly couple to potential disorder,

allowing it to support quantum oscillations. At fourth order in Landau theory,
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there is a term consisting of the square of the d-density wave order parameter, and

the square of the charge order. This coupling could induce parasitic charge order,

which may be weak enough for the Fermi liquid behavior to remain uncorrupted.

This distinction must be made clear, as one interprets quantum oscillations in

cuprates.

A chiral px + ipy superconductor on a square lattice with nearest and next-

nearest hopping and pairing terms is considered. Gap closures, as various pa-

rameters of the system are varied, are found analytically and used to identify

the topological phases. The phases are characterized by Chern numbers (ranging

from −3 to 3), and (numerically) by response to introduction of weak disorder,

edges, and magnetic fields in an extreme type-II limit, focusing on the low-energy

modes (which presumably become zero-energy Majorana modes for large lattices

and separations). Several phases are found, including a phase with Chern number

3 that cannot be thought of in terms of a single range of interaction, and phase

with Chern number 2 that may host an additional, disorder resistant, Majorana

mode. The energies of the vortex quasiparticle modes were found to oscillate as

vortex position varied. The spatial length scale of these oscillations was found

for various points in the Chern number 3 phase which increased as criticality was

approached.

Finally, currents in chiral px+ ipy and dx2−y2 + idxy superconductors are exam-

ined in a cylindrical configuration, self-consistently. Edge currents, while localized

at the boundary as expected, are highly parameter dependent but generically non-

vanishing. Preliminary results are presented, and the techniques employed are ex-

plained. In particular, the calculation of the correlators and currents in both the

p and d wave cases, and the numerical techniques used to find the self-consistent

Hamiltonian are overviewed.
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CHAPTER 1

Introduction

The unifying theme in the development of physics has been the distillation of

complex phenomena into the simple, essential underlying themes. When Newton

simultaneously introduced calculus and universal gravitation, a wide diversity of

experimental phenomena suddenly became simple consequences of these under-

lying principles. Similarly, the development of Bloch waves and electronic band

theory led to a systematic treatment of crystalline atomic solids. One might say

that physics is the study of beauty in nature.

This dissertation will examine order of select systems, and especially the re-

sponse to disorder. The focus will be on angular momentum ` = 1 and ` = 2

superconducting order, as well as the response of d-density-wave pairing to disor-

der, for example in the pseudo-gap regime of the cuprates. The discussion begins

with a general description of order, and then proceeds to the specifics of the cases

considered. Details are left to the appendix, for completeness.

1.1 A Microscopic Picture of Superconductivity

A microscopic explanation of conventional superconductivity was famously dis-

covered in 1957 by Bardeen, Cooper and Schrieffer [BCS57]. Very briefly, the

motion of an electron through a periodic lattice excites an oscillation of that lat-

tice. An electron with equal and opposite momentum interacts coherently with

this oscillation. It becomes energetically favorable, therefore, for electrons to cre-
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ate “Cooper pairs” of oppositely moving electrons, which have lower energy than

independently moving ones. At low enough temperature, the Fermi surface is

destroyed by this so-called “Cooper instability.”

This chapter will gives a brief development of the mean-field approach to

handling condensates, especially the particle-particle condensates of a supercon-

ducting order parameter. Not only relevant to the s-wave superconductivity, and

higher angular momentum superconductivity of direct interest in this dissertation,

the techniques presented here generalize well to other materials described by order

parameters other than the superconducting gap (such as charge density). The end

result will be a quadratic Hamiltonian which can be diagonalized [Bog58, Val58].

This technique is reviewed in Appendix A, which also includes a few significant

numerical simplifications, which I have been unable to find referenced in the lit-

erature.

Although the bulk of the work will be performed on a lattice, the specific

lattice symmetry introduces a number of complication that can interfere with an

otherwise simple explanation. For this reason, we will try to avoid any such details

in this section. Begin with a uniform system, with only a single band. Consider

the noninteracting Hamiltonian, already Fourier transformed:

H0 =
∑
k,s

ξka
†
k,sak,s (1.1)

The fermionic operators ak are normalized to satisfy

{ak,s, ak′,s′} = 0 and
{
a†k,ss, ak′,s′

}
= δkk′δs,s′ (1.2)

(details are in Appendix A). Consider an interaction

HI =
1

2

∑
k′,k,s′2,s

′
1,s2,s1

Vk′,k,s′1,s′2,s1,s2a
†
k′,s′1

a†−k′,s′2
a−k,s2ak,s1 (1.3)

Finding the true solutions to fully interacting Hamiltonian H0 +HI is a very deli-

cate and challenging problem. Instead, certain properties of the system, typically
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expressed as a correlator, e.g. the density

ns(k) =
〈
c†k,sck,s

〉
ψG

(1.4)

at the ground state |ψG〉, are assumed to be very nearly constant. In this ap-

proximation, the system is bathed in this “mean field.” The Hamiltonian is then

expressed in terms of this mean field, and fluctuations about the mean-field are

neglected. More generally, the mean field created by

nss′(k) =
〈
c†k+Q,sck,s′

〉
ψG

(1.5)

produces a particle-hole condensation, or a density-wave [Nay00]. Depending on

how n(k) depends on k, the condensate will have an associated angular momen-

tum.

If s = s′, and n(k) is independent of k, the state has no angular momentum

(s-wave) and is called a charge density wave (CDW). If the vector Q is a rational

multiple of 2π, the order is commensurate with the underlying lattice, if irrational

it is incommensurate with the lattice. In Chapter 2, some important features of

these two kinds of order parameters are discussed.

The BCS ground state is found by expanding around a mean field, of not the

density mentioned above, but rather

bk,s1,s2 = 〈a−k,s2ak,s1〉ψG (1.6)

which corresponds to a particle-particle (or hole-hole) condensation. Explicitly,

the fluctuations are neglected by assuming that the quantity

δbk,s1,s2 = a−k,s2ak,s1 − bk,s1,s2 (1.7)

is small, i.e., assume that |δbk,s1,s2|2 � 1, and substitute into Eqn. 1.3 to get

HI =
1

2

∑
Vk′,k,s′1,s′2,s1,s2

[
−b̄k′,s′1,s′2bk,s1,s2 + δb†k′,s′1,s′2

δbk,s2,s1+

bk,s1,s2a
†
k′,s′1

a†−k′,s′2
+ b̄k′,s′1,s′2a−k,s2ak,s1

]
(1.8)
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The first term is a constant, the second term is neglected, and the last two terms

are simplified by defining the superconducting order parameter

∆k′,s′1,s
′
2

=
∑

k,s2,s1

Vk′,k,s′1,s′2,s1,s2 〈a−k,s2ak,s1〉ψG (1.9)

and, therefore

HI
.
= Kint +

1

2

∑
k,s1,s2

[
∆k,s2,s1a

†
k,s1

a†−k,s2 + ∆̄k,s1,s2a−k,s2ak,s1

]
(1.10)

where

Kint = −1

2

∑
Vk′,k,s′1,s′2,s1,s2

〈
ak′,s′1a−k′,s′2

〉
〈a−k,s2ak,s1〉 (1.11)

The full hamiltonian H0 +HI can be expressed compactly in terms of Nambu

spinors: collect constants, and use the commutation relations:

H0 +HI = K +
1

2

∑
k

[
(â†k)> (â−k)>

]
Ĥk

 âk
â†−k

 (1.12)

where

Ĥk =

ξkI2×2 ∆̂k

¯̂
∆>k −ξkI2×2

 (1.13)

I2×2 is the two-dimensional identity matrix,

âk =

ak,+
ak,−

 (1.14)

where the > operator is taken to only act on the matrix portion of the ak operator,

i.e.,

(âk)> =
[
ak,+ ak,−

]
(1.15)

and

∆̂k =

∆k,+,+ ∆k,+,−

∆k,−,+ ∆k,−,−

 (1.16)

Provided that the self-consistency condition Eqn. 1.9 is satisfied, and the fluctu-

ations of Eqn. 1.7 are indeed small, the solutions to this quadratic Hamiltonian
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should be a good approximation of an eigenstate of the true Hamiltonian. As

is the typical trend in mean-field theories, the higher the dimension, the bet-

ter the approximation. The fluctuations in three dimensional superconductors is

small enough that the BCS theory works, but, in one and two dimensions, fluc-

tuations can destroy superconductivity [GK77, Tin96]. In realistic layered quasi

two-dimensional systems, interlayer interactions are sufficient to stabilize super-

conductivity.

1.2 Symmetries of the Order Parameter

A great deal of the modern “art” of modern theoretical superconductor physics is

in the careful choice of a mean-field to expand around. The coarsest classification

of order parameters is on their transformation properties. Because ∆ enters as a

coefficient of an operator that creates a pair of fermions, it therefore transforms

as such: under spatial inversion, Eqn. 1.9 leads to

∆̂−k = −

∆k,+,+ ∆k,−,+

∆k,+,− ∆k,−,−

 (1.17)

This relationship is opaque, but can be made more clear by first separating ∆ into

the triplet and singlet spin states:

∆̂k = ∆k,+,+

χ̂
(1)
1︷ ︸︸ ︷1 0

0 0

+∆k,−,−

χ̂
(1)
−1︷ ︸︸ ︷0 0

0 1

+
1

2
(∆k,+,− + ∆k,−,+)

χ̂
(1)
0︷ ︸︸ ︷0 1

1 0



+
i

2
(∆k,+,− −∆k,−,+)

χ̂(0)︷ ︸︸ ︷0 −i
i 0

 (1.18)

The χ
(l)
m matrix captures the spin-sector pairing, giving the spin angular momen-

tum. Triplet pairing comprises the first three states χ̂
(1)
±1 and χ̂

(1)
0 , which have

a symmetric spin part and consequentially antisymmetric spatial part. The last
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state is the singlet, with an antisymmetric spin, and symmetric spatial wavefunc-

tion. Generally, ∆ may have contributions from all such pairings, and moreover

this combination could depend on the momentum k. Indeed, for Helium-3, a very

rich topology emerges [Leg75] when all forms of pairing play a role, and are al-

lowed to vary with momentum. For the cases considered here—superconductivity

and density order—the focus will be on pairing of the form

∆̂k = ∆kχ̂ = |∆k|eiφkχ̂ (1.19)

where χ describes the spin channel pairing, and is independent of k and moreover

is entirely spin-singlet or spin-triplet. Furthermore, the spatial part of the wave-

function can be decomposed into angular momentum eigenstates, i.e., φk goes from

0 to 2π`orbital as k goes around the origin, where `s is an integer, and describes

the orbital angular momentum of the Cooper pair. Notice that the orbital and

spin angular momentum have to add to an even integer to maintain the correct

exchange symmetry. Therefore, e.g., s-wave (`orbital = 0) and d-wave (`orbital = 2)

pairing is only possible for spin-singlet states. Similarly, p-wave (`orbital = 1)

orbital pairing is only possible for spin-triplet pairing.

The solutions of Eqn. 1.12 can be expressed in terms of the eigenvectors of χ.

The details are worked out in Appendix A.1, but roughly: working with either of

these eigenvectors, the spectrum can be stated in terms of eigenvectors of

Hk,m =

 ξk ∆kχm

∆̄kχm −ξk

 (1.20)

where χm is an eigenvalue of χ̂. Generically, Hk,m has positive eigenvalue εk,m =√
ξ2
k + χ2

m|∆k|2 and eigenvectoruk,m
vk,m

 =

χm
eiφk/2√

2

√
1− ξk√

ξ2k+χ2
m|∆k|2

e−iφk/2√
2

√
1 + ξk√

ξ2k+χ2
m|∆k|2

 (1.21)

The operator

Ψ†k,m = uk(âk)>χ̂m + vk(â†−k)>χ̂m (1.22)
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(where χ̂m is the eigenvector of χ̂ of eigenvalue χm) becomes the quasiparticle

operator, and the Hamiltonian takes the form

H0 +HI = C +
∑
k,m

εk,mΨ†k,mΨk,m (1.23)

The subscript m captures the z component of the spin angular momentum of the

Cooper pairs. For the “spin-polarized” triplet cases, χm = 0, 1, the χm = 0 case

contributes trivially—superconducting pairing occurs for only one of the spins—

and can be ignored entirely. A linear combination of χ̂
(1)
±1 corresponds to pairing

of both spin-up and spin-down fermions; this can lead to interesting effects where

currents may cancel, but spin currents will not. A more general combination of

χ
(1)
m is out of the scope of this discussion (and is in general more difficult to address,

since χ̂ may not be diagonalizable). For the most part, we’ll assume we’re in the

spin-polarized case, and moreover mostly ignore the nonpairing fermions. This is

equivalent to starting from the perspective of working with spinless fermions. For

the singlet case, χm = ±1 and each case contributes essentially the same. For

much of what is done here, the m subscript can be safely ignored.

