
UCLA
UCLA Electronic Theses and Dissertations

Title

The Design and Testing of a Wireless Sensor Network for Real-Time Point of Use Water
Quality Monitoring

Permalink

https://escholarship.org/uc/item/0wx9017g

Author

Fowler, McKenzie Lynn

Publication Date

2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0wx9017g
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

The Design and Testing of a Wireless Sensor Network

for Real-Time Point of Use Water Quality Monitoring

A thesis submitted in partial satisfaction

of the requirements for the degree Master of Science

 in Civil Engineering

by

McKenzie Lynn Fowler

2021

© Copyright by

McKenzie Lynn Fowler

2021

 ii

ABSTRACT OF THE THESIS

The Design and Testing of a Wireless Sensor Network

for Real-Time Point of Use Water Quality Monitoring

by

McKenzie Lynn Fowler

Master of Science in Civil Engineering

University of California, Los Angeles, 2021

Professor Eric M.V. Hoek, Chair

Across the globe millions of people lack access to clean drinking water. This has led to

widespread distrust of water resources, including tap water. One way to ensure the quality of

drinking water and re-establish public trust is by implementing smart water monitoring

technologies that can be utilized by operators and consumers. The work presented in this paper

encompasses the design and testing of a wireless sensor network for point of use water quality

monitoring. The final prototype allows for remote data monitoring and lays the foundations for

further work to use the data acquired by the system for uses such as contamination detection and

predictive modeling of water quality.

 iii

The thesis of McKenzie Lynn Fowler is approved

David Jassby

Jennifer Jay

Eric M.V. Hoek, Committee Chair

University of California, Los Angeles

2021

 iv

Table of Contents

Introduction ... 1

Related Work ... 3

Wireless Sensor Networks .. 3

Water Quality Correlations ... 7

Method ... 10

Sensor Selection ... 11

Sensor Calibration .. 14

System Architecture ... 14
Hardware Components ... 15
Software Components ... 16

Experimental Design ... 22
Experimental Phase One: Sensor Validation ... 22
Experimental Phase Two: Predictive Model Development ... 26
Experimental Phase Three: Contamination Detection .. 31

Results and Discussion ... 32

Sensor Verification Results ... 32

Predictive Modeling Results ... 38

Contaminant Dosing Results ... 47

Conclusions and Future Work .. 59

Appendix A .. 61

Appendix B .. 65

Appendix C .. 83

References ... 85

 v

List of Tables
Table 1:Sensor Specifications .. 12
Table 2:Primary and Secondary Drinking Water Parameters Tested ... 27
Table 3:Sensor Statistical F-Tests for Equal or Unequal Variance .. 36
Table 4: Sensor Statistical p-Tests for comparing instruments ... 37
Table 5: Regression Statistics for Sensor Modelling .. 46
Table 6: Correlation Matrix for Atlas Scientific Sensors ... 47

List of Figures
Figure 1: System Baseboard and Carrier Boards .. 15
Figure 2: Assembled Wireless Sensor Network .. 16
Figure 3: Terminal Window for Tap Water Data Collection .. 18
Figure 4: Temperature Instrument Comparison .. 33
Figure 5: ORP Instrument Comparison ... 34
Figure 6: pH Instrument Comparison .. 35
Figure 7: EC Instrument Comparison .. 36
Figure 8: Predicted vs. Measured DOC ... 39
Figure 9: Predicted vs. Measured Turbidity .. 40
Figure 10: Predicted vs. Measured Free Chlorine ... 41
Figure 11: Predicted vs. Measured Copper ... 42
Figure 12: Predicted vs. Measured Zinc .. 43
Figure 13: Predicted vs. Measured Lead ... 44
Figure 14: Predicted vs. Measured Manganese ... 45
Figure 15: Predicted vs. Measured Iron .. 46
Figure 16: pH Response to Copper Contamination ... 49
Figure 17: pH Response to Iron Contamination .. 50
Figure 18: pH Response to Lead Contamination .. 51
Figure 19: pH Response to Zinc Contamination ... 52
Figure 20: EC Response to Copper Contamination .. 53
Figure 21: EC Response to Iron Contamination .. 54
Figure 22: EC Response to Lead Contamination .. 55
Figure 23: EC Response to Zinc Contamination ... 56
Figure 24: EC Response to NaCl Contamination .. 57
Figure 25: DO Response to Copper Contamination .. 58
Figure 26: DO Response to NaCl Contamination ... 59

 vi

Acknowledgements

First and foremost, I must thank my research advisor Dr. Eric M.V. Hoek. Without his

valuable guidance, insight, and support I would not have been able to accomplish writing this

thesis. I would also like to thank Dr. David Jassby and Dr. Jennifer Jay for serving on my thesis

committee. All of whom have taught me so much and provided invaluable resources in my time

at UCLA in their classes and throughout my research journey. In addition, I would like to thank

all the members of my undergraduate research team who assisted throughout the project, your

contributions are greatly appreciated. Deepest thanks must also go out to the sponsors of this

research at 501CTHREE, who’s vision and ongoing funding made this all possible. Lastly, I

would like to acknowledge my family and friends. Words cannot express the gratitude I have for

your constant support and encouragement in all my endeavors.

 1

Introduction
As of 2010, safe and accessible drinking water has been explicitly recognized as a human

right by the United Nations General Assembly and deemed essential for public health and

economic prosperity. Despite this designation, 785 million people lack essential drinking water

services globally, and at least two billion people use drinking water sources contaminated with

feces. Diseases like cholera, diarrhea, dysentery, hepatitis, typhoid, and polio are linked to such

sources of contamination (WHO, 2019). Despite the risks associated with a lack of essential

water services, many drinking water utilities face challenges meeting regulations due to limited

water supply, strict budgets, high demands due to population growth, aging infrastructure, and

increasingly strict regulations for water quality. Analytical testing and water quality monitoring

must be carried out regularly to ensure water is free from priority biological and chemical

contamination. Unfortunately, these methods often take multiple days to conduct, in which case

contaminated water may already have had negative impacts on public health.

 These challenges can contribute to public water utilities violating regulations established

by the EPA, increasing interest in solutions such as point-of-use (POU) filtration, and real-time

water quality monitoring. Even if violations are not observed from water utilities there is still

potential for contamination between treatment and the tap. This contamination can source back

to community water system's distributional networks and property owner's premise plumbing

(Pierce et al., 2019).

 Before reaching taps, consumers can install POU drinking water treatment systems in

their water supply lines to provide on-site treatment to the water they consume. These systems

encompass many treatment technologies such as membranes, filtration, UV disinfection,

activated carbon, etc. The utility of implementing POU filtration shows in its ability to reduce

contamination’s acute and chronic health effects. Still, there is little evidence of commercially

 2

available technologies to improve the “smartness” of point-of-use water systems in terms of their

ability to perform tasks such as monitoring and reporting on water quality (Wu et al., 2021.)

Possible ways to enhance the smartness of point-of-use filters include integrating Internet of

Things (IoT) enabled sensor technologies.

Commercially available sensors measure parameters including pH, oxidation-reduction

potential (ORP), and electrical conductivity (EC), which can all be affected by chemical and

biological contaminants—making these parameters effective indicators for the overall water

quality as well as capable of detecting changes in water quality. When combined with the

integrated circuit microcontrollers and micro processing technologies that have emerged in the

last decade, there has become a platform for developing robust and customizable data loggers for

relatively low costs. This fact combined with the application of data analysis techniques such as

outlier detection and machine learning using back-end software allow for faster response times to

possible contamination events, collection and analysis of large spatiotemporal data sets, and

diagnostic capabilities for water treatment systems, as just a few of the potential benefits of real-

time water quality monitoring.

The work presented in this manuscript describes the design, procurement, building, and testing of

an IoT-enabled monitoring system prototype for POU applications with these goals in mind. The

proposed system consists of a sensor package that includes basic water quality parameters of pH,

EC, ORP, Dissolved Oxygen (DO), and temperature. The system uses a Raspberry Pi 4 Model B

microprocessor. It includes a software program that enables data transfer from the sensors to an

online repository where any collaborators who have access can view the data. Preliminary

algorithms that utilize reference correlations, statistical analysis techniques, and physical and

 3

chemical constants to calculate and predict other water quality parameters such as corrosivity

risk have also been developed.

Related Work

Wireless Sensor Networks
Wireless sensor networks have been applied to an array of environmental monitoring

problems. Those focused on water quality monitoring cover a range of applications for

environmental waters, drinking water, and wastewater. Some primary questions addressed by

previous work include lowering the costs of wireless sensor networks, optimizing power usage

for proposed systems, developing software for contamination detection, and improving solutions

for data transmission. The works presented utilize an array of programming languages, sensors,

circuitry, and communication protocols that all serve to make real-time data monitoring

accessible for operators and consumers.

Often environmental waters are prone to various perturbances, requiring the need for

real-time monitoring. Rivers and marine coasts have been sites for the deployment of smart

wireless sensor networks; Adu-Manu et al. (2020) employed wireless sensor nodes and used an

energy-efficient data transmission schedule to obtain real-time data for pH, conductivity,

calcium, temperature, fluoride, and dissolved oxygen. The author's system architecture includes a

Libelium Waspmote that uses communication modules such as 3G/4G, General Packet Radio

Service, long-range 802.12.4/ZigBee, and Wideband Code Division Multiple Access

connectivity to transmit data to the cloud. Their sensors detected conductivity levels between

196-225 𝑆/𝑐𝑚, temperatures of 35-36 ℃, calcium levels between 0.16-3.5 𝑚𝑔/𝐿, maximum DO

levels of 8 𝑚𝑔/𝐿, and fluoride levels between 1.24-1.9 𝑚𝑔/𝐿. A low-cost Arduino-based sonde

was designed in the marine environment that used the Arduino Mega 2560 Mega and Arduino

 4

Uno platforms for two design configurations (Lockridge et al., 2016) The first design was for a

Lagrangian style drifter that Lockridge et al. deployed for 55 hours to measure salinity and

temperature using Atlas Scientific K 1.0 Conductivity Probe and the Atlas Scientific ENV-TMP

temperature probe. The data collected by the drifter was compared to values from the Dauphin

Island Sea Lab Weather Station YSI 6600 sonde. The RMS error was 1.35 ppt for the salinity

and was 0.154 °C for the temperature measurements. Salinity and temperature regressions were

also performed and found to be highly correlated with R2 = 0.96 for salinity and R2 = 0.99 for

temperature. The first data logger demonstrated consistently higher salinity results than the

second, whereas temperature tracked similarly for both data loggers over the entire deployment.

The system contributed significantly to verifying sensor performance for harsh aquatic

environments. However, the work only stored data locally as .csv files and did not transmit data

wirelessly or in real-time.

For IoT-enabled systems, some of the most straightforward system configurations are

proposed by Vijayakumar & Ramya (2013) and Pasika & Gandla (2020). Work by Vijayakumar

presents a low-cost system for developing a real-time water quality monitoring system in the IoT

environment. The core controller used is the Raspberry Pi B+, and the system has temperature,

turbidity, pH, conductivity, and dissolved oxygen sensors. The Raspberry Pi runs on a LINUX

kernel and uses an external USR-WIFI232-X-V4.4 module to transfer the data to the internet and

is visible on the ioBridge Server. Pasika et al. propose a system consisting of four sensors with

the Arduino Mega microcontroller. Their approach is designed in Embedded-C and accomplishes

data transmission using the ESP8266 Wi-Fi module. Authorized users can access the data using a

User ID and password to log into a ThingSpeak server. The information is gathered, stored,

analyzed, and transmitted in real-time.

 5

Similar systems to those mentioned previously build upon similar design principles but

include additional features incorporated into the software designs, such as power-saving

capabilities, user alerts, and contamination detection.

Power saving capabilities are primarily emphasized for more rugged environments where

connectivity issues and power loss can be concerns. One such area is Malawi, the site for a

proposed integrated sensor network (Zennaro et al., n.d.) The solution was to develop a low-

power gateway node that reduces energy consumption using a wake-up mechanism that triggers

waking and sleeping modes. A gateway solution built upon the ALIX2 embedded Linux board

provided a way to interconnect different networks to address connectivity issues. Parra et al.

(2018) also addressed power-saving algorithms for their fish farm monitoring wireless sensor

network, which was achieved by only sending data if the difference between predesignated

reference and threshold values were exceeded. Thus, reducing the amount of data moved to the

external web server employed in their system and saving computing power.

Threshold values can also be employed for systems alerting users of parameter

exceedance of WHO or EPA guidelines. This is the case in the IoT-enabled system developed by

Geetha & Gouthami (2016) which measures conductivity, turbidity, water level, and pH. The

hardware design consists of a TI CC3200 single-chip microcontroller with an in-built WIFI

module, and ARM Cortex can connect to the nearest Wi-Fi hotspot. The data collected by the

sensors is sent to the cloud, and if the values exceed threshold limits obtained from WHO, then

an alert is sent to the mobile application developed as part of the proposed system. The

programming for the software design that shows the real-time updates was done using

ENERGIA IDE, and data are stored in the Ubidots cloud, which includes a real-time dashboard

to analyze data, control devices, and shares the data through public links. Lambrou et al. (2014)

 6

further developed the event detection capabilities of wireless sensor networks by designing and

developing a low-cost network embedded system consisting of a central measurement node, a

control node, and a notification node. The system contained sensors to measure temperature,

turbidity, electrical conductivity, and pH. These three subsystems served to collect water quality

measurements from the sensors, implemented contamination event detection algorithms, and

stored the measured data in a local database, visualized the data in the form of charts, and sent

email/SMS alerts for contamination events. The system architecture utilizes a PIC MCU

(Programmable Interface Controllers Microcontroller Unit), an ARM processor, and a ZigBee

RF transceiver. The data is posted to the web using the Pachube IoT platform. For the

contamination event detection algorithms, the first system was denoted as the Vector Distance

Algorithm with a risk indicator function estimated on the Euclidean distance between the

normalized sensor signal vector and the normalized control signal vector of clean water. The

second was the polygon area algorithm which calculated a separate risk indicator function

estimated on the ratio of the polygon area formed by the vector components of each sensor on a

two-dimensional spider graph. To validate the event detection algorithms, intentional

contamination was performed using E. Coli bacteria and Arsenic, which was added to potable

water at various concentrations at discrete time intervals. For E. Coli, the Vector Distance

Algorithm and the polygon area algorithm both missed the detection of 5	𝑥10!"	𝐶𝐹𝑈/𝑚𝐿. For

Arsenic, the sensors did not respond for concentrations lower than 25	𝜇𝑔/𝐿, but both pH and

ORP sensors responded at higher concentrations. Overall, the PAA had better performance for

both contaminants due to fewer false alarms.

 7

It is with these developed wireless sensor networks in mind that the prototype in this work has

been uniquely designed to combine, improve upon, and fill in gaps from the existing

technologies and methods for applications specific to point-of-use water filtration applications.

Water Quality Correlations
After investigating the current hardware and software utilized for wireless sensor

networks, a key research question to be addressed was to determine the sensors and algorithms

that were best suited for smart point-of-use water quality monitoring. Therefore, some of the

existing relationships between various sensor parameters and water quality concerns were

reviewed to better guide the sensor selection process. Here, we present some of the findings on

what water quality information can be related to pH, ORP, DO, and EC.

