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Anosov subgroups:

Dynamical and geometric characterizations

Michael Kapovich, Bernhard Leeb, Joan Porti

March 3, 2017

Abstract

We study infinite covolume discrete subgroups of higher rank semisimple Lie groups,

motivated by understanding basic properties of Anosov subgroups from various viewpoints

(geometric, coarse geometric and dynamical). The class of Anosov subgroups constitutes

a natural generalization of convex cocompact subgroups of rank one Lie groups to higher

rank. Our main goal is to give several new equivalent characterizations for this important

class of discrete subgroups. Our characterizations capture “rank one behavior” of Anosov

subgroups and are direct generalizations of rank one equivalents to convex cocompactness.

Along the way, we considerably simplify the original definition, avoiding the geodesic flow.

We also show that the Anosov condition can be relaxed further by requiring only non-

uniform unbounded expansion along the (quasi)geodesics in the group.
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1 Introduction

This paper is devoted to studying basic properties of Anosov subgroups of semisimple Lie groups

from various viewpoints (geometric, coarse geometric and dynamical). The class of Anosov

subgroups, introduced by Labourie [La] and further extended by Guichard and Wienhard [GW],

constitutes a natural generalization of convex cocompact subgroups of rank one Lie groups to

higher rank. Our main goal here is to give several new equivalent characterizations for this

important class of discrete subgroups, including a considerable simplification of their original

definition. For convex cocompact subgroups as well as for word hyperbolic groups, it is very

fruitful to have different viewpoints and alternative definitions, as they were developed by many

authors starting with Ahlfors’ work on geometric finiteness in the 60s, and later by Beardon,

Maskit, Marden, Thurston, Sullivan, Bowditch and others. Besides a deeper understanding,

it enables one to switch perspectives in a nontrivial way, adapted to the situation at hand.

A main purpose of this paper is to demonstrate that much of this theory extends to Anosov

subgroups, and we hope that the concepts and results presented here will be useful for their

further study. In our related work, they lay the basis for the results on the Higher Rank Morse

Lemma [KLP3], compactifications of locally symmetric spaces for Anosov subgroups [KL1], the

local-to-global principle and the construction of Morse-Schottky subgroups [KLP2]. We refer

to the surveys [KLP4, KL2] for more details on these developments.

In rank one, among Kleinian groups and, more generally, among discrete subgroups of rank

one Lie groups, one distinguishes geometrically finite subgroups. They form a large and flex-

ible class of discrete subgroups which are strongly tied to the negatively curved symmetric

spaces they act on. Therefore they have especially good geometric, topological and dynamical

properties and one can prove many interesting results about them. The simplest are geomet-

rically finite subgroups without parabolics, which are lie at the root of this paper. They can

be characterized in many (not obviously) equivalent ways: As convex cocompact subgroups,

as undistorted subgroups, as subgroups with conical limit set, as subgroups which are expand-

ing at their limit set, and as intrinsically word hyperbolic subgroups with Gromov boundary

equivariantly homeomorphic to their limit set, to name some.

In higher rank, a satisfying and sufficiently broad definition of geometric finiteness, with

or without parabolics, remains yet to be found. Convex cocompactness turns out to be much

too restrictive a condition: it was shown by Kleiner and the second author [KlL2] that in

higher rank only few subgroups are convex cocompact. Undistortion by itself, on the other

hand, is way too weak: undistorted subgroups can even fail to be finitely presented. Thus,

one is forced to look for suitable replacements of these notions in higher rank. It turns out
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that some of the other equivalent characterizations of convex cocompactness in rank one do

admit useful modifications in higher rank, which lead to the class of Anosov subgroups. The

Anosov condition is not too rigid and, at the same time, it imposes enough restrictions on the

subgroups making it possible to analyze their geometric and dynamical properties. One way

to think of Anosov subgroups is as geometrically finite subgroups without parabolics which

exhibit some rank one behavior. Indeed, they are intrinsically word hyperbolic and we will see

that also extrinsically they display hyperbolic behavior in a variety of ways.

In this paper, we primarily consider four notions generalizing convex cocompactness to

higher rank, all equivalent to the Anosov condition, see the Equivalence Theorem 1.1 below:

(i) asymptotic embeddedness

(ii) expansivity

(iii) conicality

(iv) Morse property

Whereas the conditions Anosov, (i) and (ii) are dynamical, (iii) is a condition on the asymp-

totic geometry of the subgroup, and (iv) is coarse geometric.

We now describe in more detail some of our concepts and results.

Let X “ G{K be a symmetric space of noncompact type and, for simplicity, let the semisim-

ple Lie group G be the connected component of its isometry group. Our approach to studying

Anosov subgroups Γ ă G begins with the observation that they satisfy a strong form of discrete-

ness which we call regularity and which is primarily responsible for their extrinsic “rank one

behavior” alluded to above. Discreteness of a subgroup Γ ă G means that for sequences pγnq

of distinct elements the distance dpx, γnxq in X diverges to infinity. For higher rank symmetric

spaces there is a natural vector-valued refinement d∆ of the Riemannian distance d, which takes

values in the euclidean Weyl chamber ∆ of X . The regularity assumption on Γ, in its strongest

form of σmod-regularity, means that d∆px, γnxq diverges away from the boundary of ∆. We will

work more generally with relaxations of this condition, called τmod-regularity, associated with

a face τmod of the model spherical Weyl chamber σmod, where one only requires divergence of

d∆px, γnxq away from some of the faces of ∆, depending on τmod. To be precise, think of σmod

as the visual boundary of the euclidean Weyl chamber, σmod – B8∆. Given a face τmod Ď σmod,

we define τmod-regularity by requiring that d∆px, γnxq diverges away from the faces of ∆ whose

visual boundaries do not contain τmod. We will also need the stronger notion of uniform τmod-

regularity where one requires the divergence to be linear in terms of dpx, γnxq. Most of the

discussion in this paper will take place within the framework of τmod-regular subgroups.

Classically, the asymptotic behavior of discrete subgroups Γ ă G is captured by their visual

limit set ΛpΓq which is the accumulation set of their orbits Γx Ă X in the visual boundary

B8X . In our context of τmod-regular subgroups, the visual limit set is replaced by the τmod-

limit set Λτmod
pΓq contained in the partial flag manifold Flagτmod

“ G{Pτmod
and defined as the

accumulation set of Γ-orbits in the bordification X \Flagτmod
of X , equipped with the topology

of flag convergence (see section 4.5). Here, Pτmod
is a parabolic subgroup in the conjugacy class

corresponding to τmod. The notion of τmod-limit set extends to arbitrary discrete subgroups.
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We call a τmod-regular subgroup Γ ă G nonelementary if |Λτmod
pΓq| ě 3, and antipodal if it

satisfies the visibility condition that any two distinct limit simplices in Λτmod
pΓq are antipodal.

The latter means that they can be connected by a geodesic in X in the sense that the geodesic

is asymptotic to interior points of the simplices. It is worth noting that the action of a τmod-

regular antipodal subgroup on its τmod-limit set enjoys the classical convergence property, which

is a typical rank one phenomenon.

Regularity, which is a condition on the asymptotic geometry of orbits in the symmetric space,

can be converted into an equivalent dynamical condition about a certain contraction behavior

of the subgroup on suitable flag manifolds (see Definition 4.1), allowing one to switch between

geometry and dynamics. The contraction behavior here is a higher rank version of the classical

convergence (dynamics) property in the theory of Kleinian groups. This yields an equivalent

characterization of τmod-regular subgroups as τmod-convergence subgroups (see Definition 4.3).

Also the limit sets, respectively, limit simplices can be defined purely dynamically as the possible

limits of contracting sequences in Γ, i.e. of sequences converging to constants on suitable open

and dense subsets of the flag manifolds, see Definition 4.32.

Much of the material in section 4 can be found in some form already in the work of Benoist,

see [Be, §3], in the setting of Zariski dense subgroups of reductive algebraic groups over local

fields, notably the notions of regularity and contraction, their essential equivalence, and the

notion of limit set. For the sake of completeness we give independent proofs in our setting

of discrete subgroups of semisimple Lie groups. Also our methods are rather different. We

give here a geometric treatment and present the material in a form suitable to serve as a basis

for the further development of our theory of discrete isometry groups acting on Riemannian

symmetric spaces and euclidean buildings of higher rank, such as in our papers [KLP1b, KLP2,

KLP3, KL1].

We now (mostly) restrict to the class of τmod-regular, equivalently, τmod-convergence sub-

groups and introduce various geometric and dynamical conditions in the spirit of geometric

finiteness. We begin with three dynamical ones:

1. We say that a subgroup Γ ă G is τmod-asymptotically embedded if it is an antipodal τmod-

convergence subgroup, Γ is word hyperbolic and there exists a Γ-equivariant homeomorphism

α : B8Γ
–

ÝÑ Λτmod
pΓq Ă Flagτmod

from its Gromov boundary onto its τmod-limit set.

This condition can be understood as a continuity at infinity property for the orbit maps

ox : Γ Ñ Γx Ă X : By extending an orbit map ox to infinity by the boundary map α, one

obtains a continuous map

ox \ α : Γ \ B8Γ ÝÑ X \ Flagτmod

from the Gromov compactification of Γ (see Proposition 5.21).

2. Our next condition is inspired by Sullivan’s notion of expanding actions [Su]. Following

Sullivan, we call a subgroup Γ ă G expanding at infinity if its action on the appropriate partial

flag manifold is expanding at the limit set. More precisely:
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We call a τmod-convergence subgroup Γ ă G τmod-expanding at the limit set if for every

limit flag in Λτmod
pΓq there exists a neighborhood U in Flagτmod

and an element γ P Γ which is

uniformly expanding on U , i.e. for some constant c ą 1 and all τ1, τ2 P U it holds that

dpγτ1, γτ2q ě c ¨ dpτ1, τ2q.

Here, and in what follows the distance d is induced by a fixed Riemannian background metric

on the flag manifold.

Now we can formulate our second condition:

We say that a subgroup Γ ă G is τmod-CEA (Convergence Expanding Antipodal) if it is an

antipodal τmod-convergence subgroup which is expanding at the limit set.

We note that the CEA condition does not a priori assume word hyperbolicity, not even

finite generation.

3. The next condition is motivated by the original definition of Anosov subgroups. It is a

hybrid of the previous two definitions, where we weaken asymptotic embeddedness (to boundary

embeddedness) and strengthen expansivity. We drop the regularity/convergence assumption

and, accordingly, make no use of the limit set in our definition. Compared to asymptotic

embeddedness, we keep the word hyperbolicity of the subgroup but, instead of identifying

its Gromov boundary with the limit set as in asymptotic embeddedness, we only require a

boundary map embedding the Gromov boundary into the flag manifold. Compared to CEA,

we require a stronger form of expansivity, now at the image of the boundary map.

We call a subgroup Γ ă G τmod-boundary embedded if Γ is word hyperbolic and there exists

a Γ-equivariant continuous embedding

β : B8Γ ÝÑ Flagτmod

sending distinct visual boundary points to antipodal simplices. If Γ is virtually cyclic, we

require in addition that it is discrete in G. (Otherwise, discreteness is a consequence.) We will

refer to β as a boundary embedding. In general, boundary embeddings are not unique.

The infinitesimal expansion factor of an element g P G at a simplex τ P Flagτmod
is

ǫpg, τq “ min
u

|dgpuq|

where the minimum is taken over all unit tangent vectors u P Tτ Flagτmod
, again using the

Riemannian background metric.

Now we can formulate our version of the Anosov condition:

We say that a subgroup Γ ă G is τmod-Anosov if it is τmod-boundary embedded with bound-

ary embedding β and satisfies the following expansivity condition: For every ideal point ζ P B8Γ

and every normalized (by rp0q “ e P Γ) discrete geodesic ray r : N Ñ Γ asymptotic to ζ , the

action Γ ñ Flagτmod
satisfies

ǫprpnq´1, βpζqq ě AeCn

for n ě 0 with constants A,C ą 0 independent of r. (Here, we fix a word metric on Γ.)
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The uniformity of expansion in this definition can be significantly weakened:

We say that a subgroup Γ ă G is non-uniformly τmod-Anosov if it is τmod-boundary embed-

ded with boundary embedding β and, for every ideal point ζ P B8Γ and every discrete geodesic

ray r : N Ñ Γ asymptotic to ζ , the action Γ ñ Flagτmod
satisfies

sup
nPN

ǫprpnq´1, βpζqq “ `8.

The original definition of Anosov subgroups in [La, GW] is rather involved. It is based on

geodesic flows for word hyperbolic groups and formulated in terms of expansion/contraction

properties for lifted flows on associated bundles over the geodesic flow spaces (see section 5.11).

Our definition requires only an expansion property for the group action on a suitable flag

manifold and avoids using the geodesic flow, whose construction is highly technical for word

hyperbolic groups which do not arise as the fundamental group of a closed negatively curved

Riemannian manifold. The geodesic flow is replaced by a simpler coarse geometric object, the

space of quasigeodesics.

Now we come to the geometric notions.

4. The first geometric condition concerns the orbit asymptotics. The notion of conicality

of limit simplices, due to Albuquerque [Al, Def. 5.2], generalizes a well-known condition from

the theory of Kleinian groups: In the case τmod “ σmod, a limit chamber σ P Λσmod
pΓq of a

σmod-regular subgroup Γ ă G is called conical if there exists a sequence γn Ñ 8 in Γ such that

for a(ny) point x P X the sequence of orbit points γnx is contained in a tubular neighborhood

of the euclidean Weyl chamber V px, σq with tip x and asymptotic to σ. For general τmod and

limit simplices τ P Λτmod
pΓq of τmod-regular subgroups Γ ă G, one replaces the euclidean Weyl

chamber with the Weyl cone V px, stpτqq over the star of τ , that is, by the union of the euclidean

Weyl chambers V px, σq for all spherical Weyl chambers σ Ą τ . A τmod-regular subgroup Γ ă G

is called conical if all limit simplices are conical. Here is our forth condition:

We say that a subgroup Γ ă G is τmod-RCA if it is τmod-regular, conical and antipodal.

For nonelementary τmod-regular antipodal subgroups, this extrinsic notion of conicality is

equivalent to an intrinsic one defined in terms of the dynamics on the τmod-limit set (Proposi-

tion 5.41), which enables one to relate it to the dynamical notions above.

5. The last set of definitions concerns the coarse extrinsic geometry. We recall that a

finitely generated subgroup Γ ă G is undistorted if the orbit maps Γ Ñ X are quasiisometric

embeddings. They then send discrete geodesics in Γ (with respect to a fixed word metric) to

uniform quasigeodesics in X . Undistortion by itself is too weak a restriction, compared with

the other notions defined previously. We will strengthen it in two ways. The first is by adding

uniform regularity:

We say that a subgroup Γ ă G is τmod-URU if it is uniformly τmod-regular and undistorted.

According to the classical Morse Lemma in negative curvature, quasigeodesic segments in

rank one symmetric spaces are uniformly Hausdorff close to geodesic segments with the same

endpoints. This is no longer true in higher rank because it fails already in euclidean plane.
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Another way of strengthening undistortion is therefore by imposing a “Morse” type property

on the quasigeodesics arising as orbit map images of the discrete geodesics in Γ.

As in the case of conicality above, where one replaces rays with Weyl cones when passing

from rank one to higher rank, it is natural to replace geodesic segments with “diamonds” in a

higher rank version of the Morse property. (This is suggested, for instance, by the geometry of

free Anosov subgroups, see our examples of Morse-Schottky subgroups [KLP2, KL2].) We define

diamonds as follows: If τmod “ σmod and xy is a σmod-regular segment, then the σmod-diamond

with tips x, y is the intersection

♦px, yq “ V px, σq X V py, σ̂q

of the euclidean Weyl chambers with tips at x and y containing xy. In the case of general τmod,

the euclidean Weyl chambers are replaced with τmod-Weyl cones (see section 2.5.3).

We say that a subgroup Γ ă G is τmod-Morse if it is τmod-regular, Γ is word hyperbolic and

an(y) orbit map ox : Γ Ñ Γx Ă X satisfies the following Morse condition: The images ox ˝ s of

discrete geodesic segments s : rn´, n`sXZ Ñ Γ are contained in uniform tubular neighborhoods

of τmod-diamonds with tips uniformly close to the endpoints of ox ˝ s (see Definition 5.27).

The definition does not a priori assume undistortion, but we show in this paper that Morse

implies URU. That, conversely, URU implies Morse may seem unexpected at first but follows

from our Higher Rank Morse Lemma for regular quasigeodesics [KLP3].

We now arrive at our main result on the equivalence of various conditions introduced above.

We state it for nonelementary subgroups because we use this assumption in some of our proofs.

Equivalence Theorem 1.1. The following properties for subgroups Γ ă G are equivalent in

the nonelementary case:

(i) τmod-asymptotically embedded

(ii) τmod-CEA.

(iii) τmod-Anosov

(iv) non-uniformly τmod-Anosov

(v) τmod-RCA

(vi) τmod-Morse

These properties imply τmod-URU.

Moreover, the boundary maps for properties (i), (iii) and (iv) coincide.

Here, “nonelementary” means |B8Γ| ě 3 in the Anosov conditions (iii) and (iv), which

assume word hyperbolicity but no τmod-regularity, and means |Λτmod
pΓq| ě 3 in all other cases.

Remark 1.2. (i) We prove in [KLP3] that, conversely, τmod-URU implies τmod-Morse (without

assuming nonelementary).

(ii) All implications between properties (i)-(vi) hold without assuming nonelementary, with

the exception of (ii)ñ(v)ñ(i). In particular, the properties (i),(iii),(iv),(vi) and τmod-URU are
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equivalent in general.

(iii) The implication AnosovñURU had been known before [GW].

(iv) Some of the implications in the theorem can be regarded as a description of geometric

and dynamical properties of Anosov subgroups. Different characterizations of Anosov subgroups

are useful in different contexts. For example: Expansivity (ii) is used in [KLP1a, KLP1b] to

establish the cocompactness of Γ-actions on suitable domains of discontinuity in flag manifolds.

Asymptotic embeddedness is used in [KL1] to construct Finsler compactifications of locally

symmetric spaces for Anosov subgroups. The Morse property is used in [KLP2] to prove

a local-to-global principle for Anosov subgroups. The latter in turn leads to new proofs of

openness and structural stability of Anosov representations, to a construction of free Anosov

subgroups (Morse-Schottky subgroups), and to the semidecidability of Anosovness, see [KLP2].

(v) In our paper [KL1] we establish two more characterizations of Anosov subgroups among

uniformly regular subgroups, namely as coarse retracts and by S-cocompactness. The former

property is a strengthening of undistortion. The latter means the existence of a certain kind of

compactification of the corresponding locally symmetric space.

(vi) Other characterizations of Anosov subgroups can be found in [GGKW].

Remark 1.3. Boundary embeddedness appears to be a considerable weakening of asymptotic

embeddedness, even in the regular case. Nevertheless two results in this paper establish a close

relation between the two concepts:

(i) For σmod-regular subgroups, boundary embeddedness, conversely, implies asymptotic

embeddedness, while the boundary embedding may have to be modified (see Theorem 5.15).

(ii) For general τmod-regular subgroups, there is the following dichotomy for boundary em-

beddings (see Theorem 5.11) which is useful for verifying asymptotic embeddedness:

Either the image of the boundary embedding equals the τmod-limit set and the subgroup is

asymptotically embedded. Or the image is disjoint from the limit set, and the limit set is not

Zariski dense. The latter cannot happen for Zariski dense subgroups.

While the main results in this paper concern discrete subgroups of Lie groups, in section 5.10,

motivated by the Morse property, we discuss Morse quasigeodesics and Finsler geodesics. We

characterize Morse subgroups as word hyperbolic subgroups whose intrinsic geodesics are ex-

trinsically uniform Morse quasigeodesics. Furthermore, we characterize Morse quasigeodesics

as bounded perturbations of Finsler geodesics. Lastly, we analyze the ∆-distance along Finsler

geodesics and Morse quasigeodesics. We show that, via the ∆-distance function, they project

to Finsler geodesics and Morse quasigeodesics in ∆.

Most of the results in this paper were already contained in chapters 1-6 of the preprint

[KLP2], however the presentation in this paper is more efficient. The further material on the

Morse property in [KLP2, §7] will appear elsewhere.
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2 Geometry of symmetric spaces

In this section, we collect some material from the geometry of symmetric spaces and buildings.

We explain the notions which are most important for the purposes of this paper, establish

notation and give proofs for some of the less standard facts. No attempt of a complete review

is made. For more detailed discussions, we refer the reader to [Eb], [BGS], [KlL1] and [Le].

We give a brief description of where various parts of this section are used in the paper:

Sections 2.2-2.5 are used essentially everywhere.

While the vector valued distance function d∆ is used in many places in the paper, the rest

of the material in sections 2.6 and 2.7 is used primarily in section 2.9.1 on the separation of

nested Weyl cones and in section 5.10 where we analyze projections of Morse quasigeodesics to

the euclidean model Weyl chamber ∆.

The material of section 2.9 dealing with shadows at infinity is used in section 4.4 when we

prove the equivalence of regularity and contractivity for sequences of isometries of X . The main

result of section 2.9.1 on the separation of nested Weyl cones is used in section 5.3 to prove

that Morse subgroups are URU (Theorem 5.24).

The main results of sections 2.10 and 2.11 are Theorem 2.63 and Proposition 2.64 estab-

lishing estimates for the contraction and expansion of isometries of X acting on flag manifolds.

(The other results are only used only in sections 2.10 and 2.11). Theorem 2.63 and Proposi-

tion 2.64 are used in sections 5.7 and 5.8 while discussing discrete subgroups satisfying expansion

properties (CEA and Anosov).

The material of section 2.12 is used only in section 5.10 where it is proven that Morse

quasigeodesics are uniformly closed to Finsler geodesics and that ∆-distance projections of

Finsler geodesics are again Finsler geodesics.

2.1 General metric space notation

We will use the notation Bpp, rq for the open r-ball with center p in a metric space, and Bpp, rq

for the closed r-ball.

A geodesic in a metric space pZ, dq is an isometric embedding I Ñ Z from a (possibly infinite)

interval I Ă R. In the context of finitely generated groups equipped with word metrics, we will

also work with discrete geodesics; these are isometric embeddings from intervals I X Z in Z.

The notion of discrete quasigeodesic will be used similarly.
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2.2 Spherical buildings

Spherical buildings occur in this paper as the visual boundaries of symmetric spaces of non-

compact type, equipped with their structures of thick spherical Tits buildings.

2.2.1 Spherical geometry

Let S be a unit sphere in a euclidean space, and let σ Ă S be a spherical simplex with dihedral

angles ď π
2
. Then diampσq ď π

2
.

For a face τ Ď σ, we define the τ -boundary Bτσ as the union of faces of σ which do not

contain τ , and the τ -interior intτ pσq as the union of open faces of σ whose closure contains τ .

We obtain the decomposition

σ “ intτ pσq \ Bτσ.

If τ 1 Ă τ , then Bτ 1σ Ă Bτσ and intτ 1pσq Ą intτ pσq. Note that Bσσ “ Bσ and intτ pσq “ intpσq.

We need the following fact about projections of spherical simplices to their faces:

Lemma 2.1. The nearest point projection intτ pσq Ñ intpτq is well-defined.

In other words, for every point x P intτ pσq there exists a point p P intpτq such that px K τ .

In view of diampσq ď π
2
, this point is necessarily unique.

Proof. We argue by induction on the dimension of σ.

Let x P intτ pσq. We apply the induction assumption to the link Σvσ at a vertex v of τ . Note

that BΣvτΣvσ “ ΣvBτσ. Since ÝÑvx P intΣvτ pΣvσq, the nearest point projection δ̄ of this direction

to Σvτ is contained in intpΣvτq and has angle ă π
2
with ÝÑvx. It follows that the nearest point

projection p of x to τ is different from v and lies on the arc in direction δ̄, ÝÑvp “ δ̄. In particular,

it is not contained in a face of τ with vertex v. Letting run v through the vertices of τ , we

conclude that p P intpτq.

As a consequence of the lemma, the nearest point projection intτ pσq Ñ τ agrees with the

nearest point projection intτ pσq Ñ s to the geodesic sphere s Ă S spanned by τ (i.e. containing

τ as a top-dimensional subset), and its image equals intpτq.

2.2.2 Spherical Coxeter complexes

A spherical Coxeter complex pamod,W q consists of a unit sphere (in a euclidean space) amod and

a finite reflection group W acting isometrically on amod. We will refer to amod as the model

apartment (because it will serve as the model for apartments in spherical buildings, see below).

A wall in amod is the fixed point set of a reflection in W . A half-apartment is a closed

hemisphere in amod bounded by a wall. A singular sphere in amod is an intersection of walls.

A chamber in amod is the closure of a connected component of the complement of the union

of the walls. The group W acts transitively on the set of chambers. The chambers are simplices
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with diameter ď π
2
iff W fixes no point in amod, equivalently, the Coxeter complex does not split

off a spherical join factor (in the category of Coxeter complexes). In this case, the collection of

chambers defines on amod the structure of a simplicial complex, the simplices being intersections

of chambers.

Every chamber is a fundamental domain for the action W ñ amod. The spherical model

chamber can be defined as the quotient σmod “ amod{W . We identify it with a chamber in the

model apartment, σmod Ă amod, which we refer to as the fundamental chamber.

We call the natural projection

θ : amod Ñ amod{W – σmod

the type map for amod. It restricts to an isometry on every chamber. A face type is a face

of σmod. The type of a simplex τ̄ Ă amod is then defined as θpτ̄q. Throughout the paper, we

will use the notation τmod, τ
1
mod, νmod, ν

1
mod, . . . for face types. Furthermore, we will denote by

Wτmod
ď W the stabilizer of the face type τmod Ď σmod.

The longest element of the Weyl group is the unique element w0 P W sending σmod to the

opposite chamber ´σmod. The standard involution (also known as the opposition involution) of

the model chamber is given by ι :“ ´w0 : σmod Ñ σmod.

2.2.3 Spherical buildings

A spherical building modeled on a Coxeter complex pamod,W q is a CAT(1) metric space B

equipped with a collection of isometric embeddings κ : amod Ñ B, called charts. The image of

a chart is an apartment in B. One requires that any two points are contained in an apartment

and that the coordinate changes between charts are induced by isometries in W . (The precise

axioms can be found e.g. in [KlL1] and [Le].) We will use the notation = for the metric on B.

We assume that W fixes no point, equivalently, that σmod is a simplex with diameter ď π
2
.

Via the atlas of charts, the spherical building inherits from the spherical Coxeter complex a

natural structure of a simplicial complex where the simplices are the images of the simplices in

the model apartment. As already mentioned, the images of the charts are called apartments.

Accordingly, the images of chambers (walls, half-apartments, singular spheres) in amod are called

chambers (walls, half-apartments, singular spheres) in the building. The codimension one faces

are called panels. The interior intpτq of a simplex τ is obtained by removing all proper faces;

the interiors of simplices are called open simplices. The simplex spanned by a point is the

smallest simplex containing it, equivalently, the simplex containing the point in its interior. We

will sometimes denote the simplex spanned by ξ by τξ.

A spherical building is thick if every wall is the bounds at least three half-apartments,

equivalently, if every panel is adjacent to (i.e. contained in the boundary of) at least three

chambers. One can always pass to a thick spherical building structure by reducing the Weyl

group, thereby coarsifying the simplicial structure.

The space of directions Σξ B at a point ξ P B is the space of germs
ÝÑ
ξη of nondegenerate

geodesic segments ξη Ă B, equipped with the natural angle metric =ξ. Two segments ξη and ξη1
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represent the same direction in Σξ B,
ÝÑ
ξη “

ÝÑ
ξη1, iff they initially agree. The space of directions

is again a spherical building.

A subset C Ă B is called (π-)convex if for any two points ξ, η P C with distance =pξ, ηq ă π

the (unique) geodesic ξη connecting ξ and η in B is contained in C.

Due to the compatibility of charts, i.e. the property of the building atlas that the coordinate

changes are induced by isometries in W , there is a well-defined type map

θ : B Ñ σmod.

It is 1-Lipschitz and restricts to an isometry on every chamber σ Ă B. We call the inverse

κσ “ pθ|σq´1 : σmod Ñ σ the chart of the chamber σ. For a simplex τ Ă B, we call the face

θpτq Ď σmod the type of the simplex and κτ “ pθ|τ q´1 : θpτq Ñ τ its chart. We define the type

of a point ξ P B as its image θpξq P σmod. A point ξ P B is called regular if its type is an interior

point of σmod, ξ P intpσmodq, and singular otherwise.

We will sometimes say that a singular sphere has type τmod if it contains a top-dimensional

simplex of type τmod. (A singular sphere has in general several types.)

For a singular sphere s Ă B, we define Bpsq Ă B as the union of all apartments containing s.

It is a convex subset and splits off s as a spherical join factor. Moreover, Bpsq is a subbuilding,

i.e. it inherits from B a spherical building structure modeled on the same Coxeter complex; the

apartments of Bpsq are precisely the apartments of B containing s. This building structure is

however not thick, except in degenerate cases. In order to pass to a thick spherical building

structure, take a maximal atlas of charts κ : amod Ñ Bpsq for which the maps κ´1|s : s Ñ amod

coincide, and reduce the Weyl group to the pointwise stabilizer of s in W .

Two points ξ, ξ̂ P B are antipodal or opposite if =pξ, ξ̂q “ π, equivalently, if they are antipodal

in one (every) apartment containing them. We then define the singular sphere spξ, ξ̂q Ă B

spanned by the points ξ, ξ̂ as the smallest singular sphere containing them. Moreover, we define

the suspension Bpξ, ξ̂q Ă B of tξ, ξ̂u as the union of all geodesics connecting ξ and ξ̂, equivalently,

as the union of all apartments containing ξ and ξ̂. Then Bpξ, ξ̂q “ Bpspξ, ξ̂qq. As above, a thick

spherical building structure on Bpξ, ξ̂q is obtained by taking all charts κ : amod Ñ Bpξ, ξ̂q so

that κ´1pξq “ θpξq P σmod, and reducing the Weyl group to the stabilizer of θpξq in W .