1.3 Topology of the Order Parameter

Further classification of order parameters can be made based on the topological

features over the complete Brillouin zone [TKN82, HK10, AZ97]. For one of the

m branches,

Hk =

 ξk |∆k|eiφk

|∆k|e−iφk −ξk

 = ξkσz + σx|∆k| cosφk − σy|∆k| sinφk = h(k) · σ

(1.24)
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where σ is the formal vector
[
σx σy σz

]>
, and the Anderson pseudospin vector

h(k) =


Re ∆k

−Im ∆k

ξk

 (1.25)

gives the very pretty expression for the excitation energies: εk = |h(k)|. Provided

that the gap does not collapse, i.e. εk 6= 0, the function ĥ(k) = h(k)/ε(k) maps

the Brillouin zone, the 2-torus, to the unit sphere [Ber84, Nak03]. Much as a curve

has a winding number when mapped onto the unit circle, an analogous integer

characterizes the number of times the torus is wrapped around the sphere:

nChern =
1

4π

∫
d2k

(
∂kxĥ× ∂ky ĥ

)
· ĥ (1.26)

which is the integral of the Berry curvature,[
1

2π
∇k × 〈G|Ψki∇kΨ

†
k |G〉

]
z

=

[
1

4π
(∇kφ)× (∇kh)

]
z

=
1

4π
ĥ · ∂ĥ

∂kx
× ∂ĥ

∂ky
(1.27)

(notice that all other components of the first two expressions vanish) which is

(almost, there are continuity issues) the curl of the Berry connection,

〈G|Ψki∇kΨ
†
k |G〉 =

1

2
ĥz∇kφk (1.28)

Recognizing the cross product as the surface normal, the integral is some (signed)

area that the vector ĥ maps out. Provided the mapping is smooth, it must be

some integer multiple of 4π, ensuring that the Chern invariant nChern is, in fact, an

integer, the degree of the map n̂. According to the Hopf classification, the degree

characterizes the mapping n̂ topologically, i.e. up to homotopy. We emphasize

here that we have so far said nothing about the presence of zero-energy modes or

sublattices: only the topologically invariant Chern number.

One can do slightly better. A first attempt might be to try to apply Stokes

theorem and just calculate the loop integral. This can easily fail spectacularly
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because the gradient term ∇kφk is definitely not smooth. Instead, a topological

argument will make this calculation much easier.

Choose a particular region of the Brillouin zone bounded by a region where

hk = 0 (which can be colorfully described as the Fermi surface of the parent

system). Inside this region, ĥz 6= 0. It is (at least visually) clear that a smooth

deformation can make ĥ = ±ẑ except when hk = 0 vanishes (or, more correctly,

when k is within some small distance to the region where hk = 0). The Chern

number must therefore depend only on the winding of the phase of the supercon-

ducting order parameter around the Fermi surface (of the parent state, i.e., where

hk = 0). Because such a smooth deformation will not close the band gap, the

topological invariant is unchanged. The integral over the Brillouin zone therefore

becomes a line integral over the hk = 0 surface, which is sensitive only to the

winding of the superconducting order parameter’s phase φ.

The winding of φ can only occur around zeros of ∆, and always in multiples

of 2π. Neglecting higher-order zeros of ∆, one simply counts the number of zeros

enclosed by the Fermi surface, and note whether their winding is clockwise or

counterclockwise to get the Chern number. To get the sign of the answer cor-

rect, “enclosed” is taken to mean the particle-like side of the Fermi surface. We

emphasize now that we are dealing with a quadratic, single-band Hamiltonian.

Analogous results for multi-band Hamiltonians would be more complicated.

1.4 Defects and Boundaries

As mentioned above, the topology of a system cannot change unless the gap closes.

In the quasiclassical approximation that the physical system changes gradually

from one topology to another—and therefore that the momentum space picture

presented above is valid everywhere—the gap must close at some point, creating

a topological edge state of zero energy. Of course, this quasiclassical limit is not

9



exact, and there are caveats. Nonetheless, zero energy modes are indeed required

to exist at the edges of topological phases in a variety of situations. If some state

εn = 0,

HΨ†n |G〉 = 0 (1.29)

The basis can be chosen such that

Ψ†n = Ψn (1.30)

Such an operator creates a “Majorana” fermion, one which is its own antiparticle,

since the operator is self-adjoint. The edges of physical systems, vortices within

superconductors, and defects can all produce a region of a different phase than the

surrounding topologically nontrivial system. Therefore, any such inhomogeneity

might conceivably harbor a Majorana mode. On the other hand, not every defect

will produce a Majorana mode—care must be taken to distinguish mere defect

modes from truly zero energy Majorana modes. This subtle question is com-

pounded by the fact that, in finite systems, the finite localization of Majorana

fermions allows them to interact with each other—causing them to hybridize and

acquire a finite energy. Separating one effect from another is a subtle task, and

one that is addressed in the present work, in part, via numerical techniques.
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CHAPTER 2

Charge Density Waves, Disorder, and Quantum

Oscillations

Before delving deep into the superconducting state and investigating the topolog-

ical properties of the superconducting order parameter, we’ll examine the prop-

erties of a few particle-hole condensates often closely associated with supercon-

ductivity, especially in the cuprates. A comparison is made of commensurate

and incommensurate charge density wave, and a d-density wave. From symmetry

grounds, we find that the charge density wave can interfere with the formation of

a Fermi surface. Coupled with the evidence of quantum oscillations in the under-

doped cuprates, our result brings into question the conventional wisdom as to the

role the charge density wave plays, e.g., in the pseudogap regime.

2.1 Introduction

Experiments have observed an incommensurate charge density wave order (ICDW)

in the underdoped regime of the cuprates [WMK11, LKH12, GLM12, CBH12,

Hof02, KTF07, ASM12, CBH12, TLT14, GLD15], inspiring an explanation for

the underlying order in underdoped cuprates. However, one should note the dis-

tinction between the low-field regime and the high-field regime where quantum

oscillations are observed. Here, we take a critical view of CDW as the underlying

order in terms of its ability to support quantum oscillations, which are generally

agreed to reflect a Fermi surface reconstruction [DPL07, LDL07, JVA08], and
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therefore a Fermi liquid ground state, at least in the sense of continuity [Cha08].

To date, there is no general agreement as to the precise nature of this reconstruc-

tion.

Because strict ICDW does not have a sharply defined Fermi surface [ZMK15],

there can be no quantum oscillations that are truly a periodic function of 1/B

(where B is the magnetic field). The central result of the paper is a proof of

principle argument that even commensurate charge density wave (CDW) order—

chosen for simplicity to be of period-2—in the presence of disorder may not be able

to explain a Fermi surface reconstruction and consequently quantum oscillations.

In short, ubiquitous potential disorder necessarily couples to CDW order, leading

to a non-Fermi liquid electron spectral function without quasiparticles. Unless

disorder is weak and the CDW order very long ranged [GJN15], the principal

order that leads to quantum oscillations could not be CDW.

Another possibility for quantum oscillations is the d-density wave (DDW) pro-

posed previously [CK08]. This order, illustrated in Fig. 2.1 in its period-8 version,

reflects staggered, circulating currents, making it impervious to direct potential

scattering. To the extent that period-8 DDW can induce period-4 CDW, the

DDW can be affected by potential disorder—but only at 4th order in Landau

theory. Experimentally, the situation is unclear: some neutron scattering results

[MDH02, MDH04] are consistent with DDW order, but nuclear magnetic reso-

nance (NMR) measurements find no circulating currents [SGM11] (see, however,

[HMV14] for a dissenting opinion). The period-8 DDW has one electron pocket

and two smaller hole pockets in the reduced Brillouin zone, thus providing an

explanation of the quantum oscillations of the Hall coefficients [EWC12].

The paper’s approach is to first introduce the random field Ising model, and

derive its behaviors when exposed to Z2 symmetry breaking disorder, in particular

the dynamic susceptibility χ(ω), in Section 2.2. Next, this dynamic susceptibil-

ity is used to calculate the imaginary part of the skeleton graph perturbative
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Figure 2.1: Current pattern for period-8 DDW.
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d-density wave with ordering wave vector Q = (3π
4a
, π
a
), where a is the lattice

constant (reproduced from [EWC12]; also see [DGJ08]). In Landau theory, it can

couple to CDW with ordering vector 2Q. The relative magnitudes of the currents

are depicted by the thickness of the arrows in the legend. Note the antiphase

domain wall structure.

correction to the electronic self energy Im Σ(ω) in Section 2.3. The results are

related back to the more realistic case of an anisotropic system with a mean-

field theory argument interpolating between two- and three-dimensional systems

in Section 2.4. Concluding remarks are made in Section 2.5.

2.2 Random Field Ising Model

For simplicity, we focus on period-2 CDW, which breaks Z2 symmetry and neces-

sarily couples to potential disorder. On symmetry grounds, the effective Hamil-

tonian is modeled by a random field Ising model (RFIM), [You98]

H0 = −J
∑
〈ij〉

szi s
z
j −

∑
i

hzi s
z
i , (2.1)
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where J is the coupling between the Ising spins, and {hzi } is a set of uncorrelated,

uniformly distributed (rectangular distribution) random variables with zero mean

and variance σ2. The notation 〈ij〉 denotes nearest neighbors. It is not clear

that doping immediately destroys commensurability, but if it does, by the Imry-

Ma argument, ICDWs can only be more susceptible to disorder because of the

continuous symmetry implied by the ICDW. If one wishes, the Ising variable can

be thought of as szi = ni− 1
2
, where ni = 0, 1 is the charge density at site i. Double

occupancy is naturally forbidden in the underdoped, high-Tc cuprates because of

large U . The model is controlled by a single dimensionless number, ζ = J
σ
, which

we treat as a phenomenological parameter.

The disorder in a RFIM drives fluctuations on many length scales, and conse-

quently many time scales, producing glassy dynamics and a frequency-dependent

susceptibility [SC09] χ(ω). This result is recapitulated, with improved preci-

sion here for the two-dimensional (2D) case and extended to the essential three-

dimensional (3D) case. Analogous to the thermally driven fluctuation of an Ising

system at finite temperature, the RFIM has disorder driven fluctuations at zero

temperature. A distribution p(L) (defined below more precisely) of domain walls

of scale L arises from the domains in the ground state of the RFIM, playing a

crucial role in our work, and is new.

The appearance of domain walls in RFIM is identified numerically by convert-

ing the RFIM to a network flow model, explained in Appendix B. Briefly, by care-

ful choice of the parameters of the flow-network and the addition of two fictional

source and sink nodes, each cut is made to correspond to a spin configuration such

that the minimal cut corresponds to the RFIM ground state configuration. The

probability that a domain wall of linear dimension L exists in the ground state,

Pdw(L), is determined by averaging over many disorder realizations. To help un-

derstand the meaning of this quantity, notice that, in the 1D case, a domain wall

is just a spin flip. In the disorder-free case, creating a single spin flip costs energy
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Figure 2.2: Scaling of Pdw in the one-dimensional case.
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The collapse works as expected for x = (J/σ)2/L = ζ2/L; the logarithmic cor-

rection factor (1 + A logL) is found to have little effect: A = 0 ± 0.3. The best

fit parameters to Eqn. 2.3 are x0 = 0.0596 ± 0.0007, λ = −0.0103 ± 0.0005 and

θ = 0.034±0.002. All points correspond to averages performed over 2048 disorder

realizations.
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∼ 2J , an energy that, by Jordan-Wigner transformation, can be thought of as a

fermion gap. The spin flip can move throughout the system at no energy cost.

In the 1D case, the Imry-Ma argument shows that the ordered domains scale like

L ∼ (J/σ)2, presented numerically in Fig. 2.2.

In higher dimensions, the analogy is less precise, but the presence of a domain

wall results in the collapse of the gap in the Ising system. Most importantly, the

size of the domains is controlled by locations of these domain walls. In particular,

Pdw is the cumulative distribution function of the ordered domains or “clusters”

of linear dimension L, and therefore

p(L) =
dPdw

dL
. (2.2)

Pdw is found to lie on a universal curve [SC09] which is an asymmetric sigmoid,

Pdw ≈ f(x) =
1(

1 + exp
[
x0−x
λ

])θ (2.3)

where x = logL − (ζ/ζ0)k and ζ0 is numerically fit, and sets a scale for the

strength of the disorder. In 2D, k is set to 2 as in [SC09], in agreement with the

analytical result [Bin83] for the special case Pdw = 1/2. In 3D, k is numerically

fit. The sigmoid’s best fit parameters x0 and λ control its center and width,

respectively, while θ controls the asymmetry. Physically, x0 determines the onset

of the occurrence of domain walls, and λ how quickly the regime is dominated by

the existence of at least one domain wall. The numerical results are summarized

in Fig. 2.2 and Fig. 2.3 and Table 2.1.