For acute effects from biological contaminants, it is imperative that sufficient disinfection

levels are maintained. In drinking water, this is primarily achieved with Chlorine and

Chloramine, which previous research has attempted to link to ORP measurements. Experiments

have been conducted that investigate the ability of ORP to be a predictor for kill level of

organisms including total coliform, E. Coli, and enterococci by measuring the ORP in

conjunction with Chlorine dose for wastewater (Bergendahl & Stevens, 2005). It was found that

the ORP increased with an increase in chlorine added, total chlorine, and free chlorine. However,

the regression slopes were relatively low indicating low sensitivity of ORP measurements as a

function of each chlorine species. However, the authors highlight that a large change in measured

ORP occurs near zero chlorine residual and commented on the effectiveness of controlling

chlorine with ORP measurements at low chlorine concentrations, but as the free chlorine

concentration increases beyond 1	𝑚𝑔/𝐿 the sensitivity of the measurement is reduced.

 8

A pilot-scale application of using ORP and pH to develop a control strategy for

chlorination of wastewater was achieved by using significant points occurring on the pH and

ORP profiles during chlorination titrations (Kim et al., 2006). The results showed that ORP

increased from 300	𝑚𝑉 to 400	𝑚𝑉 when Chlorine solutions were first added, then the ORP

profile flattened as 𝑁𝐻"𝐶𝑙 dominated the redox state of the water. At the same time, the pH

profile increased due to the hydroxyl ion formed from 𝑁𝑎𝑂𝐶𝑙. As more chlorine was added, a

second increase in ORP was observed. From this point, Monochloramine is oxidized to

Dichloramine, which has a higher redox potential and produces H+ leading to a lower solution

pH. Once all the Dichloramine was oxidized, free chlorine became available, and the third

increase in ORP was observed, indicating the chlorine breakpoint after which viable counting of

microorganisms was not observed. The control system implemented could continuously detect

the breakpoint and determine the correct chlorine does for inactivating microorganisms in the

water. The proposed system ultimately can easily detect the shifting point where dominating

chemical species change by monitoring points along with the ORP and pH profiles during

chlorination to achieve proper disinfection.

ORP measurements have also been explored for monitoring and controlling water

disinfection for the produce washing industry (Suslow, n.d.). ORP ranges between 600	𝑚𝑉 and

700	𝑚𝑉 show that free-floating decay and spoilage bacteria, as well as pathogenic bacteria such

as E. coli or Salmonella species, are killed within 30 seconds. In relation to the pH sensors,

lowering the pH raises the percentage of 𝐻𝑂𝐶𝑙, and ORP increases to reflect this shift in

oxidative potential. Recent research in commercial and model postharvest water systems has

shown that, if necessary, ORP criteria can be relied on to determine microbial kill potential

across a broad range of water quality. However, it is important to note the limitation of ORP and

 9

pH because the effect of pH on chlorine speciation, one must use caution in not having a false

sense of adequate disinfection rates at high pH’s. In general, a ten-fold increase in total or free

chlorine concentrations does not result in a corresponding proportional increase in ORP

millivolts. Their results showed that good water quality likely results in measurements of

650	𝑚𝑉 to 700	𝑚𝑉 ORP if the water pH is 6.5 to 7. Lowering the pH to 6.0 raises the ORP as

more hypochlorous acid becomes available. Raising the pH to 8.0 lowers the ORP value, as more

hypochlorite ions are present. Maintaining constant pH but adding more chlorine raises the ORP

to a plateau of about 950	𝑚𝑉. Finally, Myron L Company describes their correlation for

predicting free available chlorine using ORP and pH levels. The correlation was obtained from a

series of experiments where an exact amount of chlorine in the form of laboratory-grade bleach

was added to DI water in a closed system and measuring pH and ORP to create calibration

curves for their Myron L Ultrameter II 6PFCE Water Quality Meter. From some of the listed

works, it is evidenced that ORP can be used as an effective indicator for disinfection levels in

water and has the potential to protect users from potential biological contamination using real-

time measurements of ORP in a wireless sensor network.

Other correlations between the variables measured in the wireless sensor network

proposed in this work and water quality have been discovered utilizing statistical data analysis

methods and machine learning techniques. In 2014, Zhang et al. focused on robust online

clustering (ROC) and modified pixel-based adaptive segmentation (MoPBAS) and concluded

that the MoPBAS method was suitable for detecting anomalous sensor readings and event

clustering from salinity and turbidity measurements, which can assist in addressing root

environmental causes and significance levels of disturbance events. Forough et al. (2019) used

an alternative machine learning technique known as the support vector machine (SVM) model to

 10

predict a water quality index (WQI) using pH, DO, TDS, temperature, Nitrate, phosphate, BOD,

turbidity, and fecal coliform data obtained from water samples collected over 11 months. Their

SVM model, developed in MATLAB, successfully explained 87% of the variability in total

WQI, with Nitrate being the most important attribute influencing the WQI as calculated from the

sensitivity ratio. Machine learning techniques have also been combined with regression models,

as demonstrated by Saetta et al. (2021) who developed a sensor platform to predict chlorine

residuals in university buildings. DO, pH, EC, ORP, and free chlorine data were collected, and

two models were developed. The first is a linear regression model, and the second is a gradient

boosting machine (GBM) model. In R statistical software, the “ggpairs” function and “leaps”

function to create linear regression models which were unable to predict free Chlorine levels,

however, the GBM models had lower RMSE values than their multivariate linear regression

counterparts, and the t-tests showed that there was no significant difference in the predicted vs.

actual data, showing the sensors used in this study could be used to predict chlorine by using the

GBM model. Despite the difficulty in predicting water quality using linear regression several

studies (Fathi et al., 2018; Leventeli & Yalcin, 2021) used multivariate and non-linear regression

techniques to estimate heavy metal content, nutrients, and bacteria concentration, as well as

WQI's in various water sources with R2 values as high as 0.90. Factors including EC, pH,

turbidity were among some of the most important in influencing the overall predictions.

The relationships explored in the work reviewed serve as a guiding framework for the

proposed prototype and give insight into expected sensor behaviors.

Method
Various organizations, including the World Health Organization, The European Union,

and the United States Environmental Protection Agency, set drinking water quality standards to

 11

ensure that drinking water is clean and safe for consumers (CDC, 2021). For the prototype

system proposed, the parameters to be monitored from the sensor package were based on their

relationships to chemical and biological contamination, with particular emphasis on selecting the

minimum amount of key sensor measurements with the greatest predictive water quality

capabilities. The selection process for the sensors included in this prototype is detailed in the

following section

Sensor Selection
Lab grade sensors that use various electrochemical mechanisms were selected from the

manufacturer Atlas Scientific. Primary factors that were considered when selecting the sensors

from off-the-shelf manufacturers to be used for the prototype included sensitivity, selectivity,

stability, lifetime, response time, pressure tolerance, cost, and size. In addition, the robustness,

ease of calibration, compact size, and commercially available plumbing components contributed

to the overall selection process for the sensor probes to be included in the prototype. The

complete sensor package includes sensor probes for pH, EC, DO, ORP, and temperature. Table 1

describes specifications for each of the selected sensors.

 12

Table 1:Sensor Specifications

Probe Type pH ORP DO EC

Range 0-14 +/- 2000 mV 0-100 mg/L 0.07-50,000 uS/cm

Resolution +/- 0.001 - - -

Accuracy +/- 0.002 +/- 1 mV +/- 0.05 mg/L +/- 2%

Response Time 95% in 1s 95% in 1s ~ 0.3 mg/L/ per sec 90% in 1s

Temperature Range -5-99 ºC 1-99 ºC 1-60 ºC 1-110 ºC

Max Pressure 100 PSI 100 PSI 500 PSI 500 PSI

Max Depth 70m (230 ft) 70m (230 ft) 352m (1,157 ft) 352m

Internal Temperature Sensor No No No No

Time Before Recalibration ~ 1 Year ~ 1 Year ~1 Year ~10 Years

Life Expectancy ~2.5 Years ~ 2 Years ~ 4 Years ~10 Years

As evidenced by some of the related work on wireless sensors, these can be used as

indicators for a wide range of water quality parameters. The sensors all operate on different

electrochemical principles that convert raw voltages into digital values. pH is a measure of how

acidic or basic water is and is important in water quality because it determines the solubility and

biological availability of chemical constituents, nutrients, and heavy metals. Metals tend to be

more toxic at lower pH because they are more soluble. The pH probe measures the hydrogen ion

activity in liquids and has a glass membrane where hydrogen ions in the liquid diffuse onto the

outer layer of the glass while larger ions remain in solution. The difference of concentration of

hydrogen ions on the outside of the probe vs. inside the probe creates a measurable current that is

proportional to the concentration of hydrogen ions in the liquid. The probe includes an internal

double junction, an EXR glass tip, and a body of extruded epoxy, making the probe suitable for

 13

pH measurements of high purity waters and capable of resisting strong acids and bases for

contaminated waters.

Electrical conductivity was another parameter to be measured. Conductivity is the

measure of a water's ability to pass an electrical current. Substances that conduct electrical

current include dissolved salts and other inorganic chemicals. Most waters will have a relatively

constant range for conductivity; therefore, significant changes can be good indicators of the

pollution of an aquatic resource. Waters with elevated conductivity may have other impaired or

altered indicators as well. Inside the conductivity probe, two electrodes are positioned opposite

each other. An AC voltage is applied to the electrodes, which results in the cations moving to the

negatively charged electrode while the anions move to the positively charged electrode.

The next sensor parameter selected was dissolved oxygen. The Atlas Scientific DO probe

consists of a PTFE membrane, an anode bathed in an electrolyte, and a cathode. The operating

principle is based on the oxygen molecules diffusing through the membrane of the probe at a

constant rate. After crossing the membrane, the oxygen molecules then reach the cathode, where

they are reduced, and a small voltage is produced, which is read by an analog to digital

converter. Dissolved oxygen is important in drinking water because high DO levels can damage

components and systems that are used in drinking water treatment and distribution (Jung et al.,

2009) Namely, high DO levels can contribute to corrosion in pipes, and too low of levels can

create issues with the taste of water.

ORP is a measure of the oxidation-reduction potential where oxidation is the loss of

electrons and reduction is the gain of electrons. An ORP probe measures electron activity in a

liquid and shows the strength at which electrons are transferred to or from a substance in a liquid.

The ORP probe selected contains a platinum tip and a 4 molar 𝐾𝐶𝑙 reference solution. ORP was

 14

selected because it, combined with pH and temperature, can be used to estimate free chlorine

concentrations, which is an indicator of the presence or absence of disease-causing bacteria and

viruses, these are typically the cause of most acute symptoms of waterborne disease or illness.

ORP was also selected because it can be used in combination with pH and metal concentrations

to plot the equilibrium potential of electrochemical reactions. This is useful in predicting the

corrosion risk and speciation of various chemical constituents in aqueous solutions and is

incorporated into the back-end software package.

Sensor Calibration
To prepare the sensors for data collection of tap water samples, they were first calibrated.

This was achieved by running the Atlas Scientific Raspberry Pi Sample Code, an open-source

code provided by the manufacturers, on a Raspberry Pi microprocessor. The pH sensor was

calibrated in pH 4.01, pH 7.00, and pH 10.01 buffer solutions from Hach. The remaining sensors

were calibrated using the accompanying Atlas Scientific calibration solutions. The conductivity

sensor underwent a 2-point calibration with 12,880	𝜇𝑆 and 150,000	𝜇𝑆 solutions, DO also had a

two-point calibration in dry air and a zero dissolved oxygen solution. Lastly, ORP and

temperature were calibrated using 225	𝑚𝑉 calibration solution and 100	℃ boiling water,

respectively. After calibration, the sensor performance was verified by comparing the values of

the five sensors against values from a Myron ULTRAMETER II™ 6PFCE

System Architecture
To complete the referenced calibration procedures, the sensors were integrated as part of

the embedded system for continuous water quality monitoring of the 5 main parameters. The

system can primarily be split into hardware and software components.

 15

Hardware Components

For the hardware, the central measurement system consists of a microprocessor, the five

sensor probes, and two expansion boards outfitted with EZO embedded circuits designed for

each sensor probe by the manufacturers Atlas Scientific.

The microprocessor used in this system is the Raspberry Pi Model 4 B. It acts as the

gateway to collect the information from the sensors and transfer the collected data to the Git

repository via a wireless network. For point-of-use applications, the device chosen for the

microprocessor should have high storage capabilities, flexible connectivity, be low-cost, and

have ample computing power to run any necessary programs. The Raspberry Pi meets these

requirements with its powerful 1.5 GHz 64-bit quad-core ARM Cortex-A27 processor, onboard

802.11ac Wi-Fi, Bluetooth 5, full gigabit Ethernet, and 2-8 GB of RAM. The Raspberry Pi 4

Model B also has two USB 2.0 ports, two USB 3.0 ports, and a standard 40-pin GPIO header.

The GPIO pins connect to the WhiteBox Labs carrier boards. The carrier boards are stackable

and contain 6 slots for the Atlas Scientific EZO circuits. These features eliminate the need for

Figure 1: System Baseboard and Carrier Boards

 16

multiplexing, wiring, and breadboards. Up to six sensors can be connected at once for data

collection with these two carrier boards.

The carrier boards connect directly to the Raspberry Pi pins, this allows for easy

establishment of serial communication using I2C protocol between the microprocessor and the

circuits. The system also contains auxiliary hardware components, including a keyboard, mouse,

and a 7 in. LCD screen, which allows the operator to run the data acquisition python scripts.

Figures 1(a-e) show the various individual components of the system. Figure 2 shows the

completely assembled system, including the auxiliary hardware.

 Software Components

The code for the prototype was written in python integrated development environment

software. Source code from Atlas Scientific was the starting point for the data collection, and

modifications were made for customized formatting and real-time data transmission. Once the

data acquisition code is initialized by an operator, DO, pH, EC, temperature, and ORP data were

Figure 2: Assembled Wireless Sensor Network

 17

received from the sensor in 1s intervals. The data were temperature compensated, parsed into

integers, assigned units, positioned into arrays, and displayed in the terminal window during data

collection. To save the data, a new file was created, and the collected data was written and saved

locally onto the micro-SD card. The software program also automatically pushed the data

collected from the microprocessor to a cloud-based GitHub repository via a wireless network.

The system connects to the GitHub repository using the following steps:

1. Connect to the sensor access point using the LCD screen and open the terminal window

2. Navigate to the Atlas Scientific Data Acquisition directory

3. Run the ./start command to begin data collection

4. Enter the required user inputs, including

a. Login Credentials

b. Select yes or no option for real-time data plotting

c. Add optional comments to describe run/operating conditions

5. Run ctrl-c to stop data collection

6. Confirm if the user would like to keep the data set by inputting yes or no

7. Re-enter login credential to push data to GitHub account

Appendix A contains the source code used for the data acquisition process described above.

demonstration of the terminal window during data collection from a tap water sample was

captured in Figure 3

 18

After following the listed steps, the collected data will be accessible to any collaborators

with access to the GitHub account. Features on the repository show each data collection run as

separate .csv files that can be easily exported to other data processing software such as excel, R,

or SPSS.

