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Household electrification is thought to be an important part of a carbon-neutral future
and could also have additional benefits to adopting households such as improved
air quality. However, the effectiveness of specific electrification policies in reducing
total emissions and boosting household livelihoods remains a crucial open question
in both developed and developing countries. We investigated a transition of more
than 750,000 households from gas to electric cookstoves—one of the most popular
residential electrification strategies—in Ecuador following a program that promoted
induction stoves and assessed its impacts on electricity consumption, greenhouse gas
emissions, and health. We estimate that the program resulted in a 5% increase in
total residential electricity consumption between 2015 and 2021. By offsetting a
commensurate amount of cooking gas combustion, we find that the program likely
reduced national greenhouse gas emissions, thanks in part to the country’s electricity
grid being 80% hydropower in later parts of the time period. Increased induction
stove uptake was also associated with declines in all-cause and respiratory-related
hospitalizations nationwide. These findings suggest that, when the electricity grid
is largely powered by renewables, gas-to-induction cooking transitions represent a
promising way of amplifying the health and climate cobenefits of net-carbon-zero
policies.

residential electrification | climate change | environmental epidemiology | policy evaluation

Residential electrification is a key component of most net-carbon-zero strategies.
Globally, residential buildings are responsible for 10% of greenhouse gas emissions
(1). Household electrification and electricity grid decarbonization are also increasingly
thought to have cobenefits in terms of improved indoor air quality and health (2–6).
Thus, most plans to get societies on low-carbon pathways include ambitious residential
electrification policies (7, 8). The approach to reducing emissions from residential
buildings is conceptually straightforward: electrify everything and decarbonize electricity
production (9). Modeling studies suggest that residential electrification could yield large
“win–win” reductions in both greenhouse gas and air pollution emissions in both wealthy
and resource-poor regions of the world (2, 10–12).

However, despite substantial policy attention on residential electrification in general,
we still lack careful ex post evaluation of to what extent available residential electrification
policies actually spur adoption, reduce emissions, and generate cobenefits. Ex post policy
evaluation is important, given the frequent gulf in results between ex ante and ex post
analyses of energy policies, with differences often driven by behavioral responses to
these policies (13–17). For example, in an experimental evaluation of 30,000 homes
participating in the Weatherization Assistance Program in Michigan, USA, Fowlie et al.
(15) show that model-projected savings exceeded observed savings by more than three
times, at least partly due to low take-up (18) and smaller-than-predicted energy efficiency
gains. In another example, Davis et al. (16) show that a program that helped 1.9 million
households in Mexico replace their refrigerators and air conditioners with energy-efficient
units reduced electricity consumption by 8%, only one-quarter of the ex ante predictions.
These differences are explained by most retired appliances being comparatively younger
and more efficient than expected and an increased use of air conditioners among enrollees
(the “rebound effect”). In some cases, lower-than-expected benefits lead the costs of
these programs to outweigh the benefits. And yet, despite their clear limitations, ex
ante engineering estimates are widely used to measure the benefits of energy efficiency
programs, with comparatively little attention to rigorous ex post evaluation (19).

While the specific policies that will maximize both climate and health benefits remain
unknown, one promising strategy is replacing gas cookstoves with electric induction
cookstoves (20, 21). When the grid is powered by renewables, induction is the gold
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standard for clean cooking because it has zero combustion at the
point of use and produces minimal greenhouse gas emissions (6).
Induction is also more efficient than gas cooking. Cooking with
gas has a typical energy efficiency of 50% (i.e., half the energy
from the gas is transferred to usable heat for cooking) (22). In
comparison, induction stoves use electromagnetic induction to
directly heat ferromagnetic cookware and can have an efficiency
of 90% when used, well above even a typical electric coil stove
(60% to 75% efficiency). Cooking with induction could also
improve health for residents as compared to cooking with gas.
Gas-based cooking has been identified as an environmental health
risk factor for several decades (23–26) because it increases indoor
concentrations of air pollutants—especially nitrogen dioxide
(NO2)—that have been linked to poor health outcomes (27–32).
Recent research has also documented both the presence of toxic
chemicals like volatile organic compounds and benzene in natural
gas samples from US homes and substantial leakage of these
chemicals even when stoves are not in use (33–35). Somewhat
more limited evidence has directly documented associations
between cooking with gas and poor health (36–40), though
studies with strong causal identification are lacking.

Given these potential benefits, governments are promoting the
transition from gas to electric cooking in many regions around the
world, including in parts of the United States, the Netherlands,
Nepal, Indonesia, and Australia (41). However, the extent to
which such transitions will yield climate and health benefits once
implemented, and whether the benefits of policies that induce
these transitions exceed costs, remains unknown. Benefits depend
on a range of factors, including human behaviors such as the
extent to which households take up the new program, the extent
to which they use new technologies, and the extent to which the
new technology displaces the old one. These behavioral responses
cannot be quantified ex ante.

Here, we evaluate the impact of a large program in Ecuador, the
“Program for efficient cooking” (PEC), which aimed to reduce
liquefied petroleum gas (LPG) consumption and replace it with
electricity powered by the nation’s growing hydroelectric capacity
by subsidizing households to adopt and use induction stoves.
As in many other developing and middle-income countries, the
Ecuadorian government has a history of subsidizing cooking
fuel—although to a greater extent than most other countries.
These subsidies have encouraged a transition away from more
polluting cooking fuels (42), but at large budgetary cost (43).
While LPG was originally subsidized in the midst of a petroleum
boom in the 1970s, Ecuador now imports roughly 80% of all its
LPG. Volatile international petroleum prices, a fixed internal sale
price, and growing demand have combined to result in ballooning
government expenditures on the LPG subsidy, at times reaching
60 million USD per month (SI Appendix, Fig. S1). Begun in
2014, PEC aimed to connect 3 million households, and by
2020, it had induced about 750,000 households (or 12% of the
population) to purchase an induction cookstove. This program
represents one of the most ambitious of such programs to date
in a middle-income country, yet there have been no evaluations
of its impact on household energy use, greenhouse gas emissions,
or health.

Using multiple datasets and two approaches to isolating
the causal impact of the program, we evaluate the effect of
PEC on electricity consumption, LPG consumption, greenhouse
gas emissions, and health. We quantify changes in electricity
consumption from PEC using a combination of 130 million
monthly household utility bills from Ecuador’s two largest
utilities over the last 8 y, monthly nationwide parish-level data
on electricity consumption changes, and administrative data

on program enrollment. We use both an event study design
and a differences-in-differences analysis to estimate the effects
of program enrollment on household electricity consumption.
Next, we quantify the changes to net greenhouse gas emissions
from household fuel combustion nationwide associated with
induction stove uptake. To do so, we directly estimate how much
PEC-related electricity consumption is associated with reduced
LPG sales in panel fixed-effects regressions. Then, we combine
these data with detailed information on Ecuador’s electricity grid
fuel mix to provide estimates of how greenhouse gas emissions
have changed with program expansion.

Next, we examine how population health has changed with
program enrollment. We join data covering all 9.6 million
hospitalizations in Ecuador between January 2012 and March
2020 with program enrollment, both aggregated to the canton
level, to estimate the response of both all-cause and respiratory-
related hospitalization rates to program enrollment in panel fixed-
effects regressions. We assess the robustness of the association to
alternative approaches, including in a difference-in-differences
model, modeling the outcome as a count, accounting for po-
tential confounding by measures of wealth, healthcare resources,
political support, and air pollution, and implementing recent
statistical techniques that inform the likelihood that estimated
treatment effects are likely explained by factors other than
program enrollment.