The distribution p(L) is important because, in the limit of glassy RFIM dynam-

ics in which we work, it controls the (necessarily local) susceptibility [Sac11, SC09]

Imχ(ω) ∼
∫
dL p(L)δ

(
ω − ω0e

−cLα) (2.4)

This phenomenological argument for the susceptibility captures the essential glassy

characteristics resulting from p(L). In principle, the attempt frequency ω0, the
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D x0 λ θ ζ0 k

2 1.41(4) 0.28(2) 0.31(2) 0.75(2) 2

3 0.2(1) 0.33(1) 0.137(6) 0.47(9) 5.6(1)

Table 2.1: Best fit parameters for Pdw in Fig. 2.2 and Fig. 2.3 and Eqn. 2.3.

fractal dimension α, and the length scale c are microscopic parameters, which

are left undetermined. Notice that the fractal dimension α ≤ D, where D is the

ambient spatial dimension. For 2D and 3D, the integral simplifies in the small ω

limit to

Imχ(ω)→ χ0
ω0

ω
Ωψ, (2.5)

We have put Ω = 1/
(
log ω0

ω

)
for clarity and compactness; Ω(ω) is strictly increas-

ing for 0 < ω < ω0, and vanishes as ω → 0. The exponent

ψ = 1 + 1/ (λα) > 1 (2.6)

depends only on the fractal dimension of the domains α and on their distribution

of sizes via the parameter λ. Moreover, in both 2D and 3D, the numerical value

of λ was found to lead to ψ > 2 (see Table 2.1).

2.3 The Electron Self Energy

We now focus on the interaction of the itinerant electrons with the emergent

glassy CDW order, assumed to enter as a heat bath of fluctuations of the RFIM.

The self energy Σ of the electrons is calculated to leading order in perturbation

theory (see Fig. 2.5), assuming some coupling γ of the RFIM fluctuations to the

electrons, from the form of χ in Eqn. 2.5 in a reduced graph expansion [ASW14].

It is unnecessary to use the matrix formalism corresponding to the charge order,

because, as we shall see, there are no quasiparticles, and hence no possible Fermi
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Figure 2.3: Scaling of Pdw in 2D.
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Figure 2.4: Scaling of Pdw in 3D.
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surface reconstruction. In terms of the energy of quasiparticles ω,

Im Σ(ω) = −γ2

∫
dω′

π

∑
q

ImG(k− q, ω − ω′)Imχ(q, ω′)

× [b(ω′) + f(ω − ω′)] (2.7)

The Fermi and Bose functions f(ω) and b(ω) restrict the ω′ integration to [0, ω]

in the zero-temperature limit we are considering, making the integral vanish for

ω < 0. Because the susceptibility is local, the self energy is also local, and the

sum over q reduces to the density of states at the Fermi surface, ν:

Im Σ(ω) = −γ2ν

∫ ω

0

Imχ(ω′) dω′ = − Σ0

ψ − 1
Ωψ−1

where Σ0 = γ2νχ0ω0, and ω > 0. From the Kramers-Kronig relations:

Re Σ(ω) =
2

π
P

∫ ∞
0

ω′ImΣ(ω′)

ω′2 − ω2
dω′

= − 2Σ0

π(ψ − 1)
P

∫ Λ

0

ω′

ω′2 − ω2
Ωψ−1 dω′ (2.8)

where we have introduced a cutoff Λ. Because Ω is slowly varying, we approximate

it as a constant with ω′ = ω:

Re Σ(ω) ≈ 2ImΣ(ω)

π
ln
ω0

ω
= − 2Σ0

π(ψ − 1)
Ωψ−2 (2.9)

where we have taken the largest possible value of the cutoff, Λ→ ω0, and discarded

the subdominant terms in the limit ω → 0. Because ψ > 2, as ω → 0, both the

real and the imaginary part of the self energy vanish.

The spectral function A(k = kF , ω) is plotted in Fig. 2.6 for several values of

ψ. The emergent behavior is of an unusual non-Fermi liquid; for k = kF and in

the ω → 0 limit,

A(kF , ω)→ π

4

ψ − 1

Σ0

Ω3−ψ. (2.10)

Provided that ψ < 3 or equivalently1 α > (2λ)−1, the spectral function vanishes

as ω → 0. The falloff is extremely slow, behaving as a fractional power of a

1Although we have no lower bound on α, the condition α > (2λ)−1 is rather mild α & 1 and
α & 1.5 in 2D and 3D, respectively.
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Figure 2.5: Leading order (one-loop) self energy graph.

The fermion couples to the bath of RFIM fluctuations

logarithm. Furthermore, and despite the slow falloff, the quasiparticle weight

always vanishes, and equivalently the effective mass diverges, as ω → 0:

Z−1 = 1− Re
∂Σ

∂ω
= 1 +

2Σ0

πω

ψ − 2

ψ − 1
Ωψ−1 (2.11)

2.4 Stacks of Two Dimensional Layers

Cuprates are reasonably modeled as weakly coupled stacks of 2D layers [NTK14].

The above work addresses isotropic coupling; we now argue that anisotropy will

not materially affect the results. Consider the Hamiltonian

Hstacked = −J‖
∑
〈ij〉xy

szi s
z
j − Jz

∑
〈ij〉z

szi s
z
j −

∑
i

hzi s
z
i (2.12)

where J‖ is the in-plane coupling and Jz the inter-plane coupling. 〈ij〉z denotes

nearest neighbors in the z direction, and 〈ij〉xy the neighbors in the xy plane. The

random fields hzi are as before.

Unlike 2D, in 3D there is a order-disorder phase transition. In the isotropic

case, i.e., J = Jz = J‖, the zero temperature phase transition occurs at a finite

ζ = J
σ
, found numerically to be ζc = 0.446 ± 0.001, in good agreement with

previous results [MF02].
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Figure 2.6: Spectral density after coupling to RFIM
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curve is arbitrary: the unspecified prefactor Σ0 is not included.

22



The anisotropic case (with Jz 6= J‖) is illustrated in Fig. 2.7. Numerically, a

particular value of Jz is fixed, and J‖ is varied to identify the phase boundary in

the Jz-J‖ plane. A simple mean field theory result is also illustrated: as shown

earlier [SC09], in 2D the correlation length

ξ2D[J/σ] ∼ exp

[(
J/σ

ζ0

)2
]

(2.13)

with ζ0 ≈ 0.75. Treating the 3D system as a stack of coupled 2D planes, a mean

field theory argument suggests the crossover from purely 2D (at weak enough Jz)

to 3D occurs for

Jz & J‖/ξ
2
2D. (2.14)

The qualitative features are readily understood. When J‖ → 0, the system de-

couples as a 1D RFIM, which cannot order (a scenario irrelevant to the cuprates).

On the other hand, when Jz → 0, the case simplifies to the 2D RFIM, which

while it also cannot order, has an exponentially large crossover scale. It is in the

latter regime that the fully 3D and stacked 2D results overlap. For weak Jz, the

system is disordered and the total energetic contribution from the Jz coupling can

be made small relative to the in-plane J‖ terms. An interpolation between the

2D and 3D cases is expected in the anisotropic case, which should always result

in the suppression of a quasiparticle peak.

2.5 Conclusion

In conclusion, random field disorder is significant even in the apparently well

ordered materials of high temperature superconductors, but its effect is quite dif-

ferent for the two orders, CDW and DDW. Because the Z2 symmetry is broken

for period-2 CDW, it is susceptible to random field disorder, destroying the Fermi

surface, as we have found here by treating it as a RFIM. The disorder results in

the glassy susceptibility Imχ(ω) of Eqn. 2.5, producing a quite unusual non-Fermi
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Figure 2.7: Phase diagram in the anisotropic case
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The 3D isotropic case corresponds to the dashed diagonal line Jz = J‖. For each

value of Jz considered, the numerically identified phase transition is a red ×. The
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liquid. Physically, the glassy dynamics are due to the wide range of scales over

which domain walls exist in the ground states of the 2D and 3D RFIM and are

characterized by the parameter ψ, which controls susceptibility and in turn the

non-Fermi liquid behavior. No Fermi-surface reconstruction can in principle oc-

cur, precluding quantum oscillations, up to some important caveats: the coupling

parameter Σ0 must not be too small, and the CDW correlation length cannot

be too large relative to the cyclotron radius (see [THZ15]). Truly incommen-

surate order in the presence of disorder is far too complex a problem and was

not addressed in the present work. In any case, ICDW destroys strict quantum

oscillations [ZMK15] even without disorder, only making the situation worse.

In contrast, DDW modulates bond currents—a Hartree-Fock calculation of

DDW is given by Laughlin [Lau14]—which cannot directly couple to potential

disorder, even though the order breaks translational symmetry. No non-Fermi

liquid behavior is expected. Higher periodicity DDW (for example, period-8)

can induce parasitic charge order that can couple to disorder. Being a higher

order effect in Landau theory, this coupling may be weak. However, the observed

weak CDW involves such a small motion of the atoms, it is hard to believe that

it could be the cause of a large magnitude pseudogap. In any case, the short

range nature of the CDW order [GJN15] combined with RFIM disorder cannot

explain quantum oscillations, at least if the resulting electronic state is a non-

Fermi liquid. As a third option, if we neglect disorder and assume very long-ranged

CDW, (perhaps infinitely long-ranged), Fermi surface reconstruction and quantum

oscillation have been shown to be possible [MHR14, SHB14, ACS14, DBC15]. The

current experiments, however, do not support long-ranged order, nor is there any

reason to neglect disorder.
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CHAPTER 3

Chiral Superconductor with

Next-Nearest-Neighbor Terms

In this chapter, a number of chiral superconductors with up to next-nearest-

neighbor terms are introduced. Using the techniques described in the introduction,

the phases and Chern numbers are identified. Both px+ipy and dx2−y2 +idxy order

parameters are considered.

3.1 Terms

Both nearest and next-nearest neighbor hopping terms are considered, illustrated

in Fig. 3.1, and explicitly:

tij = −µδij + t1 [δi−ax̂,j + δi+ax̂,j + δi−aŷ,j + δi+aŷ,j]

+ t2
[
δi−a(x̂−ŷ),j + δi+a(x̂−ŷ),j + δi−a(x̂+ŷ),j + δi+a(x̂+ŷ),j

]
(3.1)

Where a chemical potential has also been included. Taking a Fourier transform,

∑
tijc
†
icj

=
∑
k

[−µ+ 2t1(cos kx + cos ky) + 2t2(cos(kx + ky) + cos(kx − ky))] a†kak

=
∑
k

[−µ+ 2t1(cos kx + cos ky) + 4t2 cos(kx) cos(ky)] a
†
kak (3.2)

Nearest and next-nearest neighbor px + ipy terms, illustrated in Fig. 3.2, and

given explicitly by:
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Figure 3.1: Nearest, and next-nearest neighbor t hopping terms
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Figure 3.2: Nearest, and next-nearest neighbor px + ipy pairing terms
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Figure 3.3: Nearest, and next-nearest neighbor dx2−y2 + idxy pairing terms
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1

∆ij = ∆
px+ipy
1 [iδi−ax̂,j − iδi+ax̂,j + δi−aŷ,j − δi+aŷ,j]

+ ∆
px+ipy
2

[
e

1
4
iπδi−a(x̂−ŷ),j + e−

3
4
iπδi+a(x̂−ŷ),j + e

3
4
iπδi−a(x̂+ŷ),j + e−

1
4
iπδi+a(x̂+ŷ),j

]
(3.3)

Notice that a chirality is created here: the phase winds counterclockwise, reaching

a total phase of 2π after rotating once around the axis. Furthermore, notice that,

without both terms in the x and y direction, the chirality symmetry would not be

broken. The choice of coefficients may become more clear once a Fourier transform

is performed:

∑
∆ijc

†
ic
†
j

=
∑
k

[
2∆

px+ipy
1 (sin kx + i sin ky) + 2∆

px+ipy
2 e−

1
4
iπ(sin(kx − ky) + i sin(kx + ky))

]
a†ka

†
−k

=
∑
k

[
2∆

px+ipy
1 (sin kx + i sin ky) + 2

√
2∆

px+ipy
2 (sin(kx) cos(ky)− i cos(kx) sin(ky))

]
a†ka−k

(3.4)

Next, consider terms from d-wave pairing, illustrated in Fig. 3.3, and explicitly:
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∆ij = ∆
dx2−y2
1 [−δi−ax̂,j − δi+ax̂,j + δi−aŷ,j + δi+aŷ,j]

+ ∆
dxy
1

[
iδi−a(x̂−ŷ),j + iδi+a(x̂−ŷ),j − iδi−a(x̂+ŷ),j − iδi+a(x̂+ŷ),j

]
(3.5)

Notice that, again, the phase has been chosen such that it winds counterclockwise

around the lattice (and does so twice giving ` = 2), and again the chirality requires

the second longer term. The Fourier transform is therefore

∑
∆ijc

†
ic
†
j

=
∑
k

[
2∆

dx2−y2
1 (cos kx − cos ky) + 2i∆

dxy
1 (cos(kx + ky)− cos(kx − ky))

]
a†ka

†
−k

=
∑
k

[
2∆

dx2−y2
1 (cos kx − cos ky)− 4i∆

dxy
1 sin(kx) sin(ky)

]
a†ka

†
−k (3.6)