Besides the real-time data collection, an additional program was developed for back-end

data processing using the ORP and pH sensor data. The back-end algorithms consist of Pourbaix

diagrams developed for copper, zinc, iron, and lead at standard temperatures and pressure. These

were created using the Nernst equations for redox reactions and acid-base reactions transcribed

in Marcel Pourbaix's Atlas of Electrochemical Equilibria in Aqueous Solutions (Pourbaix, 1974)

Pourbaix diagrams, are electrochemical graphs that show possible thermodynamically

stable phases for aqueous systems. Using Pourbaix diagrams one can predict the equilibrium

states of all the possible reactions between an element, its ions and its solid and gaseous

compounds in the presence of water. To construct a Pourbaix diagram a standard chemical

Figure 3: Terminal Window for Tap Water Data Collection

 19

potential and ion activities must be assumed for the substances reacting. These diagrams can be

read similarly to a standard phase diagram with electrical potential and pH as the axes. The lines

of a Pourbaix diagram are developed using the Nernst Equation and show the equilibrium

conditions for the species on each side of that line where each species on either side is said to

predominate. For a reversible redox reaction with the following equilibrium equation

𝑎𝐴 + 𝑏𝐵 ↔ 𝑐𝐶 + 𝑑𝐷

With and equilibrium constant

𝐾 =
[𝐶]#[𝐷]$

[𝐴]%[𝐵]&

The Nernst Equation may be expressed as

𝐸' =	𝐸(−
𝑅𝑇
𝑧𝐹 𝑙𝑛𝐾

Where 𝐸(is the standard potential, R is the universal gas constant, T is temperature in Kelvin, F

is Faraday’s Constant, z is the ion charge, and K is the equilibrium constant. Substituting the

equilibrium constant gives,

𝐸' =	𝐸(−
𝑅𝑇
𝑧𝐹 𝑙𝑛

[𝐶]#[𝐷]$

[𝐴]%[𝐵]&

This equation is sometimes simplified to

𝐸' =	𝐸(−
𝑉)𝜆
𝑧 𝑙𝑜𝑔

[𝐶]#[𝐷]$

[𝐴]%[𝐵]&

Where

𝑉) =
*)
+
≈ 0.02569	𝑉𝑜𝑙𝑡𝑠

Is the thermal voltage or the "Nernst slope" at standard temperature. The equation can further be

simplified using

𝜆 = ln	(10)

 20

Thus, the equation can be numerically expressed as

𝐸' =	𝐸(−
0.05916

𝑧 𝑙𝑜𝑔
[𝐶]#[𝐷]$

[𝐴]%[𝐵]&

Using these equilibrium formulae, one can construct diagrams for various metals of concern in

aqueous system. To draw the position of the lines with the Nernst equation, the activity of the

chemical species at equilibrium must be defined, for many soluble species the concentrations are

assumed 10!, M, this convention was followed for the software package developed. Changes in

temperature and concentration of solvated ions will affect the equilibrium lines as dictated by the

Nernst Equation. The diagrams presented in this work are for metals that are common

contaminants in premise plumbing and include lead, copper, iron, and zinc. To establish the

diagrams, it must first be noted that there are three types of lines in Pourbaix diagrams: Vertical,

horizontal, and sloped.

Vertical lines represent reactions where no electrons are exchanged and are acid-base

reactions. This will create a boundary line that is vertical at a designated pH value and the

reaction involves only protonation/deprotonation. Using the reaction equation

𝑎𝐴 + 𝑏𝐵 + ℎ𝐻- ↔ 𝑐𝐶 + 𝑑𝐷

And the energy balance

∆𝐺(= −𝑅𝑇𝑙𝑛(𝐾)

Where the equilibrium constant 𝐾 takes the form

𝐾 =	
[𝐶]#[𝐷]$

[𝐴]%[𝐵]&[𝐻-].

Therefore, the energy balance can be written as

∆𝐺(= −𝑅𝑇𝑙𝑛 ^
[𝐶]#[𝐷]$

[𝐴]%[𝐵]&[𝐻-]._

 21

Or, in base-10 logarithms

∆𝐺(= −𝑅𝑇𝜆 ^𝑙𝑜𝑔 ^
[𝐶]#[𝐷]$

[𝐴]%[𝐵]&_ + ℎ𝑝𝐻_

Which may be solved for a particular value of pH. For the establishment of Lead the vertical

lines distinguish between the limits of the domains of predominance for the dissolved substances

and the relative stability of the solid substances.

 Horizontal lines are created from equilibrium equations for reactions that do not involve

H+ or OH- thus the boundary line is independent of pH and the reaction equation may be written

as

𝑎𝐴 + 𝑏𝐵 + 𝑧𝑒! ↔ 𝑐𝐶 + 𝑑𝐷

The new energy balance can be expressed as

∆𝐺(= −𝑅𝑇𝑙𝑛 ^
[𝐶]#[𝐷]$

[𝐴]%[𝐵]&_

And from the electrode potential

∆𝐺 = −𝑧𝐹𝐸

The Nernst Equation for the horizontal lines takes the form

𝐸. = 𝐸(−
𝑉)
𝑧 ln ^

[𝐶]#[𝐷]$

[𝐴]%[𝐵]&_ 	

Or for the base-10 logarithms form

𝐸. = 𝐸(−
𝑉)𝜆
𝑧 log ^

[𝐶]#[𝐷]$

[𝐴]%[𝐵]&_

These may be solved for horizontal lines at specific voltages dependent on the ratio of

concentrations for the chemical constituents of each diagram.

 Lastly, there are the sloped boundary lines which involve both electrons and H+ ions.

𝑎𝐴 + 𝑏𝐵 + ℎ𝐻- + 𝑧𝑒! ↔ 𝑐𝐶 + 𝑑𝐷

 22

The Nernst equation become in base-10 logarithm form

𝐸. = 𝐸(−
𝑉)𝜆
𝑧 log ^

[𝐶]#[𝐷]$

[𝐴]%[𝐵]& + ℎ𝑝𝐻_

Where the h value is the slope of the line. These were then used as the basis for a python script

which uses Matplotlib visualization tool to generate the diagram. The pH and ORP value from

the sensors are then used to place a point on the Pourbaix diagram. That point is then evaluated

using different logic operators and the python Shapely package to determine if the point falls

within the immunity, corrosion, or passivation region. The code also returns the predominate

species for the aqueous system and their state. This feature was included due to metal

contamination from premise plumbing being a primary concern for point of use applications. The

code for the diagrams is included in Appendix B and contains all the solved Nernst equations for

the lines needed to develop the diagrams for lead, copper, iron, and zinc.

Experimental Design
With the software and hardware components successfully operating the next step in the

research process was to experimentally test the sensors to ensure they performed well in drinking

water applications and determine if the prototype system could be used for predictive modelling

or event detection. Three primary experimental tasks were involved.

Experimental Phase One: Sensor Validation

Reliable sensor measurements are essential for smooth operation of the proposed

prototype. If a sensor fails to provide accurate measurements false ideas of the water quality are

perpetuated creating potential health risks or leading to suboptimal operation. Thus the, first task

for testing the system was to ensure the sensors returned accurate and reasonable results for tap

water samples. The procedure for preparing the prototype for sample collection so it could be

tested in drinking water is detailed in Appendix C. The practice of sensor validation approach

 23

consists of using multiple sensors for the same parameter measurement. This technique can

determine if a sensor is faulty or if high deviations between multiple sensors exists. This

technique was applied by first by measuring the pH, EC, DO, temperature, and ORP for a given

sample with the Atlas Scientific sensor probes. The pH, EC, temperature, and ORP of the same

sample were then measured using a laboratory grade instrument to compare the results between

the two devices. The Myron Ultrameter was selected as the comparative instrument due to its

streamlined and accurate functionality.

A total of 34 tap water samples for testing were collected from a laboratory tap water

faucet at the University of California Los Angeles between the hours of 10 AM to 4 PM from the

months of August 2021 through October 2021. The samples were collected in 1000mL volumes

in a graduated cylinder. Approximately 100mL of the sample was immediately tested using the

Myron Ultrameter for pH, ORP, EC, and temperature. This process consisted of 1) cleaning the

cell cup thoroughly with MilliQ water 2) turning on the Myron Ultrameter 3) rinsing the sample

cell 3 times with the sample to be tested 4) refilling the sample cell with additional sample 5)

pressing the desired measurement key, and 6) recording the values. The remaining ~900mL

volume of the sample was transferred to a 1000mL beaker and placed on a hot plate with a

magnetic stirrer. The sample was stirred at approximately 750 Rpms to mimic the flow of water

through an inline pipe system and provide sufficient flow for the DO sensor. The clean and dry

sensor probes were then inserted into the beaker, ensuring that the sensors did not touch the stir

bar and had minimal contact with the walls of the 1000mL beaker. For each sensor run the

hotplate was maintained at 25℃; however, some small temperature variations were observed

during testing due to factors such as varying ambient room temperatures and temperature

changes in the building pipes throughout the day. Data collection was then initiated using the

 24

steps described in the previous software section. The sensors collected one data point every

second continuously for 10 minutes to allow sufficient sensors stabilization time. The values for

the 10 minute run were then downloaded from the GitHub into an Excel file. The mean value for

each sensor was calculated for that sample and recorded in an Excel file with the corresponding

Myron Ultrameter value for the same sample. From the remaining ~900mL of sample, another

100 mL was set aside and refrigerated for additional laboratory analytical testing.

Once collected this data set was analyzed using two statistical tests recommended for

comparing two instruments with continuous data as outlined in NIST Technical Note 2106. In

that document the null hypothesis states:

𝐻(: 𝐴𝑙𝑙	𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑠	𝑝𝑒𝑟𝑓𝑜𝑟𝑚	𝑒𝑞𝑢𝑎𝑙𝑙𝑦	𝑤𝑒𝑙𝑙

While the alternative states:

𝐻/: 𝑁𝑜𝑡	𝑎𝑙𝑙	𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑠	𝑝𝑒𝑟𝑓𝑜𝑟𝑚	𝑒𝑞𝑢𝑎𝑙𝑙𝑦	𝑤𝑒𝑙𝑙

For instrument comparison, the p-value can usually be interpreted as the probability of

measuring a disparity as great or greater than that seen, under the assumption that the instruments

are truly equivalent. If the p-value is smaller than 𝛼 = 0.05 then the null hypothesis is rejected

by the test.

To obtain an appropriate p-value, first the variances between instruments were compared

for each measured parameter using an. F-test

𝐹 =
𝑠0"

𝑠""

Where,

𝑠" =
Σ(𝑥 − 𝑥)"

𝑛 − 1

 25

And

𝑠" = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑥 = 𝑣𝑎𝑙𝑢𝑒𝑠	𝑖𝑛	𝑑𝑎𝑡𝑎	𝑠𝑒𝑡

𝑥 = 𝑚𝑒𝑎𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑑𝑎𝑡𝑎

𝑛 = 𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑣𝑎𝑙𝑢𝑒𝑠

After determining if the variances were equal or not, the appropriate test was applied. For equal

variance test

𝑇 =
𝑥 − 𝑦

𝑠1o
1
𝑚 + 1

𝑛

Or in the case of unequal variance

𝑇 =
𝑥 − 𝑦

o𝑠2
"

𝑚 +
𝑠3"
𝑛

Where,

𝑥 = 𝑡ℎ𝑒	𝑚𝑒𝑎𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠	𝑓𝑟𝑜𝑚	𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡	1

𝑦 = 𝑡ℎ𝑒	𝑚𝑒𝑎𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠	𝑓𝑜𝑟	𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡	2

𝑠2" = 𝑡ℎ𝑒	𝑠𝑎𝑚𝑝𝑙𝑒	𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒	𝑓𝑜𝑟	𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡	1

𝑠3" = 𝑡ℎ𝑒	𝑠𝑎𝑚𝑝𝑙𝑒	𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒	𝑓𝑜𝑟	𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡	2

The result of this comparison was used to determine if the probes selected for the prototype gave

reasonably accurate results compared to a multiparameter benchtop probe.

 26

Experimental Phase Two: Predictive Model Development

The subsequent phase of the experimental process was the testing of each of the 34 tap

water samples for EPA primary and secondary drinking water standards. The purpose of this was

to attempt to develop models between the sensor values recorded in phase one and correlate them

to other important drinking water values not measured directly by the sensors but were

hypothesized to have some correlation due to physical or chemical phenomena. Turbidity and

dissolved organic carbon were chosen because of their potential to be correlated with dissolved

oxygen since these parameters are often indicators of microbial activity, which consumes oxygen

in water. Various transitions metals were also chosen because metals would presumably

contribute to the overall electrical conductivity of a sample, plus ion specific sensors are

extremely cost prohibitive so there are economic benefits to attempting to model their

concentrations in water. Free chlorine was chosen because it relates highly to the pH and ORP

sensor values as discussed in the related work section. Lastly, color was chosen because it is one

of the main visual indicators of poor water quality, and therefore a major consumer concern,

although it was not expected that any of the sensor values could be used to predict color as they

do not feature any optical measurement features. Table 2 lists the parameters tested, the standard

method performed for each, and the instrument utilized

 27

Table 2:Primary and Secondary Drinking Water Parameters Tested

Parameter Method Instrument
Turbidity USEPA Method 180.1 Hach 2100P Handheld Turbidity

Meter
Color ASTM D1209 Hach 2100AN Turbidimeter
Free Chlorine Hach Method 8021 Beckman DU-530 UV-VIS

spectrophotometer
Dissolved Organic Carbon SM 5310B Simadszu TOC-L series
Zinc USEPA Method 6010D Avio 220 Max ICP Optical Emission

Spectroscopy
Iron USEPA Method 6010D Avio 220 Max ICP Optical Emission

Spectroscopy
Copper USEPA Method 6010D Avio 220 Max ICP Optical Emission

Spectroscopy
Lead USEPA Method 6010D Avio 220 Max ICP Optical Emission

Spectroscopy
Manganese USEPA Method 6010D Avio 220 Max ICP Optical Emission

Spectroscopy

The results obtained from the additional laboratory testing of the samples were matched

the sensor values obtained in phase one and added to the database.

The statistical technique chosen for the design of the models was multiple linear

regression. This method involves using several explanatory variables to predict the outcome of a

response variable. This technique can be used to determine how strong the relationship is

between two or more independent variables and one dependent variable. The technique allows

one to obtain a predicted value for specific variables. To perform multiple regression several

assumptions must be met.

Four principal assumptions were tested to suit the suitability of the data for multivariate

regression. 1) there must be a linear relationship between the outcome variable and the

independent variable 2) the residuals are normally distributed 3) there is no multicollinearity, that

is the independent variables are not highly correlated with each other, and 4) homoscedasticity

must be satisfied meaning the variance of error terms are similar across the values of the

independent variables.

 28

 A general rule of thumb for multilinear regression is approximately 20 cases per

independent variable in the analysis. For testing the linearity scatterplots may be constructed to

ensure the data display linear behavior, the data collected over the course of this experiment were

screened graphically for any behavior suggesting non-linearity such as exponential, logarithmic

or polynomial. To further confirm the linearity Pearson’s correlation was calculated to measure

the linearity between the data. In statistics Pearson’s correlation coefficient is defined as

𝑟 = 	
Σ(𝑥4 − 𝑥)(𝑦4 − 𝑦)

pΣ(𝑥4 − 𝑥)"Σ(𝑦4 − 𝑦)"

Where,

𝑟 = 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡	

𝑥4 = 𝑣𝑎𝑙𝑢𝑒𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑥 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒	𝑖𝑛	𝑎	𝑠𝑎𝑚𝑝𝑙𝑒

𝑥 = 	𝑚𝑒𝑎𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑣𝑎𝑙𝑢𝑒𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑥 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

𝑦4 = 𝑣𝑎𝑙𝑢𝑒𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑦 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒	𝑖𝑛	𝑎	𝑠𝑎𝑚𝑝𝑙𝑒

𝑦 = 𝑚𝑒𝑎𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑣𝑎𝑙𝑢𝑒𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑦 − 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

Multicollinearity was also calculated by creating a correlation matrix using Pearson’s correlation,

via the same method.

