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Abstract

Pearl (2000) offers a formal framework for modeling causal
and counterfactual reasoning. By virtue of the way it
represents intervention on a causal system, the framework
makes predictions about how people reason when asked
counterfactual questions about causal relations. Four studies
are reported that test the application of the framework to
deterministic causal and conditional arguments. The results
support the proposed representation of causal arguments,
especially when the nature of the counterfactual intervention
is made explicit. The results also show that conditional
relations are construed in different ways.

Introduction
Many questions are decided by causal analysis. In the law,
issues of negligence concern who caused an outcome and, at
least under common law, the determination of guilt requires
evidence of a causal chain leading to a crime. Evidence that
might increase the probability of guilt (e.g., an accused’s
race) is impermissible if it doesn’t support a causal analysis
of the crime. Some legal scholars (Lipton, 1992) claim that
legal analyses of causality are in no sense special, that
causation in the law derives from everyday thinking about
causality. Causal analysis is just as prevalent in science,
engineering, politics, indeed in every domain that involves
human prediction and control.

Causal analysis is often difficult because it depends not
only on what happened, but also on what might  have
happened (Mackie, 1974). Thus the claim that A caused B
will often imply that if A had not occurred, then B would
not have occurred. Likewise, the fact that B would not have
occurred if A had not often suggests that A caused B.

This explains a fundamental law of experimental
science: Mere observation can only reveal a correlation, not
a causal relation. That’s why causal induction requires
manipulation, control over an independent variable such that
changes in its value will determine the value of the
dependent variable whilst holding other relevant conditions
constant. Everyday causal induction has these same
requirements. Causal inductions in everyday contexts are
aided by manipulation of potential causes, by people
intervening on the world rather than just observing it (the
conditions favoring intervention are spelled out in Pearl,
2000; Spirtes, Glymour, & Scheines, 1993).

If we already have some causal knowledge, then certain
causal questions can be answered without actual

intervention. Some of those questions can be answered
through mental intervention, by imagining a counterfactual
situation in which a variable is manipulated and determining
the effects of change. People attempt this, for example,
whenever they wonder "if only..." (if only I hadn’t made that
stupid comment... If only my data were different...).

Pearl (2000) offers a causal modeling framework that
covers such counterfactual reasoning. The framework makes
predictions about how people reason when asked
counterfactual questions about causal relations. Pearl’s
analysis extends to relations of probabilistic causality but
this paper is limited to studies of deterministic arguments.
Before describing those studies, we briefly review the
relevant aspects of Pearl’s analysis.

Observation vs. Causation
(Seeing vs. Doing)

Seeing
In general, observation can be represented using the tools of
conventional probability. The probability of observing an
event (say, that a logic gate is working properly) under some
circumstance (e.g., the temperature is low) can be
represented as the conditional probability that a random
variable G, representing the logic gate, is at some level of
operation g when temperature T is observed to take some
value t:

Pr{G = g|T = t} defined as 
t}=Pr{T

t}=T & g=Pr{G
.

Conditional probabilities are symmetric in the sense that, if
well-defined, their converses are well-defined too. In fact,
given the marginal probabilities of the relevant variables,
Bayes’ rule tells us how to evaluate the converse:

Pr{T = t|G = g} = 
g}=Pr{G

t}=Pr{T
t}=T|g=Pr{G . (1)

Doing
To represent action, Pearl proposes an operator do(•) that
controls both the value of a variable that is manipulated as
well as a graph that represents causal dependencies.



do(X=x) has the effect of setting the variable X to the value
x and also changes the graph representing causal relations
by removing any directed links from other variables to X
(i.e., by cutting X off from the variables that normally cause
it). For example, imagine that you believe that temperature
T causally influences the operation of logic gate G, and that
altitude A causally influences T. This could be represented
in the following causal diagram:

Presumably, changing the operation of the logic gate would
not affect temperature (i.e., there’s no causal link from G to
T). We can decide if this is true by acting on the logic gate
to change it to some operational state g and then measure
the temperature; i.e., by running an experiment in which the
operation of the logic gate is manipulated. We could not in
general determine a causal relation by just observing
temperatures under different logic gate conditions, because
observation provides merely correlational information.
Measurements taken in the context of action, as opposed to
observation, would reflect the probability that T=t under the
condition that do(G=g):

Pr{T = t|do(G = g)}

Obtained by, first, constructing a new causal model by
removing any causal links to G:

The rationale for this is that if I have set G=g, then my
intervention renders other potential causes of g irrelevant. I
am overriding their effects, so I should not make any
inferences about them. Now I can examine the probability
distribution of T in the causal graph. But in doing so, I
should not take into account the prior probability of g,
because I have set its value, making its value certain by
virtue of my action. Because the do operation renders T and
G probabilistically independent, the result is that:

Pr{T = t|do(G = g)} = Pr{T = t}.