3.2 Phase Diagram for phase-locked p-wave

First, we address the phases of the ` = 1, px + ipy pairing, with interactions given

by Eq. 3.3. In this form, phases of nearest and next-nearest neighbors are locked

(i.e., their phases look like ei`θ+φ0 with the same φ0). Subject to these restrictions,

a standard process identifies the gap closures, as outlined in the introduction, and

can be used to identify the phases. In particular, two Fourier transforms must

vanish: ∆(k), the fourier transform of the pairing terms, found above and given

by

<∆(k) = 2 sin(kx)
[
∆
px+ipy
1 +

√
2∆

px+ipy
2 cos(ky)

]
and

=∆(k) = 2 sin(ky)
[
∆
px+ipy
1 +

√
2∆

px+ipy
2 cos(kx)

]
as well as hzk, the fourier transform of the hopping terms, restated

hzk = −µ+ 2t1 [cos(kx) + cos(ky)] + 4t2 cos(kx) cos(ky)

Notice first that zeros of ∆ occur at high-symmetry points in the Brillouin zone,
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Figure 3.4: p+ ip superconducting phases for α = 0.5
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Γ, X, Y and M . Putting α =
∆
px+ipy
1

∆
px+ipy
2

, the remaining four zeros of ∆ are at

|kx| = |ky| = arccos
−α√

2

which we will refer to collectively simply as A(α). The Chern number is deter-

mined by noticing that each zero of ∆(k) contributes either +1 or −1 to the overall

Chern number, depending on whether hz(k) > 0 at that point in the Brillouin

zone (and details of the zero of ∆). Evaluating hz at the 8 zeroes of ∆(k)

1
4µ



hz(Γ)

hz(X)

hz(Y )

hz(M)

hz(A(α))


=



t1
µ

+ t2
µ
− 1

4

− t2
µ
− 1

4

− t2
µ
− 1

4

− t1
µ

+ t2
µ
− 1

4

− α√
2
t1
µ

+ α2

2
t2
µ
− 1

4


.
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Figure 3.5: d+ id superconducting phases
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The Chern contributions for each zero when hz > 0 are, respectively

−1

+1

+1

−1

N/A


if |α| ≥

√
2, and for |α| <

√
2,



−1

−1

−1

−1

+1


These phases are summarized in Fig. 3.4.

3.3 Phase diagram for the phase-locked d-wave case

Next, we address the phases of the ` = 2, dx2−y2 + idxy pairing. The hopping

terms are the same as above,

hz(k) = −µ+ 2t1 [cos(kx) + cos(ky)] + 4t2 cos(kx) cos(ky)

while the Fourier transform of the pairing terms is now

<∆(k) = 2∆
dx2−y2
1 [cos(kx)− cos(ky)]
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and

=∆(k) = −4∆
dxy
1 sin(kx) sin(ky)

In this case, it’s clear that the only zeros of ∆(k) are at the two high-symmetry

points Γ and M . There are, therefore, phase transitions controlled by the more

simple diagram

1
4µ

 hz(Γ)

hz(M)

 =

 t1
µ

+ t2
µ
− 1

4

− t1
µ

+ t2
µ
− 1

4

 .
These phases are summarized in Fig. 3.5.

3.4 Phase Diagram for phase-unlocked p-wave

It is also possible to consider the situation where ∆
px+ipy
2 is not real. This cor-

responds to next-nearest neighbor pairing that is not phase-locked to the nearest

neighbor pairing. In this section such an order parameter is examined—the phase

of ∆
px+ipy
2 will be taken to be e

1
4
iπ throughout this section.

Again, the bulk band gap is seen to collapse for momenta k = (kx, ky) such

that

0 =
1

2∆
px+ipy
2

∆(k) = α [sin(kx) + i sin(ky)] + sin(kx − ky) + i sin(kx + ky) (3.7)

and

0 =
1

µ
h(k) = −1 + 2

(
t1
µ

)
[cos(kx) + cos(ky)] + 4

(
t2
µ

)
cos(kx) cos(ky) (3.8)

Again, there are the four zeros of ∆ at the high symmetry points (i.e., where

sin kx = sin ky = 0). Assuming that the sine terms do not vanish, the remaining

four zeros of ∆ can be shown to satisfy

cot(kx)
2 =

α2

2− α2

[
1 +

√
4

4 + α4

]

cot(ky)
2 =

α2

2− α2

[
1−

√
4

4 + α4

]
(3.9)
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Thus, there are two cases: α2 ≥ 2, in which ∆(k) only vanishes at the four high-

symmetry points, and α2 < 2, for which the order parameter vanishes at two

additional, α-dependent momenta. A straightforward, if lengthy, consideration of

cases of the signs of the cos(ki) and sin(ki) would allow the cotangent terms to be

plotted implicitly, giving an exact solution for the location in the Brillouin zone

for each zero. Fortunately, an explicit solution for the momenta of the zeros is

not needed, as we will see momentarily.

h at the zeros of ∆

For k such that ∆(k) = 0, the band gap closes if and only if h(k) = 0. Further-

more, the phase winding of ∆ around its zeros and the sign of h(k) at each zero

indicate the Chern number. This well-known result is reviewed in Appendix 1.3.

At the high-symmetry points Γ, X, Y , and M ,

1

4µ


h(0, 0)

h(±π, 0)

h(0,±π)

h(±π,±π)

 =


t2/µ+ t1/µ− 1

4

−t2/µ− 1
4

−t2/µ− 1
4

t2/µ− t1/µ− 1
4

 (3.10)

By setting h(k) = 0, we get the three alpha-independent phase transition lines:

t2/µ = −1/4, t2/µ + t1/µ = 1/4, and t2/µ − t1/µ = 1/4. The Chern number

changes by 1 when crossing each line (except for the t1/µ = −1/4 double line,

where the change is 2). At the α-dependent zeros of ∆ given by Equation (3.9),

h is evaluated (a tedious but straightforward considerations of cases):

1

µ
h(k) = −1−

(
t1
µ

)
α(2− α2)−

(
t2
µ

)
α4 (3.11)

The condition that the α-dependent zeros are included or excluded by the Fermi

surface (i.e., h(k) ≶ 0) is recast by defining

β =

−α(2− α2)

−α4

 and t =
1

µ

t1
t2

 (3.12)
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and the above condition can be restated as

0 ≤ 1

µ
h(k) = −1 + t · β or

1

β
≤ t · β̂ (3.13)

I.e., there is a phase transition line, with closest approach to the t1-t2 origin given

by Z = β̂
β
. Plotting these four phase transition lines, identifying the topologically

trivial phase where where (t1, t2) = (0, 0), and counting the number of lines crossed

allows for the creation of phase diagrams for various values of α, such as those in

Fig. 3.6.
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Figure 3.6: Phase diagrams for phase-unlocked p-wave pairing.

(a) α = 0.3 (b) α = 0.5
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(c) α = 1.1
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Values of α = ∆1/∆2, with Chern number for each phase. The dots subfigure (b)

indicate values of t1/µ, t2/µ investigated numerically in Chapter 4.
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CHAPTER 4

Numerical Studies of Majorana Fermions near

Vortices in Chiral Superconductors

4.1 Majorana Modes and defects

There has been much interest in topological features of various condensed matter

systems, in particular Majorana fermions. [MZF12, Kit01, Wil09, MR91, FK08,

SLT10, STL10, AOR11, Ali10, LSD10, DSV11, Ali12, RG00, Iva01, Roy10] Ma-

jorana fermions satisfy γ† = γ; that is, they are their own antiparticle. In systems

with particle-hole symmetry, their energy is therefore pinned to zero. Conse-

quently, Majorana fermions can only be destroyed by pairing with another and

hybridizing into a Dirac fermion.

We focus on chiral px+ipy superconductors. In continuum models with nonzero

Chern numbers, zero-energy Majorana fermions develop around defects, such as

vortices.[KS91, Ali12, RG00, Iva01, Vol99, CGM64, HK10, Roy10] When the vor-

tices are well-separated, the associated Majorana fermions are protected from local

perturbations, which could be useful in quantum computers. Majorana fermions

are also expected in lattice models of chiral superconductors; if the gap is of the

form sin(nkx) + i sin(nky), where n is the range of the interaction, it reduces to

n∂x + in∂y in the continuum limit.

In contrast to the continuum case where the range of the interaction, n, simply

rescales the gap function, the range plays a more interesting role on the lattice.

Previous work [NCH12] suggested that the inclusion of longer-ranged interactions
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leads to novel phases. These longer-ranged interactions in general give rise to

larger Chern numbers in a way that can be most easily understood when all

interactions are of the same range. When all interactions are of the same range, a

number of noninteracting sublattices, S(n), form. For example, in FIG. 4.1, two

sublattices form when only next-nearest neighbor terms are present. As separate

systems, each sublattice has its own Chern number, either 0 or 1. Therefore, the

Chern number for the whole system is either 0 or S(n).

To explore the more complicated case of interactions of different ranges, we

study a square lattice with a combination of nearest-neighbor (NN) and next-

nearest-neighbor (NNN) hopping (respectively, t1 and t2), and px + ipy pairing

(respectively, ∆
px+ipy
1 and ∆

px+ipy
2 ) terms. The system is kept at chemical potential

µ. Both the hopping and pairing terms are illustrated in Fig. 3.1 and Fig. 3.2.

The five parameters t1, t2, ∆
px+ipy
1 , ∆

px+ipy
2 , and µ constitute a parameter space

rich enough to include the well-known BEC and BCS superconducting systems, as

well as their two-sublattice versions (i.e., purely NNN interactions). Because the

BEC-BCS transition is topological in nature, we search for the surfaces in param-

eter space where the bulk band gap collapses and topological phase transitions

occur.

Our analysis of the system shows that the phase diagram depends only on

three ratios of parameters: α = ∆1

∆2
and the scaled hopping terms t1/µ, t2/µ. For

fixed values of α, all phase transitions are lines in the t1-t2 plane. There are four

such lines, three of which are independent of α. When a system is tuned to one of

these phase transition lines, the gap in the system collapses because a zero of ∆(k)

is crossing the Fermi surface. The lines constitute the phase diagram for a given

value of α, as shown in Fig. 3.6. When |α|2 ≥ 2, the phase transition lines remain

fixed, and ∆(k) only has zeros at the four high-symmetry points Γ, X, Y , and M

because the NNN pairing terms are not strong enough to introduce any zeros into

∆(k). The topology of the system is unaffected by the weak NNN pairing. When
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Figure 4.1: 2D Sublattices
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When only next-nearest neighbor interactions are present in a 2 dimensional lattice

model, two sublattices form, each responding independently to defects. Pairs

of defect modes evolve correspondingly independently. When nearest-neighbor

interactions are turned on, the pairs of defect modes persist.
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|α|2 < 2, four additional zeros are introduced into ∆(k), permitting larger Chern

numbers. An analytical calculation finds all Chern numbers possible with NN

and NNN terms; they range from −3 to +3. Chern number ±4, while conceivably

possible with NNN pairing terms, cannot be obtained with just NNN hopping

terms for the same reason that Chern number 2 cannot be obtained with just NN

pairing and hopping terms. However, the system does take on Chern number 3,

which is surprising because purely NNN interactions yield Chern number 2.

The numerical aspect of the present work characterizes the response of the

model system to defects in different phases. In particular, we focus on charac-

terizing the low-energy response, i.e., identifying the fundamental excitations of

the system. For the numerics, we include three kinds of position-dependent terms

into the Hamiltonian: edges, on-site disorder, and magnetic fields in an extreme

type-II limit with vortices in the superconducting order parameter. Edges are

introduced by adding terms of the form Oic
†
ici, where Oi is very large past the

edge, confining the states in the low energy spectrum. On-site disorder is added

in a similar manner: Oi takes on a value of Ed with probability p
2

and −Ed with

the same probability, and 0 otherwise. For the magnetic field, we assume a very

long magnetic screening length so that the magnetic field is constant, consistent

with the sample being two-dimensional. However, the superconducting coherence

length ξ is finite, and vortices appear in the superconducting order parameter.

The output of numerical simulations are the energies and wavefunctions of the

quasiparticles of the Hamiltonian. The edge modes and vortex core modes are

perfectly distinct in the ideal limit of infinite separation. In the realistic case of

finite separation, the modes hybridize. The vortex core modes interact with each

other in a similar way. The energies of the lowest vortex core modes exhibit expo-

nentially damped oscillations as the vortices are separated, an effect theoretically

predicted [CLG09] and numerically observed [MM10] in related systems. The

edges hybridize with vortices over longer length scale than the vortices hybridize
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with each other.

