
UC San Diego
Technical Reports

Title
Cone: Augmenting DHTs to Support Distributed Resource Discovery

Permalink
https://escholarship.org/uc/item/0wx5z55v

Authors
Bhagwan, Ranjita
Varghese, George
Voelker, Geoffrey M

Publication Date
2003-07-21

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0wx5z55v
https://escholarship.org
http://www.cdlib.org/

Cone: Augmenting DHTs to Support Distributed Resource Discovery

Ranjita Bhagwan, George Varghese and Geoffrey M. Voelker

Department of Computer Science and Engineering

University of California, San Diego

1 Introduction

Together with the revolution in peer-to-peer content sharing,

as exemplified by Napster and Gnutella, there has been a

parallel revolution in peer-to-peer distributed computing as

exemplified by SETI@home and Javelin. As with content

sharing, P2P computing networks have evolved from central-

ized to distributed resource discovery. Thus a fundamental

problem in P2P computing is to scalably answer relational

queries of the form, “Find a resource of size X or higher,”

in distributed fashion. Networked server systems can also

benefit from such queries. For example, in high-bandwidth

content delivery networks it would be beneficial to have the

ability to locate a server with sufficient bandwidth to deliver

a large object. Another example is that of wide-area gaming

systems. If these systems supported these queries, players

would be able to locate and join a game server with mini-

mum load to ensure better response time.

Current P2P computing systems such as Javelin use flood-

ing together with heuristics to locate resources, reminiscent

of Gnutella’s content discovery methods. By contrast, recent

advances in P2P content discovery via DHTs have demon-

strated scalable O(logN) algorithms such as Chord [14],

Pastry [11], and CAN [10]. However, DHTs have been

largely limited to exact match queries, with some later work

(e.g., skip graphs [2]) generalizing to prefix match and sim-

ple range queries. As a result, it seems difficult to coerce

DHTs into scalably answering resource discovery queries.

A fundamental abstraction for resource discovery is to find

any resource above a given size. In terms of abstract data

structures, this function is provided by a Heap. Thus a fun-

damental question we pose in this paper is to ask whether

DHTs can be generalized beyond exact and range lookups to

also provide heap functionality. The answer to this question

has both theoretical and practical ramifications. On the prac-

tical side, a positive answer can offer similar benefits to P2P

distributed computing that scalable DHTs such as Chord of-

fer to P2P content sharing. On the theoretical side, a positive

answer opens the door to investigating other distributed data

structures with richer abstract operations.

One can always approach the problem of providing a dis-

tributed heap from a clean slate, ignoring past work in scal-

able DHTs. On the other hand, there can be considerable in-

tellectual leverage building on the techniques already devel-

oped within DHTs. Building on existing DHTs also has the

advantage of adding new functions (e.g., heap functionality)

without losing useful existing functions (e.g., exact match).

Thus in this paper we introduce the notion of augment-

ing DHTs: starting with a DHT such as Chord or CAN as

a substrate, we show how to augment the DHT with addi-

tional information to support the added functions. We are, of

course, strongly influenced by the analogy to augmenting bi-

nary trees, in which centralized binary trees [4] are enhanced

to provide rank operations by augmenting tree nodes with

auxiliary information such as subtree sizes. However, to the

best of our knowledge the general question of augmenting

distributed data structures has not been explored.

Our general strategy is to start with a Chord-like ring of

identifiers, and then to build a trie on these identifiers leading

to a structure that resembles a cone. We then augment the

trie to contain additional information (e.g., the max resource

value in the subtree).

The four main contributions of this paper are:

1. We suggest that both P2P Content Sharing and Com-

puting can benefit from a unified perspective via distributed

data structures with suitably chosen abstract operations.

2. We introduce the generic approach of augmenting dis-

tributed data structures. Our approach augments a DHT and

builds a prefix trie on node IDs and adds augmenting infor-

mation to nodes. The augmentation can use any aggregate

operator on keys (Max, Min, Sum, etc.).

3. We apply the augmentation approach to introduce a

new distributed data structure called a Cone. Cones support

a variety of queries to locate resources, such as locating a

resource of maximum size or a resource of at least a given

size . For a DHT with N nodes and IDs of m bits, queries

and updates take an expected-case O(logN) and worst-case

O(m) messages.

