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Abstract
Background. Isocitrate dehydrogenase 1 (IDH1) mutant gliomas are thought to have distinct metabolic characteris-
tics, including a blunted response to hypoxia and lower glycolytic flux. We hypothesized that non-invasive quanti-
fication of abnormal metabolic behavior in human IDH1 mutant gliomas could be performed using a new pH- and 
oxygen-sensitive molecular MRI technique.
Methods. Simultaneous pH- and oxygen-sensitive MRI was obtained at 3T using amine CEST-SAGE-EPI. The 
pH-dependent measure of the magnetization transfer ratio asymmetry (MTRasym) at 3 ppm and oxygen-sensitive 
measure of R2’ were quantified in 90 patients with gliomas. Additionally, stereotactic, image-guided biopsies were 
performed in 20 patients for a total of 52 samples. The association between imaging measurements and hypoxia-
inducible factor 1 alpha (HIF1α) expression was identified using Pearson correlation analysis.
Results. IDH1 mutant gliomas exhibited significantly lower MTRasym at 3 ppm, R2’, and MTRasymxR2’ (P = 0.007, 
P = 0.003, and P = 0.001, respectively). MTRasymxR2’ could identify IDH1 mutant gliomas with a high sensitivity 
(81.0%) and specificity (81.3%). HIF1α was positively correlated with MTRasym at 3 ppm, R2’ and MTRasymxR2’ in IDH1 
wild type (r = 0.610, P = 0.003; r = 0.667, P = 0.008; r = 0.635, P = 0.006), but only MTRasymxR2’ in IDH1 mutant gliomas 
(r = 0.727, P = 0.039).
Conclusions. IDH1 mutant gliomas have distinct metabolic and microenvironment characteristics compared with 
wild type gliomas. An imaging biomarker combining tumor acidity and hypoxia (MTRasymxR2’) can differentiate 
IDH1 mutation status and is correlated with tumor acidity and hypoxia.
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Key Points

1.  A combined MRI biomarker for acidity and hypoxia can differentiate IDH1 mutation 
status.

2.  HIF1α expression is correlated with acidity and hypoxia in IDH1 wild type, but not 
mutant gliomas.

Mutations in NADP+ dependent isocitrate dehydrogenase 
(IDH) genes,1 IDH1 (mutations at residue R132), or IDH2 
(mutations at residue R172) occur in a majority of World 
Health Organization (WHO) grades II and III gliomas and sec-
ondary glioblastoma (>80%).2 IDH mutant gliomas in adult 
patients are often non-enhancing,3,4 occur frequently in the 
frontal lobe,4,5 and have better clinical outcome compared 
with IDH wild type gliomas,1,6 suggesting that there are 
unique physiological characteristics of IDH mutant gliomas 
that may make them particularly vulnerable to specific 
therapies.

IDH1 and IDH2 are primarily localized in the cytosol and 
mitochondria, respectively, and catalyze the oxidative de-
carboxylation of isocitrate to generate alpha-ketoglutarate 
(αKG) and produce NADPH (Fig. 1). The mutations of 
IDH1R132 or IDH2R172 result in a loss of affinity to isocitrate 
along with a new enzymatic ability to reduce αKG to the 
D-enantiomeric isoform of 2-hydroxyglutarate (D-2-HG), 
coupled with the oxidation of NADPH to NADP+.1,7 The 
oncometabolite, 2-HG, is thought to contribute to malig-
nant transformation of glioma through multiple pathways, 
including increase in reactive oxygen species (ROS) level, 
disturbance of the NADPH/NADP+ balance, and competi-
tive inhibition of αKG-dependent enzymes.8

Despite the known signaling pathways involved in 
IDH1 mutant gliomas, the downstream impact of IDH1 
mutations on energy metabolism remains controversial. 
Prolyl-hydroxylase domain (PHD) is an αKG-dependent 
enzyme responsible for the oxygen-dependent degrada-
tion of hypoxia-inducible factor 1 alpha (HIF1α) (Fig. 1). 
HIF1α is a key factor that mediates the cell energy pro-
duction under hypoxia, shifting glucose metabolism 
from oxidative phosphorylation to less efficient gly-
colytic pathway,9 leading to the accumulation of lactic 
acid and a reduction in extracellular pH. Additionally, 