Similarly, one defines antipodal or opposite faces τ, τ̂ Ă B as faces which are antipodal in

the apartments containing them both, equivalently, whose interiors contain a pair of antipodal

points ξ P intpτq and ξ̂ P intpτ̂ q. We define the singular sphere spτ, τ̂ q Ă B spanned by the

simplices τ, τ̂ again as the smallest singular sphere containing them, and the suspension Bpτ, τ̂q

as the union of all apartments containing τ Y τ̂ ; then spτ, τ̂q “ spξ, ξ̂q and Bpτ, τ̂q “ Bpξ, ξ̂q.

We will need some facts about antipodes.

Recall that in a spherical building B every point ξ P B has an antipode in every apartment

a Ă B, and hence for every simplex τ Ă B there exists an opposite simplex τ̂ Ă a, cf. e.g. the

first part of [KlL1, Lemma 3.10.2]. We need the more precise statement that a point has several

antipodes in an apartment unless it lies itself in this apartment:

Lemma 2.2. Suppose that ξ P B has only one antipode in the apartment a Ă B. Then ξ P a.
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Proof. Suppose that ξ R a and let ξ̂ P a be an antipode of ξ. We choose a“generic” segment

ξξ̂ of length π tangent to a at ξ̂ as follows. The suspension Bpξ, ξ̂q contains an apartment a1

with the same unit tangent sphere at ξ̂, Σξ̂a
1 “ Σξ̂a. Inside a1 there exists a segment ξξ̂ whose

interior does not intersect simplices of codimension ě 2. Hence ξ̂ξ leaves a at an interior point

η ‰ ξ, ξ̂ of a panel π Ă a, i.e. a X ξξ̂ “ ηξ̂ and π X ξξ̂ “ η, and ηξ initially lies in a chamber

adjacent to π but not contained in a. Let s Ă a be the wall containing π. By reflecting ξ̂ at s,

one obtains a second antipode for ξ in a.

In thick buildings, simplices can be represented as intersections of apartments:

Lemma 2.3. In a thick spherical building B, any simplex τ Ă B equals the intersection of the

apartments containing it.

Proof. Since every simplex is an intersection of chambers, we are reduced to the case when τ

is a chamber. Furthermore, since every chamber is an intersection of half-apartments, we are

reduced to the corresponding assertion for half-apartments. The latter holds by thickness.

2.3 Hadamard manifolds

In this section only, X denotes a Hadamard manifold, i.e. a simply connected complete Rie-

mannian manifold with nonpositive sectional curvature. We will use the notation IsompXq for

the full isometry group of X .

Any two points in X are connected by a unique geodesic segment. We will use the notation

xy for the oriented geodesic segment connecting x to y.

For points x ‰ y, z we denote by =xpy, zq the angle of the geodesic segments xy and xz.

Furthermore, we denote by ΣxX the space of directions of X at x equipped with the angle

metric =x. It coincides with the unit tangent sphere at x.

A basic feature of Hadamard manifolds is the convexity of the distance function: Given any

pair of geodesics c1ptq, c2ptq in X , the function t ÞÑ dpc1ptq, c2ptqq is convex.

Two geodesic rays ρ1, ρ2 : r0,`8q Ñ X are called asymptotic if the convex function t ÞÑ

dpρ1ptq, ρ2ptqq on r0,`8q is bounded, and they are called strongly asymptotic if dpρ1ptq, ρ2ptqq Ñ

0 as t Ñ `8.

Two geodesic lines l1, l2 Ă X are parallel if they have finite Hausdorff distance. Equivalently,

l1 Y l2 bounds a flat strip in X .

The ideal or visual boundary B8X of X is the set of asymptote classes of geodesic rays in

X . Points in B8X are called ideal points. For x P X and ξ P B8X we denote by xξ the unique

geodesic ray emanating from x and asymptotic to ξ, i.e. representing the ideal point ξ. There

are natural identifications logx : B8X Ñ ΣxX sending the ideal point ξ to the direction
ÝÑ
xξ.

The cone or visual topology on B8X is characterized by the property that the maps logx are

homeomorphisms with respect to it. Thus, B8X is homeomorphic to the sphere of dimension

dimpXq ´ 1. The visual topology has a natural extension to X “ X \ B8X which can be
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described as follows in terms of sequential convergence: A sequence pxnq in X converges to an

ideal point ξ P B8X iff, for some (any) base point x P X , the sequence of geodesic segments

or rays xxn converges to the ray xξ (in the pointed Hausdorff topology with base points at x).

This topology makes X into a closed ball. We define the visual boundary of a subset A Ă X as

the set B8A “ Ā X B8X of its accumulation points at infinity.

The visual boundary B8X carries the natural Tits angle metric =T its defined as

=T itspξ, ηq “ sup
xPX

=xpξ, ηq,

where =xpξ, ηq is the angle between the geodesic rays xξ and xη. The Tits boundary BT itsX is the

metric space pB8X,=T itsq. The Tits metric is lower semicontinuous with respect to the visual

topology and, accordingly, the Tits topology induced by the Tits metric is finer than the visual

topology. It is discrete if there is an upper negative curvature bound, and becomes nondiscrete

if X contains nondegenerate flat sectors. For instance, the Tits boundary of flat r-space is the

unit pr´1q-sphere, BT itsR
r – Sr´1p1q. An isometric embedding X Ñ Y of Hadamard manifolds

induces an isometric embedding BT itsX Ñ BT itsY of their Tits boundaries.

Let ξ P B8X be an ideal point. For a geodesic ray ρ : r0,`8q Ñ X asymptotic to ξ one

defines the Busemann function bξ on X as the uniform monotonic limit

bξpxq “ lim
tÑ`8

pdpx, ρptqq ´ tq.

Along the ray, we have

bξpρptqq “ ´t.

Altering the ray ρ changes bξ by an additive constant. The point at infinity ξ thus determines

bξ up to an additive constant. To remove this ambiguity, given x P X , we define bξ,x to be the

Busemann function bξ,x normalized at the point x by bξ,xpxq “ 0.

The Busemann function bξ is convex, 1-Lipschitz and measures the relative distance from

the ideal point ξ. The sublevel sets

Hbξ,x :“ tbξ ď bξpxqu Ă X

are called (closed) horoballs centered at ξ. As sublevel sets of convex functions, they are convex.

The visual boundaries of horoballs are π
2
-balls at infinity with respect to the Tits metric,

B8 Hbξ,x “ Bpξ,
π

2
q :“ t=T itspξ, ¨q ď π{2u Ă B8X.

The level sets

Hsξ,x :“ tbξ “ bξpxqu “ B Hbξ,x

are called horospheres centered at ξ.

As convex Lipschitz functions, Busemann functions are asymptotically linear along rays. If

ρ : r0,`8q Ñ X is a geodesic ray asymptotic to η P B8X , ρp`8q “ η, then

lim
tÑ`8

bξpρptqq

t
“ ´ cos=T itspξ, ηq.
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2.4 Symmetric spaces of noncompact type: basic concepts

In this section, we go through some well known material and establish notation. Standard

references are [Eb] and [BGS].

A symmetric space, denoted by X throughout this paper, is said to be of noncompact type if

it is nonpositively curved and has no euclidean factor. In particular, it is a Hadamard manifold.

We will write the symmetric space as

X “ G{K

where G is a connected1 semisimple Lie group with finite center acting isometrically and

transitively on X , and K ă G is a maximal compact subgroup. The natural epimorphism

G Ñ IsompXqo then has compact kernel. Every connected semisimple Lie group with finite

center occurs in this way. The Lie group G carries a natural structure of a real algebraic group.

By the definition of symmetric spaces, in every point x P X there is a point reflection or

Cartan involution, that is, an isometry σx which fixes x and has differential ´ idTxX in x.

A transvection of X is an isometry which is the product σx1σx of two point reflections; it

preserves the oriented geodesic through x and x1 and the parallel vector fields along it. The

transvections preserving a geodesic line cptq form a one parameter subgroup pT c
t q of IsompXqo

where T c
t denotes the transvection mapping cpsq ÞÑ cps ` tq.

An isometry φ of X is called axial if it preserves a geodesic l and does not fix l pointwise.

Thus, φ acts as a nontrivial translation on l. (Note that an axial isometry need not be a

transvection.) The geodesic l is called an axis of φ. Axes are in general not unique, but they

are parallel to each other. For each axial isometry φ, the displacement function x ÞÑ dpx, φpxqq

on X attains its minimum on the convex subset of X which is the union of axes of φ. An

isometry φ of X is parabolic if

inf
xPX

dpx, φpxqq “ 0

but g does not fix a point in X . Isometries fixing points are called elliptic.

A flat in X is a complete totally geodesic flat submanifold, equivalently, a convex subset

isometric to a euclidean space. A maximal flat in X is a flat which is not contained in any

larger flat; we will use the notation F for maximal flats. The group IsompXqo acts transitively

on the set of maximal flats; the common dimension of maximal flats is called the rank of X .

The space X has rank one if and only if it has strictly negative sectional curvature.

A maximal flat F is preserved by all transvections along geodesic lines contained in it. In

general, there exist nontrivial isometries of X fixing F pointwise. The subgroup of isometries of

F which are induced by elements of G is isomorphic to a semidirect product Waff :“ R
r ¸ W ,

the affine Weyl group, where r is the rank of X . The subgroup R
r acts simply transitively on

F by translations. The linear part W is a finite reflection group, called the Weyl group of G

1What is really needed is a weaker property than connectedness, namely that G has finitely many connected

components and acts on the Tits building of X by (type preserving) automorphisms. The latter is equivalent

to the triviality of the G-action on the model chamber σmod, equivalently, on the Dynkin diagram. Under this

assumption, the theory of discrete subgroups presented in this paper goes through unchanged.

16



and X . Since maximal flats are equivalent modulo G, the action Waff ñ F is well-defined up

to isometric conjugacy.

We will think of the Weyl group as acting on a model flat Fmod – R
r fixing the origin

0 P Fmod, and on its visual boundary sphere at infinity, the model apartment amod “ BT itsFmod –

Sr´1. The pair pamod,W q is the spherical Coxeter complex associated to G. We identify the

euclidean model Weyl chamber ∆ with the complete cone V p0, σmodq Ă Fmod with tip in the

origin and visual boundary the spherical model Weyl chamber σmod Ă amod.

For every maximal flat F Ă X , we have an induced Tits isometric embedding B8F Ă B8X

of its visual boundary sphere. The natural identification F – Fmod, unique up to the action of

Waff , induces a natural identification B8F – amod, unique up to the action of W .

The Coxeter complex structure on amod induces simplicial structures on the visual boundary

spheres B8F of the maximal flats F Ă X . The spheres B8F cover B8X , and their simplicial

structures are compatible (i.e. the intersections are simplicial and the simplicial structures on

the intersections agree). One thus obtains a G-invariant piecewise spherical simplicial structure

on B8X which makes B8X into a thick spherical building and, also taking into account the visual

topology, into a topological spherical building. It is called the spherical or Tits building BT itsX

associated to X . The Tits metric is the path metric with respect to the piecewise spherical

structure, unless rankpXq “ 1, in which case BT itsX is discrete with distance π between distinct

points. We will sometimes refer to the simplices in BT itsX also as faces. The visual boundaries

of the maximal flats in X are precisely the apartments in B8X , which in turn are precisely the

convex subsets isometric, with respect to the Tits metric, to the unit sphere Sr´1.

We call a flat f Ă X singular if it is the intersection of maximal flats. Its visual boundary

B8f is then a singular sphere in B8X .

We define the Weyl sector V “ V px, τq Ă X with tip x and asymptotic to a simplex

τ Ă B8X as the union of rays xξ for the ideal points ξ P τ . Weyl sectors are contained in

flats; they are isometric images of Weyl sectors V p0, τmodq Ă ∆ under charts Fmod Ñ X . These

apartment charts restrict to canonical sector charts κx,τ “ κV px,τq : V p0, τmodq Ñ V px, τq; at

infinity, they induce simplex charts, B8κx,τ “ κτ .

If σ Ă B8X is a chamber, the sector V px, σq is a euclidean Weyl chamber.

For a flat f Ă X , the parallel set P pfq Ă X is the union of all flats f 1 Ă X parallel to f ,

equivalently, with the same visual boundary sphere B8f
1 “ B8f . The parallel set is a symmetric

subspace and splits as the metric product

P pfq – f ˆ CSpfq (2.4)

of f and a symmetric space CSpfq called the cross section. The latter has no euclidean factor

iff f is singular. Accordingly, the Tits boundary metrically decomposes as the spherical join

BT itsP pfq – BT itsf ˝ BT itsCSpfq. (2.5)

It coincides with the subbuilding pBT itsXqpB8fq Ă BT itsX consisting of the union of all apart-

ments in B8X containing B8f , see section 2.2.3.
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For a singular sphere s Ă B8X , we define the parallel set P psq Ă X as the union of the

(necessarily singular) flats f Ă X with visual boundary sphere B8f “ s, i.e. P psq “ P pfq; we

denote its cross section by CSpsq. For a pair of opposite points ξ, ξ̂ P B8X , we define P pξ, ξ̂q Ă

X as the parallel set of the singular sphere spξ, ξ̂q Ă B8X spanned by them, P pξ, ξ̂q “ P pspξ, ξ̂qq.

Similarly, for a pair of opposite simplices τ, τ̂ Ă B8X , we define P pτ´, τ`q “ P pspτ´, τ`qq.

The action G ñ B8X on ideal points is not transitive if rankpXq ě 2. However, every G-

orbit meets every chamber exactly once. The quotient is naturally identified with the spherical

model chamber, and the projection

θ : B8X Ñ B8X{G – σmod

is the type map, cf. section 2.2.3.

A nondegenerate geodesic segment xy Ă X is called regular if the unique geodesic ray xξ

extending xy is asymptotic to a regular ideal point ξ P B8X .

Two ideal points ξ, η P B8X are antipodal, =T itspξ, ηq “ π, iff there exists a geodesic line

l Ă X asymptotic to them, B8l “ tξ, ηu. Their types are then related by θpξ2q “ ιpθpξ1qq.

We say that two simplices τ1, τ2 Ă B8X are x-antipodal or x-opposite if τ2 “ σxτ1, using

the induced action of the point reflection σx on B8X . Two simplices τ1, τ2 are opposite iff they

are x-opposite for some point x P X . Their types are then related by θpτ2q “ ιpθpτ1qq. We

will frequently use the notation τ, τ̂ and τ˘ for pairs of antipodal simplices. A pair of opposite

chambers σ˘ is contained in a unique apartment, which we will denote by apσ´, σ`q. It is the

visual boundary of a unique maximal flat F pσ´, σ`q Ă X .

We will sometimes say that a singular flat f Ă X has type τmod if its visual boundary B8f has

type τmod, i.e. contains a top-dimensional simplex of type τmod. (A singular flat has in general

several types.) The set Fτmod
of singular flats of type τmod is a homogeneous G-manifold. The

flats of type σmod are the maximal flats and we denote F “ Fσmod
. A family of flats in Fτmod

is

bounded if these flats intersect a fixed bounded subset of X .

Also, we will sometimes call the parallel set P psq of a singular sphere Ă B8X of type τmod

or a τmod-parallel set if s has type τmod.

The stabilizers Pτ ă G of the simplices τ Ă B8X are the parabolic subgroups of G. The space

Flagτmod
of simplices of type τmod is called a (generalized) (partial) flag manifold. The action

G ñ Flagτmod
is transitive and we can write the flag manifold as a quotient Flagτmod

– G{Pτmod
,

where Pτmod
stands for a parabolic subgroup in the conjugacy class of parabolic subgroups Pτ of

type θpτq “ τmod. Flag manifolds are compact smooth manifolds; they admit natural structures

of projective real algebraic varieties (see e.g. [J, p. 160]). The topology on flag manifolds

induced by the visual topology on B8X agrees with their manifold topology as homogeneous

G-spaces. For ideal points ξ P B8X with type θpξq P intpτmodq, there is a natural G-equivariant

homeomorphic identification of the G-orbit Gξ Ă B8X with Flagτmod
by assigning to the point

gξ the (unique) simplex of type τmod containing it.

The flag manifolds Flagτmod
and Flagιτmod

are opposite in the sense that the simplices opposite

to simplices of type τmod have type ιτmod. To ease notation, we will denote the pair of opposite
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flag manifolds also by Flag˘τmod
whenever convenient, i.e. we put Flag`τmod

:“ Flagτmod
and

Flag´τmod
:“ Flagιτmod

. The latter is also reasonable, because the simplices ´τmod, ιτmod Ă amod

lie in the same W -orbit, i.e. ´τmod has type ιτmod. (Here we extend the notion of type to the

model apartment, defining the type of a simplex in amod as its image under the natural quotient

projection amod Ñ amod{W – σmod.) Similarly, we will use the notation P˘τmod
for a pair of

parabolic subgroups fixing opposite simplices in Flag˘τmod
.

The stabilizers Bσ ă G of the chambers σ Ă B8X are the minimal parabolic subgroups2 of

G; they are conjugate. The space BF :uX :“ Flagσmod
of chambers is called the (generalized) full

flag manifold or Furstenberg boundary of X , and we can write BF :uX “ G{B, where again B

stands for a minimal parabolic subgroup.

For a simplex τ̂ P Flagιτmod
we define the open Schubert stratum Cpτ̂q Ă Flagτmod

as the

subset of simplices opposite to τ̂ ; it is the open and dense Pτ̂ -orbit. With respect to the

algebraic structure on Flagτmod
, it is Zariski open, i.e. its complement is a proper subvariety.

We note that, if rankpXq “ 1, then there is only one flag manifold, namely B8X , and the

open Schubert strata are the complements of points.

2.5 Stars, cones and diamonds

2.5.1 Stars and suspensions

We first work inside the spherical model chamber σmod.

We recall from section 2.2.1 that, for a face type τmod Ď σmod, the τmod-boundary Bτmod
σmod of

σmod is the union of the faces of σmod which do not contain τmod. The τmod-interior intτmod
pσmodq

of σmod is the union of the open faces of σmod whose closure contains τmod. There is the

decomposition

σmod “ intτmod
pσmodq \ Bτmod

σmod.

In particular, intσmod
pσmodq “ int σmod and Bσmod

σmod “ Bσmod.

We say that a type in σmod is τmod-regular if it lies in intτmod
pσmodq.

Now let B be a spherical building. As before, we assume that diampσmodq ď π
2
.

A point ξ P B is called τmod-regular if its type is, θpξq P intτmod
pσmodq. We will quantify τmod-

regularity as follows: Given a compact subset Θ Ă intτmod
pσmodq, we will say that a τmod-regular

point ξ P B is Θ-regular if θpξq P Θ.

It will often be natural to impose a convexity property on Θ:

Definition 2.6 (Weyl convex). A subset Θ Ď σmod is τmod-Weyl convex if its symmetrization

Wτmod
Θ Ă amod is convex.

Let τ Ă B be a simplex of type τmod. The τmod-star stpτq Ă B is the union of all chambers

2When the group G is complex, the minimal parabolic subgroups are the Borel subgroups, which is why we

use the notation B for these subgroups.
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containing τ . Its boundary B stpτq is the union of all simplices in stpτq which do not contain

τ ; it consists of the points in stpτq with type in Bτmod
σmod. The open τmod-star ostpτq is the

complement ostpτq “ stpτq ´ B stpτq; it consists of the τmod-regular points in stpτq and is open

in B. For any simplex τ̂ opposite to τ , the star stpτq is contained in the suspension Bpτ, τ̂q.

Furthermore, we define the Θ-star stΘpτq Ă ostpτq as the subset of points with type Θ, that

is, stΘpτq “ stpτq X θ´1pΘq.

We will use the following separation property: If =pΘ, Bτmod
σmodq ě ǫ ą 0, then ostpτq

contains the open ǫ-neighborhood of stΘpτq.

Note that for chambers σ we have stpσq “ σ and ostpσq “ intpσq.

The next result implies that stars are convex:

Lemma 2.7 (Convexity of stars). (i) stpτq is an intersection of simplicial π
2
-balls.

(ii) For any simplex τ̂ opposite to τ , the star stpτq is an intersection of the suspension

Bpτ, τ̂q with simplicial π
2
-balls containing stpτq and centered at points in Bpτ, τ̂q.

Proof. (i) Let σ Ć stpτq be a chamber, and let a be an apartment containing σ and τ . We can

separate σ and stpτq X a by a wall in a, i.e. there exists a half-apartment h Ă a which contains

stpτq X a but not σ. Indeed, choose points ξ P intpτq and η P intpσq such that the segment ξη

intersects Bσ in a panel, and take the wall containing this panel. The simplicial π
2
-ball with the

same center as h then contains stpτq but not σ.

(ii) Note first that stpτq Ă Bpτ, τ̂q. Then we argue as in part (i), observing that if σ Ă Bpτ, τ̂q

then a can be chosen inside Bpτ, τ̂q.

We extend convexity to Θ-stars:

Lemma 2.8 (Convexity of Θ-stars). Let Θ Ď σmod be τmod-Weyl convex, and let τ be a

simplex of type τmod. Then stΘpτq is an intersection of π
2
-balls.

Proof. For any apartment a Ą τ , the intersection stΘpτq X a is convex, as a consequence of the

Weyl convexity of Θ.

Let ζ P B. Every point in stΘpτq lies in an apartment a Ą τ, ζ .

For any two apartments a, a1 Ą τ, ζ there exists an isometry a Ñ a1 fixing τ and ζ . (This fol-

lows from the compatibility of apartment charts axiom in the definition of spherical buildings.)

It carries stΘpτq X a to stΘpτq X a1. Hence, Bpζ, π
2
q contains the first intersection iff it contains

the second. Letting a1 vary, it follows that Bpζ, π
2
q contains stΘpτq iff it contains stΘpτq X a.

Let ξ R stΘpτq. Then there is an apartment a Ą τ, ξ and, due to the convexity of stΘpτqXa, a

point ζ P a such that Bpζ, π
2
q contains stΘpτqXa but not ξ. By the above, stΘpτq Ď Bpζ, π

2
q.

In the following, we restrict ourselves to the case B “ B8X and, besides the metric, also

take into account the visual topology on the flag manifolds Flagτmod
. The discussion readily

generalizes to arbitrary topological spherical buildings.
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The τmod-regular part Bτmod´reg
8 X of the visual boundary equals the union of the open τmod-

stars. The natural projection

Bτmod´reg
8 X “

ď

τPFlagτ
mod

ostpτq Ñ Flagτmod
(2.9)

is a fiber bundle.

Let τ P Flagτmod
and let τ̂ be opposite to τ . Then τ is the only simplex in Bpτ, τ̂ q which is

opposite to τ̂ . In other words, the closed subset

tτ 1 P Flagτmod
: τ 1 Ă Bpτ, τ̂qu (2.10)

intersects the open Schubert stratum Cpτ̂ q in the single point τ , which is therefore an isolated

point of this subset.

We know that ostpτq is an open subset of Bpτ, τ̂q with respect to the (Tits) metric.

Lemma 2.11 (Open stars). ostpτq is open in Bpτ, τ̂q also with respect to the visual topology.

Proof. Consider the fiber bundle (2.9). The union U of the open τmod-stars over the simplices

in Cpτ̂ q is open in B8X . Since τ is an isolated point of (2.10), the suspension Bpτ, τ̂ q intersects

U precisely in ostpτq, which is therefore open in the suspension.

2.5.2 Cones and parallel sets

We transfer notions about stars by coning off. Our discussion takes place in X and Fmod.

Consider first the euclidean model chamber ∆ “ V p0, σmodq. Its τmod-boundary

Bτmod
∆ :“ V p0, Bτmod

σmodq Ď B∆

is the union of the faces which do not contain the face V p0, τmodq. In particular Bσmod
∆ “ B∆.

In the symmetric space X , we define for a point x P X and a subset A Ă B8X the cone

V px,Aq Ă X as the union of the rays xξ for ξ P A. We put V px,Hq :“ txu.

Let τ Ă B8X be a simplex of type τmod. The Weyl cone V px, stpτqq with tip at x P X is the

union of the euclidean Weyl chambers V px, σq for all chambers σ Ď stpτq, equivalently, σ Ě τ .

Its boundary is given by BV px, stpτqq “ V px, B stpτqq, and its interior by V px, ostpτqq ´ txu. We

call the Weyl sector V px, τq the central sector of the Weyl cone V px, stpτqq. Similarly, we will

refer to V p0, τmodq Ď ∆ as the central sector of the cone Wτmod
∆ “ V p0,Wτmod

σmodq Ă Fmod.

For the unique simplex τ̂ x-opposite to τ , the Weyl cone V px, stpτqq is contained in the

parallel set P pτ, τ̂q. We say that the cone spans the parallel set.

Furthermore, for a compact subset Θ Ă intτmod
pσmodq, we define the Θ-cone V px, stΘpτqq.

Note that for chambers σ Ă B8X we have V px, stpσqq “ V px, σq.

We will call two Weyl cones or Θ-cones asymptotic if their visual boundary stars coincide.
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The Hausdorff distance of asymptotic Weyl cones V py, stpτqq and V py1, stpτqq is finite and

bounded by the distance dpy, y1q of their tips. This follows immediately from the corresponding

fact for rays.

The distance between boundaries of Weyl cones will be discussed later in section 2.9.1.

We will need a fact about projections. Let

πx,τ “ πV px,τq : V px, stpτqq Ñ V px, τq (2.12)

denote the nearest point projection of the Weyl cone to its central sector.

Lemma 2.13. πx,τ maps the interior of the Weyl cone to the interior of its central sector.

In other words, for every point y in the interior of the Weyl cone there exists a point p in

the interior of its central sector such that py K V px, τq.

Proof. This is a consequence of the general Lemma 2.1 on projections of spherical simplices to

their faces. It yields at infinity that, for every chamber σ Ě τ , the nearest point projection

intτ pσq Ñ intpτq is well-defined. Equivalently, the nearest point projection ostpτq Ñ intpτq is

well-defined. The assertion follows by coning off.

As a consequence of the lemma, πx,τ agrees with the nearest point projection of the Weyl

cone to the singular flat spanned by the sector V px, τq, because it does so on the interior.

Now we address convexity. We will see that the results on stars carry over to cones. First

of all, by the definition of Weyl convexity, the cone V p0,Wτmod
Θq “ Wτmod

V p0,Θq Ă Fmod is

convex iff Θ is τmod-Weyl convex.

Proposition 2.14 (Convexity of cones). (i) The cones V px, stpτqq are convex.

(ii) If Θ is τmod-Weyl convex, then also the cones V px, stΘpτqq are convex.

Proof. It suffices to verify (ii). We show that cones are intersections of horoballs.

The horoball Hbζ,x contains the cone V px, stΘpτqq iff stΘpτq Ď Bpζ, π
2
q in B8X .

Let y ‰ x be a point and let xξ be a ray extending xy. Then y R V px, stΘpτqq iff ξ R stΘpτq.

Let F Ă X be a maximal flat such that xy Ă F and τ Ă B8F . According to the proof of

Lemma 2.8, there exists a point ζ P B8F such that Bpζ, π
2
q contains stΘpτq but not ξ. Since

Hbζ,x XF is a half-space containing x in its boundary, it follows that also y R Hbζ,x.

The convexity of cones implies their nestedness:

Corollary 2.15 (Nestedness of cones). (i) If y P V px, stpτqq, then V py, stpτqq Ď V px, stpτqq.

(ii) If y P V px, stΘpτqq, then V py, stΘpτqq Ď V px, stΘpτqq.

Next we show an openness property for Weyl cones in the parallel sets spanned by them:
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Lemma 2.16 (Open cones). Let x P P pτ, τ̂q. Then the boundary BV px, stpτqq of the Weyl

cone V px, stpτqq disconnects the parallel set, and its interior V px, ostpτqq ´ txu is one of the

connected components.

Proof. Since parallel sets are cones over their visual boundaries, P pτ, τ̂q “ V px, B8Xpτ, τ̂qq,

this follows from the visual openness of stars, cf. Lemma 2.11.

2.5.3 Diamonds

We say that a nondegenerate oriented geodesic segment xy Ă X is τmod-regular if the unique

geodesic ray xξ extending xy is asymptotic to a τmod-regular ideal point ξ P B8X . In this case,

we denote by τpxyq P Flagτmod
the unique simplex such that ξ P ostpτq. Furthermore, we say

that xy is Θ-regular with Θ P intτmod
pσmodq if θpξq P Θ.

Note that xy is τmod-regular if and only if yx is ιτmod-regular, and Θ-regular iff yx is ιΘ-

regular. The types of the simplices τpxyq and τpyxq P Flagιτmod
are then related by

θpτpyxqq “ ιθpτpxyqq.

Let xy be a τmod-regular segment. We define its τmod-diamond as the intersection of Weyl cones

♦τmod
px, yq “ V px, stpτ`qq X V py, stpτ´qq Ă P pτ´, τ`q

where τ` “ τpxyq and τ´ “ τpyxq. The points x, y are the tips of the diamond. Furthermore,

if xy is Θ-regular, we define its Θ-diamond

♦Θpx, yq “ V px, stΘpτ`qq X V py, stΘpτ´qq Ă ♦τmod
px, yq.

The convexity of cones (Proposition 2.14) implies:

Proposition 2.17 (Convexity of diamonds). (i) ♦τmod
px, yq is convex.

(ii) If Θ is τmod-Weyl convex, then also ♦Θpx, yq is convex.

And furthermore:

Corollary 2.18 (Nestedness of diamonds). Suppose that xy and x1y1 are τmod-regular seg-

ments such that τpx1y1q “ τpxyq, τpy1x1q “ τpyxq and x1y1 Ă ♦τmod
px, yq. Then:

(i) ♦τmod
px1, y1q Ď ♦τmod

px, yq.

(ii) If xy and x1y1 are Θ-regular, where Θ is τmod-Weyl convex, and if x1y1 Ă ♦Θpx, yq, then

♦Θpx1, y1q Ď ♦Θpx, yq.