The do  operator is used to represent experimental
manipulations. It provides a means to talk about causal
inference through action. It can also be used to represent
mental manipulations. It provides a means to make
counterfactual inferences by determining the representation
of the causal relations relevant to inference if a variable had
been set to some counterfactual value.

Do we "do"?
Consider the following Causal Argument (1) in which A, B,
C, and D are the only relevant events:

A causes B.
A causes C.
B causes D.
C causes D.
D definitely occurred.

On the basis of these facts, please answer the following 2
questions:
i. If B had not occurred, would D still have occurred?___

(yes or no)
ii. If B had not occurred, would A have occurred?___  (yes

or no)

Pearl (2000) gives the following analysis of such a
system. First, we can graph the causal relations amongst the
variables as follows:

A

B

C

D

You are told that D has occurred. This implies that B or C or
both occurred, which in turn implies that A must have
occurred. A is the only available explanation for D. Thus, all
4 events have occurred. When asked what would have
happened if B had not occurred, we should apply the do
operator, do(B = did not occur) with the effect of severing
the links to B from its causes:

A

B

C

D

Therefore, we should not draw any inferences about A from
the absence of B. So the answer to the counterfactual
question ii. above is "yes" because we already decided that
A occurred, and we have no reason to change our minds.
The answer to counterfactual question i. is also "yes"
because A occurred and we know A causes C which is
sufficient for D.

Other theories of propositional reasoning, mental models
theory (Johnson-Laird & Byrne, 1991) and any theory based
on logic (e.g., Rips, 1994), don’t really make predictions in
this context because the argument uses causal relations and
therefore lies outside the propositional domain. The closest
they can come is to posit that causal relations are interpreted
as material conditionals (an assumption made by Goldvarg
& Johnson-Laird, 2001). To see if such an interpretation of
Causal Argument (1) is valid, we can consider Abstract
Conditional Argument (1):

If A then B.
If A then C.

A T G

A T G



If B then D.
If C then D.
D is true.

The corresponding questions were:
i. If B were false, would D still be true?  ___  (yes or no)
ii. If B were false, would A be true?  ___  (yes or no)

The causal modeling framework makes no particular
prediction about such an argument except to say that,
because it does not necessarily concern causal relations,
responses could well be different from those for the causal
argument. The predictions made by a "material conditional"
account will depend on assumptions about how people
interpret the questions; i.e., how they modify the original set
of premises. To answer question i. people may suppress the
statement that D is true, whilst adding the statement that B
is false. If they do, the truth of D is indeterminate, because it
is not entailed by the falsity of B. Alternatively, people
might not suppress D. The answer would then be "yes"
because the original premises state that D is true. Such an
account yields a less ambiguous answer to question ii. Once
people suppose that B is false, they are licensed to infer, by
modus tollens, that A is false. If these "material conditional"
theories make any prediction for the causal arguments, these
should correspond to their prediction for comparable
conditional arguments.

Experiment 1
Method. 238 University of Texas at Austin

undergraduates were given one of the two arguments shown
and asked the listed questions.

Results. Responses are shown in Table 1. The
predictions of the causal modeling framework were
supported for the causal arguments but not for the
conditional arguments. The predominance of "yes"
responses in the causal condition implies that for the
majority of participants the supposition that B didn’t occur
did not influence their beliefs about whether A or D
occurred. This is consistent with the idea that these
participants mentally severed (undid) the causal link
between A and B and thus did not draw new conclusions
about A or about the effects of A from a counterfactual
assumption about B. Responses to the conditional argument
were more variable: no one strategy for interpreting and
reasoning with conditional statements dominated.

Table 1: Percentages of participants responding "yes" to
Abstract Causal and Conditional Arguments (1).

