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STRUCTURE-BASED MODELING OF PEPTIDE/MHC-I COMPLEXES

Santrupti Nerli

Abstract

Major Histocompatibility Complex (MHC) class I molecules present intracellular peptides for

surveillance by cytotoxic T cells. To fully understand the mechanism of T cell recognition and

prioritize different therapeutic targets, it is of practical relevance to first characterize the surface

features of peptide/MHC (pMHC) complexes which requires high-resolution structural models.

In this work, I present RosettaMHC, a high-throughput pMHC homology modeling approach,

which utilizes structural templates from the Protein Data Bank (PDB) selected using several

strategies. The accuracy of a peptide backbone is primarily dependent on the selection of

a closest template. Here, we have explored template selection based on (i) the peptide se-

quence, and (ii) the MHC groove sequence which allow us to obtain models within 1.5 Å and

1 Å respectively from their native X-ray structures. In addition, we have added Artificial Neu-

ral Network (ANN) models to filter structures that are potentially inaccurate thereby increasing

throughput while helping us select models within 1 Å from their corresponding natives. We

applied RosettaMHC to model structures of (i) anaplastic lymphoma kinase neoepitopes found

in neuroblastoma cancer patients in complex with 2,904 HLA alleles to identify putative alleles

that may display these peptides, and (ii) SARS-CoV-2 peptide/HLA-A*02:01 complexes that

can be utilized as candidates to generate pMHC tetramers to probe T cells and possibly as

vaccine targets. Through this work, we want to establish that, for the most frequent alleles,

we have sufficient knowledge from the existing databases to predict sub-angstrom accuracy

models thereby reducing the efforts required to experimentally determine pMHC structures.

Alongside RosettaMHC, I (i) helped develop resonance assignment methods that are used

to interpret NMR data, (ii) worked with alternative protocols in Rosetta to solve structures of

biologically important protein targets of varying sizes and complexities with the help of sparse

NMR data, and (iii) built a method to estimate side chain conformational entropy using boolean

satisfiability and applied it to understand dynamics of the therapeutic cytokine, Interleukin-2,

which helped characterize a minor conformational state that is relevant for drug design.

Although the Rosetta energy function together with ANN-based scores help us eliminate

viii



inaccurate peptide backbones, poor templates may still be locally optimal, leading to impre-

cise modeling results in some cases. In the future, we want to employ our satisfiability-based

side chain packing method towards a more accurate peptide backbone identification. I believe

that this work can provide a rational approach for high-throughput modeling of pMHC targets

with desired recognition features which are relevant for cancer immunotherapy and infectious

diseases.
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Chapter 1

Introduction

The adaptive immune system in jawed vertebrates comprises of cell types that specialize in

eliminating distinct pathogenic microorganisms [53]. The main cell types in the adaptive im-

mune system are T cells and B cells. These cells utilize receptors (T cell receptors or TCRs

and B cell receptors or BCRs) expressed on their surface to recognize foreign antigens [2]. It is

estimated that there are approximately 10 million unique TCR and BCR molecules in every hu-

man, each capable of recognizing moderately dissimilar antigens [2]. T cells differentiate into

either CD4+ T helper cells (Th) or CD8+ cytotoxic T cells (CTLs or cytotoxic T lymphocytes)

to provide cell-mediated immunity, whereas B cells differentiate into plasma cells that produce

antibodies thus providing antibody-mediated immunity. The TCRs on the surface of Th or CTLs

recognize pathogenic antigens cleaved into short peptides and presented to them by major his-

tocompatibility complex (MHC) molecules, also referred to as human leukocyte antigens (HLA)

in humans. There are two types of MHC molecules (coded by the MHC loci), class I and class II

MHC molecules. Endogenous antigens within the cell are presented on all nucleated cells us-

ing class I MHC molecules, whereas exogenous antigens originating from extracellular self or

foreign proteins are displayed by class II MHCmolecules. TCRs of CTLs and Th cells recognize

peptides presented by class I and II MHC molecules, respectively. Since MHC molecules play

a central role in deriving immune responses, understanding their structure, function and peptide

repertoire is the key to developing peptide-based vaccines and therapies that utilize host’s im-

mune system to fight infectious diseases and cancer. This thesis discusses only human MHC

class I (or HLA-I) molecules, and I use the terms MHC and HLA synonymously.
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1.1 MHC Class I Antigen Processing and Presentation Path-

way

The processing and presentation of peptides on the surface of the cell by class I MHCmolecules

involves a series of events highlighted in Figure 1.1 [69]. In this pathway, proteins expressed

within a cell will be degraded in the cytosol by the proteasome. The proteasome digests

polypeptides into smaller peptides of 5–25 amino acids in length. The transporter associated

with antigen presentation (TAP) molecule selects peptides of lengths up to 15 amino acids and

transports the peptides into the endoplasmic reticulum (ER). Within the ER, endoplasmic retic-

ulum aminopeptidase (ERAP) further cleaves the peptides at the N-terminal regions to form

smaller fragments of lengths typically from 9-12 amino acids (larger or smaller length pep-

tides can escape ERAP filter) [133]. Here, the partially folded MHC molecules stabilized by

the ER-hosted chaperones, will complete folding by binding specific high-affinity peptides. The

peptide/MHC (pMHC) molecule is then transported to the surface of the cell through the golgi

apparatus for surveillance by the T cells. While all the events in processing and presentation

pathway play an important role in displaying a peptide on the cell surface, peptide binding to

the MHC molecule is the most selective event among them [131].

1.2 MHC restriction and T cell immunity

MHC molecules are highly polymorphic since they are constantly under evolutionary pressure

to acquire new variants that modify their function of antigen presentation thus altering their

peptide repertoire [90]. Currently, there over 13,000 class I HLA alleles (encoded by HLA-A,

-B and -C genes) identified in the International Immunogenetics Project (IMGT)/HLA database

[97]. The A, B and C alleles can be clustered into 12 supertypes based on their overlapping

peptide specificities as shown by the unrooted phylogenetic tree in Figure 1.2 [96].

The αβ TCR molecule (which recognizes class I MHC molecules) is a dimer generated from

somatic gene rearrangement of variable (V), diversity (D), joining (J) and constant (C) gene

segments [105]. Such a rearrangement introduces nucleotide insertions or deletions at the

V(D)J junctions leading to a large TCR repertoire. This diversity in the repertoire is contributed

by six complementarity determining regions (CDRs) in TCRs shown by the colored loops in

2



Figure 1.1: MHC class I antigen processing and presentation pathway. Figure adopted from

[69] and modified to include relevant information.

Figure 1.3A. The CDRs associate with both the peptide and the MHC molecule (Figure 1.3).

The MHC class I molecules generally binds peptides of 8–14 amino acids in length (Figure

1.3B). There are typically two conserved sequence positions which anchor the peptide into

the MHC molecule [105]. The longer peptides bulge out in the center (Figure 1.3B). One of

the important feature of TCRs is that they do not randomly recognize any combination of the

pMHC complex, but rather complexes formed by the host’s HLA haplotype (or a set of HLA

genes inherited by the hosts from their parents; more specifically every human inherits two HLA

haplotypes consisting of three HLA alleles from each parent). [43].

T cells originate in the bone marrow and mature in the Thymus. Due to positive selection,

cells which are able to bind MHC class I molecules with at least a weak affinity survive (Figure

1.4) [28]. During a process called ’death by neglect’, T cells which would be non-functional

due to an inability to bind MHC molecules are eliminated (Figure 1.4) [28]. T cells that exhibit

3



Figure 1.2: Clustering of 121 HLA-A, -B and -C alleles according to their binding motifs using

NetMHCpan [45]. Figure adopted from [96].

high affinity for self peptides or MHC molecules are also eliminated due to negative selection

since, these cells would direct immune responses towards self-proteins in the periphery (Figure

1.4) [28]. A T cell recognizes the self MHC molecules (from the host’s haplotype) when they

bind non-self peptides, but it mounts a response only when the peptide is bound to a particular

alleleic MHCmolecule, and this phenomenon is referred to asMHC restriction [43]. Through this

mechanism, a T cell repertoire tolerates self peptides but is prepared to identify foreign peptides.

Therefore, characterizing the pMHC-TCR repertoire becomes important to understand adaptive

immunity.

4



Figure 1.3: Diversity of T cell receptors. (A) Structure of αβ T cell receptor showing six variable
regions or complementarity determining regions (CDRs) (colored loops). (B) Structure of the

MHC binding groove highlighting that the MHC class I molecules can accommodate peptides

of varying lengths. The restricted ends of the MHC molecule causes the peptides to extend

the conformation in the center (bulge). The colors indicate different lengths of the peptides.

(C) Surface of HLA-A*02:01 (gray) presenting GLCTLVAML peptide (sticks) from Epstein-Barr

virus. The colored regions on the surface of pMHC molecule indicate contacts made by the six

corresponding CDR loops of the T cell receptor, AS01 TCR96. Figure adopted from [105] and

modified.

1.3 Structural insights into peptide/MHC binding and TCR

recognition

The MHC class I molecule is a heterodimer and consists of a glycosylated amino acid heavy

chain (α chain), and a light chain (β2-microglobulin or β2m) (Figure 1.5). The MHC-I molecules

display peptides of specific lengths (8-14 amino acids) (Figure 1.5). The heavy chain consists of

α1, α2, α3 extracellular domains each comprising approximately 90 residues, transmembrane

and intracellular (cytoplasmic tail) regions (Figure 1.5). The α1 and α2 domains form the binding

groovewhere a peptide is nestled within six distinct pockets (A-F) inside theMHCbinding groove

5



Figure 1.4: Selection and maintenance of TCR repertoire. Interactions between pMHC and

TCRs facilitate T cell survival, maturation and death. If there are no interactions between the

pMHCmolecules and the TCR, then the non-functional T cell undergoes death (a process called

death by neglect) (Left). Millions of T cells that have TCRs which exhibit low affinity interaction

with pMHC survive and proliferate (Middle). Due to negative selection, T cells that bind pMHC

molecules with high affinity are eliminated (Right). The color coding of the units is: MHC α-
chain: wheat, MHC β2m: cyan, Peptides: black, yellow and red, T cell: green and TCR: dark

green. Figure inspired from [28].

as shown in Figure 1.6 [15]. The B and F pockets in the binding groove are of special importance

since the peptide anchors deeply within these pockets thereby reducing variability of preferred

amino acids at these positions (Figure 1.6). Typically, peptides of lengths 8, 9 and 10 (commonly

displayed by HLA-I) have their anchors at positions 1 and 8 (8 mer), 2 and 9 (9 mer), and 2 and

10 (10 mer) (N-terminal residues of the peptides fit in the B pocket whereas C-terminal residues

fit in the F-pocket). The α3 domain closer to the transmembrane region is an important binding

site for the CD8 co-receptor (Figure 1.5), which is responsible for co-stimulation of the immune

response.

Each HLA allele can potentially display 103 to 106 peptides. TCRs that recognize these

pMHC complexes are highly cross reactive meaning a single TCR can recognize many pMHC

molecules [132, 12]. For instance, for a typical peptide of length 9, there are half a trillion possi-

ble peptides but only a few million TCRs, so every TCR must recognize many peptides making

TCRs inherently cross-reactive. Therefore, the space of pMHC-TCRs is large. However, there

are hundreds of pMHC and pMHC-TCR structures available in the databases [13]. From these

6



Figure 1.5: Structure of MHC class I molecule. (A) Cartoon representation of MHC class I

molecule and its interaction with TCR and CD8 molecules of T cells. The color coding of the

units is: MHC α-chain and cytoplasmic tail: wheat, transmembrane region: blue, MHC β2m:
cyan, Peptide: yellow, T cell: green, CD8: orange, and TCR: dark green. (B) Side-view (Left)

and top-view (right) of a structure of class I MHC molecule (PDB ID: 6AT9). α1, α2 and α3
domains (or α chain) is highlighted in yellow. β2m and peptide are shown in pink and blue

respectively.

databases, we have a general understanding of how pMHC-TCRs interact thereby helping us

in identifying residues in the peptide that anchor the TCR. From previous studies, we have

learned that TCRs are oriented diagonally on the pMHC surface as shown in Figure 1.3C (col-

ored regions) [13]. Using the structural information and surface of the pMHC complex, we can

learn about TCR cross-reactivity which becomes useful when engineering new TCRs to fight

diseases.

1.4 Peptide-based vaccines

Identification and characterization of a single or a pool of immunodominant peptides (or epi-

topes) derived from foreign pathogens or cancer tissues is an important step in designing

peptide-based vaccines to fight cancer and infectious diseases [65]. Generally, synthetic pep-

tides are administered to healthy individuals with the help of adjuvants, which are engulfed by

the dendriatic cells (DCs) in the periphery [65]. The DCs then trigger the activation of T cells by

presenting the peptides via MHC molecules.

7



Figure 1.6: MHC binding pockets (A-F) are shown by colored residues on the α1 and α2 do-

mains. The color codes and corresponding peptide residues that fit inside each pocket are

shown on the right. The amino acid preference for each supertype within the most conserved

B and F pockets are shown in the table below. Figure adopted from [15].

The diversity of HLA types in human population poses a significant challenge in designing

a universal peptide-based vaccine candidate/s for any disease. However, previous studies

have demonstrated that there is significant overlap in the peptide-binding specificities of HLA

supertypes (Figure 1.2). The HLA supertypes A02, A03 and B07 are known to cover 90% of

the world population [134]. Therefore, plausible vaccine candidates are peptides that bind HLA

supertype families covering large population and elicit effective immune responses.
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1.5 Thesis statement

MHC class I antigens present endogenous peptides from tumor or infected cells to the cytotoxic

T lymphocytes for surveillance. To design and develop vaccines and therapies to treat cancer

and infectious diseases, we need to understand the mechanism of T-cell receptor recognition

and peptide immunogenicity. We can identify and elucidate TCR recognition features with the

help of high-resolution peptide/MHC-I structures. However, solving peptide/MHC structures

experimentally using X-ray crystallography or NMR spectroscopy is tedious, time-consuming

and has limitations. Furthermore, modeling of peptide/MHC structures with high accuracy is still

a challenge in the field despite the availability of a number of docking approaches. This thesis

describes a high-throughput peptide/MHC homology modeling method using several template

selection and scoring strategies that generates sub-angstrom structures for a vast majority of

the cases shown in the future sections.
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Chapter 2

Background

Sequence-based methods are widely applied to identify and characterize immunodominant epi-

topes. Complementary to sequence-based approaches, structure-based methods can provide

detailed molecular basis for the pMHC and pMHC-TCR interactions. Here, we review and high-

light the limitations of popular sequence-based and structure-based approaches which are used

to predict binding affinities, free energies and structural models.

2.1 Sequence-based methods

Early methods to predict binding of peptides to MHC molecules utilized motifs or scoring matri-

ces derived from sequences. A well-known motif-based prediction model is provided by SYF-

PEITHI [94], which estimates binding affinities using MHC class I eluted-ligand data (EL; eluted

ligands are peptides processed and presented naturally and can be eluted from the antigen

presenting cells; such ligands can be characterized using mass spectrometry methods and

then used as training data for prediction methods) and binding assay data obtained by single

amino acid substitution at each peptide position. These methods were subsequently replaced

by more sophisticated statistical algorithms and machine learning approaches trained on large

complementary experimental datasets and are used extensively in the field [78].

The MixMHCpred [10] computational framework utilizes data generated by mass spectrom-

etry analysis of eluted pMHC peptides. Subsequently, the eluted ligands are used to construct

multiple position weight matrices of specified lengths (9 and 10) from which peptide motifs for
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each HLA allele can be drawn. While MixMHCpred uses a linear matrix approach, alternative

state-of-the-art methods such as NetMHCpan4.0 [45] and MHCflurry [83] apply simple single

layer feed forward neural network models trained using eluted ligand data and binding affinity

data available in the databases such as Immune Epitope Database (IEDB) [123] which has

1,200,000 pMHC epitopic peptides out of which 300,000 are from binding and the remaining

are from ligand elution assays. The major limitations of sequence-based approaches are bi-

ases introduced by the availability of limited data containing (i) cysteine residues in the peptide

sequences, (ii) low prevalence of a vast majority of MHC allotypes and hence little to no ex-

perimental data for such allotypes and (iii) post-translational modifications in the MHC binding

groove, leads to low predictive power of these methods [78].

