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Abstract: The proto-oncogene myc has been intensively studied primarily in vertebrate cell culture
systems. Myc transcription factors control fundamental cellular processes such as cell proliferation,
cell cycle control and stem cell maintenance. Myc interacts with the Max protein and Myc/Max
heterodimers regulate thousands of target genes. The genome of the freshwater polyp Hydra encodes
four myc genes (myc1-4). Previous structural and biochemical characterization showed that the
Hydra Myc1 and Myc2 proteins share high similarities with vertebrate c-Myc, and their expression
patterns suggested a function in adult stem cell maintenance. In contrast, an additional Hydra Myc
protein termed Myc3 is highly divergent, lacking the common N-terminal domain and all conserved
Myc-boxes. Single cell transcriptome analysis revealed that the myc3 gene is expressed in a distinct
population of interstitial precursor cells committed to nerve- and gland-cell differentiation, where
the Myc3 protein may counteract the stemness actions of Myc1 and Myc2 and thereby allow the
implementation of a differentiation program. In vitro DNA binding studies showed that Myc3
dimerizes with Hydra Max, and this dimer efficiently binds to DNA containing the canonical Myc
consensus motif (E-box). In vivo cell transformation assays in avian fibroblast cultures further re-
vealed an unexpected high potential for oncogenic transformation in the conserved Myc3 C-terminus,
as compared to Hydra Myc2 or Myc1. Structure modeling of the Myc3 protein predicted conserved
amino acid residues in its bHLH-LZ domain engaged in Myc3/Max dimerization. Mutating these
amino acid residues in the human c-Myc (MYC) sequence resulted in a significant decrease in its cell
transformation potential. We discuss our findings in the context of oncogenic transformation and cell
differentiation, both relevant for human cancer, where Myc represents a major driver.

Keywords: cnidaria; development; gene regulation; signal transduction; interstitial stem cell;
neurogenesis; oncogene; cancer

1. Introduction

The myc gene was originally identified as the transforming principle (v-myc) in the
genome of the avian acute leukemia virus MC29 encoding a single hybrid protein com-
posed of partial structural (Gag) and Myc sequences [1,2]. The oncogenic v-myc allele is
derived from the cellular chicken c-myc protooncogene by retroviral transduction [3–6], and
homologs of c-myc have been identified in all vertebrate genomes. The encoded c-Myc pro-
tein represents the key component of a transcriptional network controlling the expression
of a large fraction of all human genes, thereby regulating fundamental cellular processes
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required for metabolism, homeostasis, growth, proliferation, differentiation, or apopto-
sis [5,7]. Human c-Myc (MYC) is also one of the most frequently deregulated oncoproteins
in many cancer types and a hallmark of the majority of human cancers [8,9]. c-Myc and
its paralogs N-Myc (MYCN) and L-Myc (MYCL) are bHLH-LZ proteins encompassing a
protein dimerization domain (helix-loop-helix, leucine zipper), and a DNA contact surface
(basic region) both located in the protein’s C-terminus. The N-terminus of Myc contains
multiple conserved regions termed Myc boxes (MB), which interact with multiple proteins
mediating crucial cellular functions including transcriptional transactivation and DNA
replication [5,10,11]. Myc proteins form heterodimers with the Myc-associated factor X
(Max) typically binding to a canonical DNA sequence element termed E-box (5′-CACGTG-
3′) [12] in the regulatory regions of multiple Myc target genes, and thereby they form a
central hub in a global gene expression network [5,13–15].

The Myc and Max proteins are evolutionary conserved, meaning that their amino acid
sequences have a high similarity in different species. Invertebrate orthologs have initially
been characterized in the triploblastic bilaterian organism Drosophila melanogaster [16],
where dMyc and dMax bind to a large number of E-boxes and regulate the expression of
many genes including key regulators of cell growth, cell size, and ribosome biogenesis [17].
Structural and functional homologs are also present in early, pre-bilaterian metazoans and
pre-metazoans [5,18,19]. Among basal metazoan organisms, the diploblastic cnidarian
Hydra has been used to study Myc and Max. Two Hydra c-Myc-like proteins, Myc1 and
Myc2, display interaction with Max and DNA similar to vertebrate Myc proteins, and
both show a basic level of oncogenic potential [20]. Thus, the principal design and basic
biochemical properties of the ancestral Hydra Myc and Max proteins seem to be very similar
to those of their vertebrate derivatives, suggesting that the principal functions of the Myc
master regulator arose very early in metazoan evolution, at least 550 million years ago.