2.6 Vector valued distances

The Riemannian distance is not the complete two-point invariant on the symmetric space X ,

if rankpXq ě 2. In view of the natural identifications X ˆX{G – X{K – ∆, the full invariant

is given by the quotient map

d∆ : X ˆ X Ñ ∆
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arising from dividing out the G-action, which we refer to as the ∆-distance. We will think of

the elements of ∆ Ă Fmod as vectors and of d∆ as a vector-valued distance. It relates to the

Riemannian distance d on X by

d “ }d∆},

where } ¨ } is the euclidean norm on Fmod.

For the model flat, there are corresponding identifications FmodˆFmod{Waff – Fmod{W – ∆

and a ∆-distance

d∆ : Fmod ˆ Fmod Ñ ∆.

It is compatible with the ∆-distance on X in that the charts Fmod Ñ X are d∆-isometries.

Similarly, one defines the ∆-distance on euclidean buildings via apartment charts, see [KLM].

The distance d∆ is not symmetric, but satisfies

d∆py, xq “ ιd∆px, yq.

We refer the reader to [KLM] and [P] for the detailed discussion of metric properties (such as

“triangle inequalities” and “nonpositive curvature behavior”) of d∆.

We note that a geodesic segment xy Ă X is regular iff d∆px, yq P intp∆q. Similarly, xy is

Θ-regular iff d∆px, yq P V p0,Θq.

We define certain coarsifications of d∆ by composing it with linear maps: For a face type

τmod, let

π∆
τmod

: ∆ Ñ V p0, τmodq

denote the nearest point projection. The composition

dτmod
:“ π∆

τmod
˝ d∆ (2.19)

can also be regarded as a vector-valued distance onX , with values in theWeyl sector V p0, τmodq Ă

∆. Note that dσmod
“ d∆. Obviously,

}dτmod
} ď d (2.20)

because π∆
τmod

is 1-Lipschitz.

Given a compact subset Θ Ă intτmod
pσmodq, for Θ-regular segments xy Ă X it holds that

}dτmod
px, yq} ě ǫpΘq ¨ dpx, yq (2.21)

with a constant ǫpΘq ą 0, where } ¨ } denotes the euclidean norm. For the constant ǫpΘq one

can take the sine of the angular distance =pΘ, Bτmod
σmodq.

2.7 Refined side lengths of triangles

In this section, we assume more generally that X is a CAT(0) model space, i.e. a nonpositively

curved Riemannian symmetric space or a thick euclidean building. We denote by

P3pXq Ă ∆3
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the set of possible ∆-side lengths pd∆px1, x2q, d∆px2, x3q, d∆px3, x1qq of triangles ∆px1, x2, x3q in

X . The following general result reduces the problem of determining P3pXq from the symmetric

space case to the euclidean building case:

Theorem 2.22 ([KLM, Thm. 1.2]). P3pXq depends only on the Weyl group W , and not on

whether X is a Riemannian symmetric space or a thick euclidean building.

In the paper [KLM], a detailed description of the set P3pXq is given.

The next result concerns the ∆-side lengths of triangles ∆px, y, zq in X such that the broken

geodesic xyz is a Finsler geodesic (in the sense of section 2.12 below):

Proposition 2.23. (i) If y P V px, stpτqq and z P V py, stpτqq with τ P Flagτmod
, then

d∆px, zq P V pd∆px, yq,Wτmod
σmodq X ∆.

(ii) If z P V py, stΘpτqq, where Θ Ă intτmod
pσmodq is τmod-Weyl convex, then

d∆px, zq P V pd∆px, yq,Wτmod
Θq X ∆.

Here, the cones V pd∆px, yq, ¨q are to be understood as subsets of Fmod.

Proof. We prove the stronger claim (ii).

The triangle ∆px, y, zq lies in the parallel set P “ P pτ̂ , τq for the simplex τ̂ P Flagιτmod

x-opposite to τ . The parallel set P is itself a symmetric space (with euclidean factor) with

Weyl group W 1 “ Wτmod
Ă W . There is a natural inclusion σmod Ă σ1

mod Ă amod of spherical

Weyl chambers such that σ1
mod equals the convex hull of σmod and the simplex ´τmod opposite

to τmod, and a corresponding inclusion ∆ Ă ∆1 Ă Fmod of euclidean Weyl chambers such that

∆1 is the convex hull of ∆ and the sector ´V p0, τmodq.

Our claim is then a consequence of the following assertion on ∆1-side lengths: If d∆1px, yq P ∆

and d∆1py, zq P V p0,Θq Ă ∆, then

d∆1px, zq P V pd∆1px, yq,Wτmod
Θq X ∆.

Using Theorem 2.22, we may pass from symmetric spaces to euclidean buildings: The assertion

is equivalent to the same assertion for any thick euclidean building P̃ with the same Weyl group

W 1. (For instance, one can take P̃ to be the complete euclidean cone over the spherical building

BT itsP , which is a non-locally compact euclidean building with just one vertex.) It is easier

to verify the statement in the building case due to the locally conical geometry of euclidean

buildings.

Suppose therefore that ∆px̃, ỹ, z̃q is a triangle in a euclidean building P̃ with Weyl group

W 1, satisfying the same assumptions d∆1px̃, ỹq P ∆ and d∆1pỹ, z̃q P V p0,Θq. Taking advantage

of the local conicality of buildings, we will do “induction along ỹz̃” and show that

d∆1px̃, z̃1q P V pd∆1px̃, ỹq,Wτmod
Θq X ∆ (2.24)
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for all points z̃1 P ỹz̃. Since this is a closed condition on z̃1, it suffices to show that the subset of

points satisfying it is half-open to the right. Moreover, since the points z̃1 P ỹz̃ satisfying (2.24)

also satisfy, like ỹ, the assumptions that d∆1px̃, z̃1q P ∆ and d∆1pz̃1, z̃q P V p0,Θq, it suffices to

verify (2.24) for all points z̃1 P ỹz̃ sufficiently close to ỹ.

This however reduces our claim to the flat case, because there exists a maximal flat F̃ Ă P̃

which contains x̃ỹ along with a nondegenerate initial portion of the segment ỹz̃.3 We may

therefore assume that the triangle ∆px̃, ỹ, z̃q lies entirely in F̃ . Identifying F̃ – Fmod, we can

once more reformulate our claim: If δ P ∆ and v P V p0,Wτmod
Θq, then

d∆1p0, δ ` tvq P V pδ,Wτmod
Θq X ∆ (2.25)

for all sufficiently small t ě 0.

The stabilizer of δ in W 1 “ Wτmod
is a subgroup Wνmod

ď Wτmod
for a face type νmod with

τmod Ď νmod Ď σmod (namely, for the minimal face type νmod Ě τmod such that δ P V p0, νmodq).

We observe that the cone δ ` V p0,Wτmod
Θq is Wνmod

-invariant and can be represented locally

near δ as

δ ` V p0,Wτmod
Θq “ Wνmod

`
pδ ` V p0,Wτmod

Θqq X ∆
˘
.

The Wτmod
-invariance of d∆1p0, ¨q yields the assertion.

2.8 Strong asymptote classes

Let ρ1ptq and ρ2ptq be asymptotic geodesic rays inX , i.e. with the same ideal endpoint ρ1p`8q “

ρ2p`8q “ ξ. Equivalently, the convex function t ÞÑ dpρ1ptq, ρ2ptqq on r0,`8q is bounded. The

rays are called strongly asymptotic if dpρ1ptq, ρ2ptqq Ñ 0 as t Ñ `8. One sees then using Jacobi

fields that dpρ1ptq, ρ2ptqq decays exponentially with rate depending on the type of ξ (see [Eb]).

Strong asymptote classes are represented by rays in a parallel set:

Lemma 2.26. Let ξ, ξ̂ P B8X be antipodal. Then every geodesic ray asymptotic to ξ is strongly

asymptotic to a geodesic ray in the parallel set P “ P pξ, ξ̂q.

Proof. Let c1ptq be a geodesic line forward asymptotic to ξ (extending the given ray). Then

the function t ÞÑ dpc1ptq, P q is convex and bounded on r0,`8q, and hence non-increasing. We

claim that the limit

D :“ lim
tÑ`8

dpc1ptq, P q

equals zero. To see this, we choose a geodesic line c2ptq in P forward asymptotic to ξ and

use the transvections T c2
t along c2 to “pull back” c1: The geodesics cs1 :“ T c2

´sc1p¨ ` sq form a

bounded family as s Ñ `8 and subconverge to a geodesic c`8
1 . Since the transvections T c2

s

preserve P , the distance functions dpcs1p¨q, P q “ dpc1p¨ ` sq, P q converge locally uniformly on R

and uniformly on r0,`8q to the constant D. It follows that the limit geodesic c`8
1 has distance

3This is clear for discrete euclidean buildings. (In particular, for buildings with only one vertex, like the

complete euclidean cone over BTitsP .) For the general case, see e.g. [KlL1, §4.1.3].

26



” D from P . The same argument, applied to c2 instead of the parallel set, implies that c`8
1 is

parallel to c2. Thus, c
`8
1 Ă P pc2q “ P and, hence, D “ 0.

Now we find a geodesic in P strongly asymptotic to c1 as follows. Let tn Ñ `8. We

choose geodesics c1
nptq in P forward asymptotic to ξ by requiring that c1

nptnq P P is the nearest

point projection of c1ptnq. Then dpc1ptnq, c1
nptnqq “ dpc1ptnq, P q Ñ 0. The geodesics c1

n Ă P

are parallel, and their mutual Hausdorff distances dmn are bounded above by the distances

dpc1
mptq, c1

nptqq independent of t. To estimate the Hausdorff distances, we observe that

dmn ď dpc1
mptq, c1

nptqq ď dpc1
mptq, c1ptqq ` dpc1ptq, c

1
nptqq ď dpc1

mptmq, c1ptmqq ` dpc1ptnq, c1
nptnqq

for t ě tm, tn. The right-hand side converges Ñ 0 as m,n Ñ `8, and hence also dmn. Thus,

the geodesics c1
n form a Cauchy sequence and therefore converge to a geodesic in P . The limit

geodesic is strongly asymptotic to c1.

We now derive a criterion for the strong asymptoticity of rays.

Consider a geodesic line cptq asymptotic to ξ P B8X . We observe that for every η P B8P pcq

the restriction bη ˝ c is linear, because there exists a flat f containing c with η P B8f .

As a consequence, for any two strongly asymptotic geodesic lines c1ptq and c2ptq asymptotic

to ξ, the restricted Busemann functions bη ˝ci coincide for every η P stpτξq Ă B8P pc1qXB8P pc2q,

where τξ denotes the simplex spanned by ξ.

There is the following useful criterion for strong asymptoticity:

Lemma 2.27. For geodesic lines c1ptq and c2ptq asymptotic to ξ the following are equivalent:

(i) c1ptq and c2ptq are strongly asymptotic.

(ii) bη ˝ c1 “ bη ˝ c2 for every η P stpτξq.

(ii’) bη ˝ c1 “ bη ˝ c2 for every η P Bpξ, ǫq for some ǫ ą 0.

Proof. (i)ñ(ii) follows from the above discussion and (ii)ñ(ii’) is immediate.

In order to prove (ii’)ñ(i), we replace the geodesics ci by a pair of parallel ones without

changing their strong asymptote classes, applying Lemma 2.26. Using the implication (i)ñ(ii),

which we already proved, we see that the ci keep satisfying hypothesis (ii’). Since they now lie

in a common flat, (ii’) immediately implies that they coincide, i.e. (i) follows.

We generalize the discussion of strong asymptoticity to sectors.

Two Weyl sectors in X are asymptotic iff their visual boundary simplices coincide, equiva-

lently, iff they have finite Hausdorff distance.

Fix a simplex τ P Flagτmod
and consider two asymptotic sectors V px1, τq and V px2, τq. The

function V p0, τmodq Ñ r0,`8q given by

y ÞÑ dpκx1,τ pyq, κx2,τ pyqq, (2.28)

where κxi,τ are the sector charts, is convex and bounded. We denote its infimum by dτpx1, x2q.

This defines a pseudo-metric dτ on X , viewed as the set of (tips of) sectors asymptotic to τ .4

4Observe that dτ px1, x2q depends only on the strong asymptote classes of the sectors V pxi, τq, and hence dτ
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We say that the sectors V px1, τq and V px2, τq are strongly asymptotic if dτpx1, x2q “ 0. For

any ideal point ξ P intpτq this is equivalent to the rays x1ξ and x2ξ being strongly asymptotic.

We denote by

Xpar
τ “ X{ „dτ

the space of strong asymptote classes of Weyl sectors asymptotic to τ .

We show now that, also in the case of sectors, parallel sets represent strong asymptote

classes. For a simplex τ̂ opposite to τ we consider the restriction

P pτ, τ̂q Ñ Xpar
τ (2.29)

of the natural projection X Ñ Xpar
τ .

Proposition 2.30. The map (2.29) is an isometry.

Proof. For points x1, x2 P P pτ, τ̂q the function (2.28) is constant ” dpx1, x2q. Hence (2.29) is an

isometric embedding. To see that it is also surjective, we need to verify that every sector V px, τq

is strongly asymptotic to a sector V px1, τq Ă P pτ, τ̂q. This follows from the corresponding fact

for geodesic rays, see Lemma 2.26.

2.9 Asymptotic Weyl cones

2.9.1 Separation of nested Weyl cones

Suppose that y P V px, stpτqq with τ P Flagτmod
. By nestedness (Coroillary 2.15), we have the

inclusion of Weyl cones V py, stpτqq Ď V px, stpτqq. We now determine the separation of their

boundaries:

Proposition 2.31 (Separation). The nearest point distance of the boundaries BV px, stpτqq

and BV py, stpτqq equals dpδ, Bτmod
∆q “ dpy, BV px, stpτqqq, where δ “ d∆px, yq.

Proof. The natural submersion

d∆px, ¨q : X Ñ ∆

is 1-Lipschitz and restricts to an isometry on every euclidean Weyl chamber with tip at x. By

restricting it to the Weyl cone V px, stpτqq, one sees that

dp¨, BV px, stpτqqq “ d
`
d∆px, ¨q, Bτmod

∆
˘

on V px, stpτqq. According to Proposition 2.23(i), the values of d∆px, ¨q on V py, stpτqq are con-

tained in

V pδ,Wτmod
σmodq X ∆,

descends to Xpar
τ ˆXpar

τ . The triangle inequality is a consequence of Proposition 2.30 below. One can also verify

the triangle inequality for dτ directly, using the fact that, for bounded convex functions φ, ψ : V p0, τmodq Ñ

r0,`8q, it holds that inf φ` inf ψ “ infpφ` ψq.
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and clearly all these values are attained (on a euclidean Weyl chamber with tip at x and

containing y). It follows that the nearest point distance of V py, stpτqq and BV px, stpτqq equals

the nearest point distance of V pδ,Wτmod
σmodq X ∆ and Bτmod

∆.

In order to see that the latter is given by dpδ, Bτmod
∆q, note that dp¨, Bτmod

∆q is the minimum

of finitely many root functionals on ∆, namely of those corresponding to the walls of ∆ not

containing the sector V p0, τmodq, equivalently, of those which are nonnegative on Wτmod
∆. Each

of these functionals attains its minimum on the cone V pδ,Wτmod
σmodq at its tip δ.

2.9.2 Shadows at infinity and strong asymptoticity of Weyl cones

For a simplex τ´ P Flagιτmod
and a point x P X , we consider the function

τ ÞÑ dpx, P pτ´, τqq (2.32)

on the open Schubert stratum Cpτ´q Ă Flagτmod
. We denote by τ` P Cpτ´q the simplex

x-opposite to τ´.

Lemma 2.33. The function (2.32) is continuous and proper.

Proof. This follows from the fact that Cpτ´q and X are homogeneous spaces for the parabolic

subgroup Pτ´
. Indeed, continuity follows from the continuity of the function

g ÞÑ dpx, P pτ´, gτ`qq “ dpg´1x, P pτ´, τ`qq

on Pτ´
which factors through the orbit map Pτ´

Ñ Cpτ´q, g ÞÑ gτ`.

Regarding properness, note that a simplex τ P Cpτ´q is determined by any point y contained

in the parallel set P pτ´, τq, namely as the simplex y-opposite to τ´. Thus, if P pτ´, τq X

Bpx,Rq ‰ H for some fixed R ą 0, then there exists g P Pτ´
such that τ “ gτ` and dpx, gxq ă

R. In particular, g lies in a compact subset. This implies properness.

Moreover, the function (2.32) has a unique minimum zero in τ`.

We define the following open subsets of Cpτ´q which can be regarded as shadows of balls in

X with respect to τ´. For x P X and r ą 0, we put

Uτ´,x,r :“ tτ P Cpτ´q|dpx, P pτ´, τqq ă ru. (2.34)

The next fact expresses the strong asymptoticity of asymptotic Weyl cones:

Lemma 2.35. For r, R ą 0 there exists d “ dpr, Rq ą 0 such that:

If y P V px, stpτ´qq with dpy, BV px, stpτ´qqq ě dpr, Rq, then Uτ´,x,R Ă Uτ´,y,r.

Proof. If Uτ´,x,R Ć Uτ´,y,r then there exists x1 P Bpx,Rq such that dpy, V px1, stpτ´qqq ě r.

Thus, if the assertion is wrong, there exist a sequence xn Ñ x8 in Bpx,Rq and an ιτmod-regular

sequence pynq in V px, stpτ´qq such that dpyn, V pxn, stpτ´qqq ě r.
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Let ρ : r0,`8q Ñ V px, τ´q be a geodesic ray with initial point x and asymptotic to an

interior point of τ´. By ιτmod-regularity, the sequence pynq eventually enters every Weyl cone

V pρptq, stpτ´qq. Since the distance function dp¨, V pxn, stpτ´qqq is convex and bounded, and

hence non-increasing along rays asymptotic to stpτ´q, we have that

R ě dpx, V pxn, stpτ´qqq ě dpρptq, V pxn, stpτ´qqq ě dpyn, V pxn, stpτ´qqq ě r

for n ě nptq. It follows that

R ě dpρptq, V px8, stpτ´qqq ě r

for all t ě 0. However, the ray ρ is strongly asymptotic to V px8, stpτ´qq, cf. Proposition 2.30,

a contradiction.

2.10 Horocycles

We discuss various foliations of X naturally associated to a simplex τ Ă B8X .

We begin with foliations by flats and parallel sets: First, we denote by Fτ the partition of

X into the singular flats f Ă X such that τ Ă B8f is a top-dimensional simplex. Second, we

consider the partition Pτ of X into the parallel sets P pτ, τ̂q for the simplices τ̂ opposite to τ .

Note that Pτ is a coarsening of Fτ , and coincides with it iff τ is a chamber. The parabolic

subgroup Pτ preserves both partitions and acts transitively on their leaves. This implies that

these partitions are smooth foliations.

We will now show that there exist complementary orthogonal foliations. To do so, we

describe preferred mutual identifications between the leaves of Fτ as well as of Pτ by the actions

of certain subgroups of Pτ . Their orbits will be submanifolds orthogonal and complementary

to the foliations, i.e. the integral submanifolds of the distributions normal to them.

The tuple pbξqξPVertpτq of Busemann functions for the vertices ξ of τ (well-defined up to

additive constants) provides affine coordinates simultaneously for each flat f P Fτ . The Buse-

mann functions at the other ideal points in τ are linear combinations of these. The group Pτ

preserves the family of horospheres at every ξ P τ , and the action on it yields a natural “shift”

homomorphism φξ : Pτ Ñ R. The intersection of their kernels forms the normal subgroup
č

ξPVertpτq

Stabpbξq “
č

ξPτ

Stabpbξq Ÿ Pτ . (2.36)

It acts transitively on the set Fτ of flats and preserves the coordinates; it thus provides consistent

identifications between these flats. The level sets of pbξqξPVertpτq are submanifolds orthogonal

and complementary to these flats, because the gradient directions of the Busemann functions

bξ at a point x P f P Fτ constitute a basis of the tangent space Txf . These level sets form a

smooth foliation FK
τ and are the orbits of the subgroup (2.36).

In order to describe the foliation normal to Pτ , we define the horocyclic subgroup at τ as

the (smaller) normal subgroup Nτ Ÿ Pτ given by

Nτ “
č

ξPstpτq

Stabpbξq Ÿ Fixpstpτqq Ÿ Pτ .
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It is the kernel of the Pτ -action on the set of all (unnormalized) Busemann functions centered

at ideal points in stpτq.

Note that as a consequence of Lemma 2.27, Nτ preserves the strong asymptote classes of

geodesic rays at all ideal points ξ P ostpτq.

We now give a method for constructing isometries in Nτ .

Let ξ P intpτq, and let cptq be a geodesic line forward asymptotic to it, cp`8q “ ξ. Consider

the one parameter group pT c
t qtPR of transvections along c. The transvections T c

t fix B8P pcq

pointwise and shift the Busemann functions bη centered at ideal points η P B8P pcq by additive

constants:

bη ˝ T c
t ´ bη ” ´t ¨ cos=T itspη, ξq

Note that stpτq Ă B8P pcq.

Lemma 2.37. Let c1ptq and c2ptq be geodesic lines forward asymptotic to ξ P intpτq, which are

strongly asymptotic. Then there exists an isometry5 n P G with the properties:

(i) n ˝ c1 “ c2.

(ii) n fixes B8P pc1q X B8P pc2q pointwise.

(iii) bη ˝ n ” bη for all η P B8P pc1q X B8P pc2q.

In particular, n P Nτ .

Proof. By our observation above, the isometries T c2
´t ˝ T c1

t fix B8P pc1q X B8P pc2q Ě stpτq point-

wise and preserve the Busemann functions bη for all η P B8P pc1q X B8P pc2q. Thus, they belong

to Nτ . Moreover, they form a bounded family. Therefore, as t Ñ `8, they subconverge to an

isometry n P Nτ which maps c1 to c2 while preserving parameterizations.

Corollary 2.38. Nτ acts transitively on

(i) every strong asymptote class of geodesic rays at every ideal point ξ P intpτq;

(ii) the set of leaves of Pτ .

Proof. Part (i) is a direct consequence of the lemma.

Also (ii) follows because every parallel set in Pτ contains a (in fact, exactly one) geodesic

ray of every strong asymptote class at any point ξ P intpτq, cf. Proposition 2.30.

Remark 2.39. One also obtains that every geodesic asymptotic to an ideal point ξ P Bτ can

be carried by an isometry in Nτ to any other strongly asymptotic geodesic. However, Nτ does

not preserve strong asymptote classes at ξ in that case.

Lemma 2.40. If n P Nτ preserves a parallel set P pτ, τ̂q, nτ̂ “ τ̂ , then it acts trivially on it.

Proof. The hypothesis implies that n fixes stpτq and τ̂ pointwise, and hence also their convex

hull B8P pτ, τ̂q in BT itsX . Thus n preserves every maximal flat F Ă P pτ, τ̂q. Moreover it

5This isometry is unipotent but we will not need this fact.
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preserves all Busemann functions bξ centered at points ξ P B8F X stpτq, and therefore must fix

F pointwise, compare Lemma 2.27.

Corollary 2.41. The stabilizer of P pτ, τ̂q in Nτ is its pointwise fixator Kτ,τ̂ ă G.

Proof. The claim follows from the obvious inclusion Kτ,τ̂ Ă Nτ together with the lemma.

Remark 2.42. The subgroup Nτ decomposes as the semidirect product Uτ ¸ Kτ,τ̂ , where

Uτ Ÿ Pτ is the unipotent radical of Pτ .

By the above, Nτ provides consistent identifications between the parallel sets P pτ, τ̂q. The

Nτ -orbits are submanifolds orthogonal to the parallel sets and must have complementary di-

mension. They form a smooth foliation

Hτ “ PK
τ (2.43)

refining FK
τ , which we call the horocyclic foliation and its leaves the horocycles at τ . We denote

the horocycle at τ through the point x by Hcτ,x, i.e. Hcτ,x “ Nτx.

For incident faces, the associated subgroups and foliations are contained in each other: If

υ Ă τ , then stpυq Ą stpτq and Nυ ă Nτ . Therefore, e.g. Hυ refines Hτ .

Note that in rank one, horocycles are horospheres.

We also see how horocycles and strong asymptote classes relate; by Corollary 2.38(i):

Corollary 2.44 (Strong asymptote classes are horocycles). The sectors V px1, τq and

V px2, τq are strongly asymptotic if and only if x1 and x2 lie in the same horocycle at τ .

Moreover, the discussion shows that for the stabilizer Pτ X Pτ̂ of P pτ, τ̂q in Pτ it holds that

Nτ pPτ X Pτ̂ q “ Pτ and Pτ X Pτ̂ X Nτ “ Kτ,τ̂ , and so the sequence

1 Ñ Nτ Ñ Pτ Ñ IsompXpar
τ q

is exact.

Remark 2.45. Note that the homomorphism Pτ Ñ IsompXpar
τ q is in general not surjective.

Namely, let Xpar
τ “: fτ ˆ CSpτq denote the decomposition (2.4) of Xpar

τ – P pτ, τ̂q. Then Pτ

acts on the flat factor fτ only by the group Aτ of translations. On the cross section, it acts by

a subgroup Mτ ď IsompCSpτqq containing the identity component. The above exact sequence

is then a part of the Langlands’ decomposition of Pτ ,

1 Ñ Nτ Ñ Pτ Ñ Aτ ˆ Mτ Ñ 1,

which, on the level of Lie algebras, is a split exact sequence.

We return now to Lemma 2.37. For later use, we elaborate on the special case when the

geodesics ci are contained in the parallel set of a singular flat of dimension rank minus one.
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Consider a half-apartment h Ă B8X ; it is a simplicial π
2
-ball in B8X . We call its center ζ

the pole of h. We define the star stphq as the union of the stars stpτq where τ runs through

all simplices with intpτq Ă intphq, equivalently, which are spanned by interior points of h.

Similarly, we define the open star ostphq as the union of the corresponding open stars ostpτq.

Note that intphq Ă ostphq. Furthermore, we define the subgroup Nh ă G as the intersection of

the horocyclic subgroups Nτ at these simplices τ ,

Nh “
č

intpτqĂintphq

Nτ .

We observe that Nh preserves the strong asymptote classes of geodesic rays at all ideal

points ξ P ostphq, and it preserves the family of maximal flats F with B8F Ą h. The action on

this set of flats is transitive. Indeed, parallel to Lemma 2.37, we have:

Lemma 2.46. Let F1, F2 Ă P pBhq be maximal flats with B8Fi Ą h. Then there exists an

isometry n P Nh with the properties:

(i) nF1 “ F2.

(ii) n fixes stphq pointwise.

(iii) bη ˝ n ” bη for all η P stphq.

Proof. The parallel set P pBhq splits as the product f ˆ CSpBhq, see (2.4), where f Ă X is

a singular flat with B8f “ Bh, and the cross section CSpBhq is a rank one symmetric space.

Accordingly, the maximal flats Fi split as products fˆc̄i with geodesics c̄i Ă CSpBhq asymptotic

to the pole ζ P CSpBhq of h.

Let ξ P intphq. We choose geodesics c1ptq, c2ptq in F1, F2 asymptotic to ξ. Their f -com-

ponents are parallel geodesics in f , and their CSpBhq-components are geodesics in CSpBhq

asymptotic to ζ , equal to c̄1, c̄2 up to reparametrization. The geodesics c1, c2 are strongly

asymptotic iff they have the same f -component and their CSpBhq-components are strongly

asymptotic. We choose them in this way, using the fact that any two asymptotic geodesics in

a rank one symmetric space become strongly asymptotic after suitable reparameterization.

We then can apply the limiting argument (in the proof of Lemma 2.37) to the compositions

T c2
´t ˝ T c1

t and obtain an isometry n P Nτξ where τξ Ă h denotes the simplex spanned by ξ. The

isometry n carries F1 to F2, fixes stpτξq pointwise and satisfies (iii) for all η P stpτξq.

We observe that the isometries T c2
´t˝T

c1
t act trivially on f and the limiting isometry n depends

only on the CSpBhq-components of the geodesics ci. Thus, by replacing the f -component of the

ci, we are not affecting n, but we can change the ideal endpoint ξ of the ci to any other ideal

point ξ1 P intphq. (We work here with constant speed parametrizations ciptq.) It follows that

n fixes also stpτξ1q pointwise and satisfies (iii) also for all η P stpτξ1q. Varying ξ1, we let τξ1 run

through all simplices with intpτq Ă intphq and conclude also parts (ii)+(iii) of the assertion.

We obtain an analogue of Corollary 2.38:

Corollary 2.47. Nh acts transitively on
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(i) every strong asymptote class of geodesic rays at every ideal point ξ P intphq;

(ii) the set of maximal flats F with B8F Ą h.

We describe a consequence of our discussion for the horocyclic foliations.

The maximal flats F with B8F Ą h are contained in the parallel set P pBhq – f ˆ CSpBhq

and form the leaves of a smooth foliation Ph of P pBhq. This foliation is the pullback (via the

natural projection P pBhq Ñ CSpBhq) of the one-dimensional foliation of the rank one symmetric

space CSpBhq by the geodesics asymptotic to the ideal point ζ P B8CSpBhq, the center of h.

There exists a foliation Hh of P pBhq whose leaves are normal (orthogonal and complementary)

to those of Ph. The leaves of Hh have the form tyu ˆ Hsζ,z, where y P f and Hsζ,z Ă CSpBhq

is the horosphere centered at ζ and passing through z P CSpBhq. We call the leaves of Hh the

horocycles at h and the foliation Hh the horocyclic foliation. The leaf of Hh passing through

x P P pBhq will be denoted Hch,x. Corollary 2.47 implies that Hch,x “ Nhx.