HIF1α activates angiogenesis-related signaling and 
plays part in tumor cell self-renewal and proliferation.10 
Oncometabolite 2-HG generated from mutation in IDH1 
was first reported to stabilize HIF1α through inhibition 
of PHD.11,12 However, more contemporary studies have 
offered contradictory findings, suggesting that 2-HG 
may activate PHD, promoting HIF1α degradation and 
downregulating HIF1α target genes.13,14 This appears to 
agree with a separate study showing decreased mRNA 
expression of HIF1α and downstream effects in patient 
IDH1 mutant tumors.15 Additionally, a study by Grassian 
et al16 observed increased oxidative tricarboxylic acid me-
tabolism, decreased reductive glutamine metabolism, 
and reduced tumor growth rates in IDH1 mutant glioma 
cells under hypoxic conditions, suggesting IDH1 mutant 
gliomas prefer a more oxygenated microenvironment 
for continual proliferation. Based on these studies, we 
hypothesized IDH1 mutant gliomas would be both less 
acidic and less hypoxic compared with IDH1 wild type 
gliomas.

The current study builds on the current body of litera-
ture around IDH1 mutant glioma metabolism by using 
a unique, clinically available pH- and oxygen-sensitive 
molecular imaging technique termed amine chemical 
exchange saturation transfer spin-and-gradient-echo 
echoplanar imaging (CEST-SAGE-EPI)17 to explore tumor 
acidity and hypoxia in IDH1 mutant and wild type human 
gliomas. CEST-SAGE-EPI provides pH sensitivity through 
quantification of the chemical exchange between amine 
protons in bulk water, which has been shown to be pH de-
pendent.18 The inherently elevated concentration of glu-
tamine within tumors19–21 further increases the available 
proton exchange, resulting in a higher CEST signal at 
3.0 ppm.22,23 Additionally, the reversible transverse relax-
ation rate, R2’, which has been shown to be proportional 

Importance of the Study

The current study builds on the current body of litera-
ture around IDH1 mutant glioma metabolism by using 
a unique, clinically available pH- and oxygen-sensitive 
molecular imaging technique to explore tumor acidity 
and hypoxia in IDH1 mutant and wild type human 
gliomas. Results suggest IDH1 mutations are associated 
with lower tumor acidity and lower vascular hypoxia. 
The observed differences within the tumor microenvi-
ronment likely reflect metabolic differences, which is 

further supported by our observation of differential sen-
sitivity of imaging measures of tumor acidity and hypoxia 
to HIF1α expression between IDH1 mutant and wild type 
gliomas. This study provides additional evidence that 
IDH1 mutant gliomas have distinct metabolic character-
istics and suggests pH- and oxygen-sensitive MRI may 
be a valuable clinical imaging biomarker for identifying 
altered metabolic characteristics or for quantifying re-
sponse to metabolically targeted therapies.
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to oxygen extraction fraction and tumor oxygenation,24–28 
can be simultaneously quantified using the multi-echo 
readout obtained using CEST-SAGE-EPI. In order to further 
characterize tumor acidity and hypoxia in IDH1 mutant and 

wild type gliomas, we also performed MRI-guided biopsy 
and immunohistochemistry to explore the link between 
CEST-SAGE-EPI measurements and both HIF1α and Ki67 
expression.
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Fig. 1 Metabolic differences between IDH1 wild type and IDH1 mutant gliomas. (A) IDH1 wild type gliomas, like other malignant tumors, are 
characterized by a high level of glycolysis (Warburg effect). (B) Unlike wild type gliomas, IDH mutant gliomas produce the oncometabolite 2-HG, 
which activates PHD, leading to blunted HIF1α response to hypoxia, and lower levels of HIF1α. This lower HIF1α may shift the metabolism to ox-
idative phosphorylation, reducing glycolytic activity, and subsequently reducing tumor acidity by reduction of lactic acid. ASCT2/LAT1: glutamine 
transporters; GLUT: glucose transporters; MCT: monocarboxylate transporters; GLS: glutaminase; GDH: glutamate dehydrogenase; TA: transam-
inase; aKG: alpha-ketoglutarate; HK2: hexokinase-2; G6P: glucose-6-phosphate; LDHA: lactic dehydrogenase A; PDH: pyruvate dehydrogenase; 
PDK1: pyruvate dehydrogenase kinase 1; acetyl-CoA: acetyl coenzyme A; TCA cycle: tricarboxylic acid cycle; mTOR: mammalian target of rapa-
mycin; ACLY: ATP citrate lyase; OCA: obeticholic acid; FASN: fatty acid synthase.
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Materials and Methods