Results

Patterns of Induction Stove Program Enrollment. PEC enroll-
ment grew quickly after its inception in 2015, reaching its existing
size—about 600,000 active customers in a given month—
within three years. In 2021, 12.6% of all residential electricity
customers were enrolled in PEC (Fig. 1 and SI Appendix,
Table S1). Given that PEC did not target specific demographics
for enrollment, intuition might suggest that enrollment would
be most common among wealthy households in urban centers.
However, multiple measures suggest that the program was
taken up by households across the wealth spectrum. While the
majority of PEC enrollees reside in or near Ecuador’s two major
cities, Quito and Guayaquil, many rural parishes across the
country have similar enrollment rates as their urban counterparts
(SI Appendix, Fig. S2). Canton-level enrollment in PEC was
negatively associated with the prevalence of a needs-based poverty
alleviation program (a proxy for deprivation) but not with other
measures of socioeconomic status like income-based poverty or
extreme poverty (SI Appendix, Table S2 and Fig. S3). Finally,
leveraging our billing data, we observe that program adoption
was positively correlated with pre-enrollment baseline electricity
consumption but that both low- and high-baseline energy users
also adopted at meaningful rates (SI Appendix, Fig. S4).

Program Enrollment and Increased Electricity Consumption.
To understand program impacts on electricity consumption,
we first use customer-level billing records from all customers
in Ecuador’s two largest utilities—the Corporacion Nacional de
Electricidad—Guayaquil (CNEL-Guayaquil) and the Empresa
Electrica de Quito (EEQ)—which together cover 40% of all
households in Ecuador—to estimate the impact of enrollment in
PEC on average monthly household electricity consumption (see
SI Appendix, Tables S3 and S4 for summary statistics). Enrolling
in PEC is associated with a 31.3-kWh-per-month increase in total
electricity consumption (95% CI, 30.6 to 32.0) in the CNEL-
Guayaquil sample and 23.6 kWh per month (95% CI, 23.0 to
24.1) in the EEQ sample, controlling for month-by-year, billing
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Fig. 1. Enrollment in Ecuador’s induction promotion program (PEC) and average household electricity consumption among enrollees and nonenrollees. (A)
Temporal variation of PEC enrollment across Ecuador in terms of total customers and the fraction of residential customers from January 2015 to September
2021. (B) Spatial variation in the fraction of residential customers enrolled in PEC across parishes averaged between September 2019 and September 2020 (N =
935). Gray parishes are missing data (N = 106). (C) Temporal variation of average household electricity consumption in kilowatt hours (kWh) by PEC customers,
general (non-PEC) customers, and all customers (combined PEC and general customers) from January 2015 to October 2021. (D) Spatial variation in average
kWh per all customers between September 2019 and September 2020 (N = 935). Gray parishes are missing data (N = 106).

system, and customer fixed effects with standard errors clustered
at the customer level (Fig. 2). In other words, customers in
both samples increased their electricity consumption by roughly
15% after enrollment. In an event study analysis, customers
increased their overall electricity consumption by 10 kWh 3
mo after enrollment relative to the month of enrollment, 15
kWh 6 mo after enrollment, and steadily increased consumption
until reaching a 20-kWh increase about 24 mo after enrollment
(Fig. 2). The observed increasing effect of enrollment in PEC
on electricity consumption appears to be partially explained
by an increasing number of customers beginning to use their
induction stoves over time, in addition to adaptive behaviors
whereby individual customers increase their consumption over
time (SI Appendix, Fig. S5), though we cannot be certain exactly
how households use their electricity. These findings are robust
to a range of alternative sample selections and modeling choices
(Materials and Methods) (SI Appendix, Table S5).

We also analyze program impacts using nationwide parish-
level data on the universe of household electricity use. In these
data, general customers and PEC beneficiaries both consumed
roughly 140 kWh per month in 2016, but by 2019, PEC
beneficiaries were consuming an average of 25 kWh per month
more than the average general customer (165 kWh vs. 140 kWh).
We estimate that each percentage point increase in the proportion
of all residential electricity customers that are enrolled in PEC is
associated with an increase in average monthly kWh per customer
of 0.64 (95% CI, 0.14 to 1.15) (SI Appendix, Table S6). In total,
we estimate that increased PEC enrollment is associated with an

excess consumption of 2.9 billion kWh of electricity between
January 2015 and October 2021, a 5% increase in residential
electricity consumption (Fig. 3 A and B; median estimate 5.2%
increase, interquartile range 3.5% to 6.5% increase). Our model-
based estimate exceeds the utility-calculated PEC subsidy amount
over the same time period of 1.9 billion kWh (171 million
USD), which is estimated as the kWh a household consumes
over and above its 12-mo average prior to PEC enrollment to
overcome a lack of appliance-specific metering. Thus, absent this
empirical analysis, total impacts of the program on electricity
consumption would be underestimated by one-third. Our results
are consistent when this analysis is repeated at the canton level
and when controlling for measures of income, wealth, and voting
patterns (SI Appendix, Table S6 and S7).

Reduced LPG Sales from Increased Induction Stove Use. In-
creased electricity consumption for cooking is likely a substitute
for LPG consumption. To understand the extent of substitu-
tion induced by PEC, we regress monthly country-level total
kilograms of domestic LPG sales on monthly total kWh of PEC-
related electricity subsidized, using fixed effects for month and
year (subnational data on LPG sales are unavailable for our
full study period). We find that each additional kWh of PEC
electricity is associated with a decline of 0.27 kg LPG sold (95%
CI, 0.09 to 0.45) (Fig. 3C ). We propagate uncertainty in our
chain of estimates by separately regressing LPG sales on the 1,000
bootstrapped estimates of excess kWH of PEC electricity; each
of these is then bootstrapped 1,000 times sampling months with
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Fig. 2. PEC enrollment is associated with higher household electricity consumption across Ecuador’s two largest electricity utilities. (A) Temporal variation in
median monthly electricity consumption among never enrolled, not yet enrolled, and enrolled customers in the Corporacion Nacional de Electricidad (CNEL-
Guayaquil) from January 2013 to July 2021. Electricity consumption is shown only when the group is larger than 2,000 customers. Temporal variation in the
monthly numbers of customers is shown below. Peak sizes for each group are never enrolled 434,554 customers, enrolled 104,817 customers, and not yet
enrolled 97,751 customers. (B) Main estimate and 95% CI (which are small and difficult to see) from a two-way fixed-effects model where the reference group
is not yet enrolled and never enrolled customers, with fixed effects for customer, billing system, and month of study and SEs clustered at the customer level.
(C) Monthly change in average household electricity consumption relative to the month of PEC enrollment among PEC enrollees where the reference group is
not yet enrolled customers with fixed effects for customers and month of study period, with SEs clustered at the customer level. The solid black line indicates
month-specific estimates, and the gray ribbon indicates the 95% CI. (D, E, and F ) illustrate the same as A, B, and C but for customers in the Empresa Electrica
de Quito from January 2016 to August 2021. Peak sizes for customers enrolled in each group for EEQ are never enrolled 815,224 customers, enrolled 185,925
customers, and not yet enrolled 105,640 customers.

replacement. Across these 1,000,000 draws, we estimate that
PEC-related excess electricity consumption was associated with a
total reduction in LPG sales of 706 million kg (median estimate,
IQR: 522 to 927), equivalent to roughly a 7.5% decline (Fig.
3D). In a secondary approach, we use monthly province-level
sales data that begin in 2018, which misses half of our study
period including the critical first 3 y when PEC enrollment grew
most. In this analysis, we find that an additional estimated kWh
of PEC electricity is associated with a decline in 0.16 kg LPG
sold for residential purposes (95% CI, 0.01 to 0.22)—somewhat
smaller than our national estimate—resulting in an estimated
national-level total LPG sales reduction of 423 million kg LPG
(IQR, 388 to 2,630). A third approach using Government of
Ecuador data on conversion factors between electricity and LPG
yields an estimated reduction in LPG sales between the national
and provincial estimates (Materials and Methods).