2.2 Structure-based methods

An advantage of structure-based methods is that they do not require allotype specific training

datasets but rather they rely on physicochemical properties to provide information about pMHC

interactions [6]. Several methods are available that can either predict models of pMHC or bind-

ing affinities from first principles. These approaches utilize general rules including (i) sampling

of peptide backbone (ii) optimizing amino acid side chain degrees of freedom, and (iii) scoring

using physically realistic energy functions. [6]

A number of structure-based approaches implement molecular docking, where a peptide is

docked inside the binding groove of theMHCmolecule [6]. The difficulty of obtaining an accurate

model from these approaches stem from the flexibility of peptide backbones and side chains that

needs to be accounted for. Therefore, to sample diverse peptide conformations, these methods

utilize (i) rigid docking (graph-based algorithms to identify shape complementarity between pep-

tide and MHC molecule), (ii) sampling of all degrees of freedom of the peptide backbone and

side chains (computationally expensive), or (iii) heuristic approaches that employ Monte Carlo-

based search-like methods [6]. The sampled conformations are ranked using scoring functions

and can be used to guide the search for more accurate pMHC structures. Approaches such as

pDOCK [51] and FlexPepDock [61] start with structural templates or homology models followed

by sampling of the peptide backbones and refinement using Monte Carlo procedure. Similarly,

MHCSim [113] and DockTope [70] utilize closest templates based on pMHC sequence to per-
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form docking using either molecular dynamics (MD) simulations or AutoDock Vina (that employs

genetic algorithms) [118]. A landmark study (henceforth referred to as Yanover and Bradley)

[129] performs flexible peptide backbone docking simulations which consist of low-resolution

and high-resolution modeling phases. During the low resolution phase, the peptide backbone

is constructed outwards from the anchor positions which are explored during docking moves

followed by loop closure. The docked peptide is refined in the high-resolution phase in the

Rosetta force field. While Yanover and Bradley method can be used to predict peptide binding

landscapes for HLA-A and -B alleles, it is not high-throughput and lacks the resolution neces-

sary to predict sub-angstrom accuracy models. Alternative approaches such as MFPred [101]

and GradDock [54] use scoring functions enhanced by mean field theory or redefined weights

for score terms to rank peptides. GradDock is shown to perform better compared to Yanover

and Bradley method. All these methods aim to predict pMHC complexes within 1.5 to 2 Å and

peptide backbones within 1.5 Å all-atom or Cα RMSD from the native X-ray structure (RMSD

or Root-Mean Squared Deviation is a measure to show how close a model is to its correspond-

ing X-ray structure, a value of 0 indicates that the backbone and side chain conformations are

recovered completely in the model relative to the X-ray structure, higher values indicate devi-

ations from the X-ray structure; see Figure 2.1). Here, we aim to model sub-angstrom pMHC

structures since models that have RMSD values above 1 Å have an altered TCR surface due

to inaccuracies in the peptide backbone and side chain conformations (Figure 2.1).

Recently, structure-based methods have been used in conjunction with sequence-based

approaches to improve the prediction of pMHC binding specificities and modeling accuracy [7].

One such study [7] applies NetMHCpan4.0 [45] to select high-affinity peptides and homology

models them using MODELLER [24] followed by all-atom refinement using FlexPepDock [61].

2.3 Conclusions

Sequence-based methods are being developed continuously to predict peptides binding to

MHC-I molecules or the immunogenicity of pMHC-I complexes. The accuracy of these methods

are improving due to the availability of experimental data originating from elution assays, binding

affinity assays, and mass spectrometry and the use of advanced machine learning techniques.

Despite their high accuracy, these methods cannot provide molecular insights into the pMHC
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Figure 2.1: RMSD values capturing variations in peptide backbone and side chain conforma-

tions. Overlay for structural model (magenta) and X-ray structure (grey) for showing RMSD

values of (Left) 0.3 Å which indicates that the peptide backbones are very close and that most

of the side chain conformations are correct, (Middle) 1.0 Å representing peptide backbones that

are close and have some incorrect side chain conformations, and (Right) 2.3 Å which highlights

that the peptide backbones are incorrect. RMSD values are calculated for heavy atoms, N, C,

CA, O, of the peptide backbone.

binding which is an important step in early discovery of drug targets or therapies. Alternatively,

structure-based methods can offer details at a molecular level, although their development is

limited relative to sequence-based methods due to their time complexity. Currently available

approaches including docking, homology modeling or loop closing, model peptide backbone

conformations with RMSD values up to 2 Å. However, a 2 Å pMHC model can showcase a dif-

ferent surface compared to a native structure and hence limit our ability to study T-cell receptor

recognition in silico (Figure 2.1). Therefore, in this thesis, we develop a new structure-based

modeling method that attempts to address accuracy and throughput.
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Chapter 3

Protein Structure Modeling using

Rosetta and NMR Data

[Some of the text and figures in this chapter have been published with the following citations:

• 4D-CHAINS: Thomas Evangelidis, Santrupti Nerli, Jiří Nováček, Andrew E. Brereton,

P. Andrew Karplus, Rochelle R. Dotas, Vincenzo Venditti, Nikolaos G. Sgourakis, and

Konstantinos Tripsianes. Automated NMR resonance assignments and structure deter-

mination using a minimal set of 4D spectra. Nature Communications, 9(1):384, January

2018.

• MAUS:Santrupti Nerli, Viviane S. DePaula, AndrewC.McShan, andNikolaosG. Sgourakis.

Backbone-independent NMR resonance assignments of methyl probes in large proteins.

98 Nature Communications, 12(1):691, January 2021.

• CS-Rosetta: Santrupti Nerli and Nikolaos G. Sgourakis. CS-ROSETTA. Methods in En-

zymology, 614:321–362, 2019

• Santrupti Nerli, Andrew C. McShan, and Nikolaos G. Sgourakis. Chemical shift-based

methods in NMR structure determination. Progress in NuclearMagnetic Resonance Spec-

troscopy, 106-107:1–25, June 2018.

]
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In this chapter, I introduce NMR spectroscopy, resonance assignment problem and my contri-

butions to two methods 4D-CHAINS and MAUS that are used to interpret NMR data. I describe

in detail, our previous work carried out using an open-source molecular modeling software suite,

Rosetta where, we solved structures of seven important protein targets with the help of sparse

NMR data. Lastly, I show a solution NMR structure of a pMHC complex that was deposited

recently and how we can use modeling methods to obtain accurate pMHC structures thereby

reducing the need to determine structures experimentally.

3.1 Nuclear Magnetic Resonance Spectroscopy

Proteins can be studied using NMR spectroscopy, for instance, we can determine their 3D-

structures, and study their interactions with ligands and drug-like molecules [39, 3]. The nuclei

of atoms from isotopes such as 1H, 13C and 15N possessmagnetic spin properties. To examine

proteins using NMR, isotopically labelled protein sample is placed in an external magnetic field.

A separate radio frequency is applied perpendicular to the external magnetic field which causes

the nuclear spins to precess at characteristic frequencies. The differences in these frequencies

from a reference signal gives rise to a measure called chemical shift (or resonance) [39].

Chemical shifts inform us about the local environment of nuclei using which we can predict

the secondary structures of peptide backbone, model orientation of side chains, decipher pro-

tein dynamics and hydrogen bonding network [74]. Currently, many methods use chemical shift

measurements to determine the solution structures of proteins [74]. Typically, such methods

sample small peptide fragments derived from known structures and filter them by comparing

experimental and back-calculated chemical shift values. The fragments are assembled using

optimization protocols, and force fields biased by chemical shift values. Alongside chemical

shifts, additional information from NMR experiments such as nuclear Overhauser effect (NOEs

obtained from NOESY experiments) measurements provide distance restraints between atoms

that are closer in space, and residual dipolar coupling (RDC) values which help determine mo-

tion/orientation of domains in multi-domain proteins [74].
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3.1.1 Resonance assignment problem

The chemical shifts measured using a protein sample and NMR instrument generally are in the

form of peaks in a 2D planewith shift values (in parts permillion or ppm) of correlated 1H and 13C

or 1H and 15N along the axes. Assigning each peak to its corresponding CH or NH group of an

amino acid in the sequence of a protein is the resonance assignment problem. The resonances

are assigned using procedures that either utilize solved structures or multiple complementary

NMR experiments that provide information of nuclear spins that are either connected through

bonds or space. Below, I discuss two recent resonance assignment methods, 4D-CHAINS and

MAUS, I had the opportunity to contribute. The 4D-CHAINS method assigns resonances of all

atoms using a small set of NMR spectra and does not require a structure however it is limited

by size (up to 30kDa) whereas MAUS assigns resonances of methyl groups in residues (such

as M, A, I, L, V, and T) in larger proteins (sizes that can be studies by NMR) and requires NMR

spectra together with a crystal structure.

Terminologies necessary to understand 4D-CHAINS and MAUS

HSQC - Heteronuclear Single Quantum Coherence (HSQC) is a heteronuclear 2D experiment

that captures correlation between two different nuclei such as a 1H and a coupled nucleus,

either 13C or 15N . Since the correlated nuclei can be plotted on a 2D plane with x-axis indicating

1H spectrum and y-axis indicating 13C spectrum, these plots are used to decipher the residue

types of both 1H and 13C values.

HMQC - Heteronuclear Multiple QuantumCoherence (HMQC) is a heteronuclear 2D experiment

and also captures correlation between coupled 1H and 13C nuclei or 1H and 15N nuclei. The

primary difference between HSQC and HMQC is that in HMQC, magnetization of both 1H and

13C nuclei are allowed to evolve, whereas in HSQC, the magnetization of only 13C nucleus is

allowed to evolve.

NOESY - Nuclear Overhauser Effect Spectroscopy (NOESY) allows us to determine signals

from 1H nuclei that are closer in space.

TOCSY - Total Correlation Spectroscopy (TOCSY) allows us to determine signals from coupling

nuclei that are connected through bonds.
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4D-CHAINS

Nuclear magnetic resonance (NMR) structure determination relies on recording a network of

nuclear Overhauser enhancement (NOE) restraints from multidimensional spectra [128]. Ob-

taining near-unambiguous assignments of long-range NOEs is challenging due to substantial

overlap in the spectra which becomes more pronounced for larger proteins. This is typically

addressed through first establishing the chemical shift assignments of backbone and sidechain

atoms usingmultiple (6–10) triple-resonance spectra [41, 47], which are then used as anchors to

guide the assignment of NOEs during iterative structure refinement [33]. State-of-the-art tools

such as FLYA [104], PINE [8] and UNIO [32] can automate the resonance assignment and

structure determination process. In principle, recording a smaller number of higher dimensional

spectra can provide a complementary approach to increase signal dispersion and resolve am-

biguities [46]. With the emergence of non-uniform sampling and reconstruction methods, such

datasets can be recorded in reasonable time [48]. Recent approaches for automated resonance

assignments based on three- and four-dimensional (3D and 4D) NOE data make use of a known

structure to guide the assignment process [116, 92]. However, for de novo structure determi-

nation, further development is needed to perform resonance assignments at the high levels of

completeness and correctness that are required for NOE data-driven structure determination.

Towards developing 4D-CHAINS, we recorded for four different protein targets of size from

15.5 to 27.3 kDa, a 4D HC(CC-TOCSY(CO))NH, and a 4D 13C,15N edited HMQC-NOESY-

HSQC (HCNH) experiment. The largest protein target of size 27.3 kDa was chosen based on

its apparent correlation time of 15 ns that still allows for TOCSY transfer to occur. We also

recorded a 4D 13C, 13C edited HMQC-NOESY-HSQC (HCCH) experiment to further assist in

structure determination. To address the assignment problem, 4D-CHAINS uses 2D probability

density maps of correlated 13C–1H chemical shifts to effectively identify possible spin systems.

In particular, 4D-CHAINS combines sequential information present in the 4D-HCNH TOCSY

and intraresidue information present in 4D-HCNHNOESY 13C–1H planes, respectively, by clus-

tering TOCSY or NOESY peaks to Amino Acid Index Groups (AAIGs) via their common 15N–1H

frequency (Figure 3.1A). 4D-CHAINS computes probability scores at several steps (amino acid-

type prediction, sequential AAIG relations based on TOCSY–NOESY connectivities, alignment

of peptides to the protein sequence) to yield a confidence score for a given AAIG being as-
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signed to a specific protein residue. Finally, 4D-CHAINS uses an Overlap Layout Consensus

(OLC) assembly approach adopted from genome assembly to match continuous AAIG seg-

ments along the protein sequence. The final assignment solutions are consistent with both the

joined probability score and the OLC model.

A uniform 4D-CHAINS protocol was applied to four targets (Figure 3.1B). The algorithm

mapped correctly all AAIGs to the respective protein sequences with >95% completeness. Next,

we evaluated the performance of assignments obtained using 4D-CHAINS in driving Rosetta

structure determination of these targets. Here, we used AutoNOE-Rosetta (described in the

following section titled ”Rosetta Software Suite”), a highly parallelizable iterative algorithm run

on a computer cluster to perform assignment of long-range NOEs alongside the structure de-

termination process.

The solution NMR structures determined using 4D-CHAINS/AutoNOE-Rosetta shown in Fig-

ure 3.1B have been deposited in PDB under codes 5WOT, 5WOX, 5WOY, and 5WOZ. The full

details of this work is available at [25].

Methyl assignments using Satisfiability

The use of methyl probes has opened new avenues for the application of nuclear magnetic

resonance (NMR) methods to study large molecular machines [98]. The signal enhancement

offered by methyl-transverse relaxation optimized spectroscopy (TROSY) techniques [119] and

a suite of experiments for quantitative characterization of protein dynamics occurring over a

broad range of timescales [103] have rendered methyl-based NMR a formidable tool for detailed

mechanistic studies of important biological systems [109]. The main bottleneck in applications

of methyl-based NMR is obtaining confident resonance assignments. In the conventional ap-

proach, backbone assignments are first established using triple-resonance experiments [47].

Then, methyl resonances are connected to the backbone using either methyl out-and-back ex-

periments [120] or, more commonly, using 15N and 13C edited amide-to-methyl nuclear Over-

hauser effect (NOE) measurements [99]. However, in the absence of previously established

backbone assignments, deriving confident assignments for methyl resonances remains a chal-

lenge. Although site-directed mutagenesis of individual methyl-bearing residues [68] provides

unambiguous assignments, the laborious, costly, and time-consuming nature of this approach

limits applications to study larger, multi-domain proteins.
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In this work, we describe an automated system (MAUS: Methyl Assignments Using Satis-

fiability), which first formulates a set of rules, and then provides a compact description of all

assignment possibilities that are consistent with these rules (Figure 3.2). Specifically, MAUS

generates a structure graph, G, representing all methyl NOE connectivities present in an in-

put PDB structure or structural model of a protein of interest, and multiple independent data

graphs, H, containing all possible NOE networks, which can be derived from a list of raw 3D

or 4D NOESY peaks. The NOE network is supplemented with residue type, stereospecificity,

and geminal methyl connectivity constraints. Then, MAUS leverages an efficient algorithm to

determine all valid ways of mapping every H into G (termed subgraph isomorphism), which re-

spects all the experimental inputs. We test our method on a benchmark set of protein targets

in the 10–45 kDa size range and show that MAUS maintains a robust performance, providing

100% accurate assignments at high levels of completeness, while offering a significant per-

formance advantage relative to existing methods using the same inputs. Using MAUS, the

methyl resonances of large, multi-domain proteins can be assigned accurately in a matter of

days, completely bypassing the need for more laborious backbone-based NMR spectroscopy

approaches.

MAUS models the NOE data as a sparse sample of all possible connectivities present in

the input structure. MAUS uses the NOE network together with additional experimental inputs,

such as peak residue type information and geminal methyl resonance connectivities, to build a

system of hard constraints. The constraints outline a subgraph isomorphism problem of fitting

a sparse data graph H, into the original structure graph G (Figure 3.2A).

We tested MAUS using representative data sets recorded for a benchmark set of four pro-

tein targets spanning a range of sizes, folds and domain complexities: human β2-microglobulin

(Hβ2m; 12 kDa, all-β-fold, single domain), maltose-binding protein (MBP; 41 kDa, all-α-fold,

two-domain), and two major histocompatibility complex class-I (MHC-I) molecules of divergent

heavy-chain sequences (HLA-A01; 45.5 kDa and HLA-A02; 44.8 kDa, mixed α/β-fold, three-

domain) (Figure. 3.2B). The X-ray structures and ground truth assignments for these targets

were obtained from the PDB and BMRB, respectively. To obtain a consistent set of experimental

data for all targets, we prepared 13C/1H (MA)ILV-methyl-labeled samples and acquired one 2D

reference 1H-13C heteronuclear multiple quantum coherence (HMQC) and two 3D 13CM -13CM

1HM NOESY-HMQC spectra, recorded with short (50 ms) and long (300 ms) mixing times [73].
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Towards reducing spectral overlap in the 2D reference spectra of larger (>20 kDa) targets, we

prepared proS-labeled samples, stereospecifically defining the resonances of Leu/Val methyls

[73]. Using this information as input for MAUS, we find that among all possible clustering/sym-

metrization alternatives resulting from peak overlap (240-280), only a tractable number (210-220)

can lead to valid assignment solutions and are further explored in exhaustive subgraph iso-

morphism (H into G) enumerations using the SATisfiability algorithm. Given the sparsity of

experimental NOE data sets and our definition of a valid solution, each subgraph isomorphism

instance has up to 2100 valid solutions for a typical 100-methyl protein. However, the solution

space is not uniformly distributed among methyl peaks; remarkably, results for all targets in

our set show that the NOE network, residue type and stereospecificity constraints are sufficient

to provide unambiguous assignments for a large fraction (64–89%) and low-ambiguity (two to

three) options for the majority (11–30%) of remaining methyl resonances [73]. Together with

benchmark targets, we also assigned resonances of IL-2, and blind targets, domains of CAS9

enzyme, HNH, REC2 and REC3, with 60-90% unique and 11-29% low-ambiguity assignments.

The methodology and complete results are available at [73].

3.2 Rosetta Software Suite

Rosetta is a molecular modeling suite that provides several algorithms to model, dock, design

and analyze protein structures [59]. The driving force behind Rosetta is its energy function,

that is based on the Anfinsen’s hypothesis that native-like protein conformations are stable and

found at the lowest-energy minimum of the energy landscape [5]. Rosetta energy function is

a combination of statistical potentials describing residue environments derived from PDB [11]

structures and their interactions. It is worth noting that there are a lot of local minima on this

energy landscape and heuristic approaches generally get trapped in these minima and our goal

is to find the global minimum where the native resides and this problem is challenging.