Patients

A total of 90 histologically proven glioma patients were in-
cluded in this retrospective study: 21 patients with WHO grade 
II, 29 patients with WHO grade III, and 40 patients with WHO 
grade IV. Of these 90 patients, 60 patients were scanned ei-
ther prior to radiation therapy and/or chemotherapy including 
temozolomide (N = 56), with (N = 16) or without (N = 40) prior 
tumor resection surgery or had been off treatment for more 
than 2 years (N = 4). The other 30 patients were either on ac-
tive treatment or recently off treatment at the time of MRI 
scanning. Detailed patient characteristics are further outlined 
in Table 1 and Fig. 2. All patients provided informed written 
consent to have advanced imaging and medical informa-
tion included in our institutional review board–approved 
research database or provided informed written consent 
to have image-guided biopsies for research purposes. All 
patients had CEST-SAGE-EPI or CEST-EPI (single echo) and 
routine MRI scanning between April 2015 and June 2018, with 
good image quality as well as IDH1 mutation status avail-
able from resected or biopsied tissue. IDH1 mutation status 
was determined by genomic sequencing analysis using pol-
ymerase chain reaction and/or immunohistochemistry (IHC) 
as described previously.4 Loss of 1p/19q was assessed with 
fluorescence in situ hybridization.29

Amine CEST-SAGE-EPI and Anatomic MRI 
Acquisition

Simultaneous acquisition of pH-weighted amine CEST 
contrast and oxygen-sensitive R2’ mapping was performed 
using the CEST-SAGE-EPI pulse sequence, as previously 
described.17 This sequence consists of a CEST saturation 
pulse train of three (3x) 100-ms Gaussian pulses with peak 
amplitude B1 = 6 μT and a spin-and-gradient-echo (SAGE)-
EPI readout consisting of 2 gradient echoes with echo 
times (TEs) = 14.0 and 34.1 ms, one asymmetric spin-echo 
with TE = 58.0 ms, and one spin-echo with TE = 92.4 ms. 
Additional acquisition parameters include a repetition 
time (TR) >10 000 ms, field of view = 217 × 240 mm, matrix 
size = 116 × 128, slice thickness = 4.0 mm with no interslice 
gap, partial Fourier encoding = 6/8, GRAPPA (generalized 
autocalibrating partially parallel acquisition) = 3, and band-
width = 1628 Hz/pixel. A  total of 29 z-spectral points was 
acquired at offset frequency from −3.5 ppm to −2.5 ppm; 
from −0.3  ppm to +0.3  ppm; and from +2.5  ppm to 

+3.5 ppm, all with respect to the water proton resonance 
frequency. An additional reference (S0) scan was obtained 
with 4 averages using identical parameters and no satu-
ration pulses. All MRIs were acquired on 3T MR scanners 
(Prisma or Skyra, Siemens Healthcare). Of the 90 scans, 
35 were performed using single-echo pH-weighted CEST-
EPI sequence23 with TE = 27 ms and no oxygen-sensitive 
information. The total acquisition time for CEST-SAGE-
EPI was 7 minutes and 30 seconds benchmarked on a 3T 
Siemens Prisma MR scanner (Software Versions VE11A-C). 
In addition to CEST scan prior to contrast administration, 
all patients received the anatomic images according to the 
standardized brain tumor imaging protocol.30