The hybridization effects also depend on the bulk parameters of the system,

i.e., t1, t2, ∆
px+ipy
1 , ∆

px+ipy
2 , and µ. In particular, as these parameters are tuned

to the phase transitions, the edge-vortex length scale diverges. Such tuning is

explored in a system with (∆
px+ipy
1 ,∆

px+ipy
2 ) = (0.5, 1.0) and t1 = −2 (energy

is given in terms of the NNN hopping strength, t2) by adjusting the chemical

potential µ, i.e. by moving along the path shown in Fig. 3.6, which crosses several

phase transitions. While in the Chern number 3 portion of the phase diagram,

we find that the spatial period of vortex-vortex oscillation increase linearly with

the chemical potential: Λ ∼ 0.8µ+ constant. When µ takes on values putting the

system too close to the phase transition, edge-vortex hybridization destroys the

vortex-vortex oscillatory behavior.

Another issue addressed in the numerical simulation is the number of low-

energy modes created around defects. When only NNN interactions are present,

one Majorana mode per vortex per sublattice forms. When the NN terms are

turned on, the Majorana fermions may hybridize down to zero or one residual

zero-energy mode, for even and odd Chern number, respectively [Roy10]. In-

terestingly, there is some degree of protection of the additional defect mode for

the Chern number 2 phase. The numerical simulation reveals two, apparently

disorder resistant, zero energy, vortex core modes. The Chern number 3 phase,

however, enjoys no such additional modes: only one low-energy vortex-core mode

is observed in the numerical simulations.
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4.2 Defects and Magnetic Fields

4.2.1 Magnetic Fields: Flux Tubes and Vortices

Here, we explore the response of the superconductor to magnetic fields. We as-

sume we are in an extreme type-II limit: flux tubes form creating real-space

vortices in the superconducting order parameter. In the two-dimensional case at

hand, the associated response currents are essentially two-dimensional and there-

fore very weak. The natural simplifying limit is to take the London penetration

depth λ → ∞ and neglect the response magnetic field. We therefore assume a

constant, unaffected, external magnetic field. Notwithstanding the infinite pene-

tration depth, we still keep the superconducting coherence length ξ finite, allowing

vortices in the superconducting order parameter. The vortices are therefore local-

ized regions of vanishing superconducting order parameter ∆, without associated

magnetic inhomogeneity, which we now describe more precisely.

We are guided by the relation

vs =
1

2m

(
∇φ− 2e

c
A

)
(4.1)

where vs is the superfluid velocity, φ is the phase of the superconducting order

parameter, and A is the vector potential, in London gauge. When far away from

a vortex (r � λ), we assume vs = 0 and B = 0. Integrating around the vortex

yields

2πn =

∮
∇φ · dl =

2e

c
Φm

(i.e., the well-known fact that an integer multiple of magnetic flux quanta pene-

trates through a flux tube). Because the order parameter is nonzero away from

vortices, even for r < λ, the winding is an integer multiple of 2π around each

vortex.

With a qualitative description of the behavior of the order parameter (the

magnitude falls off near vortices, and the phase winds an integer multiple of 2π
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Figure 4.2: Plot of the wavefunction of a vortex mode.
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The lattice is 150 by 150, t1 = −2, µ = 1, and (∆1,∆2) = (0.5, 1.0) (energy given

in units of t2). The plots are of the natural logarithm of the probability densities

of the
[
u
v

]
parts of the BdG wavefunction. The Hamiltonian includes two vortices

of radius rV = 1.6 indicated by red circles, separated by 13.2 in the x-direction.

The eigenenergy is in-gap: E/t2 ≈ 5.3× 10−3.

around each vortex), a quantitative model to perform a numerical simulation must

now be established. We use the model [MT06, VM06]

∆jk = ∆
(0)
k−jD (j, k) eiφjk (4.2)

The phase of the order parameter φjk is a geometric mean of the expected phases

at j and k:

eiθjk =
eiφk + eiφj

|eiφk + eiφj | (4.3)

(The arithmetic mean of φi and φj is insufficient, because the phase for pairing

terms crossing any branch cut would be incorrect.) Near the vortex cores, D falls

off as

D(j, k) =
deff(j, k)√

deff(j, k)2 + r2
V

(4.4)

Where the “effective distance” is given by

d−1
eff (j, k) =

∑
n

(
min

x between j and k
|x− vn|

)−1

(4.5)
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Figure 4.3: Plot of the wavefunction of an edge mode
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Compare with Fig. 4.2. The eigenenergy is in-gap: E/t2 ≈ 3.1× 10−3. The state

hybridized weakly with the vortices.

x lies on the line connecting j and k. The vortex core radius rV is a parameter of

the model, on the order of the superconducting coherence length. Provided that

vortices were separated from each other and the edge by many multiples of rV , the

vortex core size was to only weakly affect the measured properties of the system.

To reduce the required lattice sizes for numerical stability, we set rV = 1.6, the

same order of magnitude as the coherence length in the cuprates. The hopping

terms hjk acquire a Peierls phase due to the magnetic vector potential

hjk = h
(0)
k−je

i e
c

∫ j
k A·d`

Relation (4.1) expresses A in London gauge: ∇·A = 0 and the normal component

of A · n̂ becomes the physically meaningful boundary supercurrent. By choosing

a gauge where A vanishes at the center of the sample, the vector potential for a

constant magnetic field takes the simple form A ∝ ρφ̂, where ρ is the distance from

the center of the sample. Additionally, for our choice of A, the boundary current

vanishes for circular geometry. For non-circular geometries, the approximation

will remain valid provided that the edge (and associated currents) are far from

the features of interest.
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4.2.2 Edges

Square edges can be produced by omitting certain terms in the Hamiltonian, i.e.,

setting all terms of the form hij and ∆ij to zero for ij which cross an edge. While

intuitive and simple, when two edges are introduced, an artificially “sharp” corner

is produced. The low-energy edge modes that develop are strongly concentrated

at the artificial corners. One might be concerned that such an unphysical feature

might poison the simulation.

A choice of smoother edge removes the unphysically sharp corners, but in-

troduces another problem: there are now lattice sites “outside” of the region of

interest. The spectrum will include the unphysical quasiparticle modes outside

the edge, complicating the analysis. A more natural approach is to make occupa-

tion of states beyond the edge energetically unfavorable. On-site terms Oic
†
ici are

added with Oi increasingly large near and beyond the edges of the system. For

our purposes, the edge is made very steep and circular, i.e., it goes from 0 inside

a circular region of the lattice, to a very large number outside it. The lattice sites

with large on-site energies must play no role in the low-energy spectrum of the

Hamiltonian.

4.2.3 Disorder

By adjusting the Oi terms, on site disorder is produced, representing quenched

impurities on the lattice. The model is

Oi =


0, with probability 1− p
−Ed, with probability p/2

+Ed, with probability p/2

When vortices are moved, such as in Fig. 4.7, the same disorder realization is used

for each vortex placement.
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Figure 4.4: Quasiparticle energies near two vortices
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Plot of several lowest quasiparticle energies as the separation between two vortices

in the x direction is varied. The lattice was 150 by 150, with a circular edge. The

other parameters are (∆1,∆2) = (0.5, 1.0), µ = 1, and t1 = −2.0 (energies are

given in terms of t2). The choice of parameters leads to Chern number 3 and a

single zero-energy vortex core mode, as guaranteed for odd Chern numbers, c.f.

Fig. 4.5. The shapes of the markers indicate the parity of the state under spatial-

inversion symmetry: diamond is even, and triangle is odd (see Appendix A.8).

The unimportant edge states are indicated by the smaller, fainter markers.
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4.3 Numerical Results

Here, we discuss the results of the numerical diagonalization of the Bogoliubov de-

Gennes Hamiltonian for eigenvalues near zero. These mid-gap states arise because

of the topological nature of the system. Being deep inside the superconducting

gap, these mid-gap states experience strong particle-hole mixing. As lattice sizes

and vortex separation are increased, hybridization dies off, quasiparticle energies

go to zero, and the particle and hole parts can be made equal, |u| = |v|. In our

realistic case of finite separation, there will always be nonzero hybridization, and

consequential deviation from equality.

We put (∆
px+ipy
1 ,∆

px+ipy
2 ) = (0.5, 1.0), and always work with energy is in units

of the NNN hopping, t2. Our choice of parameters creates a rich phase diagram

while keeping the magnitudes of both NN and NNN pairing terms similar. Several

choices of t1/t2 were investigated, but all focus on exploring t1 < 0 and t2 > 0,

which is similar to the superconducting band of the strontium ruthenates.

The output of the numerical simulation is the low energy spectrum and asso-

ciated wavefunctions. Both vortex core states, such as Fig. 4.2, and edge states,

such as Fig. 4.3, are part of the output. Although presented as distinct in the

examples, they can and do hybridize. To distinguish the edge and vortex states

automatically, the probability of a state being present within some distance of

the edge is found and used to classify a given state as “edge” or not. As seen

in, for example, Fig. 4.4 with rsep ≈ 13, the edge-vortex hybridization becomes

strong enough to cause the third edge modes to hybridize strongly with the vortex

modes, resulting in significant occupation away from the edge. In general, how-

ever, edge modes, being localized away from the vortices (due to the careful choice

of parameters), do not strongly influence the low-energy vortex core modes.
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Figure 4.5: Quasiparticle energies near vortices as t2 is varied

(a) t1 = 0
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Circular lattice, (∆1,∆2) = (0.25, 0.5), with chemical potential µ = 0.5. Compare

with FIG. 4.4. Each subfigure has a different value of t1, as shown; all energies are

given in terms of t2. The vortex separation rsep is given in terms of lattice spacing.

Notice the two oscillating low energy excitations, possibly with an exponentially

damped envelope. In the limit of large separation of the vortices, these vortex core

states could become 0-energy Majorana modes. We suspect that that a significant

portion of the Chern number −2 phase enjoys these multiple Majorana modes,

suggesting analytical investigation. Resistance to weak disorder is discussed later

Fig. 4.7.
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Figure 4.6: Spatial Oscillations
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Spatial period of oscillation of vortex mode energy as two vortices are separated in

the x direction, as in Fig. 4.4. The spatial period changes as the chemical potential

µ is varied (all other parameters are as in the aforementioned figure). For plotted

values of µ, the Chern number was 3. Larger values of µ were inaccessible due to

edge-vortex hybridization.
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4.3.1 Vortex Core Mode Oscillations

When the separation between two magnetic vortices is adjusted, the spectrum

shifts, as seen in Fig. 4.4 and Fig. 4.5. Most notably, the energies of the lowest

quasiparticles exhibit damped oscillation. The dominant Fourier component of

these oscillations is found (and inverted) to give a spatial period. The spatial pe-

riod Λ is found as a function of the chemical potential µ in FIG. 4.6 for t1 = −2,

∆1 = 0.5 (energy given in terms of t2). The only values of µ shown are where the

vortex core mode only hybridized weakly with the edge modes. Even small distor-

tions to the oscillations disturb the calculation of the spatial period significantly.

Systems close to criticality were therefore not examined. In particular, only points

in the Chern number 3 phase were far enough from criticality to be calculated re-

liably. In that region, Λ was found to depend linearly on µ, with slope close to

0.8. As mentioned before, these oscillations have been analytically [CLG09] and

numerically [MM10] investigated before (for slightly different systems) with a pe-

riod ∼ 2π
kF

, due to the oscillations in the vortex mode wavefunctions on the same

spatial period.

4.3.2 Majorana Mode Count

For Chern number 3, only one vortex mode exists; see FIG. 4.4. However, for

Chern number ±2, two 0-energy modes develop when two vortices are introduced.

Modes in the −2 region near t1 = 0 are examined in FIG. 4.5. The Chern number

+2 region (with, e.g., (t1/µ, t2/µ) = (−1.5, 2) in Fig. 3.6) probably also supports

an additional vortex mode, but the issue there is complicated by the fact that the

system is usually quite close to criticality. I.e., the zeros of ∆(k) occur where hk is

relatively small, leading to a divergence of correlation lengths. Effective analysis

requires that the edge-vortex hybridization be suppressed; much larger systems

would have to be simulated.
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4.3.3 Disorder

Here, we discuss the results on-site disorder to Oi mentioned earlier. The same

simulations with disorder added are shown in FIG. 4.7. For weak disorder, pairs

of vortex modes that exist without disorder persist after turning on the weak

disorder. In reality, vortices would become pinned to disorder sites. A more

detailed calculation would not install vortices at prespecified locations. Despite

these caveats, we believe that these additional modes warrant further analytical

investigation.