Together with physically realistic energy function, Rosetta is equipped to utilize restraints

from experimental data obtained through X-ray crystallography and/or NMR spectroscopy to

guide the search along the energy landscape for the native structure during modeling [59].
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3.2.1 Chemical Shift-Rosetta

Chemical Shift-Rosetta (CS-Rosetta) is an automated method that employs NMR chemical

shifts to model protein structures de novo. CS-Rosetta contains two algorithms, Abrelax (ab

initio relax) [106] and RASREC (resolution-adapted structural recombination) [55], that each

utilize torsion angle, and short- and long-range distance restraints derived from NMR chemical

shifts, residual dipolar couplings (RDCs) [93] and nuclear Overhauser enhancements (NOEs)

to model protein structures up to 40 kDa [57]. Compared to Abrelax, RASREC makes use of

additional optimization strategies together with the support for advanced parallelization scheme

toward efficient and accurate modeling of larger protein structures. CS-Rosetta also enables

rapid and automated assignment of NOESY data through the AutoNOE (Automatic NOESY

assignment) module [56].

RASREC-Rosetta is a Monte Carlo-based fragment (structural fragments of amino acid

lengths 3 and 9) assembly approach that utilizes NMR chemical shifts to guide the conforma-

tion search for natives [55]. Alongside NMR data, RASREC-Rosetta uses optimized algorithms

across six stages of resampling to achieve high structural convergence. During the initial stages

of the protocol, various β-sheet topologies are sampled. In the subsequent stages, fragments

derived from (i) high-resolution X-ray structures, and (ii) preliminary low-resolution conforma-

tions (from the initial sampling stages), are applied to intensify and finalize the folds of a target

protein. In the final stages of the protocol, the low-resolution models generated during the ini-

tial and intermediate stages are refined in the Rosetta force field to produce high-resolution

structures.

Alongside de novo structure prediction, CS-Rosetta offers an algorithm, AutoNOE, for auto-

mated assignment of 2D, 3D, or 4D NOESY cross-peaks [56]. The NOESY cross-peaks result

from coupling of two proton nuclei with different chemical shift values during magnetization

transfer [49]. The process of labeling these cross-peaks in the NOESY spectra is known as

NOE assignment. Whereas information about atom labels can be obtained from a known struc-

ture or an assigned resonance list, AutoNOE makes use of assigned chemical shift list to carry

out the NOE assignment task. These assigned NOESY cross-peaks give rise to interproton

distance restraints that are employed by structure determination methods to guide the confor-

mational search. In CS-Rosetta, the NOE assignment (or NOESY) module is inspired largely
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by alternative automated tools for NOE assignment including ARIA [60, 80, 81], AutoStruct

[40], and CANDID [36]. AutoNOE takes as input the assigned NMR resonances together with

unassigned NOESY cross-peak lists and generates a set of NOESY assignments from which it

derives NOE distance restraints for structure calculation within RASREC.

The objective of the NOESY module is to assign proton atom labels from the input chemical

shift list to the NOE cross-peaks such that the values of frequencies in both these lists match

within the user specified tolerance levels. To achieve this, the method starts by mapping input

chemical shift frequencies to the unassigned NOESY cross-peaks. The initial mapping results

in a set of ambiguously assigned NOEs due to potential overlap in the spectra [80, 81]. These

ambiguous NOEs are filtered based on a series of criteria. At first, the diagonal peaks (these

are the peaks, which have same frequency for the proton and carbon dimensions) are elimi-

nated. Second, a set of scores are computed to determine the confidence in the assignments.

Third, NOE cross-peak assignments are filtered using the thresholds determined based on the

confidence scores. Finally, NOE cross-peak intensities are calibrated to generate distance re-

straints. A complete guide to CS-Rosetta is available at [75].

3.3 Solution NMR structures solved using Rosetta

We applied Rosetta together with NMR data obtained from complementary experiments to

model various structures with distinct folds and complexities (Figure 3.3). In particular, we

utilized Symmetric Fold and Dock [21, 22], or CS-Rosetta’s [75] RASREC [55] and AutoNOE

[56] protocols to model protein structures. As pointed out in previous sections, these protocols

generally employ NMR chemical shifts (probes that report on the local magnetic environment of

nuclei, allowing for insights into backbone secondary structure, side chain conformations, dy-

namics, solvation, and hydrogen bonding) [74], NOE measurements (that reveals about pairs

of residues closer in space and gives rise to distance constraints within a protein structure)

and residual dipolar coupling (RDC) data (provides information about the orientation of the

molecules containing multiple domains with respect to a global alignment frame).

With collaboration from several labs, we modeled structures of seven important target pro-

teins, (i) BH_10 (10th β-helix, designed synthetic protein) with 77 amino acids is a first all non-

local β-strand designed protein [67], (ii) NRD-TAD (Negative Regulatory domain and Transac-

22



tivation domain) complex with 79 amino acids that acts as a critical activator of mitotic gene

expression [66], (iii) RTT (RNA processing and transcription termination factor) with 133 amino

acids that mediates termination of RNA transcription [25], (iv) ms6282 (KanY protein) with 145

amino acids [25], (v) aLP (α-lytic protease) with 197 amino acids which cleaves a tetrapeptide

component in bacterial cell walls [25], (vi) nEIt (Enzyme 1 that has two domains) with 248 amino

acids which regulates bacterial metabolism and is a potential drug target [25], and (vii) XAA, a

288 amino acid designed homotrimer that adopts two divergent folds [126] (Figure 3.3). The

structures of RTT, ms6282, aLP and nEIT were computed as part of 4D-CHAINS/AutoNOE-

Rosetta combined protocol (Figure 3.1B). The coordinates of all these models are deposited in

PDB under codes 5WOX, 5WOZ, 5WOY, 5WOT, 6E5C, 6OSW and 6O0I.

3.3.1 Structure of NRAS Q61K/HLA-A*01:01 complex

[The NMR structure reported in this subsection was solved by Andrew C. McShan and David

Flores-Solis. The manuscript for this work is in preparation.]

The NRAS gene is an oncogene that produces a signalling protein which is important for cell

proliferation and differentiation. It has been shown that mutations in NRAS gene leads to perma-

nent activation of the NRAS protein which causes cells to grow and divide continuously leading

to variety of cancers. Moreover, the NRAS Q61K mutation was found in 7% of melanoma

patients that had mutations in the NRAS gene [4]. Therefore, NRAS Q61K is used as an impor-

tant biomarker in antibody-based treatments in patients. Recently, a solution NMR structure of

MHC-I (or specifically HLA-A*01:01) complex with NRAS Q61K mutation leading to a peptide

ILDTAGKEEY of length 10 was determined using Rosetta’s FlexPepDock [61] and NOE dis-

tance restraints (Figure 3.4A; manuscript in preparation). The NOE restraints captured across

the entire peptide and the MHC groove help guide FlexPepDock calculations towards the native

as shown by the dotted lines in the Figure 3.4A. Using this solved structure, we can understand

the mechanism of NRAS Q61K mutation peptide interaction with TCRs and design targeted

therapies that can kill cells displaying the mutated peptide.

Whereas it is useful to obtain structures of high-valued pMHC targets for the design of effi-

cient therapeutics, the process of obtaining experimental restraints limits the number of struc-

23



tures that can be determined. To obtain the NOE restraints for HLA-A*01:01/ILDTAGKEEY,

the authors of this work expressed the protein in E. coli, refolded FYAILV labelled MHC heavy

chain and unlabelled β2m domain and purified. They performed a suite of complementary NMR

experiments on this protein followed by the processing and assignment of the NMR data. The

timeline for the whole process is typically 1 to 1.5 months where 1 week is used to obtain re-

folded protein, between 2 weeks to a month to process and assign NMR data and a few days

to calculate structures.

To reduce the time taken to solve pMHC structures, we decided to model them with Rosetta.

Due to the availability of homologous pMHC structures displaying peptides of length 10 in the

PDB, we performed homology modeling of HLA-A*01:01/ILDTAGKEEY structure (Figure 3.4B).

We utilized the only available HLA-A*01:01 structure in the PDB that is bound to a peptide of

length 10 (PDB ID: 6AT9, neuroblastoma epitope, AQDIYRASYY, displayed by HLA-A*01:01,

solved previously in our lab) as template for homology modeling and found that the homol-

ogy modeled structure when superimposed with the solution NMR structure was within 0.75 Å

backbone heavy-atom RMSD with respect to the peptide (Figure 3.4B and C). In contrast to the

time taken to solve solution NMR structure, our modeling method took about a minute. From

this example, we established that the homology modeling method can determine sub-angstrom

models for important therapeutic targets and in a high-throughput manner thereby reducing

the efforts and cost needed to perform NMR experiments. In the next section, we discuss our

homology modeling, RosettaMHC, workflow.

3.4 Conclusions

NMR is an indispensable tool to study proteins as demonstrated in this section. Experimental

restraints obtained from NMR can guide molecular modeling suites such as Rosetta to solve

structures of protein targets of clinical relevance. While Rosetta together with NOEs can help

obtain structures of pMHC complexes, the process of obtaining NOEs is typically tedious, time-

consuming and not amenable to all the targets. We can instead employ solved structures in

PDB to guide us towards obtaining native-like pMHC molecular models as shown here for HLA-

A*01:01/NRAS Q61K mutation peptide. These results suggest that modeling methods have the

capacity to sample accurate peptide backbones efficiently for a given pMHC molecule.
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Figure 3.1: (A) Flowchart of the 4D-CHAINS algorithm for automated NMR resonance assign-

ment from two 4D spectra (TOCSY and NOESY) (B) Structural ensemble calculated from su-

pervised resonance assignments of Rtt103 (RTT, 133 aa), KanY (ms6282, 145 aa), α-lytic pro-
tease (aLP, 198 aa) and Enzyme I (nEIt, 248 aa) and automated NOE assignment and structure

determination protocol. Panels of the figure are adopted from [25].
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Figure 3.2: (A) Flowchart showing the working of the MAUS system. (B) Number of valid as-

signment options produced by MAUS for each methyl-bearing residue, are shown for protein

targets of different folds (Hβ2m, HLA-A02, HLA-A01 and MBP). The colored spheres represent
valid resonance assignment options, violet, green, yellow and red for 1, 2, 3 and >3 option/s,

respectively. Assignment accuracy is 100% for targets. Panels of the figure are adopted from

[73].
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Figure 3.3: Protein structures modeled using Symmetric Fold and Dock, AutoNOE- and

RASREC-Rosetta. RTT (PDB ID: 5WOZ), MS6282 (PDB ID: 5WOX), ALP (PDB ID: 5WOT)

and BH_10 (PDB ID: 6E5C) were modeled using AutoNOE-Rosetta with automatically assigned

NOEs from 4D NOESY data and chemical shift lists. nEIt (PDB ID: 5WOY), a dimer, was

modeled using AutoNOE-Rosetta with automatically assigned NOEs from 4D NOESY data and

chemical shift list together with RDCmeasurements to capture relative motion of the 2 domains.

NRD-TAD was modeled using RASREC-Rosetta by applying NOEs derived from 3D NOESY

experiments, chemical shift list and RDC data. The homotrimer (XAA) was modeled using Sym-

metric fold-and-dock [21] by utilizing inter- and intra-residue NOEs between domains and RDC

measurements.
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Figure 3.4: (A) Solution NMR structure (PDB ID: 6MPP) of HLA-A*01:01/NRASQ61K (ILDTAG-

KEEY) modeled using Rosetta’s FlexPepDock protocol and NOE restraints. The MHC heavy

chain is shown in olive green, peptide is shown as stick representation in magenta and the

dotted black lines showcase the NOE restraints used in modeling. (B) Superimposed struc-

tural models obtained using solution NMR (olive green and magenta, same as panel A) and our

homology modeling method, RosettaMHC (wheat and blue). The structural template used for

homology modeling is HLA-A*01:01 allele displaying ALK neoepitope, AQDIYRASYY (PDB ID:

6AT9, indicated below). The binding energy of the model is -67 Rosetta Energy Units or REU.

(C) The superimposed peptide backbones of the solution NMR structure and the RosettaMHC

model. The RMSD between the two peptide backbone conformations is 0.75 Å.
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Chapter 4

RosettaMHC
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RosettaMHC is a method for comparative (or homology)-based modeling of class I MHC com-

plexes. The user may input the names of the HLA alleles together with target peptide sequences

and template PDBs to model the target peptide/MHC complex on to the template structure. As

a first step, a template structure is optimized in the Rosetta force field followed by the alignment

of the target and template sequences. The alignment together with refined template are used

to thread the target sequence. For the purpose of throughput, only the peptide sequence and

the residues in the MHC groove that are within 3.5 Å from the peptide in the threaded structure

are refined using Rosetta’s optimization protocol, Relax [121]. The binding energy is extracted

from the refined threaded model. It is worth noting that we only homology model the α1 and α2

domains (typically 1-180 residues) of the MHC molecule since this region gives a snapshot of

the pMHC surface interacting with TCRs (Figure 4.1).

RosettaMHC makes use of the protocols available in Rosetta [58] via the wrappers written

in PyRosetta [16]. Specifically, it utilizes, Idealize, Relax [121], Partial_thread and InterfaceAn-

alyzer protocols in its pipeline.

• Idealize: This protocol is used to idealize the bond lengths and angles in the input template

structure.

• Relax: We used FastRelax (henceforth referred to as Relax) protocol with default parame-

ters to carry out all-atom refinement of the peptide and the MHC binding groove (residues

in the MHCmolecule that are within a distance of 3.5 Å from the peptide). Relax combines

side chain packing and gradient based minimization of the backbone degrees of freedom.

The default parameters of Relax allows it to perform four rounds of side chain repacking

followed by minimization of the backbone torsional angles. The repulsive energy term is

tuned up to 2%, 25%, 55% and 100% in each of the four rounds.

• Partial_thread: To thread a target sequence on to the template structure, we use par-

tial_thread protocol.

• InterfaceAnalyzer: The threaded structures are relaxed and the binding energies between

peptide and the MHCmolecules are extracted using the InterfaceAnalyzer protocol. Here,

the dG_separated score term is reported as the binding energy. This term is computed by
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Figure 4.1: Structure-based modeling of pMHC complexes. Step 1: A template (blue) pep-

tide/MHC complex (X-ray structure) is provided to generate a threaded model with the peptide

and HLA allele of interest (yellow). MHC residues in the groove within 3.5 Å of the peptide are

colored green. Step 2: Models are refined by energy minimization and side chain repacking of

groove and peptide residues (gray). Step 3: The average peptide-binding energy is determined

by subtracting the energy of the unbound MHC and unbound peptide from the energy of the

peptide bound MHC. 〈E〉 represents the average binding energy. Figure adopted from [115].

measuring the change in the energy when the peptide and the MHC chains are separated

compared to their corresponding bound state structure.

RosettaMHC (version 1.0 described here) software is available for download at github. This

tool requires Python3, PyRosetta4, Biopython [18], and Clustal Omega [108]. The links to each

of these tools is available on the README page of github.

We want to emphasize that alternative software suites that implement homology model-

ing methods, Prime (Schrödinger, LLC), SWISS-MODEL [125], MODELLER [24], Rosetta [58],

and I-TASSER [100], show comparable performance in terms of modeling accuracy when the

sequence identity of the target with template is greater than 30% [23]. However, Rosetta’s opti-

mization algorithm (Relax) is efficient which explains our choice of Rosetta to carry out homology
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modeling [86].

To demonstrate the accuracy of RosettaMHC, we performed benchmark calculations using

a non-redundant set of 90 9-mer peptide/HLA-A*02 complex structures from PDB. Each epi-

tope was modeled from the closest template with identical anchor residues (but at least two or

more mutations away in the non-anchor residue positions) present in the benchmark set, and

homologous peptide sequences were excluded from template selection. From these results,

we find that (i) the energies of RosettaMHC models fall within the distribution of the PDB tem-

plate energies (Figure 4.2A), and (ii) the models generated for 75% and 98% of peptides fall

within 1.5 Å and 2 Å backbone heavy-atom RMSD from their native X-ray structures, respec-

tively (Figure 4.2B). These results suggest that RosettaMHC can provide accurate models of

peptide/HLA-A*02 complexes, for a range of peptide sequences.

Figure 4.2: Performance of RosettaMHC. (A) Benchmark calculations of 90 9-mer peptide se-

quences derived from HLA-A*02 structures in PDB. The density plots showing the distribution

of average binding energies of PDB templates (cyan) and the models of peptides derived from

PDB templates (crimson). (B) Backbone heavy atom (N, C, CA, and O) RMSD distributions of

modeled peptides relative to their native X-ray structures in PDB. This figure is adopted from

[76].
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4.1 Evaluation of HLA-binding repertoire of two neoepitopes

derived from Anaplastic Lymphoma Kinase

The identification of recurrent HLA neoepitopes driving T cell responses against tumors poses

a significant bottleneck in the development of approaches for precision cancer therapeutics. In

this work, we employ a bioinformatics method, Prediction of T Cell Epitopes for Cancer Therapy

(ProTECT) [95], to analyze sequencing data from neuroblastoma patients and identify a recur-

rent anaplastic lymphoma kinase (ALK) mutation (ALK R1275Q) that leads to two high affinity

neoepitopes when expressed in complex with common HLA alleles [115]. Analysis of the X-ray

structures of the two peptides bound to HLA-B*15:01 reveals drastically different conformations

with measurable changes in the stability of the protein complexes, while the self-epitope is ex-

cluded from binding due to steric hindrance in the MHC groove. To evaluate the range of HLA

alleles that could display the ALK neoepitopes, we modeled ALK epitopes/HLA structures us-

ing RosettaMHC. We found that RosettaMHC accurately predicts several additional high affinity

interactions by comparing our results with commonly used prediction tools. Subsequent deter-

mination of the X-ray structure of HLA-A*01:01 bound neoepitope validates atomic features

seen in our RosettaMHC models with respect to key residues relevant for MHC stability and T

cell receptor recognition [115].