4. We provide an analysis of the load-balancing proper-

ties of Cone with minimal assumptions made on the proba-

bility distribution of resources. Although Cone is essentially

a lightweight tree, we show that it has the same small load

imbalance factor as a DHT (i.e., log N). We also discuss

several techniques for balancing load in Cone, and evaluate

one via simulation.

The rest of the paper is structured as follows. Section 2

describes related work. In Section 3, we describe the Cone

data structure. In Section 4, we describe the Cone operations

and provide bounds on the number of messages used for the

operations. In Section 5, we calculate the load imbalance

factor in Cone and discuss several load-balancing techniques

for improving it. Finally, in Section 6 we summarize the

contributions of this paper and describe future work.

1

2 Related work

Iamnitchi and Foster [7] propose heuristic solutions for de-

centralized distributed resource discovery, but heuristic solu-

tions may not scale well to a large number of resources. [1,

12, 13] modify DHTs to do resource discovery by mapping

key ranges to different nodes in a DHT, with each node in

the DHT keeping track of all resources that fall within its key

range. These solutions have load-balancing problems since

it is possible that a large number of resources have the same

key value, and this could lead to overburdening some nodes

in the DHT. Also, node joins and leaves can cause a sub-

stantial amount of index copying and maintenance overhead.

Our approach circumvents these problems by not using dis-

tributed indices. Each host is responsible for maintaining

its own key value. Systems such as Astrolabe [15], PIER [6]

and INS/Twine [3] also maintain distributed indices, but their

concentration is not on supporting range-based queries and

heap functions.

SOMO [16] uses a tree-like overlay on DHTs to perform

metadata gathering and dissemination. Cone is an augmen-

tation to DHTs, and not a DHT overlay. Hence it does not

require DHT-based lookups for operations other than node

join and leave. Moreover, SOMO in its current form does

not support range-based searches or heap functions.

Skip graphs [2] and SkipNet [5] can provide range

searches which can be used for resource location. In con-

trast, Cone can augment almost any DHT and support any

aggregate operator on keys. It appears fundamentally diffi-

cult to modify skip graphs or SkipNet to also perform aggre-

gate operations on keys because there is no aggregating node

(as in a tree) for a level, but rather a list of nodes. Also, skip

graph operations in the worst case can take O(N) messages,

while Cone operations require O(m) messages in the worst

case, where m is the number of bits in the DHT identifier.

3 Data structure

As with a heap, the Cone data structure is a tree of nodes

with an aggregation key at the root of each subtree. The ag-

gregation key can be the result of any aggregation operation,

such as Max, Min, Sum, etc., but in the rest of this paper we

use the Max aggregate operator for clarity of exposition.

Cone differs from a standard heap in two ways, however.

First, the same physical node can be the root of all logical

subtrees to which it belongs. Second, the underlying tree is

a trie, and hence may not be perfectly balanced. We exploit

these differences to smoothly integrate Cone with DHTs. In

this section, we describe the Cone data structure and how it

is integrated with a DHT.

Cone uses a simple binary tree-based data structure with

the following property. A non-leaf node in Cone is set by

using the following formula:

N =

�

left(N) if left(N):key > right(N):key

right(N) otherwise

7 5 10 6 4 5

7 10 6 5

10 6

10

Figure 1: A basic Cone tree.

A non-leaf node is set if and only if at least one of its children

exists. This formula implies that if a node N is at level l >

0 in the tree, it is one of its own children. Further, it also

implies that node N exists in all levels 0; : : : ; l of the tree.

Figure 1 shows a simple example of a Cone tree for finding

the node with the maximum key. At the lowest level, two

sibling leaf node keys are compared and the node with the

larger key is made the parent. Next, the siblings at the next

level are compared; the larger one becomes the parent, and

so on. Finally, the root is the node with the largest key.

We now describe how the Cone structure can be integrated

with a DHT. Assume the DHT uses an m-bit ID space. The

Cone data structure starts with a trie built over the ID space

of the DHT. The trie has m levels with the DHT forming the

lowest level. When a node joins the DHT, it also joins the

lowest level of Cone, i.e., nodes form the Cone tree leaves.

Their positions in Cone are determined by their (random)

IDs. This ensures that node joins occur at random points in

the Cone tree, which is essential for load-balancing. Cone

is a dynamic data structure and nodes can join and leave at

any time, just as they join and leave the DHT. Cone can also

support multiple simultaneous joins and leaves to the extent

that the DHT can.