Program Impacts on Greenhouse Gas Emissions. Since 2015,
Ecuador’s energy sector has emitted around 40,000 kilotons of
carbon dioxide equivalent (ktCO2e) each year, of which 8 to
10% come from residential energy consumption (44). While
LPG and electricity account for 50% and 40% of residential
energy consumed, respectively, LPG dominates emissions from
this sector because Ecuador’s national grid is largely hydropower.
Whether PEC has reduced greenhouse gas emissions depends
on not only our estimates of excess electricity consumption

and associated reductions in LPG consumption but also on
the intensity of emissions from the electricity grid and gas
combustion.

Using a yearly emissions factor (EF) for Ecuador’s national
grid, defined as kg CO2e emitted per kWh electricity consumed,
we estimate that the PEC program was responsible for about 400
additional ktCO2e between January 2015 and November 2021
from extra household electricity consumption. Over the same
time frame, however, reduced LPG sales led to 2,070 ktCO2e
averted (Fig. 3E). Net, across the 1 million paired estimates of
PEC-associated increased residential electricity consumption and
reduced LPG consumption, we estimate a median net reduction
of 2,370 ktCO2e (IQR, 1,812 to 3,037) between January 2015
and November 2021—roughly a 7% decline in residential energy
emissions (Fig. 3F ). We observe small net increases of CO2e
emissions in 0.2% of model estimates. Alternative approaches
led to similar, albeit smaller, estimated declines in CO2e emitted
nationwide (Materials and Methods).

Impacts of Induction Program on Health. To estimate program
impacts on health, we used administrative data on the universe
of hospitalizations between January 2012 and March 2020
(representing 9.5 million hospitalizations) (SI Appendix, Fig. S5
and Table S8). We analyzed the association between monthly
cause-specific canton-level hospitalization rates and PEC enroll-
ment using fixed-effect regression that controlled for canton and
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Fig. 3. Excess household electricity consumption, reduced LPG sales, and changes to greenhouse gas emissions attributable to increased induction stove
enrollment and use. (A) illustrates a counterfactual scenario of household electricity consumption in the absence of PEC enrollment derived from Eq. 3. N =
94,982 parish-month observations. (B) summarizes the total excess kWh consumed from PEC enrollment across 1,000 bootstrapped runs of the analysis using
random sampling of parishes with replacement in a boxplot and with dashes for each total estimate. (C) illustrates a counterfactual scenario of LPG sales in
the absence of the PEC program using an OLS regression with the outcome total monthly national LPG sales in kilograms, and the independent variable is the
model-based monthly excess kWh from PEC, with fixed effects for year and month-of-year. N = 83 observations. (D) summarizes total reduced LPG sales from
PEC-associated increased electricity consumption across 1,000,000 bootstrapped runs of the analysis produced from 1,000 estimates of excess PEC-related
electricity consumption, each bootstrapped 1,000 times using random sampling of months with replacement. (E) shows changes to national greenhouse gas
emissions associated with excess electricity consumption and reduced LPG sales based on monthly emissions factors for the Ecuadorian grid and an average
emissions factor for CO2e emitted from burning LPG from Eq. 6. (F ) summarizes 1,000,000 estimates of the total changes to greenhouse gas emissions based
on the paired excess kWh and averted LPG sales scenarios.

month-of-sample fixed effects (Materials and Methods), with CIs
estimated by bootstrapping (1,000 runs, sampling cantons with
replacement).

We found that each additional percentage of the customers
in a canton enrolled in PEC was associated with a 0.74-percent
decline (95% CI, 0.22 to 1.19) in the all-cause hospitalization
rate, a 0.74-percent decline (95% CI, 0.11 to 1.38) in respiratory-
related hospitalization rates, and 2.11 percent decline (95%
CI, 0.64 to 3.37) for chronic obstructive pulmonary disorder

(COPD) hospitalization rates (Fig. 4). Estimates for associations
with the rate of hospitalizations for influenza and pneumonia
and asthma were negative but had wide CIs. We observed no
clear associations between PEC enrollment and hospitalizations
for other cause-specific outcomes (SI Appendix, Fig. S7).

These observed effect sizes imply substantial improved public
health from induction stove uptake and warrant close attention.
We address concerns about time-trending unobservables driving
both induction uptake and declines in hospitalization rates using
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Fig. 4. Change in monthly all-cause and cause-specific respiratory-related hospitalizations associated with increased canton-level PEC enrollment. The response
in all-cause, respiratory-related hospitalizations, and cause-specific hospitalization rates are estimated from canton-level linear models and the fraction of
electricity customers that are enrolled in PEC in the same month, with fixed effects for canton and month and SEs clustered at the canton level (Materials
and Methods). Adjusted models control for time-varying canton-level median income per capita, the fraction of individuals who receive money from a poverty
alleviation program, per capita nurses and doctors, per capita healthcare facilities, voting patterns, and ambient PM2.5 concentrations. Coefficient estimates
represent the percent change relative to the national monthly base rate, with 95% CIs shown. N = 21,885 and N = 19,800 canton-month observations in the
unadjusted and adjusted main specification, respectively.

three tests (Materials and Methods). First, we isolated cantons
that had high PEC enrollment at the end of the study period
(>85th percentile from June 2019 to March 2020; 18% average
enrollment in N = 33 cantons) and compared them to those
that had low PEC enrollment (<15th percentile; 4% average
enrollment N = 33) over the same time frame. Prior to PEC’s
inception in January 2015, these cantons had similar trends in all-
cause hospitalization rates after conditioning on covariates, i.e.,
had parallel trends (SI Appendix, Fig. S8). Second, we identified
and directly controlled for a set of canton-level time-varying
factors that might plausibly covary with enrollment and health,
including measures of wealth, urbanization, political targeting
(i.e., areas that may have received attention due to political
motivations), and ambient air pollution. Adjusting for time-
varying canton-level mean per capita income, the fraction of
households that benefit from a needs-based poverty alleviation
program, the cantonal rate of doctors and nurses and medical
facilities per person, population size, voting patterns, and mean
ambient PM2.5 concentration marginally attenuated the observed
effects (Fig. 4 and SI Appendix, Fig. S7 and Table S9). Third, we
implemented a formal approach to bound the potential influence
of any remaining unobserved confounders (45, 46) (Materials
and Methods). The results from this procedure indicated that if
there existed an unobserved confound with the same predictive
power as all of the included covariates currently in the regression,
we would still conclude that PEC enrollment had a negative
effect on all-cause hospitalization rates (SI Appendix, Fig. S9).
To drive our effect size to zero, we calculate that a confound
would have to be so strong as to yield an overall regression
model that explained 95% of the total variance in hospitalization
rates. We view this possibility as unlikely, given that several
important drivers of hospitalization rates and PEC enrollment
(particularly population) are already included and that there is
likely substantial idiosyncratic variation in local hospitalization
rates unlikely to be explained by any model. We note that this
test evaluated how much selection would be needed to drive

the coefficient estimate to zero, which is distinct from selection
needed to render the coefficient no longer statistically significant
at a given level; less selection would be required for the latter.