4.1.1 Identification and characterization of HLA-alleles that can putatively

bind ALK neoepitopes

A patient’s HLA haplotype plays a major role in determining the outcome of targeted cancer

immunotherapies. Therefore, toward expanding the range of individuals that could mount a T

cell response to ALK R1275Q neoepitopes, we evaluated the potential of other HLAs to display

the two peptides (AQDIYRASY and AQDIYRASYY) identified by ProTECT in silico. First, we

selected a non-redundant set of 2,904 HLA alleles (885 HLA-A, 1,405 HLA-B, and 614 HLA-C

unique sequences) from the EMBL-EBI database [62]. We then carried out RosettaMHC cal-

culations for each allele, using the experimentally determined HLA-B*15:01 structures for the

nonamer and decamer ALK peptides as templates (Figure 4.1). In contrast to previous structure-

based peptide/MHC modeling methods which use a flexible peptide docking approach [6], we
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used RosettaMHC, a fixed-peptide backbone threading approach followed by energy minimiza-

tion of the interacting peptide and HLA residues to drastically confine the docking degrees of

freedom. Using this strategy, we extracted highly reproducible binding energies for both the

nonamer and decamer peptides, which are maintained in extended and 310 helical conforma-

tions, respectively, in the resulting models (Figure 4.3). As expected, the HLA-B*15 alleles rank

systematically among the top binders, indicating a high degree of groove complementarity to

both peptides (Figures 4.4 and 4.5, purple). Among those, the HLA-B*15:84 allele shows the

lowest binding energy for the decamer (Figure 4.5, black circle), whereas the HLA-B*15:107

allele shows the lowest binding energy for the nonamer (Figure 4.4, black circle). A total of 116

HLA alleles from all A, B, and C types exhibit lower binding energies for both the nonamer and

decamer peptides than our initial HLA-B*15:01 structural templates (Figures 4.4 and 4.5, red

square), suggesting the potential for a broader HLA display repertoire.

Figure 4.3: Conformation of decamer and nonamer peptides displayed by HLA-A*01:01 from

structural modeling. (A) 310 helical conformation of the decamer peptide observed when bound
to HLA-B*15:01 (cyan) in our X-ray structure or to HLA-A*01:01 (brown) in homology model-

ing simulations. (B) Extended conformation of the nonamer peptide observed when bound to

HLA-B*15:01 (pink) in our X-ray structure or to HLA-A*01:01 (brown) in homology modeling

simulations. Figure adopted from [115].

To elucidate a sequence bias for specific residues in the HLA-binding groove that consis-

tently yield more favorable interactions with the two peptides, we analyzed the average binding

energy as a function of sequence identity score [35], calculated relative to the best binding al-

lele for each peptide (Figure 4.1). As a negative control, we computed the binding energy for

a mock HLA allele in which all residues in the MHC-binding groove are mutated to alanines
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(polyAla). As expected, the mock polyAla HLA exhibits a low binding affinity (i.e., high-binding

energy) to the peptide and is distant from the best binding allele (Figures 4.4 and 4.5, green

triangle, top left). We observe an evident correlation between the computed binding energies

and sequence similarity to the top binder. Our approach additionally allows us to decompose

residue specific contributions to overall binding energy for each peptide/HLA combination. We

find a clear trend for both the nonamer and decamer peptides with a set of HLA alleles where

a bulk of the binding energy is provided by the ”anchor” positions (Figure 4.6). By contrast, the

mock polyAla HLA exhibits considerably higher binding energy across the entire peptide length

(Figure 4.6). To elucidate key sequence features that allow the peptides to be accommodated

in the MHC groove, we derived a sequence profile among good binders for the two neoepitopes.

Such features are highlighted in the Kullback–Leibler sequence logo, which reveals preferred

residues in the HLA peptide-binding groove (Figures 4.4B and 4.5B). According to this metric,

highly invariant residues in the MHC-binding groove should play an essential role in mediating

pMHC interactions, as they are consistently observed in HLA alleles that exhibit high affinity

binding. A close inspection of our structural models for the nonamer and decamer bound to

a common allele in our data set, HLA-A*01:01, reveals similar polar contacts, primarily in the

A-, B-, and F-pockets, that correlate well with the positions of invariant MHC residues (Figures

4.4C, D and 4.5C, D). Specifically, both the nonamer and decamer C-terminal anchors employ

a similar interaction pattern in the F-pocket with conserved Thr, Lys, Trp, and Tyr residues of the

MHC (Figures 4.4B, D and 4.5B, D). High-ranking HLA alleles according to Rosetta’s binding

energy consistently demonstrate a low percentile rank using the epitope prediction method rec-

ommended by IEDB [123], which further suggests a high probability of forming a tight complex

with the neoepitopes (Figure 4.7).
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Figure 4.4
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Figure 4.4 (previous page): Evaluating the HLA binding repertoire of ALK neoepitope nonamer

AQDIYRASY using RosettaMHC. (A) Rosetta binding energies calculated from structure model-

ing of 2,904 unique HLA alleles from the IPD- IMGT/HLA [97] database, for the ALK neoepitope

nonamer (AQDIYRASY) plotted as a function of sequence similarity to the top binding allele,

HLA-B*15:107 (black circle). The binding energy of nonamer in our HLA-B*15:01 X-ray struc-

ture is shown as a reference (red square). A negative control was performed with a mock HLA

allele where all residues in the binding groove were replaced with Ala (polyAla groove, green tri-

angle), which shows high binding energy. The corresponding distribution of the HLA alleles on

the binding energy landscape is captured in the density plot shown on the right. Sequence iden-

tity scores were calculated using the BLOSUM62 [35] matrix. REU: Rosetta Energy Units (B)

Kullback-Leibler sequence logo [111] derived from multiple sequence alignment using Clustal

Omega [108] of peptide binding groove residues from all the HLA alleles that exhibit better

binding energies than HLA-A*01:01 (brown diamond), indicated with a gray dotted line in (A).

MHC residues with polar contacts to the peptide are denoted with a cyan asterisk with corre-

sponding MHC pocket noted. (C) and (D) Threaded structural model of HLA-A*01:01 displaying

nonamer peptide. Polar contacts between the MHC groove (gray sticks) and peptide (brown

sticks) are shown with cyan dotted lines in the HLA- A*01:01 A-, B-, and D-pockets (C) or C-,

E-, and F-pockets (D). The residue index for each interacting MHC residue is denoted with the

corresponding number from (B) using subscripts. Peptide residues (non-indexed) are labeled

without subscripts. Figure adopted from [115].
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Figure 4.5 (previous page): Evaluating the human leukocyte antigen (HLA)-binding repertoire

of ALK decamer AQDIYRASYY using RosettaMHC. (A) Rosetta-binding energies calculated

from modeling of 2,904 unique HLA alleles from the IPD-IMGT/HLA [97] database, for the ALK

neoepitope decamer (AQDIYRASYY) plotted as a function of sequence similarity to the top

binding allele, HLA-B*15:84 (black circle). The binding energy of decamer in our HLA-B*15:01

X-ray structure is shown as a reference (red square). A negative control was performed with

a mock HLA allele where all residues in the binding groove were replaced with Ala (polyAla

groove, green triangle), which shows high-binding energy. The corresponding distribution of

the HLA alleles on the binding energy landscape is captured in the density plot shown on the

right. Sequence identity scores were calculated using the BLOSUM62 [35] matrix. Abbreviation:

REU, Rosetta energy units. (B) Kullback–Leibler sequence logo derived frommultiple sequence

alignment using Clustal Omega of peptide-binding groove residues from all the HLA alleles

that exhibit better binding energies than HLA-A*01:01 (brown diamond), indicated with a gray

dotted line in panel (A). MHC residues with polar contacts to the peptide are denoted with a

cyan asterisk with corresponding MHC pocket noted. (C,D) Threaded structural model of HLA-

A*01:01 displaying decamer peptide. Polar contacts between the MHC groove (gray sticks)

and peptide (brown sticks) are shown with cyan dotted lines in the A-, B-, and D-pockets (C) or

C-, E-, and F-pockets (D). The residue index for each interacting MHC residue is denoted with

the corresponding number from panel (B) using subscripts. Peptide residues (non-indexed)

are labeled without subscripts. Panels (E,F) show polar contacts observed in the A-pocket (E)

and F-pocket in the X-ray structure of HLA-A*01:01/AQDIYRASYY (PDB ID 6AT9) between the

peptide (brown sticks) and residues in the MHC groove (gray sticks). The residue index for

each interacting MHC residue is denoted with the corresponding number from panel (B) using

subscripts. Peptide residues (non-indexed) are labeled without subscripts. Figure adopted from

[115].

4.1.2 High-resolution features in X-ray structure are recapitulated by the

Rosetta model

To test the validity of our structure-based simulations, we performed in vitro refolding of the

ALK-derived nonamer and decamer peptides with HLA-A*01:01. This allele was chosen be-

cause it is a high-frequency allele in multiple populations worldwide and has been previously

shown to form stable recombinant pMHC complexes for structural characterization [63]. Finally,

to conclusively test the atomic features predicted by our simulations, we determined the X-ray

structure of decamer complex HLA-A*01:01/β2m/AQDIYRASYY (PDB ID 6AT9). The peptide

conformation in the X-ray structure shows excellent agreement with our Rosetta model (1.1

Å backbone heavy atom RMSD), with several high-resolution features predicted by the model

are confirmed by the X-ray, including polar contacts within both the A- and F-pockets of the

MHC groove (Figures 4.5C–F and 4.8). Specifically, the side-chain hydroxyl group of the pep-
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tide Tyr10 is in contact with the same Tyr, Lys, and Trp side-chain atoms from the F-pocket

(Figures 4.5D,F). Finally, in comparison with the X-ray structure of the same peptide bound to

HLA-B*15:01, the side chain of Arg6 is flipped outwards from the groove when bound to HLA-

A*01:01 altering the peptide surface displayed to TCRs. Thus, our independent X-ray structure

corroborates the trend observed in our structure-based binding energy simulations and further

supports the potential for other HLA molecules to display the recurrent ALK neoepitopes with

unique TCR interaction properties. The detailed description of the workflow together with addi-

tional experimental data are presented in the article [115].

Figure 4.6: Residue specific binding energy contributions for ALK nonamer AQDIYRASY and

decamer AQDIYRASY peptides against different HLA grooves. Rosetta calculated average

binding energies contributed by ALK (A) nonamer and (B) decamer residues to (i) top binder HLA

allele, HLA-B*15:107 or HLA-B*15:84 (black), (ii) HLA-B*15:01 (red), (iii) HLA-A*01:01 (brown),

and (iv) control HLA allele (polyAla groove, green) where all the residues in the binding groove

were replaced with an alanine. Y-axis shows REU: Rosetta Energy Units. X-axis represents

each peptide residue. Anchor residues are indicated by an asterisk. Figure adopted from [115].
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4.2 SARS-CoV-2 peptide/HLA-A*02 antigen structural mod-

els

In this subsection, we reproduce our recently published work that showcases another appli-

cation of RosettaMHC [76]. Here, we utilized RosettaMHC to model all HLA-A*02:01 epitopes

predicted directly from the 30 kbp SARS-CoV-2 genome. The SARS-CoV-2 protein sequences

(NC_045512.2) were obtained from NCBI and used to generate all possible peptides of lengths

8, 9 and 10 (9631 8mer, 9,621 9mer and 9,611 10mer peptides). We used NetMHCpan-4.0

[45] to derive binding scores to HLA-A*02:01, and retained only peptides classified as strong or

weak binders (selected using the default percentile (%) rank cut-off values). The binding classi-

fication was performed using eluted ligand likelihood predictions. Our full workflow for structure

modeling is outlined in Figure 4.9A, with a flowchart shown in Figure 4.9B.

4.2.1 Selection of PDB templates

To model SARS-CoV-2/HLA-A*02:01 antigens, we identified 3D structures from the PDB that

can be used as templates for homology modeling. First, we selected all HLA-A*02 X-ray struc-

tures that are below 3.5 Å resolution and retained only those that have 100% identity to the

HLA-A*02:01 heavy chain sequence (residues 1-180). We found 236 redundant template struc-

tures bound to epitopes of lengths from 8 to 15 residues (of which 1 is an 8mer, 165 are 9mers

and 61 are 10mers). For each SARS-CoV-2 target peptide of (i) length 8, we selected a set

of candidate templates of lengths 8-9 by matching the target peptide anchor positions (P1 and

P8 in the 8mer, P2 and P9 in the 9mer templates), and (ii) lengths 9 and 10, we selected can-

didate templates of the same peptide length, by matching the target peptide anchor positions

(P2 and P9/P10) to each peptide in the template structures. Then, we used the BLOSUM62

substitution matrix to score all remaining positions in the pairwise alignment of the target/tem-

plate sequences, and the peptide sequence with the top score was selected as a template for

modeling. For target peptides where we found no templates which matched both peptide an-

chors, we scored all positions in the pairwise alignment and selected the top scoring template

for modeling.
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4.2.2 Structural modeling results and discussion

To predict all possible peptides expressed by SARS-CoV-2 that can bind to HLA-A*02:01, we

used a recently annotated version of all open reading frames (ORFs) in the viral genome from

NCBI [127], made available through the UCSC genome browser [50]. We used 8-, 9- and 10-

residue sliding windows to scan all protein sequences, since these are the optimum peptide

lengths for binding to the HLA-A*02:01 groove [117]. The limited availability of templates for

peptides of lengths greater than 10 (9 total in the PDB) suggests that such peptides are likely

to represent a small fraction of the displayed peptide repertoire, and were not considered here.

While spliced peptide epitopes [71] were not considered in the current study, this set can be

added to our results at a later stage. NetMHCpan-4.0 [45] predicted 54 8mer, 439 9mer and

256 10mer epitopes that can bind to HLA-A*02:01(classified as both weak and strong binders),

with a majority of them originating from nsp3 protein encoded by gene orf1ab (NCBI Reference

YP_009724389.1) (Figure 4.10).

To validate the SARS-CoV-2 peptide set predicted by NetMHCpan-4.0 and to derive plausi-

ble 3D models of the peptide/HLA-A*02:01 complexes, we used RosettaMHC, which leverages

a database of 236 HLA-A*02:01 X-ray structures, to find the closest match to each target epitope

predicted from the SARS-CoV-2 proteome (Figure 4.11A). We consider the range of available

structures in the PDB as a natural sampling of different possible backbone conformations within

the highly restrictive environment of the peptide-binding groove, as shown in a structural align-

ment of all 9mer templates (Figure 4.11B). To identify the best template for structure modeling of

each target peptide, we use sequence matching criteria which first consider the peptide anchors

(positions P1/P2 and P8/P9/P10 for 8mer/9mer/10mer epitopes), followed by a sequence simi-

larity metric calculated from the full alignment (or residues from P2 through P9 for 9mer template

and 8mer target peptide) between the template and target peptide sequences.

The template assignment statistics for the six different classes of SARS-CoV-2 epitopes in

our set are shown in Figure 4.11C. We find that we can cover the entire set of 749 predicted

8-10 residue binders using a subset of 123 HLA-A*02:01 templates in our annotated database

of PDB-derived structures (Figure 4.11D). Each target peptide sequence is then threaded onto

the backbone of its best identified template, followed by all-atom refinement of the side chain

and backbone degrees of freedom using Rosetta’s Ref2015 energy function [5], and binding
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energy calculation.

4.2.3 RosettaMHC models recapitulate features of high-resolution X-ray

structures

The sequence logos derived from 9mer and 10mer peptides with good structural complemen-

tarity to the HLA-A*02:01 groove according to Rosetta’s binding energy adhere to the canoni-

cal motif, with a preference for hydrophobic, methyl-bearing side chains at the peptide anchor

residues P2 and P9/P10 (Figures 4.12A and 4.13A). In addition, the sequences of high-affinity

binders, show preferences for specific amino acids at positions P1, P3, P6/P7, P7/P8 for 9mers

and 10mer peptides, respectively (Figures 4.12A and 4.13A). These preferences are recapit-

ulated in representative 9mer and 10mer models of the two top binders in our set as ranked

by Rosetta’s energy (Figures 4.12B and 4.13B), corresponding to epitopes TMADLVYAL and

FLFVAAIFYL derived from the RNA polymerase and nsp4 proteins, respectively, which are

both encoded by orf1ab. In accordance with features seen in high-resolution structures of HLA-

A*02:01-restricted epitopes, the peptides adopt an extended, bulged backbone conformation.

The free N-terminus of both peptides is stabilized by a network of polar contacts with Tyr 7, Tyr

159, Tyr 171 and Glu 63 in the A- and B- pockets of the HLA-A*02:01 groove. The Met (9mer) or

Leu (10mer) side chain of P2 is buried in a B-pocket hydrophobic cleft formed by Met 45 and Val

67. Equivalently, the C-terminus is coordinated through polar contacts with Asp 77 and Lys 145

from opposite sides of the groove, with the Leu P9/P10 anchor nestled in the F-pocket defined

by the side chains of Leu 81, Tyr 116, Tyr 123 and Trp 147. Residues P3-P8 form a series of

backbone and side chain contacts with pockets C, D and E, while most backbone amide and

carbonyl groups form hydrogen bonds with the side chains of residues lining the MHC-I groove.