CEST-SAGE-EPI Data Post-Processing

All CEST-SAGE-EPI and CEST-EPI images were motion 
corrected using an affine transformation (mcflirt; Functional 
Magnetic Resonance Imaging of the Brain Software 
Library) and B0 correction via a z-spectra based k-means 
clustering and Lorentzian fitting algorithm.31 Following 
motion and B0 correction, the integral of width of 0.4 ppm 
was quantified around both the −3.0 and +3.0 ppm (−3.2 
to −2.8 ppm and +2.8 to +3.2 ppm, respectively) spectral 
points. These data points were combined with the S0 image 
to calculate the asymmetry in the magnetization transfer 
ratio asymmetry (MTRasym) at 3.0 ppm, a measure related 
to pH,23 as defined using equation: MTRasym(3.0 ppm) = S(-
3.0 ppm)/S0-S(+3.0 ppm)/S0, where S(ω) is the amount of 
bulk water signal available after the saturation pulse with 
offset frequency ω and S0 is the signal available without 
application of radiofrequency saturation. For CEST-SAGE-
EPI data, the average MTRasym at 3.0 ppm was calculated by 
averaging the first (TE = 14.0 ms) and second (TE = 34.1 ms) 
gradient echoes to increase the available signal-to-noise.

Estimates of transverse relaxation rates R2, R2*, and 
R2’ = R2* − R2, which is proportional to oxygen extraction, 
were obtained by solving a system of Bloch equations as 
detailed previously.17 All post-processing was performed 
with MatLab (release 2017b, MathWorks). All resulting 
maps were registered to high-resolution post-contrast 
T1-weighted images for subsequent analyses.

Immunohistochemistry Staining of HIF1α 
and Ki67

Fifty-two tissue samples from 20 patients were acquired 
with MRI-guided tissue biopsy prior to surgical resection. 

  
Table 1 Patient demographics

All Patients Grade II Grade III Grade IV

No. of patients (treatment naïve/on treatment) 90 (60/30) 21 (18/3) 29 (21/8) 40 (21/19)

Age median [range] 51.5 [15–90] 40 [22–90] 48 [15–70] 60 [19–81]

Sex male/female 58/32 8/13 18/11 32/8

IDH1 status wild type/mutant 52/38 2/19 12/17 38/2

1p/19q status in IDH1-mutant intact/codeleted/NA 21/12/5 9/9/1 13/3/1 0/0/2
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Two to 4 MRI targets (spheres with 5 mm diameter) were 
selected for each patient based on the MTRasym at 3.0 ppm 
and R2’ images. Targets were placed in regions with high/
low acidity and high/low hypoxia. Immunohistochemical 
analysis was performed on 5  μm formalin-fixed paraffin 
embedded tissue sections. Heat-induced antigen retrieval 
was accomplished with Antigen Decloaker buffer, pH 
6.0 in a Decloaking Chamber at 95°C for 30 min (Biocare 
Medical). Tissue sections were then treated with 3% per-
oxide and with Background Sniper (Biocare Medical) to re-
duce nonspecific background staining. Primary antibodies 
for HIF1α (Sigma-Aldrich) were applied in a 1:200 di-
lution for 80 min followed by detection with the Mach 3 
horseradish peroxidase (HRP) polymer detection system 
(Biocare Medical). Subsequent immunodetection was 
completed using HRP substrate Vector NovaRed (Vector 
Laboratories) and counterstained with hematoxylin. 
Primary antibodies for Ki67 (SP6, Sigma-Aldrich) were ap-
plied in a 1:100 dilution for 60 min followed by the same 
detection procedure. Tissue slides were scanned with dig-
ital slide scanner Aperio CS2 (Aperio Technologies). The 
positive cell percentage is calculated as the ratio of pos-
itive cell number and total cell number in a specific tissue 
section area, using positive cell detection algorithm with 
QuPath.32

Data Analysis and Statistics

Four mutually exclusive regions of interest (ROIs) were 
defined: (i) normal-appearing white matter (NAWM) con-
tralateral to the tumor; (ii) contrast enhancing tumor (CE) 

defined by T1-weighted digital subtraction33; (iii) regions of 
central necrosis defined by hypointensity on post-contrast 
T1-weighted images; and (iv) T2 hyperintense regions on 
T2-weighted fluid attenuated inversion recovery (FLAIR) 
images, excluding areas of necrosis and contrast enhance-
ment. All ROIs except for NAWM were segmented using a 
semi-automated thresholding method.33