We also tested the association between PEC and hospi-
talization rates in a difference-in-differences (DiD) approach
in which we compared high-enrollment cantons to lower-
enrollment cantons (Materials and Methods). In comparison
to our preferred model described above, the DiD approach
may have greater internal validity because, based on recent
advancements in the econometrics literature, implementing the
DiD estimator of Callaway and Sant’Anna (47) eliminates so-
called “negative weights” (48) and produces valid estimates of the
average treatment effect on the treated (Materials and Methods).
The DiD approach presented here serves as a complement to our
main approach because we use only a subset of all cantons, and
thus, it might not represent the larger sample. We found that
high enrollment cantons had 11% (95%, 2% to 20%) and 8%
(95%, 0% to 17%) lower hospitalization rates in the post-PEC
period as compared to low enrollment cantons in unadjusted
and adjusted models, respectively (SI Appendix, Fig. S10). The
event study plot illustrates that there are no pre-PEC trends in
hospitalization rates and that hospitalization rates decline over
the first year following PEC’s inception and stabilize thereafter
(SI Appendix, Fig. S10).

Results were additionally robust to controlling for long-term
time trends using a natural spline and month of year and year
fixed effects, to alternative choices for potential confounding
variables, and to alternate temporal or geographic aggregations
(Materials and Methods) (SI Appendix, Figs. S11–S17 and Table
S10). Hospitalization rates were more negatively associated with
PEC enrollment in cantons where the average household PEC-
related electricity subsidy use was higher, providing suggestive
evidence that our observed associations are driven by induction
stove use (SI Appendix, Fig. S18).

The direction and patterns of reductions in hospitaliza-
tions with cause-specific outcomes were consistent with our
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expectations for PEC enrollment reducing indoor air pollution
and improving health; i.e., we observed our largest effects
for respiratory-related causes known to be impacted by NO2
exposures. Still, given wide CIs in bootstrapped analyses, we
cannot rule out smaller effects. We conclude that, at the canton
level, increased PEC enrollment is negatively associated with
hospitalization rates, especially for respiratory conditions like
COPD.

Discussion

Although substantial policy attention and investments have been
made in increasing residential electrification and promoting clean
cooking in recent decades, there is remarkably little real-world
evidence on both the climate and health impacts of such efforts.
Instead, most investments and policies have been motivated by
engineering estimates of the purported benefits of electrification
policies and cleaner cooking solutions. Cleaner cooking, in
particular, transitioning away from inefficient combustion of
biomass like firewood, has long been heralded as an opportunity
to reap both climate and health benefits (2, 49). However,
many ex post evaluations of efforts—in particular those that
focus just on one dimension of a program (i.e., climate or
health)—have found much more limited benefits (and even zero
benefits) relative to ex ante estimates (17). Thus, the ex post
analysis presented here of a large gas-to-electric cooking program
represents a substantial advancement for our understanding of the
potential climate and health benefits of residential electrification
programs. We capitalize on a remarkable policy environment
in Ecuador where several decades of subsidies have led to the
majority of the country using gas for cooking and natural
resources have enabled the country’s electricity grid to be 90%
renewables. Across multiple approaches and leveraging both
micro and publicly available administrative data, our results
illustrate that Ecuador’s recent initiative to replace gas with
induction electric cooking has likely both reduced greenhouse
gas emissions and yielded health cobenefits.

The potential for residential electrification programs to provide
climate benefits depends on both the extent to which they
offset fossil fuel combustion, the carbon-intensity of the relative
operating margin of the grid that supplies electricity, and certain
aspects of grid readiness to deliver sufficient electricity for
household use at scale. Based on a set of common energy
conversions and assumptions about efficiencies of gas and electric
cooking (Materials and Methods), we estimate that much of
western Europe, central and South America, and parts of sub-
Saharan Africa have sufficiently clean grids such that a gas-to-
induction cooking transition would be emissions-reducing in
terms of cooking energy use (SI Appendix, Fig. S19); however,
there is likely to be substantial subnational heterogeneity. For
example, in the United States, New England, California, Idaho,
and Florida have sufficiently clean grids to support a combustion-
related emissions-neutral transition; in India, much of north and
eastern India, along with Kerala, have sufficiently clean grids.
However, the large geographic majority of these two example
countries require cleaner grids before a program to electrify
cooking would reduce net emissions.

While further growth in renewable energy capacity expected in
the near term should make gas-to-induction cooking transitions
viable in even more regions, beyond facilitating shifts toward
electricity generated from renewable resources, investments must
also be made to ensure that electrical grids can support the
temporally correlated demand associated with a widespread
transition to electric cooking (50, 51). In the past decade,

Ecuador has invested more than 1 billion USD in grid upgrades
to broadly support electrification efforts and ensure consistent,
reliable electricity for the population, although these upgrades
may have been made in the absence of PEC. Similarly, households
themselves may need to make changes to support induction
cooking. In Ecuador, households must have 220-v connections
and dedicated circuits installed to use induction stoves. Delays
in installing these connections have reportedly been a barrier to
using induction stoves after purchase (42). Emerging economies
with recently expanded electricity grids should recognize the
additional capital investments required to support large-scale
residential electrification projects. Indeed, it is possible that
some countries with sufficiently clean grids cannot yet support
widespread residential electrification projects because of inade-
quate service and reliability concerns (52, 53).

Our study lacked individual and household-level data on
health outcomes and cooking appliance use, thus limiting us
to an ecological analysis. Additionally, we are limited by a lack
of representative longitudinal indoor air quality measurements.
Therefore, we can make no inference about the individual
household-level impacts of gas-to-induction cooking transitions
on health risks. Nevertheless, mindful of the limitations of
ecological analyses, our findings suggest that widespread replace-
ment of gas with induction cooking could yield health benefits,
especially for the acute exacerbation of chronic respiratory
diseases. To our knowledge, no study has analyzed the health
gains from widespread replacement of gas with electricity as we
do here, which makes it difficult to compare our work to the
existing literature. One meta-analysis of 19 studies concluded
that children living in households with gas stoves had a 32%
higher risk of having asthma as compared to those living in
households with electric stoves (38). Elsewhere, a simulation
study estimated that replacing gas stoves would reduce severe
asthma attacks by 7% in an urban population (54). Our effect
estimates are larger than what we might expect given anticipated
air pollution exposure reductions from gas to induction cooking
transitions and existing estimates of the health effects from NO2
exposures (Materials and Methods). We urge caution in directly
interpreting our effect estimates as they have wide CIs, and we
cannot rule out smaller effects. The large benefits observed here,
and the body of evidence supporting the relationships between gas
cooking, elevated air pollution exposures, and health, emphasize
the need for randomized or quasi-experimental evaluations of
gas to electric cooking transitions, especially at the household or
individual level.