These high-resolution structural features are consistent across low-energy models of unrelated

target peptides in our input set, suggesting that, when provided with a large set of input tem-

plates, a combined threading and side chain optimization protocol can derive accurate models

(within 2 Å RMSD), as suggested by our benchmark calculations (Figure 4.2).
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Figure 4.7: Structure-based binding energies versus IEDB epitope predictions. Paired Rosetta

binding energies and IEDB [123] percentile ranks calculated for 2,904 unique HLA alleles from

the IPD-IMGT/HLA Database [97]. Results are shown for the ALK decamer (AQDIYRASYY)

(top panel) and nonamer (AQDIYRASY) (bottom panel) neoepitopes. Percentile ranks were

computed using the recommended prediction method by IEDB, i.e. either a consensus score

derived from a series of prediction methods such as artificial neural networks (ANN), stabi-

lized matrix method (SMM) and scoring matrices derived from combinatorial peptide libraries

(CombLib) [107], or a single score from NetMHCpan [45]. A low percentile rank indicates that

the corresponding HLA allele is a good binder to the ALK neoepitope. REU: Rosetta Energy

Units. Figure adopted from [115].
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Figure 4.8: Overlay of the Rosetta modeled and X-ray determined HLA- A*01:01 groove when

bound to decamer peptide. An overlay of the Rosetta model (gray) and X-ray structure (pink,

PDB ID 6AT9) is shown for HLA-A*01:01 when bound to AQDIYRASYY (not shown). Side-

chains are represented as sticks for representative residues in contact with the peptide (see

Figure 4.5. Structures were aligned in PyMol using backbone heavy atoms (CA, C, N and O).

Figure adopted from [115].
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Figure 4.9: Structure-guided modeling of T cell epitopes in the SARS-CoV-2 proteome. (A)

General workflow of our pipeline for structure-guided epitope ranking. (B) Protein sequences

from the annotated SARS-CoV-2 proteome are used to generate peptide epitopes with a sliding

window covering all frames of a fixed length (9,631 8mer, 9,621 9mer and 9,611 10mer possible

peptides). Candidate peptides are first filtered by NetMHCpan-4.0 [45] to identify all predicted

strong and weak binders (54 8mer, 439 9mer and 256 10mer epitopes). For rapid template

matching and structure modeling, we use a local database of 236 HLA-A*02:01 X-ray structures

with resolution below 3.5 Å from the PDB. Each candidate peptide is scanned against all peptide

sequences of the same length in the database, and the top-scoring template is used to guide the

RosettaMHC comparative modeling protocol and to compute a binding energy. Figure adopted

from [76].
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Figure 4.10: Origin of SARS-CoV-2 epitopes predicted by NetMHCpan-4.0. (Left) Heat map

showing the enrichment (Frequency) of NetMHCpan-4.0 [45] filtered epitopes of lengths 8, 9

and 10, in each of the SARS-CoV-2 protein. The color scale for the frequency is shown below

the heat map. (Right) Bar plot showing a total number of NetMHCpan-4.0 filtered epitopes of

lengths 8, 9 and 10 (magenta, green and blue, respectively) obtained from the SARS-CoV-2

proteins. Figure adopted from [76].
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Figure 4.11: Coverage of predicted HLA-A02 epitopes by structural templates in the PDB. (A)

Number of HLA structures solved over the span of 30 years. (B) Structural overlay of HLA-A*02

PDB templates displaying 9-residue peptides, with the different peptide backbone conforma-

tions shown in magenta. (C) Matching statistics for all predicted SARS-CoV-2 strong (SB) and

weak binder (WB) peptides of lengths 8, 9 and 10, against an annotated database of 236 HLA-

A02 X-ray structural templates derived from the PDB. (D) Plot showing cumulative distributions

(CDF) for strong and weak binder peptides of lengths 8, 9 and 10, as a function of the total

number of matching templates used. Figure adopted from [76].
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Figure 4.12
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Figure 4.12 (previous page): Summary of RosettaMHC modeling results for SARS-CoV-

2 peptide epitopes. (A) Sequence logo from the 164 top ranking epitopes in the SARS-

CoV-2 genome, predicted by NetMHCpan-4.0. (B) The top 9mer epitope in our refined set,

TMADLVYAL, from RNA polymerase. Dotted lines indicate polar contacts between peptide

and heavy chain residues, with peptide residues labelled. The template PDB ID and origi-

nal peptide used for modeling the target peptide is indicated below the model. (C) Density

plot showing the distribution of average Rosetta binding energies (kcal/mol) for all epitopes of

length 9. Distributions reflect 93 PDB templates (green), 164 strong binder epitopes (accord-

ing to NetMHCpan-4.0) (blue), and 100 SARS-CoV-2 peptides classified as poor binders by

NetMHCpan-4.0 modeled using the PDB templates and used as a reference set for sub-optimal

binders (Poor binders; pink). The binding energies of models generated for 28 confirmed SARS

T cell epitopes from the IEDB and ViPR [30, 88, 42] are indicated by circles at the bottom of

the plot. Red circles indicate epitopes that lie within the distribution of refined PDB templates.

(D) Box plots showing distribution of average binding energies for 93 PDB templates, 100 sub-

optimal SARS-CoV-2 peptides, 28 confirmed epitopes [30, 88, 42] and RosettaMHC models

for 164 strong (SB) and 275 weak (WB) binder 9mer epitopes predicted from the SARS-CoV-2

proteome using NetMHCpan-4.0. An unpaired Mann-Whitney U test was performed for rele-

vant pairs of distributions and their statistical significance described by the p-values (where, p

< 0.1 is considered statistically significant) are (i) PDB templates and strong binders: p < 0.15

(ii) PDB templates and confirmed binders: p < 0.39 (iii) PDB templates and weak binders: p <
0.00002 (iv) confirmed epitopes and strong binders: p < 0.39, and (v) confirmed epitopes and

weak binders: p < 0.02, and (vi) strong and weak binders: p < 0.00004, are shown inside the

plot. The sequence logo was generated using Seq2Logo [112]. Figure adopted from [76].
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Figure 4.13
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Figure 4.13 (previous page): RosettaMHC modeling results for SARS-CoV-2 epitopes of length

10 (A) Sequence logo from the 42 top ranking epitopes in the SARS-CoV-2 genome, predicted

by NetMHCpan-4.0. (B) The top 10mer epitope in our refined set, FLFVAAIFYL, from nsp4.

Dotted lines indicate polar contacts between peptide and heavy chain residues, with peptide

residues labelled. The template PDB ID and original peptide used for modeling the target pep-

tide is indicated below the model. (C) Density plots showing distribution of average Rosetta

binding energies (kcal/mol) for all epitopes of length 10. Distributions reflect 31 PDB templates

(green), 42 strong binder epitopes (according to NetMHCpan-4.0) (blue), and 100 SARS-CoV-2

peptides classified as poor binders by NetMHCpan-4.0 modeled using the PDB templates and

used as a reference set for sub-optimal binders (Poor binders; pink). The binding energies of

models generated for 5 confirmed SARS T cell epitopes from the IEDB and ViPR [30, 88, 42]

are indicated by circles at the bottom of the plot. Red circles indicate epitopes that lie within

the distribution of refined PDB templates. (D) Box plots showing distribution of average binding

energies for 31 PDB templates, 100 sub-optimal SARS-CoV-2 peptides, 5 confirmed epitopes

[30, 88, 42] and RosettaMHC models for 42 strong (SB) and 214 weak (WB) binder 10mer epi-

topes predicted from the SARS-CoV-2 proteome using NetMHCpan-4.0. An unpaired Mann-

Whitney U test was performed for relevant pairs of distributions and their statistical significance

described by the p-values (where, p < 0.1 is considered statistically significant) are (i) PDB

templates and strong binders: p < 0.46 (ii) PDB templates and confirmed binders: p < 0.44 (iii)

PDB templates and weak binders: p < 0.14 (iv) confirmed epitopes and strong binders: p <
0.44, and (v) confirmed epitopes and weak binders: p< 0.27, and (vi) strong and weak binders:

p< 0.09 are shown inside the plot. The sequence logos were generated using Seq2Logo [112].

Figure adopted from [76].

4.2.4 TheRosetta energy function generally distinguishes native-likemod-

els

To evaluate the accuracy of our models and fitness of each peptide within the HLA-A*02:01

binding groove, we computed Rosetta all-atom binding energies across all complexes mod-

eled for different peptide sets. High binding energies can be used as an additional metric to

filter low-affinity peptides in the NetMHCpan-4.0 predictions, with the caveat that high ener-

gies can be also due to incomplete optimization of the Rosetta energy function as a result of

significant deviations between the target and template backbone conformations, not captured

by our protocol. We performed 10 independent calculations for each peptide which may al-

low Rosetta’s optimization protocol to sample slight changes in peptide backbone (up to 1 Å

from starting structure), and the 3 lower-energy models were selected as the final ensemble

and used to compute an average binding energy. The results for all 9mer and 10mer peptides

are summarized in Figures 4.12C, D, and 4.13C and D while additional results for 8mers are

provided through our web-interface (SARS-CoV-2 models). As a positive reference, we used
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the binding energies of the idealized and relaxed PDB templates, which are at a local minimum

of the Rosetta scoring function. As a reference set for sub-optimal binders, we modeled struc-

tures of peptides from SARS-CoV-2 proteome that are classified as poor binders according to

NetMHCpan-4.0 (highest %rank values).

We observe a significant, favorable (approx. -15 kcal/mol) energy gap between the aver-

age binding energies computed from the refined PDB templates relative to models obtained for

poor binder peptides. The binding energies for all predicted 9mers and 10mer binders show a

significant overlap with the refined PDB template energies (Figures 4.12C and 4.13C). Com-

parison of energy distributions of epitopes that are classified as strong versus weak binders by

NetMHCpan-4.0 shows a moderate bias towards lower binding energies for the strong binders

and a larger spread in energies for weak binders, likely due to suboptimal residues at the P2

and P9/P10 anchor positions (Figures 4.12D and 4.13D, with a significance level, p < 0.1 be-

tween strong and weak binders for both 9-mers and 10-mers). As an intendent positive set,

we also modeled 28 9mer and 5 10mer peptides that are homologous to peptides in the SARS

viral genome and have been previously reported to bind HLA-A*02:01 in the IEDB and ViPR

[30, 88, 42] databases. Inspection of Rosetta binding energies derived from models in this set

shows a similar distribution to the epitopes predicted by NetMHCpan-4.0, with the energies of all

the peptides falling well within the distribution of the refined PDB templates (red dots in Figures

4.12C and 4.13C).

4.2.5 Applications

Electrostatic surface analysis of SARS-CoV-2 epitopes relative to homologous peptides

derived from common cold coronavirus strains

T-cell responses to megapools of viral peptides have been observed in individuals not exposed

to SARS-CoV-2, thus providing evidence for cross-reactivity [132, 12] of T cells with similar

epitopes expressed by homologous coronavirus strains [14, 31]. Therefore, we analyzed the

electrostatic surfaces of our models relative to the models of homologous peptide/HLA-A*02:01

complexes derived from four strains of human common cold coronavirus (229E, HKU1, NL63,

OC43) and identified putative SARS-CoV-2 specific and cross-reactive epitopes.

To perform a structure-based classification of SARS-CoV-2 peptide/HLA-A*02:01 complexes
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and compare their surfaces to homologous peptides from common cold coronavirus strains, we

(i) aligned respective protein sequences (specifically, orf1ab, membrane, spike, envelope and

nucleocapsid proteins) from all the strains using Clustal Omega [108], (ii) extracted 395 (out

of 439) epitopes of length 9 from common cold coronavirus strains based on sequence homol-

ogy with SARS-CoV-2 binders predicted by NetMHCpan-4.0 using default %rank cut-off values

(44/439 SARS-CoV-2 epitope sequences are from proteins not considered), (iii) filtered out

141 epitopes containing insertions and deletions in the sequence alignment and those that do

not have homologous peptides in one or many strains of common cold coronavirus, (iv) mod-

eled structures of the remaining 254 common cold coronavirus peptide/HLA-A*02:01 complexes

from each strain using RosettaMHC, and (v) performed a comparison of surface electrostatic

potentials between each SARS-CoV-2 epitope and its corresponding common cold coronavirus

peptide homologs using multipipsa4.0.2 [114]. The multipipsa4.0.2 software applies the Adap-

tive Poisson-Boltzmann Solver (or APBS) [9] method to first compute electrostatic potentials,

and then compares the potentials using the Protein Interaction Property Similarity Analysis

(or PIPSA) protocol [124]. The side chains of the modeled complexes are protonated using

PROPKA [84] followed by the assignment of atom charges and radii using the Amber force field

[20] at a pH of 7.2. The electrostatic potentials of the structures are calculated by solving a

linear Poisson-Boltzmann equation for 129 points on a cubic grid using 150 mM ionic strength

at 298.15 Kelvin with protein dielectric of 1.0, and solvent dielectric of 78 using a probe radius

of 1.4 Å. Next, the PIPSA protocol compares the electrostatic potentials quantitatively by using

grid points on the superimposed regions (regions are at a distance of σ from the van der Waals

surface and are of thickness δ) around the complexes. The similarity between any two electro-

static surfaces is captured by the Hodgkin similarity index (HSI, ranges from -1 to 1, where -1, 0,

and 1 indicate electrostatic anticorrelation, no correlation and electrostatic identity respectively)

[38], which is converted into a distance measure, D (D =
√

(2− 2HSI)), that assigns values

between 0 and 2 (0: identity, 1: no correlation and 2: anticorrelation). For our study, we have

used 4 thickness (δ) and a distance of 3 from the molecular surface (σ) [64].

From 395 predicted strong binders from our set, 141 peptides are exclusive to SARS-CoV-

2, since there are no homologous sequences present in the four common coronavirus strains

considered here, or the corresponding sequences in the other four genomes have insertions or

deletions. To identify cross-reactivity according to structural and surface features, we first used
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RosettaMHC to model peptide/HLA-A*02:01 complex structures for all homologous peptides,

in addition to our previously described models for SARS-CoV-2 (Figure 4.14A). As mentioned

previously, we computed surface electrostatic potentials for each model using APBS [9], fol-

lowed by a pairwise comparison of potentials computed for the four homologous structures

relative to each SARS-CoV-2 peptide using PIPSA [124], which is summarized in four distance

scores for each peptide (Figure 4.14B). From the examination of similarity scores of models,

we found that (i) peptide SLAIDAYPL from orf1ab has highly conserved sequence and sur-

face features across all coronavirus strains (distance score = 0), and therefore T cells specific

for this epitope should be highly cross-reactive across different strains (ii) epitopes AIMTR-

CLAV, YLGGMSYYC, FVDGVPFVV, RIIPARARV, RILGAGCFV, RLANECAQV, SVFNICQAV,

IFVDGVPFV, and GVAPGTAVL from orf1ab are conserved with one or more common strains,

and are putatively cross-reactive (distance score ≤ 0.3) (Figure 4.14B), and (iii) there is no ap-

parent correlation between SARS-CoV-2 and common cold coronavirus pMHC surface features

for ALLSDLQDL (orf1ab), QLNRALTGI (spike), MLAKALRKV (orf1ab) and KIYSKHTPI (spike)

epitopes (distance score > 0.8) (Figure 4.14C). Six epitopes, known to induce CD8 T cell re-

sponses in COVID-19 patients and healthy donors have distance scores ranging from 0.5 to 0.9

(Table 4.1) [17, 72] suggesting that the SARS-CoV-2 epitopes are possibly cross-reactive.

Electrostatic potentials calculated from our models also allow us to compare distinct sur-

faces for TCR recognition between different high-affinity epitopes, as demonstrated for the four

top-scoring models by Rosetta binding energy (Figure 4.15A). Here, PIPSA analyses of elec-

trostatic potentials of these models allowed us to cluster them into two groups, (i) TMADLVYAL

and NLIDSYFVV, and (ii) KLWAQVCQL and FLAFVVFLL, where the surface exposed residues

at P2-P8 positions of the (i) and (ii) groups exhibit moderately negative and positive charges,

respectively (Figure 4.15). Full classification and ranking of all binders in our set on the basis

of their molecular surface features would further enable the selection of the most diverse panel

of peptides for high-throughput pMHC-tetramer library generation which can be used to identify

immunodominant epitopes, an avenue which is currently actively explored in our lab [85]. More-

over, tetramer screening of T cells from COVID-19 patients, recovered individuals and healthy

donors can be used to identify critical gaps in the T cell repertoire of high-risk groups, and to

design epitope DNA strings for vaccine development.
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Figure 4.14 (previous page): Electrostatic surface similarity scores of SARS-CoV-2 epitopes

and peptides derived from four human common cold coronavirus strains. (A) Flow diagram de-

scribing the calculation of scores to measure similarity between pMHC models of SARS-CoV-2

epitopes, relative to their homologous epitopes in four humanCommonCold Coronavirus (CCC)

strains based on electrostatic surface potentials. (B) A bar plot (top) showing the average

electrostatic similarity score obtained using PIPSA [124] (Y-axis) measured between SARS-

CoV-2 epitopes and homologous common cold coronavirus peptides. An electrostatic distance

score ranging between 0 and 2, where 0, 1 and 2 indicate electrostatic identity, no correlation

and anticorrelation. A heat map (bottom) shows the distance scores between SARS-CoV-2

epitopes (X-axis) and homologous peptides from each strain of common cold coronavirus (Y-

axis). The distance scores are indicated by the colored scale (from 0 to 1.2). The SARS-CoV-2

epitopes SLAIDAYPL, AIMTRCLAV, YLGGMSYYC, FVDGVPFVV, RIIPARARV, RILGAGCFV,

RLANECAQV, SVFNICQAV, IFVDGVPFV, GVAPGTAVL that share similar electrostatic sur-

faces with homologous peptides from common cold coronaviruses are highlighted using red

dots on the left in top and bottom plots. Similarly, the epitopes ALLSDLQDL, QLNRALTGI,

MLAKALRKV (blue dots) and KIYSKHTPI (orange dot) that exhibit no apparent correlation or

are electrostatically dissimilar are shown on the right in top and bottom plots. (C) A SARS-

CoV-2 epitope, KIYSKHTPI from surface/spike glycoprotein has electrostatic surface similarity

score of 0.794, 0.964, 0.784, 0.914 with homologous peptides derived from 229E, HKU1, NL63

and OC43 strains of common cold coronavirus respectively. The peptide sequences along with

strains are indicated on top of each electrostatic surface. Solvent-accessible surface represen-

tation with electrostatic potential in the indicated ranges (down to −61 kcal/(mole) in red and

up to +61 kcal/(mole) in blue) were calculated using the APBS solver [44] in made available

through multipipsa4.0.2 software [114]. Pymol [1] is used to generate the electrostatic surfaces

for visualization. All calculations were performed at 150 mM ionic strength, 298.15 Kelvin, pH

7.2, protein dielectric 1.0, and solvent dielectric 78 with a probe radius of 1.4 . Figure adopted

from [76].