Median MTRasym at 3.0 ppm (acidity), R2’ (hypoxia), and 
the product MTRasymxR2’ (reflecting the degree of both 
acidity and hypoxia) within tumor ROI excluding necrosis 
(combined ROI of contrast-enhancing tumor [ii] and non-
enhancing T2 hyperintense tumor [iv]) were compared 
between IDH1 mutant and wild type gliomas, and 1p/19q 
codeletion status, using Student’s t-test or Wilcoxon rank-
sum test if one or both samples are not normally distrib-
uted as assessed by a Shapiro–Wilk parametric hypothesis 
test. Median MTRasym at 3.0  ppm, R2’, and MTRasymxR2’ 
within tumor ROI were also compared across WHO grades 
using one-way ANOVA. P-values less than 0.05 were 
considered statistically significant. All metrics were re-
ported as mean ± standard deviation. Receiver operating 
characteristic (ROC) analysis was performed to assess 
the ability for MTRasym at 3.0  ppm, R2’, and MTRasymxR2’ 
to discriminate IDH1 status. Area under the curve (AUC), 
cutoff value, and prediction accuracy (percentage of cases 
predicted correctly) were reported. Lastly, the correlation 
between MTRasym at 3.0  ppm, R2’, and MTRasymxR2’ and 
quantitative IHC results were reported using Pearson’s 
correlation coefficient, r, and corresponding P-value. All 
calculations and analysis were carried out using MatLab 
(release 2017b, MathWorks).
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Fig. 2 Patient flow diagram. A total of 90 histologically proven glioma patients were included in this retrospective study. Of these 90 patients, 60 
patients were scanned either prior to radiation therapy and/or chemotherapy or had been off treatment for more than 2 years. The other 30 patients 
were either on active treatment or recently off treatment at the time of MRI scanning. Of the 60 treatment naïve patients, 20 patients received 
image-guided biopsies (2–4 per patient).
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Results

In general, IDH1 mutant gliomas (Fig. 3A, C) had lower 
acidity and hypoxia compared with IDH1 wild type 
gliomas (Fig. 3B, D, E), even when controlling for tumor 
grade (Fig. 3A–D). Exceedingly high acidity and hypoxia 
were observed within contrast enhancing areas, particu-
larly in IDH1 wild type glioblastomas (Fig. 3E). MTRasym at 
3 ppm, R2’ and MTRasymxR2’ were significantly different and 
increasing with increasing WHO grade (Supplementary 
Table 1; ANOVA; MTRasym P  =  0.005; R2’ P  =  0.005, 
MTRasymxR2’ P  =  0.013); however, these differences were 
not observed after controlling for IDH1 status.

Acidity and Hypoxia in Different Tissue Types

CE tumor, T2 hyperintense FLAIR regions, and areas of 
central necrosis exhibited significantly higher acidity 
compared with NAWM, as measured by MTRasym at 
3  ppm on CEST-SAGE-EPI or CEST-EPI (Supplementary 
Fig. 1A; P  <  0.001). This was true for both treatment 
naïve patients (Supplementary Fig. 1D; N  =  60) and all 
patients, including patients previously treated with sur-
gical resection with or without radiation and/or chemo-
therapy (N = 90). Areas of necrosis had the highest levels 
of acidity, followed by regions of CE, FLAIR hyperintense 
regions, and NAWM.

In the subset of patients who received CEST-SAGE-EPI for 
which R2’ was available (N = 55), T2 hyperintense regions 
(5.67 ± 2.46 s−1) exhibited significantly lower R2’ compared 
with NAWM (6.61 ± 1.35 s−1, P < 0.001), while CE lesions 
and necrosis (15.20 ± 9.43 s−1, 13.88 ± 9.49 s−1) exhibited 
significantly higher R2’ compared with NAWM and T2 
hyperintense lesions (Supplementary Fig. 1B; P  <  0.001 
for all comparisons). No difference in R2’ was observed 
between CE and necrotic regions (P = 0.598). These same 
trends were observed when examining treatment naïve 
patients exclusively (Supplementary Fig. 1E; N = 36).