Let τ be a simplex so that intpτq Ă intphq. Then the foliation Pτ of X by parallel sets

restricts on P pBhq to the foliation Ph by maximal flats, and the horocyclic foliation Hτ restricts

to the horocyclic foliation Hh. (This follows from the fact that the foliations Pτ and Hτ are

normal to each other, cf. (2.43).) In other words, the horocyclic foliations Hτ for the various

simplices τ with intpτq Ă intphq coincide on the parallel set P pBhq.

2.11 Contraction at infinity

2.11.1 Identifications of horocycles

We fix a simplex τ Ă B8X . Since every horocycle at τ intersects every parallel set P pτ, τ̂q,

τ̂ P Cpτq, exactly once, there are Nτ -equivariant diffeomorphisms

Hcτ,x
–
Ñ Cpτq (2.48)

sending a point y P Hcτ,x to the unique simplex τ̂ P Cpτq such that Hcτ,x XP pτ, τ̂q “ tyu. (The

smoothness of these identifications follows from their Nτ -equivariance.) Composing the maps

(2.48) and their inverses, we obtain Nτ -equivariant diffeomorphisms

πτ
x1x : Hcτ,x Ñ Hcτ,x1, (2.49)

sending the intersection point Hcτ,x XP pτ, τ̂q to the intersection Hcτ,x1 XP pτ, τ̂q for τ̂ P Cpτq.

Let h Ă B8X be a half-apartment such that intpτq Ă intphq. Then, as discussed in the end

of the previous section, the horocycles at τ intersect the parallel set P pBhq in the horocycles at

h. The latter are homogeneous spaces for the subgroup Nh ă Nτ . Thus, for x, x
1 P P pBhq, the

diffeomorphisms (2.49) restrict to Nh-equivariant diffeomorphisms

πh
x1x : Hch,x

–
Ñ Hch,x1

between the horocycles at h, while the diffeomorphisms (2.48) restrict to Nh-equivariant diffeo-

morphisms

Hch,x
–
Ñ Cphq
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between the horocycles at h and the Nh-orbit Cphq Ă Cpτq consisting of the simplices which

are contained in B8P pBhq.

We estimate now the contraction-expansion of the identifications πh
x1x.

We build on the discussion at the end of the previous section. As we saw, the horocycles

Hch,x in P pBhq – f ˆCSpBhq are horospheres in the cross sections ptˆCSpBhq. They therefore

project isometrically onto the horospheres Hsζ,x̄ in CSpBhq, where x̄ denotes the projection of

x. Under these projections, the identifications πh
x1x correspond to the identifications

π
ζ
x̄1x̄ : Hsζ,x̄

–
Ñ Hsζ,x̄1 (2.50)

of horospheres, i.e. for x, x1 P P pBhq, we have the commutative diagram:

Hch,x
πh
x1xÝÑ Hch,x1

Ó Ó

Hsζ,x̄
π
ζ

x̄1x̄ÝÑ Hsζ,x̄1

Estimating the contraction rate of πh
x1x therefore reduces to estimating it for πζ

x̄1x̄ in the rank

one symmetric space CSpBhq.

We estimate the infinitesimal contraction. We assume that x̄1 is closer to ζ than x̄, bζpx̄q ě

bζpx̄1q. Then there is actual contraction, at a uniform rate in terms of the distance between the

horospheres. For the differential dπζ
x̄1x̄ of πζ

x̄1x̄, one has the estimate

e´c1pbζpx̄q´bζpx̄1qq}v̄} ď }pdπζ
x̄1x̄qv̄} ď e´c2pbζpx̄q´bζpx̄1qq}v̄}

for all tangent vectors v̄ P T Hsζ,x̄, with constants c1 ě c2 ą 0 depending only on the rank one

symmetric space CSpBhq, in fact, depending only on X , because there are only finitely many

isometry types of rank one symmetric spaces occurring as cross sections of parallel sets in X .

The estimate follows from the standard fact that the exponential decay rate of decaying Jacobi

fields along geodesic rays in CSpBhq is bounded below and above (in terms of the eigenvalues

of the curvature tensor).

In view of bζpxq ´ bζpx1q “ bζpx̄q ´ bζpx̄1q, we obtain for πh
x1x:

Lemma 2.51 (Infinitesimal contraction of horocycle identifications). If bζpxq ě bζpx1q,

then

e´c1pbζpxq´bζpx1qq}v} ď }pdπh
x1xqv} ď e´c2pbζpxq´bζpx1qq}v} (2.52)

for all tangent vectors v to Hch,x, with constants c1, c2 ą 0 depending only on X.

2.11.2 Infinitesimal contraction of transvections

We now focus on transvections and their action at infinity.

Suppose that x, x1 P P pτ, τ̂q are distinct points. Let ϑxx1 denote the transvection with axis

l “ lxx1 through x and x1 mapping x1 ÞÑ x; we orient the geodesic lxx1 from x1 to x, i.e. so that
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ϑxx1 translates along it in the positive direction. The transvection ϑxx1 preserves the parallel

set P pτ, τ̂q and fixes the simplices τ, τ̂ at infinity.

We consider the action of ϑxx1 on Cpτq and its differential at the fixed point τ̂ . Modulo

the identifications (2.48) and (2.49), the action of ϑxx1 on Cpτq corresponds to the action of

ϑxx1 ˝ πτ
x1x on Hcτx, and the differential pdϑxx1qτ̂ of ϑxx1 at τ̂ to the differential of ϑxx1 ˝ πτ

x1x at x.

We first consider the case when ϑxx1 when ξ :“ lxx1p´8q P ostpτq, equivalently, when x1 lies

in the interior of the Weyl cone V px, stpτqq. Then pdϑxx1qτ̂ strictly contracts:

Lemma 2.53. If ξ P ostpτq, then pdϑxx1qτ̂ is diagonalizable with eigenvalues in p0, 1q.

Proof. Since ξ P ostpτq, the group Nτ preserves the strong asymptote classes of geodesic rays at

ξ,6 cf. section 2.10, i.e. the geodesics nlxx1 for n P Nτ are strongly backward asymptotic to lxx1.

Thus, by assigning to nτ̂ P Cpτq the geodesic nlxx1, which is the unique geodesic in the parallel

set P pτ, nτ̂q strongly backward asymptotic to lxx1, we obtain a smooth family of geodesics in

the strong backward asymptote class of lxx1, parametrized by the manifold Cpτq.

By differentiating this family, we obtain a linear embedding of the tangent space Tτ̂Cpτq

into the vector space Jaclxx1 ,ξ of Jacobi fields along lxx1 which decay to zero at ξ. The effect of

the differential pdϑxx1qτ̂ on Cpτq is given, in terms of these Jacobi fields, by the push-forward

J ÞÑ pϑxx1q˚pJq “ dϑxx1 ˝ J ˝ ϑx1x

The Jacobi fields in Jacl,ξ, which are of the form of a decaying exponential function times a

parallel vector field along lxx1, correspond to the eigenvectors of pdϑxx1qτ̂ with eigenvalues in

p0, 1q. It is a standard fact from the Riemannian geometry of symmetric spaces that the vector

space Jaclxx1 ,ξ has a basis consisting of such special Jacobi fields.7 The same then follows for

the linear subspace L Ď Jaclxx1 ,ξ corresponding to Tτ̂Cpτq. Thus the eigenvectors of pdϑxx1qτ̂
for positive eigenvalues span Tτ̂Cpτq.

We now give a uniform estimate for the contraction of pdϑxx1qτ̂ :

Lemma 2.54. If ξ P ostpτq, then the eigenvalues λ of pdϑxx1qτ̂ satisfy an estimate

´ log λ ě c ¨ dpx1, BV px, stpτqqq (2.55)

with a constant c ą 0 depending only on X.

Proof. We continue the argument in the previous proof.

Let F Ą lxx1 be a maximal flat. Then F Ă P pτ, τ̂q. The smooth family nτ̂ ÞÑ nlxx1 of

geodesics parametrized by Cpτq embeds into the smooth family of maximal flats nτ̂ ÞÑ nF .

They are all asymptotic to stpτq X B8F , i.e. B8pnF q Ą stpτq X B8F . Accordingly, each Jacobi

field J P L Ď Jaclxx1 ,ξ extends to a Jacobi field Ĵ along F which decays to zero at all ideal

points in ostpτq X B8F . (Here we use again that Nτ preserves the strong asymptote classes of

6However, Nτ does not act transitively on it, unless ξ P intpτq.
7A transvection along a geodesic acts on the space of Jacobi fields along this geodesic as a diagonalizable

transformation, see [Eb, Hel].
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geodesic rays at all points in ostpτq.) Thus, we obtain a natural identification of Tτ̂Cpτq and

L with a linear subspace L̂ of the vector space JacF,ostpτqXB8F of Jacobi fields along F which

decay to zero at all ideal points in ostpτq X B8F .

The decomposition of Jacobi fields mentioned in the previous proof works in the same way

along flats.8 The vector space JacF,ostpτqXB8F has a basis consisting of Jacobi fields of the form

e´αV with an affine linear form α on F and a parallel vector field V along F . Furthermore,

since G acts transitively on maximal flats, only finitely many affine linear forms α occur for

these basis elements, independently of F . (The possible forms are determined by the root

system of G, but we do not need this fact here.)

The decay condition on the forms α occurring in our decomposition is equivalent to the

property that α ě αpxq on V px, stpτq X B8F q Ă F and α ą αpxq on the interior of this cone.

It implies an estimate

αpx1q ´ αpxq ě c ¨ dpx1, BV px, stpτq X B8F qqlooooooooooooooomooooooooooooooon
“dpx1,BV px,stpτqqq

with a constant c “ cpαq ą 0. (The equality of distances follows from Proposition 2.31.) Since

there are only finitely many forms α involved, the constant c can be taken independent of α.

Notice that the eigenvalues λ of pdϑxx1qτ̂ are of the form

e´pαpx1q´αpxqq.

The claimed upper bound for the eigenvalues follows.

By continuity, the result extends to the case when x1 lies in the boundary of the Weyl cone

V px, stpτqq. We obtain:

Corollary 2.56. If x1 P V px, stpτqq, then pdϑxx1qτ̂ is diagonalizable with eigenvalues in p0, 1s

satisfying an estimate (2.55).

In particular, the eigenvalues lie in p0, 1q, if x1 lies in the interior of V px, stpτqq.

If x1 lies outside the Weyl cone V px, stpτqq, then dpϑxx1qτ̂ has expanding directions. In

order to see this, we consider the action of ϑxx1 on certain invariant submanifolds of Cpτq

corresponding to parallel sets of singular hyperplanes.

Again, there exists a maximal flat F with lxx1 Ă F Ă P pτ, τ̂q. Let h Ă B8F be a half-

apartment such that intpτq Ă intphq. Then lxx1 Ă F Ă P pBhq. The transvection ϑxx1 fixes B8F

pointwise. Hence it preserves the parallel set P pBhq and the submanifold Cphq “ Nhτ̂ Ă Cpτq.

If lxx1 is parallel to the euclidean factor of P pBhq, equivalently, if B8lxx1 Ă Bh, then ϑxx1

acts trivially on B8P pBhq. Hence, ϑxx1 acts also trivially on Cphq, because the latter consists

of simplices contained in B8P pBhq.

In the general case, the action of ϑxx1 on Cphq corresponds to the restriction of the action

of ϑxx1 ˝ πτ
x1x to Hch,x “ Hcτ,x XP pBhq. When projecting to CSpBhq, the latter action in

8As in the case of geodesics, a transvection along a flat acts on the space of Jacobi fields along this flat as a

diagonalizable transformation, see [Eb, Hel].
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turn corresponds to the action of ϑx̄x̄1 ˝ π
ζ
x̄1x̄ on the horosphere Hsζ,x̄. Here, ϑx̄x̄1 denotes the

transvection on CSpBhq with axis lx̄x̄1 through x̄ and x̄1 mapping x̄1 ÞÑ x̄, and π
ζ
x̄1x̄ is the natural

identification (2.50). The axis lx̄x̄1 is the image of F under the projection (if x̄ “ x̄1, we define

it in this way). It is asymptotic to ζ and another ideal point ζ̂ P Cpζq “ B8CSpBhq ´ tζu. The

simplex τ̂ corresponds to ζ̂ under the natural Nh-equivariant identification Cphq – Cpζq, and

the action of ϑxx1 on Cphq corresponds to the action of ϑx̄x̄1 on Cpζq.

We now obtain analogues of Lemmas 2.53 and 2.54. Recall that ξ “ lxx1p´8q.

Lemma 2.57. If ξ P intphq, then pdϑxx1qτ̂ |Tτ̂Cphq is diagonalizable with eigenvalues λ P p0, 1q

satisfying an estimate

c2 ď
´ log λ

bζpxq ´ bζpx1q
ď c1 (2.58)

with constants c1, c2 ą 0 depending only on X.

Proof. The diagonalizablility follows by applying Lemma 2.53 to CSpBhq and pdϑx̄x̄1qζ̂ .

Since ξ P intphq, we have that bζpxq´bζpx1q “ bζpx̄q´bζpx̄
1q ą 0, and the eigenvalue estimate

follows from the contraction estimate (2.52)

Corollary 2.59. If x1 P P pτ, τ̂q ´ V px, stpτqq, then pdϑxx1qτ̂ has some eigenvalues in p1,`8q.

Proof. By our assumption, we have that ξ R stpτq. Therefore, the half-apartment h Ă B8F can

be chosen so that its interior contains, besides intpτq, also lxx1p`8q. (Recall that the convex

subcomplex stpτqXB8F is an intersection of half-apartments in B8F , cf. Lemma 2.3.) Then the

estimate (2.58) applied to ϑx1x “ ϑ´1
xx1 yields that pdϑxx1q´1

τ̂ has some eigenvalues in p0, 1q.

Complementing Corollary 2.56, we bound the contraction rate from above, if x1 P V px, stpτqq:

Lemma 2.60. If ξ P stpτq, then pdϑxx1qτ̂ has some eigenvalue λ P p0, 1s satisfying an estimate

´ log λ ď c1 ¨ dpx1, BV px, stpτqqq

with a constant c1 ą 0 depending only on X.

Proof. Since xx1 Ă F , some nearest point y1 to x1 on BV px, stpτqq lies in F , cf. Proposition 2.31.

Hence we can choose the half-apartment h Ă B8F such that bζpy1q “ bζpxq and

dpx1, BV px, stpτqqq “ bζpxq ´ bζpx1q.

Now let λ be an eigenvalue of pdϑxx1qτ̂ |Tτ̂Cphq and apply the upper bound in (2.58).

Putting the information (Corollaries 2.56, 2.59 and Lemmas 2.57, 2.60) together, we obtain:

Proposition 2.61 (Infinitesimal contraction of transvections at infinity). Let τ, τ̂ Ă

B8X be opposite simplices, and let ϑ be a nontrivial transvection with an axis l Ă P pτ, τ̂q

through the point x. Then the following hold for the differential dϑτ̂ of ϑ on Cpτq at the fixed

point τ̂ :
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(i) dϑτ̂ is diagonalizable with eigenvalues in p0, 1s iff ϑ´1x P V px, stpτqq, and diagonalizable

with eigenvalues in p0, 1q iff ϑ´1x P V px, ostpτqq.

(ii) If ϑ´1x P V px, stpτqq, then the eigenvalues λ of dϑτ̂ satisfy an estimate

c2 ¨ dpϑ´1x, BV px, stpτqqq ď ´ log λ ď c1 ¨ dpϑ´1x, BV px, stpτqqq

with constants c1, c2 ą 0 depending only on X.

We deduce a consequence for the action of general isometries in G. For later use, we will

formulate it in terms of expansion (of their inverses) rather than contraction.

We need the following notion: For a diffeomorphism Φ of a Riemannian manifold M , we

define the expansion factor at x P M as

ǫpΦ, xq “ inf
vPTxM´t0u

}dΦpvq}

}v}
“ }pdΦxq´1}´1, (2.62)

compare (3.2) in section 3.1 below.

We equip the flag manifolds Flagτmod
with auxiliary Riemannian metrics.

Theorem 2.63 (Infinitesimal expansion of isometries at infinity). Let τ P Flagτmod
,

x P X, and g P G such that dpgx, V px, stpτqqq ď r. Then for the action of g´1 on Flagτmod
we

have the estimate

C´1 ¨ dpgx, BV px, stpτqqq ´ A ď log ǫpg´1, τq ď C ¨ dpgx, BV px, stpτqqq ` A

with constants C,A ą 0 depending only on x, r and the chosen Riemannian metric on Flagτmod
.9

Proof. We write g as a product g “ tb of a transvection t along a geodesic l through x with

lp`8q P stpτq and an isometry b P G such that dpx, bxq ď r. Then t fixes τ on Flagτmod
, and

the expansion factor ǫpg´1, τq equals ǫpt´1, τq up to a multiplicative constant depending on r

and the chosen Riemannian metric on Flagτmod
.

When replacing the metric, ǫpt´1, τq changes at most by another multiplicative constant,

and we may therefore assume that the Riemannian metric is invariant under the maximal

compact subgroup Kx ă G fixing x. Now the eigenspace decomposition of dtτ on Tτ Flagτmod

is orthogonal. Consequently,

ǫpt´1, τq “ λ´1
max

where λmax denotes the maximal eigenvalue of dtτ .

Let τ̂ denote the simplex x-opposite to τ . Applying Proposition 2.61(ii) to ϑ “ t while

exchanging the roles of τ and τ̂ , we obtain the estimate

c2 ¨ dpt´1x, BV px, stpτ̂qqq ď ´ log λ ď c1 ¨ dpt´1x, BV px, stpτ̂qqqloooooooooooomoooooooooooon
“dptx,BV px,stpτqqq

9The estimate depends also on the point x because the choice of the auxiliary metric on Flagτmod
reduces the

symmetry: The action of a compact subgroup of G on Flagτmod
is uniformly bilipschitz, but not the G-action.
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for the eigenvalues λ of dtτ , and so

c2 ¨ dptx, BV px, stpτqqq ď log ǫpt´1, τq ď c1 ¨ dptx, BV px, stpτqqq,

which is the desired estimate.

Let us now consider sequences pgnq in G. The theorem can be used to draw conclusions from

the expansion behavior at infinity of the sequence of inverses pg´1
n q on the geometry of an orbit

sequence pgnxq in X : If pgnxq lies in a tubular neighborhood of the Weyl cone V px, stpτqq, then

the expansion factors ǫpg´1
n , τq on Flagτmod

are bounded below, and their logarithms measure

the distance of pgnxq to the boundary of the Weyl cone. In particular, if the expansion factors

diverge, ǫpg´1
n , τq Ñ `8, then (the projection of) pgnxq enters deep into the cone V px, stpτqq.

The next result shows how to recognize from expansion whether the orbit sequence pgnxq

remains in a tubular neighborhood of the Weyl cone V px, stpτqq, once it stays close to the

parallel set spanned by it:

Proposition 2.64. Let τ, τ̂ Ă B8X be opposite simplices. Suppose that pgnq is a sequence in

G such that, for some point x P X, the sequence pgnxq is contained in a tubular neighborhood

of the parallel set P pτ, τ̂q, but drifts away from the Weyl cone V px, stpτqq,

dpgnx, V px, stpτqqq Ñ `8

as n Ñ `8. Then ǫpg´1
n , τq Ñ 0.

Proof. We may assume that x P P “ P pτ, τ̂q. As in the proof of Theorem 2.63, we can reduce

to the case that the gn are transvections along geodesics ln in P through the point x. We need

to show that the differentials pdg´1
n qτ on Flagτmod

have (some) small eigenvalues, i.e. that their

minimal eigenvalue goes Ñ 0.

We proceed as in the proof of Corollary 2.59. Let Fn Ă P be a maximal flat containing ln.

Then also

dpgnx, V px, stpτqq X Fnq Ñ `8,

cf. Proposition 2.31. There exist half-apartments hn Ă B8Fn with centers ζn, so that bζn ď

bζnpxq on V px, stpτqq X Fn (and hence also on V px, stpτqq) and bζnpgnxq ´ bζnpxq Ñ `8. Let

ĥn Ă B8Fn denote the complementary half-apartments, Bĥn “ Bhn, and ζ̂n their centers. Then

bζn ` bζ̂n ” const on Fn. It suffices to show that the differentials pdg´1
n qτ are contracting on the

invariant subspaces TτCpĥnq Ď TτCpτ̂ q with norms going Ñ 0. According to Lemma 2.57, the

eigenvalues of pdg´1
n qτ |TτCpĥnq are positive and bounded above by

e´c2pb
ζ̂n

pxq´b
ζ̂n

pgnxqq “ e´c2pbζn pgnxq´bζn pxqq Ñ 0.

This finishes the proof.

2.12 Finsler geodesics

We will work with the following notion of Finsler geodesic:
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Definition 2.65 (Finsler geodesics). A continuous path c : I Ñ X is a τmod-Finsler geodesic

if it is contained in a parallel set P pτ´, τ`q with τ˘ P Flag˘τmod
such that

cpt`q P V pcpt´q, stpτ`qq (2.66)

for all subintervals rt´, t`s Ď I. It is Θ-regular if, moreover,

cpt`q P V pcpt´q, stΘpτ`qq (2.67)

We call a τmod-Finsler geodesic uniformly τmod-regular if it is Θ-regular for some Wτmod
-convex

compact subset Θ Ă intτmod
pσmodq.

Note that we do not require the parameterization of Finsler geodesics to be by arc length.

The terminology is justified by the fact that τmod-Finsler geodesics are (up to parameterization)

the geodesics for certain G-invariant “polyhedral” Finsler metrics, see [KL1, §5.1.3].

The condition (2.66) is equivalent to cpt´q P V pcpt`q, stpτ´qq, and it follows that the sub-

paths c|rt´,t`s are contained in the diamonds ♦τmod
pcpt´q, cpt`qq. Similarly, (2.67) is equivalent

to cpt´q P V pcpt`q, stΘpτ´qq, because Θ is assumed ι-invariant, and in the Θ-regular case c|rt´,t`s

is contained in ♦Θpcpt´q, cpt`qq.

It is worth mentioning the following Finsler geometric interpretation of diamonds: They are

Finsler versions of Riemannian geodesic segments in the sense that the union of all τmod-Finsler

geodesic segments with endpoints x˘ fills out ♦τmod
px´, x`q, see also [KL1, §5.1.3].

We now discuss the “drift” component of τmod Finsler geodesics.

We work with the vector valued distance dτmod
“ π∆

τmod
˝ d∆. introduced in (2.19). We first

consider the case of broken geodesics xyz which are τmod-Finsler geodesics:

Lemma 2.68 (Additivity). Let τ P Flagτmod
. If y P V px, stpτqq and z P V py, stpτqq, then

dτmod
px, yq ` dτmod

py, zq “ dτmod
px, zq.

Proof. The τmod-distance can be expressed in terms of the projections of Weyl cones to their

central sectors. Consider the nearest point projection

πx,τ : V px, stpτqq Ñ V px, τq,

cf. (2.12). Note that it coincides with the nearest point projection from V px, stpτqq to the

singular flat spanned by the sector V px, τq, compare Lemma 2.13 and the comment thereafter.

Then

dτmod
px, ¨q “ d∆px, πx,τ p¨qq

on V px, stpτqq.

In order to relate dτmod
py, zq to dτmod

px, yq and dτmod
px, zq, we observe that the sectors V py, τq

and V pπx,τ pyq, τq Ď V px, τq are parallel and isometrically identified by πx,τ . Moreover,

πx,τ |V py,stpτqq “ pπx,τ |V py,τqq ˝ πy,τ .

41



Therefore,

dτmod
py, zq “ d∆py, πy,τpzqq “ d∆pπx,τ pyq, πx,τpzqq.

The additivity formula follows in view of the nestedness πx,τ pzq P V pπx,τ pyq, τq.

Applying the lemma to τmod-Finsler geodesics yields:

Proposition 2.69 (Additivity of τmod-distance along Finsler geodesics). If c : I Ñ X

is a τmod-Finsler geodesic, then

dτmod
pcpt0q, cpt1qq ` dτmod

pcpt1q, cpt2qq “ dτmod
pcpt0q, cpt2qq

for all t0 ď t1 ď t2 in I.

We reformulate this as:

Proposition 2.70 (τmod-projection of Finsler geodesics). If c : r0, T s Ñ X is a τmod-

Finsler geodesic, then so is

c̄τmod
:“ dτmod

pcp0q, cq : r0, T s Ñ V p0, τmodq,

and

c̄τmod
pt2q “ c̄τmod

pt1q ` dτmod
pcpt1q, cpt2qq

for all 0 ď t1 ď t2 ď T .

Note that the equality in the last proposition implies:

dpc̄τmod
pt1q, c̄τmod

pt2qq “ }dτmod
pcpt1q, cpt2qq} (2.71)

We now study the ∆-distance along Finsler geodesics.

This is based on Proposition 2.23 which concerns the ∆-side lengths of triangles ∆px, y, zq

in X such that the broken geodesic xyz is a Finsler geodesic. Applying this proposition to

Finsler geodesics, we obtain our main result concerning their geometry:

Theorem 2.72 (∆-projection of Finsler geodesics). (i) If c : r0, T s Ñ X is a τmod-Finsler

geodesic, then so is

c̄∆ :“ d∆pcp0q, cq : r0, T s Ñ ∆.

(ii) If c is also Θ-regular, with Θ Ă intτmod
pσmodq compact and τmod-Weyl convex, then so is

c̄∆. Moreover, the distances between points on c and c̄∆ are comparable:

dpc̄∆pt1q, c̄∆pt2qq ě ǫpΘq ¨ dpcpt1q, cpt2qq

for 0 ď t1 ď t2 ď T with a constant ǫpΘq ą 0.

We note that dpc̄∆pt1q, c̄∆pt2qq ď dpcpt1q, cpt2qq, because d∆pcp0q, ¨q is 1-Lipschitz.
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Proof. (i) Applying Proposition 2.23 to the triangles ∆pcp0q, cpt1q, cpt2qq, 0 ď t1 ď t2 ď T ,

yields

c̄∆pt2q P V pc̄∆pt1q,Wτmod
∆q,

the cone being understood as a subset of Fmod, which means that c̄∆ is a τmod-Finsler geodesic.

(ii) That c̄∆ is now Θ-regular, follows similarly. The comparability of distances we deduce

using our earlier discussion of τmod-distances along Finsler geodesics. We estimate:

dpc̄∆pt1q, c̄∆pt2qq ě dpc̄τmod
pt1q, c̄τmod

pt2qq “ }dτmod
pcpt1q, cpt2qq} ě ǫpΘq ¨ dpcpt1q, cpt2qq

The first inequality holds, because c̄τmod
“ π∆

τmod
˝ c̄∆ and π∆

τmod
is 1-Lipschitz. The equality

follows from (2.71). The last inequality comes from the lower bound for the length of the

τmod-component of Θ-regular segments, cf. (2.21).

3 Topological dynamics

3.1 Expansion

Let first Z be a metric space and let Γ ñ Z be a continuous action by a discrete group. We

will use the following notions of metric expansion, compare [Su, §9]:

Definition 3.1 (Metric expansion). (i) A homeomorphism h of Z is expanding at a point

z P Z if there exists a neighborhood U of z and a constant c ą 1 such that h|U is c-expanding

in the sense that

dphz1, hz2q ě c ¨ dpz1, z2q.

for all points z1, z2 P U .

(ii) A sequence of homeomorphisms hn of Z has diverging expansion at the point z P Z if

there exists a sequence of neighborhoods Un of z and numbers cn Ñ `8 such that hn|Un
is

cn-expanding.

(iii) The action Γ ñ Z is expanding at z P Z if there exists an element γ P Γ which is

expanding at z. The action has diverging expansion at z P Z if Γ contains a sequence which

has diverging expansion at z.

(iv) The action Γ ñ Z is expanding at a compact Γ-invariant subset E Ă Z if it is expanding

at all points z P E.

We observe that the properties of diverging expansion depend only on the bilipschitz class

of the metric. Furthermore, if an action is expanding at an invariant compact subset then, due

to iteration, it has diverging expansion at every point of the subset.

Now let M be a Riemannian manifold and let Γ ñ M be a smooth action. There are

infinitesimal analogs of the above expansion conditions.
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We recall from (2.62) that, for a diffeomorphism Φ of M , the expansion factor ǫpΦ, xq at a

point x P M is defined as:

ǫpΦ, xq “ inf
vPTxM´t0u

}dΦpvq}

}v}
“ }pdΦxq´1}´1 (3.2)

Definition 3.3 (Infinitesimal expansion). (i) A diffeomorphism Φ of M is infinitesimally

expanding at a point x P M if ǫpΦ, xq ą 1.

(ii) A sequence of diffeomorphisms Φn of M has diverging infinitesimal expansion at x if

ǫpΦn, xq Ñ `8 as n Ñ `8.

(iii) The action Γ ñ M is infinitesimally expanding at x if there exists an element γ P Γ

which is infinitesimally expanding at x. The action has diverging infinitesimal expansion at x

if Γ contains a sequence which has diverging infinitesimal expansion at x.

(iv) The action Γ ñ M is infinitesimally expanding at a compact Γ-invariant subset E Ă M

if it is infinitesimally expanding at all points x P M .

If the manifold M is compact, the properties of diverging infinitesimal expansion are inde-

pendent of the Riemannian metric. In the general case, if an action is infinitesimally expanding

at an invariant compact subset then it has diverging infinitesimal expansion at every point of

the subset.

We note that for smooth actions on Riemannian manifolds infinitesimal and metric expan-

sion are equivalent.

3.2 Discontinuity and dynamical relation

Let Z be a compact metrizable space, and let Γ ă HomeopZq be a countably infinite subgroup

(although in the definition of a proper action below we allow for subsemigroups). We consider

the action Γ ñ Z.

Definition 3.4 (Discontinuous). A point z P Z is called wandering with respect to the Γ-

action if the action is discontinuous at z, i.e. if z has a neighborhood U such that U X γU ‰ H

for at most finitely many γ P Γ.

Nonwandering points are called recurrent.

Definition 3.5 (Domain of discontinuity). We call the set

Ωdisc Ă Z

of wandering points the wandering set or domain of discontinuity for the action Γ ñ Z.

Note that Ωdisc is open and Γ-invariant.