4.2.6 Accessibility of SARS-CoV-2 peptide/HLA-A*02:01 models through

the UCSC genome browser

Immunology tracks (annotations) contain SARS-CoV-2 protein epitopes reported in the litera-

ture [26]. Included are epitopes that have been predicted and/or validated to be immunogenic.

These data can be overlaid with structural and variation information to track mutations that

overlap with potential therapeutic targets. These tracks (IEDB predictions, Poran HLA I and

Poran HLA II) also display epitopes recognized by CD8+ or CD4+ T cells when presented by

human leukocyte antigen (HLA) molecules on host cells [30, 91]. When possible, the latter

are organized according to the HLA allele of the host used in their presentation. For the track

CD8 RosettaMHC, interactive 3D models from Rosetta are available through clicking on the

annotated epitope [76]. These tracks will be updated as validation and identification of epitopes
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Table 4.1: SARS-CoV-2 CD8+ cross-reactive T-cell epitopes known to induce immune re-

sponses in COVID-19 patients and healthy donors. Table adopted from [76].

Epitope

Homologous peptide

sequences from common

cold coronavirus strains

BLOSUM62

sequence

similarity

score

Electrostatic

surface

distance

score

RLNEVAKNL

KLQTLIDNI (229E) 12 0.772

LIQESIKSL (HKU1) 12 0.573

ELQGLIDQI (NL63) 3 0.801

RLQEAIKVL (OC43) 19 0.608

YLQPRTFLL

ALASYADVL (229E) 0 0.648

PLSKRQYLL (HKU1) 15 0.463

AFATFVDVL (NL63) -5 0.703

PLTSRQYLL (OC43) 14 0.506

FLHVTYVPA

FLHTVLLPT (229E) 25 0.564

FMHFSYKPI (HKU1) 27 0.540

FLHTVLLPT (NL63) 25 0.564

FIHFSYVPT (OC43) 34 0.592

RLDKVEAEV

RLDTIQADQ (229E) 23 0.523

RLDALEAQV (HKU1) 30 0.500

RLDSIQADQ (NL63) 24 0.567

RLDALEAEA (OC43) 29 0.522

LLFNKVTLA

ILFSKLVTS (229E) 19 0.510

LLFDKVKLS (HKU1) 28 0.542

LLFSKVVTS (NL63) 24 0.566

LLFDKVKLS (OC43) 28 0.542

KIYSKHTPI

KGFSSDVLS (229E) 2 0.794

YAYYADSGM (HKU1) 0 0.964

NGYQHNSVV (NL63) 5 0.784

YAYFTDTGV (OC43) 6 0.914

continues.

4.3 Limitations of homologymodeling using single template

strategy

RosettaMHC relies on the availability of accurate structural templates for modeling a pMHC of

interest. Selection of incorrect templates may result in steric hindrance of residues in the pep-

tides with the residues in the MHC groove leading to sub-optimal models and binding energies.

For instance, several RosettaMHC models containing bulky/charged arginine residues in their

peptide sequence had their corresponding side chains buried within the MHC groove instead of

orienting towards the TCR as highlighted by five HLA-A*02 structures in the PDB (Figure 4.16).
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This limitation can be overcome by sampling diverse peptide backbone conformations. Here,

we can employ FlexPepDock or fragment-based approaches, however using these methods

could impact throughput and accuracy.

In addition, we have a representative number of crystal structures in the PDB for the frequent

alleles such as HLA-A*02:01 and no structural templates for underrepresented alleles (lack of

generality). Therefore, we need a mechanism to derive structural templates from existing PDB

structures so that RosettaMHC can model pan-allelic complexes.

4.3.1 Analysis of pMHC structures in the PDB

To overcome the limitations listed in the previous sections, we aimed to select optimal tem-

plates from the PDB. From superposition of pMHC structures in the PDB, we found that peptide

backbones should be strictly less than 1 Å to preserve correct backbone and side chains across

the peptide (Figure 4.17A). To model sub-angstrom structures, we examined the distribution of

RMSD values of the peptide backbone pairs and found that a randomly selected peptide back-

bone for a query peptide sequence in the PDB is above 1 Å for approx. 60% of the cases (Figure

4.17B). However, we found alternative sub-angstrom peptide backbones for every peptide of a

pMHC complex in the PDB (Figure 4.17C). Moreover, the peptide backbones that are closer to

each other may be displayed by different alleles which makes it possible to model any peptide

bound to any allele as highlighted in panel D of Figure 4.17.

Through these preliminary analyses of peptide backbones in the PDB, we reasoned that

we have sufficient backbone conformations naturally sampled to perform homology modeling

accurately. While we can model a peptide of interest using multiple-templates, particularly with

all available peptide conformations in the PDB, we believe that this strategy drastically reduces

throughput. Therefore, we devised a new strategy based on the hypothesis that similar MHC

grooves exhibit similar peptide repertoires and discuss this approach in detail in the subsequent

sections.
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4.4 Multi-template homologymodeling of peptide/MHC-I com-

plexes

To sample diverse set of peptide backbone conformations, we select multiple PDB templates

based on high sequence identity to the MHC groove (MHC groove is formed by the residues

within a distance of 3.5 Å from the residues in the peptide) in preference to the whole MHC

heavy chain sequence consisting of α1 and α2 domains, also referred to as the groove-based

approach. Specifically, for each allele, we select templates from 318 MHC class I structures in

PDB (17 8mers, 232 9mers and 69 10mers) as candidates if the MHC groove residues match

with at least 70% identity in the sequence alignment of MHC heavy chains and display peptides

with identical lengths (Figure 4.18). For instance, to select 2GTZ as a template to model HLA-

A*02:01 with a peptide of interest, we align the MHC heavy chain sequences of 2GTZ and HLA-

A*02:01 obtained from IMGT/HLA database [97]. Further, we select the residues (referred to as

groove residues) in the MHC heavy chain of 2GTZ that are within 3.5 from all the residues in the

peptide displayed by 2GTZ. We compare the groove residues of 2GTZ with residues in HLA-

A*02:01 that agree in the alignment (Figure 4.18A). Finally, we select 2GTZ as a template for

modeling if the groove residues match with at least 70% sequence identity. Using this criteria,

we obtain a significantly higher number and diverse set of templates with naturally sampled

backbones for the most frequently found alleles in the Caucasian (CAU), Hispanic (HIS), African

American (AFA) and Asia Pacific Islander (API) populations (Table 4.2 and Figure 4.18B) [29].

We restrict multi-template homology modeling to peptides of length 9.

4.4.1 Evaluation of RosettaMHCwith templates selected usingMHCgroove

sequence identity

We evaluated RosettaMHC by modeling (i) a blind target, PHOX2B peptide/HLA-A*24:02 com-

plex [130], (ii) peptides of length 9 in the PDB displayed by all the HLA-A, -B, -C, -E and -G

alleles, and (iii) five SARS-CoV-2 derived peptides bound to HLA-A*02:01 whose structures

were deposited in the PDB recently [110]. To perform modeling, we first select templates for

each allele using the groove-based approach (Figure 4.18A), homology model each pMHC of

interest on all the templates that have similar grooves, refine the conformations in the Rosetta
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Table 4.2: Most frequent alleles in CAU, HIS, AFA, and API population [29].

Super type Total Alleles

HLA-A 21

A*02:01, A*23:01,

A*03:01, A*30:01,

A*30:02, A*68:02,

A*74:01, A*33:03,

A*01:01, A*02:02,

A*02:07, A*02:03,

A*26:01, A*02:06,

A*11:01, A*24:02,

A*32:01, A*68:01,

A*29:02, A*31:01,

A*25:01

HLA-B 21

B*53:01, B*07:02,

B*35:01, B*15:03,

B*42:01, B*45:01,

B*44:03, B*58:02,

B*58:01, B*08:01,

B*40:01, B*51:01,

B*46:01, B*40:06,

B*15:02, B*52:01,

B*15:01, B*44:02,

B*18:01, B*14:02,

B*40:02

HLA-C 17

C*04:01, C*07:01,

C*16:01, C*02:02,

C*06:02, C*07:02,

C*17:01, C*03:04,

C*08:02, C*05:01,

C*01:02, C*08:01,

C*15:02, C*03:02,

C*12:02, C*12:03,

C*03:03

force field and extract binding energies.

PHOX2B peptide/HLA-A*24:02 structural models

PHOX2B is an important target for childhood cancers [130]. Here, we model the structure of

PHOX2B peptide (QYNPIRTTF) displayed by HLA-A*24:02 [130]. To model PHOX2B pep-

tide/HLA-A*24:02 complex we utilized all alleles as templates selected using the groove-based

approach. We filtered top 5 best energy producing models and found that the top scoring model

is optimal and has a peptide backbone heavy-atom RMSD value of 0.69 Å (Figure 4.19). The

energy gap between the top scoring and the second best scoring models is significant with≈-10
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energy units suggesting that Rosetta energy function has the capacity to distinguish native-like

models (Figure 4.19).

Peptides derived from pMHC complexes in the PDB

To evaluate our method further, we homology modeled 225 peptide sequences of length 9 de-

rived from 43 alleles across HLA-A, -B, -C, -E and -G super type structures in the PDB using all

the templates (except the natives) from the MHC groove-based template library and examined

if the Rosetta energy function could distinguish native from non-native templates consistently

(Figure 4.20). From our analyses, we found that approx. 63% of the models contain peptide

backbones within 1 Å RMSD from their natives (Figure 4.20A). Moreover, the number of struc-

tures for specific super types such as HLA-A*02 are over represented in the PDB, despite that

we obtain accurate models for non-HLA-A*02 super types (Figure 4.20B); peptides displayed

by all the alleles modeled with sub-angstrom accuracy and are top scoring by Rosetta energy).

However, it is worth noting that we can recover sub-angstrom backbones for the remaining

27% of the peptides within top 5 structures scored by energy, 6% within top 10 and remaining

among all the models generated using multi-template homology modeling (Figure 4.20C). A

general trend we observe is that the best models (or lowest RMSD models) have higher binding

energies compared to the top scoring models identified by Rosetta even though energies from

bothmodels overlap significantly with the energies of optimized native structures (Figure 4.20D).

These results suggest that the energy function is low-resolution and cannot fully discriminate

between accurate and inaccurate peptide backbones (for at least 37% of the peptides).

4.4.2 Multi-template modeling samples accurate conformations relative

to single-template modeling for SARS-CoV-2 derived peptides

Recently, crystal structures of five SARS-CoV-2 peptide/HLA-A*02:01 complexes were pub-

lished (PDB IDs: 7KGO, 7KGP, 7KGQ, 7KGR, and 7KGS), we treated these peptides as blind

targets and modeled them using RosettaMHC with groove-based template selection approach

[110]. Specifically, each peptide was modeled with 132 templates (that matched with HLA-

A*02:01 with at least 70% sequence identity among the MHC groove residues). We compared

the peptide backbones of the models with the X-ray structures and found that four out of five
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structures weremodeled with sub-angstrom accuracy (Figure 4.21; pale greenmodels). In com-

parison with structures computed using single template modeling based on peptide sequence,

multi-template modeling helps sample diverse and more accurate backbones as demonstrated

in Figure 4.21 (crimson and pale green models). While multi-template modeling holds promise

in selecting sub-angstrom pMHC structures for 63% of the peptides (based on our benchmark

dataset), the energy function is not high-resolution. Moreover, we have much closer peptide

backbones that have higher energies compared to those indicated as lowest energy models

as shown in the energy vs RMSD plot (Figure 4.21; right panels). In an ideal case, we expect

models closer to the native (or lower RMSDmodels) to have lower energy, therefore, the energy

vs RMSD plots guide us towards the bottom of the energy funnel where the native-like models

are found. In the case of SARS-CoV-2 peptides, we do not have a clear signal between closer

and farther peptides suggesting that we need to either improve the energy function or utilize

a complementary approach that can help us identify accurate peptide backbones or eliminate

incorrect templates (Figure 4.21; energy funnels).
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Figure 4.15: Variability in TCR recognition surfaces of HLA-A*02 with different high-affinity pep-

tides. (A) Molecular surfaces of SARS-CoV-2/HLA-A*02:01 RosettaMHC models are shown for

four top-scoring epitopes (ranked by Rosetta binding energy from left to right) captured in the

A, B, C, D, E and F pockets of the MHC-I groove (top panel). The origins of the peptide epi-

topes in the 30 kbp SARS-CoV-2 genome are noted. Electrostatic surfaces computed for the

same models are shown in the bottom panel [9]. Solvent-accessible surface representation

with electrostatic potential in the indicated ranges (down to −61 kcal/(mole) in red and up to

+61 kcal/(mole) in blue) were calculated using the APBS solver [9] in the mulitpipsa4.0.2 [114]

software. The visual representations of the electrostatic surfaces for the models are obtained

from Pymol [1]. All calculations were performed at 150 mM ionic strength, 298.15 Kelvin, pH

7.2, protein dielectric 1.0, and solvent dielectric 78 with a probe radius of 1.4 . (B) A heat

map showing electrostatic surface distance scores among four top-scoring epitopes listed in

(A), computed using PIPSA [124, 114]. A distance score key is shown on the right, where a

score of 0 indicates electrostatic identity, 1 indicates no correlation and 2 indicates electrostatic

anticorrelation. Figure adopted from [76].
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Figure 4.16: Sub-optimal placement of side chains due to the selection of incorrect peptide

backbone. (A) Overlay of five HLA-A*02 PDB structures containing arginine residues (green

sticks) in their peptide sequences. The PDB IDs and the peptide sequences are 3FQT (GLL-

GSPVRA), 3FT4 (VLRDDLLEA), 5C0F (RQWGPDPAAV), 5E00 (GVWIRTPPA), 6AMT (MMW-

DRGLGMM). (B) RosettaMHCmodel of SARS-CoV-2 epitope KLFDRYFKY/HLA-A*02:01 com-

plex with arginine of the peptide buried in the MHC groove.
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Figure 4.17: Pairwise RMSD analyses of pMHC structures in the PDB. (A) Overlay of five

SLANTVATL/HLA-A*02 models with crystal structure in the PDB demonstrating the differences

in the peptide backbones in terms of RMSD values (in Å). The models with RMSD value greater

than 1 Å lose backbone and side-chain accuracy. (B) Distribution showing median pairwise

RMSD values between peptide backbones derived from 9mer pMHC structures in the PDB.

(C) Distribution showing RMSD values of peptide backbones with their closest templates in the

PDB. (D) Heatmap showing the origin of closest peptide backbones in the PDB for different

alleles. Figure adopted from a manuscript in preparation.
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Figure 4.18: Multi-template library for homology modeling. (A) Peptide/MHC structure (PDB ID:

2GTZ) highlighting the peptide residues in salmon and the groove residues in blue. Sequence

alignment between 2GTZ and HLA-A*02:01 heavy chains focusing the groove residues in blue.

(B) RosettaMHC workflow showing the mechanism of PDB template selection based on high

sequence identity to the MHC groove and homology modeling using multiple templates. (C) Bar

plot showing the number of PDB templates displaying peptides of length 9 as a function of the

most frequent alleles (Table 4.2). The number of templates selected using full sequence-based

(blue) and MHC groove-based with 70% sequence identity (green) criteria are shown. Figure

adopted from a manuscript in preparation.
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Figure 4.19: RosettaMHC identifies an optimal template for PHOX2B peptide/HLA-A*24:02

complex [130]. (A) Overlay of top 5 scoring RosettaMHC structures modeled using a new

template library. HLA-A*24:02 structures are shown in gray. The peptides are shown in stick

representation. PHOX2B peptide is colored pink, the models from corresponding templates are

highlighted in cyan (2BCK), salmon (5N6B), yellow (2GIT), purple (5MEQ) and green (1IM3).