4.4 Conclusion

Chiral p-wave superconductors on a lattice support additional, interesting phases

beyond the two well-known (topologically trivial) BEC and (Chern number 1)

BCS phases. The Chern number ±2 phases can be understood intuitively as a

pair of weakly interacting sublattices: the defect modes appear to survive varia-

tion of parameters as well as the addition of weak disorder. It is expected [Roy10]

that some perturbation of the Hamiltonian will hybridize the defect states, though

the precise form of the interaction has not been determined. The Chern number

3 phase, on the other hand, does not support any additional modes. The conse-

quences of including NNN interactions in two-dimensional chiral superconductors

are worthy of analytical attention.
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Figure 4.7: Disorder Modes
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Compare with FIG. 4.5, the choices of parameters is the same same. The focus of

these figures is on the disorder, of strength Ed = 1
10

and probability p. All energies

give in terms of t2. Although disorder destroys inversion symmetry (discussed in

Appendix A.8), there is still significant overlap of wavefunctions with their spatial

inversion partner. The different markers indicate the sign of the overlap: positive

is diamond; negative is triangle; and weak overlap is indicated by a circle. Weak

disorder should not destroy exponentially damped oscillating behavior if it already

exists; no qualitative changes occur when weak disorder is added.
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CHAPTER 5

Numerical Studies of Chiral Superconductors

with Next-Nearest-Neighbor Terms

5.1 Introduction

Chiral superconductors break time-reversal symmetry, removing any symmetry

protection of zero edge currents. Small edge currents can indeed be generated in

the self-consistent mean field limit, while experimental evidence remains ambigu-

ous [BMH05]. Given the sundry forms of superconducting pairing potential, one

might expect a respective plethora of edge currents. However, at least in the con-

tinuum limit, one expects zero edge current in system with greater than ` = 1, or

p-wave, superconductivity [TNO15]. Here, we investigate several different forms

of edge current possible with ` = 1 and also ` = 2 in the lattice case, which we

find compatible with previous results when a continuum limit is taken.

5.2 Self-Consistent

The standard, lattice Hamiltonian

H =
∑
ij

tijc
†
icj +

1

2

∑
ij

∆ijc
†
ic
†
j + h.c. (5.1)

which we always take to satisfy a self-consistency equation

∆ij =
∑
ij

gij 〈E0| cicj |E0〉 (5.2)
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where gij takes different forms depending on the channel of pairing we are inter-

ested in investigating. For the work here, a local interaction

gij = g1 [δi+ax̂,j + δi−ax̂,j + δi+aŷ,j + δi−aŷ,j]

+ g2

[
δi+a(x̂+ŷ),j + δi−a(x̂+ŷ),j + δi+a(x̂−ŷ),j + δi−a(x̂−ŷ),j

]
(5.3)

where a is the lattice spacing, was used. This form allows for nearest- and next-

nearest neighbor interactions. Depending on the channel of interest, an initial

form for the pairing interactions is chosen, ∆
(0)
ij . Eqn. 5.1 is then solved, and the

correlators 〈E0| cicj |E0〉 calculated (see Appendix A.5 and A.6). If Eqn. 5.2 is

satisfied to within some tolerance ε, the process is complete. If not,

∆
(n+1)
ij = α∆

(n)
ij + (1− α)

∑
ij

gij 〈cicj〉 (5.4)

is used in the next iterative step. The parameter α is chosen between 0 and 1 to

expedite the convergence of ∆ to its final value, and can reduce the effect of oscilla-

tions in ∆ with iteration number n. The final step of this iterative process always

uses α = 1 to guarantee that a genuine self-consistent ∆ is found. Generically,

for a sufficiently large system, this process leads to a ∆ that is insensitive to the

precise location when deep inside the system, as expected. For the purpose of the

calculation of currents, the value of this self-consistency cannot be understated.

The currents will not be gauge invariant or conserved (see Appendix A.9).

5.3 Currents

Once a particular system is iterated to self-consistency, the correlators can be

calculated, (see Appendix A.5 and A.6), which can then be used to find the

currents (see Appendix A.9). Plots of edge currents are shown on the following

two pages for several different values of parameters. These results demonstrate the

aforementioned techniques and illustrate some interesting features of the situation.
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Figure 5.1: d+ id currents with weak NNN-terms.
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Figure 5.2: d+ id currents with very weak NNN-terms.
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Figure 5.3: p+ ip currents with weak NNN-terms, for Chern number −1
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Figure 5.4: p+ ip currents with very weak NN-terms, for Chern number +3
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The situation is clearly more complicated than simple topology. And, in partic-

ular, the edge currents for d+id are certainly not generically zero. One interesting

question is then, what precisely is different in the lattice case from the continuum

case. Along with the analysis of the various phases for the p+ ip superconductor

is the content of the paper in preparation.
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APPENDIX A

Solving the Bogoliubov-de Gennes Equations

Several routine calculations that were omitted from the body of the text are

included here for completeness.

A.1 Supplement to the Introduction

The Hamiltonian is (up to a constant)

H =
1

2

∑
k

[
(a†k)> (a−k)>

]
Hk

 ak
a†−k

 (A.1)

where

Hk =

 ξk |dk|eiφk

|dk|e−iφk −ξk

 (A.2)

which is diagonalized by

Uk =

uk v̄k

vk ūk

 (A.3)

with eigenvalues Ek =
√
ξ2
k + |dk|2 and −Ek, and

uk
vk

 =


eiφk/2√

2

√
1− ξk√

ξ2k+|dk|2

e−iφk/2√
2

√
1 + ξk√

ξ2k+|dk|2

 (A.4)
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Notice that

H =
1

2

∑
k

[
(a†k)> (a−k)>

]
UkU †kHkUkU †k

 ak
a†−k


=

1

2

∑
k

[
(a†k)> (a−k)>

]
Uk

Ek 0

0 −Ek

U †k
 ak
a†−k

 (A.5)

Multiplying out [
(Ψ†k)> (Ψk)>

]
:=
[
(a†k)> (a−k)>

]
Uk (A.6)

A.2 Real-space Formulation

The introduction worked out the diagonalization of the Bogoliubov-de Gennes

equations for superconductors in momentum space. A similar calculation can be

performed in real space. Here, an outline of this is given. The tight-binding

Hamiltonian of the form

H =
∑
ij

hijc
†
icj +

1

2

∑
ij

∆ijc
†
ic
†
j + h.c. (A.7)

For notational simplicity, put

~c =


c0

...

cn


This Hamiltonian can be written, up to an additive constant, as

H =
[
(~c†)> (~c)>

] H︷ ︸︸ ︷
1

2

 h ∆

∆† −h>

~c
~c†
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To see this:

1

2

[
(~c†)> (~c)>

] h ∆

∆† −h>

~c
~c†

 =
1

2

[
(~c†)> (~c)>

] h~c+ ∆~c†

∆†~c− h>~c†


=

1

2

[
(~c†)>h~c+ (~c†)>∆~c† + (~c)>∆†~c− (~c)>h>~c†

]
=

1

2

∑
ij

c†ihijcj −
1

2

∑
ij

cihjic
†
j +

1

2

∑
ij

c†i∆ijc
†
j +

1

2

∑
ij

ci∆
†
ijcj

=
1

2

∑
ij

c†ihijcj +
1

2

∑
ij

hjic
†
jci +

1

2

∑
ij

c†i∆ijc
†
j +

1

2

∑
ij

ci∆̄jicj + constant

=
∑
ij

hijc
†
icj +

1

2

∑
ij

∆ijc
†
ic
†
j +

1

2

∑
ij

∆̄ijcjci + constant = H + constant

as claimed. Additionally,

H† =
[
(~c†)> (~c)>

]
H†
~c
~c†


and

H† =
1

2

 ĥ† ∆̂

∆̂† −ĥ>


Self-adjointness requires that h = h† (as we would expect). It follows immediately

that h̄ = h>, leading to the slightly more common form

H =
1

2

 ĥ ∆̂

∆̂† −ˆ̄h


A.3 Spin Sectors

Taking spin into account, and taking the same simplifying assumptions as in the

Introduction, the form of the BdG Hamiltonian simplifies

H =
1

2

 hIs ∆χ

∆†χ† −h̄Is
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where the spin sector of ~c has been separated out. I.e., essentially ~c = ~c↑⊕~c↓. The

two cases considered are spin-polarized (equivalently to spin-polarized) where

χ =

1 0

0 0


and the sterile, spin-down, Fermions are ignored (leading to the odd-angular mo-

mentum pairing). And,

χ =

 0 1

−1 0


In the even-spin sector (specifically the spin-polarized case), it is clear we can just

ignore the spin-down sector entirely (i.e., its essentially just spinless fermions).

For the odd spin pairing, the problem still separates into two independent sectors,

but both interact via the pairing potential. Specifically, define

N± =
1√
2

 1

±i

 so that χN± = ±iN±

1

2

 hIs ∆χ

∆†χ† −h̄Is

uN±
vN±

 =
1

2

 h ±i∆
∓i∆† −h̄

u
v

N±
(the tensor sum is elided). The two sectors separate, and the only difference is that

∆> = ∆ for the odd spin-pairing case, and ∆> = −∆ for the even spin-pairing

case. It is important to emphasize here that, after this point, one (nontrivial)

sector will is all that needs to be considered. If the spin sector needs to be

considered, it will be mentioned explicitly.

A.4 Particle-Hole Symmetry

Even after factoring out the redundancy above, the two cases considered here still

have a “particle-hole” symmetry left over. Notice that, if

S†HS = −H
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and H |E〉 = E |E〉, then

H[S |E〉] = (HS) |E〉 = (−SH) |E〉 = −SE |E〉 = (−E)[S |E〉]

so that S |E〉 is an energy eigenstate of energy −E. To wit, S converts energy

eigenstates into energy eigenstates with negative energy. The exact form depends

on the spin pairing (i.e., even or odd). The following exhibits S explicitly for

both cases. Put K to be the complex conjugation operation (with respect to the

standard basis). Notice that

〈ei|KAK |ψ〉 = 〈ei|
∑
j

KA |ej〉 〈ej|ψ〉

= 〈ei|
∑
j

∑
i′

|ei′〉 Āi′j〈ej|ψ〉

=
∑
j

Āij 〈ej|ψ〉 = 〈ei| Ā |ψ〉 (A.8)

so that KAK = Ā. To illustrate the idea, suppose ψ =

u
v

. For the even

spin-pairing case, notice that[
(~c†)> (~c)>

]
ψ =

∑
i

[
c†iui + civi

]
but also [

(~c†)> (~c)>
]
σ1Kψ =

[
(~c†)> (~c)>

]v̄
ū

 =
∑
i

[
c†i v̄i + ciūi

]
Roughly, σ1K corresponds to the adjoint operation. The odd spin-pairing case

has a similar interpretation for σ2K.

Notwithstanding the above interpretation, for the odd spin-pairing case

(σ†1Hσ1) =

0 1

1 0

 h ∆

∆† −h̄

0 1

1 0

 =

0 1

1 0

 ∆ h

−h̄ ∆†

 =

−h̄ ∆†

∆ h


= −

 h̄ −∆†

−∆ −h



61



and therefore

(K†σ†1Hσ1K) = −

 h ∆

∆† −h̄

 = H

because ∆ is antisymmetric. A similar result holds for the spin-symmetric case.

Consider the + branch:

(σ†2Hσ2) =

0 −i
i 0

 h i∆

−i∆† −h̄

0 −i
i 0

 =

 0 1

−1 0

i∆ −h
−h̄ i∆†

 =

 −h̄ i∆†

−i∆ h


= −

 h̄ −i∆†

i∆ −h


and therefore

(K†σ†2Hσ2K) = −

 h i∆

−i∆† −h̄

 = H

because ∆ is symmetric. Hence, for the spin-symmetric case, S = σ1K and for

the spin-antisymmetric case S = σ2K.

A.5 The Even Spin-Pairing Sector

For even spin-pairing, the sterile spin species is entirely ignored, and the fermions

are treated as spinless. This case is simplest, and treated first for that reason. H
is self-adjoint and can be diagonalized as

Hαβ =
∑
n

UαnEn(U †)nβ (A.9)

Furthermore, because of the S symmetry, the unitary matrix U can be taken of

the form

U =

Ȳ X

X̄ Y

 (A.10)

Defining Ψ

Ψ†

 = U †

~c
~c†

 =

Y > X>

X† Y †

~c
~c†

 =

Y >~c+X>~c†

X†~c+ Ȳ †~c†

 (A.11)
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The Hamiltonian takes the form

H =
1

2

[
(~c†)> (~c)>

]
UΛU †

~c
~c†

 =
1

2

∑
i

Ei

[
Ψ†iΨi −ΨiΨ

†
i

]
=
∑
i

EiΨ
†
iΨi + const

(A.12)

The orthogonality of the eigenvectors of H (i.e., columns of U) translates into

anti-commutation relations for the Ψ operators:

{Ψn,Ψn′} =
∑
i

{
Yinci +Xinc

†
i , Yin′ci +Xin′c

†
i

}
= 2

∑
i

YinXin = 0 (A.13)

and{
Ψn,Ψ

†
n′

}
=
∑
i

{
Yinci +Xinc

†
i , X̄in′ci + Ȳin′c

†
i

}
=
∑
i

[
XinX̄in′ + YinȲin′

]
= δnn′

(A.14)

So, we have that Ψ†n creates an excitation with energy En. The inverse transfor-

mation is useful (in particular to calculate the correlators). Apply U to the left

of Eqn. A.11: ~c
~c†

 =

Ȳ X

X̄ Y

Ψ

Ψ†

 =

ȲΨ +XΨ†

X̄Ψ + YΨ†

 (A.15)

Correlators are then found using the anti-commutation relations〈
c†icj

〉
=
∑
nn′

〈(
X̄inΨn + YinΨ†n

) (
Ȳjn′Ψn′ +Xjn′Ψ

†
n′

)〉
=
∑
n

X̄inXjn (A.16)

and〈
c†ic
†
j

〉
=
∑
nn′

〈(
X̄inΨn + YinΨ†n

) (
X̄jn′Ψn′ + Yjn′Ψ

†
n′

)〉
=
∑
n

X̄inYjn (A.17)

A.6 The Odd Spin-Pairing Sector

For the odd spin-pairing case, the reduced H′± =

 h′ ±i∆′

∓i∆′† −h̄′

 must be solved.