Figure 2 shows an example of a 3-bit Cone/DHT struc-

ture. The shaded circles denote nodes that have joined the

network with the corresponding IDs; unshaded circles repre-

sent unassigned node IDs. The tables below each node show

the state used to maintain the Cone data structure.

For each node, the table consists of m entries, one for each

level of the tree. Each entry represents an edge in the tree,

and holds the IP address (not the DHT ID) of the node which

is the immediate parent of the node at that level. If a node is

a parent to a different node at a given level, the table entry

for that level also contains the IP address of the child node.

A “-” represents an edge from a node to itself. For example,

node 1 has an edge to itself from level 0 to level 1. This is

because node 1 does not have an immediate sibling, so by

default it is its own parent. However, since node 1’s key (5)

is less than node 2’s key (10), at the second level node 1 is the

child of node 2. Hence node 1’s table holds the IP address of

node 2 in the second entry. The second table entry for node 2

also maintains the IP address of node 1, its immediate child:

node 2’s second-level table entry is “-, IP
1

”, denoting that

node 2 is its own parent and that its immediate child, other

than itself, is node 1.

2

5 10 6

5 10 6

10 6

10

DHT

-

IP2

-

IP2

-

-,IP1

-,IP5

-

-,IP1

-,IP5

-

-

IP2

-

-

IP2

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

Logical

represen-
tation

Physical
represen-

tation

Table

for
node 1

Table

for
node 2

Table

for
node 5

level 0

level 1

level 2

level 3

level 3

level 2

level 1

node ID

Figure 2: This figure shows how a Cone tree is constructed from 3

nodes, starting from a DHT with a 3-bit ID space. The 3 nodes have

IDs 1, 2 and 5, with key values 5, 10 and 6 respectively. The tree is

the logical representation, while the tables for each node show how

the data structure is physically maintained in distributed fashion.

4 Cone operations

In this section, we show how Cone can be maintained in a

completely distributed fashion using O(logN) state at each

node. Cone supports four main operations: join, leave, find

and change key. We describe these in the following subsec-

tions. Note that in the following figures, we have replaced

the table entries of form IP
x

to X for clarity.

4.1 Join

When a node R joins the network, it joins the DHT using the

DHT’s join operation. In addition, it also joins the Cone tree

by first using the DHT to find a node S with which it shares

the longest common prefix (its neighbour). Using S, R finds

the least common ancestor (LCA) in the tree that it shares

with S. This is the point at which R joins the Cone tree.

Figure 3 shows an example. A node with ID 0 (binary:000)

joins with key 20, as shown in Figure 3(a). Its neighbour,

with which it shares the longest common prefix, is node 1

(binary:001). By comparing prefixes, node 0 knows that its

LCA is at level 1 of the tree, or at the 00* position of the trie,

which in this case is node 1 itself.

Once the LCA is found, the “trickling” phase of the insert

begins. The new node trickles up starting from the LCA, and

its key determines the level up to which it trickles. Going

back to the example, the two nodes 0 and 1 compare their

keys and find that node 0 has a larger key (20) than node 1

(5). Hence the parent of the two nodes should now be node

0. Node 0 enters a “-, 1” in its first table entry, denoting

that it is its own immediate parent, and its immediate child

at level 1 is node 1. Likewise, node 1 needs to change its

table to reflect that its parent at level 1 is node 0. It therefore

replaces the “-” in its first table entry with “0”, as shown in

Figure 3(b).

At level 2, node 0 knows that it has to compare its key

with node 2 by referring to node 1’s table. In doing so node

20 5 10 6

5 10 6

10 6

10

-

-

-,5

-

-

-,5

0 1 2 3 4 5 6 7node ID 0 1 2 3 4 5 6 7node ID

-

-

2

-

-

2

-

2

-

2

?

?

?

?

?

?

(a)

20 5 10 6

20 10 6

10 6

10

-

-

-,5

-

-

-,5

0 1 2 3 4 5 6 7node ID 0 1 2 3 4 5 6 7node ID

-

-

2

-

-

2

0

2

0

2

-, 1

?

?

-, 1

?

?

(b)

20 5 10 6

20 10 6

20 6

10

-

0

-,5

-

0

-,5

0 1 2 3 4 5 6 7node ID 0 1 2 3 4 5 6 7node ID

-

-

-,2

-

-

-,2

00-

-,2

?