Hydra has a long history as a simple animal model for studying regeneration, pattern
formation and stem cell biology [21–25]. In laboratory culture, Hydra polyps permanently
grow and reproduce by asexual budding. Polyps exhibit a single oral-aboral body axis with
tentacles and a mouth opening at one end and a foot at the opposite end. The polyp body is
built by only three adult cell lineages, ectodermal and endodermal epithelial cells and inter-
stitial cells [24,25]. All three lineages are maintained by their own pools of stem cells. The
interstitial cell lineage is maintained by large numbers of multipotent interstitial stem cells,
which continuously proliferate in order to self-renew and to differentiate neurons, gland
cells and nematocytes, as well as gametes during rare events of sexual reproduction [24,25].
The two Hydra c-myc-like homologs, myc1 and myc2, are transcriptionally activated in the
interstitial cell lineage [18,20,25]. myc1 and myc2 are expressed in proliferating interstitial
stem cells and in early proliferating precursor stages during nematocyte differentiation.
Furthermore, myc2 expression also occurs in proliferating epithelial stem cells throughout
the gastric region. In addition, myc2 is activated in cycling precursor cells during early oo-
genesis and spermatogenesis and in cycling nematoblast nests and gland cells, suggesting
that the Myc2 protein has a possible non-redundant function in cell cycle progression and
thereby contributes to stem cell maintenance [25].

In total, the Hydra genome sequence contains four myc or myc-like genes [20]. Whereas
myc1 and myc2 encode for prototypical Myc proteins displaying a highly conserved C-
terminal bHLH-LZ DNA binding domain and most of the Myc-boxes in the larger N-
terminal transactivation domain, the other two myc-like genes, myc3 and myc4, are more
divergent. Although the predicted C-terminal bHLH-LZ domains are Myc-specific, their
predicted N-terminal domains are shorter and almost completely lack Myc boxes [20].
Here, we report the detailed characterization of the highly divergent Hydra myc paralogue
termed myc3. Dynamic structure predictions of the Myc3 C-terminal region and avian
cell transformation assays provide evidence for the impact of specific amino acid residues
on Max interaction and oncogenic potential. Furthermore, the myc3 expression pattern in
Hydra suggests a distinct role in cell differentiation, where the encoded Myc3 protein may
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act as a competitor to Myc2 or Myc1 for Max binding. We discuss these results with respect
to models of cell transformation and differentiation.

2. Materials and Methods
2.1. Animals

Hydra vulgaris strains AEP and 105 (formerly Hydra magnipapillata strain 105) were
used in this study. Mass cultures were kept as described [26]. Experimental animals were
collected 24 h after the last feeding.

2.2. Whole Mount In Situ Hybridization

In situ hybridization with digoxigenin-labeled RNA probes was carried out according
to protocol as described in [27], using a myc3-specific cDNA probe as described in [18,25].

2.3. Single-Cell Transcriptome Analyses

Hydra scRNA-seq data [28] were used to analyze the expression of Myc variants within
interstitial cells. Recent UMAP representations [29] were used to visualize gene expression.
The expression of Clytia hemisphaerica myc paralogs was analyzed using published scRNA-
seq data [30].