Definition 3.6 (Proper). The action of a subsemigroup Γ ă HomeopXq on an open subset

U Ă Z is called proper if for every compact subset K Ă U K X γK ‰ H for at most finitely

many γ P Γ.
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If Γ is a subgroup of HomeopXq acting properly discontinuously on U Ă X then the action

of Γ on U is then discontinuous, U Ď Ωdisc, and therefore is called properly discontinuous.

Definition 3.7 (Domain of proper discontinuity). If Γ ă HomeopXq is a subgroup, we call

a Γ-invariant open subset Ω Ď Ωdisc on which Γ acts properly a domain of proper discontinuity

for Γ.

The orbit space Ω{Γ is then Hausdorff. Note that in general there is no unique maximal

proper domain of discontinuity.

Discontinuity and proper discontinuity can be nicely expressed using the notion of dynamical

relation. The following definition is due to Frances [Fra, Def. 1]:

Definition 3.8 (Dynamically related). Two points z, z1 P Z are called dynamically related

with respect to a sequence phnq in HomeopZq,

z
phnq
„ z1

if there exists a sequence zn Ñ z in Z such that hnzn Ñ z1.

The points z, z1 are called dynamically related with respect to the Γ-action,

z
Γ
„ z1

if there exists a sequence γn Ñ 8 in Γ such that z
pγnq
„ z1.

Here, for a sequence pγnq in Γ we write γn Ñ 8 if every element of Γ occurs at most finitely

many times in the sequence.

One verifies (see e.g. [KL2]):

(i) Dynamical relation is a closed relation in Z ˆ Z.

(ii) Points in different Γ-orbits are dynamically related if and only if their orbits cannot be

separated by disjoint Γ-invariant open subsets.

The concept of dynamical relation is useful for our discussion of discontinuity, because:

(i) A point is nonwandering if and only if it is dynamically related to itself.

(ii) The action is proper on an open subset U Ă Z if and only if no two points in U are

dynamically related.

3.3 Convergence groups

Let Z be a compact metrizable space with at least three points.

A sequence phnq in HomeopZq is contracting if there exist points z˘ P Z such that

hn|Z´tz´u Ñ z` (3.9)

uniformly on compacts as n Ñ `8. Equivalently, there is no dynamical relation z
phnq
„ z1

between points z ‰ z´ and z1 ‰ z`. This condition is clearly symmetric, i.e. (3.9) is equivalent

45



to the dual condition that

h´1
n |Z´tz`u Ñ z´ (3.10)

uniformly on compacts as n Ñ `8. The points z˘ are uniquely determined, since |Z| ě 3.

A sequence phnq in HomeopZq is said to converge to a point z P Z,

hn Ñ z (3.11)

if every subsequence contains a contracting subsequence which, outside its exceptional point,

converges to the constant map ” z.

One considers the following stronger form of convergence:

Definition 3.12 (Conical convergence). A converging sequence hn Ñ z converges conically,

hn
con
Ñ z (3.13)

if for some relatively compact sequence pẑnq in Z ´ tzu, the sequence of pairs of distinct points

h´1
n pẑn, zq is relatively compact in pZ ˆ Zqdist.

Here, pZ ˆ Zqdist Ă Z ˆ Z denotes the complement of the diagonal.

Lemma 3.14. If hn
con
Ñ z, then the condition in the definition holds for all relatively compact

sequences pẑnq in Z ´ tzu.

Proof. Let pẑnq be a relatively compact sequence in Z ´tzu. For every contracting subsequence

phnk
q there exists a point ẑ P Z such that

h´1
nk

|Z´tzu Ñ ẑ

uniformly on compacts. In particular, h´1
nk
ẑnk

Ñ ẑ and the relative compactness of ph´1
nk

pẑnk
, zqq

in pZˆZqdist becomes equivalent to the condition that the sequence ph´1
nk
zq does not accumulate

at ẑ. The latter condition is independent of the sequence pẑnq.

The following criterion for being a conical limit point of a subsequence is immediate:10

Lemma 3.15. A sequence phnq in HomeopZq has a subsequence conically converging to z P Z

iff there exists a subsequence phnk
q and a point z´ P Z such that the following conditions are

satisfied:

(i) h´1
nk

|Z´tzu Ñ z´ uniformly on compacts.

(ii) ph´1
nk
zq converges to a point different from z´.

Now we pass to group actions.

A continuous action Γ ñ Z of a discrete group Γ is a convergence action if every sequence

pγnq of pairwise distinct elements in Γ contains a subsequence converging to a point, equiv-

alently, a contracting subsequence. The kernel of a convergence action is finite, and we will

identify Γ with its image in HomeopZq which we will call a convergence group.

10Here it suffices that |Z| ě 2.
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The limit set Λ Ă Z of a convergence group Γ ă HomeopZq is the subset of all points which

occur as limits z` as in (3.9), equivalently, as limits z as in (3.11) for sequences γn Ñ 8 in Γ.

The limit set is Γ-invariant and compact. A limit point λ P Λ is conical if it occurs as the limit

of a conically converging sequence. A convergence group is said to have conical limit set if all

limits points are conical, and to be non-elementary if |Λ| ě 3. Tukia [Tu, Thm. 2S] has shown

that in the non-elementary case the limit set is perfect and the Γ-action on it is minimal.

If the limit set is conical, then Γ and its action on Λ are very special:

Theorem 3.16 (Bowditch [Bo]). Suppose that Γ ă HomeopZq is a non-elementary conver-

gence group with conical limit set Λ. Then Γ is word hyperbolic and Λ – B8Γ equivariantly.

The converse is easier to see:

Theorem 3.17 ([Gr, Tu, Fre]). The natural action of a non-virtually cyclic word hyperbolic

group on its Gromov boundary is a minimal conical convergence action.

3.4 Expanding convergence groups

The following result connects expansion with convergence dynamics.

Lemma 3.18. If Γ ñ Z is an expanding convergence action on a perfect compact metric space,

then all points in Z are conical limit points.

Proof. We start with a general remark concerning expanding actions. For every point z P Z

there exist an element γ P Γ and constants r ą 0 and c ą 1 such that γ is a c-expansion on the

ball Bpz, rq and γpBpz, r1qq Ą Bpγz, cr1q for all radii r1 ď r. To see this, suppose that c is a local

expansion factor for γ at z and, by contradiction, that there exist sequences of radii rn Ñ 0

and points zn R Bpz, rnq such that γzn P Bpγz, crnq. Then zn Ñ z due to the continuity of γ´1

and, for large n, we obtain a contradiction to the local c-expansion of γ. Since Z is compact,

the constants r and c can be chosen uniformly. It follows by iterating expanding maps that for

every point z and every neighborhood V of z there exists γ P Γ such that γpV q Ą Bpγz, rq,

equivalently, γpZ ´ V q Ă Z ´ Bpγz, rq.

To verify that a point z is conical, let Vn be a shrinking sequence of neighborhoods of z,
č

n

Vn “ tzu,

and let γn P Γ be elements such that γ´1
n pZ ´ Vnq Ă Z ´ Bpγ´1

n z, rq. Since Vn is shrinking

and γ´1
n pVnq Ą Bpγ´1

n z, rq contains balls of uniform radius r, it follows that the γ´1
n do not

subconverge uniformly on any neighborhood of z; here we use that Z is perfect. In particular,

γn Ñ 8. The convergence action property implies that, after passing to a subsequence, the

γ´1
n must converge locally uniformly on Z ´ tzu. Moreover, we can assume that the sequence

of points γ´1
n z converges. By construction, its limit will be different (by distance ě r) from the

limit of the sequence of maps γ´1
n |Z´tzu. Hence the point z is conical.

Combining this with Bowditch’s dynamical characterization of hyperbolic groups, we obtain:
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Corollary 3.19. If Γ ñ Z is an expanding convergence action on a perfect compact metric

space, then Γ is word hyperbolic and Z – B8Γ equivariantly.

Note that, conversely, the natural action Γ ñ B8Γ of a word hyperbolic group Γ on its

Gromov boundary is expanding with respect to a visual metric, see e.g. [CP].

4 Regularity and contraction

In this section, we discuss a class of discrete subgroups of semisimple Lie groups which will be

the framework for most of our investigations in this paper. In particular, it contains Anosov

subgroups. The class of subgroups will be distinguished by an asymptotic regularity condition

which in rank one just amounts to discreteness, but in higher rank is strictly stronger. The

condition will be formulated in two equivalent ways. First dynamically in terms of the action

on a flag manifold, then geometrically in terms of the orbits in the symmetric space.

4.1 Contraction

Consider the action

G ñ Flagτmod

on the flag manifold of type τmod. Recall that for a simplex τ´ of type ιτmod we denote by

Cpτ´q Ă Flagτmod
the open dense Pτ´

-orbit; it consists of the simplices opposite to τ´.

We introduce the following dynamical conditions for sequences and subgroups in G:

Definition 4.1 (Contracting sequence). A sequence pgnq in G is τmod-contracting if there

exist simplices τ` P Flagτmod
, τ´ P Flagιτmod

such that

gn|Cpτ´q Ñ τ` (4.2)

uniformly on compacts as n Ñ `8.

Definition 4.3 (Convergence type dynamics). A subgroup Γ ă G is a τmod-convergence

subgroup if every sequence pγnq of distinct elements in Γ contains a τmod-contracting subse-

quence.

Note that τmod-contracting sequences diverge to infinity and therefore τmod-convergence sub-

groups are necessarily discrete.

A notion for sequences in G equivalent to τmod-contraction had been introduced by Benoist

in [Be], see in particular part (5) of his Lemma 3.5.

The contraction property exhibits a symmetry:

Lemma 4.4 (Symmetry). Property (4.2) is equivalent to the dual property that

g´1
n |Cpτ`q Ñ τ´ (4.5)

48



uniformly on compacts as n Ñ `8.

Proof. Suppose that (4.2) holds but (4.5) fails. Equivalently, after extraction there exists a

sequence ξn Ñ ξ ‰ τ´ in Flagιτmod
such that gnξn Ñ ξ1 P Cpτ`q. Since ξ ‰ τ´, there exists

τ̂´ P Cpτ´q not opposite to ξ. (For instance, take an apartment in B8X containing τ´ and

ξ, and let τ̂´ be the simplex opposite to τ´ in this apartment.) Hence there is a sequence

τn Ñ τ̂´ in Flagτmod
such that τn is not opposite to ξn for all n. (It can be obtained e.g. by

taking a sequence hn Ñ e in G such that ξn “ hnξ and putting τn “ hnτ̂´.) Since τ̂´ P Cpτ´q,

condition (4.2) implies that gnτn Ñ τ`. It follows that τ` is not opposite to ξ1, because gnτn

is not opposite to gnξn and being opposite is an open condition. This contradicts ξ1 P Cpτ`q.

Therefore, condition (4.2) implies (4.5). The converse implication follows by replacing the

sequence pgnq with pg´1
n q.

Lemma 4.6 (Uniqueness). The simplices τ˘ in (4.2) are uniquely determined.

Proof. Suppose that besides (4.2) we also have gn|Cpτ 1
´

q Ñ τ 1
` with simplices τ 1

˘ P Flag˘τmod
.

Since the subsets Cpτ´q and Cpτ 1
´q are open dense in Flagτmod

, their intersection is nonempty and

hence τ 1
` “ τ`. Using the equivalent dual conditions (4.5) we similarly obtain that τ 1

´ “ τ´.

4.2 Regularity

The second set of asymptotic properties concerns the geometry of the orbits in X .

We first consider sequences in the euclidean model Weyl chamber ∆. Recall that Bτmod
∆ “

V p0, Bτmod
σmodq Ă ∆ is the union of faces of ∆ which do not contain the sector V p0, τmodq. Note

that Bτmod
∆ X V p0, τmodq “ BV p0, τmodq “ V p0, Bτmodq.

Definition 4.7. A sequence pδnq in ∆ is

(i) τmod-regular if it drifts away from Bτmod
∆,

dpδn, Bτmod
∆q Ñ `8.

(ii) τmod-pure if it is contained in a tubular neighborhood of the sector V p0, τmodq and drifts

away from its boundary,

dpδn, BV p0, τmodqq Ñ `8.

Note that pδnq is τmod-regular/pure iff pιδnq is ιτmod-regular/pure.

We extend these notions to sequences in X and G:

Definition 4.8 (Regular and pure). (i) A sequence pxnq in X is τmod-regular, respectively,

τmod-pure if for some (any) base point o P X the sequence of ∆-distances d∆po, xnq in ∆ has

this property.

(ii) A sequence pgnq in G is τmod-regular, respectively, τmod-pure if for some (any) point

x P X the orbit sequence pgnxq in X has this property.
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(iii) A subgroup Γ ă G is τmod-regular if all sequences of distinct elements in Γ have this

property.

That these properties are independent of the base point and stable under bounded perturba-

tion of the sequences, is due to the triangle inequality |d∆px, yq´d∆px1, y1q| ď dpx, x1q`dpy, y1q.

Subsequences of τmod-regular/pure sequences are again τmod-regular/pure.

Clearly, τmod-pureness is a strengthening of τmod-regularity; a sequence in ∆ is τmod-pure iff

it is τmod-regular and contained in a tubular neighborhood of V p0, τmodq.

The face type of a pure sequence is uniquely determined. Moreover, a τmod-regular sequence

is τ 1
mod-regular for every face type τ 1

mod Ă τmod, because Bτ 1
mod

∆ Ă Bτmod
∆.

A sequence pgnq is τmod-regular/pure iff the inverse sequence pg´1
n q is ιτmod-regular/pure,

because d∆px, g´1
n xq “ d∆pgnx, xq “ ιd∆px, gnxq.

Note that τmod-regular subgroups are in particular discrete. If rankpXq “ 1, then dis-

creteness is equivalent to (σmod-)regularity. In higher rank, regularity can be considered as a

strengthening of discreteness: A discrete subgroup Γ ă G may not be τmod-regular for any face

type τmod; this can happen e.g. for free abelian subgroups of transvections of rank ě 2.

A property for sequences in G equivalent to regularity had appeared in [Be, Lemma 3.5(1)].

Lemma 4.9 (Pure subsequences). Every sequence, which diverges to infinity, contains a

τmod-pure subsequence for some face type τmod Ď σmod.

Proof. In the case of sequences in ∆, take τmod to be a minimal face type so that a subsequence

is contained in a tubular neighborhood of V p0, τmodq.

Note also that a sequence, which diverges to infinity, is τmod-regular iff it contains νmod-pure

subsequences only for face types νmod Ě τmod.

The lemma implies in particular, that every sequence γn Ñ 8 in a discrete subgroup Γ ă G

contains a subsequence which is τmod-regular, even τmod-pure, for some face type τmod.

Remark 4.10. Regularity has a natural Finsler geometric interpretation, cf. [KL1]: A sequence

in X is τmod-regular iff, in the Finsler compactification X
F ins

“ X\BF ins
8 X ofX , it accumulates

at the closure of the stratum Sτmod
Ă BF ins

8 X at infinity.

4.3 Contraction implies regularity

In this section and the next, we relate contractivity and regularity for sequences and, as a con-

sequence, establish the equivalence between τmod-regularity and the τmod-convergence property

for discrete subgroups.

To relate contraction and regularity, it is useful to consider the G-action on flats. We recall

that Fτmod
denotes the space of flats f Ă X of type τmod (see section 2.4). Two flats f˘ P Fτmod
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are dynamically related with respect to a sequence pgnq in G,

f´
pgnq
„ f`,

if there exists a sequence of flats fn Ñ f´ in Fτmod
such that gnfn Ñ f`. The action of pgnq on

Fτmod
is proper iff there are no dynamical relations with respect to subsequences, cf. section 3.2.

Dynamical relations between singular flats yield dynamical relations between maximal ones:

Lemma 4.11. If f˘ P Fτmod
are flats such that f´

pgnq
„ f`, then for every maximal flat F` Ě f`

there exist a maximal flat F´ Ě f´ and a subsequence pgnk
q such that F´

pgnk
q

„ F`.

Proof. Let fn Ñ f´ be a sequence in Fτmod
such that gnfn Ñ f`. Then there exists a sequence

of maximal flats Fn Ě fn such that gnFn Ñ F`. The sequence pFnq is bounded because the

sequence pfnq is, and hence pFnq subconverges to a maximal flat F´ Ě f´.

For pure sequences there are dynamical relations between singular flats of the corresponding

type with respect to suitable subsequences:

Lemma 4.12. If pgnq is τmod-pure, then the action of pgnq on Fτmod
is not proper.

More precisely, there exist simplices τ˘ P Flagτmod
such that for every flat f` P Fτmod

asymptotic to τ` there exist a flat f´ P Fτmod
asymptotic to τ´ and a subsequence pgnk

q such

that

f´

pgnk
q

„ f`.

Proof. By pureness, there exists a sequence pτnq in Flagτmod
such that

sup
n

dpgnx, V px, τnqq ă `8 (4.13)

for any point x P X . There exists a subsequence pgnk
q such that τnk

Ñ τ` and g´1
nk
τnk

Ñ τ´.

Let f` P Fτmod
be asymptotic to τ`. We choose x P f` and consider the sequence of flats

fk P Fτmod
through x asymptotic to τnk

. Then fk Ñ f`. The sequence of flats pg´1
nk
fkq is

bounded as a consequence of (4.13). Therefore, after further extraction, we obtain convergence

g´1
nk
fk Ñ f´. The limit flat f´ is asymptotic to τ´ because the fk are asymptotic to g´1

nk
τnk

.

By a diagonal argument one can also show that the subsequences pgnk
q in the two previous

lemmas can be made independent of the flats F` respectively f`.

For contracting sequences, the possible dynamical relations between maximal flats are re-

stricted as follows:

Lemma 4.14. Suppose that pgnq is τmod-contracting with (4.2), and that F´
pgnq
„ F` for maxi-

mal flats F˘ P F . Then τ˘ Ă B8F˘.

Proof. Suppose that τ´ Ć B8F´. Then the visual boundary sphere B8F´ contains at least two

different simplices τ̂´, τ̂
1
´ opposite to τ´, cf. Lemma 2.2.
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Let Fn Ñ F´ be a sequence in F such that gnFn Ñ F`. Due to Fn Ñ F´, there exist

sequences of simplices τn, τ
1
n Ă B8Fn such that τn Ñ τ̂´ and τ 1

n Ñ τ̂ 1
´. In particular, τn ‰ τ 1

n

for large n. After extraction, we also obtain convergence gnτn Ñ τ̂` and gnτ
1
n Ñ τ̂ 1

`. Moreover,

since gnFn Ñ F`, it follows that the limits τ̂`, τ̂
1
` are different simplices in B8F`.

This is however in conflict with the contraction property (4.2). In view of τ̂´, τ̂
1
´ P Cpτ´q, the

latter implies that gnτn Ñ τ` and gnτ
1
n Ñ τ`, convergence to the same simplex, a contradiction.

Thus, τ´ Ă B8F´.

Considering the inverse sequence pg´1
n q yields that also τ` Ă B8F`, cf. Lemma 4.4.

Combining the previous lemmas, we obtain:

Lemma 4.15. If a sequence in G is τmod-contracting and νmod-pure, then τmod Ď νmod.

Proof. We denote the sequence by pgnq and assume (4.2). According to Lemmas 4.12 and 4.11,

by νmod-purity, there exist simplices ν˘ P Flagνmod
such that for every maximal flat F` with

B8F` Ą ν` there exist a maximal flat F´ with B8F´ Ą ν´ and a subsequence pgnk
q such that

F´

pgnk
q

„ F`.

By Lemma 4.14, always τ` Ă B8F`. Varying F`, it follows that τ` Ď ν`, cf. Lemma 2.3.

From these observations, we conclude:

Proposition 4.16 (Contracting implies regular). If a sequence in G is τmod-contracting,

then it is τmod-regular.

Proof. Consider a sequence in G which is not τmod-regular. Then a subsequence is νmod-pure

for some face type νmod Ď Bτmod
σmod, compare Lemma 4.9. The condition on the face type is

equivalent to νmod Ğ τmod. By the last lemma, the subsequence cannot be τmod-contracting.

4.4 Regularity implies contraction

We now prove a converse to Proposition 4.16. Since contractivity involves a convergence con-

dition, we can expect regular sequences to be contracting only after extraction.

Consider a τmod-regular sequence pgnq in G. After fixing a point x P X , there exist simplices

τ˘
n P Flag˘τmod

(unique for large n) such that

g˘1
n x P V px, stpτ˘

n qq. (4.17)

Note that the sequence pg´1
n q is ιτmod-regular, compare the comment after Definition 4.8.

Lemma 4.18. If τ˘
n Ñ τ˘ in Flag˘τmod

, then pgnq is τmod-contracting with (4.2).

Proof. Since x P gnV px, stpτ´
n qq “ V pgnx, stpgnτ

´
n qq, it follows together with gnx P V px, stpτ`

n qq

that the Weyl cones V pgnx, stpgnτ
´
n qq and V px, stpτ`

n qq lie in the same parallel set, namely in
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P pgnτ
´
n , τ`

n q, and face in opposite directions. In particular, the simplices gnτ
´
n and τ`

n are

x-opposite, and thus gnτ
´
n converges to the simplex τ̂` which is x-opposite to τ`,

gnτ
´
n Ñ τ̂`.

Since the sequence pg´1
n xq is ιτmod-regular, it holds that

dpg´1
n x, BV px, stpτ´

n qqq Ñ `8.

By Lemma 2.35, for any r, R ą 0, one has for n ě npr, Rq the inclusion of shadows (cf. (2.34))

Uτ´
n ,x,R Ă Uτ´

n ,g´1
n x,r.

Consequently, there exist sequences of positive numbers Rn Ñ `8 and rn Ñ 0 such that

Uτ´
n ,x,Rn

Ă Uτ´
n ,g´1

n x,rn

for large n, equivalently

gnUτ´
n ,x,Rn

Ă Ugnτ
´
n ,x,rn

. (4.19)

Since τ´
n Ñ τ´ and Rn Ñ `8, the shadows Uτ´

n ,x,Rn
Ă Cpτ´

n q Ă Flagτmod
exhaust Cpτ´q in the

sense that every compact in Cpτ´q is contained in Uτ´
n ,x,Rn

for large n.11 On the other hand,

since gnτ
´
n Ñ τ̂` and rn Ñ 0, the Ugnτ

´
n ,x,rn

shrink, i.e. Hausdorff converge to the point τ`.
12

Therefore, (4.19) implies that

gn|Cpτ´q Ñ τ`

uniformly on compacts, i.e. pgnq is τmod-contracting.

With the lemma, we can add the desired converse to Proposition 4.16 and obtain a charac-

terization of regularity in terms of contraction:

Proposition 4.20. The following properties are equivalent for sequences in G:

(i) Every subsequence contains a τmod-contracting subsequence.

(ii) The sequence is τmod-regular.

Proof. This is a direct consequence of the lemma. For the implication (ii)ñ(i) one uses the com-

pactness of flag manifolds. The implication (i)ñ(ii) is obtained as follows, compare the proof

of Proposition 4.16: If a sequence is not τmod-regular, then it contains a νmod-pure subsequence

for some face type νmod Ğ τmod. Every subsequence of this subsequence is again νmod-pure and

hence not τmod-contracting by Lemma 4.15.

A version of Propostition 4.20 had already been proven by Benoist in [Be, Lemma 3.5].

We conclude for subgroups:

11Indeed, for fixed R ą 0 we have Hausdorff convergence Uτ
´
n ,x,R Ñ Uτ´,x,R in Flagτmod

, which follows

e.g. from the transitivity of the action Kx ñ Flagιτmod
of the maximal compact subgroup Kx ă G fixing x.

Furthermore, the shadows Uτ´,x,R exhaust Cpτ´q as R Ñ `8, cf. the continuity part of Lemma 2.33.
12Indeed, U

gnτ
´
n ,x,r

Ñ Uτ̂`,x,r in Flagτmod
for fixed r ą 0, and Uτ̂`,x,r Ñ τ` as r Ñ 0, using again the

continuity part of Lemma 2.33 and the fact that the function (2.32) assumes the value zero only in τ`.
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Theorem 4.21. A subgroup Γ ă G is τmod-regular iff it is a τmod-convergence subgroup.

Proof. By definition, Γ is τmod-regular iff every sequence pγnq of distinct elements in Γ is τmod-

regular, and τmod-convergence iff every such sequence pγnq has a τmod-contracting subsequence.

According to the proposition, both conditions are equivalent.

4.5 Convergence at infinity and limit sets

The discussion in the preceding two sections leads to a natural notion of convergence at infinity

for regular sequences in X and G. As regularity, it can be expressed both in terms of orbit

geometry in X and dynamics on flag manifolds.

We first consider a τmod-regular sequence pgnq in G. Flexibilizing condition (4.17), we choose

points x, x1 P X and consider a sequence pτnq in Flagτmod
such that

sup
n

d
`
gnx, V px1, stpτnqq

˘
ă `8. (4.22)

Note that the condition is independent of the choice of the points x and x1.13

Lemma 4.23. The accumulation set of pτnq in Flagτmod
depends only on pgnq.

Proof. Let pτ 1
nq be another sequence in Flagτmod

such that dpgnx, V px1, stpτ 1
nqqq is uniformly

bounded. Assume that after extraction τn Ñ τ and τ 1
n Ñ τ 1. We must show that τ “ τ 1.

We may suppose that x1 “ x. There exist bounded sequences pbnq and pb1
nq in G such that

gnbnx P V px, stpτnqq and gnb
1
nx P V px, stpτ 1

nqq

for all n. Note that the sequences pgnbnq and pgnb
1
nq inG are again τmod-regular. By Lemma 4.18,

after further extraction, they are τmod-contracting with

gnbn|Cpτ´q Ñ τ and gnb
1
n|Cpτ 1

´
q Ñ τ 1

uniformly on compacts for some τ´, τ
1
´ P Flagιτmod

. Moreover, we may assume convergence

bn Ñ b and b1
n Ñ b1. Then

gn|Cpbτ´q Ñ τ and gn|Cpb1τ 1
´

q Ñ τ 1

uniformly on compacts. With Lemma 4.6 it follows that τ “ τ 1.

In view of the lemma, we can define the following notion of convergence:

Definition 4.24 (Flag convergence of sequences in G). A τmod-regular sequence pgnq in

G τmod-flag converges to a simplex τ P Flagτmod
,

gn Ñ τ,

if τn Ñ τ in Flagτmod
for some sequence pτnq in Flagτmod

satisfying (4.22).

13Recall that the Hausdorff distance of asymptotic Weyl cones V py, stpτqq and V py1, stpτqq is bounded by the

distance dpy, y1q of their tips.
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We can now characterize contraction in terms of flag convergence. We rephrase Lemma 4.18

and show that its converse holds as well:

Lemma 4.25. For a sequence pgnq in G and simplices τ˘ P Flag˘τmod
, the following are equiv-

alent:

(i) pgnq is τmod-contracting with gn|Cpτ´q Ñ τ` uniformly on compacts.

(ii) pgnq is τmod-regular and g˘1
n Ñ τ˘.

In part (ii), the sequence pg´1
n q is ιτmod-regular and g´1

n Ñ τ´ means ιτmod-flag convergence.

Proof. The implication (ii)ñ(i) is Lemma 4.18.

Conversely, suppose that (i) holds. Since the sequence pgnq is τmod-contracting, it is τmod-

regular by Proposition 4.16. Let pτ˘
n q be sequences satisfying (4.17). We must show that

τ˘
n Ñ τ˘. Otherwise, after extraction we obtain that τ˘

n Ñ τ 1
˘ with τ 1

` ‰ τ` or τ 1
´ ‰ τ´. Then

also gn|Cpτ 1
´

q Ñ τ 1
` by Lemma 4.18, and Lemma 4.6 implies that τ 1

˘ “ τ˘, a contradiction.

Vice versa, we can characterize flag convergence in terms of contraction and thus give an

alternative dynamical definition of it:

Lemma 4.26. For a sequence pgnq in G, the following are equivalent:

(i) pgnq is τmod-regular and gn Ñ τ .

(ii) There exists a bounded sequence pbnq in G and τ´ P Flagιτmod
such that gnbn|Cpτ´q Ñ τ

uniformly on compacts.

(iii) There exists a bounded sequence pb1
nq in G such that b1

ng
´1
n |Cpτq converges to a constant

map uniformly on compacts.

Proof. (ii)ñ(i): According to the previous lemma the sequence pgnbnq is τmod-regular and τmod-

flag converges, gnbn Ñ τ . Since dpgnx, gnbnxq is uniformly bounded, this is equivalent to pgnq

being τmod-regular and gn Ñ τ .

(i)ñ(ii): The sequence pg´1
n q is ιτmod-regular. There exists a bounded sequence pb1

nq in G

such that pb1
ng

´1
n q ιτmod-flag converges, b1

ng
´1
n Ñ τ´ P Flagιτmod

. We put bn “ b1
n

´1. Since also

pgnbnq is τmod-regular and gnbn Ñ τ , it follows from the previous lemma that gnbn|Cpτ´q Ñ τ

uniformly on compacts.

The equivalence (ii)ô(iii) with b1
n “ b´1

n follows from Lemma 4.4.

We carry over the notion of flag convergence to sequences in X .

Consider now a τmod-regular sequence pxnq in X . We choose again a base point x P X and

consider a sequence pτnq in Flagτmod
such that

sup
n

d
`
xn, V px, stpτnqq

˘
ă `8, (4.27)

analogous to (4.22). As before, the condition is independent of the choice of the point x, and

we obtain a version of Lemma 4.23:
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Lemma 4.28. The accumulation set of pτnq in Flagτmod
depends only on pxnq.

Proof. Let pgnq be a sequence inG such that the sequence pg´1
n xnq inX is bounded. Then pgnq is

τmod-regular and (4.27) becomes equivalent to (4.22). This reduces the claim to Lemma 4.23.