The next assumption is the normality of the data, this was tested by calculating and

sorting the standard residuals. The frequency values were then calculated, and histograms were

generated to observe the distribution. To find the residuals let

𝑟 = 𝑥 − 𝑥(

Where,

𝑟 = 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑥 = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

 29

𝑥(= 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

From this, the standard residuals were obtained via software in the Excel Data Analysis Toolpak.

The final assumption is for homoscedasticity, this can be tested for using a statistical test known

as the Breusch-Pagan test; it is its own linear regression model. It tests whether the variance of

errors from a regression depends on the values of the independent variables. It is a chi-squared

test and if the test has a p-value below the threshold of 𝑝 < 0.05 then the null hypothesis of

homoskedasticity is rejected. The following equation was used for the chi-squared value

𝜒" =s
(𝑂4 − 𝐸4)"

𝐸4

After which the excel function = CHISQ. DIST. RT(χ", df	regression) was used to obtain the p-

value for each set of regressions. The data was tested to assure it met all the necessary

assumptions and multivariate regression was then performed. Because each predicted variable

required its own model, nine separate regression analyses were performed for the parameters

listed in Table 2. Statistical software typically use a curve estimation procedure, which was used

to produce regression statistics for each of the desired dependent variables. To develop each of

the equations it can be said that each dependent variable Y depends on X. For multiple

regression

𝑌 = 𝛽(+ 𝛽0𝑋0 +⋯+ 𝛽5𝑋5 + 𝜎(𝑌), 𝑠𝑑(𝑌) = 	𝜎

 Where

𝛽(= 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

𝛽0…𝛽5 = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠

𝜎 = 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙	𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

For this project, there are 𝛽0,",7,8,9 which are the coefficients obtained from each sensor value for

a given drinking water sample. Given that there are 5 sensors, to obtain each prediction equation

 30

a 5x5 system of linear equations was solved. Once the coefficients were determined for each

outcome variable the predicted values were compared to the actual values. A regression model

deemed to be a good fit ideally results in predicted values close to the observed values. Two

statistical tests are appropriate for evaluating the differences between predicted and observed

values. The first was the 𝑅"	value or in the case of multiple linear regression the adjusted 𝑅"

value. The adjusted 𝑅"value incorporates the degrees of freedom of the model and explains the

proportions of total variance in the model. The adjusted 𝑅" was also obtained using software

featured in Excel’s data analysis Toolpak, however the 𝑅" may be calculated directly using

Pearson’s correlation coefficient where,

𝑅" = (𝑟)"

From this,

𝑅/$:;<=>$" = 1 −
(1 − 𝑅")(𝑁 − 1)

𝑁 − 𝑝 − 1

Where,

𝑅" = 𝑠𝑎𝑚𝑝𝑙𝑒	𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒

𝑝 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠

𝑁 = 𝑡𝑜𝑡𝑎𝑙	𝑠𝑎𝑚𝑝𝑙𝑒	𝑠𝑖𝑧𝑒

In addition to the adjusted 𝑅" value, the root mean square error (RMSE) was also calculated.

This statistic indicates the absolute fit of the model to the data and is the most important criterion

for fit if the main purpose of the model is prediction. The RMSE can be expressed as

𝑅𝑀𝑆𝐸 = �∑ (𝑥4 − 𝑥?)� "@
4A0

𝑁

Where,

𝑁 = 𝑡𝑜𝑡𝑎𝑙	𝑠𝑎𝑚𝑝𝑙𝑒	𝑠𝑖𝑧𝑒

 31

𝑥4 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑣𝑎𝑙𝑢𝑒

𝑥?� = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑣𝑎𝑙𝑢𝑒

Using the above experimental and data analysis techniques the predictive capabilities of the

system, and the contribution of each sensor to additional parameters of concern can allow for the

utilization of the prototype to be expanded beyond real time monitoring, increasing the systems

utility for ensuring clean drinking water.

Experimental Phase Three: Contamination Detection

The final set of experiments were the collection of data for contamination events for

future testing of outlier detection algorithms and event detection systems. For these experiments,

the Atlas Scientific sensor probes were inserted into a 2L beaker, with water from the laboratory

faucet running into the beaker at 2.67 B
C4D

 through a MasterKleer PVC flexible tubing. The

sensors first collected data from the tap water for approximately 12 minutes to establish a

baseline before the water was intentionally contaminated with 1000 ppm lead, copper, iron, and

zinc solutions made from ACS reagent grade hydrated metal salts, including lead (II) nitrate, iron

(III) chloride hexahydrate, copper (II) nitrate trihydrate, and zinc nitrate hexahydrate. The metal

solutions were added to the running tap water sequentially in doses of 1mL-8mL at a time using

a glass pipette. These were chosen because they are soluble in water and dissociate, leading to

metal ions in the aqueous solution. The salts undergo the following reactions in water

𝑃𝑏(𝑁𝑂7)"(<) + 𝐻"𝑂(G) → 𝑃𝑏(%H)"- + 2𝑁𝑂7(%H)
!

𝐹𝑒𝐶𝑙7(<) + 𝐻"𝑂(G) → 𝐹𝑒(%H)7- + 3𝐶𝑙(%H)
!

𝐶𝑢(𝑁𝑂7)"(<) + 𝐻"𝑂(G) → 𝐶𝑢(%H)
"- + 2𝑁𝑂7(%H)

!

𝑍𝑛(𝑁𝑂7)"(<) + 𝐻"𝑂(G) → 𝑍𝑛(%H)
"- + 2𝑁𝑂7(%H)

!

 32

Using a simple dilution calculation, the starting concentration of each contaminant when mixed

into the flowing water would be 0.5,1,1.5,2,2.5,3,3.5,4 ppm. With dilution occurring as tap water

flows into the system. A 45 second pause was given between each contaminant dose to allow for

values of the system to return to steady state values.

Results and Discussion
The experimental procedures and data analysis methods described previously serve to

gather data on the sensor accuracy/performance, asses the predictive abilities of the system to

measure water quality, and determine the sensors' ability to detect contamination events for

constituents of concern for point of use applications. The results for each phase of testing the

wireless sensor network prototype are presented.

Sensor Verification Results
For the tap water samples which were taken from August 2021 through October 2021,

sensor data from the pH, EC, temperature, and ORP sensors were collected and compared to the

Myron Ultrameter multiparameter instrument. The comparison results between instruments were

plotted for each parameter in Figures 4-7.

 33

Figure 4: Temperature Instrument Comparison

 34

Figure 5: ORP Instrument Comparison

 35

Figure 6: pH Instrument Comparison

 36

Figure 7: EC Instrument Comparison

Table 3:Sensor Statistical F-Tests for Equal or Unequal Variance

 Atlas
Scientific

pH

Myron
Ultrameter

pH

Myron
Ultrameter

Temp

Atlas
Scientific

Temp

Myron
UltraMeter

EC

Atlas
Scientific

EC

Atlas
Scientific

ORP

Myron
UltraMeter

ORP

Mean 7.8 7.7 22.5 23.2 537.9 545.1 461.6 311.8
Variance 0.040 0.005 1.231 0.903 742.779 736.899 14287.019 1699.621
Observations 35 35 35 35 34 34 36 36
df 34 34 34 34 33 33 35 35
F 7.656 - 1.364 - 1.008 - 8.406 -
P(F<=f) one-
tail 2.148E-08 - 1.848E-01 - 4.910E-01 - 3.714E-09 -

F Critical one-
tail 1.772E+00 - 1.772E+00 - 1.788E+00 - 1.757E+00 -

 37

Table 4: Sensor Statistical p-Tests for comparing instruments

The results from the F-Test showed unequal variances for all sensors except temperature

because 𝐹 > 𝐹IJ4=4#%G,KD>!=%4G indicating that the p-test assuming unequal variances must be

performed for pH, EC, and ORP sensors. The null hypothesis for comparing instruments states

there is no significant difference between the performance of the sensors. To accept the null

hypothesis the p-value for the two-tail p test must be less than or equal to 𝛼 = 0.05. Therefore,

all the Atlas Scientific sensors, excluding EC (P(T<=t) two-tail > 0.05), were found to perform

significantly differently from its Myron Ultrameter counterpart.

This result is expected for ORP sensors. YSI reports that the most common problem with

ORP measurements for environmental water samples is that readings from various instruments

for the same water sample can differ by a significant margin (50-100mV) even with the same

sensor type and electronics, yet the sensors show identical or similar readings in ORP standards.

This is explained by the fact that the tap water sampled is expected to be clean by most

Atlas

Scientific
pH

Myron
Ultramete

r pH

Myron
Ultrameter

Temp

Atlas
Scientific

Temp

Myron
UltraMete

r pH

Atlas
Scientific

pH

Atlas
Scientific

ORP

Myron
UltraMeter

ORP

Mean 7.77 7.69 22.53 23.19 537.91 545.06 461.60 311.75
Variance 0.04039 0.00528 1.23141 0.90257 742.77865 736.89898 14287.0194

2
1699.6214

3
Observations 35 35 35 35 34 34 36 36
Hypothesized
Mean
Difference

- - 1.06699 - - - - -

Hypothesized
Mean
Difference

0 - 0 - 0 - 0 -

df 43 - 68 - 66 - 43 -
t Stat 2.03 - -2.67 - -1.08 - 7.11 -
P(T<=t) one-
tail 2.44E-02 - 4.68E-03 - 1.41E-01 - 4.44E-09 -

t Critical one-
tail 1.68 - 1.67 - 1.67 - 1.68 -

P(T<=t) two-
tail 4.89E-02 - 9.37E-03 - 0.282 - 8.89E-09 -

t Critical two-
tail 2.0167 - 1.9955 - 1.9966 - 2.0167 -

 38

standards. Therefore, it would likely contain few redox active species present and those that are

present have low concentrations, which was confirmed by the results from the Free Chlorine

testing of the samples as well. However, in standard solutions the two probes read the expected

values, this is due to the concentration of redox-active species (such as ferricyanide/ferrocyanide

in Zobells solution) being much higher. Therefore, it is suggested that historic data be used to

help determine the validity of probes for environmental water samples and inconsistent data

between probes does not always indicate a malfunctioning probe. As for the discrepancies

between the pH values, it is believed that the issue may be due to sensor drift. This is presumed

to be the issue due to the similar behavior patterns of the probe with the Atlas pH probe values

becoming slightly shifted above the Myron Ultrameter values through the month of October

2021. This indicates more frequent calibration than recommended by the manufacturers may be

necessary for long-term sensor deployment. To resolve the discrepancy between the pH probe

performance it would be suggested to collect another set of tap water samples in the future with a

recalibration frequency of every 2-4 weeks and determine if the new data allows for acceptance

of the null hypothesis. Despite the difference in performance between the Atlas Scientific sensor

probes and the Myron Ultrameter, the average values for the measured parameters are still in

expected ranges for tap water.

Predictive Modeling Results
Data from the 5 sensors were also processed using Multivariate Regression Techniques to

evaluate the ability to develop predictive models for the parameters listed in Table 5. The

equations obtained for each parameter were calculated as:

𝐷𝑂𝐶!"#$%&'#$		 = 1.855 − 0.073DO + 8.52 ∗ 10)𝐻* + 0.00062EC + 0.039Temperature + 0.00046ORP

𝑁𝑇𝑈!"#$%&'#$	 = 0.104 − 0.022𝐷𝑂 + 6.35 ∗ 10)𝐻* + 0.00015𝐸𝐶 + 0.011𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 0.00019𝑂𝑅𝑃

 39

𝐹𝑟𝑒𝑒	𝐶ℎ𝑙𝑜𝑟𝑖𝑛𝑒!"#$%&'#$		 = −0.216 + 0.001𝐷𝑂 − 1.86 ∗ 10)𝐻* + 0.00013𝐸𝐶 + 0.007𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 1.39 ∗ 10+,𝑂𝑅𝑃

𝐶𝑜𝑝𝑝𝑒𝑟!"#$%&'#$		 =	−0.007 − 0.002𝐷𝑂 − 2.34 ∗ 10)𝐻* + 9.74 ∗ 10+,𝐸𝐶 − 0.003𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 0.00013𝑂𝑅𝑃

𝐿𝑒𝑎𝑑!"#$%&'#$	 = 2.12 ∗ 10+, − 4.79 ∗ 10+-𝐷𝑂 − 1.67 ∗ 10.𝐻* + 3.05 ∗ 10-𝐸𝐶 − 7.72 ∗ 10+/𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 1.47 ∗ 10+-𝑂𝑅𝑃

𝐼𝑟𝑜𝑛!"#$%&'#$	 = 0.0004 − 1.203 ∗ 10+,𝐷𝑂 − 5.01 ∗ 10.𝐻* − 4.52 ∗ 10+/𝐸𝐶 − 1.79 ∗ 10+/𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 5.62 ∗ 10+-𝑂𝑅𝑃

𝑍𝑖𝑛𝑐!"#$%&'#$	 = 0.066 − 0.0006𝐷𝑂 − 1.32 ∗ 10,𝐻* − 7.05 ∗ 10+,𝐸𝐶 − 0.001𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 1.54 ∗ 10+,𝑂𝑅𝑃

𝑀𝑎𝑛𝑔𝑎𝑛𝑒𝑠𝑒!"#$%&'#$		

= 3.89 ∗ 10+, − 1.54 ∗ 10+)𝐷𝑂 + 138.19𝐻* − 3.30 ∗ 10+-𝐸𝐶 + 1.70 ∗ 10+/𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 1.59 ∗ 10+-𝑂𝑅𝑃

The equations were cross checked using both the Excel data analysis Toolpak

and the “mldivide” function in MATLAB to verify the solutions for each system of linear

equations. The predicted and measured values are plotted in Figures 8-15

Figure 8: Predicted vs. Measured DOC

 40

Figure 9: Predicted vs. Measured Turbidity

 41

Figure 10: Predicted vs. Measured Free Chlorine

 42

Figure 11: Predicted vs. Measured Copper

 43

Figure 12: Predicted vs. Measured Zinc

 44

Figure 13: Predicted vs. Measured Lead

 45

Figure 14: Predicted vs. Measured Manganese

 46

Figure 15: Predicted vs. Measured Iron

The following regression statistics were obtained for each predicted variable:

Table 5: Regression Statistics for Sensor Modelling

DOC Turbidity Free

Chlorine
Copper Lead Zinc Manganese Iron

Multiple R 0.47 0.44 0.57 0.71 0.51 0.88 0.78 0.81037973

R Square 0.22 0.19 0.32 0.50 0.26 0.77 0.61 0.6567153

Adjusted R
Square 0.07 0.03 0.19 0.41 0.13 0.73 0.54 0.59314406

Standard Error 0.26 0.18 0.01 0.20 3.69E-03 0.07 2.76E-03 0.00739343

RMSE 0.23 0.16 0.01 0.18 3.34E-03 0.06 2.50E-03 0.01180409

Observations 32 32 31 33 33 33 33 33

 47

The zinc correlations had the best results for both the correlation coefficient and the

adjusted coefficient of determination indicating a strong linear relationship for the model. The

adjusted coefficient also indicates that 73% of the variation of the zinc values around the mean

are explained by the sensor inputs. Of the metal ions, it is observed that the models for lead

performed the worst, this is likely due to the low lead concentration in the water leading to

negative values obtained for some samples from the ICP-OES, indicating that many of the

samples had lead values below the detection limit, which may cause erroneous results. Multiple

regression coefficients can also be reduced due to collinearity between the input variables. This

was tested using the “correl” function in excel to create a correlation matrix demonstrated in

Table 6. Some correlation was observed between pH and EC and DO and ORP, however this

should not affect the predictive capabilities of the models, and the correlations are low enough

(𝑅" < 0.6) to still satisfy the assumption of independence between explanatory variables to meet

the model requirements.