-

-,2

?

(c)

20 5 10 6

20 10 6

20 6

20

-

0

-

0

0 1 2 3 4 5 6 7node ID 0 1 2 3 4 5 6 7node ID

-

-

0

-

-

0

00-

-,2

-, 5

-

-,2

-, 5

(d)

Figure 3: The Cone join operation.

20 5 10 6

20 10 6

20 6

20

-

0

-

0

0 1 2 3 4 5 6 7node ID 0 1 2 3 4 5 6 7node ID

-

-

0

-

-

0

00-

-,2

-, 5

-

-,2

-, 5

(a)

5 10 6

5 10 6

10 6

6

-

-

-

-

0 1 2 3 4 5 6 7node ID 0 1 2 3 4 5 6 7node ID

-

-

-

-

-

-

--

(b)

5 10 6

5 10 6

10 6

10

-

-,1

-,5

-

-,1

-,5

0 1 2 3 4 5 6 7node ID 0 1 2 3 4 5 6 7node ID

-

-

2

-

-

2

-

2

-

2

(c)

Figure 4: The Cone leave operation.

0 finds that it has a higher key than node 2, and a change

similar to the previous step results in Figure 3(c). Similarly,

at the third level, node 0 takes over as the root since it has a

higher key than node 2. From the third-level table entry of

node 2, node 0 learns that node 5 was an immediate child of

node 2. As shown in Figure 3(d), it changes its own table to

make node 5 its child at level 3, and informs node 5 that it is

now its parent at level 3. Consequently, node 5 changes its

third-level table entry from 2 to 0. This concludes the join

operation.

Complexity: For a DHT with N nodes and IDs of m

bits, node joins consisting of the combination of finding the

least common ancestor and the trickling take an expected-

case O(logN) and worst-case O(m) messages.

4.2 Leave operation

When a node leaves the network unexpectedly, it can mo-

mentarily create up to m disconnected components of the

Cone tree. This is the worst case, which happens if the root

3

leaves. Consider the previous example tree shown in Fig-

ure 4 again. Suppose the root leaves, as shown in Figure 4(a).

This creates three disconnected subtrees of the Cone tree,

shown in Figure 4(b), which need to be reconnected. The

roots of these subtrees detect (by timeouts) that their parent

has left and make themselves their parents by changing their

tables. The stabilization of Cone after arbitrary failures re-

lies on the stabilization of the underlying DHT together with

a simple tree stabilization mechanism in which each node

periodically checks for and corrects (if necessary) its parent.

As shown in Figure 4(b), node 1 becomes its own parent at

level 1, node 2 becomes its own parent at level 2, and node 5

becomes its own parent at level 3.

The reconnect operation proceeds as follows. Each dis-

connected subtree root finds its parent using the DHT and

re-attaches to it. Node 1, which is the root of the subtree con-

sisting of nodes 0 (binary:000) and 1 (binary:001), or what

we call the “00* subtree”, needs to find its parent at level 2,

which is the node at position 0* in the trie. To do so, node

1, using the DHT, looks up any node in the neighbouring

01* subtree (either node “2” or “3”). In this case, node 1

discovers node 2 (binary:010). Node 1 then uses node 2’s

table to trace back to the node at the 0* position in the trie,

which in this case is node 2 itself. Figure 4(c) shows this

case. In this way node 1 can reconnect to node 2, its parent

at the second level, and the two nodes make appropriate ad-

justments to their table entries. Similarly, to reconnect to the

main tree, node 2 finds node 5 and becomes its child at level

3. In the example, however, node 5 has a smaller key than

node 2. Consequently, node 2 takes over as root after the

nodes make the required changes to their respective tables.

Complexity. The reconnect phase for every disconnected

subtree takes expected O(logN) messages. This is because

the DHT lookup to find a node in the closest subtree takes

O(logN) messages, and the trace-back to find the point of

reconnection also takes O(logN) messages. The expected

number of disconnected subtrees is O(logN). Hence the ex-

pected number of messages for handling an involuntary leave

is O((logN))

2

). However, the reconnect phases can be per-

formed in parallel so that the entire delete operation takes

as long as the longest reconnect phase, which is O(logN).

Note that if a node terminates gracefully, the leave operation

can be implemented using O(logN) messages.