2.4. Cells and Retroviruses

The constructs pRCAS-hymyc1/v-myc, pRCAS-hymyc2/v-myc, and pRCAS-v-myc
have been described [18,25]. To construct the plasmids pA-hymyc3/v-myc and pA-v-
myc/hymyc3, encoding hybrid proteins of Hydra Myc3 and v-Myc (HyMyc3/v-Myc
and v-Myc/hyMyc3), the corresponding Hydra myc3 and v-myc-specific segments con-
taining overlapping sequences were amplified in four different PCRs using Hydra myc3
cDNA and the adaptor plasmid pA-v-myc [18] as templates and the primer pairs 5′-
GCATCGATACCGACCACCATGATGTATGGGCAAAGT-3′/5′-GTGCGTTCGCCTCTTGT
CTACTGGCTCTTGTTTAAT-3′ (hymyc3_a), 5′-ATTAAACAAGAGCCAGTAGACAAGAG
GCGAACGCAC-3′/5′-GCATCGATTAGAGGATCCCTATGCACGAGAGTTCCT-3′ (v-myc_b),
5′-GCGAATTCGCCGACCACCATGCCGCTCAGCGCCAGC-3′/5′-ATGTGTGGTTCGGC
TTAAGTTCTCCTCTGAGTCTAA-3′ (v-myc_a), 5′-TTAGACTCAGAGGAGAACTTAAGC
CGAACCACACAT-3′/5′-GCAAGCTTTAGAGGATCCCTAATATAACCCTTTTTT-3′

(hymyc3_b), respectively. In two subsequent PCRs, diluted pools from pairs of the first
PCRs were employed as templates (hymyc3_a + v-myc_b and v-myc_a + hymyc3_b) using
the relevant external primer pairs in each case, as described in [25]. The resulting PCR prod-
ucts were digested with ClaI (hymyc3/v-myc) or EcoRI/SalI (v-myc/hymyc3), and inserted
into the adaptor plasmids pA-CLA12NCO or pA-CLA12, which had been opened with
ClaI or EcoRI/SalI, respectively. The inserts of pA-hymyc3/v-myc, and pA-v-myc/hymyc3
were then released with ClaI and inserted into the retroviral RCAS-BP vector as described
in [18]. To construct the plasmid pRCAS(A)BP-HA-hymyc3, fragments encompassing the
coding sequences of the hemagglutinin (HA) tag (112 bp) and of Hydra myc3 (658 bp) were
amplified using pRCAS(A)BP-HA-MYC [31] or the Hydra myc3 cDNA as templates, us-
ing the primer pairs 5′-CTCGCGTACCACTGTGGCATCGATTCTAGACCACTGTG-3′/5′-
GCCCATACATAGCGTAATCTGGAACATC-3′ and 5′-AGATTACGCTATGTATGGGCAAA
GTGCG-3′/5′-ATCTGGCCCGTACATCGCATCGATAAGCTTGGGCTGCAG-3′, respec-
tively. The PCR products were then inserted into the ClaI-linearized pRCAS-BP vector
via Gibson assembly following the NEBuilding protocol (New England Biolabs, Ipswich,
MA, USA), and the generated constructs were verified by DNA sequencing upon plas-
mid DNA isolation. The theoretical molecular weights (Mr) of the proteins encoded by
the applied RCAS constructs are: 24,378 (HA-hyMyc3); 23,413 (hyMyc3/v-Myc); 45,977
(v-Myc/hyMyc3); 46,432 (v-Myc/hyMyc2); 47,210 (v-Myc/hyMyc1); and 46,095 (v-Myc
w/o Gag).

For construction of the expression plasmids pRCAS(A)BP-HA-c-myc-QN and pRCAS(A)
BP-HA-c-myc-TIQN encoding human HA-tagged MYC proteins with the mutations R423Q/
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R424N (QN) and E410T/E417I/R423Q/R424N (TIQN), the Q5 site-directed mutagenesis
protocol NEBaseChanger (New England Biolabs, Ipswich, MA, USA) was applied with the
pRCAS(A)BP-HA-MYC plasmid [31] as a template. Using the mutagenesis primer pair 5′-
TTGCGGAAACAAAACGAACAGTTGAAACACAAAC-3′/5′-CAAGTCCTCTTCAGAAA
TG-3′ for the QN mutant, and the primer pair 5′-CGACTTGTTGCGGAAACAAAACGAA
CAGTTGAAACACAAACTTGAAC-3′/5′-ATTTCAGAAATGAGCTTTTGCGTCTCTGCTT
GGACGGACAG-3′ for the TIQN mutant, the relevant DNA segments were PCR amplified
and then treated with a kinase/ligase/DpnI mixture, followed by transformation into
competent Escherichia coli XL10 gold. Successful mutagenesis was confirmed by DNA
sequencing of the isolated plasmid DNA.