Table 6: Correlation Matrix for Atlas Scientific Sensors

 DO 97 (mg/L) pH 99 () EC 100 (uS) RTD 102 (c) ORP 98 (mV)

DO 97 (mg/L) 1 - - - -

pH 99 () -0.1004527 1 - - -

EC 100 (uS) -0.3146643 0.58183886 1 - -

RTD 102 (c) 0.27497674 0.34699723 0.17328755 1 -

ORP 98 (mV) 0.38292437 -0.6047262 -0.4330551 0.06550297 1

Contaminant Dosing Results
Lastly, the metal dosing was conducted. The last 8 minutes of each run represents the

timeframe when the Metal Solutions were introduced. The “isoutlier” function in MATLAB was

used to calculate upper and lower thresholds for each sensor. The program uses a True/False

 48

logic array to determine if a value is outside either range and marks values that are determined as

outliers with and “x.” The sensors which recognized outliers are plotted in Figures 16-26. The

pH results with low values found for outlier detections can be attributed to the acidity of the

metal solutions used for dosing which ranged in pH's from approximately 3.5-6. Based on the

point in time at which outliers were detected it appears that the sensors detected the lowest

concentrations for copper followed by zinc, then lead, and finally iron. EC appears to have some

false alarms for the zinc and iron contaminations, as values are detected before the metal

contamination was introduced into the flowing water. Otherwise, the EC sensors appear to have

responded well to the introduction of zinc and sodium chloride as many outliers are detected

after the additions of those contaminants. Lastly, many outliers were detected for DO upon the

addition of sodium chloride however they would be expected to decrease because increasing the

salinity reduces oxygen solubility indicating bad performance of the DO sensor for anomaly

detection.

 49

Figure 16: pH Response to Copper Contamination

 50

Figure 17: pH Response to Iron Contamination

 51

Figure 18: pH Response to Lead Contamination

 52

Figure 19: pH Response to Zinc Contamination

 53

Figure 20: EC Response to Copper Contamination

 54

Figure 21: EC Response to Iron Contamination

 55

Figure 22: EC Response to Lead Contamination

 56

Figure 23: EC Response to Zinc Contamination

 57

Figure 24: EC Response to NaCl Contamination

 58

Figure 25: DO Response to Copper Contamination

 59

Figure 26: DO Response to NaCl Contamination

Conclusions and Future Work

The design and prototype proposed present a wireless water quality monitoring system

for point of use applications using commercially available sensor probes. The system

architecture is built on a Raspberry Pi microprocessor and includes software that allows for

remote access of sensor data for users and operators. The experimental results determine the

ability of the system to predict other primary and secondary drinking water standards with

satisfactory RMSE values for the dataset that was tested, as well as recognize outliers caused by

contamination events. The project could be expanded upon by integrating the predictive models

 60

into automated data processing scripts and generally making the system more autonomous. The

proposed algorithms can be improved upon with more robust data analysis and machine learning

techniques due to the complexity of a data set with five explanatory variables. Future work

includes retrofitting the sensor prototype into mobile water filtration units deployed in areas with

known water quality issues and developing an app to accompany the system which alerts users of

water quality issue when they are detected. Overall, the viability of the system is promising for

combining many of the advantages of wireless sensor networks for remote monitoring of

drinking water.

 61

Appendix A
Data Collection Python Script

port over to python3

import os
import sys
import time
import signal
from collections import OrderedDict
import pandas as pd
from subprocess import Popen, PIPE, STDOUT
from enum import Enum
import matplotlib.pyplot as plt

class Log(Enum):
 DEBUG = 1
 INFO = 2

Note logMode does not affect data collection
logMode = Log.DEBUG # DEBUG mode prints the most to the screen, INFO prints
only important information
device_types = ['DO 97', 'ORP 98', 'pH 99', 'EC 100', 'RTD 102']
sensor_reading_key = "Success"
temp_tolerance_before_update = 1 # How much the temperature has to change
before updating sensors
set_temp = 25
device_units = {'DO 97': 'mg/L', 'ORP 98': 'mV', 'pH 99': '', 'EC 100': 'uS',
'RTD 102': 'c'}

IS_PLOT = True
COMMENTS = ""

def write_data_to_file(data, file):
 print("Writing data: " + data + " to file: " + file)
 f = open(file, "a") # Opens file in append mode (i.e. won't overwrite
prev info)
 f.write(data)
 f.close()

def create_file_if_no_existing(file):
 if os.path.isfile(file):
 if logMode == Log.DEBUG:
 print("Data file: " + file + " exists... retaining old file")
 else:
 f = open(file, "w") # Since file doesn't exist, creating new one
 if logMode == Log.DEBUG:
 print("Data file: " + file + " does not exist... creating new
file")
 f.close()

def check_data_validity(data):
 try:
 data = float(data)
 return True

 62

 except:
 return False

def process_atlas_response(response, p, data_log):
 # Check if response from Atlas software is a sensor reading (all sensor
readings contain this key in it)
 if response.find(sensor_reading_key) != -1:
 if logMode == Log.DEBUG:
 print("Data found")

 for device in device_types:
 if response.find(device) != -1: # Check if specific device is
the one we are writing to
 device_key = device + ' (' + device_units[device] + ')'
 if device_key not in data_log:
 data_log[device_key] = []

 if response.count(':') != 1: # Ignore the input if there's
two ':' as outputs can get combined with resetting values
 data_log[device_key].append(None)
 return

 # Parse through sample code output
 data_location = response.find(":") # The response format has
data following a ':'
 data = response[data_location + 2:]
 if not check_data_validity(data):
 return

 # Add device reading
 data_log[device_key].append(data.rstrip())

 # Plot in real time
 if IS_PLOT:
 plt.figure(device)
 plt.plot(range(len(data_log[device_key])),
data_log[device_key])
 plt.draw()
 plt.pause(0.01)

 if device == "RTD 102":
 # If a temperature is passed in, we want to update the
temperature of all devices
 check_temperature(data, p)
 elif response.find('-------press ctrl-c to stop the polling') != -1:
 data_log['Date'].append(time.strftime('%m/%d/%Y'))
 data_log['Time'].append(time.strftime("%H:%M:%S"))

def prep_devices(p):
 for device in device_types:
 if (device == "RTD 102"):
 device_num = device[device.find(' '):]
 units = device_units[device]
 units_command = device_num + ":S," + units + "\n"
 if logMode == Log.DEBUG:
 print(units_command)
 p.stdin.write(units_command)

 63

 if logMode == Log.DEBUG:
 print("Updated units of device: " + device + " to: " + units)

def start_up(p):
 if logMode == Log.DEBUG:
 global IS_PLOT
 IS_PLOT = raw_input("Require plotting of data? (y/n)")
 if IS_PLOT.lower() == 'y':
 IS_PLOT = True
 else:
 IS_PLOT = False
 global COMMENTS
 COMMENTS = raw_input("Add Comments: ")

 if logMode == Log.DEBUG:
 print("Initializing all temperatures to: " + str(set_temp))

 update_temperature(set_temp, p)
 prep_devices(p)

def update_temperature(temp, p):
 for device in device_types:
 if device != "RTD 102": # Only want to update the temp setting of
non-temp sensors
 device_num = device[device.find(' '):]
 temp_update_command = device_num + ":T," + str(temp) + "\n"
 if logMode == Log.DEBUG:
 print(temp_update_command)
 p.stdin.write(temp_update_command)
 if logMode == Log.DEBUG:
 print("Updated temperature of device: " + device + " to: " +
str(temp))

def check_temperature(temp, p):
 global set_temp
 # If the temperature is outside of the acceptable range of differences,
we update the temp
 try:
 if abs(float(temp) - float(set_temp)) > temp_tolerance_before_update:
 # Stop collecting data
 p.send_signal(signal.SIGINT)
 set_temp = temp
 update_temperature(temp, p)
 p.stdin.write(b'Poll\n')
 except:
 print('Temp Value was not read')

def main():
 # Update the time and date of the system to be correct for logging
purposes
 os.system("sudo date -s \"$(curl -s --head http://google.com | grep
^Date: | sed 's/Date: //g')\"")

 # path of the atlas scientific code to run
 # TODO change this to be in a separate folder and add Atlas Code to Git
Repository

 64

 script_path = './Raspberry-Pi-sample-code/i2c.py'
 # Runs the Atlas Code to get data from sensors
 p = Popen([sys.executable, '-u', script_path], stdin=PIPE,
 stdout=PIPE, stderr=STDOUT, bufsize=1)
 start_up(p)
 print("Starting Atlas Scientific Sensor Monitoring")
 p.stdin.write(b'Poll\n')

 data_log = OrderedDict()
 data_log['Date'] = []
 data_log['Time'] = []
 with p.stdout:
 try:
 for line in iter(p.stdout.readline, b''):
 if logMode == Log.DEBUG:
 print("Received data: \n" + line)
 process_atlas_response(line, p, data_log)
 except KeyboardInterrupt:
 # Add comments from start up

 # Use pandas dataframe to convert to csv after exiting with
Ctrl+C
 series_list = []
 for column in data_log.keys():
 series_list.append(pd.Series(data_log[column], name =
column))

 df = pd.concat(series_list, axis=1)

 # Ask whether to keep data set and append comments to first row
 if raw_input('Keep data set? (y/n) ').lower() == 'y':
 df['Keep?'] = 'Yes'
 else:
 df['Keep?'] = 'No'
 df['Comments'] = ''
 df['Comments'][0] = COMMENTS

 df.to_csv('./data/' + time.strftime("%m-%d-%Y %H:%M:%S") +
".csv", index=False, header=True)
 print('Finished writing to ./data/' + time.strftime("%m-%d-%Y
%H:%M:%S") + '.csv')
 sys.exit(0)
 p.wait()

if __name__ == "__main__":
 main()

 65

Appendix B
Pourbaix Diagram Data Processing Code

import math
from matplotlib import lines
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.path import Path
from shapely.geometry import Point
from shapely.geometry.polygon import Polygon

fileLocation = "location"

def interpolated_intercept(x, y1, y2):
 """Find the intercept of two curves, given by the same x data"""

 def intercept(point1, point2, point3, point4):
 """find the intersection between two lines
 the first line is defined by the line between point1 and point2
 the first line is defined by the line between point3 and point4
 each point is an (x,y) tuple.

 So, for example, you can find the intersection between
 intercept((0,0), (1,1), (0,1), (1,0)) = (0.5, 0.5)

 Returns: the intercept, in (x,y) format
 """

 def line(p1, p2):
 A = (p1[1] - p2[1])
 B = (p2[0] - p1[0])
 C = (p1[0]*p2[1] - p2[0]*p1[1])
 return A, B, -C

 def intersection(L1, L2):
 D = L1[0] * L2[1] - L1[1] * L2[0]
 Dx = L1[2] * L2[1] - L1[1] * L2[2]
 Dy = L1[0] * L2[2] - L1[2] * L2[0]

 x = Dx / D
 y = Dy / D
 return x,y

 L1 = line([point1[0],point1[1]], [point2[0],point2[1]])
 L2 = line([point3[0],point3[1]], [point4[0],point4[1]])

 R = intersection(L1, L2)

 return R

 idx = np.argwhere(np.diff(np.sign(y1 - y2)) != 0)
 xc, yc = intercept((x[idx], y1[idx]),((x[idx+1], y1[idx+1])), ((x[idx],
y2[idx])), ((x[idx+1], y2[idx+1])))
 return xc,yc

 66

concentration_lead_total = 10**(-4)
#pg 486
def calc_lead_pourbaix(pH):
 constant = .0592
 boundaries = 9.34
 HPbO2 = 10**(-4)
 PbO32 = 10**(-4)
 PbH2 = 10**(-4)
 Eqn_12_Boundary = (math.log10(concentration_lead_total)-12.65)/-2
 Eqn_13_Boundary = math.log10(HPbO2)+15.36
 Eqn_15_Boundary = (math.log10(PbO32)+31.32)/2

 concentration_H = 10 ** (-pH)
 H2_Eq = constant*pH
 O2_Eq = 1.223 - constant*pH
 Eq_16 = -.126 + .0295*math.log10(concentration_lead_total)
 Eq_21 = 1.449 - .1182*pH - .0295*math.log10(concentration_lead_total)
 Eq_7 = .248 - .0591*pH
 Eq_17 = .702 - (.0886*pH) + (.0295*math.log10(HPbO2))
 Eq_22 = .621-.0295*pH - .0295*math.log10(HPbO2)
 Eq_8 = .972 - .0591*pH
 Eq_10 = 1.127 - .0591*pH
 Eq_18 = 2.094 - .2364*pH - .0886*math.log10(concentration_lead_total)
 Eq_19 = -.39 + (.0295*pH) - .0886*math.log10(HPbO2)
 Eq_24 = -1.507 - 0.0591*pH - 0.0295*math.log(PbH2)
 Eq_5 = 2.375-0.1773*pH
 Eq_6 = 1.547 - 0.0886*pH
 return(Eq_18, Eqn_12_Boundary, Eq_8, Eqn_13_Boundary, Eq_19, Eq_10,
Eq_21, Eq_16, Eq_7, Eq_17, Eq_24, Eq_5, Eq_6)

def plot_lead_pourbaix(E_in, ph_in):
 pH_range = []
 Eq_18 = []
 Eq_8 = []
 Eq_10 = []
 Eq_19 = []
 Eq_21 = []
 Eq_16 = []
 Eq_7 = []
 Eq_17 = []
 Eq_24 = []
 Eq_12_Boundary = []
 Eq_13_Boundary = []
 Eq_2_boundary = 3.84
 Eq_4 = 1.694
 Eq_5 = []
 Eq_6 = []
 Eq_1_boundary = 9.34
 pH_limit = 16
 for pH in range(0, pH_limit+1):
 pH_range.append(pH)
 pourbaix_tuple = calc_lead_pourbaix(pH)
 Eq_18.append(pourbaix_tuple[0])
 Eq_8.append(pourbaix_tuple[2])
 Eq_10.append(pourbaix_tuple[5])
 Eq_19.append(pourbaix_tuple[4])
 Eq_21.append(pourbaix_tuple[6])

 67

 Eq_16.append(pourbaix_tuple[7])
 Eq_7.append(pourbaix_tuple[8])
 Eq_17.append(pourbaix_tuple[9])
 Eq_24.append(pourbaix_tuple[10])
 Eq_12_Boundary = pourbaix_tuple[1]
 Eq_13_Boundary = pourbaix_tuple[3]
 Eq_5.append(pourbaix_tuple[11])
 Eq_6.append(pourbaix_tuple[12])

 Eq_8_ph_range = [Eq_12_Boundary, Eq_13_Boundary]
 Eq_8_values = (calc_lead_pourbaix(Eq_12_Boundary)[2],
calc_lead_pourbaix(Eq_13_Boundary)[2])
 plt.plot(Eq_8_ph_range, Eq_8_values, label='8')