Our study has additional limitations. First, we analyze the
impacts of enrollment in PEC on total household electricity
consumption using customer-level data from Ecuador’s two
largest utilities and using aggregated data with nationwide
coverage; however, both datasets lack a direct, objective measure
of stove use. Second, our estimation of the changes in greenhouse
gas emissions associated with PEC are somewhat sensitive to our
calculation of the reduction in cooking-related gas combustion
associated with the program and choice of emissions factors.
With that said, across a range of specifications, we observe
that either the program has been roughly emissions neutral
or yielded reductions in GHG emissions. Nevertheless, our
effort to propagate uncertainty from the chain of estimations of
excess PEC-related kWh electricity consumed to LPG sales offset
yielded a range of scenarios, including a small number where
CO2e increased due to PEC—though even in these scenarios,
we might expect PEC to result in emissions declines moving
forward due to the increased role of hydropower in recent years.
Our approach to evaluating combustion-related emissions may
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underestimate the benefits of the electrification program because
the emissions associated with the life cycle of gas typically exceed
those for electricity (e.g., gas is transported on trucks in cylinders);
however, estimates for life cycle emissions for gas combustion
in Ecuador are unavailable. This limitation—i.e., our inability
to directly quantify the CO2e associated with gas transport—
extends to our analysis of whether hypothetical global residential
electrification programs are technically viable. Third, our analysis
is focused on a single middle-income country, and our results
may not be generalizable to other contexts. Still, it is plausible
that the transition in Ecuador represents a conservative estimate
for the potential climate and health benefits of similar programs
elsewhere because it is likely that a substantial proportion of
PEC enrollees continue to use gas to some extent, in part
because gas continues to be so heavily subsidized. Transitions
that are driven by policies focused on preventing gas appliance
use in new construction would more completely replace gas
with electricity leading to potentially greater cooking-related air
pollution exposure reductions and health benefits than we observe
in our study.

While Ecuador’s induction promotion program remains
unique as of 2023, other residential electrification projects
are likely to follow. Gas remains the most popular cooking
fuel in the world, with roughly three billion daily users, and
demand is increasing in many low- and middle-income countries.
However, policies around the world in high-income countries
and cities propose to eliminate gas appliances from residential
homes as a means of reaching net-zero greenhouse gas emissions.
Investments in clean electricity and flexible and robust electricity
systems that can meet the necessary projected increased electricity
demand are essential to reach a net-zero emissions future. Here,
we show that when these renewable energy investments do come,
capitalizing on the opportunity and replacing gas with electricity
in residential homes holds promise for achieving both climate
and health benefits.

Materials and Methods

Estimating Changes to Customer Electricity Consumption after Induc-
tion Stove Promotion Program Enrollment. We obtained all residential
customer monthly electricity consumption and cost records from Ecuador’s two
largest electricity providers through a private use agreement. Data from the
Electricity Utility of Quito (EEQ) totaled 1.07 million unique customers—161,000
of whom enrolled in PEC at some point—and ranged from January 2015 to
July 2021, yielding 65 million observations. Data from the National Electricity
Corporation for Guayaquil (CNEL) totaled 818,692 unique customers—of whom
115,832 enrolled in PEC at some point—and ranged from January 2013 to
July 2021, yielding 66 million observations. Together, the two datasets cover
approximately 40% of all electricity customers in Ecuador. For each customer,
we have data on whether they enrolled in PEC at some point during the study
period (and, if so, the date of enrollment), whether they benefit from a reduced
electricity tariff, and their location. For PEC customers in EEQ, we additionally
have a utility-provided measure of PEC-specific electricity subsidy consumption
in kWh, which is defined as excess household electricity consumption over and
above their pre-enrollment 12-mo average consumption. Customer data were
provided in two files by both electricity utilities, with the first file covering the
period until December 2017 and the second file covering the period after, due
to the utilities switching billing management systems.

We estimate the effect of PEC enrollment on electricity consumption using
the following fixed-effects regression separately for customers in EEQ and CNEL:

yimd = �Eimd + �i + m + �d + �imd , [1]

using ordinary least squares where i indexes customers, m indexes month-of-
study, and d indexes the billing system the data were collected under. yim is the

electricity consumption in kWh for customer i in month m, and Eim is a dummy
variable for whether customer i is enrolled in PEC in month m (“Not enrolled”
vs. “Enrolled”). The reference category of “Not enrolled” includes customers
that never enroll (general customers) and customers that eventually enroll but
are not yet enrolled in month m. In this approach, the impact of program
enrollment on electricity consumption is identified by using within-household
variation over time in consumption, after accounting for any average differences
in consumption between months in the study sample. The coefficient � can be
interpreted as the effect of the program on consumption under the assumption
that program adoption is not correlated with other unobserved household-
level behavior or characteristics that vary over time and also affect electricity
consumption. Any average differences in consumption between early and later
(or non-) adopting customers are accounted for by the customer fixed effect.

We next estimate the change in electricity consumption in each month
relative to enrollment in PEC among customers that enroll in PEC at some point
using an event study design, estimated with the following equation:

yitmy =

r∑
t=−q

�Mit + �m + y + �itmy , [2]

using ordinary least squares where i indexes customers, t indexes month relative
to enrollment,m indexes month of year, and y indexes year. Our outcome yitmy
is the electricity consumption in kWh for customer i in month m, year y, and
month relative to enrollment t. Mit is a vector of dummy variables for each
month relative to that customer’s month of enrollment (reference group: month
before enrollment t =−1).−q is the customer’s earliest month observed, and
r is the customer’s latest month observed. The resulting 80 �s (from 20 mo
before enrollment to 60 mo after enrollment) can be interpreted as the average
difference in monthly electricity consumption relative to electricity consumption
in the month before enrollment.

We use these event study plots to illustrate two key facts: 1) electricity
consumption among PEC enrollees does not change meaningfully in the months
leading up to PEC enrollment (i.e., point estimates and their 95% CIs are
relativelyflat)and2)electricityconsumptionincreasesdramatically inthemonths
following PEC enrollment (i.e., point estimates steadily increase, and 95% CIs
do not include zero as time moves forward). The resulting event study plot
gives us confidence that our study design isolated the causal effect of PEC
enrollment on household electricity consumption; however, it is worth noting
that this extension of our main analysis only includes customers who eventually
enroll in PEC (roughly one-tenth of our total sample). Furthermore, in the case
of the EEQ sample, we only have data from 2016 onward, meaning that our
“pre-enrollment” period is substantially more limited because many customers
had already enrolled prior to the data beginning.

Results were robust to a number of alternative specifications and subsamples
generated during data cleaning processes (SI Appendix, Data Cleaning
Procedures for Customer-Level Billing Records).

Parish-Level Electricity Consumption and Enrollment in the Induction
Stove Program. As a complement to the individual customer-level data, we
obtained data from the Agency for the Regulation and Control of Energy and
Non-Renewable Natural Resources (ARCONEL) on monthly residential electricity
consumption for all parishes in Ecuador since 2015, detailing: 1) the total kWh of
residential electricity consumption and associated USD billed; 2) total residential
customers; 3) total kWh of residential electricity consumption for PEC customers
and associated USD billed; 4) total kWh of PEC-related electricity subsidized
and associated USD subsidized; and 5) total PEC customers. Data cleaning
procedures focused on identifying and unifying parishes across the study time
period by manual matching to address different spelling, capitalization, and use
of accents. In total, there were 1,188 unique parishes and 94,972 parish-month
observations in our sample.

We estimate the change in average household electricity consumption
associated with changes in PEC enrollment using the following fixed-effects
regression:

ypcm = �Ppcm + �p + �cm + �pcm, [3]

via ordinary least squares where p indexes parishes in canton c (parishes are
smaller than cantons). ypcm is the average household electricity consumption in
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kWh per month in each parish-month observation, and Ppcm is the proportion
of customers enrolled in PEC in the same parish-month. �p is a vector of parish
fixed effects to account for locality-specific time-invariant characteristics drivers
of PEC enrollment and household electricity use. To account for both seasonal
and longer-term trends in PEC enrollment and household electricity use that
could differ across regions, we include a vector of canton-by-month-of-study
fixed effects �cm (e.g., “Cuenca, Azuay January 2015”). To aid in interpretability,
we estimate the change in average household electricity consumption per 10-
percentage-point increase in PEC enrollment, with SEs clustered at the parish
level.