The peptide sequences of the templates are provided. The binding energies (Rosetta Energy

Units, REU) and backbone heavy-atom (N, CA, C, O) are shown below the structure diagrams.
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Figure 4.20: Benchmark results of the groove-basedmulti-template selection criteria. (A) RMSD

(Å) distribution of peptides backbones derived from pMHC structures in the PDB and the same

peptide/MHC sequences (also referred to as benchmark set) modeled from templates selected

using the groove-based template selection. RMSD values are calculated for the heavy atoms,

N, C, CA, O, of the peptide backbone. (B) Pie plot showing the alleles for which RosettaMHC

successfully modeled top scoring sub-angstrom peptide backbones. (C) Distribution plot show-

ing the number of peptides in the benchmark set that have sub-angstrom backbones and within

top k when scored by binding energy. In an ideal case, the top scoring model is sub-angstrom.

(D) Rosetta binding energy (REU) distributions of native X-ray structures relaxed in the Rosetta

force field (green), top scoring models of the benchmark set (blue) and models selected by

lowest RMSD values (crimson). Figure adopted from a manuscript in preparation.
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Figure 4.21
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Figure 4.21 (previous page): Multi-template modeling selects optimal peptide backbone con-

formations relative to single template modeling. (Left) Overlay of X-ray structures (gray) of five

SARS-CoV-2 peptide/HLA-A*02:01 complexes on models (crimson) generated using Roset-

taMHC and templates selected using peptide sequence similarity. (Middle) Overlay of X-ray

structures (gray) of five SARS-CoV-2 peptide/HLA-A*02:01 complexes on models (pale green)

generated using RosettaMHC multi-template modeling approach. The RMSD values between

X-ray structures and the models are reported below each panel. The PDB IDs of the five X-ray

structures together with peptides displayed are indicated on the leftmost column next to the

structure diagrams. (Right) Rosetta binding energy (REU) vs RMSD (Å) plot generated from

the groove-based multi-template modeling results. Each point represents a model generated

using different template. In these plots, native or the X-ray structure is highlighted by magenta,

lowest energy model using green, lowest RMSD model among top five models scored by en-

ergy using red and lowest RMSD and energy model using yellow points. Figure adopted from

a manuscript in preparation.

4.5 Limitations of MHC groove-based multi-template homol-

ogy modeling

We demonstrated that we can accurately model sub-angstrom structures of approx. 63% and

approx. 90% of peptides among top-scoring and top-5 scoring models in the PDB benchmark

and SARS-CoV-2 blind data sets. Despite such high-performance, it is difficult for expert and

non-expert users to select a correct structure among top-5 scoring models. Generally, when

we examine Energy vs RMSD values, we expect models having lower energy to also be closer

to the native, whereas in our case, we lack the signal between energy and RMSD values for a

subset of the peptides which is otherwise useful for better discrimination. Therefore, we built a

workflow that utilizes dihedral angles to discriminate optimal models (Figure 4.22A). To evaluate

if dihedral angles are a good indicator of the peptide backbone, we computed pairwise distance

scores between dihedral angles as given by the equation 4.1 [82]. Here, we found that lower the

distance scores between peptide backbones, closer they are to the native structures (measured

in terms of RMSD values) (Figure 4.22B).

Distance score =

k∑
i=1

2(1− cos(θitemplate − θitarget)) (4.1)

In the Eq. 4.1, k ∈ {2, 3, 4, 5, 6, 7, 8} and θ ∈ {φ, ψ}.

We hypothesized that dihedral angles can identify optimal templates for homology modeling,
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Figure 4.22: Dihedral angles can discriminate near-native templates. (A) Diagram showing the

dihedral angles (φ vs ψ) for a section of a protein backbone. This panel is adopted from [27].

(B) Scatter plot showing a correlation between backbone dihedral angles and RMSD values

across all the peptide pairs displayed by the MHC molecules in the PDB. Figure adopted from

a manuscript in preparation.

therefore, we built an artificial neural network to predict dihedral angles given the sequence of

a peptide. Moreover neural networks have been used to predict dihedral orientation restraints

from sequence information to successfully model complicated CDR3 loops of antibodies and

more generally in identifying errors in loop regions in a given structure [102, 37]. Therefore,

we use artificial neural network in conjunction with groove-based approach to help us eliminate

templates that are potentially inaccurate. We discuss the architecture and performance of ANNs

for different tasks in detail in the next sections.

4.6 Artificial Neural Network to predict dihedral angles

A peptide sequence can adopt a backbone conformation within the MHC groove by sampling

from a finite set of backbone dihedral angles that fall within the regions described by the Ra-

machandran plots for the amino acids (Figure 4.23A). For the purpose of demonstration, we

derived φ and ψ dihedral angles for 150 peptides of length 9 across positions 2 to 8 and found

that positions, 2, 3, 7 and 8 are conserved relative to positions 4, 5, and 6 (Figure 4.23A), which

is in agreement with the previous findings by the other groups [79].

The first feed forward neural network is trained to predict dihedral angles of peptide se-

quences. We use as input, sequences of peptides displayed by HLA-A, -B, and -C alleles in
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the PDB. Next, we derive backbone dihedral angles from the corresponding pMHC structures

in PDB (Figure 4.23) for training. In particular, we are interested in the dihedral angles (φ and

ψ) of residues 2 to 8 of the peptide that result in a total of 14 φ and ψ angles (see the distribution

of angles in peptides derived from the pMHC structures in Figure 4.23A).

Input features

We used one-hot encoding of the sequences provided as input to the network. Therefore, we

have a total of L× 20, where L is the length of the amino acid sequence of the peptide. For

instance, for a peptide of length 9, we have 9× 20 = 180 input features for encoding the peptide

sequence.

Training dataset

We utilized 214 manually curated pMHC structures in the PDB (deposited prior to 2019). These

structures display peptides of length 9 and are from super types HLA-A, -B, -C, -E and -G and

have resolution of less than 3.5 Å. All the peptides are bound to a total of 43 alleles shown in

Appendix (Table B) We idealized all the pMHC structures in the Rosetta force field to adjust

dihedral angles that were identified as Ramachandran outliers.

Validation dataset

We performed leave-one-out cross-validation of 214 peptides. In particular, we applied 213

pMHC structures in the PDB to train the ANN and predict dihedral angles for one peptide and

repeated these calculations for all the peptides in the set.

Network architecture

Our neural network has an input layer that accepts one-hot encoded peptide sequences. The

L× 20 input features are passed to a hidden layer with 20 nodes. We tested the ANN archi-

tecture with several nodes ranging from 4 to 64 and applied 20 since we obtained lower mean

absolute error values for our validation test set. Finally, we have an output layer which outputs

14 dihedral angles. We applied distance score function as a loss function (Eq. 4.2; [82]) (lower
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the distance, better the prediction) with Adam optimizer and L2 regularization penalty of 0.001

with 100 epochs (Figure 4.23B).

Distancei =

k∑
i=1

2(1− cos(θitemplate − θitarget)) (4.2)

In the Eq. 4.2, Distancei is the distance between same type of angles at residue i in the

template and the target structures and θ ∈ {φ, ψ}.

Results

We performed leave-one-out cross-validation of the ANN to evaluate the dihedral angle pre-

dictions of the peptides displayed by pMHC molecules in the PDB (Figure 4.23C). From our

analyses, it is evident that the ANN can predict correctly for 11 out of 14 dihedral angles as

shown by the average RMSD distance values between predicted and template dihedral angles

across the peptides (Figure 4.23C). Here, we have used a lenient 40◦ threshold to classify if a

predicted angle is correct. The ANN performs poorly for ψ4 and φ7 (Figure 4.23C) and these

are the residues with high degree of variations in the peptide backbone as highlighted by Ra-

machandran plots in Figure 4.23A.

While our predictions are generally accurate for residues 2, 3, 6, and 8, however, these

residues are not necessarily the true indicators of variability seen in the peptide backbones.

We know that our dataset consists of templates with conserved backbone angles for anchor

positions. Therefore, we need to weigh the predictions based on their angles and their positions

in the peptide sequence. To address this problem, we constructed another neural network that

accepts distances between predicted and template dihedral angles and classifies the templates

as optimal or sub-optimal.

4.7 Artificial Neural Network to classify optimal templates

The second feed forward neural network is trained to classify the pMHC templates as optimal or

sub-optimal by using distance scores between predicted and template dihedral angles. We use

as input, predicted dihedral angles of the peptide by the first ANN and output the PDB IDs of all

the templates classified as optimal. The distance scores between all pairs of peptides displayed
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by the HLA-A, -B, -C, -E and -G alleles in the PDB are used for training the ANN (Figure 4.24).

Input features

We used distance scores between peptide and PDB templates computed as shown in Eq. 4.2

as input to the network. Therefore, we have a total of 14 values, seven φ and seven ψ values

for residues 2 to 8 for every target/template peptide pair.

Training dataset

Weutilized 214manually curated pMHC structures in PDB (same set used to train the first ANN).

We computed distance scores between dihedral angles for every peptide pair in the PDB with

the output label as optimal or sub-optimal if their backbone heavy-atom RMSD values are <1 Å

or >1 Å .

Validation dataset

We performed leave-one-out cross-validation of 214 peptides. In particular, we applied 213

pMHC structures in PDB to train the ANN, selected all the templates classified as optimal for

the peptide and repeated these calculations for all the peptides in the set. We used receiver

operating characteristic curve to estimate the threshold to classify if a template is optimal or

sub-optimal. A threshold was selected by choosing a value that filtered optimal templates for

most peptides in the benchmark dataset.

Blind test dataset

We used 7 SARS-CoV-2 pMHC X-ray structures [110, 77] as a blind test dataset. The PDB

IDs of these structures are 7KGO, 7KGP, 7KGQ, 7KGR, 7KGS, 7M8U, and 7M8T and the

structures have a resolution of less than 2.2 Å. A total of five structures have peptides bound

to HLA-A*02:01, and two are displayed by HLA-A*11:01 and HLA-B*35:01 alleles respectively.

These structures are not included in either training or validation sets.
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Network architecture

Our neural network has an input layer that accepts distance scores between predicted and tem-

plate dihedral angles. The 14 input features are passed to a hidden layer with 14 nodes. Finally,

we have an output layer which outputs a score between 0 and 1 for the target/template pair.

A threshold is applied to classify a given template are optimal or sub-optimal. We applied dis-

tance score function as a loss function (Eq. 4.2; [82]) with Adam optimizer and L2 regularization

penalty of 0.001 with 100 epochs (Figure 4.24A).

Results

We performed leave-one-out cross-validation of the ANN for the peptides in the PDB to evaluate

(i) the reduction in the number of templates for each peptide, and (ii) the sub-angstrom models

retained post combined groove-based and ANN-based template selection (Figure 4.24). For

peptides displayed by 43 alleles in the PDB, we observe an average decrease of 70% of the

templates relative to the number of templates selected using only the groove-based approach

(Figure 4.24B), which boosts the throughput of our method significantly. In addition, we found

that 70% of the peptides are predicted to be sub-angstrom and top scoring (Figure 4.24C).

Lastly, we can recover sub-angstrom backbones for 70% of peptides displayed by the alleles

from all super-types in the PDB (Figure 4.24D).

To further test the accuracy and performance of the ANN and groove-based approach on

the unbiased test set, we modeled the structures of seven SARS-CoV-2 peptides displayed by

three different alleles [110, 77]. Six out of seven peptides were modeled with sub-angstrom

accuracy (Figure 4.25). Upon observation of the two success cases for peptides across two

different alleles, we found that the placement of side chains is recovered accurately in the top

scoring models (Figure 4.25). Moreover, all the models in the success cases filtered using ANN

are found within the 1 Å from their native. In a failure case, we found that the models selected in

general are sub-optimal, so we reasoned that ANN cannot filter sub-angstrom models resulting

in a peptide backbone of 1.4 Å (Figure 4.25).

We demonstrated that we can accurately predict models of pMHC complexes with sub-

angstrom accuracy in a high-throughput manner for over 70% of the benchmark and the blind

test sets. We may further improve the performance of the template selection process by ana-
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lyzing side chain dynamics of the naturally sampled peptide backbones. The hypothesis of a

possible approach is discussed in the Future Work chapter of this thesis.

4.8 Conclusions

Homology modeling of pMHC-I complexes relies on the selection of accurate templates dis-

playing near-native peptide backbones. To select templates, we applied (i) peptide sequence

similarity, and (ii) MHC groove sequence identity criteria. We found that using peptide se-

quence similarity, we can obtain structural models within 1.5 Å, whereas, the accuracy is higher

(or RMSD between the models and the natives is < 1 Å) for a majority of the peptides displayed

by different alleles in our benchmark dataset if we use MHC groove-based approach. In addi-

tion, we employed ANNs to filter out incorrect peptide backbones. Through our analyses using

benchmark, validation and blind datasets we demonstrate that we can model sub-angstrom

pMHC structures which are useful to study different diseases and devise better therapies.
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Figure 4.23: (A) Each plot shows the distribution of dihedral angles (φ vs ψ) for positions 2

to 8 in approx. 150 peptides derived from pMHC structures in the PDB. These distributions

demonstrate that positions 2, 3, 7 and 8 are conserved relative to positions 4, 5 and 6. (B)

Feed forward neural network used to predict dihedral angles given the peptide sequences. The

peptide sequences together with 14 dihedral (7 φ and 7 ψ) angles from residues 2 to 8 are used

to train a feed forward neural network. The network has an input layer that accepts one-hot

encoded peptide sequence, a hidden layer that has 20 nodes and uses a relu activation function

and an output layer that predicts the dihedral angles. (C) Bar plot showing the average RMS

difference between predicted and template dihedral angles across all the peptides in leave-one-

out cross validation. Figure adopted from a manuscript in preparation.
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Figure 4.24: (A) Feed forward neural network used to classify pMHC templates as optimal and

sub-optimal given the predicted dihedral angles of the peptide of interest. The network has an

input layer that accepts distance scores of predicted and template dihedral angles, a hidden

layer that has 14 nodes and uses a relu activation function and an output layer with a sigmoid

activation function that returns a score between 0 and 1 for each template in the PDB. A thresh-

old score is determined and used to classify templates as optimal. (B) Bar plot showing the

average reduction in number of templates selected as optimal using groove-based and ANN

approach (blue) vs only the groove-based approach (green) across all the alleles in the PDB.

(C) RMSD (Å) distribution of peptides backbones derived from pMHC structures in the PDB

and the same peptide/MHC sequences (also referred to as benchmark set) modeled using tem-

plates selected using the combined ANN-based optimal template selection and groove-based

approach. RMSD values are calculated for heavy atoms, N, C, CA, O, of the peptide backbone.

(D) (Left) Pie plot showing the distribution of peptides displayed by different alleles in the PDB.

(Right) Pie plot showing the distribution of peptides displayed by different alleles modeled by

RosettaMHCwith sub-angstrom accuracy. The pink region of the pie plot represents the peptide

backbones modeled with >1 Å accuracy. Figure adopted from a manuscript in preparation.
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Figure 4.25: Backbone conformations sampled using ANN and groove-based template se-

lection for SARS-CoV-2 peptides bound to HLA-A*02:01 and HLA-B*35:01. (Top) Overlay of

SARS-CoV-2 peptide backbone and side chain conformations of native (grey) and best scor-

ing structures (pale green) modeled by RosettaMHC. Alleles displaying each peptide and the

native PDB IDs are listed. The RMSD values (in Å) between native and models are reported

below. Amino acids of each position of the peptide are indicated on the stick diagrams. (Bot-

tom) Each sub-panel shows Rosetta energy (in Rosetta Energy Units; REU) vs RMSD (in Å)

plot for SARS-CoV-2 derived peptides bound to HLA-A*02:01 (PDB IDs: 7KGR and 7KGS),

and HLA-B*35:01 (PDB ID: 7M8T). Energies of native models are highlighted using magenta,

models from groove-based only template selection are highlighted by red and models from the

combined ANN-based and groove-based template selection are highlighted by green. Figure

adopted from a manuscript in preparation.
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Chapter 5

Conclusions

5.1 Introduction

In this thesis, I present my work on three dimensional modeling of peptide/MHC-I complexes

using homology modeling in Rosetta. The 3D structural models of peptide/MHC complexes can

provide molecular basis to understand TCR interaction and peptide immunogenicity thereby aid

in the development of efficient therapeutics to fight diseases.

5.2 Chapters

The Chapter 1 introduces MHC class I molecules and their role in adaptive immunity, and MHC-I

antigen processing and presentation pathway. Further, we discuss (i) the importance of T-cells

and MHC restriction, (ii) how peptide/MHC-I structures can aid in understanding TCR recogni-

tion, and (iii) the significance of structure modeling methods that eliminate the need to perform

tedious experiments to determine pMHC structures. In the end, we highlight the application

of building accurate modeling methods and how it can help design peptide-based vaccines for

malignant diseases.

In Chapter 2, we review the existing sequence-based and structure-based methods that are

used to predict peptide binding to MHC-I molecules and their immunogenicity. The sequence-

basedmethods employ artificial neural networks trained using experimental data obtained using

elution assays, binding affinity assays and mass spectrometry. In contrast, we review articles
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that demonstrate that structure-based methods do not require any knowledge-base to predict

pMHC binding but rather use computationally demanding algorithms limiting their applicability

in modeling entire peptide repertoire of the MHC molecules. Lastly, we highlight the latest

work, that combines sequence-based and structure-based methods to identify highly specific

and accurate pMHC binding profiles.

In Chapter 3, we discuss the basics of nuclear magnetic resonance spectroscopy, my con-

tribution to two methods 4D-CHAINS and MAUS that are used to assign backbone and side

chain resonances, and methyl resonances respectively. In addition, we elaborate on structure

modeling software suite, Rosetta and CS-Rosetta and how we utilized it together with NMR data

to solve structures of important protein targets. Finally, we introduce our homology modeling

method built using Rosetta to model structures of pMHC complexes and demonstrate that these

models when compared to the solved solution NMR structure of HLA-A*01:01/NRAS Q16K mu-

tation peptide, are very close and that our method has the capacity to recapitulate native peptide

backbone.