 Eq_19_ph_range = [Eq_13_Boundary, pH_limit]
 Eq_19_values = [calc_lead_pourbaix(Eq_13_Boundary)[4],
calc_lead_pourbaix(pH_limit)[4]]
 plt.plot(Eq_19_ph_range, Eq_19_values, label='19')

 xc1, yc1 =interpolated_intercept(np.array(pH_range), np.array(Eq_10),
np.array(Eq_18))
 xc2, yc2 = interpolated_intercept(np.array(pH_range), np.array(Eq_10),
np.array(Eq_19))
 Eq_10_ph_range = [xc1[0][0], xc2[0][0]]
 Eq_10_values = [calc_lead_pourbaix(xc1[0][0])[5],
calc_lead_pourbaix(xc2[0][0])[5]]
 plt.plot(Eq_10_ph_range, Eq_10_values, label='10')

 PbO2 = [
 (xc1[0][0], yc1[0][0]),
 (xc2[0][0], yc2[0][0]),
 (16, Eq_19[16]),
 (16, 2),
 (0, 2)
]

 xc1, yc1 = interpolated_intercept(np.array(pH_range), np.array(Eq_21),
np.array(Eq_18))
 Eq_21_ph_range = [0, xc1[0][0]]
 Eq_21_values = [Eq_21[0], yc1[0][0]]
 plt.plot(Eq_21_ph_range, Eq_21_values, label='21')

 PbO2.append((xc1[0][0], yc1[0][0]))
 PbO2 = Polygon(PbO2)

 Eq_18_ph_range = [xc1[0][0], Eq_12_Boundary]
 Eq_18_Values = [yc1[0][0], calc_lead_pourbaix(Eq_12_Boundary)[0]]
 plt.plot(Eq_18_ph_range, Eq_18_Values, label='18')

 xc1, yc1 = interpolated_intercept(np.array(pH_range), np.array(Eq_16),
np.array(Eq_7))
 Eq_16_ph_range = [0, xc1[0][0]]
 Eq_16_values = [Eq_16[0], yc1[0][0]]
 plt.plot(Eq_16_ph_range, Eq_16_values, label='16')

 plt.vlines(x=Eq_12_Boundary, ymin=yc1[0][0],
ymax=calc_lead_pourbaix(Eq_12_Boundary)[2])

 68

 xc2, yc2 = interpolated_intercept(np.array(pH_range), np.array(Eq_17),
np.array(Eq_7))
 Eq_7_ph_range = [xc1[0][0], xc2[0][0]]
 Eq_7_values = [calc_lead_pourbaix(xc1[0][0])[8],
calc_lead_pourbaix(xc2[0][0])[8]]
 plt.plot(Eq_7_ph_range, Eq_7_values, label='7')
 plt.vlines(x=Eq_13_Boundary, ymin=yc2[0][0],
ymax=calc_lead_pourbaix(Eq_13_Boundary)[4])

 Eq_17_ph_range = [xc2[0][0], pH_limit]
 Eq_17_values = [calc_lead_pourbaix(xc2[0][0])[9],
calc_lead_pourbaix(pH_limit)[9]]
 plt.plot(Eq_17_ph_range, Eq_17_values, label='17')

 Eq_24_ph_range = [0, 16]
 Eq_24_values = [Eq_24[0], Eq_24[16]]
 plt.plot(Eq_24_ph_range, Eq_24_values, label='24')

 Eq_4_ph_range = [0, Eq_2_boundary]
 plt.plot(Eq_4_ph_range, [Eq_4, Eq_4], '--', label='4')
 plt.vlines(x=Eq_2_boundary, ymin=Eq_4, ymax=2, linestyles='dashed')

 Pb_3plus = [
 (0, 2),
 (0, Eq_4),
 (Eq_2_boundary, Eq_4),
 (Eq_2_boundary, 2)
]
 Pb_3plus = Polygon(Pb_3plus)

 xc1, yc1 = interpolated_intercept(np.array(pH_range), np.array(Eq_5),
np.array(Eq_6))
 Eq_5_ph_range = [Eq_2_boundary, xc1[0][0]]
 Eq_5_values = [Eq_4, yc1[0][0]]
 plt.plot(Eq_5_ph_range, Eq_5_values, '--', label='5')

 Eq_6_ph_range = [xc1[0][0], 16]
 Eq_6_values = [yc1[0][0], Eq_6[16]]
 plt.plot(Eq_6_ph_range, Eq_6_values, '--', label='6')
 plt.vlines(x=Eq_1_boundary, ymin=-2, ymax=yc1[0][0], linestyles='dashed')

 PbO3_2minus = [
 (Eq_2_boundary, Eq_4),
 (xc1[0][0], yc1[0][0]),
 (16, Eq_6[16]),
 (16, 2),
 (Eq_2_boundary, 16)
]
 PbO3_2minus = Polygon(PbO3_2minus)

 yc2 = calc_lead_pourbaix(Eq_1_boundary)[10]
 Pb2plus = [
 (0, Eq_4),
 (Eq_2_boundary, Eq_4),
 (xc1[0][0], yc1[0][0]),
 (Eq_1_boundary, yc2),

 69

 (0, Eq_24[0])
]
 Pb2plus = Polygon(Pb2plus)

 HPbO2_minus = [
 (xc1[0][0], yc1[0][0]),
 (16, Eq_6[16]),
 (16, Eq_24[16]),
 (Eq_1_boundary, yc2),
]
 HPbO2_minus = Polygon(HPbO2_minus)

 Pb3O4 = [
 (Eq_10_ph_range[0], Eq_10_values[0]),
 (Eq_10_ph_range[1], Eq_10_values[1]),
 (Eq_8_ph_range[1], Eq_8_values[1]),
 (Eq_8_ph_range[0], Eq_8_values[0])
]
 Pb3O4 = Polygon(Pb3O4)

 PbO = [
 (Eq_8_ph_range[0], Eq_8_values[0]),
 (Eq_8_ph_range[1], Eq_8_values[1]),
 (Eq_7_ph_range[1], Eq_7_values[1]),
 (Eq_7_ph_range[0], Eq_7_values[0]),
]
 PbO = Polygon(PbO)

 Pb = [
 (0, Eq_16[0]),
 (Eq_16_ph_range[0], Eq_16_values[1]),
 (Eq_17_ph_range[0], Eq_17_values[0]),
 (16, Eq_17[16]),
 (16, Eq_24[16]),
 (0, Eq_24[0])
]
 Pb = Polygon(Pb)

 PbH2 = [
 (0, Eq_24[0]),
 (16, Eq_24[16]),
 (0, -2)
]
 PbH2 = Polygon(PbH2)

 point = Point(E_in, ph_in)
 solid = ''
 aq = ''
 gas = ''
 if Pb_3plus.contains(point):
 aq = '(Pb)3+'
 if PbO3_2minus.contains(point):
 aq = '(PbO3)2-'
 if Pb2plus.contains(point):
 aq = '(Pb)2+'
 if HPbO2_minus.contains(point):
 aq = '(HPbO2)-'

 70

 if PbO2.contains(point):
 solid = 'PbO2'
 if PbO.contains(point):
 solid = 'PbO'
 if Pb3O4.contains(point):
 solid = 'Pb3O4'
 if Pb.contains(point):
 solid = 'Pb'
 if PbH2.contains(point):
 gas = 'PbH2'

 plt.legend(loc="lower left")
 plt.show()
 return (solid, aq, gas)

concentration_CU_total = .0001
#Units are mole/L
pg 384
def calc_copper_pourbaix(pH):
 constant = .0592
 concentration_cu_plus = 10**(-6)
 concentration_cu_plus_plus = 10**(-6)
 concentration_HCuO2 = 10**(-6)
 concentration_CuO2 = 10**(-6)

 boundary_eq_11 = (math.log10(concentration_cu_plus_plus)-7.89)/(-2)
 boundary_eq_12 = math.log10(concentration_HCuO2) + 18.83
 boundary_eq_13 = (math.log10(concentration_CuO2)+31.98)/2
 boundary_eq_14 = .52 + (.0591*math.log10(concentration_cu_plus))
 boundary_eq_15 = .337 + (.0295*math.log10(concentration_cu_plus_plus))

 concentration_h = 10**(-pH)
 H2_eq = (-1)*constant*pH
 O2_eq = 1.223-(constant*pH)

 Eq_7 = .471 - (.0591*pH)
 Eq_9 = .669 - (.0591*pH)
 Eq_14 = boundary_eq_14
 Eq_15 = boundary_eq_15
 Eq_17 = 1.515-(.1182*pH)+(.0295*math.log10(concentration_CuO2))
 Eq_18 = .203 + (.0591*pH) + .0591*math.log10(concentration_cu_plus_plus)
 Eq_19 = 1.783 -(.1182*pH)+.0591*math.log10(concentration_HCuO2)
 Eq_20 = 2.56 - (.1773*pH) + .0591*math.log10(concentration_CuO2)
 Eq_5 = 1.733 - 0.1773*pH
 Eq_6 = 2.510 - 0.2364*pH
 return(Eq_18, boundary_eq_11, Eq_9, boundary_eq_12, Eq_17, Eq_7, Eq_15,
Eq_19, Eq_20, boundary_eq_13, Eq_5, Eq_6)

def plot_copper_pourbaix(E_in, ph_in):
 pH_range = []
 Eq_18 = []
 Eq_11_Boundary = []
 Eq_9 = []
 Eq_17 = []
 Eq_20 = []

 71

 Eq_19 = []
 Eq_7 = []
 Eq_15 = []
 Eq_12_Boundary = []
 Eq_13_Boundary = []
 Eq_5 = []
 Eq_6 = []
 Eq_4 = 0.153
 Eq_1_boundary = 8.91
 Eq_3_boundary = 13.15

 pH_limit = 16
 for pH in range(0, pH_limit + 1):
 pH_range.append(pH)
 pourbaix_tuple = calc_copper_pourbaix(pH)
 Eq_18.append(pourbaix_tuple[0])
 Eq_9.append(pourbaix_tuple[2])
 Eq_17.append(pourbaix_tuple[4])
 Eq_7.append(pourbaix_tuple[5])
 Eq_15.append(pourbaix_tuple[6])
 Eq_19.append(pourbaix_tuple[7])
 Eq_20.append(pourbaix_tuple[8])
 Eq_11_Boundary = pourbaix_tuple[1]
 Eq_12_Boundary = pourbaix_tuple[3]
 Eq_13_Boundary = pourbaix_tuple[9]
 Eq_5.append(pourbaix_tuple[10])
 Eq_6.append(pourbaix_tuple[11])

 xc1, yc1 = interpolated_intercept(np.array(pH_range), np.array(Eq_18),
np.array(Eq_15))
 Eq_15_ph_range = [0, xc1[0][0]]
 Eq_15_values = [calc_copper_pourbaix(0)[6],
calc_copper_pourbaix(xc1[0][0])[6]]
 plt.plot(Eq_15_ph_range, Eq_15_values, label='Eqn 15')

 Cu_points = [
 (0, Eq_15[0]),
 (xc1[0][0], yc1[0][0])
]

 CutwoO_points = [
 (xc1[0][0], yc1[0][0])
]

 yc2 = calc_copper_pourbaix(Eq_11_Boundary)[0]
 Eq_18_ph_range = [xc1[0][0], Eq_11_Boundary]
 Eq_18_Values = [calc_copper_pourbaix(xc1[0][0])[0], yc2]
 plt.plot(Eq_18_ph_range, Eq_18_Values, label="Eqn 18")

 CuO_points = [
 (Eq_11_Boundary, yc2),
]

 CutwoO_points.append((Eq_11_Boundary, yc2))

 yc1 = calc_copper_pourbaix(Eq_12_Boundary)[2]
 Eq_9_ph_range = [Eq_11_Boundary, Eq_12_Boundary]

 72

 Eq_9_Values = [calc_copper_pourbaix(Eq_11_Boundary)[2], yc1]
 plt.plot(Eq_9_ph_range, Eq_9_Values, label="Eqn 9")
 plt.vlines(x=Eq_12_Boundary, ymin=yc1, ymax=2)

 CuO_points.append((Eq_12_Boundary, yc1))
 CuO_points.append((Eq_12_Boundary, 2.0))
 CuO_points.append((Eq_11_Boundary, 2.0))

 CutwoO_points.append((Eq_12_Boundary, yc1))

 xc1, yc1 = interpolated_intercept(np.array(pH_range), np.array(Eq_19),
np.array(Eq_20))
 Eq_19_ph_range = [Eq_12_Boundary, xc1[0][0]]
 Eq_19_values = [calc_copper_pourbaix(Eq_12_Boundary)[7], yc1[0][0]]
 plt.plot(Eq_19_ph_range, Eq_19_values, label='Eqn 19')

 CutwoO_points.append((xc1[0][0], yc1[0][0]))

 xc2, yc2 = interpolated_intercept(np.array(pH_range), np.array(Eq_20),
np.array(Eq_7))
 Eq_20_ph_range = [xc1[0][0], xc2[0][0]]
 Eq_20_values = [yc1[0][0], yc2[0][0]]
 plt.plot(Eq_20_ph_range, Eq_20_values, label='Eqn 20')

 CutwoO_points.append((xc2[0][0], yc2[0][0]))
 Cu_points.append((xc2[0][0], yc2[0][0]))

 xc1, yc1 = interpolated_intercept(np.array(pH_range), np.array(Eq_20),
np.array(Eq_17))
 Eq_17_ph_range = [xc1[0][0], 16]
 Eq_17_values = [yc1[0][0], Eq_17[16]]
 plt.plot(Eq_17_ph_range, Eq_17_values, label='Eqn 17')

 Cu_points.append((16, Eq_17[16]))
 Cu_points.append((16, -2))
 Cu_points.append((0, -2))

 xc1, yc1 = interpolated_intercept(np.array(pH_range), np.array(Eq_18),
np.array(Eq_7))
 xc2, yc2 = interpolated_intercept(np.array(pH_range), np.array(Eq_17),
np.array(Eq_7))
 Eq_7_ph_range = [xc1[0][0], xc2[0][0]]
 Eq_7_values = [calc_copper_pourbaix(xc1[0][0])[5],
calc_copper_pourbaix(xc2[0][0])[5]]
 plt.plot(Eq_7_ph_range, Eq_7_values, label='Eqn 7')

 xc1, yc1 = interpolated_intercept(np.array(pH_range), np.array(Eq_18),
np.array(Eq_9))
 plt.vlines(x=Eq_11_Boundary, ymin=yc1[0][0], ymax=2,
 label='Eq_11')

 plt.plot([0, Eq_1_boundary], [Eq_4, Eq_4], '--', label='Eqn 4')
 plt.vlines(x=Eq_1_boundary, ymin=Eq_4, ymax=2, linestyles='dashed')

 xc2, yc2 = interpolated_intercept(np.array(pH_range), np.array(Eq_5),
np.array(Eq_6))

 73

 Eq_5_ph_range = [Eq_1_boundary, Eq_3_boundary]
 Eq_5_values = [Eq_4, yc2[0][0]]
 plt.plot(Eq_5_ph_range, Eq_5_values, '--',label='Eqn 5')

 Eq_6_ph_range = [xc2[0][0], 16]
 Eq_6_values = [yc2[0][0], Eq_6[16]]
 plt.plot(Eq_6_ph_range, Eq_6_values, '--',label='Eqn 6')
 plt.vlines(x=Eq_3_boundary, ymin=yc2[0][0], ymax=2, linestyles='dashed')

 CuPlus_points = [
 (0, Eq_4),
 (Eq_1_boundary, Eq_4),
 (xc2[0][0], yc2[0][0]),
 (16, Eq_6[16]),
 (16, -2),
 (0, -2)
]
 Cu_plus = Polygon(CuPlus_points)