Before beginning, notice that

H′± = σ3H′∓σ3
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so we just work with H′ = H′+, and use σ3 to get access to the other solutions.

As in the spin-even case,

H′αβ =
∑
n

U ′αnEn(U ′†)nβ

with unitary matrix U ′ that can, because of S symmetry, be taken of the form

U ′ =

 Ȳ X

−X̄ Y


The full unitary matrix diagonalizing H is taken as (where the tensor products

are elided)

U =

 Ȳ N+ Ȳ N− XN+ −XN−
−X̄N+ X̄N− Y N+ Y N−


Again, define 

Ψ+

Ψ−

Ψ†−

Ψ†+

 = U †

~c
~c†



The calculation of the Hamiltonian and anticommutators proceeds in essentially

the same way as above. In particular, since N+ and N− are orthogonal, the + and

− sectors contribute separately. This routine calculation is omitted. The inverse

transformation yields

~c
~c†

 = U


Ψ+

Ψ−

Ψ†−

Ψ†+

 =

 Ȳ N+Ψ+ + Ȳ N−Ψ− +XN+Ψ†− −XN−Ψ†+

−X̄N+Ψ+ + X̄N−Ψ− + Y N+Ψ†− + Y N−Ψ†+



The correlators can then be found using the anti-commutation relations〈
c†i↑c

†
j↑

〉
=
∑
nn′

〈(
−X̄inΨ+,n + X̄inΨ−,n

) (
Yjn′Ψ

†
−,n′ + Yjn′Ψ

†
+,n′

)〉
= 0 (A.18)
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and〈
c†i↑c

†
j↓

〉
=
∑
nn′

〈(
−X̄inΨ+,n + X̄inΨ−,n

) (
Yjn′Ψ

†
−,n′ − Yjn′Ψ†+,n′

)〉
= −2

∑
n

X̄inYjn

(A.19)

and〈
c†i↑cj↑

〉
=
∑
nn′

〈(
−X̄inΨ+,n + X̄inΨ−,n

) (
Xjn′Ψ

†
−,n′ −Xjn′Ψ

†
+,n′

)〉
= −2

∑
n

X̄inXjn

(A.20)

and〈
c†i↑cj↓

〉
=
∑
nn′

〈(
−X̄inΨ+,n + X̄inΨ−,n

) (
Xjn′Ψ

†
−,n′ +Xjn′Ψ

†
+,n′

)〉
= 0 (A.21)

(terms that immediately vanish, such as ψ |0〉, are elided for readability).

A.7 Efficient Calculation for Spin Symmetric

As seen earlier, solving the quadratic Hamiltonian amounts to diagonalizing a

matrix

H =

 A B

−B̄ −Ā


where A† = A and B> = −B. Because τxKHKτx = −H, this task is easier than

a general 4n2 matrix. To see this, notice that

H2 =

 A B

−B̄ −Ā

 A B

−B̄ −Ā

 =

 A2 −BB̄ AB −BĀ
−B̄A+ ĀB̄ −B̄B + Ā2

 =

C D

D̄ C̄


where

C† = A†A† − B̄†B† = A2 −B>B̄> = C

and

D> = B>A> − Ā>B> = −BĀ+ AB = D

It’s clear that τxKH
2Kτx = H2; the pairs of eigenstates of H are now pairs of

degenerate eigenstates. Roughly, we diagonalize along the subspace of eigenstates

of Kτx,
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Real H

To illustrate the point simply, if H = H̄, we can ignore complex conjugation (since

the eigenstates can be chosen real), and require that they take the form

 u

±u

.

To wit,

H2

 u

±u

 =

Cu±Du
Du± Cu

 =

 (C ±D)u

±(C ±D)u


Demanding that this be an eigenstate, we see that

(C ±D)u = E2u

The eigenvalues of the operator T± = C ± D are therefore the square of the

energies and the eigenvectors u±(E) of T± with energy E2 corresponds precisely

with the eigenvectors µ±(E) of H2,

H2

 u±(E)

±u±(E)

 = E2

 u±(E)

±u±(E)

 = E2µ±(E)

Moreover, µ±(E) are necessarily linear combinations of the eigenstates of energy

±E, φ±(E) of H:

µ±(E) = α±(E)φ+(E) + β±(E)φ−(E)

We know that τxφ±(E) = φ∓(E), and τxµ±(E) = ±µ±(E), so, applying ±τx to

both sides,

µ±(E) = ±β±(E)φ+(E)± α±(E)φ−(E)

to obtain β±(E) = ±α±(E), or, using normalization,

µ±(E) = α±(E) [φ+(E)± φ−(E)] =
1√
2

[φ+(E)± φ−(E)]

Or,

φ±(E) =
1√
2

[µ+(E)± µ−(E)] =
1√
2

u+(E)± u−(E)

u+(E)∓ u−(E)


Giving us a direct method to calculate the eigenvectors by diagonalizing two n2

matrices rather than one 4n2 matrix.
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General H

We treat n-dimensional complex vectors as 2n-dimensional real vectors:

u→

<u
=u


and n by n complex matrices and 2n by 2n real matrices:

X →

<X −=X
=X <X


Notice that the complex conjugation is a matrix in this representation of complex

numbers:

K →

In 0

0 −In


Thusly equipped, we remark that it makes sense to ask for eigenstates of Kτx. In

particular

Kτx

 u

±ū

 = K

±ū
u

 = ±

 u

±ū


We essentially repeat the work in the real case now:

H2

 u

±ū

 =

 (C ±DK)u

±K(C ±DK)u


and we find the (complex) n by n equation that needs to be solved. We remark

that this equation is not complex-linear; we must solve it in the sense we outlined

above:

C ±DK →

CR −CI
CI CR

±
DR −DI

DI DR

In 0

0 −In

 =

CR −CI
CI CR

±
DR DI

DI −DR


=

CR ±DR −CI ±DI

CI ±DI CR ∓DR
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The condition that D> = D converts directly to D>R = DR and D>I = DI , while

C† = C gives C>R = CR and C>I = −CI . Notice thatCR ±DR −CI ±DI

CI ±DI CR ∓DR

> =

 CR ±DR C>I ±DI

−C>I ±DI CR ∓DR


So that this matrix is real and symmetric. This matrix therefore has real eigenval-

ues, and the complex equation has eigenvectors with possibly complex eigenvalues

C ±DK = λ±u±

However, notice that

(C −DK)(iu+) = i(C +DK)u+ = λ+(iu+)

Notice, however, that multiplying u by i takes us fromu
ū

→
 iu

−iū


The above remark tells us that, when we consider complex linear combinations,

we can ignore one of these two equations—i.e., we get all the required data by

looking at complex linear combinations of the eigenvectors produced from just

C + DK. It much computationally easier to diagonalize H on each subspace. In

short: instead of diagonalizing a 2n×2n complex matrix, we diagonalize a 2n×2n

real matrix, and then diagonalize each eigenspace separately.

A.8 Inversion Symmetry Simplifications

The overarching strategy demonstrated above is to diagonalize the smallest pos-

sible space. For the work performed here, our desire was to see the behavior of

a single edge of a cylinder, presumably shielded from other distant edges by the

intervening superconductor bulk. To accomplish this, we have chosen a Hamil-

tonian with spatial inversion symmetry. The invervening bulk should shield the

edge of interest from any other effects far away from it.
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Having chosen this simplified Hamiltonian, we can make a number of remarks

that will simplify the numerical calculations. To do this, we must establish a little

bit of notation, restated here from prior work. Let I perform a spatial inversion of

a wavefunction. I.e., if

u
v

 is a Nambu spinor, then Iu inverts the particle part

of that wavefunction. Notice that (Ih)ij = h−i,−j. Next, put I = τ3 ⊗ I (τ3 acts

on the space of Nambu spinors). It is easy to see that I 2 = 1 and I † = I , so the

eigenvalues of I are ±1. The inversion symmetry’s action on the Hamiltonian as

follows:

I †HijI = I†τ †3Hijτ3I

= I†
 hij −∆ij

−∆̄ji −h̄ij

 I =

 h−i−j −∆−i−j

−∆̄−j−i −h̄−i−j


=

hij ∆ij

∆̄ji −hij

 = Hij (A.22)

Thus, the inversion symmetry I relates quasiparticles of the form (ui, vi) to

(u−i,−v−i). For appropriate energy eigenstates, ψ = ±I ψ and the subparts u and

v therefore have separate (and opposite) inversion symmetries given by Iu = ±u
and Iv = ∓v. These eigenvalues can be changed using the Bogoliubov-de Gennes

particle-hole symmetry (i.e., Ξ = τ1 ⊗K, where K is complex conjugation); the

symmetry-related negative-energy pair has opposite I eigenvalue:

ΞI = τ1Kτ3I = −iτ2I = −I Ξ (A.23)

Next notice that both

u
v

 and

 Iu
−Iv

 are eigenstates of H with the same

eigenvalue. It therefore follows that bothu± Iu
v ∓ Iv



69



are also eigenvectors of H. Moreover, these two solutions can be related by

Bogoliubov-de Gennes particle hole interchange. One may therefore restrict atten-

tion to the particle part has even symmetry, and the hole part has odd symmetry

(or vice-versa). To exploit this, consider a representation of the linear space such

that the spatial inversion operator I acts by

I

a
b

 =

b
a


(e.g., the top spot refers to the left side of the system, indexed left to right, and

the bottom spot refers to the right side, indexed right to left). Define h0 and h1

by

h

a
b

 =

h0a+ h1b

. . .


and likewise for ∆:

∆

a
b

 =

∆0a+ ∆1b

. . .


Next, notice that

h

a
b

 = hI

b
a

 = Ih

b
a

 =

 . . .

h0b+ h1a


and, similarly,

∆

a
b

 = ∆I

b
a

 = −I∆

b
a

 =

 . . .

−∆0b−∆1a


Giving a more general form

h

a
b

 =

h0a+ h1b

h0b+ h1a


and likewise for ∆:

∆

a
b

 =

 ∆0a+ ∆1b

−∆0b−∆1a
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It is clear that only one of these components needs to be kept track of when

considering symmetric u and antisymmetric v. Plugging these expressions back

into H provides a simpler Hamiltonian to diagonalize.

In the case where disorder is present, the symmetry I is clearly broken by

the inhomogenous terms. Nonetheless, the overlap 〈ψ|Iψ〉 is still meaningful: if

positive, we can still identify ψ as “symmetric”-like or otherwise. Numerically,

it is sometimes helpful to display this diagnostic, e.g. in Fig. 4.7 the sign of the

overlap is plotted as the shape of the symbol.

A.9 Currents in BdG Hamiltonian

The continuity equation takes the form

div j +
dρ

dt
= 0

The Heisenberg equation of motion allows us to solve for the divergence of the

current:

div j = −dρ
dt

=
1

i~
[H, ρ]

For a quadratic Hamiltonian on the lattice, ρi = c†ici and

H =
∑
ij

hijc
†
icj +

1

2

∑
ij

∆ijc
†
ic
†
j + h.c. =

∑
ij

hijc
†
icj +

1

2

∑
ij

∆ijc
†
ic
†
j −

1

2

∑
ij

∆̄ijcicj

because ∆ij = −∆ji. Therefore,

[H, ρn] =
∑
ij

hij

[
c†icj, ρn

]
+

1

2

∑
ij

∆ij

[
c†ic
†
j, ρn

]
− 1

2

∑
ij

∆̄ij [cicj, ρn]

=
∑
ij

hij (δjn − δin) c†icj −
1

2

∑
ij

∆ij (δjn + δin) c†ic
†
j −

1

2

∑
ij

∆̄ij (δni + δjn) cicj

=
∑
i

hinc
†
icn −

∑
j

hnjc
†
ncj −

1

2

(∑
i

∆inc
†
ic
†
n +

∑
j

∆njc
†
nc
†
j +
∑
j

∆̄njcncj +
∑
i

∆̄incicn

)

=
∑
i

(
hinc

†
icn − h̄inc†nci

)
− 1

2

∑
i

(
∆inc

†
ic
†
n −∆inc

†
nc
†
i − ∆̄incnci + ∆̄incicn

)
=
∑
i

(
hinc

†
icn − h̄inc†nci

)
−
∑
i

(
∆inc

†
ic
†
n − ∆̄incnci

)
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The expectation value of this operator in a state ψ is therefore

〈[H, ρn]〉ψ =
∑
i

(
hin

〈
c†icn

〉
ψ
− h̄in

〈
c†nci

〉
ψ

)
−
∑
i

(
∆in

〈
c†ic
†
n

〉
ψ
− ∆̄in 〈cnci〉ψ

)
=
∑
i

(
hin

〈
c†icn

〉
ψ
− hin

〈
c†icn

〉
ψ

)
−
∑
i

(
∆in

〈
c†ic
†
n

〉
ψ
−∆in 〈cicn〉ψ

)

= 2i

[∑
i

=
(
hin

〈
c†icn

〉
ψ

)
−
∑
i

=
(

∆in

〈
c†ic
†
n

〉
ψ

)]
Therefore,

div j(n) =
2

~

[∑
i

=
(
hin

〈
c†icn

〉
ψ

)
−
∑
i

=
(

∆in

〈
c†ic
†
n

〉
ψ

)]
(A.24)

If we define the “normal” current from site n to site i by

j(n→ i)normal =
2

~
=
(
hin

〈
c†icn

〉
ψ

)
then the divergence of this current (defined simply as the sum over all outgoing

sites i) matches the first term in Eqn. A.24. The c†c† and cc terms give rise to

another source (and sink) of particles, with the second term of Eqn. A.24. This

term can be interpreted as the pair breaking rate, since it results in a reduction

of the divergence, or an increase of the probability of finding a particle at site n.