We develop a counterfactual scenario without PEC enrollment to estimate
excess kWh of electricity consumed by households from increased PEC
enrollment. To do so, we subtract the product of our estimated coefficient
of interest (the change in average household electricity consumption per unit
increase in PEC enrollment) and the number of PEC customers from total
parish-month kWh. We quantify uncertainty in this analysis by bootstrapping
the estimates of the relationship between PEC enrollment and electricity
consumption (1,000 times, sampling parishes with replacement) and applying
these coefficients to observed consumption to construct 1,000 total excess
electricity consumption estimates.

Estimating Trade-Offs with LPG Consumption. We estimate the trade-off
between electricity for cooking and LPG a few different ways. First, we obtained
monthly national-level data since 2007 on the volume of Ecuador’s LPG imports,
the volume of Ecuador’s internal LPG production, the volume of total internal
LPG sales, the cost of LPG imports per barrel, and the country’s internal sales
price. We estimate the extent to which LPG consumption is associated with PEC
enrollment in the following regression via OLS:

yym = �Kym + �y + �m + �ym, [4]

where y indexes year andm indexes month of year. The outcome yym is the total
kilograms of LPG sold to residences in Ecuador each month between 2015 and
2020. The independent variable �Kym is the total nationwide predicted kWh
attributable to increased PEC enrollment in a given month from Eq. 1. Given
that �Kym itself has uncertainty, in addition to our central estimate, we use the
bootstrapped coefficients from Eq. 1 to generate 1,000 scenarios and trade-offs.
For each of these 1,000 scenarios, we bootstrap 1,000 times sampling at the
month-of-sample level with replacement. Similar to our approach for estimating
excess electricity consumption, we then use the resulting 1 million coefficients
from this regression to estimate reduced LPG sales from the additional electricity
consumed from PEC enrollment.

We also tested three alternative strategies. In the first, we obtained
monthly province-level LPG sales data by sector (residential, industry, vehicular,
agricultural industry) between 2018 and 2021 and repeat our principal approach
of directly regressing PEC-related electricity consumption on residential LPG sold,
here using province-level aggregations and province and month of study fixed
effects. Second, we draw on an engineering approach to assessing the expected
trade-off between cooking with electricity and with gas. Third, the Government
of Ecuador has equated 80 kWh with 1.2 fifteen-kg LPG tanks in designing its
PEC-related electricity subsidy. Results from all three approaches support the
conclusion that PEC reduced household LPG consumption.

Net Changes to Greenhouse Gas Emissions Associated with the Induc-
tion Stove Promotion Program. To estimate GHG emissions impacts, we first
estimate additional emissions from PEC-related electricity consumption using
a yearly average emissions factor for public electricity generation in Ecuador,
calculated by dividing yearly total electricity consumed (kWh) by the CO2e
emitted by electricity production (44).

As an illustration of our approach to inferring net CO2e changes from PEC,
take our estimate of 24-million-kWh excess electricity consumption in July 2016.
In 2016, the emissions factor was 0.195 kg CO2e per kWh produced. Therefore,
we calculate that excess electricity consumption from PEC resulted in 4.7 kilotons
CO2e in July 2016. At the same time, excess kWh electricity consumption was
associated with declines in LPG sales and, we infer, averted LPG combustion. We
estimate associated declines in CO2e from reduced LPG sales using a standard
emissions factor of 2.992 kg CO2e per kg LPG.

We quantify uncertainty in this analysis of net changes to greenhouse gas
emissions by using the 1 million generated scenarios from Eq. 2, representing
1,000 estimates of excess kWh from PEC and, for each scenario, 1,000 estimates
of averted LPG sales, yielding 1 million estimates of total net changes to
greenhouse gas emissions from PEC. While our preferred specification finds
a net reduction in greenhouse gas emissions due to PEC, our analysis may be
sensitive to our approach to estimating declines in LPG consumption. Across
potential specifications, we estimate changes in greenhouse gas emissions to
range from a 0.4% increase (20 ktCO2e) to a 3.5% decrease (1,827 ktCO2e) from
January 2015 to November 2021.

Our results are additionally sensitive to our choice of grid emissions factors.
We could apply a marginal emissions factor that estimates emissions for an
additional unit of electricity consumed above the base load, which is commonly
used in program evaluations similar to our own. However, there are two reasons
we consider this approach to be inferior to our calculated average emissions
factor. First, we estimate that PEC increased electricity consumption by roughly
5%, which we consider to be beyond consumption “on the margin.” Ecuador’s
official marginal emission factor quantifies the emissions of electricity generation
that are used to meet short-term fluctuations in electricity demand (i.e., it is a
short-term marginal emission factor). We thus decide it is not appropriate to
apply it to the PEC program since the program is rolled out over the course
of multiple years, during which the underlying electricity system undergoes
rapid transitions and development. Indeed, new installed capacity in Ecuador
since PEC’s inception has nearly entirely been hydropower, suggesting that
if the program caused the need for expanded capacity, it would have been
renewable, with emissions approaching zero. Second, given that Ecuador’s
marginal emissions factors exceed the average emissions factor by a factor
of five to eight, applying the marginal emissions factor to excess electricity
consumption results in estimates that electricity consumption from PEC would
have to be responsible for roughly 20% of all electricity generation emissions
despite comprising only 2 to 3% of total consumption. Nevertheless, applying
the marginal emissions factor to PEC-related electricity consumption results in
estimated declines in GHG emissions of 330 ktCO2e (IQR, 260-406).

Changes to Hospitalizations Associated with PEC. Hospitalization data
come from the statistical registry of hospital beds and visits which details
morbidity across Ecuador, managed by the National Statistical Agency (INEC). Our
visit-level data intend to capture all hospitalizations in Ecuador between January
1, 2012, and March 1, 2020 (truncated because of the COVID-19 pandemic).
Each hospitalization contains data on the age and sex of the patient, the date
of admission and release, the location (province, canton, parish) of the patient’s
residence and the healthcare facility (public or private), and the International
Classification of Disease (ICD-10) code for the reason for the hospitalization.
Summaries of the hospitalizations by ICD grouping are shown in SI Appendix,
Fig. S6. In total, the data cover 9.6 million hospitalizations across 21,319 canton-
month observations (216 unique cantons and 99 mo studied). The data included
in our final analysis cover 99% of all recorded hospitalizations during the study
period, with most data losses coming due to missing canton-level data on PEC
enrollment.

We calculated monthly canton-level, all-cause, and cause-specific hospital-
ization rates by dividing the total canton-level visits by canton-level population
in that month. We assign yearly canton-level population estimates from the
Ecuadorian statistical agency to January of every year and linearly interpolate
to develop monthly canton-level population across the study period. Country-
wide, the average monthly hospitalization rate was 589 per 100,000 across
the study period. Beyond all-cause hospitalizations, we additionally focused on
respiratory-related conditions (influenza and pneumonia, COPD, and asthma),
which are most likely to respond to reductions in air pollution from declines in
gas cooking.