The degree of both acidity and hypoxia, quantified by 
MTRasymxR2’, followed trends of similar MTRasym at 3 ppm 
(Supplementary Fig. 1F). Necrosis and CE tumor had the 
highest MTRasymxR2’ and were not significantly different 
(P  =  0.143; 6.92  ±  3.11 vs 4.30  ±  1.93), but were signifi-
cantly different compared with both T2 hyperintense re-
gions (25.65 ± 15.68; P < 0.001) and NAWM (19.88 ± 8.17; 
P < 0.001). Similar trends were observed when considering 
only treatment naïve patients (Supplementary Fig. 1F; 
N = 36).

Acidity and Hypoxia in IDH1 Mutant and Wild 
Type Gliomas

Consistent with qualitative observations, MTRasym at 3 ppm 
within T2 hyperintense regions were significantly lower 
in IDH1 mutant compared with IDH1 wild type gliomas 
(Fig. 4A; 1.52% ± 0.39% vs 1.78% ± 0.47%, P = 0.007). This 
difference, however, was removed after excluding WHO 
IV glioblastomas (IDH1 mutant: 1.50% ± 0.40%; IDH1 wild 
type: 1.73% ± 0.51%, P = 0.102). R2’ was also significantly 

lower in IDH1 mutant compared with wild type gliomas 
(Fig. 4B; 4.95 ± 2.37 s−1 vs 6.87 ± 2.78 s−1, P = 0.003), but not 
after excluding glioblastomas (P = 0.080). MTRasymxR2’, re-
flecting the degree of both acidity and hypoxia, were also 
significantly lower in IDH1 mutant compared with wild 
type gliomas (Fig. 4C; 5.91 ± 3.28 vs 8.48 ± 3.44, P = 0.001), 
even when examining lower grades exclusively (WHO II–
III) (5.83 ± 3.32 vs 8.48 ± 3.44, P = 0.023). The same trends 
were observed when considering only treatment naïve 
patients.

ROC analysis suggested the best differentiation of treat-
ment naïve IDH1 mutant from wild type gliomas was 
achieved using MTRasymxR2’ with a threshold of 6.58, 
which resulted in a sensitivity and specificity of 81.0% 
and 81.3%, respectively (Fig. 4D; AUC = 0.86; P = 0.0002). 
MTRasymxR2’ was also able to differentiate IDH1 mutation 
status when treated patients were included, albeit with 
slightly lower sensitivity (73.1%) and specificity (70.0%) 
(Fig. 4E; AUC  =  0.76, P  =  0.0008). Differentiation of IDH1 
mutant from wild type gliomas using MTRasymxR2’ can be 
further visualized by plotting MTRasym versus R2’ (Fig. 4F, 
G), where the cutoff value for best ROC performance de-
fined by MTRasymxR2’ = 6.58 is illustrated.

Acidity and Hypoxia in 1p/19q Codeleted and 
Intact IDH1 Mutant Gliomas

MTRasym at 3.0  ppm was significantly lower in 1p/19q 
codeleted IDH1 mutant gliomas compared with 1p/19q 
intact gliomas (Fig. 4H; 1.29% ± 0.30% vs 1.61% ± 0.41%, 
P = 0.024). No significant difference in R2’ (Fig. 4I; 1p/19q 
codeleted; 4.54  ±  2.46  s−1, 1p/19q intact; 4.48  ±  1.86  s−1, 
P = 0.926) or in MTRasymxR2’ (1p/19q codeleted; 5.05 ± 2.86, 
1p/19q intact; 5.37 ± 1.81, P = 0.306) were observed. These 
same characteristics were observed when only treat-
ment naïve patients were considered (MTRasym; P = 0.035, 
R2’; P  =  0.649 and MTRasymxR2’; P  =  0.543). Within only 
WHO II gliomas, lower MTRasym was also associated with 
1p/19q codeleted (P  =  0.027; treatment naïve, P  =  0.016), 
suggesting that this difference may originate from molec-
ular features.