4.3 Find operations

The Cone data structure supports finding a node containing

a resource greater than a specified threshold by starting from

any node in the DHT, and tracing up the tree until the search

reaches a node satisfying the given condition. At this point

the search terminates, requiring an expected-case O(logN)

messages. Note that Cone naturally supports finding the

largest value node, a traditional heap operation.

4.4 Change key

Changing the key, or key update, can be gracefully handled

in Cone using expected O(logN) messages. A change in

key value of a node can cause it to be higher than that of its

parent in the Cone tree, or lower than its child. Thus the node

either trickles up (in the former case) or down (in the latter

case) until the Cone property is restored. Note that change

key (O(logN) messages) is much more efficient than node

deletion (O((logN)

2

) messages). This is desirable since we

expect key changes to be much more frequent (as resources

get used and freed) than involuntary node failures.

5 Load balancing

As in DHTs, some nodes in Cone (nodes at higher levels)

will experience more load than others. For DHTs like Chord

the expected maximum imbalance in the number of items

stored by two random nodes is O(logN) [9]. Thus in Chord,

assuming uniform access to items, the ratio of the maximum

to the minimum load experienced by any two nodes is also

O(logN). We call this ratio the load imbalance factor.

In this section, we first describe two kinds of load on a

node in Cone. Next, we describe a novel analysis that shows

that despite the Cone data structure being a binary tree, the

load imbalance factor for both aspects of load-balancing is

the same as that of a DHT, i.e., O(logN). Moreover, the

analysis does not assume any specific distributions of re-

source values (keys) or query values. Finally, we outline

several load-balancing techniques that can be used to further

improve load balancing in Cone.

As with any system used for distributed resource discov-

ery, there are two aspects to load balancing in Cone:

Data traffic: The load of query satisfaction should be

shared equally by all nodes that are capable of satisfying

the query. Let N
1

; : : : ; N

k

have key values greater than

q. Let P
D

(N

1

) be the probability that N
1

satisfies a query

find > q. Ideal data load balance is achieved when for

any i; j � k; i 6= j; P

D

(N

i

) = P

D

(N

j

).

Control traffic: The amount of control traffic passing

through all nodes in the system should ideally be the same.

Let P
C

(N

i

) be the probability that, for some query, a con-

trol message is sent to node N
i

. Ideal control load balance is

achieved when for any i; j; i 6= j; P

C

(N

i

) = P

C

(N

j

).

In the following subsections we show that, in both data

and control load balancing, the imbalance factor is h = log

N , where N is the number of nodes in the system. In our

analysis, we assume that all nodes generate queries using the

same distribution, and have the same frequency of requests.

Note that the only assumption we make is that the resource

value probability distribution is the same as the query value

distribution. As a result, our results are equally valid for

resource distributions that range from a uniform distribution

to a power law.

Below, we assume for simplicity that the number of nodes

in the Cone tree, N , is equal to the total number of IDs al-

lowed in the DHT, which is 2m. However, the results gen-

eralize to provide identical results for the more general case

that the number of nodes is smaller than 2

m.

4

5.1 Data traffic load

The worst-case data traffic load imbalance occurs when two

nodes N
1

and N

2

can satisfy a given query, and one of the

nodes is the root (adding more nodes only improves data im-

balance). If N
1

is the root and N

2

is a leaf, the data imbal-

ance can be O(N). Fortunately, the analysis below shows

that randomization of node IDs makes this scenario rela-

tively rare.

The key to the analysis is the observation that the proba-

bility of the two nodes N
1

and N
2

being in adjacent subtrees

each of height k is 1/2n�k, and the ratio of the data traffic

load of the two nodes is (2n � 2

k

)=2

k. Hence, the expected

value of the data imbalance factor is:

2

h

� 1

2

h

+(

1

2

h

�

2

h

� 1

1

+

1

2

h�1

�

2

h

� 2

2

+: : :+

1

2

�

2

h

� 2

h�1

2

h�1

)

= (1�

1

2

h

) + (h� �

n

k=1

1

2

k

) = h = logN

5.2 Control traffic load

We now calculate the maximum control traffic imbalance

factor in the Cone tree. For this analysis, we assume that

the key value distribution is the same as the query value dis-

tribution, and that this distribution is continuous.

N2

N2

N2

N2

k

2k-1

N1

Figure 5: Control traffic load imbalance in Cone.