 CuTwoplus_points = [
 (0, Eq_4),
 (Eq_1_boundary, Eq_4),
 (Eq_1_boundary, 2),
 (0, 2)
]
 CuTwoplus = Polygon(CuTwoplus_points)

 HCuO2_minus_points = [
 (Eq_1_boundary, Eq_4),
 (xc2[0][0], yc2[0][0]),
 (Eq_3_boundary, 2),
 (Eq_1_boundary, 2)
]
 HCuO2 = Polygon(HCuO2_minus_points)

 CuO2_two_minus_points = [
 (xc2[0][0], yc2[0][0]),
 (16, Eq_6[0][0]),
 (16, 2),
 (Eq_3_boundary, 2)
]
 CuO2_two_minus = Polygon(CuO2_two_minus_points)

 #Eq_20_ph_range = [xc1[0][0], xc2[0][0]]
 #Eq_20_values = [calc_copper_pourbaix(xc1[0][0])[8],
calc_copper_pourbaix(xc2[0][0])[8]]
 # plt.plot([0,16], [Eq_20[0], Eq_20[16]], label='Eqn 20')
 # plt.plot([0, 16], [Eq_19[0], Eq_19[16]], label='Eqn 19')
 # plt.plot([0, 16], [Eq_17[0], Eq_17[16]], label='Eqn 17')
 plt.legend(loc="lower left")
 plt.show()

 point = Point(E_in, ph_in)
 Cu = Polygon(Cu_points)
 CutwoO = Polygon(CutwoO_points)
 CuO = Polygon(CuO_points)

 74

 solid = ''
 aq = ''

 if CuTwoplus.contains(point):
 aq = "(Cu)2+"
 if Cu_plus.contains(point):
 aq = "(Cu)+"
 if HCuO2.contains(point):
 aq = "(HCuO2)-"
 if CuO2_two_minus.contains(point):
 aq = "(CuO2)2-"
 if CuO.contains(point):
 solid = "CuO"
 if Cu.contains(point):
 solid = 'Cu'
 return (solid, aq)

TODO Zinc Pourbaix Diagram
pg 407
def calc_zinc_pourbaix(pH):
 concentration_Zn2 = 10**(-6)
 concentration_ZnO22 = 10**(-6)
 Eq_9 = -0.763 + 0.0295*math.log10(concentration_Zn2)
 Eq_5 = -0.439 - 0.0591*pH
 Eq_10 = 0.054 - 0.0886*pH + 0.0295*math.log10(concentration_ZnO22)
 Eq_11 = 0.441 - 0.1182*pH + 0.0295*math.log10(concentration_ZnO22)
 return (Eq_9, Eq_5, Eq_10, Eq_11)

def plot_zinc_pourbaix(E_in, pH_in):
 pH_range = []
 Eq_9 = []
 Eq_5 = []
 Eq_10 = []
 Eq_11 = []
 Eq_3_boundary = 9.21
 Eq_4_boundary = 13.11
 pH_limit = 16
 for pH in range(0, pH_limit+1):
 pH_range.append(pH)
 pourbaix_tuple = calc_zinc_pourbaix(pH)
 Eq_9.append(pourbaix_tuple[0])
 Eq_5.append(pourbaix_tuple[1])
 Eq_10.append(pourbaix_tuple[2])
 Eq_11.append(pourbaix_tuple[3])

 xc1, yc1 = interpolated_intercept(np.array(pH_range), np.array(Eq_9),
np.array(Eq_5))
 Eq_9_ph_range = [0, xc1[0][0]]
 Eq_9_values = [Eq_9[0], yc1[0][0]]
 plt.plot(Eq_9_ph_range, Eq_9_values, label='Eqn 9')
 plt.vlines(x=xc1[0][0], ymin=yc1[0][0], ymax=2)

 Zn2plus = [
 (0, -2),
 (Eq_3_boundary, -2),
 (Eq_3_boundary, 2),
 (0, 2.0),

 75

]
 Zn2plus = Polygon(Zn2plus)

 xc2, yc2 = interpolated_intercept(np.array(pH_range), np.array(Eq_5),
np.array(Eq_10))
 Eq_5_ph_range = [xc1[0][0], xc2[0][0]]
 Eq_5_values = [yc1[0][0], yc2[0][0]]
 plt.plot(Eq_5_ph_range, Eq_5_values, label='Eqn 5')
 plt.vlines(x=xc2[0][0], ymin=yc2[0][0], ymax=2)

 ZnOHtwo = [
 (xc1[0][0], yc1[0][0]),
 (xc2[0][0], yc2[0][0]),
 (xc2[0][0], 2.0),
 (xc1[0][0], 2.0),
]
 ZnOHtwo = Polygon(ZnOHtwo)

 Zn = [
 (16, Eq_11[16]),
 (16, -2),
 (0, -2),
 (0, Eq_9[0]),
 (xc1[0][0], yc1[0][0]),
 (xc2[0][0], yc2[0][0]),
]

 xc1, yc1 = interpolated_intercept(np.array(pH_range), np.array(Eq_10),
np.array(Eq_11))
 Eq_10_ph_range = [xc2[0][0], xc1[0][0]]
 Eq_10_values = [yc2[0][0], yc1[0][0]]
 plt.plot(Eq_10_ph_range, Eq_10_values, label='Eqn 10')
 # plt.vlines(x=xc1[0][0], ymin=yc1[0][0], ymax=2)
 Zn.append((xc1[0][0], yc1[0][0]))
 Zn = Polygon(Zn)

 HZnOtwo_minus = [
 (Eq_3_boundary, -2),
 (Eq_4_boundary, -2),
 (Eq_4_boundary, 2),
 (Eq_3_boundary, 2),
]
 HZnOtwo_minus = Polygon(HZnOtwo_minus)

 Eq_11_ph_range = [xc1[0][0], 16]
 Eq_11_values = [yc1[0][0], Eq_11[16]]
 plt.plot(Eq_11_ph_range, Eq_11_values, label='Eqn 11')
 plt.vlines(x=xc2[0][0], ymin=yc2[0][0], ymax=2)
 plt.vlines(x=Eq_3_boundary, ymin=-2, ymax=2, linestyles='dashed')
 plt.vlines(x=Eq_4_boundary, ymin=-2, ymax=2, linestyles='dashed')

 ZnOtwo_minus = [
 (Eq_4_boundary, -2),
 (16, -2),
 (16, 2.0),
 (Eq_4_boundary, 2.0),
]

 76

 ZnOtwo_minus = Polygon(ZnOtwo_minus)

 # plt.plot([0,16], [Eq_1[0], Eq_1[16]], label='Eqn 1')
 # plt.plot([0,16], [Eq_2[0], Eq_2[16]], label='Eqn 2')
 # plt.plot([0,16], [Eq_3[0], Eq_3[16]], label='Eqn 3')
 # plt.plot([0,16], [Eq_4[0], Eq_4[16]], label='Eqn 4')
 plt.legend(loc="lower left")
 plt.show()

 point = Point(E_in, pH_in)

 solid = ''
 aq = ''

 if Zn2plus.contains(point):
 aq = "(Zn)2+"
 if HZnOtwo_minus.contains(point):
 aq = "(HZnO2)-"
 if ZnOtwo_minus.contains(point):
 aq = "(ZnO2)2-"
 if Zn.contains(point):
 solid = "Zn"
 if ZnOHtwo.contains(point):
 solid = "Zn(OH)2"
 return (solid, aq)

TODO Iron Pourbaix Diagram
pg 307
def calc_iron_pourbaix(pH):
 concentration_fe2_plus = 10**(-6)
 concentration_fe3_plus = 10**(-6)
 concentration_HFeO2_minus = 10**(-6)

 Eq_23 = -0.44 + (0.0295)*math.log10(concentration_fe2_plus)
 Eq_4 = 0.771 +
(0.0591)*math.log10(concentration_fe3_plus/concentration_fe2_plus)
 # Eq_20 = ("Fe3+") = 10**(-0.72-3*pH)
 Eq_28 = 0.728-(0.1773*pH)-(0.0591*math.log10(concentration_fe2_plus))
 Eq_17 = 0.221 - 0.0591*pH
 Eq_13 = -0.085 - 0.0591*pH
 Eq_26 = 0.98 - 0.2364*pH - (0.0886*math.log10(concentration_fe2_plus))
 Eq_24 = 0.493 - 0.0886*pH + 0.0295*math.log10(concentration_HFeO2_minus)
 Eq_27 = -1.819 + 0.0295*pH - 0.0886
*math.log10(concentration_HFeO2_minus)
 Eq_9 = 1.700 - 0.1580*pH
 Eq_10 = 1.652 - 0.1379*pH
 Eq_5 = 0.914 - 0.0591*pH
 Eq_11 = 1.559 - 0.1182*pH
 Eq_6 = 1.191 - 0.1182*pH
 Eq_7 = -0.675 + 0.0591*pH
 Eq_8 = 1.001 - 0.0738*pH
 HYDROGEN_EQ = -0.0592*pH
 OXYGEN_EQ = 1.223-(0.0592*pH)

 return (Eq_23, Eq_4, Eq_28, Eq_17, Eq_13, Eq_26, Eq_24, Eq_27, Eq_9,
Eq_10, Eq_5, Eq_11, Eq_6, Eq_7, Eq_8, HYDROGEN_EQ, OXYGEN_EQ)

 77

def plot_iron_pourbaix(E_in, ph_in):
 pH_range = []
 Eq_23 = []
 Eq_4 = []
 Eq_20 = []
 Eq_28 = []
 Eq_17 = []
 Eq_13 = []
 Eq_26 = []
 Eq_24 = []
 Eq_27 = []
 Eq_9 = []
 Eq_10 = []
 Eq_5 = []
 Eq_11 = []
 Eq_6 = []
 Eq_7 = []
 Eq_8 = []
 Hydrogen = []
 Oxygen = []
 Eq_1_boundary = 10.53
 Eq_2_boundary = 2.43
 Eq_3_boundary = 4.69
 pH_limit = 16
 for pH in range(0, pH_limit+1):
 pH_range.append(pH)
 pourbaix_tuple = calc_iron_pourbaix(pH)
 Eq_23.append(pourbaix_tuple[0])
 Eq_4.append(pourbaix_tuple[1])
 # Eq_20.append(pourbaix_tuple[2])
 Eq_28.append(pourbaix_tuple[2])
 Eq_17.append(pourbaix_tuple[3])
 Eq_13.append(pourbaix_tuple[4])
 Eq_26.append(pourbaix_tuple[5])
 Eq_24.append(pourbaix_tuple[6])
 Eq_27.append(pourbaix_tuple[7])
 Eq_9.append(pourbaix_tuple[8])
 Eq_10.append(pourbaix_tuple[9])
 Eq_5.append(pourbaix_tuple[10])
 Eq_11.append(pourbaix_tuple[11])
 Eq_6.append(pourbaix_tuple[12])
 Eq_7.append(pourbaix_tuple[13])
 Eq_8.append(pourbaix_tuple[14])
 Hydrogen.append(pourbaix_tuple[15])
 Oxygen.append(pourbaix_tuple[16])

 Eq_2_values = calc_iron_pourbaix(Eq_2_boundary)
 Eq_9_ph_range = [0, Eq_2_boundary]
 Eq_9_values = [Eq_9[0], Eq_2_values[8]]
 plt.plot(Eq_9_ph_range, Eq_9_values, '--', label='Eqn 9')

 xc1, yc1 = interpolated_intercept(np.array(pH_range), np.array(Eq_4),
np.array(Eq_28))
 Eq_4_ph_range = [0, Eq_2_boundary]
 Eq_4_values = [Eq_4[0], Eq_2_values[1]]
 plt.plot(Eq_4_ph_range, Eq_4_values, '--', label='Eqn 4')
 plt.vlines(x=xc1[0][0], ymin=yc1[0][0], ymax=2)

 78

 plt.vlines(x=Eq_2_boundary, ymin=Eq_2_values[1], ymax=Eq_2_values[8],
linestyles='dashed')

 Fe2_O3 = [
 (xc1[0][0], yc1[0][0]),
 (xc1[0][0], 2),
 (16, 2),
 (16, Eq_17[16]),
]

 Fe_3_plus = [
 (0, Eq_9[0]),
 (Eq_2_boundary, Eq_2_values[8]),
 (Eq_2_boundary, Eq_2_values[1]),
 (0, Eq_4[0])
]

 Fe_3_plus = Polygon(Fe_3_plus)

 Eq_3_values = calc_iron_pourbaix(Eq_3_boundary)
 Eq_10_ph_range = [Eq_2_boundary, Eq_3_boundary]
 Eq_10_values = [Eq_2_values[9], Eq_3_values[9]]
 plt.plot(Eq_10_ph_range, Eq_10_values, '--', label='Eqn 10')

 Eq_5_ph_range = [Eq_2_boundary, Eq_3_boundary]
 Eq_5_values = [Eq_2_values[10], Eq_3_values[10]]
 plt.plot(Eq_5_ph_range, Eq_5_values, '--', label='Eqn 5')
 plt.vlines(x=Eq_3_boundary, ymin=Eq_3_values[10], ymax=Eq_3_values[9],
linestyles='dashed')

 FeOH_2_plus = [
 (Eq_2_boundary, Eq_2_values[9]),
 (Eq_3_boundary, Eq_3_values[9]),
 (Eq_3_boundary, Eq_3_values[10]),
 (Eq_2_boundary, Eq_2_values[10])
]

 FeOH_2_plus = Polygon(FeOH_2_plus)

 xc2, yc2 = interpolated_intercept(np.array(pH_range), np.array(Eq_26),
np.array(Eq_28))
 Eq_28_ph_range = [xc1[0][0], xc2[0][0]]
 Eq_28_values = [yc1[0][0], yc2[0][0]]
 plt.plot(Eq_28_ph_range, Eq_28_values, label='Eqn 28')

 Fe2_O3.append((xc2[0][0], yc2[0][0]))
 Fe2_O3 = Polygon(Fe2_O3)

 xc1, yc1 = interpolated_intercept(np.array(pH_range), np.array(Eq_23),
np.array(Eq_26))
 Eq_26_ph_range = [xc2[0][0], xc1[0][0]]
 Eq_26_values = [yc2[0][0], yc1[0][0]]
 plt.plot(Eq_26_ph_range, Eq_26_values, label='Eqn 26')

 Eq_23_ph_range = [0, xc1[0][0]]
 Eq_23_values = [Eq_23[0], yc1[0][0]]
 plt.plot(Eq_23_ph_range, Eq_23_values, label='Eqn 23')

 79

 Eq_17_ph_range = [xc2[0][0], 16]
 Eq_17_values = [yc2[0][0], Eq_17[16]]
 plt.plot(Eq_17_ph_range, Eq_17_values, label='Eqn 17')

 Fe3_O4 = [
 (xc1[0][0], xc1[0][0]),
 (xc2[0][0], yc2[0][0]),
 (16, Eq_17[16]),
 (16, Eq_13[16])
]

 Fe3_O4 = Polygon(Fe3_O4)

 xc2, yc2 = interpolated_intercept(np.array(pH_range), np.array(Eq_13),
np.array(Eq_24))
 Eq_13_ph_range = [xc1[0][0], xc2[0][0]]
 Eq_13_values = [yc1[0][0], yc2[0][0]]
 plt.plot(Eq_13_ph_range, Eq_13_values, label='Eqn 13')

 Fe = [
 (0, Eq_23[0]),
 (xc1[0][0], yc1[0][0]),
 (16, Eq_13[16]),
 (16, -2),
 (0, -2)
]