To estimate the impacts of program take-up on hospitalizations, we estimate
the following regression:

log(ycm) = �Pcm + �c + m + �cm + "cm, [5]

using ordinary least squares, where c indexes cantons andm indexes month-of-
study. ycm is the log of the monthly canton-level cause-specific hospitalization
rate, and Pcm is the proportion of customers enrolled in PEC in the same
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canton-month. �cm is a vector of time-varying controls described below. �c is
a vector of canton fixed effects that account for all locality-specific time-
invariant characteristics correlated with either PEC enrollment or hospitalization
rates. To account for seasonal and longer-term trends in PEC enrollment and
hospitalization rates, we include a vector of month-of-study fixed effects m,
which account for any seasonal- or time-trending differences in either PEC
enrollment or hospitalization rates that are common to all parishes. Regressions
were weighted by canton population, and SEs were clustered at the canton level.

Our analysis assesses the association between a one-percentage-point
increase in PEC enrollment at the canton level on average canton-level
hospitalization rates. Previously, we showed that PEC enrollment leads to
increased canton-level household electricity consumption and reduced gas
consumption. Our inference is thus that PEC enrollment’s impact on health
is through reduced gas cookstove use which improves indoor air quality. Our
approach is focused on making inferences about average effects at the canton
level, and we do not draw any inferences on the risk reduction that any individual
may experience when replacing their gas stove with an electric one.

Given that PEC was not a randomized policy experiment, we may be
concerned that cantons with higher rates of enrollment are different from those
with lower rates of enrollment in ways that influence population health (i.e.,
hospitalization rates) independent of the impact of PEC on induction stove
use and its replacement of gas. Given our unit of analysis (canton-month) and
the use of canton and month of study fixed effects, potential confounding
variables would have to be canton-level factors that vary differentially over
time across cantons and covary with both hospitalization rates and PEC
enrollment. We take three approaches to address concerns about time-trending
unobservables. See SI Appendix, PEC Enrollment and Hospitalizations for
more details.

First, we test for parallel trends in health outcomes using preprogram data to
assess whether outcomes were trending differentially prior to PEC’s initiation in
January 2015. If outcomes trend differentially between cantons than eventually
had high PEC enrollment as compared to those who had relatively little PEC
enrollment, then we would have concerns that some other unobserved variables
are driving associations between PEC enrollment and hospitalization rates.
We define the low enrollment group as those that have <15th percentile
average enrollment from June 2019 to March 2020, while the high enrollment
group is those with >85th percentile enrollment. We formally test for parallel
trends in our outcome conditional on covariates using the “did” package in R,
finding no evidence of differences in trends in all-cause hospitalization rates
before PEC (Cramer von Mises test statistic = 0.701; P-Value ≈ 1). We see
similarly nonsignificant differences in trends for key covariates prior to PEC
initiation, as illustrated in SI Appendix, Fig. S8 where trends are tested at the
canton-month level by interacting month of the study (as a continuous number)
with a dummy variable for high or low enrollment canton, with fixed effects
for canton.

Our second approach is to identify and directly control for a set of canton-
level time-varying factors that might plausibly covary with enrollment and health,
including wealth (areas that get wealthier may be more likely to differentially
take up induction stoves and improve their health than poorer areas), healthcare
quality (which can be considered both a measure of wealth and urbanization
while also more directly measuring quality of healthcare which can determine
hospitalization use patterns), political support (which, through various programs
andinvestmenttargeting,coulddrivePECenrollmentandhealthcareutilization),
and ambient air pollution. As described inAdditionalData Sources, we define the
followingvariablestocover thesedomains: thefractionof individualswhobenefit
from the Bono Desarrollo Humano (a needs-based cash transfer program), the
fraction of households considered to be in poverty and extreme poverty based
on incomes, median household income, the number of healthcare facilities,
the number of doctors, the number of nurses, voting histories, and average
ambient PM2.5 concentrations. Our preferred adjusted model includes a set
of potential confounders that are only weakly correlated with one another (SI
Appendix, Fig. S3): % BDH, % extreme poverty, healthcare facilities per capita,
doctors and nurses per capita, canton-level voting histories for the party that
initially developed and promoted PEC (President Rafael Correa and associated
subsequent candidates), and average ambient PM2.5 concentration. Effect sizes
did not meaningfully change across all 130,000 potential confounding variable
combinations (SI Appendix, Fig. S15).

Third, we formally bounded the potential influence of unobserved variables.
Drawing on the work of Cinelli and Hazlett (45) and Oster (46), this approach
poses the following question: How strongly related would an unobserved
confounder have to be—both to our treatment (PEC enrollment) and our outcome
(hospitalization rates)—to account for the effect we observe? Results are relative
to the jointly predictive power of all already-included covariates. We use the R
package “sensemakr” to implement this test.
Difference-in-differences approach. While our approach illustrated in Eq. 5
is typical of studies examining time-varying exposures and outcomes in the
environmental epidemiology and econometrics literature, we can additionally
leverage the implementation of the PEC program as an event fixed in time
and apply a difference-in-differences (DiD) approach. Here, we effectively
dichotomize the treatment and change the sample (taking only the high
enrollment and low enrollment cantons). Doing so enables us to have an
arguably “cleaner” inference relative to the approach using the full sample of
cantons and continuous treatment. In the DiD case, the treatment and control
groups are better defined and more intuitive: The control group consists of
cantons whose PEC enrollment changed little over time (<15th percentile
average enrollment from June 2019 to March 2020), while the treatment group
consists of the highest-uptake cantons (>85th percentile). These groups are
equally sized at 33 cantons and 3,234 and 3,211 canton-month observations in
the treatment and control groups, respectively. Our dependent variable (log of
all-cause hospitalization rate) satisfies parallel trends across the treatment and
control group conditional on included covariates, indicating that the DiD design
is valid. We split our sample at these quantiles rather than the median to create
a more valid “control” group that closer approximates being untreated.