Consider the Cone tree depicted in Figure 5. The proba-

bility that any query originating at node N
1

will reach its an-

cestor node N
2

at level k is equal to the probability that the

query value is larger than the key values of all 2k�1 nodes

in the subtree of height k � 1. This is the same as picking

2

k�1 + 1 (where the extra one represents the query) samples

from a distribution, and estimating the probability that one

of them (i.e., the query) is the maximum.1 By symmetry any

sample could be the maximum with equal probability, and

hence this probability is 1=(2k�1 + 1).

Next, the number of nodes from which queries can reach

N

2

at level k is 2k�1. Recall that N
2

is one of its own chil-

dren (its right child in Figure 5 at level k), and that no re-

quests come to N

2

at level k from the right subtree since

all request messages to it from this subtree are accounted

for at earlier levels. Hence the expected number of queries

reaching N

2

at level k is that coming from only the left

subtree, which is 2

k�1

� 1=(2

k�1

+ 1). Consequently, the

root of the Cone tree has to handle an expected number of

1Note that because the distribution is continuous we can ignore the prob-

ability that the key value is equal to one of the 2k�1 resource values.

�

h

k=1

(2

k�1

=(2

k�1

+1)) < h query messages since the root

is present at every level of the tree. On the other hand, a node

that occupies only a leaf position in the Cone tree needs to

handle an expected value of 1 control message. Hence the

control imbalance factor is h = logN . We performed ex-

tensive simulations of the basic Cone data structure that con-

firmed the results of our analysis.

If the key distribution and the query distribution are dis-

tinct, we can no longer rely on symmetry and the results will

depend on the specific distributions chosen. However, the

basic framework of the analysis can still be reused.

5.3 Load balancing techniques

Finally, we discuss several techniques for improving the bal-

ance of load in Cone. In our analysis we have assumed that

the nodes pick IDs randomly and are therefore evenly dis-

tributed in the ID space. This may not always be the case in

practice. For example, an adversary can take over some part

of the ID space and advertise very small resource values. In

this scenario, both control-traffic and data-traffic load can be

severely imbalanced.

One technique to reduce such imbalance is to use what we

call “random fingers”. In this technique, when a query is

made at a node N
1

, it first checks if it satisfies the query. If

not, it tries f = logN other random nodes in the DHT to see

if they satisfy the query. If not, the query is propagated up

the Cone tree.

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

C
o

n
tr

o
l
im

b
a

la
n

c
e

 f
a

c
to

r

No. of nodes with minimum key value

Cone
Cone+random fingers

Figure 6: Improvement in the control load imbalance factor by

using random fingers.

To evaluate the effect of random fingers, we simulated a

Cone network of 1024 nodes and skewed the distribution of

key values among nodes to induce load imbalance. To skew

key values, we randomly chose a subtree of a given size and

set the values of the nodes in that subtree to the minimum key

value. Figure 6 shows the effect of skewed key distributions

on control traffic load experienced by nodes in Cone as the

size of the minimum-key subtree increases. The dark curve

shows the control load imbalance factor for the original Cone

find operation, and the light curve shows the effect of using

f = 10 random fingers. From the graph we see that, as

the size of the subtree increases and the number of nodes

with minimum key value increases, the control imbalance

factor for basic Cone increases rapidly. However, the use of

random fingers significantly reduces the imbalance factor.

5

In addition to using random fingers, we intend to explore

several other load-balancing techniques:

Variable node degree: The analysis indicates that both data

and control load imbalance are proportional to tree height.

Thus the simplest technique to reduce imbalance further is to

use tries of higher radix (rather than the binary tries we used

so far). Note that higher node degrees also makes search

proportionately faster at the cost of making node joins and

leaves more expensive.

Caching: Nodes at lower levels can cache previous query

results to reduce control traffic on nodes at higher levels.

Virtual servers This technique is similar to the one men-

tioned in [9]. A node can create several virtual servers, the

number of which depends on its key value. Doing so poten-

tially improves the data load imbalance factor of the system.

6 Conclusion

In essence, Cone builds a tree over the random IDs assigned

to nodes within a DHT. Compared to recent distributed data

structures, this seems very straightforward. Yet there are

possibly unexpected aspects to Cone. First, consider build-

ing a tree. How should nodes find their positions in the tree?

Choosing a trie of given radix provides a deterministic an-

swer; further, the DHT provides the trie building facility by

which a node efficiently finds another node that shares the

same initial set of bits, while dealing with holes in the ID

space that appear in the trie.