 Fe = Polygon(Fe)

 Eq_24_ph_range = [xc2[0][0], 16]
 Eq_24_values = [yc2[0][0], Eq_24[16]]
 plt.plot(Eq_24_ph_range, Eq_24_values, label='Eqn 24')

 Eq_27_ph_range = [xc2[0][0], 16]
 Eq_27_values = [yc2[0][0], Eq_27[16]]
 plt.plot(Eq_27_ph_range, Eq_27_values, label='Eqn 27')

 xc1, yc1 = interpolated_intercept(np.array(pH_range), np.array(Eq_11),
np.array(Eq_7))
 Eq_11_ph_range = [Eq_3_boundary, xc1[0][0]]
 Eq_11_values = [Eq_3_values[11], yc1[0][0]]
 plt.plot(Eq_11_ph_range, Eq_11_values, '--', label='Eqn 11')

 xc2, yc2 = interpolated_intercept(np.array(pH_range), np.array(Eq_6),
np.array(Eq_7))
 Eq_6_ph_range = [Eq_3_boundary, xc2[0][0]]
 Eq_6_values = [Eq_3_values[12], yc2[0][0]]
 plt.plot(Eq_6_ph_range, Eq_6_values, '--', label='Eqn 6')
 plt.vlines(x=Eq_1_boundary, ymin=-2,
ymax=calc_iron_pourbaix(Eq_1_boundary)[12], linestyles='dashed')

 Eq_7_ph_range = [xc2[0][0], xc1[0][0]]
 Eq_7_values = [yc2[0][0], yc1[0][0]]
 plt.plot(Eq_7_ph_range, Eq_7_values, '--', label='Eqn 7')

 Fe_2_plus = [

 80

 (0, Eq_4[0]),
 (Eq_2_boundary, Eq_2_values[10]),
 (Eq_3_boundary, Eq_3_values[10]),
 (xc2[0][0], yc2[0][0]),
 (Eq_1_boundary, -2),
 (0, -2)
]
 Fe_2_plus = Polygon(Fe_2_plus)

 Eq_8_ph_range = [xc1[0][0], 16]
 Eq_8_values = [yc1[0][0], Eq_8[16]]
 plt.plot(Eq_8_ph_range, Eq_8_values, '--', label='Eqn 8')

 FeO4_2_minus = [
 (0, Eq_9[0]),
 (Eq_2_boundary, Eq_2_values[10]),
 (Eq_3_boundary, Eq_3_values[10]),
 (xc1[0][0], yc1[0][0]),
 (16, Eq_8[16]),
 (16, 2),
 (0, 2),
]

 FeO4_2_minus = Polygon(FeO4_2_minus)

 Fe_OH2_plus = [
 (Eq_3_boundary, Eq_3_values[11]),
 (xc1[0][0], yc1[0][0]),
 (xc2[0][0], yc2[0][0]),
 (Eq_3_boundary, Eq_3_values[12])
]

 Fe_OH2_plus = Polygon(Fe_OH2_plus)

 HFeO2 = [
 (Eq_1_boundary, -2),
 (xc2[0][0], yc2[0][0]),
 (xc1[0][0], yc1[0][0]),
 (16, Eq_8[16]),
 (16, -2)
]

 HFeO2 = Polygon(HFeO2)

 plt.plot([0,16], [Hydrogen[0], Hydrogen[16]], 'k', label='Hydrogen
Equilibrium')
 plt.plot([0,16], [Oxygen[0], Oxygen[16]], 'k', label='Oxygen
Equilibrium')
 plt.legend(loc="lower left")
 plt.show()

 point = Point(E_in, ph_in)
 solid = ''
 aq = ''
 if FeO4_2_minus.contains(point):
 aq = '(FeO4)2-'
 if Fe_3_plus.contains(point):

 81

 aq = '(Fe)3+'
 if FeOH_2_plus.contains(point):
 aq = '(FeOH)2+'
 if Fe_OH2_plus.contains(point):
 aq = '(Fe(OH)2)+'
 if Fe_2_plus.contains(point):
 aq = '(Fe)2+'
 if HFeO2.contains(point):
 aq = 'HFeO2'
 if Fe2_O3.contains(point):
 solid = 'Fe2O3'
 if Fe3_O4.contains(point):
 solid = 'Fe3O4'
 if Fe.contains(point):
 solid = 'Fe'
 return (solid, aq)

def calc_total_alkalinity(pH):
 PCO2 = 10**(-3.5)
 k1 = 10**(-1.5)
 k2 = 10**(-6.3)
 k3 = 10**(-10.3)
 concentration_H = 10**(-pH)
 concentration_OH = 10**(-1*(14-pH))
 concentration_H2CO3 = PCO2*k1
 concentration_HCO3 = k2*concentration_H2CO3/concentration_H
 concentration_CO32 = k3 *concentration_HCO3/concentration_H

 alkalinity = concentration_HCO3 + 2*concentration_CO32 + concentration_OH
+ concentration_H
 return alkalinity

def calc_copper_complexation(pH):
 Ks0 = 10**(8.7)
 Ks1 = 10
 Ks2 = 10**(-7.5)
 Ks3 = 10**(-30.9)

 log_concentration_Cu2 = math.log10(Ks0)-2*pH
 log_concentration_CuOH = math.log10(Ks1)-pH
 log_concentration_CuOH2 = math.log10(Ks2)
 log_concentration_CuOH42 = math.log10(Ks3) +pH
 return(log_concentration_Cu2, log_concentration_CuOH,
log_concentration_CuOH2, log_concentration_CuOH42)

def calc_HOCL(pH):
 Ka = 3.5*(10**(-8))
 totA = 10**(-4)
 concentration_H= 10**(-pH)
 concentration_HOCL = totA*(1/(1+Ka/concentration_H))
 concentration_OCL = totA*(1/(1+(concentration_H/Ka)))
 log_concentration_OCL = math.log10(concentration_OCL)
 log_concentration_HOCL = math.log10(concentration_HOCL)
 return(log_concentration_HOCL, log_concentration_OCL)

def calc_hardness(pH):
 #caTotal = 10**(-3)

 82

 #PCO2 = 10**(-3.5)
 #H2CO3 = 10**(-5)
 log_concentration_HCO3 = pH-11.3
 log_concentration_CO32 = 2*pH-21.6
 log_concentration_Ca2 = 13.3-(2*pH)
 return(log_concentration_HCO3, log_concentration_CO32,
log_concentration_Ca2)

total dissolved solids
def calc_tds(ec):
 # assume constant as 0.64
 return (0.64)*ec

def calc_ionic_strength(tds):
 return (2.5*(10**-5))*(tds)

def graphComputeAll():
 i =1

def graphAll():
 i =1

def main():
 # print(plot_copper_pourbaix(3, 1.7))
 plot_lead_pourbaix()
 # print(plot_zinc_pourbaix(1, 3))
 # plot_iron_pourbaix()

if __name__ == "__main__":
 main()

 83

Appendix C
Procedure For Configuring the Raspberry Pi for Data Collection

1. To begin, download the necessary operating system onto raspberry pi, can be done on an

external computer and requires a 64-gigabyte microSD card as well as a microSD card
adapter

2. Visit raspberry pi website to download the operating system at:
https://www.raspberrypi.com/software/

3. First you will need to download the Raspberry Pi Imager software. Follow the
instructions on the page to download for Mac or Windows

4. Open the Raspberry Pi Imager from your applications folder
5. When the imager opens select the Raspberry Pi OS (32bit)
6. Plug in microSD card adapter into computer and select the microSD card listed after

clicking storage button
7. Select write and the raspberry pi imager will show the amount of progress completed

throughout the entire writing process
8. Once the microSD card has finished writing and verifying, eject the microSD card

adapter and remove
9. Now that the microSD card is configured, continue by taking the Raspberry Pi baseboard

and locating the microSD card slot located on the bottom side of the board
10. Insert the microSD card into the slot
11. Plug in all auxiliary hardware to connect the mouse, keyboard, and LCD screen. This

may be performed in any order but should consist of the following connections:
1. Connect the mouse USB cord to USB2 or USB3 port Raspberry Pi
2. Connect the keyboard USB2 or USB3 port on Raspberry Pi
3. Connect mini-HDMI to USB cord to the DC Touch slot along the left side of the

LCD screen and a USB2 or USB3 port on Raspberry Pi, respectively
4. Connect HDMI to micro-HDMI cord in HDMI port along the left side of the LCD

screen and to the micro-HDMI port on the Raspberry Pi
12. After this, the Whitebox labs carrier boards should be outfitted with the circuits for each

sensor. There are two electrically isolated slots and one non-isolated slot on each carrier
board. The circuits each have three pins that slide into these slots on the carrier board.
Ensure that the text on the circuit and the text on the carrier board are both reading right
side up and carefully slide the circuits into a slot. All circuits should be on electrically
isolated slots, excluding the temperature or flow circuits.

13. The next step is to attach the Whitebox labs carrier boards to the Raspberry Pi, all the
boards contain GPIO pins along the top side. Align these pins directly over the GPIO pins
on the Raspberry Pi and gently press the two components together until the pins are
stacked and securely attached

14. The sensors may now be connected to the system. First add an SMA to BNC adapter to
each circuit at the end of each sensor cable. The adapters screw directly onto the male
SMA end of each cable. Locate the white BNC connectors that are in front of the circuits
and connect each sensor to its respective circuit through the BNC connector.

15. Now the Raspberry Pi must be powered on use the 5V USB-C power supply cord to plug
in the Raspberry Pi from a power outlet. There are two USB-C slots on the Raspberry Pi,

 84

ensure that the cord is plugged into the leftmost port, if your power supply cord has a
switch included, you may switch it on at this point

16. Allow 10-30 seconds for the Raspberry Pi to boot up, note that if you see any green
granules/lines on the LCD screen, you should double check all cable connections

17. Once the Raspberry Pi has booted up for the first time Setup wizard will walk you
through the basic start-up and prompt you for localization, a new password, Wi-Fi
network, etc.

18. To download the code to a new device run the command $ git clone
https://github.com/SmartWaterFilter/AtlasScientificDataAcqusition.git

19. This command should ask for a username and password which are
1. Username: SmartWaterFilter and
2. Password: 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

20. This command will clone the Github repository, after which you can enter the command
$./start, which should begin polling values from the sensors after prompting for user
inputs on comments, plotting etc. The user may decide if they would like to add any
comments or have the data plotted during the data collection

21. After completing these steps, the sensors may be inserted into whatever sample is to be
measured, if they are not already in solution or in-line

22. To stop the polling of data simply press ctrl-c and the data acquisition code will stop. The
user will be asked for several other inputs including the username and password before
the data is automatically pushed to the online repository

23. Steps 19-23 may be repeated for any number of runs
24. When the desired data acquisition is complete, the terminal window may be exited, and

the Raspberry Pi can be shut down

 85

References

Adu-Manu, K. S., Katsriku, F. A., Abdulai, J. D., & Engmann, F. (2020). Smart River

Monitoring Using Wireless Sensor Networks. Wireless Communications and Mobile

Computing, 2020. https://doi.org/10.1155/2020/8897126

Bergendahl, J. A., & Stevens, L. (2005). Oxidation reduction potential as a measure of

disinfection effectiveness for chlorination of wastewater. Environmental Progress, 24(2),

214–222. https://doi.org/10.1002/ep.10074

Drinking Water Standards and Regulations | Public Water Systems | Drinking Water | Healthy

Water | CDC. (n.d.). Retrieved November 23, 2021, from

https://www.cdc.gov/healthywater/drinking/public/regulations.html

Fathi, E., Zamani-Ahmadmahmoodi, R., & Zare-Bidaki, R. (2018). Water quality evaluation

using water quality index and multivariate methods, Beheshtabad River, Iran. Applied

Water Science, 8(7). https://doi.org/10.1007/s13201-018-0859-7

Geetha, S., & Gouthami, S. (2016). Internet of things enabled real time water quality monitoring

system. Smart Water, 2(1). https://doi.org/10.1186/s40713-017-0005-y

Jung, H., Kim, U., Seo, G., Lee, H., & Lee, C. (2009). Effect of Dissolved Oxygen (DO) on

Internal Corrosion of Water Pipes. In Korean Society of Environmental Engineers (Vol. 14,

Issue 3).

Kim, H., Kwon, S., Han, S., Yu, M., Kim, J., Gong, S., & Colosimo, M. F. (2006). New

ORP/pH-based control strategy for chlorination and dechlorination of wastewater: Pilot

scale application. Water Science and Technology, 53(6), 145–151.

https://doi.org/10.2166/wst.2006.188

 86

Lambrou, T. P., Anastasiou, C. C., Panayiotou, C. G., & Polycarpou, M. M. (2014). A low-cost

sensor network for real-time monitoring and contamination detection in drinking water

distribution systems. IEEE Sensors Journal, 14(8), 2765–2772.

https://doi.org/10.1109/JSEN.2014.2316414

Leventeli, Y., & Yalcin, F. (2021). Data analysis of heavy metal content in riverwater:

multivariate statistical analysis and inequality expressions. Journal of Inequalities and

Applications, 2021(1). https://doi.org/10.1186/s13660-021-02549-3

Lockridge, G., Dzwonkowski, B., Nelson, R., & Powers, S. (2016). Development of a low-cost

arduino-based sonde for coastal applications. Sensors (Switzerland), 16(4).

https://doi.org/10.3390/s16040528

Parra, L., Sendra, S., García, L., & Lloret, J. (2018). Design and deployment of low-cost sensors

for monitoring the water quality and fish behavior in aquaculture tanks during the feeding

process. Sensors (Switzerland), 18(3). https://doi.org/10.3390/s18030750

Pasika, S., & Gandla, S. T. (2020). Smart water quality monitoring system with cost-effective

using IoT. Heliyon, 6(7). https://doi.org/10.1016/j.heliyon.2020.e04096

Pierce, G., Gonzalez, S. R., Roquemore, P., & Ferdman, R. (2019). Sources of and solutions to

mistrust of tap water originating between treatment and the tap: Lessons from Los Angeles

County. The Science of the Total Environment, 694.

https://doi.org/10.1016/J.SCITOTENV.2019.133646

Suslow, T. v. (n.d.). Oxidation-Reduction Potential (ORP) for Water Disinfection Monitoring,

Control, and Documentation PUBLICATION 8149 UNIVERSITY OF CALIFORNIA

Division of Agriculture and Natural Resources. http://anrcatalog.ucdavis.edu

 87

Vijayakumar, N., & Ramya, R. (2013). The Real Time Monitoring of Water Quality in IoT

Environment. In International Journal of Science and Research (Vol. 4). www.ijsr.net

Wu, J., Cao, M., Tong, D., Finkelstein, Z., & Hoek, E. M. v. (n.d.). A critical review of point-of-

use drinking water treatment in the United States. https://doi.org/10.1038/s41545-021-

00128-z

Zennaro, M., Floros, A., Dogan, G., Sun, T., Cao, Z., Huang, C., Bahader, M., Ntareme, H. ’, &

Bagula, A. (n.d.). On the design of a Water Quality Wireless Sensor Network (WQWSN): an

Application to Water Quality Monitoring in Malawi.

Zhang, D., Sullivan, T., Briciu-Burghina, C., Murphy, K., Mcguinness, K., O’connor, N. E.,

Smeaton, A., & Regan, F. (n.d.). Detection and Classification of Anomalous Events in

Water Quality Datasets Within a Smart City-Smart Bay Project.