Correlation Between MRI Measures of Tumor 
Acidity and Hypoxia with IHC

To better understand the association between MRI meas-
ures of acidity and hypoxia and histological features of the 
tumor including HIF1α and Ki67 expression, we performed 
multiple image-guided biopsies in glioma patients from 
select regions with high or low MTRasym at 3 ppm and R2’. 
Figure 5 illustrates examples of MRI-based biopsy targets 
(red spheres in Fig. 5A, D, G) along with corresponding 
HIF1α (Fig. 5B, E, H) and Ki67 (Fig. 5C, F, I) expression within 
those areas (note all samples were counterstained with 
hematoxylin). Quantitative estimates of the proportion 
of cells with stain positivity demonstrated an interesting 
dichotomy between IDH1 mutant and wild type tumors 
(Fig. 6). Specifically, we observed a positive correlation be-
tween MTRasym at 3 ppm and the proportion of HIF1α pos-
itive cells in IDH1 wild type (r = 0.610, P = 0.003) but not in 
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Fig. 3 pH- and oxygen-sensitive molecular MR images in representative glioma patients. (A) A 34-year-old female patient with a WHO grade II, 
IDH1 mutant, 1p/19q codeleted glioma with only slightly elevated acidity within T2 hyperintense regions on FLAIR (outlined in red), reduced oxygen 
extraction illustrated by decreased R2’ compared with normal tissue. (B) A 43-year-old male patient with a WHO grade II, IDH1 wild type glioma 
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oxygen extraction similar to surrounding white matter. (E) A 69-year-old male patient with a WHO grade IV, IDH1 wild type glioblastoma illustrating 
high levels of both tumor acidity and hypoxia.
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IDH1 mutant gliomas (Fig. 6A; r = 0.080, P = 0.805). A mod-
erate correlation was also found between MTRasym at 
3 ppm and the proportion of Ki67 positive cells in IDH1 mu-
tant (Fig. 6B; r = 0.451, P = 0.027), but not wild type gliomas 
(r = 0.240, P = 0.273), which may have been at least partly 

due to necrotic tissue also having high MTRasym at 3 ppm. 
R2’ was positively correlated with the proportion of HIF1α 
positive cells in IDH1 wild type (r = 0.667, P = 0.008), but 
not in IDH1 mutant gliomas (Fig. 6C; r = 0.782, P = 0.198). 
Similarly, a positive correlation was observed between 
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R2’ and the proportion of Ki67 positive cells in IDH1 wild 
type (r = 0.513, P = 0.028) but not in mutant gliomas (Fig. 
6D; r = 0.788, P = 0.165). Measures of MTRasymxR2’, thought 
to reflect the degree of both acidity and hypoxia, were 
positively correlated with the proportion of HIF1α pos-
itive cells in both IDH1 mutant (r  = 0.727, P  = 0.039) and 
wild type gliomas (Fig. 6E; r = 0.635, P = 0.006). However, 
MTRasymxR2’ was only correlated with Ki67 in IDH1 wild 
type (r  =  0.601, P  =  0.018) and not IDH1 mutant gliomas 
(Fig. 6F; r = 0.314, P = 0.673).

Discussion

The current study demonstrates the potential of simulta-
neous pH- and oxygen-sensitive amine CEST-SAGE-EPI to 
provide important metabolic information about gliomas. 
Results suggest that the degree of tumor acidity and hy-
poxia, measured using a single measure of MTRasymxR2’, 
may be a useful imaging biomarker for differentiating IDH1 
and 1p/19q status in both treated and untreated gliomas, 
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with IDH1 mutant gliomas as well as 1p/19q-codeleted 
IDH1 mutant gliomas having lower acidity and hypoxia. 
Additionally, results from the current study may provide 
new insight into the mechanisms in which IDH1 mutation 