Second, and more importantly, the standard arguments

against trees (compared to richer hypercube-like intercon-

nections such as Chord and Pastry) are issues of load balance

and fault tolerance. For load balance it may appear that all

requests must pass through the root, leading to a O(N) load

imbalance. However, random assignment of resources to tree

leaves (regardless of resource values) is surprisingly power-

ful. Our analysis uses symmetry arguments to show that the

expected imbalance factor for data and control is O(logN),

regardless of the probability distribution of resources.

Similarly, Cone takes only logarithmic messages to add a

node or change its value, and log-square messages to delete

a node. By contrast, a simple augmentation of a richer data

structure such as Chord (e.g., in which every Chord arc is

augmented with the maximum of all nodes contained within

the arc) can lead to O(N) deletion scenarios. Thus the very

simplicity of a tree seems helpful in enabling augmentation

with efficient update properties.

Finally, our paper raises the following broader research

questions. First, are there other interesting tasks besides

resource discovery that are useful in grid-based and P2P

distributed computing that can be solved in scalable fash-

ion? For example, a potentially useful aggregate operator

is to combine sets representing node software attributes to

support queries about node diversity for fault-tolerant sys-

tems [8]. Second, are there other interesting and useful aug-

mentations of distributed data structures besides the Max

operators mentioned in this paper, and can separate opera-

tors be combined economically without the overhead of a

separate Cone structure for each operator? Third, the load

balance analysis in this paper are dependent on the use of

the Max operator; can this analysis be generalized to other

aggregation operators? Fourth, what are the system issues

that arise when deploying in a real setting — for example,

what other heuristics (e.g., hysteresis, artificial lowering of

resource values for load control) will be needed?

To extend our evaluation beyond the simple analysis and

simulations done so far, we plan to experiment with a work-

ing prototype using publicly available DHT code as a base.

We intend to drive our experiments with models of resource

usage patterns that are relevant to distributed computing and

networks. We also intend to explore the interaction and ef-

ficient integration of multiple Cones built for different re-

sources and operators.

References
[1] A. Andrzejak and Z. Xu. Scalable, efficient range queries for

grid information services. In Proc. of P2P 2002.

[2] J. Aspnes and G. Shah. Skip graphs. In Fourteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, 2003.

[3] M. Balazinska, H. Balakrishnan, and D. Karger. INS/Twine:

A scalable peer-to-peer architecture for intentional resource

discovery. In Proc. of Pervasive 2002, 2002.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction

to Algorithms. McGraw-Hill Book Company, 1989.

[5] N. J. A. Harvey et al. SkipNet: A scalable overlay network

with practical locality properties. In Proc. of USITS 2003,

Seattle.

[6] R. Huebsch et al. Querying the internet with PIER. In Proc.

of VLDB 2003.

[7] A. Iamnitchi and I. Foster. On fully decentralized resource

discovery in grid environments. In Intl. Workshop on Grid

Computing, 2001.

[8] F. Junquiera et al. Phoenix: Rebuilding from the ashes of an

internet catastrophe. In Proc. of HotOS 2003.

[9] A. Rao et al. Load balancing in structured P2P systems. In

Proc. of IPTPS 2003.

[10] S. Ratnasamy et al. A scalable content addressable network.

In Proc. of ACM SIGCOMM, 2001.

[11] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentral-

ized object location, and routing for large-scale peer-to-peer

systems. In Middleware, 2001.

[12] C. Schmidt and M. Parashar. Flexible information discovery

in decentralized distributed systems. In Proc. of HPDC 2003,

Seattle, WA.

[13] D. Spence and T. Harris. Xenosearch: Distributed resource

discovery in the xenoserver open platform. In Proc. of HPDC

2003, Seattle, WA.

[14] I. Stoica et al. Chord: A scalable peer-to-peer lookup service

for internet applications. In Proc. of ACM SIGCOMM, 2001.

[15] R. van Renesse et al. Astrolabe: A robust and scalable tech-

nology for distributed systems monitoring, management, and

data mining. ACM Trans. on Computer Systems, 21(3), 2003.

[16] Z. Zhang, S.-M. Shi, and J. Zhu. SOMO: Self-organized

metadata overlay for resource management in p2p dht. In

Proc. of IPTPS 2003.

6