We therefore can define, analogous to Definition 4.24 above:

Definition 4.29 (Flag convergence of sequences in X). A τmod-regular sequence pxnq in

X τmod-flag converges to a simplex τ P Flagτmod
,

xn Ñ τ,

if τn Ñ τ in Flagτmod
for some sequence pτnq in Flagτmod

satisfying (4.27).

For any τmod-regular sequence pgnq in G and any point x P X , we have gn Ñ τ iff gnx Ñ τ .

Flag convergence and flag limits are stable under bounded perturbations of sequences:

Lemma 4.30. (i) For any τmod-regular sequence pgnq and any bounded sequence pbnq in G, the

sequences pgnq and pgnbnq have the same τmod-flag accumulation sets in Flagτmod
.

(ii) If pxnq and px1
nq are τmod-regular sequences in X such that dpxn, x

1
nq is uniformly

bounded, then both sequences have the same τmod-flag accumulation set in Flagτmod
.

Proof. (i) The sequence pgnbnq is also τmod-regular and satisfies condition (4.22) iff pgnq does.

(ii) The sequence px1
nq satisfies condition (4.27) iff px1

nq does.

Remark 4.31. There is a natural topology on the bordification X \ Flagτmod
which induces

τmod-flag convergence. Moreover, the bordification embeds into a natural Finsler compactifica-

tion of X , compare Remark 4.10.

Flag convergence leads to a notion of limit sets in flag manifolds for subgroups:

Definition 4.32 (Flag limit set). For a subgroup Γ ă G, the τmod-limit set

Λτmod
pΓq Ă Flagτmod

is the set of possible limit simplices of τmod-flag converging τmod-regular sequences in Γ, equiv-

alently, the set of simplices τ` as in (4.2) for all τmod-contracting sequences in Γ.

The limit set is Γ-invariant and closed, as a diagonal argument shows.

Remark 4.33. Benoist introduced in [Be, §3.6] a notion of limit set ΛΓ for Zariski dense

subgroups Γ of reductive algebraic groups over local fields which in the case of real semisimple

Lie groups is equivalent to (the dynamical version of) our concept of σmod-limit set Λσmod
.14

What we call the τmod-limit set Λτmod
for other face types τmod Ĺ σmod is mentioned in his

14Benoist’s limit set ΛΓ is contained in the flag manifold YΓ which in the case of real Lie groups is the full

flag manifold G{B, see the beginning of §3 of his paper. It consists of the limit points of sequences contracting

on G{B, cf. his Definitions 3.5 and 3.6.
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Remark 3.6(3), and his work implies that, in the Zariski dense case, Λτmod
is the image of Λσmod

under the natural projection Flagσmod
Ñ Flagτmod

of flag manifolds.

4.6 Uniform regularity

In this section we introduce stronger forms of the regularity conditions discussed in section 4.2.

We first consider sequences in the euclidean model Weyl chamber ∆.

Definition 4.34. A sequence δn Ñ 8 in ∆ is uniformly τmod-regular if it drifts away from

Bτmod
∆ at a linear rate with respect to its norm,

lim inf
nÑ`8

dpδn, Bτmod
∆q

}δn}
ą 0.

We extend these notions to sequences in X and G, compare Definition 4.8:

Definition 4.35 (Uniformly regular). (i) A sequence pxnq in X is uniformly τmod-regular if

for some (any) base point o P X the sequence of ∆-distances d∆po, xnq in ∆ has this property.

(ii) A sequence pgnq in G is uniformly τmod-regular if for some (any) point x P X the orbit

sequence pgnxq in X has this property.

(iii) A subgroup Γ ă G is uniformly τmod-regular if all sequences of distinct elements in Γ

have this property.

For a subgroup Γ ă G, uniform τmod-regularity is equivalent to the visual limit set ΛpΓq Ă

B8X being contained in the union of the open τmod-stars.

5 Asymptotic and coarse properties of discrete subgroups

This chapter is the core of the paper. In section 5.2, motivated by the boundary map part

of the original Anosov notion, we study equivariant embeddings of the Gromov boundaries

of word hyperbolic subgroups into flag manifolds. We show how these boundary embeddings

can be used, especially for regular subgroups, to control the geometry of the orbits in the

symmetric space: Intrinsic geodesic lines in the group are uniformly close to parallel sets in

the symmetric space. Moreover, in the generic case, for instance for Zariski dense subgroups,

intrinsic rays in the group are close to Weyl cones. This conicality property implies in par-

ticular that the boundary map continuously extends the orbit maps to infinity and identifies

the Gromov boundary with the limit set. This leads us to notion of asymptotically embedded

subgroups discussed in section 5.3. We find that asymptotic embeddedness has strong implica-

tions for the coarse extrinsic geometry of subgroups: They are undistorted, and moreover their

intrinsic geodesics satisfy a higher rank version of the “Morse property”; they are uniformly

close to diamonds. This motivates the notion of Morse subgroups studied in section 5.4. The

higher rank Morse property immediately implies that the limit set is conical and antipodal. We

call regular subgroups with the latter properties RCA and study them in section 5.5. Using
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Bowditch’s dynamical characterization of hyperbolic groups, we show that RCA subgroups are

asymptotically embedded, closing part of the circle. In section 5.7, we observe that conicality

implies expansive dynamics at the limit set, which yields another equivalent property for sub-

groups, this time formulated purely in terms of the dynamics on flag manifolds. In sections 5.8

and 5.11, we discuss different (uniform and non-uniform) versions of our Anosov condition and

show that it is equivalent to the previous conditions as well as to the original definition of

Anosov subgroups. In section 5.10 we take up the discussion of the Morse property. Leaving

the context of discrete subgroups, we study the geometry of Morse quasigeodesics in symmetric

spaces. We characterize them as bounded perturbations of Finsler quasigeodesics and study

the behavior of the ∆-distance along them: we prove that via the ∆-distance they project to

Morse quasigeodesics in ∆. We also obtain another characterization of Morse subgroups by the

quasiconvexity property that their intrinsic geodesics are extrinsically Morse quasigeodesics,

equivalently, are uniformly close to Finsler geodesics.

5.1 Antipodality

If X has rank one, then G acts transitively on pairs of distinct points in B8X . Thus there are

only two possibilities for the relative position of two points in the visual boundary: They can

coincide or be different. In higher rank, the G-actions on the associated flag manifolds are in

general not two point transitive and there are more possibilities for the relative position.

We recall (see section 2.4) that two simplices τ, τ 1 Ă B8X are called opposite or antipodal

if they are opposite simplices in the apartments a Ă B8X containing them both. Their types

are then related by θpτ 1q “ ιθpτq. In particular, if three simplices are pairwise opposite, their

types must be equal and ι-invariant.

Definition 5.1 (Antipodal). Suppose that τmod is ι-invariant.

(i) A subset of Flagτmod
is antipodal if it consists of pairwise opposite simplices.

(ii) A map into Flagτmod
is antipodal if it sends different elements to opposite simplices.

(iii) A subgroup Γ ă G is τmod-antipodal if Λτmod
pΓq is antipodal.

Being antipodal is an open condition for pairs of points in flag manifolds. It is the generic

relative position. Antipodal maps are in particular injective.

We note that for a τmod-antipodal τmod-convergence subgroup Γ ă G the action

Γ ñ Λτmod
pΓq

has convergence dynamics in the usual sense, see section 3.3: If pγnq is a sequence in Γ such

that γn|Cpτ´q Ñ τ`, then τ˘ P Λτmod
pΓq. Due to antipodality, Λτmod

pΓq ´ tτ´u Ă Cpτ´q and we

obtain the intrinsic convergence property.
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5.2 Boundary embeddings and limit sets

In this section, we study embeddings of word hyperbolic groups into semisimple Lie groups

which admit a certain kind of continuous boundary map. We will assume that τmod is ι-

invariant.

Definition 5.2 (Boundary embedded). A subgroup Γ ă G is τmod-boundary embedded if it is

intrinsically word hyperbolic and there exists an antipodal Γ-equivariant continuous embedding

β : B8Γ Ñ Flagτmod
(5.3)

of the Gromov boundary B8Γ of Γ. The map β is called a boundary embedding. If |B8Γ| ď 2,

we require in addition that Γ is discrete in G.

Thus, τmod-boundary embedded subgroups are necessarily discrete, since Γ acts on βpB8Γq

as a discrete convergence group if |B8Γ| ě 3.15

Boundary embeddings are in general not unique. This is so by trivial reasons if |B8Γ| “ 2,

cf. below, but it also happens if |B8Γ| ě 3, see [KLP2, Example 6.20].

In order to understand the implications of a boundary embedding, we will first use it to

obtain control on the geometry of the Γ-orbits in X .

We fix a word metric on Γ. Via the antipodal boundary embedding β one can assign to

every discrete geodesic line16 l : Z Ñ Γ a parallel set in X . Namely, let ζ˘ :“ lp˘8q P B8Γ

denote the ideal endpoints of the line. Their image simplices βpζ˘q P Flagτmod
are opposite and

determine the parallel set

P pβpζ´q, βpζ`qq Ă X.

We consider the images of the discrete geodesic lines l in Γ under the orbit map ox : Γ Ñ Γx Ă X

for a point x P X (fixed throughout the discussion) and claim that the discrete paths lx : Z Ñ X

are uniformly close to the corresponding parallel sets:17

Lemma 5.4 (Lines go close to parallel sets). The discrete path lx is contained in a tubular

neighborhood of the parallel set P pβpζ´q, βpζ`qq with uniform radius ρ “ ρpΓ, xq.

Here and below, we mean by the dependence of a constant on Γ that it depends on Γ as a

subgroup of G and also on the chosen word metric on Γ.

Proof. This can be seen by a simple compactness argument: Let

pFlagτmod
ˆFlagτmod

qopp Ă Flagτmod
ˆFlagτmod

(5.5)

denote the subspace of pairs of opposite simplices. It is the open and dense G-orbit and in partic-

ular a homogeneousG-space. The latter implies that the function on pFlagτmod
ˆFlagτmod

qoppˆX

15Note that boundary embedded subgroups are not required to be regular, although they frequently are, see

Theorem 3.11 in [KL2].
16Recall that by a discrete geodesic line, we mean an isometric embedding of Z, cf, section 2.1.
17 For a map φ : N Ñ Γ and a point x P X we denote by φx : N Ñ X the map sending n P N to φpnqx P X .
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assigning

pτ´, τ`, x
1q ÞÑ d

`
x1, P pτ´, τ`q

˘
(5.6)

is continuous, because dpgx1, P phτ´, hτ`qq “ dph´1gx1, P pτ´, τ`qq for g, h P G. Also the map

L Ñ pFlagτmod
ˆFlagτmod

qopp ˆ X

from the space L of discrete geodesic lines l : Z Ñ Γ 18 sending l ÞÑ pβplp´8qq, βplp`8qq, lp0qxq

is continuous. Composing both, we see that the map

l ÞÑ d
`
lp0qx, P pβplp´8qq, βplp`8qqq

˘

is continuous. Since it is also Γ-periodic, the cocompactness of the action Γ ñ L implies that

it is bounded, whence the assertion.

From now on, we assume that the subgroup Γ ă G is, in addition to being τmod-boundary

embedded, also τmod-regular. This assumption will enable us to further restrict the orbit ge-

ometry and will lead to information on the relation between the boundary embedding and the

limit set.

We now analyze the position of the images of rays in Γ along the parallel sets. Let r : N0 Ñ Γ

be a discrete geodesic ray with ideal endpoint ζ :“ rp`8q P B8Γ. There is a dichotomy for the

position of the orbit path rx : N0 Ñ X relative to the Weyl cone V prp0qx, stpβpζqqq with tip at

its initial point, namely the path must either drift away from the cone or dive deep into it:

Lemma 5.7 (Rays dive into Weyl cones or drift away). There exist constants ρ1 “

ρ1pΓ, xq ą 0 and for all R ą 0 numbers n0 “ n0pΓ, x, Rq P N such that the following holds:

For all n P N with n ě n0, the point rpnqx either has

(i) distance ě R from the Weyl cone V prp0qx, stpβpζqqq, or has

(ii) distance ď ρ1 from this Weyl cone and distance ě R from its boundary.

Proof. In a word hyperbolic group, discrete geodesic rays are contained in uniformly bounded

neighborhoods of discrete geodesic lines. Thus, r is contained in a tubular neighborhood with

uniform radius cpΓq of a line l : Z Ñ Γ asymptotic to ζ “ rp`8q and some ζ̂ P B8Γ ´ tζu.

It follows from the previous lemma that the path rx is contained in a tubular neighborhood

of the parallel set P “ P pβpζ̂q, βpζqq with uniform radius ρ2pΓ, xq. Let x0 P P be a point

with dpx0, rp0qxq ď ρ2. The Weyl cone V prp0qx, stpβpζqqq is then ρ2-Hausdorff close to the

asymptotic Weyl cone V px0, stpβpζqqq Ă P .

Now we use that the interior of the Weyl cone V px0, stpβpζqqq is open in the parallel set P

and the boundary BV px0, stpβpζqqq of the cone disconnects the parallel set, see Lemma 2.16.

The τmod-regularity of Γ implies (along with the triangle inequality for ∆-lengths) that the path

rx drifts away from BV px0, stpβpζqqq at a uniform rate,

d
`
rpnqx, BV px0, stpβpζqqq

˘
ě φpnq

18The space L of discrete geodesic lines l : Z Ñ Γ is equipped with the topology of pointwise convergence. It

is a locally compact Hausdorff space on which Γ acts properly discontinuously and cocompactly.
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with a function φpnq Ñ `8 as n Ñ `8 independent of the ray r. The assertion follows.

For all rays in Γ the same of the two alternatives must occur:

Lemma 5.8 (Dichotomy). For all discrete geodesic rays r : N0 Ñ Γ, either

(i) rx drifts away from the Weyl cone V prp0qx, stpβpζqqq, ζ “ rp`8q, at a uniform rate,

d
`
rpnqx, V prp0qx, stpβpζqqq

˘
Ñ `8

uniformly as n Ñ `8, or

(ii) rx is contained in the tubular ρ1pΓ, xq-neighborhood of the cone V prp0qx, stpβpζqqq and

drifts away from its boundary at a uniform rate,

d
`
rpnqx, BV prp0qx, stpβpζqqq

˘
Ñ `8

uniformly as n Ñ `8.

Proof. We give two arguments. The first one is restricted to the nonelementary case: As a

consequence of the previous lemma, for every ray r one of the alternatives (i) and (ii) occurs

with growth rates independent of the ray. Which alternative occurs, depends only on the

asymptote class ζ “ rp`8q of the ray, and depends on it continuously, i.e. the subsets of

endpoints for either alternative are open in B8Γ. Since they are also Γ-invariant, if |B8Γ| ě 3,

the minimality of the action Γ ñ B8Γ implies that one of the subsets must be empty.

The second argument works in the general case: Again we use that it depends only on the

asymptote class of the ray, which alternative occurs. We show that the same alternative occurs

for any two distinct asymptote classes ζ, ζ̂ P B8Γ. After replacing a ray r asymptotic to ζ

with a subray, we may assume that we are in the situation of the proof of the previous lemma

(whose notation we adopt), i.e. that r lies in a uniform tubular neighborhood of a line l : Z Ñ Γ

asymptotic to ζ̂ and ζ . Moreover, we assume that alternative (ii) holds for ζ and claim that it

holds for ζ̂ , as well.

To see this, fix R ąą ρ1, ρ2 and n ąą n0. Let xn P P “ P pβpζ̂q, βpζqq be a point

with dpxn, rpnqxq ď ρ2. Since (ii) holds for r, the point xn must lie deep inside the cone

V px0, stpβpζqqq Ă P . This is equivalent to x0 lying deep inside the cone V pxn, stpβpζ̂qqq Ă P

opening towards the opposite direction. This however implies that rp0qx is uniformly close

(with distance ď 2ρ2 ăă R) to the cone V prpnqx, stpβpζ̂qqq. Thus alternative (ii) holds for the

subray l|p´8,nsXZ of l, and hence also for its ideal endpoint ζ̂.

On the other hand, in the nonelementary case, the ray images always drift away (at non-

uniform rates) from “opposite” Weyl cones:

Lemma 5.9 (Drifting away from opposite cones). Suppose that |B8Γ| ě 3. Then for

every discrete geodesic ray r : N0 Ñ Γ and ideal point ζ̂ P B8Γ ´ tζu, ζ “ rp`8q, it holds that

d
`
rpnqx, V prp0qx, stpβpζ̂qqq

˘
Ñ `8

as n Ñ `8.
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Proof. The ray r is contained in a (non-uniform) tubular neighborhood of a line l : Z Ñ Γ

asymptotic to ζ̂ and ζ . The line image lx, and therefore also the ray image rx is contained in

a tubular neighborhood of the parallel set P “ P pβpζ̂q, βpζqq.

It follows that the accumulation set accτmod
prq Ă Flagτmod

of r (with respect to τmod-flag

convergence, compare section 4.5) consists of simplices contained in B8P : Indeed, the nearest

point projections xn P P of rpnqx lie in euclidean Weyl chambers V px0, σnq Ă P . Therefore,

in view of Lemma 4.23, accτmod
prq equals the accumulation set of the sequence pτnq in Flagτmod

consisting of the type τmod faces τn Ď σn Ă B8P .

Now we use nonelementarity and vary the ideal point opposite to ζ . Since |B8Γ| ě 3, there

exists a third ideal point ζ̂ 1 P B8Γ´tζ, ζ̂u. It determines another parallel set P 1 “ P pβpζ̂ 1q, βpζqq,

and the simplices in accτmod
prq must also be contained in B8P

1. In view of βpζ̂q Ć B8P
1, it

follows that βpζ̂q R accτmod
prq.

Since rx is contained in a tubular neighborhood of P , we also again have the dichotomy, anal-

ogous to the previous lemma, that rx either drifts away from the Weyl cone V prp0qx, stpβpζ̂qqq

at a uniform rate, as claimed, or stays in a tubular neighborhood of it and drifts away only from

its boundary. However, in the latter case, we would have (conical) flag convergence rpnq Ñ βpζ̂q

as n Ñ `8, equivalently, accτmod
prq “ tβpζ̂qu, a contradiction.

If Γ is virtually cyclic, i.e. if |B8Γ| “ 2, there is a trivial way of modifying the boundary

embedding. Namely, then the action Γ ñ B8Γ commutes with the transposition t : B8Γ Ñ B8Γ

exchanging the points, and therefore ´β :“ β ˝ t is a boundary embedding as well. Therefore

the previous lemma may fail. However, if it fails for β, then it holds for ´β, because case (ii)

of the dichotomy in Lemma 5.8 arises.

From the above observations on the orbit geometry we will now deduce information about

the limit set and its position relative to the image of the boundary embedding.

Let

ōx “ ox \ β : Γ “ Γ \ B8Γ ÝÑ X \ Flagτmod
(5.10)

denote the extension of the orbit map ox : Γ Ñ Γx Ă X to the Gromov compactification Γ of

Γ by ox|B8Γ :“ β. We say that the extension ox is continuous at infinity if for all sequences

γn Ñ 8 in Γ we have flag convergence γn Ñ βpζq whenever γn Ñ ζ P B8Γ in Γ.

We obtain the following dichotomy corresponding to the one in Lemma 5.8:

Theorem 5.11 (Boundary embedding and limit set). Let Γ ă G be a τmod-regular τmod-

boundary embedded subgroup. Then for every boundary embedding β either

(i) βpB8ΓqXΛτmod
pΓq “ H, and no simplex in βpB8Γq is opposite to a simplex in Λτmod

pΓq,19

or

(ii) βpB8Γq “ Λτmod
pΓq. Moreover, the extension ōx is continuous at infinity, after replacing

β with ´β in the case |B8Γ| “ 2, if necessary.

Proof. Assume first that case (ii) of Lemma 5.8 occurs. Consider a sequence γn Ñ 8 in Γ.

19Note that in view of the antipodality of β the second part of (i) implies the first part.
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There exist rays rn : N0 Ñ Γ starting in rnp0q “ e and passing at uniformly bounded distance

of γn. We denote their ideal endpoints by ζn :“ rnp`8q. Then the orbit points γnx lie

in uniform tubular neighborhoods of the Weyl cones V px, stpβpζnqqq. If γn Ñ ζ P B8Γ in Γ,

equivalently, ζn Ñ ζ in B8Γ, then βpζnq Ñ βpζq in Flagτmod
, and it follows τmod-flag convergence

γnx Ñ βpζq. This shows that ōx is continuous at infinity and βpB8Γq Ď Λτmod
pΓq. To see the

opposite inclusion, suppose that γnx Ñ λ P Λτmod
pΓq. After extraction, we get convergence

γn Ñ ζ P B8Γ and conclude from the above that λ “ βpζq. Thus also Λτmod
pΓq Ď βpB8Γq, and

conclusion (ii) of the theorem is satisfied.

If |B8Γ| “ 2 and case (ii) of Lemma 5.8 occurs for ´β, we reach the same conclusion after

replacing β with ´β.

Assume now that we are in case (i) of Lemma 5.8. After replacing β with ´β in the case

|B8Γ| “ 2, if necessary, we may also assume that the conclusion of Lemma 5.9 holds. As

before, we consider a sequence γn Ñ 8 in Γ and rays rn. Suppose that γn Ñ ζ P B8Γ and let

ζ̂ P B8Γ ´ tζu be arbitrary. Since ζn Ñ ζ , there exist for all large n lines ln : Z Ñ Γ with ideal

endpoints lnp´8q “ ζ̂ and lnp`8q “ ζn. The lines ln pass at uniformly bounded distance from

e and γn, and they contain the rays rn in uniform tubular neighborhoods. (For the rest of this

argument, uniformity will mean that bounds are independent of n.)

By Lemma 5.4, the ray images rnx lie in uniform tubular neighborhoods of the parallel sets

Pn “ P pβpζ̂q, βpζnqq and drift away from both Weyl cones V px, stpβpζ̂qqq and V px, stpβpζnqqq.

The drift is uniform in the latter case by Lemma 5.8(i), and also in the former case since

rnp0qx “ x and dpx, Pnq is bounded.

The uniformity implies that the orbit points γnx lie in uniform tubular neighborhoods of

Weyl cones V px, stpτnqq for simplices τn P Flagτmod
with τn Ă B8Pn but τn ‰ βpζ̂q, βpζnq.

(Indeed, as in the proof of the previous lemma, γnx is uniformly close to a euclidean Weyl

chamber V px, σnq with visual boundary chamber σn Ă B8Pn but σn Ć stpβpζ̂qq Y stpβpζnqq,

and we let τn Ď σn be the type τmod face.) In particular, τn is not opposite to both βpζ̂q and

βpζnq. The accumulation set of the sequence pτnq in Flagτmod
, which coincides with the τmod-flag

accumulation set of the sequence pγnq, therefore consists of simplices which are not opposite to

both βpζ̂q and βpζq, because oppositeness is an open property. Letting ζ̂ run through B8Γ´tζu,

it follows that these simplices are not opposite to any simplex in βpB8Γq.

Every limit simplex in Λτmod
pΓq arises as the τmod-flag limit of a sequence pγnq which con-

verges at infinity in Γ. We obtain that no simplex in Λτmod
pΓq is opposite to a simplex in

βpB8Γq. In particular, Λτmod
pΓq X βpB8Γq “ H. Thus, conclusion (i) of the theorem holds.

Consequently, as soon as a boundary embedding hits the limit set, it identifies it with the

Gromov boundary of the subgroup and moreover continuously extends the orbit maps:

Corollary 5.12. Let Γ ă G be a τmod-regular τmod-boundary embedded subgroup with boundary

embedding β. If βpB8Γq X Λτmod
pΓq ‰ H, then βpB8Γq “ Λτmod

pΓq. Moreover, the extension ōx

is continuous at infinity, after replacing β with ´β in the case |B8Γ| “ 2, if necessary.

Otherwise, if the boundary embedding avoids the limit set, the image of the boundary
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embedding and the limit set must have special position:

Lemma 5.13. In case (i) of Theorem 5.11, both βpB8Γq and Λτmod
pΓq are not Zariski dense

in Flagτmod
. In particular, Γ is not Zariski dense in G.

Proof. Since no simplex in βpB8Γq is opposite to a simplex in Λτmod
pΓq, it follows that βpB8Γq

is disjoint from the union of open Schubert strata Cpλq over all limit simplices λ P Λτmod
pΓq.

In other words, βpB8Γq is contained in the intersection of the proper subvarieties BCpλq “

Flagτmod
´Cpλq. Similarly, Λτmod

pΓq lies in the intersection of the BCpτq over all simplices

τ P βpB8Γq. In particular, both are Γ-invariant proper subvarieties, which forces Γ to be

non-Zariski dense.

Therefore, the first alternative in the theorem cannot occur in the Zariski dense case, com-

pare [GW, Thm. 1.5]:

Corollary 5.14. Let Γ ă G be a Zariski dense τmod-regular τmod-boundary embedded subgroup.

Then it admits a unique boundary embedding β, and βpB8Γq “ Λτmod
pΓq.

Proof. By the lemma, for any boundary embedding β, only case (ii) in the theorem can occur.

It follows that βpB8Γq “ Λτmod
pΓq. Moreover, β is uniquely determined because, due to the

density of attractive fixed points of infinite order elements, there are no Γ-equivariant self

homeomorphisms of B8Γ besides the identity. (Note that |B8Γ| ě 3 by Zariski density.)

It is worth noting that in the case τmod “ σmod the boundary embedding can always be

modified so that it maps onto the limit set:

Theorem 5.15. Let Γ ă G be a σmod-regular σmod-boundary embedded subgroup. Then there

exists a boundary embedding β with βpB8Γq “ Λσmod
pΓq.

Proof. In the case τmod “ σmod, the parallel sets considered above are maximal flats and the

Weyl cones are euclidean Weyl chambers. What makes it possible to push the argument further,

is the fact that the walls in a maximal flat through a fixed point disconnect the flat into euclidean

Weyl chambers. Therefore, the above discussion now yields more precise information about the

position of the paths rx:

Since the rx are uniformly close to maximal flats (provided by a boundary embedding β 1

for Γ, cf. Lemma 5.4), σmod-regularity forces them to dive into (uniform tubular neighborhoods

of) Weyl chambers inside these flats. It follows that the paths rx are contained in uniform

tubular neighborhoods of euclidean Weyl chambers with tips at the initial points rp0qx. Again

by regularity, the asymptote class of the Weyl chamber depends only on the asymptote class

of the ray r. We therefore obtain a new boundary map β : B8Γ Ñ Flagσmod
such that rx is

contained in the tubular ρ1pΓ, xq-neighborhood of the euclidean Weyl chamber V prp0qx, βpζqq

for ζ “ rp`8q. Clearly, βpB8Γq Ď Λσmod
pΓq and β is Γ-equivariant. An argument as in the last

part of the proof of Lemma 5.8 shows that β is antipodal.

To verify that β is continuous, suppose that ζn Ñ ζ in B8Γ and βpζnq Ñ σ in Flagσmod
. We

must show that σ “ βpζq. Let rn, r : N0 Ñ Γ be rays starting in e and asymptotic to ζn, ζ .
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We note that for any sequence mn Ñ `8 in N0, we have σmod-flag convergence rnpmnq Ñ σ,

because rnpmnqx lies in a uniform tubular neighborhood of V px, stpβpζnqqq. On the other hand,

if mn grows sufficiently slowly, then the sequence prnpmnqq in Γ is contained in a tubular

neighborhood of r, and hence rnpmnq Ñ βpζq. This shows that σ “ βpζq, as desired.

Thus, β is a boundary embedding. Since also βpB8Γq Ď Λσmod
pΓq, we conclude using

Theorem 5.11 that βpB8Γq “ Λσmod
pΓq.

5.3 Asymptotic embeddings and coarse extrinsic geometry

The discussion in the previous section, notably part (ii) of the conclusion of Theorem 5.11,

motivates the following strengthening of the notion of boundary embeddedness:

Definition 5.16 (Asymptotically embedded). A subgroup Γ ă G is τmod-asymptotically

embedded if it is τmod-regular, τmod-antipodal, intrinsically word hyperbolic and there is a Γ-

equivariant homeomorphism

α : B8Γ
–

ÝÑ Λτmod
pΓq Ă Flagτmod

from its Gromov boundary onto its τmod-limit set.

The definition can also be phrased purely dynamically in terms of the Γ-action on Flagτmod
,

by replacing τmod-regularity with the τmod-convergence condition.

Note that τmod-asymptotically embedded subgroups are necessarily discrete by τmod-regularity.

We also keep assuming that τmod is ι-invariant; this is implicit in τmod-antipodality.

We observe that the boundary map α is antipodal, because it is injective with antipodal

image. It is therefore a boundary embedding for Γ, i.e. τmod-asymptotically embedded implies

τmod-boundary embedded. According to Corollary 5.12, the extension

ōx “ ox \ α : Γ “ Γ \ B8Γ ÝÑ X \ Flagτmod
(5.17)

cf. (5.10), is continuous, after replacing α with ´α in the case |B8Γ| “ 2, if necessary. We will

refer to α then as the asymptotic embedding for Γ.

We rephrase the criteria for asymptotic embeddedness obtained in the previous section (cf.

Corollaries 5.12, 5.14 and Theorem 5.15):

Theorem 5.18. Let Γ ă G be a τmod-regular τmod-boundary embedded subgroup with boundary

embedding β. If βpB8Γq X Λτmod
pΓq ‰ H, then Γ is τmod-asymptotically embedded, and β is the

asymptotic embedding, after replacing it with ´β in the case |B8Γ| “ 2, if necessary.

Theorem 5.19. Zariski dense τmod-regular τmod-boundary embedded subgroups are τmod-asymp-

totically embedded and admit no other boundary embedding besides their asymptotic embedding.