Question Causal Conditional
i. D holds 80% 57%
ii. A holds 79% 36%

These results were replicated with two additional
arguments that used an identical causal or logical structure
but added semantic content to the problems. For example,

one pair of arguments concerned a robot. Here is the causal
version of that problem (Robot Causal Argument 1):

A certain robot is activated by 100 (or more) units of
light energy. A 500 unit beam of light is shone through a
prism which splits the beam into two parts of equal
energy, Beam A and Beam B, each now travelling in a
new direction. Beam A strikes a solar panel connected to
the robot with some 250 units of energy, causing the
robot’s activation. Beam B simultaneously strikes
another solar panel also connected to the robot. Beam B
also contains around 250 units of light energy, enough to
cause activation. Not surprisingly, the robot has been
activated.

i. If Beam B had not struck the solar panel, would the robot
have been activated?

ii. If Beam B had not struck the solar panel, would the
original (500 unit) beam have been shone through the
prism?

The same 238 undergraduates were given either the
causal or conditional version of this problem. Their
responses are shown in Table 2.

Table 2: Percentages of participants responding "yes" to
Robot Causal and Conditional Arguments (1).

Question Causal Conditional
i. robot activated 80% 63%
ii. beam shone 71% 55%

The results are very close to those of the abstract
problem except that a higher percentage of participants said
"yes" in the conditional version of this problem, z = 2.83; p
< .01. This may have occurred because a larger proportion
interpreted the "if-then" connectives of the conditional
version as causal relations. The clear physical causality of
the robot problem lends itself to causal interpretation.

Experiment 2
One might argue that the difference between the causal

and conditional arguments in the previous examples is not
due to a greater tendency to counterfactually decouple
variables from their causes in the causal over the conditional
context, but instead to different pragmatic implicatures of
the two contexts. In particular, perhaps the causal context
presupposes the occurrence of A more than the conditional
context presupposes the truth of A. It’s more plausible that
D would be true in the conditional arguments even if A were
false than that D would have occurred in the causal
arguments even if A had not. If so, then the greater
likelihood of saying "yes" in the causal scenarios could be
due to these different presuppositions rather than different
likelihoods of undoing.

To control for this possibility as well as to replicate the
effect, we examined causal and conditional versions of
arguments with the following structure:



B

C

D

E
A

Participants were told not only that the final effect, E, had
occurred, but also that the initial cause, A, had too. This
should eliminate any difference in presupposition of the
initial variable because its value is made explicit. To
illustrate with one of the problems shown, here is the causal
version of the abstract problem (Causal Argument 2):

A causes B.
B causes C.
B causes D.
C causes E.
D causes E.
A definitely occurred.
E definitely occurred.

i. If D did not occur, would E still have occurred?
ii. If D did not occur, would B still have occurred?

The causal modeling framework predicts that a
counterfactual assumption about D should disconnect it
from B in the causal context so that participants should
answer "yes" to both questions. Participants should only
answer "yes" in the conditional context if they interpret the
problem causally. Once again the predictions of a material
conditional account depend on assumptions about how the
questions modify the premises. A plausible assumption is
that only statements mentioned in the question are
suppressed. Thus in answering question ii., belief about the
truth of D and B might be suspended and not-D supposed.
However, this leads to a conflict because not-D implies not-
B (via modus tollens) but the premises state A and thus
imply B (via modus ponens). It is thus unclear whether or
not they should infer B. In any case, a material conditional
account must predict no difference between the causal and
conditional contexts.

Method. Twenty Brown University undergraduates
received either the causal or conditional versions of the
abstract and robot problems described above.

Results. The results, shown in Tables 3 and 4, are
comparable to those from the earlier problems, although the
proportion of "yes" responses tended to be lower in the
causal condition, especially for the likelihood of the beam
shining if the solar panel had not been struck (only 55% in
Table 4).

Table 3: Percentages of participants responding "yes" to
Abstract Causal and Conditional Arguments (2).

Question Causal Conditional
i. E holds 70% 45%
ii. B holds 74% 50%

Table 4: Percentages of participants responding "yes" to
Robot Causal and Conditional Arguments (2).

Question Causal Conditional
i. robot activated 90% 75%
ii. beam shone 55% 45%

A difference between causal and conditional arguments
again obtained for Abstract arguments, z = 2.20; p = .01, but
not for Robot ones, z = 1.18; n.s. The difference for
Abstract arguments suggests that the earlier results cannot
be attributed entirely to different pragmatic implicatures
from causal and conditional contexts. The overall reduction
in "yes" responses could be due to either a different
participant population, some proportion of participants
failing to establish an accurate causal model with these more
complicated scenarios, or participants not implementing the
undoing operation in the expected way (i.e., not mentally
disconnecting B from D).