The chapter 4 describes our method, RosettaMHC, to model peptide/MHC-I molecules using

homology modeling. We explain multiple strategies employed to select templates for homology

modeling based on peptide sequence, and MHC groove sequence similarities. We apply these

strategies to model peptides derived from tumors such as ALK and PHOX2B and SARS-CoV-2

virus bound to different alleles. We evaluate these methods extensively using pMHC crystal

structures in PDB and blind targets, SARS-CoV-2 peptide/MHC complexes. Due to the low-

resolution of Rosetta energy function, we implemented artificial neural networks to help us filter

out models that are potentially incorrect. We believe that, RosettaMHC can accurately model

structures of peptide/MHC-I complexes with high accuracy for up to 70% of the cases (top

scoring and approx. 90% among top-5 scoring models) across several alleles thus taking a

small step towards reducing efforts to carry out structure determination process experimentally

using X-ray crystallography or NMR spectroscopy.

In summary, we describe RosettaMHC, to predict three dimensional structures of peptide/MHC-

I complexes. We show that the models generated by RosettaMHC can be used to (i) identify

public cancer neoepitopes that bind many alleles and help in building peptide-based therapeu-

tics to fight cancer, and (ii) understand surface features of the pMHC complexes that face TCRs

and hence identify peptides that are unique vs. cross-reactive in the case of infectious diseases.
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Chapter 6

Future Work

[Some of the text and figures in this chapter have been published with the following citations: Vi-

viane S. De Paula, Kevin M. Jude, Santrupti Nerli, Caleb R. Glassman, K. Christopher Garcia,

and Nikolaos G. Sgourakis. Interleukin-2 druggability is modulated by global conformational

transitions controlled by a helical capping switch. Proceedings of the National Academy of Sci-

ences, 117(13):7183–7192, March 2020. ]

[I would like to acknowledge Dimitris Achlioptas for designing the SATsfiability algorithm dis-

cussed in this chapter.]

The MHC groove- and ANN-based template selection can help us obtain sub-angstrom models

for many cases, however, the method may still sample inaccurate peptide backbones (for ap-

prox. 30% of peptides in the benchmark dataset if we select models using energy function). A

method that can potentially overcome this limitation, must analyze peptide backbone of a model

in detail and suggest if the sampled backbone is accurate or not. We believe that, if we can

analyze side chain dynamics of a peptide in a particular backbone conformation, we can sam-

ple the accurate peptide backbone for any target pMHC molecule. In the following sections,

we discuss a method that can be used to study side chain dynamics in proteins followed by

how such methods can potentially help choose an accurate peptide backbone while improving

performance.
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6.1 Side chain packing using Satisfiability

A sequence of a protein is made up of a combination of 20 amino acids. Each amino acid

has a main chain containing amine and carboxyl groups and distinct side chains. The physical

properties of amino acids such as charge, size and polarity are determined by their side chains.

The unique conformation of an amino acid side chain called rotamer (or rotational isomer) is

defined by its dihedral angles (χ1, χ2, χ3, and χ4). The dihedral angles adopt discrete set of

favorable values. While the use of discrete values (rather than continuous values) for dihedral

angles reduces the space of conformations significantly, it is still large enough to make the

search for optimal rotamer combination impractical. For instance, if we consider a 100 residue

protein with 3 side chain rotamers at each position, there are in principle 3100 =≈ 1047 ways

to generate a full-atom 3D structure (also referred to as side chain rotamer space). Therefore,

exhaustive enumeration of all possible conformations is not feasible and hence, many popular

methods apply heuristic algorithms to sample from this rotamer space [19].

The main aim of this work is to understand the side chain dynamics and estimate side chain

conformational entropy-based packing score (or just packing score) in proteins. To achieve

these goals, as a first step, we transform the space of valid side chain conformations to a form

that allows us to understand how the structural fold affects side chain placement. In particular,

we represent rotamers as boolean variables and valid combination of rotamer conformations

which encode structural information, as hard constraints. We utilize a general-purpose machine

that can take as input these constraints and perform an exhaustive global check to identify and

eliminate rotamer combinations that are infeasible for a given backbone to reduce the space of

rotamers. Later, we utilize the reduced rotamer space to (i) infer dynamics in Interleukin-2 (IL-

2) [87], and (ii) estimate side chain conformational entropy-based packing score which can be

used to filter optimal structural models. The use of Satisfiability to reduce the space of rotamers

is inspired by another work that utilizes similar principles to decipher NMR data [73].

Method

Let us consider a n amino acids protein (Definition 1) for which we want to estimate packing

score.

84



Definition 1 Let R = {r1, r2, · · · , rn} denote a set of n residues of a protein.

Here, each residue has a set of rotamers (Definition 2) called support set of that residue.

Definition 2 Let Φri = {sri1 , s
ri
2 , · · · , srim} denote a set of side chains rotamers (or support set)

of residue ri, where 1 ≤ i ≤ n.

We know that the side chain rotamer space for a given protein structure is the Cartesian product

of residue support set sizes (Equation 6.1).

Πn
i=1|Φri |

Satisfiability to probe large space of solutions

We start with a rotamer library and a protein structure whose backbone is rigid. The rotamer

library contains backbone dependent side chain rotamers for each residue except for residues

alanine and glycine. Next, we generate a series of hard constraints that comply with a set

of rules given by the definition of valid rotamer combination (see below). The input data and

constraints are given to a Satisfiability (SAT) solver. The solver takes all this information and

provides a single arbitrary solution from the space of valid solutions or a mathematical proof

that it cannot be solved (see Figure 6.1).

Definition of a valid solution

• A candidate solution consists of one rotamer for each residue.

• Clashes with the protein backbone are not allowed.

• Clashes between any two pairs of side chains are not allowed.

To convert the side chain rotamer space to SAT-space we represent each rotamer as a boolean

variable that can take values 0 and 1 (see Definition 3). If a rotamer is selected for a specific

residue, then the corresponding variable is turned on (or set to 1), otherwise, it is turned off (or

set to 0).
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Figure 6.1: Overview of Satisfiability-based side chain packing. Backbone-dependent rotamer

library is used to obtain plausible rotamers for a given protein structure backbone. Hard con-

straints are generated utilizing the definitions of valid rotamer combinations and input to SAT

solver that either outputs a valid rotamer combination or a mathematical proof that any valid

solution cannot be found.

Definition 3 Let Xij be a boolean variable representing a side chain rotamer srij ∈ Φri where

ri ∈ R. Here, i represents a residue index in the protein sequence and j represents a side chain

rotamer index in the support set of residue i.

Encoding of side chain rotamers

We create a propositional formula for the SAT solver which encodes our definition of valid so-

lution. For instance, to encode that the candidate solution can have only one rotamer for each

residue, we add the exactly one clause (Appendix, Algorithm 2). To obtain exactly one clause,

we need to satisfy both at most one and at least one clauses for one rotamer of each residue.

Similarly, to encode clashes between two side chain rotamers, say Xij and Ymn, we add a

clause {Xij ∧ ¬Ymn} (this clause explicitly states to the SAT solver that if we consider rotamer

Xij , then we should not select Ymn and vice versa [52].

Exhaustive enumeration of residue support sets

Due to a number of favorable rotamers for each residue after the removal of infeasible rotamers,

we may still have large support set sizes for these residues. In principle, these support sets
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may give rise to large number of solutions, which makes it challenging to enumerate them.

For example, if we start with a 100 residue protein, where each residue has 4 rotamers, after

running this target through SAT-based approach, we may have 3 rotamers for every residue.

Therefore, the space of solutions certainly reduced from 4100 to 3100, but it is not possible to

explore 3100 solutions. To overcome this issue, we make use of millisecond time-scale SAT

solver iteratively to construct reduced residue support sets without enumerating the entire space

of valid solutions.

Here, we pick a residue and its rotamer that is turned on, say Xij and add a temporary

clause to the propositional formula, where we provide that Xij can never be true. We then

check if the formula returns alternative satisfying assignment upon which we examine the next

rotamer of that residue, otherwise, we repeat this process for the next residues. In the process

of iterating over these rotamers, we will construct corresponding residue support sets, which

now contain only those rotamers that make the formula satisfiable. This procedure can run in

time linear to the size of residue support sets making this strategy high-throughput.

Application: Dynamics in IL-2

We applied the SAT-based method to understand dynamics in IL-2 [87]. IL-2 regulates the ac-

tivities of white blood cells which in turn affect the development of our immune system. The

allosteric pathway in IL-2 controls its immune receptors recognition through an open-closed

conformational switching (Figures 6.2 and 6.3). Here, we applied two complimentary NMR ex-

periments, Carr–Purcell–Meiboom–Gill (CPMG) [34] and chemical-exchange saturation trans-

fer (CEST) [122] to show that, in solution, IL-2 exists in two interconverting states (referred to

as uncapped or open and capped or closed; termed based on the location of residue 52). To

enumerate all possible side chain rotamers that can be adopted by each residue, we performed

the global analysis of compatible rotamer pairs using SAT-based approach in Rosetta described

previously (Figure 6.2) and mapped our results on the uncapped and capped structures (Figure

6.3). Using the backbone conformations of the ”open” and ”closed” states as inputs, our analysis

highlights differences in rotamer sets that can be accessed by both states. The change of state

from capped to uncapped involves a large displacement of the AB loop (Figure 6.3). In partic-

ular, we identified a large set of residues (L28, L39, M42, L48, M53, F58, F132, L133, W136,

and F139) spanning the AB loop, adjacent A and D helices, and part of the hydrophobic core.
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For these residues, the space of rotamers was significantly different between the closed and

open states, indicating a plausible remodeling of packing interactions. Specifically, a 10-residue

segment (V129 to F139) forming the hydrophobic face of the amphipathic D helix exhibits ex-

pansions and contractions in allowed rotamer sets as IL-2 transitions between the two states

(Figure 6.2). This allosteric effect is captured in a heatmap (Figure 6.3), where uncapped and

capped states show differences in the support set sizes of the buried residues.

6.2 Side chain conformational entropy-based score can aid

in the selection of accurate peptide backbone

We want to utilize SAT-based side chain packing approach to estimate side chain conforma-

tional entropy-based score (or packing score) of the modeled pMHC structures (Packing score

estimation is provided in Eq. 6.2 [89]). Due to shape complementarity between peptide and

MHC, we expect the packing score of the peptide that is closer to the native to be lower (more

ordered since the peptide fits perfectly) compared to alternative peptide backbones. We be-

lieve that this approach can aid in sampling the accurate template peptide backbone from the

database of naturally sampled backbones in PDB (which has >200 peptide backbones).

δS = −R[
N∑
i=1

Pfolded(i)lnPfolded(i)−
N∑
i=1

Punfolded(i)lnPunfolded(i)]

Here, δS is the change in packing score of folded state relative to the unfolded state for a given

backbone, Pfolded(i) and Punfolded(i) is the probability of a residue being in rotamer i in the

folded and unfolded states respectively, and R is a gas constant [89]. A similar equation is

used to estimate side chain conformational entropy as described in [89].

To test the SAT-based approach in the context of pMHCmodeling, we estimated the packing

score using Eq. 6.2 for the 5 top scoring PHOX2B peptide/HLA-A*24:02 RosettaMHC models

and found that the score can be used to filter accurate peptide backbone (Table 6.1). However,

extensive benchmarking of the packing score is required to conclude if the packing score can

distinguish native-like models, which is an avenue I will be pursuing in the near future.
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Table 6.1: Side chain entropy-based packing score for the top 5 scoring PHOX2B peptide/HLA-

A*24:02 RosettaMHC models.

Template
Packing

score

X-ray -10.64

2BCK (optimal template) -9.57

5N6B -5.36

2GIT -6.51

5MEQ -7.47

1IM3 -4.91
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Figure 6.2: Side chain packing analysis in IL-2. (A) Workflow of the method used to perform

side chain rotamer space analysis. (B) Number of rotamer combinations between neighboring

residues along the sequence of IL-2. An upper bound for number of rotamer combinations after

(C) backbone and pairwise clash check, and (D) exhaustive global check (after invoking SAT

solver) between neighboring residues. Here, the upper triangular matrix shows rotamer combi-

nations for a capped structure, whereas the lower triangular matrix for an uncapped structure.

Exhaustive global check here refers to the execution of SAT solver. Figure was adopted with

permission from [87].
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Figure 6.3: SAT-based side-chain packing approach reveals allosteric communication in IL-2.

(A) Heatmap showing number of valid side chain rotamers in capped and uncapped structures

before (top panel) and after (bottom panel) running through our method. Only the union of buried

residues in both capped and uncapped structures is shown in the heatmap. Buried residues

were selected using 10 Å
2
solvent accessible surface area threshold in PyMol. Residues that

exhibit significant difference (difference of 3 or higher) in number of rotamers are highlighted by

stars (*). (B,C) Uncapped and capped structures that exhibit significant difference in number of

side chain rotamers as indicated in panel A. (D) Uncapped structure showing residues that ex-

hibit chemical shift perturbation as revealed by CPMG experiments. In the structure diagrams,

the color coded helices are, A: light green, B: purple, C: salmon and D: dark green. Figure was

adopted with permission from [87].
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Appendix A

Algorithms

Algorithm1:Algorithm to enumerate solutions and create support sets of each residue.

Data: Initial support sets of all residues, Φ
Data: Propositional formula

Result: Support sets of all the residues, Φ′

while Φ 6= ∅ do
sj ← FetchRotamer(Φ) . Fetch a rotamer from set Φ for some residue

aux← (∧ri∈R¬Xij);
result← solve(F ∧ aux);
if result = UNSAT then

Φ← Φ− {sj};
Formula← Formula ∧ (∨ri∈RXij);

else

for ri ∈ R do
Φ′ ← Φ′ ∪ {sj}

end

end

end

Algorithm 2: Algorithm to encode a rotamer as exactly one clause.

Data: Literal, Xij

Data: Formula

Result: Formula

Formula← AtMostOne(Xij) ∧AtLeastOne(Xij) ;
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Algorithm 3: Algorithm to encode a rotamer as atmost one clause.

Data: Literal, Xij

Data: Formula

Result: Formula

for srij ∈ Φri : j ← 1 to m− 1 do

for srik ∈ Φri : k ← j + 1 to m do

Formula← Formula ∧ (¬Xij ∨ ¬Xik);
end

end

Algorithm 4: Algorithm to encode a rotamer as atleast one clause.

Data: Literal, Xij

Data: Formula

Result: Formula

for srij ∈ Φri do

F ← F ∨Xij ;

end

Formula← Formula ∧ F

Algorithm 5: Overview of our algorithm used to shrink side chain rotamer space for an

input protein.

Data: Protein structure

Result: Reduced super support set Φ′ containing support sets for all the residues

ri ∈ R
. Eliminate side chain rotamers if they clash with their backbone.

for ri ∈ R do

for srij ∈ Φri do

if (Clash(srij )) then

EliminateRotamer(srij )

end

end

end

. Encode side chain rotamers as boolean variables and add clauses stating that one
and only one rotamer can be used for each residue at a time.

for ri ∈ R do

for srij ∈ Φri do

Formula← ExactlyOne(Xij)
end

end

. Encode pairwise side chain rotamers as hard constraints stating that no two rotamers
can clash with one another.

if (Clash(srij ∈ Φriandsrnm ∈ Φrn )) then

Formula← Formula ∪ {¬Xij ∨ ¬Xmn}
end

Φ′ ← EnumerateSolutions(Formula)
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Appendix B

Tables

Table B.1: HLA alleles in PDB.

Allele Total number of structures in PDB Peptide length

B*35:08 1 8

B*08:01 6 8

B*35:01 1 8

B*51:01 1 8

A*24:02 3 8

A*02:01 1 8

B*39:01 1 8

B*52:01 1 8

B*18:01 2 8

B*27:05 11 9

A*02:01 97 9

A*24:02 2 9

B*44:02 7 9

B*81:01 3 9

B*27:09 8 9

B*58:01 5 9
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B*46:01 1 9

A*01:01 3 9

E*01:03 7 9

B*53:01 2 9

A*11:01 3 9

B*51:01 1 9

B*07:02 6 9

B*35:01 11 9

B*57:03 3 9

A*68:02 2 9

B*15:01 4 9

A*30:03 3 9

B*57:01 7 9

C*04:01 1 9

B*42:01 3 9

B*44:05 4 9

B*14:02 2 9

B*37:01 3 9

B*27:06 1 9

B*08:01 4 9

A*68:01 1 9

A*03:01 4 9

B*27:04 1 9

B*44:03 4 9

C*08:01 1 9

C*06:02 2 9

B*27:03 1 9

G*01:01 3 9

B*40:02 1 9
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B*18:01 1 9

B*39:01 1 9

A*30:01 1 9

C*05:01 1 9

E*01:01 3 9

C*07:02 1 9

B*58:03 1 9

B*57:01 6 10

A*68:01 1 10

A*02:01 34 10

A*02:06 1 10

A*03:01 1 10

B*44:05 1 10

B*58:01 1 10

A*02:03 1 10

A*01:01 1 10

B*35:08 1 10

B*27:09 1 10

A*11:01 5 10

B*27:03 1 10

B*44:02 1 10

B*44:03 1 10

B*07:02 1 10

B*35:01 1 10

B*27:05 2 10

A*24:02 6 10

B*40:01 1 10

B*15:01 1 10

A*02:07 1 10
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