Theorem 5.20. σmod-Regular σmod-boundary embedded subgroups are σmod-asymptotically em-

bedded. (But they may admit boundary embeddings different from the asymptotic embedding.)
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We also summarize what the discussion in the previous section yields for the orbit geometry

of asymptotically embedded subgroups. In addition to the continuity at infinity (5.17) of the

orbit maps ox, x P X , we obtained (cf. Lemmas 5.4 and 5.8):

Proposition 5.21 (Orbit geometry of asymptotically embedded subgroups). Let Γ ă

G be a τmod-asymptotically embedded subgroup with asymptotic embedding α. Then:

(i) For every discrete geodesic line l : Z Ñ Γ, the path lx is contained in a tubular neighbor-

hood of uniform radius ρpΓ, xq of the parallel set P pαpζ´q, αpζ`qq, where ζ˘ :“ lp˘8q P B8Γ.

(ii) For every discrete geodesic ray r : N0 Ñ Γ, the path rx is contained in a tubular neighbor-

hood of uniform radius ρ1pΓ, xq of the Weyl cone V prp0qx, stpαpζqqq, where ζ :“ rp`8q P B8Γ,

and drifts away from its boundary at a uniform rate,

d
`
rpnqx, BV prp0qx, stpαpζqqq

˘
Ñ `8 (5.22)

uniformly as n Ñ `8.

These properties motivate the Morse property to be introduced and discussed below. Let us

first draw some further immediate consequences for the coarse extrinsic geometry of subgroups

and see how property (ii) leads to undistortion and uniform regularity.

We consider the orbit path rx for a discrete ray r. According to property (ii), the path rx

must stay uniformly close to the Weyl cone V prp0qx, stpαpζqqq predicted by the boundary map

and drift away from the boundary of the cone at a uniform rate. Since the same applies to all

subrays of r, it follows that the cones V prpnqx, stpαpζqqq must, up to bounded perturbation,

be uniformly nested. This forces the orbit path rx to have a linear drift away from the bound-

ary of the Weyl cone and in particular towards infinity, i.e. rx is uniformly τmod-regular and

undistorted.

We combine these properties in the following notion:

Definition 5.23 (URU). A finitely generated subgroup Γ ă G is τmod-URU, if it is

(i) uniformly τmod-regular, and

(ii) undistorted, i.e. the inclusion Γ Ă G, equivalently, the orbit maps Γ Ñ Γx Ă X , are

quasiisometric embeddings with respect to a word metric on Γ.

Note that URU subgroups cannot contain parabolic elements.

The above discussion before the definition thus leads to:

Theorem 5.24. τmod-Asymptotically embedded subgroups Γ ă G are τmod-URU.

Proof. We add some details to the discussion above:

Let xn P V prp0qx, stpαpζqqq be the nearest point projections of the points rpnqx, n P N0.

Then dprpnqx, xnq ď ρ1 “ ρ1pΓ, xq by part (ii) of the proposition. We consider the sequence of

Weyl cones V pxn, stpαpζqqq Ă V prp0qx, stpαpζqqq. Note that the cones V prpnqx, stpαpζqqq and

V pxn, stpαpζqqq are asymptotic to each other and have Hausdorff distance ď dprpnqx, xnq ď ρ1,
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as do their boundaries. Applying (ii) to the subrays of r, it follows that the pathsm ÞÑ rpn`mqx

are contained in uniform neighborhoods of the cones V pxn, stpαpζqqq and drift away from their

boundaries at uniform rates. Thus, for every d0 ą 0 there exists a numberm0 “ m0pΓ, x, d0q P N

such that

xn`m P V pxn, stpαpζqqq

and

d
`
xn`m, BV pxn, stpαpζqqq

˘
ě d0

for all n ě 0 and m ě m0. The latter inequality implies that the boundaries of the Weyl

cones V pxn, stpαpζqqq and V pxn`m, stpαpζqqq have (nearest point) distance ě d0, cf. Proposi-

tion 2.31(ii). From the uniform nestedness of the cones V pxkm0
, stpαpζqqq for k P N0, it follows

that the drift (5.22) away from the boundary of the Weyl cone is uniformly linear. Conse-

quently, the ray images rx are uniformly undistorted and uniformly τmod-regular. Since any

pair of elements in Γ lies in a uniform tubular neighborhood of some discrete geodesic ray, our

assertion follows.

Remark 5.25. (i) That, conversely, URU implies asymptotic embeddedness is proven in

[KLP3]. In particular, URU subgroups are necessarily word hyperbolic.

(ii) In [KL1] we prove that URU subgroups Γ ă G satisfy the even stronger coarse geometric

property of being coarse Lipschitz retracts of G.

Similarly, we also derive a version of Proposition 5.21 for discrete geodesic segments in Γ:

Consider a line l : Z Ñ Γ and denote ζ˘ “ lp˘8q. Let xn P P pαpζ´q, αpζ`qq be the nearest

point projections of the points lpnqx, n P Z. As in the proof of the previous theorem, we see

using Proposition 5.21(i+ii), that for any d0 ą 0 there exists m1
0 “ m1

0pΓ, x, d0q P N such that

xn˘m P V pxn, stpαpζ˘qqq

and

d
`
xn˘m, BV pxn, stpαpζ˘qqq

˘
ě d0

for all n and m ě m1
0. It follows that, for n˘ P Z with n` ´ n´ ě m1

0, the diamond

♦τmod
pxn´

, xn`
q “ V pxn´

, stpαpζ`qqq X V pxn`
, stpαpζ´qqq Ă P pαpζ´q, αpζ`qq

is defined and, using Proposition 5.21(ii) again, contains the finite subpath l|rn´,n`sXZx in a

uniform tubular neighborhood.

Our discussion yields the following complement to, respectively, strengthening of Proposi-

tion 5.21, saying that the images of discrete geodesic segments in Γ are contained in uniform

neighborhoods of diamonds with tips at uniform distance from the endpoints:

Proposition 5.26 (Segments go close to diamonds). Let Γ ă G be a τmod-asymptotically

embedded subgroup. Then for every discrete geodesic segment s : rn´, n`sXZ Ñ Γ, the path sx is

contained in a tubular neighborhood of uniform radius ρ2 “ ρ2pΓ, xq of a diamond ♦τmod
px´, x`q

with dpx˘, spn˘qxq ď ρ2.
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Proof. This is a consequence of the above discussion, because every discrete geodesic segment

in Γ lies in a uniform neighborhood of a discrete geodesic line.

5.4 Morse property

The Morse Lemma for Gromov hyperbolic spaces asserts that quasigeodesic segments are uni-

formly close to geodesic segments with the same endpoints. Proposition 5.26 along with Propo-

sition 5.21 in the previous section can be interpreted as saying that, for asymptotically embed-

ded subgroups Γ ă G, the images of discrete geodesic segments, rays and lines in Γ under the

orbit maps into X satisfy a higher rank version of the Morse Lemma, with geodesic segments

replaced by diamonds.

This motivates the following notion (we keep assuming that τmod is ι-invariant):

Definition 5.27 (Morse). A subgroup Γ ă G is τmod-Morse if it is τmod-regular, intrinsically

word hyperbolic and satisfies the following property:

For every discrete geodesic segment s : rn´, n`s X Z Ñ Γ, the path sx is contained in a

tubular neighborhood of uniform radius ρ2 “ ρ2pΓ, xq of a diamond ♦τmod
px´, x`q with tips at

distance dpx˘, spn˘qxq ď ρ2 from the endpoints.

Note that the definition does not a priori assume the existence of a boundary map, neither

does it assume undistortion. These will be consequences.

As we saw, asymptotically embedded subgroups are Morse. We will now show that, con-

versely, asymptotic embeddedness follows from the Morse property, in fact from an a priori

weaker version of it for rays in Γ (instead of segments):

Theorem 5.28. For a subgroup Γ ă G the following properties are equivalent:

(i) Γ is τmod-asymptotically embedded.

(ii) Γ is τmod-Morse.

(iii) Γ is τmod-regular, intrinsically word hyperbolic and satisfies the following property: For

every discrete geodesic ray r : N0 Ñ Γ, the path rx is contained in a tubular neighborhood of

uniform radius ρ3 “ ρ3pΓ, xq of a τmod-Weyl cone with tip at the initial point rp0qx.

The τmod-Weyl cone in (iii) is then the cone V prp0qx, αprp`8qqq where α is the asymptotic

embedding for Γ.

Proof. The implication (i)ñ(ii) is Proposition 5.26. The implication (ii)ñ(iii) is immediate by

a limiting argument. It remains to show that (iii)ñ(i).

We first observe that the τmod-Weyl cone V prp0qx, stpτqq containing the path rx in a tubular

neighborhood is uniquely determined. This follows from the τmod-flag convergence rpnq Ñ τ .

Moreover, τ depends only on the asymptote class rp`8q of the ray r. Hence there is a well-

defined map at infinity

α̌ : B8Γ Ñ Flagτmod
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such that for every ray r the path rx is contained in a uniform tubular neighborhood of the

Weyl cone V prp0qx, stpα̌prp`8qqqq. Our goal is to show that α̌ is an asymptotic embedding.

Lemma 5.29. α̌ is continuous and continuously extends the orbit maps ox at infinity.

Proof. We proceed as in the proof of Theorem 5.15 (continuity of β). Consider a converging

sequence ζn Ñ ζ in B8Γ. Let rn, r : N0 Ñ Γ be rays starting in e and asymptotic to ζn, ζ . We

note that for any sequence mn Ñ `8 in N0, the flag accumulation set of the sequence prnpmnqq

in Flagτmod
equals the accumulation set of the sequence pα̌pζnqq in Flagτmod

, and in particular

does not depend on the sequence pmnq. On the other hand, if pmnq grows sufficiently slowly,

then the sequence prnpmnqq in Γ is contained in a tubular neighborhood of r, and hence flag

converges to α̌pζq. It follows that α̌pζnq Ñ α̌pζq. This shows that α̌ is continuous.

Proceeding as in the first part of the proof of Theorem 5.11, we then see that, for a sequence

γn Ñ 8 in Γ, convergence γn Ñ ζ P B8Γ in Γ implies flag convergence γn Ñ α̌pζq, i.e. α̌

continuously extends ox at infinity.

The continuous extension part of the lemma implies

Corollary 5.30. α̌pB8Γq “ Λτmod
pΓq.

In order to see that Λτmod
pΓq is antipodal and α̌ is an asymptotic embedding for Γ, it remains

to verify:

Lemma 5.31. The map α̌ is antipodal.

Proof. Let ζ˘ P B8Γ be distinct, and let l : Z Ñ Γ be a line with lp˘8q “ ζ˘. Applying

property (iii) to the subrays l|r´n,`8q for large n P N, we get that the point lp0qx is uniformly

close to the cones V plp´nqx, stpα̌pζ`qqq, equivalently, there exists a bounded sequence of points

yn P V plp´nqx, stpα̌pζ`qqq. By τmod-regularity, dpyn, BV plp´nqx, stpα̌pζ`qqqq Ñ `8 as n Ñ `8.

We denote by τ´
n P Flagτmod

the simplex lp´nqx-opposite to yn.
20 Then lp´nqx P V pyn, stpτ

´
n qq,

and hence lp´nqx is uniformly close to V plp0qx, stpτ´
n qq. In view of the flag convergence lp´nq Ñ

α̌pζ´q, it follows that τ´
n Ñ α̌pζ´q in Flagτmod

. Since the parallel sets P pτ´
n , α̌pζ`qq lie at bounded

distance from lp0qx, as they contain the points yn, the sequence pτ´
n q is relatively compact in the

open Schubert stratum Cpα̌pζ`qq. Hence α̌pζ´q P Cpα̌pζ`qq, i.e. α̌pζ´q is opposite to α̌pζ`q.

This concludes the proof of the theorem.

Note that the theorem implies in particular that τmod-Morse subgroups are τmod-URU, be-

cause asymptotically embedded subgroups are URU by Theorem 5.24.

Remark 5.32. We restricted our definition of the Morse property to word hyperbolic subgroups

because, as shown in [KLP3], URU subgroups are always word hyperbolic. This had been

unknown at the time of writing the first version of [KLP2].

20 I.e. lp´nqx P V pyn, stpτ
´

n qq. Then lp´nqx, yn P P pτ´

n , α̌pζ`qq.
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5.5 Conicality

The condition for discrete subgroups which we study in this section concerns the asymptotic

geometry of their orbits, i.e. how they approach infinity. To state it, we first need to elaborate

on our discussion of convergence at infinity for sequences from section 4.5.

For arbitrary τmod, consider a τmod-flag converging sequence pxnq in X ,

xn Ñ τ P Flagτmod
.

The following notion of going “straight” to the limit simplex generalizes conical or radial con-

vergence at infinity in rank one symmetric spaces where one requires the sequence to stay in a

tubular neighborhood of a geodesic ray. Working with rays also in higher rank turns out to be

too restrictive,21 and we replace the rays with Weyl cones, compare [Al, Def. 5.2]:

Definition 5.33 (Conical convergence). A τmod-flag converging sequence xn Ñ τ P Flagτmod

converges τmod-conically,

xn
con
Ñ τ,

if it is contained in a tubular neighborhood of a Weyl cone V px, stpτqq for some point x P X .

Accordingly, τmod-flag converging sequences in G are said to converge τmod-conically if their

orbit sequences in X do.

Note that the Weyl cones V px, stpτqq for different points x P X are Hausdorff close to each

other, and the conical convergence condition is therefore independent of the choice of x.

The next result describes a situation for sequences close to parallel sets where flag conver-

gence already implies the stronger form of conical convergence:

Lemma 5.34. Suppose that a sequence pxnq in X τmod-flag converges, xn Ñ τ P Flagτmod
.

(i) If pxnq is contained in a tubular neighborhood of a parallel set P pτ̂ , τq for some τ̂ P Cpτq,

(ii) or if, more generally, there exists a relatively compact sequence pτ̂nq in Cpτq such that

sup
n

dpxn, P pτ̂n, τqq ă `8,

then xn
con
Ñ τ .

Proof. Suppose first that the stronger condition (i) holds and that xn
con
Û τ . Let x P P pτ̂ , τq. As

in the proof of Lemma 5.7, it follows from the openness of the cone V px, stpτqq in the parallel

set P pτ̂ , τq that, after extraction, the sequence pxnq drifts away from V px, stpτqq. As in the

proof of Theorem 5.11, the points xn are then contained in uniform neighborhoods of cones

V px, stpτnqq with simplices τn P Flagτmod
satisfying τn Ă B8P pτ̂ , τq but τn ‰ τ . Since τ is the

only simplex in Cpτ̂q which lies in P pτ̂ , τq, see (2.10) and the discussion preceding Lemma 2.11,

21From our construction of Anosov Schottky subgroups, see [KLP2], it immediately follows that in higher

rank they are generically not ray conical, for instance never in the Zariski dense case. This implies furthermore

that Zariski dense Anosov subgroups are never ray conical.
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the sequence pτnq is contained in the closed set Flagτmod
´Cpτ̂q, and hence so is its accumulation

set. In particular, τ does not belong to the accumulation set of pτnq in Flagτmod
. Since the latter

set equals the flag accumulation set of the sequence pxnq in Flagτmod
, it follows in particular

that xn Û τ , a contradiction.

Suppose now that the weaker condition (ii) holds. Since Cpτq is a homogeneous Pτ -space,

there exist τ̂ P Cpτq and a bounded sequence pbnq in Pτ such that τ̂n “ bnτ̂ . The sequence

pb´1
n xnq is then contained in a tubular neighborhood of P pτ̂ , τq, i.e. it satisfies condition (i).

Moreover, we also have flag convergence b´1
n xn Ñ τ .22 Hence, by the above, it follows that

b´1
n xn

con
Ñ τ . By the definition of conical convergence, this means that the sequence pb´1

n xnq lies

in a tubular neighborhood of the cone V px, stpτqq for some point x P X , equivalently, that

sup
n

dpxn, V pbnx, stpτqqq ă `8.

Now the cones V pbnx, stpτqq are asymptotic to V px, stpτqq and have finite Hausdorff distance

ď dpx, bnxq from it. This Hausdorff distance is uniformly bounded and it also follows that the

sequence pxnq lies in a tubular neighborhood of V px, stpτqq, i.e. xn
con
Ñ τ .

As we did with regularity and flag convergence, we will now also rephrase conical convergence

for sequences in G in terms of their dynamics on flag manifolds.

For a flag convergent sequence, conical convergence is reflected as follows by the dynamics

on the space of parallel sets, equivalently, on the space of pairs of opposite simplices, cf. (5.5):

Lemma 5.35. Suppose that a sequence pgnq in G τmod-flag converges, gn Ñ τ P Flagτmod
. Then

for a relatively compact sequence pτ̂nq in Cpτq, the following are equivalent:

(i) gn
con
Ñ τ .

(ii) The parallel sets g´1
n P pτ̂n, τq all intersect a fixed bounded subset in X.

(ii’) The sequence of pairs g´1
n pτ̂n, τq is relatively compact in pFlagιτmod

ˆFlagτmod
qopp.

Proof. We first note that conditions (ii) and (ii’) are equivalent as a consequence of:

Sublemma 5.36. A subset A Ă pFlagιτmod
ˆFlagτmod

qopp is relatively compact iff the corre-

sponding parallel sets P pτ´, τ`q for pτ´, τ`q P A all intersect a fixed bounded subset of X, i.e.

sup
pτ´,τ`qPA

dpx, P pτ´, τ`qq ă `8

for a base point x P X.

Proof. The forward direction follows from the continuity of the function (5.6).23

For the converse direction we note that for a pair pτ´, τ`q P pFlagιτmod
ˆFlagτmod

qopp the

intersection of parabolic subgroups Pτ´
X Pτ`

preserves the parallel set P pτ´, τ`q and acts

transitively on it. Consequently, the set of triples pτ´, τ`, x
1q P pFlagιτmod

ˆFlagτmod
qoppˆX such

22Because the bn are bounded and fix τ on Flagτmod
.

23Since here τmod is not required to be ι-invariant, we consider the function on pFlagιτmod
ˆFlagτmod

qopp ˆX .
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that x1 P P pτ´, τ`q is still a homogeneous G-space. Let us fix in it a reference triple pτ´
0 , τ`

0 , xq.

Then the parallel sets P pτ´, τ`q intersecting a closed ball Bpx,Rq are of the form gP pτ´
0 , τ

`
0 q

with g P G such that dpx, gxq ď R. It follows that the set of these pairs pτ´, τ`q “ gpτ´
0 , τ

`
0 q is

compact.

Continuing with the proof of the lemma, let x P X be a base point. In view of

dpx, g´1
n P pτ̂n, τqq “ dpgnx, P pτ̂n, τqq

condition (ii) is equivalent to

sup
n

dpgnx, P pτ̂n, τqq ă `8. (5.37)

The implication (ii)ñ(i) thus follows from the previous lemma. The reverse implication (i)ñ(ii)

is easy: Since supn dpx, P pτ̂n, τqq ă `8, compare the sublemma, the cone V px, stpτqq is con-

tained in uniform tubular neighborhoods of all parallel sets P pτ̂n, τq, and conical convergence

implies the same for the sequence pgnxq, i.e. (5.37) is satisfied.

Combining the lemma with our earlier dynamical characterization of flag convergence, see

Lemma 4.26, we obtain:

Proposition 5.38 (Dynamical characterization of conical convergence). A sequence

pgnq in G is τmod-regular and gn
con
Ñ τ P Flagτmod

iff there exists a bounded sequence pbnq in G

and a simplex τ´ P Flagιτmod
such that the following conditions are satisfied:

(i) bng
´1
n |Cpτq Ñ τ´ uniformly on compacts.

(ii) The accumulation set of the sequence pbng
´1
n τq in Flagτmod

is contained in Cpτ´q.

Proof. Suppose first that pgnq is τmod-regular and gn
con
Ñ τ P Flagτmod

. Then we have in particular

flag convergence gn Ñ τ , and Lemma 4.26 yields pbnq and τ´ with (i). The conical convergence

gn
con
Ñ τ is equivalent to gnb

´1
n

con
Ñ τ , and so the previous lemma implies for any τ̂ P Cpτq that

the sequence bng
´1
n pτ̂ , τq is relatively compact in pFlagιτmod

ˆFlagτmod
qopp. Since bng

´1
n τ̂ Ñ τ´

by (i), the sequence pbng
´1
n τq therefore cannot accumulate at points outside Cpτ´q.

Suppose now vice versa that pbnq and τ´ with (i+ii) are given. By Lemma 4.26, (i) implies

that pgnq is τmod-regular and gn Ñ τ , and the same follows for the sequence pgnb
´1
n q. Fur-

thermore, (i+ii) imply that for any τ̂ P Cpτq the sequence bng
´1
n pτ̂ , τq is relatively compact in

pFlagιτmod
ˆFlagτmod

qopp. Thus gnb
´1
n

con
Ñ τ by the previous lemma, and hence gn

con
Ñ τ .

We deduce the following criterion for being a conical limit simplex of a subsequence:

Corollary 5.39. A sequence pgnq in G has a τmod-regular subsequence τmod-conically converging

to τ P Flagτmod
iff there exists a subsequence pgnk

q and a simplex τ´ P Flagιτmod
such that the

following conditions are satisfied:

(i) g´1
nk

|Cpτq Ñ τ´ uniformly on compacts.

(ii) pg´1
nk
τq converges to a simplex in Cpτ´q.
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Proof. Suppose that there is a τmod-regular subsequence pgnk
q with gnk

con
Ñ τ . The proposition

yields a bounded sequence pbkq and τ´ such that properties (i+ii) in the proposition are satisfied

for the sequence pbkg
´1
nk

q. After extraction, we obtain convergence bk Ñ b in G and bkg
´1
nk
τ Ñ

τ̂´ P Cpτ´q in Flagτmod
. The asserted properties (i+ii) then result from replacing τ´ with b´1τ´.

The converse is immediate in view of the proposition.

Now we turn to subgroups.

Definition 5.40 (Conical limit set). For a subgroup Γ ă G, a limit simplex λ P Λτmod
pΓq

is τmod-conical if there exists a τmod-regular sequence pγnq in Γ such that γn
con
Ñ λ. The conical

τmod-limit set Λcon
τmod

pΓq Ď Λτmod
pΓq is the subset of conical limit simplices. The subgroup Γ has

conical τmod-limit set or is τmod-conical if all limit simplices are conical, Λcon
τmod

pΓq “ Λτmod
pΓq.

We restrict ourselves to τmod-antipodal τmod-regular subgroups and assume in particular that

τmod is ι-invariant. Recall that then the action

Γ ñ Λτmod
pΓq

is a convergence action, see section 5.1. This raises the question how the τmod-conicality of

limit simplices compares to their intrinsic conicality with respect to this convergence action, cf.

section 3.3. We show that these properties are equivalent:

Proposition 5.41 (Conical versus intrinsically conical limit simplex). Let Γ ă G be a

τmod-antipodal τmod-regular subgroup with |Λτmod
pΓq| ě 3. Then a limit simplex in Λτmod

pΓq is

conical iff it is intrinsically conical for the convergence action Γ ñ Λτmod
pΓq.

Proof. That conicality implies intrinsic conicality is, in view of the corollary, an immediate

consequence of antipodality and Lemma 3.15.

Suppose that, conversely, λ P Λτmod
pΓq is intrinsically conical. Again invoking Lemma 3.15,

this means that there exist a sequence pγnq in Γ and a limit simplex λ´ P Λτmod
pΓq such that

γ´1
n |Λτmod

pΓq´tλu Ñ λ´ uniformly on compacts and γ´1
n λ Ñ λ̂´ P Λτmod

pΓq ´ tλ´u Ă Cpλ´q. On

the other hand, since Γ is a τmod-convergence subgroup, after extraction, the sequence pγ´1
n q

becomes τmod-contracting and there are limit simplices λ1, λ1
´ P Λτmod

pΓq such that γ´1
n |Cpλ1q Ñ

λ1
´ uniformly on compacts. In view of antipodality, Cpλ1q contains Λτmod

pΓq ´ tλ1u. Since

|Λτmod
pΓq| ě 3, it follows that Cpλ1q intersects Λτmod

pΓq´tλu and therefore λ1
´ “ λ´. Moreover,

from γ´1
n λ Ñ λ̂´ ‰ λ´ it follows that λ R Cpλ1q and hence also λ1 “ λ. We conclude that

γ´1
n |Cpλq Ñ λ´ uniformly on compacts and γ´1

n λ Ñ λ̂´ P Cpλ´q. Corollary 5.39 now yields that

the limit simplex λ is τmod-conical.

Corollary 5.42 (Conical versus intrinsically conical subgroup). Let Γ ă G be a τmod-

antipodal τmod-regular subgroup with |Λτmod
pΓq| ě 3. Then Γ is τmod-conical iff all simplices in

Λτmod
pΓq are conical limit points for the convergence action Γ ñ Λτmod

pΓq.

We introduce the following asymptotic condition on the orbit geometry of subgroups:

Definition 5.43 (RCA). A subgroup Γ ă G is τmod-RCA if it is τmod-regular, τmod-conical

and τmod-antipodal.
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From the corollary we deduce, using the dynamical characterization of word hyperbolic

groups and their boundary actions, the following equivalence:

Theorem 5.44. For a subgroup Γ ă G with |Λτmod
pΓq| ě 3 the following properties are equiv-

alent:

(i) τmod-RCA

(ii) τmod-asymptotically embedded

The implication (ii)ñ(i) holds without restriction on the size of the limit set.

Proof. Since this is part of both conditions, we assume that Γ is τmod-regular and τmod-antipodal.

The implication (ii)ñ(i) follows, without restriction on the size of Λτmod
pΓq, from the im-

plication (i)ñ(iii) of Theorem 5.28.

Suppose now that |Λτmod
pΓq| ě 3. According to the previous corollary, the subgroup Γ is

τmod-RCA if and only if the convergence action Γ ñ Λτmod
pΓq is (intrinsically) conical. In view

of Theorems 3.16 and 3.17 this is equivalent to Γ being word hyperbolic and Λτmod
pΓq being

Γ-equivariantly homeomorphic to B8Γ, i.e. to Γ being τmod-asymptotically embedded.

5.6 Subgroups with two-point limit sets

For antipodal regular subgroups with two-point limit sets, some of our conditions are automat-

ically satisfied:

Lemma 5.45. Suppose that Γ ă G is τmod-antipodal τmod-regular with |Λτmod
pΓq| “ 2. Then:

(i) Γ is τmod-RCA,

(ii) Γ is virtually cyclic,

(iii) The orbit maps ox : Γ Ñ Γx Ă X extend continuously to infinity by an asymptotic

embedding. In particular, Γ is τmod-asymptotically embedded.

Proof. (i) By antipodality, Λτmod
pΓq consists of a pair of opposite simplices λ˘ P Flagτmod

. The

subgroup Γ therefore preserves the parallel set P pλ´, λ`q. The limit simplices λ˘ must be

conical by Lemma 5.34. Hence Γ is τmod-RCA.

(ii) Pick a point x P P pλ´, λ`q. By conicality, there exists an element γ0 P Γ which fixes λ˘

and so that γ0x lies in the interior of the Weyl cone V “ V px, stpλ`qq Ă P pλ´, λ`q. We consider

the biinfinite nested sequence of Weyl cones γn
0V for n P Z. The cones γn

0V cover P pλ´, λ`q, cf.

Proposition 2.31. Moreover, γn`1
0 V is contained in the interior of γn

0V and has finite Hausdorff

distance from it. By regularity, the difference of cones V ´ γ0V can only contain finitely many

points of the orbit Γx. The corresponding elements in Γ form a set of representatives for the

cosets of the infinite cyclic subgroup Γ0 generated by γ0 in Γ. Hence Γ is virtually cyclic.

(iii) Since γ˘n
0 Ñ λ˘ as n Ñ `8, the restrictions of the orbit maps to Γ0 extend continuously

to B8Γ0 – B8Γ by an asymptotic embedding α. Since Γ0 has finite index in Γ, the map α is a

continuous extension also of the orbit maps of Γ itself. Moreover, it is Γ-equivariant.
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5.7 Expansion

We define another purely dynamical condition for subgroups, inspired by Sullivan’s notion of

expanding actions [Su], namely that their action on the appropriate flag manifold is expanding

at the limit set in the sense of Definition 3.1. As before, we equip the flag manifolds with

auxiliary Riemannian metrics.

Definition 5.46 (CEA). A subgroup Γ ă G is τmod-CEA (convergence, expanding, antipodal)

if it is τmod-convergence, τmod-antipodal and the action Γ ñ Flagτmod
is expanding at Λτmod

pΓq.

The next result relates conicality to infinitesimal expansion, cf. Definition 3.3. For smooth

actions on Riemannian manifolds, metric and infinitesimal expansion are equivalent.

Lemma 5.47 (Expansion at conical limit simplices). Let pgnq be a τmod-regular sequence

in G such that gn
con
Ñ τ P Flagτmod

. Then the inverse sequence pg´1
n q has diverging infinitesimal

expansion on Flagτmod
at τ , i.e.

ǫpg´1
n , τq Ñ `8

Proof. This follows from the expansion estimate in Theorem 2.63.

Applied to subgroups, the lemma yields:

Proposition 5.48 (Conical implies expansive). Let Γ ă G be a subgroup. If λ P Λcon
τmod

pΓq,

then the action Γ ñ Flagτmod
has diverging infinitesimal expansion at λ.

In particular, if Γ is τmod-conical, then Γ ñ Flagτmod
is expanding at Λτmod

pΓq.

Proof. This is a direct consequence of the lemma, together with the fact that infinitesimal

expansion implies metric expansion.

We obtain the equivalence of conditions:

Theorem 5.49. For a subgroup Γ ă G with |Λτmod
pΓq| ě 2, the following properties are

equivalent:

(i) τmod-RCA

(ii) τmod-CEA

The implication (i)ñ(ii) holds without restriction on the size of the limit set.

Proof. We recall that τmod-regularity is equivalent to the τmod-convergence property, cf. Theo-

rem 4.21. Thus either condition implies that Γ is τmod-regular and τmod-antipodal.

The implication (i)ñ(ii) is the previous proposition. (We do not need that |Λτmod
pΓq| ě 2.)