and 2-HG ultimately affect tumor energy metabolism. 
Despite the early reports that PHD, like the other αKG-
dependent enzymes, is competitively inhibited by 2-HG 
and subsequently increases HIF1α levels,11,12 results from 
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 1194 Yao et al. Molecular imaging of IDH1 mutant gliomas

the current study appear to support more recent studies 
showing D-2-HG accumulation activates PHD,13 leading to 
decrease in HIF1α levels and lower expression of HIF1α-
responsive genes, including many essential for glycol-
ysis.34 As enhanced glycolysis is a major cause of tumor 
acidity,35 suppression of glycolytic pathway related genes 
would presumably reduce acidity, which is supported by 
the present observation of lower MTRasym at 3.0  ppm in 
IDH1 mutant gliomas. In accordance with the present 
results, the findings of Khurshed et al36 also suggested that 
IDH1 wild type gliomas have high expression of glycolysis 
related genes, as evaluated by The Cancer Genome Atlas 
metabolic gene expression analysis and in vitro quantifica-
tion, whereas IDH1 mutant gliomas overexpress oxidative 
tricarboxylic acid cycle involved genes.

Interestingly, histological results in the current study 
suggest that measures of R2’, which are thought to be 
proportional to oxygen extraction fraction, are positively 
correlated with HIF1α expression, but only in IDH wild 
type gliomas. This observation appears consistent with 
results from Koivunen et  al13 showing that IDH1 mutant 
gliomas have a blunted HIF response to external hypoxia 
signaling. Although there are few studies examining R2’ 
in gliomas, it is conceivable that lower R2’ in IDH1 mu-
tant gliomas could be due to lower proliferation rates37,38 
and less angiogenesis15 compared with IDH1 wild type 
gliomas. Lower observed acidity and hypoxia in IDH1 mu-
tant gliomas may also partially explain the higher sensi-
tivity to radiotherapy and chemotherapy39–41 and less 
aggressive clinical course42,43 compared with their IDH1 
wild type counterparts. We would expect similar imaging 
characterizations in IDH2 mutant gliomas, due to the sim-
ilar oncometabolic function of IDH1 mutants and IDH2 
mutants, although no conclusion can be drawn within 
this study because of the small sample size (one IDH2 mu-
tant was identified within the 52 IDH1 wild type gliomas). 
Further investigation is needed to test this hypothesis.

Several limitations of the present study should be 
addressed. First, MTRasym may not be the best method for 
estimating pH sensitivity,44–46 since it can be confounded 
by other factors. Similarly, R2’ may also be influenced 
by additional factors other than oxygen extraction, in-
cluding blood volume and B0 inhomogeneities. We are 
continuing to work on technical development of im-
aging acquisition and post-processing methods, in order 
to achieve better image quality, correct for confounding 
factors, and reduce sensitivity to motion and field inho-
mogeneity. Additionally, several non-invasive MR-based 
approaches have been shown to differentiate IDH1 mutant 
from wild type gliomas, including magnetic resonance 
spectroscopy‒based detection of 2-HG,47 diffusion48 and 
perfusion imaging,15 and amide proton transfer-weighted 
CEST imaging.49,50 Future studies comparing these 
techniques with the current approach are necessary to un-
derstand the association between the various physiologic 
parameters in IDH1 mutant and wild type gliomas. Despite 
these potential limitations, the proposed method for simul-
taneous pH- and oxygen-sensitive MRI contrast in clinically 
realistic acquisition times appears able to provide unique 
and valuable information about the tumor microenviron-
ment that complements current anatomic and physiologic 
MRI techniques.

Conclusion

The current study suggests that simultaneous pH- and 
oxygen-sensitive amine CEST-SAGE-EPI is a clinically fea-
sible and potentially valuable imaging technique for distin-
guishing between IDH1 mutant and wild type gliomas as 
well as 1p/19q codeleted from intact IDH1 mutant gliomas. 
Results suggest that the IDH1 mutation may be associated 
with lower acidity and vascular hypoxia, supporting the hy-
pothesis that 2-HG produced by mutation of IDH1 activates 
PHD, resulting in the degradation of HIF1α, subsequently 
preventing the metabolic shift from oxidative phosphoryl-
ation to glycolysis.
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