Failure to undo is not entirely unreasonable for these
problems because D’s nonoccurrence is not definitively
counterfactual. The question said "If D did not occur" which
does not state why D did not occur; the reason is left
ambiguous. One possibility is that D did not occur because
B didn’t. Nothing in the problem explicitly states that the
nonoccurrence of D should not be treated as diagnostic of
the nonoccurrence of B.

Experiment 3
The causal modeling framework predicts that the

connection between B and D should be mentally undone
whenever D is explicitly prevented; when an intervention
(mental or physical) outside the model determines the value
of D. To simulate such a situation, we repeated Experiment
2, but made the interventional prevention of D explicit.

Method. Participants saw exactly the same sets of
premises in both causal and conditional contexts, but were
asked different questions, questions that made the external
prevention of D explicit (Causal and Conditional Arguments
2EP). For the abstract causal context, the questions were:

i. If somebody stepped in to prevent D from occurring,
would E still have occurred?

ii. If somebody stepped in to prevent D from occurring,
would B still have occurred?

For the abstract conditional context, the questions were:

i. If somebody stepped in and changed the value of D to
false, would E still be true?

ii. If somebody stepped in and changed the value of D to
false, would B still be true?

For the robot context, the questions in the causal and
conditional versions were identical (only the paragraphs
describing the situation differed):



i. If a lead barrier were placed in the path of Beam B to
prevent it from striking the solar panel, would the robot
have been activated?

ii. If a lead barrier were placed in the path of Beam B to
prevent it from striking the solar panel, would the original
(500 unit) beam have been shone through the prism?

Responses were obtained from either 18 or 20 Brown
undergraduates.

Results. Results are shown in Tables 5 and 6. The
probability of saying "yes" was higher in the explicit
prevention context than in its absence, but not significantly
so, z = 1.16 and 1.39 for Abstract and Robot arguments,
respectively. The two may not differ statistically because the
probability of saying "yes" was already so high in the causal
condition of Experiment 2. In any case, the great majority of
participants acted as if explicitly preventing D caused it to
have no diagnostic value for its cause (B), and that therefore
other effects of the cause (E) still held. In other words, the
effect of explicitly preventing D is well captured by the do
operator.

Table 5: Percentages of participants responding "yes" to
Abstract Causal and Conditional Arguments (2EP),

prevention of the antecedent explicit.

Question Causal Conditional
i. E holds 75% 50%
ii. B holds 80% 67%

Table 6: Percentages of participants responding "yes" to
Robot Causal and Conditional Arguments (2EP).

Question Causal Conditional
i. robot activated 75% 83%
ii. beam shone 75% 67%

An unexpected byproduct of explicit prevention was to
increase the proportions of "yes" responses in even the
conditional context, z = 1.80; p < .05. This probably
occurred because the explicit prevention context made it
more likely that the arguments would be construed causally.
For example, a question beginning "If a lead barrier were
placed in the path of Beam B to prevent it from striking the
solar panel," may well have suggested to participants that
they should construe the situation in terms of physical
causation and reason about the situation using causal logic.

One implication of this observation is that the
interpretation of conditionals varies with the theme of the
text that the statements are embedded in. Conditionals
embedded in deontic contexts are well known to be
interpreted deontically (Manktelow & Over, 1990). The
Abstract Conditional Arguments (1) and (2) above show
that when the theme is ambiguous, the interpretation will be
highly variable. Robot Conditional Argument (2EP) shows
that when the theme is causal, conditionals will be
interpreted causally.

Experiment 4
The final experiment attempts to replicate the

observations made thus far by showing the undoing effect as
well as the enhancement of the effect in an explicit
prevention context. Moreover, it does so using an if-then
statement in order to show that a conditional statement can
be treated as causal in an appropriate context.

Method. The following scenario was described to 78
Brown undergraduates:

All rocketships have two components, A and B.
Component A causes component B to operate. In other
words, if A, then B.

The scenario assumes the simplest possible causal graph:

Notice that the relation between A and B is stated using an
if-then construction. Approximately half the participants, in
the non-explicit prevention condition, were then asked:

i. Suppose component B were not operating, would
component A still operate?

ii. Suppose component A were not operating, would
component B still operate?