For the direction (ii)ñ(i) we first assume that |Λτmod
pΓq| ě 3 and consider the convergence

action Γ ñ Λτmod
pΓq. Since Λτmod

pΓq contains at least three points, it must be perfect24 (see

[Tu, Thm. 2S]). By assumption, the action Γ ñ Λτmod
pΓq is expanding. Therefore all points

24I.e. has no isolated points.
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λ P Λτmod
pΓq are intrinsically conical, cf. Lemma 3.18, and hence (extrinsically) conical, i.e. Γ

is τmod-conical, cf. Corollary 5.42.

In the case |Λτmod
pΓq| “ 2, the assertion follows from Lemma 5.45.

5.8 Anosov property

The Anosov condition combines boundary embeddedness with an infinitesimal expansion con-

dition at the image of the boundary embedding:

Definition 5.50 (Anosov). A subgroup Γ ă G is τmod-Anosov if:

(i) Γ is τmod-boundary embedded with boundary embedding β.

(ii) For every ideal point ζ P B8Γ and every normalized (by rp0q “ e P Γ) discrete geodesic

ray r : N Ñ Γ asymptotic to ζ , the action Γ ñ Flagτmod
satisfies

ǫprpnq´1, βpζqq ě AeCn

for n ě 0 with constants A,C ą 0 independent of r.

We recall that boundary embedded subgroups are discrete.

Our notion of τmod-Anosov is equivalent to the notion of P -Anosov in [GW] where P ă G

is a parabolic subgroup in the conjugacy class corresponding to τmod, see section 5.11. We

note also that the study of pP`, P´q-Anosov subgroups quickly reduces to the case of P -Anosov

subgroups by intersecting parabolic subgroups, cf. [GW, Lemma 3.18].

In both our and the original definition uniform exponential expansion rates are required. We

will see that the conditions can be relaxed without altering the class of subgroups. Uniformity

can be dropped, and instead of exponential divergence the mere unboundedness of the expansion

rate suffices.

Definition 5.51 (Non-uniformly Anosov). A subgroup Γ ă G is non-uniformly τmod-

Anosov if:

(i) Γ is τmod-boundary embedded with boundary embedding β.

(ii) For every ideal point ζ P B8Γ and every normalized25 discrete geodesic ray r : N0 Ñ Γ

asymptotic to ζ , the action Γ ñ Flagτmod
satisfies

sup
nPN

ǫprpnq´1, βpζqq “ `8. (5.52)

In other words, we require that for every ideal point ζ P B8Γ the expansion rate ǫpγ´1
n , βpζqq

non-uniformly diverges along some sequence pγnq in Γ which converges to ζ conically.

We relate the Anosov to the Morse property, building on our discussion of the coarse extrinsic

geometry of subgroups in sections 5.3 and 5.4.

25Here, the normalization can be dropped because no uniform growth is required.
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Theorem 5.53 (Non-uniformly Anosov implies Morse). Each non-uniformly τmod-Anosov

subgroup Γ ă G is τmod-Morse.

Moreover, the boundary embedding β of Γ sends B8Γ homeomorphically onto Λτmod
pΓq.

Proof. Let Γ ă G be non-uniformly τmod-Anosov. Since non-uniformly Anosov subgroups

are boundary embedded by definition, discrete geodesic lines in Γ are mapped into uniform

neighborhoods of τmod-parallel sets prescribed by the boundary embedding, see Lemma 5.4.

The same follows for discrete geodesic rays in Γ because they lie in uniform neighborhoods of

lines, compare the proof of Lemma 5.7: For every ray r : N0 Ñ Γ asymptotic to ζ “ rp`8q

there exists an ideal point ζ̂ P B8Γ´tζu such that the path rx lies in the ρ2pΓ, xq-neighborhood

of the parallel set P “ P pβpζ̂q, βpζqq. Here, as usual, x P X is some fixed base point.

The expansion condition (5.52) further restricts the position of the path rx along the parallel

set: Let xn P P denote points at distance ď ρ2 from the points rpnqx, e.g. their nearest point

projections to P . For a strictly increasing sequence nk Ñ `8 with diverging expansion rate

ǫprpnkq´1, βpζqq Ñ `8

we have in view of Proposition 2.64 and Theorem 2.63 that xnk
P V px0, stpβpζqqq for large k

and

d
`
xnk

, BV px0, stpβpζqqq
˘

Ñ `8

(non-uniformly) as k Ñ `8. Fix a constant d ąą ρ2. It follows that there exists a smallest

“entry time” T “ T prq P N such that the point rpT qx lies in the open 3ρ2-neighborhood of the

cone V prp0qx, stpβpζqqq and has distance ą d from its boundary.

We observe next that T pr1q ď T prq for rays r1 sufficiently close to r, because ζ varies

continuously with r, and rays sufficiently close to r agree with r up to time T prq. Thus, T

is locally bounded above as a function of r. Since Γ acts cocompactly on rays, equivalently,

since the space of rays with fixed initial point is compact, we conclude that T is bounded above

globally, i.e. there exists a number T0 “ T0pΓ, x, dq such that T prq ď T0 for all rays r.

As a consequence, for every ray r the above sequence of natural numbers pnkq can be chosen

with bounded increase nk`1 ´ nk ď T0 and so that

xnk`1
P V pxnk

, stpβpζqqq

and

d
`
xnk`1

, BV pxnk
, stpβpζqqq

˘
ą

d

2

for all k, i.e. the sequence pnkq increases uniformly linearly and the Weyl cones V pxnk
, stpβpζqqq

are uniformly nested, compare the proof of Theorem 5.24.

It follows that the paths rx are uniformly τmod-regular and undistorted, and are contained in

uniform neighborhoods of the cones V prp0q, stpβprp`8qqqq. In particular, Γ satisfies property

(iii) of Theorem 5.28, and therefore is τmod-Morse. It also follows that βpB8Γq Ď Λτmod
pΓq. The

equality βpB8Γq “ Λτmod
pΓq follows from Theorem 5.11.

A converse readily follows from our earlier results:
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Theorem 5.54. τmod-Morse subgroups Γ ă G are τmod-Anosov.

Proof. Let Γ ă G be τmod-Morse. By Theorems 5.28 and 5.24, Γ is then also τmod-asymptotically

embedded and uniformly τmod-regular. Furthermore, denoting the asymptotic embedding by α

and fixing a point x P X , we know that for every ray r : N0 Ñ Γ the path rx is contained in a

uniform neighborhood of the Weyl cone V prp0qx, αprp`8qqq and drifts away from its boundary

at a uniform linear rate. With Theorem 2.63 it follows that the infinitesimal expansion factor

ǫprpnq´1, αprp`8qqq for the action Γ ñ Flagτmod
grows at a uniform exponential rate. Thus, Γ

is τmod-Anosov.

5.9 Equivalence of conditions

Combining our results comparing the various geometric and dynamical conditions for discrete

subgroups, we obtain:

Theorem 5.55 (Equivalence). The following properties for subgroups Γ ă G are equivalent

in the nonelementary26 case:

(i) τmod-asymptotically embedded

(ii) τmod-CEA

(iii) τmod-Anosov

(iv) non-uniformly τmod-Anosov

(v) τmod-RCA

(vi) τmod-Morse.

These properties imply τmod-URU.

Moreover, the boundary maps in (i), (iii) and (iv) coincide.

Proof. By Theorem 5.28, (i) and (vi) are equivalent. By Theorems 5.53 and 5.54, conditions

(iii), (iv) and (vi) are equivalent. The fact that the boundary maps in (i), (iii) and (iv) coincide

follows from the second part of Theorem 5.53.

By Theorem 5.24, (i) implies τmod-URU. By Theorem 5.44, (i) and (v) are equivalent. By

Theorem 5.49, (ii) and (v) are equivalent.

Remark 5.56. (i) The equivalence of the conditions (i), (iii), (iv) and (vi), the fact that they

imply τmod-URU, and the implications (i)ñ(v)ñ(ii) hold without restriction on the size of the

limit set.

(ii) It is shown in [KLP3] that, conversely, τmod-URU implies τmod-Morse.

For subgroups with small limit sets we have the following additional information, see

Lemma 5.45:

26Meaning that |Λτmod
pΓq| ě 3 in (i), (ii), (v), (vi) and that Γ is word hyperbolic with |B8Γ| ě 3 in (iii), (iv).
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Addendum 5.57. For a τmod-antipodal τmod-regular subgroup Γ ă G with |Λτmod
pΓq| “ 2,

properties (i)-(vi) and τmod-URU are always satisfied.

We are unaware of examples of τmod-RCA or τmod-CEA subgroups with one limit point in

higher rank. Note that such subgroups cannot be τmod-asymptotically embedded.

5.10 Morse quasigeodesics

When studying the coarse geometry of Anosov subgroups in sections 5.3 and 5.4, we were lead

to the Morse and URU properties. We also saw that Morse implies URU. (The converse is true

as well, but harder to prove, see [KLP3].)

Thus, for Morse subgroups Γ ă G, the images of the discrete geodesics in Γ under an orbit

map are uniform quasigeodesics in X which are uniformly regular and satisfy a Morse type

property involving closeness of subpaths to diamonds. Leaving the group-theoretic context, we

will now make this class of quasigeodesics precise and study some of its geometric properties.

(See also [KLP2] for further discussion.) We will build in the uniform regularity into the Morse

property by replacing the diamonds with smaller “uniformly regular” Θ-diamonds.

In the following, Θ Ă intτmod
pσmodq denotes an ι-invariant τmod-Weyl convex compact subset

which is used to quantify uniform regularity. We work with discrete paths; I Ď R denotes an

interval and n˘ integers.

Definition 5.58 (Morse quasigeodesic). A quasigeodesic q : I X Z Ñ X is pΘ, ρq-Morse if

for every subinterval rn´, n`s Ď I the subpath q|rn´,n`sXZ is contained in the ρ-neighborhood

of a diamond ♦Θpx´, x`q with tips at distance dpx˘, qpn˘qq ď ρ from the endpoints.

We say that an infinite quasigeodesic is Θ-Morse if it is pΘ, ρq-Morse for some ρ, and we

say that it is τmod-Morse if it is Θ-Morse for some Θ.

The Θ-Morse property for quasigeodesics is clearly stable under bounded perturbation.

We say that some paths are uniform τmod-Morse quasigeodesics if they are uniform quasi-

geodesics27 and pΘ, ρq-Morse with the same Θ, ρ.

We can now interpret the Morse subgroup property in terms of Morse quasigeodesics:

Proposition 5.59. An intrinsically word hyperbolic subgroup Γ ă G is τmod-Morse if and only

if an orbit map ox : Γ Ñ Γx Ă X sends uniform quasigeodesics in Γ to uniform τmod-Morse

quasigeodesics in X.

Proof. Suppose that Γ is τmod-Morse. We fix a word metric on Γ. In view of the Morse Lemma

for word hyperbolic groups (Gromov hyperbolic spaces) it suffices to prove that ox sends discrete

geodesics in Γ to uniform τmod-Morse quasigeodesics in X .

First of all, since Morse subgroups are URU, we know that Γ is undistorted in G, i.e. ox is

27I.e. quasigeodesics with the same quasiisometry constants.
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a quasiisometric embedding. Equivalently, the ox-images of discrete geodesics in Γ are uniform

quasigeodesics. We need to show that they are uniformly τmod-Morse.

Consider a discrete geodesic segment s : rn´, n`sXZ Ñ Γ. According to the Morse subgroup

property of Γ, the image path sx “ ox ˝ s is contained in a tubular neighborhood of uniform

radius ρ2 “ ρ2pΓ, xq of a diamond ♦τmod
px´, x`q with dpx˘, spn˘qxq ď ρ2. It will be enough to

verify that sx is also contained in a uniform tubular neighborhood of the smaller Θ-diamond

♦Θpx´, x`q for some Θ independent of s.

For n´ ď n ď n`, let pn P ♦τmod
px´, x`q denote the nearest point projection of spnqx.

In view of the uniform upper bound ρ2 for the distances dpx˘, spn˘qxq and dppn, spnqxq, the

uniform regularity of Γ implies: If n ´ n´, n` ´ n ě C0 (with a uniform constant C0), then

d∆px˘, pnq P V p0,Θq

with a compact Θ Ă intτmod
pσmodq independent of s. Moreover, after enlarging Θ, we may

assume that it is ι-invariant and τmod-Weyl convex. It follows that the diamond ♦Θpx´, x`q

is defined and pn P ♦Θpx´, x`q. Hence, sx is contained in a uniform tubular neighborhood of

♦Θpx´, x`q.

Conversely, suppose that ox sends discrete geodesics in Γ to uniform τmod-Morse quasi-

geodesics in X . Then Γ is undistorted and the geodesic segments with endpoints in the orbit

Γx are uniformly close to Θ-regular segments, equivalently, the ∆-distances d∆px, γxq between

orbit points are contained in a tubular neighborhood of the cone V p0,Θq. It follows that Γ is

(uniformly) τmod-regular, and hence τmod-Morse.

Next, we briefly discuss the asymptotics of infinite Morse quasigeodesics. There is much

freedom for the asymptotic behavior of arbitrary quasigeodesics in euclidean spaces, and there-

fore also in symmetric spaces of higher rank. However, the asymptotic behavior of Morse

quasigeodesics is as restricted as for quasigeodesics in rank one symmetric spaces.

Morse quasirays satisfy a version of the defining property for Morse quasigeodesic segments,

with diamonds replaced by cones. As a consequence, although Morse quasirays in general do

not converge at infinity in the visual compactification, they flag converge:

Lemma 5.60 (Conicality of Morse quasirays). A pΘ, ρq-Morse quasiray q : N0 Ñ X

is contained in the ρ-neighborhood of a Θ-cone V px, stΘpτqq with dpx, qp0qq ď ρ for a unique

simplex τ P Flagτmod
. Furthermore, qpnq Ñ τ conically.

Proof. The existence of the cone V px, stΘpτqq follows from the definition of Morse quasigeodesics

by a limiting argument. Obviously, we have conical τmod-flag convergence qpnq Ñ τ , which also

implies the uniqueness of τ .

Now we give a Finsler geometric characterization of Morse quasigeodesics. We show that

they are the coarsification of (uniformly regular) Finsler geodesics (cf. Definition 2.65). Even

though this is true in general, we will give the proof only in the infinite case (of rays and lines),

since it is simpler and suffices for the purposes of this paper:

80



Theorem 5.61 (Morse quasigeodesics are uniformly close to Finsler geodesics). Uni-

form τmod-Morse quasigeodesic rays and lines are uniformly Hausdorff close to uniformly τmod-

regular τmod-Finsler geodesic rays and lines.

Proof. It suffices to treat the ray case. The line case follows by a limiting argument.

Let q : N0 Ñ X be a pΘ, ρq-Morse quasigeodesic ray. According to Lemma 5.60, q is

contained in a uniform tubular neighborhood of a Weyl cone V “ V pqp0q, stpτqq. As in the

proof that asymptotically embedded implies URU (Theorem 5.24), we consider the sequence of

nearest point projections xn P V of the points qpnq, n P N0. Again by Lemma 5.60, the point

xn`m lies in a uniform tubular neighborhood of the Θ-cone V pxn, stΘpτqq Ă V for all n,m ě 0.

We slightly enlarge Θ to Θ1, such that Θ Ă intpΘ1q as subsets of intτmod
pσmodq. Then there

exists m0 P N depending on Θ,Θ1, ρ and the quasiisometry constants of q, such that

xn`m P V pxn, stΘ1pτqq

for all n ě 0 and m ě m0. The piecewise geodesic path

x0xm0
x2m0

x3m0
. . .

is then a Θ1-regular τmod-Finsler geodesic ray uniformly Hausdorff close to q.

We use the approximation of Morse quasigeodesics by Finsler geodesics to coarsify Theo-

rem 2.72 and deduce an analogous result on the ∆-distance along Morse quasigeodesics. Again,

we restrict ourselves to the infinite case of rays:

Theorem 5.62 (∆-projection of Morse quasirays). If q : N0 Ñ X is a τmod-Morse

quasiray, then so is

q̄∆ “ d∆pqp0q, qq : N0 Ñ ∆.

Moreover, uniform τmod-Morse quasirays q yield uniform τmod-Morse quasirays q̄∆.

Proof. Suppose that q is a pΘ, ρq-Morse quasiray. We enlarge Θ to Θ1 such that Θ Ă intpΘ1q.

According to the proof of Theorem 5.61, there exists a Θ1-regular τmod-Finsler geodesic ray

c : r0,`8q Ñ X which is uniformly close to q in terms of the data Θ,Θ1, ρ and the quasiisometry

constants, i.e. dpcpnq, qpnqq is uniformly bounded. In particular, c is also a uniform quasiray.

For the ∆-projections c̄∆ “ d∆pcp0q, cq and q̄∆, the pointwise distance dpc̄∆pnq, q̄∆pnqq is also

uniformly bounded. According to Theorem 2.72, c̄∆ is again a Θ1-regular τmod-Finsler geodesic

ray and a uniform quasiray. It follows that q̄∆ is a pΘ1, ρ1q-Morse quasiray with uniform ρ1 and

uniform quasiisometry constants.

5.11 Appendix: The original Anosov definition

A notion of Anosov representations of surface groups into PSLpn,Rq was introduced by Labourie

in [La], and generalized to a notion of pP`, P´q-Anosov representations Γ Ñ G of word hyper-

bolic groups into semisimple Lie groups by Guichard and Wienhard in [GW]. The goal of this
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section is to review this definition of Anosov representations Γ Ñ G using the language of

expanding and contracting flows and then present a closely related and equivalent definition

which avoids the language of flows.

Let Γ be a non-elementary (i.e. not virtually cyclic) word hyperbolic group with a fixed word

metric dΓ and Cayley graph CΓ. Consider a geodesic flow pΓ of Γ; such a flow was originally

constructed by Gromov [Gr] and then improved by Champetier [Ch] and Mineyev [Mi], resulting

in definitions with different properties. We note that the exponential convergence of asymptotic

geodesic rays will not be used in our discussion; as we will see, it is also irrelevant whether the

trajectories of the geodesic flow are geodesics or uniform quasigeodesics in pΓ. In particular, it

will be irrelevant for us which definition of pΓ is used. Only the following properties of pΓ will be

used in the sequel:

1. pΓ is a proper metric space.

2. There exists a properly discontinuous isometric action Γ ñ pΓ.
3. There exists a Γ-equivariant quasi-isometry π : pΓ Ñ Γ; in particular, the fibers of π are

relatively compact.

4. There exists a continuous action R ñ pΓ, denoted φt and called the geodesic flow, whose

trajectories are uniform quasigeodesics in pΓ, i.e. for each m̂ P pΓ the flow line

t Ñ m̂t :“ φtpm̂q

is a uniform quasi-isometric embedding R Ñ pΓ.
5. The flow φt commutes with the action of Γ.

6. Each m̂ P Γ̂ defines a uniform quasigeodesic m : t ÞÑ mt in Γ by the formula:

mt “ πpm̂tq

Following the notation in section 3.3, we let pB8Γ ˆ B8Γqdist denote the subset of B8Γ ˆ B8Γ

consisting of pairs of distinct points. The natural map

e “ pe´, e`q : Γ̂ Ñ pB8Γ ˆ B8Γqdist

assigning to m̂ the pair of ideal endpoints pm´8, m`8q of m is continuous and surjective. In

particular, every uniform quasigeodesic in Γ̂ is uniformly Hausdorff close to a flow line.

The reader can think of the elements of pΓ as parameterized geodesics in CΓ, so that φt acts

on geodesics via reparameterization. This was Gromov’s original viewpoint, although not the

one in [Mi].

We say that m̂ P pΓ is normalized if πpm̂q “ 1 P Γ. Similarly, maps q : Z Ñ Γ, and q : N Ñ Γ

will be called normalized if qp0q “ 1. It is clear that every m̂ P pΓ can be sent to a normalized

element of pΓ via the action of m´1
0 P Γ.

Since trajectories of φt are uniform quasigeodesics, for each normalized m̂ P pΓ we have

C´1
1 t ´ C2 ď dΓp1, mtq ď C1t ` C2 (5.63)
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for some positive constants C1, C2.

Let F˘ “ Flag˘τmod
be a pair of opposite partial flag manifolds associated to the Lie group

G, i.e. they are quotient manifolds of the form F˘ “ G{P˘τmod
, see section 2.4. As usual, we

will regard elements of F˘ as simplices of type τmod, ιτmod in the Tits boundary of X .

Define the trivial bundles

E˘ “ pΓ ˆ F˘ Ñ pΓ.

For every representation ρ : Γ Ñ G, the group Γ acts on both bundles via its natural action

on pΓ and via the representation ρ on F˘. Put a Γ-invariant background Riemannian metric

on the fibers of theses bundles, which varies continuously with respect to m̂ P pΓ. We will use

the notation F˘
m̂ for the fiber above the point m̂ equipped with this Riemannian metric. Since

the subspace of pΓ consisting of normalized elements is compact, it follows that for normalized

m̂, m̂1 the identity map

F˘
m̂ Ñ F˘

m̂1

is uniformly bilipschitz (with bilipschitz constant independent of m̂, m̂1). We will identify Γ-

equivariant (continuous) sections of the bundles E˘ with equivariant maps s˘ : pΓ Ñ F˘. These

sections are said to be parallel along flow lines if

s˘pm̂q “ s˘pm̂tq

for all t P R and m̂ P pΓ.

Definition 5.64. Parallel sections s˘ are called strongly parallel along flow lines if for any two

flow lines m̂, m̂1 with the same ideal endpoints, we have s˘pm̂q “ s˘pm̂1q.

Note that this property is automatic for the geodesic flows constructed by Champetier and

Mineyev since (for their flows) any two flow lines which are at finite distance from each other

are actually equal. Strongly parallel sections define Γ-equivariant boundary maps

β˘ : B8Γ Ñ F˘

from the Gromov boundary B8Γ of the word hyperbolic group Γ by:

β˘ ˝ e˘ “ s˘ . (5.65)

Lemma 5.66. The maps β˘ are continuous.

Proof. Let pξn´, ξ
n
`q Ñ pξ´, ξ`q be a converging sequence in pB8Γ ˆ B8Γqdist. There exists a

bounded sequence pm̂nq in Γ̂ such that e˘pm̂nq “ ξn˘. After extraction, the sequence pm̂nq

converges to some m̂ P Γ̂. Continuity of s˘ implies that β˘pξn˘q “ s˘pm̂nq Ñ s˘pm̂q “ β˘pξ˘q.

This shows that no subsequence of pβ˘pξn˘qq can have a limit ‰ β˘pξ˘q, and the assertion follows

from compactness of F˘.

Conversely, equivariant continuous maps β˘ define Γ-equivariant sections s˘ strongly par-

allel along flow lines, by the formula (5.65).
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Consider the identity maps

Φm̂,t : F
˘
m̂ Ñ F˘

φtm̂
.

These maps distort the Riemannian metric on the fibers. Using (3.2), we define the infinitesimal

expansion factor of the flow φptq on the fiber F˘
m̂ at the point s˘pm̂q as:

ǫ˘pm̂, tq :“ ǫpΦm̂,t, s˘pm̂qq

Definition 5.67. The geodesic flow φt is said to be uniformly exponentially expanding on the

bundles E˘ with respect to the sections s˘ if there exist constants a, c ą 0 such that

ǫ˘pm̂,˘tq ě aect

for all m̂ P pΓ and t ě 0.

Our next goal is to give an alternative interpretation for the uniform expansion in this

definition. First of all, since the metrics on the fibers are Γ-invariant, it suffices to verify

uniform exponential expansion only for normalized elements of pΓ. For a normalized element

m̂ P pΓ and t P R consider the composition

m´1
t ˝ Φm̂,t : F

˘
m̂ Ñ F˘

m´1

t m̂t
.

Note that πpm´1
t m̂tq “ m´1

t mt “ 1, i.e. both m̂ and m´1
t m̂t are normalized. Since the group Γ

acts isometrically on the fibers of the bundles E˘, the metric distortion of the above composi-

tions is exactly the same as the distortion of Φm̂,t. Furthermore, since, as we noted above, the

metrics on F˘
m̂ and F˘

m´1

t m̂t
are uniformly bilipschitz to each other (via the “identity” map), the

rate of expansion for the above composition (up to a uniform multiplicative error) is the same

as the expansion rate for the map

ρpm´1
t q : F˘ Ñ F˘.

(Here we are using fixed background Riemannian metrics on F˘.) Thus, we get the estimate

C´1
3 ǫpρpm´1

t q, β˘pm˘8qq ď ǫ˘pm̂, tq ď C3ǫpρpm´1
t q, β˘pm˘8qq

for some uniform constant C3 ą 1. By taking into account the equation (5.63), we obtain the

following equivalent reformulation of Definition 5.67:

Lemma 5.68. The geodesic flow is uniformly exponentially expanding with respect to the sec-

tions s˘ if and only if for every normalized uniform quasigeodesic q : Z Ñ Γ, which is asymp-

totic to points ξ˘ “ qp˘8q P B8Γ, the elements ρpqp˘nqq´1 act on Tβ˘pξ˘qF
˘ with uniform

exponential expansion rate, i.e.

ǫpρpqp˘nqq´1, β˘pξ˘qq ě AeCn

for all m̂ P pΓ and n ě 0 with some fixed constants A,C ą 0.
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Proof. There exists a normalized flow line m̂ uniformly close to q, i.e. qpnq is uniformly close to

mtn with n ÞÑ tn being a uniform orientation-preserving quasiisometry Z Ñ Z. Thenm˘8 “ ξ˘,

and ǫpρpqp˘nqq´1, β˘pξ˘qq equals ǫpρpm´1
t˘n

q, β˘pm˘8qq up to a uniform multiplicative error, and

hence also ǫ˘pm̂, t˘nq.

Since every uniform quasigeodesic ray in Γ extends to a uniform quasigeodesic line, and in

view of Morse lemma for hyperbolic groups, in the above definition it suffices to consider only

normalized discrete geodesic rays r : N Ñ Γ.

We can now give the original and an alternative definition of Anosov representations.

Definition 5.69. A pair of continuous maps β˘ : B8Γ Ñ F˘ is said to be antipodal if it satisfies

the following conditions (called compatibility in [GW]):

(i) For every pair of distinct ideal points ζ, ζ 1 P B8Γ, the simplices β`pζq, β´pζ 1q in the Tits

boundary of X are antipodal, equivalently, the corresponding parabolic subgroups of G are

opposite. (In [GW] this property is called transversality.)

(ii) For every ζ P B8Γ, the simplices β`pζq, β´pζq belong to the same spherical Weyl chamber,

i.e. the intersection of the corresponding parabolic subgroups of G contains a minimal parabolic

subgroup.

Note that, as a consequence, the maps β˘ are embeddings, because antipodal simplices

cannot be faces of the same chamber.

Definition 5.70 ([GW]). A representation ρ : Γ Ñ G is said to be pP`τmod
, P´τmod

q-Anosov

if there exists an antipodal pair of continuous ρ-equivariant maps β˘ : B8Γ Ñ F˘ such that

the geodesic flow on the associated bundles E˘ satisfies the uniform expansion property with

respect to the sections s˘ associated to the maps β˘.

The pair of maps pβ`, β´q in this definition is called compatible with the Anosov representa-

tion ρ. Note that a pP`τmod
, P´τmod

q-Anosov representation admits a unique compatible pair of

maps. Indeed, the fixed points of infinite order elements γ P Γ are dense in B8Γ. The maps β˘

send the attractive and repulsive fixed points of γ to fixed points of ρpγq with contracting and

expanding differentials, and these fixed points are unique. In particular, if P`τmod
is conjugate

to P´τmod
(equivalently, ιτmod “ τmod) then β´ “ β`.

We note that Guichard andWienhard in [GW] use in their definition the uniform contraction

property of the reverse flow φ´t instead of the expansion property used above, but the two are

clearly equivalent. Note also that in the definition, it suffices to verify the uniform exponential

expansion property only for the bundle E`. We thus obtain, as a corollary of Lemma 5.68, the

following alternative definition of Anosov representations:

Proposition 5.71 (Alternative definition of Anosov representations). A representation

ρ : Γ Ñ G is pP`τmod
, P´τmod

q-Anosov if and only if there exists a pair of antipodal continuous ρ-

equivariant maps β˘ : B8Γ Ñ F˘ such that for every normalized discrete geodesic ray r : N Ñ

Γ asymptotic to ξ P B8Γ, the elements ρprpnqq´1 act on Tβ`pξqF` with uniform exponential
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expansion rate, i.e.

ǫpρprpnqq´1, β`pξqq ě AeCn (5.72)

for n ě 0 with constants A,C ą 0 which are independent of r.

We now restrict to the case that the parabolic subgroups P˘τmod
are conjugate to each other,

i.e. the simplices ιτmod “ τmod. The pP`τmod
, P´τmod

q-Anosov representations will in this case be

called simply Pτmod
-Anosov, where Pτmod

“ P`τmod
, or simply τmod-Anosov. Note that the study

of general pP`τmod
, P´τmod

q-Anosov representations quickly reduces to the case of P -Anosov

representations by intersecting parabolic subgroups, cf. [GW, Lemma 3.18]. Now,

F˘ “ F “ G{Pτmod
“ Flagτmod

and

β˘ “ β : B8Γ Ñ F

is a single continuous embedding. The compatibility condition reduces to the antipodality

condition: For any two distinct ideal points ξ, ξ1 P B8Γ the simplices βpξq and βpξ1q are antipodal

to each other. In other words, β is a boundary embedding in the sense of Definition 5.2.

We thus arrive to our definition, compare Definition 5.50:

Definition 5.73 (Anosov representation). Let τmod be an ι-invariant face of σmod. We call

a representation ρ : Γ Ñ G Pτmod
-Anosov or τmod-Anosov if it is τmod-boundary embedded with

boundary embedding β : B8Γ Ñ F “ Flagτmod
such that for every normalized discrete geodesic

ray r : N Ñ Γ asymptotic to ζ P B8Γ, the elements ρprpnqq´1 act on TβpζqF with uniform

exponential expansion rate, i.e.

ǫpρprpnqq´1, βpζqq ě AeCn

for n ě 0 with constants A,C ą 0 independent of r.
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