The field

Ppair breaking(i, j) = Ppair breaking(j, i) = =
(

∆ij

〈
c†ic
†
j

〉
ψ

)
captures the rate of breaking of pairs in the superfluid condensate, leaving un-

paired particles at lattice sites i and j.

div j(n) = div j(n→ i)normal +
∑
i

Ppair breaking(i, n)

In the next section, the “pair breaking” current is shown to vanish.

Conservation

Assume the ∆ij terms arise from a mean field theory with self-consistent equations

∆ij =
∑
kl

Vijkl 〈ckcl〉
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Moreover, assume that these are due to density-density interactions, so that Vijkl =

δikδjlgij with gij = gji real, so that

∆ij = gij 〈cicj〉

Notice that the original terms are of the form gijc
†
ic
†
jcicj and will never generate

a two-particle current. The self-consistent approximation actually maintains that

property in the mean-field theory:

∆ij

〈
c†ic
†
j

〉
= gij 〈cicj〉

〈
c†ic
†
j

〉
Notice that the above is real. Therefore,

Ppair breaking(i, n) = =
(

∆ij

〈
c†ic
†
j

〉)
= 0

Consider also the fully interacting Hamiltonian:

H =
∑
ij

hijc
†
icj +

∑
ij

gijklc
†
ic
†
jckcl

To find the current we will need to calculate[∑
ijkl

gijklc
†
ic
†
jckcl, ρ

]
=
∑
ijkl

gijkl

[
c†ic
†
jckcl, ρ

]
=
∑
ijkl

gijkl(δnk + δln + δnj + δin)c†ic
†
jckcl

=
∑
ijk

gijknc
†
ic
†
jckcn +

∑
ijl

gijnlc
†
ic
†
jcncl +

∑
ikl

ginklc
†
ic
†
nckcl +

∑
jkl

gnjklc
†
nc
†
jckcl

=
∑
ijk

gijknc
†
ic
†
jckcn −

∑
ijk

gijnkc
†
ic
†
jckcn +

∑
ikl

ginklc
†
ic
†
nckcl −

∑
ikl

gniklc
†
ic
†
nckcl

=
∑
ijk

[gijkn − gijnk] c†ic†jckcn +
∑
ikl

[ginkl − gnikl] c†ic†nckcl

Using the results from the previous section, we find a divergence due to a “normal”

current

j(n→ i)normal =
2

~
=
(
hin

〈
c†icn

〉
ψ

)
as expected.

73



APPENDIX B

The Ground State of the Ising Model

The Ising model,

H = −
∑
ij

Jijsisj, (B.1)

was solved in one dimension by Ising himself in his thesis [Isi24], by Onsager in

two dimensions [Ons44], and is well studied in three [RY93] and four dimensions.

Above its upper critical dimension of 4, the Ising model’s critical behavior is

modeled exactly by mean field theory.

For the purposes of the present work, a random field hi is added, to give the

random-field Ising model Hamiltonian

H = −
∑
ij

Jijsisj −
∑
i

hisi. (B.2)

The purpose of this section is to describe the technique to identify the ground

state of this classical Hamiltonian. The technique employed was introduced by

Picard and Ratliff [PR75], and restates the Ising problem in terms of the minimal

cut through a network flow model. Via a theorem (the “maximum-flow minimum-

cut” theorem) due to Ford and Fulkerson [FF56], this minimum cut is equivalent

to the maximal flow through the same network. The complete chain of logic will

be reproduced here for completeness.
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B.1 Brief Introduction to Network Flows

Consider a directed, weighted graph. The vertices of the graph are precisely the

set V , and the adjacency matrix cv,v′ (for all v, v′ ∈ V ) is nonnegative and referred

to as the “capacity;” cv,v′ = 0 indicates there is no edge connecting vertices v to

v′. An interpretation for the the weight cv,v′ > 0 will be provided momentarily.

Two subsets of vertices, the sources S ⊂ V , and sink, T ⊂ V , are also given. For

simplicity, we assume that cv,v′ = 0 if v′ ∈ S or v ∈ T .

First, we introduce the notion of a “flow,” a function f : V × V → R—

and should be informally visualized as representing the amount of some fictional

“fluid” being transported between vertices along the edges. The quantity

F (v) =

outflow from vertex v︷ ︸︸ ︷∑
v′∈V

fv,v′ −
inflow to vertex v︷ ︸︸ ︷∑

v′∈V

fv′,v =
∑
v′∈V

[fv,v′ − fv′,v] (B.3)

is called the the net flow from a vertex. A flow must satisfy two conditions:

1. 0 ≤ fv,v′ ≤ cv,v′ , where v, v′ ∈ V—interpreted as the flow along the edge

v, v′ is limited by the “capacity” of that edge.

2. For all v ∈ V −(S∪T ), F (v) = 0. The condition is visualized as constraining

the flow to conserve the “fluid” at all nodes besides the sources and sinks.

The “value” of the flow represents the volume of the fictional fluid passing through

the network. It is the total outflow of the sources, or the total inflow to the sinks.

These two quantities are the same:

0 =
∑
v,v′∈V

fv,v′ −
∑
v,v′∈V

fv′,v =
∑
v∈V

[∑
v′∈V

[fv,v′ − fv′,v]
]

=
∑
v∈V

F (v)

=
∑
v∈S

F (v) +
∑
v∈T

F (v) +
∑

v∈V−(S∪T )

F (v) (B.4)
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Because the last term vanishes, the value of a flow is defined to be the common

value

valf =
∑
v∈S

F (v) = −
∑
v∈T

F (v). (B.5)

Another concept needed is called a “cut,” a partition of the vertices of a network

into two sets, VS and VT , with S ⊂ VS and T ⊂ VT . The value of the cut is defined

as

cutc(VS, VT ) =
∑
v∈VS

∑
v′∈VT

cv,v′ (B.6)

and represents the sum of the capacities connecting nodes on either side of the

partition of the network. Intuitively, the flow must pass from the source to the

sink through any cut, so any cut must bound any flow:

valf =
1

2

[∑
v∈S

F (v)−
∑
v∈T

F (v)

]
=

1

2

[∑
v∈VS

F (v)−
∑
v∈VT

F (v)

]

=
1

2

[∑
v∈VS

∑
v′∈V

[fv,v′ − fv′,v]−
∑
v∈VT

∑
v′∈V

[fv,v′ − fv′,v]
]

=
1

2

[∑
v∈VS

∑
v′∈V

−
∑
v∈VT

∑
v′∈V

]
[fv,v′ − fv′,v] (B.7)

The reader is implored to indulge this non-standard summation notation. Notwith-

standing,

valf =
1

2

[∑
v∈VS

∑
v′∈VS

+
∑
v∈VS

∑
v′∈VT

−
∑
v∈VT

∑
v′∈VS

−
∑
v∈VT

∑
v′∈VT

]
[fv,v′ − fv′,v]

=
∑

v∈VS ,v′∈VT

[fv,v′ − fv′,v] ≤
∑

v∈VS ,v′∈VT

fv,v′ ≤ cutc(VS, VT ) (B.8)

Indeed, the intuition is born out by this direct evaluation—and moreover it is

clear that the minimum among cuts must be a bound on the maximum flow. A

natural question is then, “is it always possible to saturate this bound?” Indeed,

it can—and this is known as the maximum-flow minimum-cut theorem.

A sketch of an argument is provided. Let a maximal flow f be given, and

consider the “residual” network flow model with the same vertices, source, and
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sink, and with capacities

c′v,v′ = cv,v′ − fv,v′ (B.9)

The maximum flow through this residual graph must be 0, and moreover, by

simplying summing over the edges in a cut

cutc′(VS, VT ) = cutc(VS, VT )− valf (B.10)

Notice that, by this remark, we need only find a cut with value 0. However, if

there is at least one path from S to T in the residual graph, a flow exists on the

residual graph, so there must be no such path. But that means that S and T are

not connected in the residual graph. Therefore, we must have a partition of the

graph into VS ⊃ S and VT ⊃ T , with no edges connecting the partitions. That

partition is therefore a cut with value 0, and we have the claim.

This technique leads naturally to the Ford-Fulkerson algorithm [FF56]: find a

path from the source to the sink, and saturate it, by increasing the flows along each

leg. Repeat using the residual graph, until no such path exists. This technique has

the unfortunate feature of not terminating for all graphs. However, in the special

case that all capacities are rational numbers, all capacities can be made integers by

multiplying by a large enough integer. Then, each step of saturating a particular

path from source to sink reduces the value
∑

v,v′∈V cv,v′ by 1. The algorithm

must therefore terminate. Most numerical implementations on computers are

only capable of representing rational numbers, so this non-termination issue is

not a direct problem.

These features of network flow theory are sufficient background for the remain-

der of this section.
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B.2 From Ising Model to Network Flow

Originally presented by Picard and Ratliff [PR75], the disordered Ising Hamilto-

nian

H = −
∑
ij

Jijsisj −
∑
i

hisi (B.11)

can be restated in terms of a minimal cut, provided that Jji = Jij ≥ 0. First,

consider a graph with vertices given by each lattice site, and an additional source s

and sink t vertices. The underlying idea is to have a spin configuration correspond

to a cut of the network. The capacities are chosen so that the value of a cut is

(up to a constant) the energy of that configuration. Put

ci,j = 4Jij (B.12)

As a convention, if a vertex is on the source side of the cut, say it is up. Therefore,

cs,i =

 2hi, hi ≥ 0

0, hi < 0
(B.13)

and

ci,t =

 −2hi, hi ≤ 0

0, hi > 0
(B.14)

The value of a cut (U,D) is then

cutc(VS, VT ) =
∑

i∈U,j∈D

4Jij −
∑

i∈U,hi<0

2hi +
∑

i∈D,hi>0

2hi (B.15)

If we add −∑ij Jij to the portion resembling the spin-spin interaction,

∑
i∈U,j∈D

4Jij −
∑
ij

Jij

=
∑

i∈U,j∈D

3Jij −
∑

i∈D,j∈U

Jij −
∑

i∈U,j∈U

Jij −
∑

i∈D,j∈D

Jij

= −
∑
ij

Jijσiσj (B.16)
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Similarly, if we add −∑i |hi| to the portion resembling the field interaction

−
∑

i∈U,hi<0

2hi +
∑

i∈D,hi>0

2hi +
∑
hi<0

hi −
∑
hi>0

hi =

−
∑

i∈U,hi<0

2hi +
∑

i∈U,hi<0

hi −
∑

i∈U,hi>0

hi +
∑

i∈D,hi>0

2hi +
∑

i∈D,hi<0

hi −
∑

i∈D,hi>0

hi

= −
∑
i∈U

hi +
∑
i∈D

hi = −
∑
i

σihi (B.17)

I.e.,

H = cutc(VS, VT )−
∑
ij

Jij −
∑
i

|hi| (B.18)

The exact form of the adjacency matrix can be adjusted slightly [HR02] to im-

prove the performance of the maximum-flow algorithm, but is not particularly

interesting from a physics perspective.
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Berthier, W. N. Hardy, Ruixing Liang, D. A. Bonn, and Marc-
Henri Julien. “Magnetic-field-induced charge-stripe order in the high-
temperature superconductor YBa2Cu3Oy.” Nature, 477(7363):191–
194, Sep 2011.

[You98] A. P. Young, editor. Spin Glasses and Random Fields. World Scien-
tific, Singapore, 1998.

86



[ZMK15] Yi Zhang, Akash V. Maharaj, and Steven Kivelson. “Disruption of
quantum oscillations by an incommensurate charge density wave.”
Phys. Rev. B, 91(8):085105, Feb 2015.

87