The tradeoff in the DiD approach relative to our preferred two-way fixed-
effects (TWFE) model above is one of external versus internal validity. The
TWFE model retains all of the data as well as the continuous nature of our
treatment—the percentage of households in a canton enrolled in the PEC
program—and thus has greater external validity. However, recent advances in
the literature have demonstrated that the TWFE estimator does not recover the
average treatment effect (ATE) but rather a weighted average group-time effects
(see, e.g., refs. 47 and 48). Critically, some units may be weighted, including
receiving negative weight, such that the recovered estimate is significantly
different from the true causal effect (48). To address this threat to inference,
we implement the difference-in-difference estimator of Callaway and Sant’Anna
(47), which eliminates negative weights and produces valid estimates of the
average treatment effect on the treated (ATT). The DiD estimate thus has greater
internal validity—provided the identifying assumptions of the design are met—
and a slightly different but nonetheless substantively meaningful interpretation:
The estimated coefficient represents the effect of moving from the average PEC
enrollment in the “low-uptake” group (canton-level mean 1.7% enrollment from
January 2015 to March 2020) to the “high-uptake” average (17.6% enrollment).
Preperiod estimates and CIs include zero, and the averaged treatment effect is in
line with estimates from our preferred approach. Taken together, these results
are encouraging because they illustrate that, while high enrollment cantons do
differ somewhat in levels across our potential confounders, their pre-treatment
trends are similar to low-enrollment cantons.
Uncertainty and robustness of results to alternative approaches. To quantify
uncertainty in our results, we bootstrapped Eq. 5 1,000 times, sampling
cantons with replacement. Fig. 4 illustrates the distribution of the obtained
effect estimates for key outcomes from bootstrapped analyses. We observed
consistently negative effect estimates for associations between increased PEC
enrollment and all-cause hospitalizations, respiratory-related hospitalizations,
and COPD in adjusted and unadjusted models. Estimates for associations with
influenza and pneumonia and asthma had wider distributions. We observed
no clear associations between PEC enrollment and hospitalizations for other
cause-specific outcomes (SI Appendix, Fig. S7). Next, we bootstrap eight total
models based on combinations of adjustment for our preferred set of potential
confounding variables, population weights, and the full sample (January 2012
to March 2020) and a restricted sample post-PEC (January 2015 to March
2020) (SI Appendix, Fig. S13). Further, we show robustness of our results under
a range of alternative approaches. We repeat our main approach (full sample,
population-weighted) using all combinations of potential confounding variables
(SI Appendix, Fig. S15). To account for potential correlations among spatially or
politically proximate cantons, we implement a block bootstrapping approach
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where we sample entire province-years with replacement, which yields similar
results, albeit with slightly wider CIs (SI Appendix, Fig. S16). Our main approach
is additionally robust to controlling for long-term time trends using a natural
spline and month of year and year fixed effects as well as alternative choices
for potential confounding variables (SI Appendix, Fig. S14). We also model
canton-month hospitalizations as counts in Poisson regressions to account for
overdispersed outcomes, both in a fixed-effects approach and using a conditional
Poisson regression. In the conditional Poisson regression, we match on canton
and month of year to control for seasonality and other non-time-varying factors
across cantons and control for long-term trends using a natural spline for month-
of-study with nine knots (one for each year) (SI Appendix, Fig. S14). Results
are robust to aggregating data to 2-mo periods, which substantially decreases
canton-months with low numbers of hospitalizations in cause-specific analyses
(SI Appendix, Fig. S17) and, similarly, to aggregating data to the province level
(SI Appendix, Table S10).

Assessing Global Viability of Carbon-Neutral Residential Electrification.
We develop a simple model to assess the viability of residential electrification
programs that displace gas use from households in different regions of the
world:

CO2enet =  ∗ MEF − � ∗ �, [6]

where the net CO2e emissions from a residential electrification project are
equivalent to excess emissions from new electricity consumption ( ; kWh)
multiplied by the marginal emissions factor (MEF; gCO2e/kWh) minus the
change in gas consumption due to additional electricity use (�) multiplied
by the emissions factor for gas (either 62.0 kgCO2e/mmBTU LPG or 53.1
kgCO2e/mmBTU natural gas converted to 0.211 kgCO2e/kWh and 0.181
kgCO2e/kWh, respectively). We assess viability based on CO2enet being equal
to or less than 0; in other words, the program would be carbon neutral in terms
of combustion-related emissions.

Unfortunately, we cannot know ex ante the extent to which a given residential
electrification program will displace gas with electricity. Thus, we rely on a set of
theoretical energy conversions and assumptions about the energy efficiency of
gas and induction cooking. When we use the same units of energy (like kWh),
the conversion between gas and electricity is simply the ratio between electric
induction cooking efficiency (between 85 and 90%) and gas cooking efficiency
(between 35 and 50%) (22). Using these efficiency scenarios, a residential
electrification program that replaces gas cookstoves with induction electric
cooking can be expected to displace between 1.7 kWh and 2.6 kWh gas with
1 kWh electricity (SI Appendix). Thus, a program can be considered technically
viable if the grid is less polluting than 0.385 kg CO2e/kWh (i.e., 1/2.6) or,
somewhat less stringently 0.588 kg CO2e/kWh (i.e., 1/1.7).

To conduct this analysis, we compile a dataset of national and subnational
MEFs, relying on the most recent government-provided estimates where possible
(available in SI Appendix, Table S11). Our compiled dataset covers 107 countries
that represent 80% of the global population, though the lack of subnational
data in large countries (e.g., Brazil, China, Russia) limits the accuracy of country-
specific inferences.

We additionally illustrate subnational heterogeneity in MEFs using state-
specific estimates for the United States (55) and India (56) (shown inSIAppendix,
Tables S12 and S13). We present these state-specific results in terms of reduction
in MEF needed to meet the theoretical energy equivalence trade-off between
electricity and natural gas and LPG for the United States and India, respectively.
Furthermore, we include data on the prevalence of gas cookstoves in US and
Indian states based on the Residential Energy Consumption Survey (ref. 57)
and the National Family Health Survey - 5 (58), respectively, which represent
the most recent nationally representative surveys of cooking fuels in these
countries.

Additional Data Sources.
Socioeconomic conditions surveys. We use public use survey data on socioeco-
nomic conditions in nationally representative samples of Ecuadorian households
from the Survey on Employment, Unemployment, and Underemployment from
2012 to 2020. This survey has been administered to a rotating panel of
households quarterly since 2012 and contains a set of basic parameters on

individual employment status and household living conditions that we utilize.
Specifically, we use average household per capita incomes, a binary designation
of poverty or extreme poverty based on mean per capita household incomes, and
whether individuals receive the “Bono Desarrollo Humano” (a needs-based cash
transfer program). Surveys within a given calendar year were pooled together.
We estimate average canton socioeconomic conditions each year using provided
survey weights. To generate monthly estimates, we assign yearly estimates to
January of the given year and linearly interpolate.
Healthcare resources. We develop measures of canton-level healthcare re-
sources based on a yearly census of the healthcare system that detail available
personnel and resources for every healthcare facility in Ecuador. Our primary
measures of interest are the number of nurses and physicians per capita per
canton and the number of healthcare facilities per capita per canton. These
measures were then linearly interpolated to develop monthly measures where
we assigned yearly values to January of that year.
Voting results. The longstanding nature of fuel subsidies in Ecuador and the
significant social unrest that accompanied multiple attempts in the past to reduce
these subsidies have positioned cooking fuels as an inherently political topic in
Ecuador (43). While eventually consigned to internal PEC documentation in favor
of more convenience-focused messaging, initial government efforts to promote
the PEC program centered on the program’s ability to reduce government
expenditure on LPG subsidies and replace imported fuels with nationally
produced electricity. Anecdotally, electoral support for former President Rafael
Correa has been correlated with PEC enrollment and induction stove use, though
formal evidence of this is not available. We evaluate this hypothesis using
public use elections data. We estimate the share of votes for Correa in the
2009 and 2013 elections, for his former Vice President Lenin Moreno in 2017
(the winner of the election), and for Andres Arauz in the first round of the
2021 election (whose voters mirror the bloc supporting Correa and Moreno in
contrast to voters for the eventual winner of the 2021 election Guillermo Lasso).
Values were then linearly interpolated after assigning values to January of
that year.
Ambient air pollution. We acquired publicly available monthly ambient PM2.5
concentrations at a 0.1o × 0.1o spatial resolution derived from satellite-
retrieved aerosol optical depth, chemical transport modeling, and ground-based
measurements for South America available since 1998 from ref. 59. We averaged
ambient pollution concentrations across canton polygons to estimate canton-
month average ambient PM2.5 concentrations over the study period, which was
then used as a control in our analysis of the association between PEC scale-up
and hospitalization rates.

Data, Materials, and Software Availability. Anonymized data (data frames)
have been deposited at https://github.com/echolab-stanford/ecuador-climate-
health-induction. Customer-level electricity billing records are not made avail-
able from the authors due to data use agreements made with the utilities. Parties
interested in these data may contact Patricia Recalde at the Ministerio de Energia
y Minas for further information (patricia.recalde@energiayminas.gob.ec).
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