The remaining half, in the explicit prevention condition,
were asked:

i. Suppose component B were prevented from operating,
would component A still operate?

ii. Suppose component A were prevented from operating,
would component B still operate?

The causal modeling framework predicts the undoing
effect, that participants will say "yes" to question i.,
Component A will continue to operate if B isn’t because A
should be disconnected from B by virtue of the
counterfactual supposition about B. It also predicts the
proportion will be higher in the explicit than non-explicit
prevention conditions because the nature of the intervention
causing B to be nonoperative is less ambiguous. No other
framework, logical or otherwise, makes either of these
predictions.  Finally, the causal modeling framework
predicts that people should respond "no" to the second
question regardless of condition. If A is the cause of B, then
B should not operate if A does not.

Results. The results are shown in Table 7. The 68%
giving an affirmative answer to the first question in the
Non-explicit Prevention condition replicates the undoing
effect seen in the previous studies. The even greater
percentage (89%, z = 2.35; p < .01) in the Explicit condition
replicates the finding that the undoing effect is greater when
the reason that a variable has the specified value is made
explicit. Responses to the second question were almost all
negative, demonstrating that people are clearly

A B



understanding that the relevant relation is causal. This rules
out an alternative explanation for the earlier studies, that
people were treating causes and effects as disconnected
because they didn’t interpret the relations as causal but
merely as correlational.

Table 7: Percentages of participants responding "yes" to
questions in the Rocketship scenario given questions with

antecedents non-explicitly or explicitly prevented.

Question Non-
explicit

Prevention

Explicit
Prevention

i. if not B, then A? 68% 89%
ii. if not A, then B? 2.6% 5.3%

Discussion
These data show that most people obey a rational rule of
counterfactual inference, the undoing principle. When
reasoning about the consequences of a counterfactual
supposition of an event, most people do not change their
beliefs about the state of the normal causes of the event.
They reason as if the mentally changed event is
disconnected and therefore not diagnostic of its causes. This
is a rational principle of inference because an effect is
indeed not diagnostic of its causes whenever the effect is not
being generated by those causes but instead by mental or
physical intervention from outside the normal causal
system. To illustrate, when an experimenter manipulates the
brightness of a computer monitor, one should not assume
that the monitor needs replacing.

The demonstrations all described a deterministic causal
system. The undoing principle also applies to probabilistic
causes however.

These data support the psychological reality of a central
tenet of Pearl’s (2000) causal modeling framework. The
principle is so central because it serves to distinguish causal
relations from other relations, such as mere probabilistic
ones. The presence of a formal operator that enforces the
undoing principle, Pearl’s do operator, makes it possible to
construct representations that afford valid causal induction
and inference -- induction of causal relations that support
manipulation and control and inference about the effect of
such manipulation, be it from actual physical intervention or
merely counterfactual thought about intervention. The do
operation is precisely what’s required to distinguish
representations of probability like Bayes’ nets from
representations of causality.

More generally, the findings are consistent in a
qualitative sense with the view of cognition assumed by
Pearl (2000) following Spirtes, Glymour, and Scheines
(1993). Their analysis starts with the assumption that people
construe the world as a set of autonomous causal
mechanisms and that thought and action follow from that
construal. The problems of prediction, control, and
understanding can therefore be reduced to the problems of
learning and inference in a network that represents causal

mechanisms veridically. Once a veridical representation of
causal mechanisms has been established, learning and
inference can take place by intervening on the
representation rather than on the world itself. But none of
this can be achieved without a suitable representation of
intervention. The do operator is intended to allow such a
representation and the studies reported herein provide some
evidence that people are able to use it correctly.

Representing intervention is not always as easy as
forcing a variable to some value and cutting the variable off
from its causes. Indeed, most of the data reported here show
some variability in people’s responses. People are not
generally satisfied to simply implement a do operation.
People often want to know precisely how an intervention is
taking place. A surgeon can’t simply tell me that he’s going
to replace my hip. I want to know how, what it’s going to be
replaced with, etc. After all, knowing the details is the only
way for me to know with any precision how to intervene on
my representation, which variables to do, and thus what can
be safely learned and inferred.

Causal reasoning is not the only mode of reasoning. But
the presence of a calculus for causal inference removes any
doubt that it’s an important one.
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