Cultivation of quail embryo fibroblasts (QEF), calcium phosphate-mediated DNA
transfection, and cell transformation assays (focus and colony formation) were performed
as described [18,25]. Proliferation of cells was monitored in real time by using the live cell
imaging system IncuCyte S3 (Essen Bioscience/Sartorius, Vienna, Austria). Each aliquot
of 1.25 × 105 cells were seeded in an MP24-well dish (Corning, Vienna, Austria), and
monitored for 72 h using phase contrast imaging every 8 h from 9 separate regions per well,
using a 10× objective. To verify the integrity of the integrated proviruses in cells transfected
with the constructs RCAS-vmyc/hymyc3 and RCAS-hymyc3/v-myc, genomic DNA was
isolated from each group of 1 × 106 cells after seven cell passages, using the Monarch
genomic DNA purification kit (New England Biolabs, Ipswich, MA, USA). Each 1 µg of
genomic DNA was used as a template for a standard PCR, using the RCAS-specific primer
pair 5′-TGAGCTGACTCTGCTGGTG-3′/5′-GGCCCGTACATCGCATCGAT-3′, followed
by direct DNA sequencing of the resulting PCR products.

2.5. Protein Expression and Purification

To construct prokaryotic expression plasmids encoding the bHLH-LZ regions of Hydra
Max, and Myc3 with carboxy-terminally fused Histidin-tags (His6), the relevant coding re-
gions were amplified by PCR using the primer pairs 5′-CTTTAAGAAGGAGATATACAATG
GCTGATAAAAGAGCTC-3′/5′-AGTGGTGGTGGTGGTGGTGCTCTAGTGTTAGGTTTCC
AC-3′ (max), 5′-CTTTAAGAAGGAGATATACAATGCAAGAGCCAGTATTAAG-3′/5′-AGT
GGTGGTGGTGGTGGTGCAGATATAACCCTTTTTTAAGGTC-3′ (myc3), and then inserted
into the pET21a vector providing the initiating methionine codon and a C-terminal (HIS)6-
tag consisting of six consecutive histidine residues followed by a stop codon. The pET21a
vector was opened with the restriction enzymes NdeI/XhoI followed by insertion of the
PCR fragments via Gibson assembly, according to the NEBuilding protocol (New Eng-
land Biolabs, Ipswich, MA, USA). The generated plasmids pET21a-hymax_bHLH-LZ-HIS
and pET21a-hymyc3_bHLH-LZ-HIS encode the fusion proteins HyMax-bHLH-LZ-HIS
(Mr = 11,836.27, pI = 9.89) and HyMyc3-bHLH-LZ-HIS (Mr = 11,839.82, pI = 10.13), re-
spectively. After verification of the constructs by DNA sequencing, DNA aliquots were
transformed into the Escherichia coli strain Rosetta (DE3) pLysS (Novagen/Merck, Darm-
stadt, Germany). To express the recombinant proteins, bacteria from single colonies were
incubated overnight at 37 ◦C with shaking at 200 rpm in 20 mL of LB medium containing
100 µg/mL ampicillin and 25 µg/mL chloramphenicol. The bacteria were then transferred
into 180 mL LB medium containing the same antibiotics as above, and grown at 37 ◦C with
shaking at 200 rpm to an optical density of 0.5 (600 nm). To induce recombinant protein
expression, isopropyl-β-D-thiogalactopyranoside (IPTG) was added to a final concentra-
tion of 1 mM and bacteria were incubated as above for 4 h. The bacteria were pelleted at
6000× g for 15 min at 4 ◦C, resuspended in 5 mL of column loading buffer (50 mM sodium
phosphate pH 8.0, 300 mM NaCl, 10 mM imidazole) supplemented with protease inhibitors
(2 µg/mL aprotinin, 1 µg/µL leupeptin, 1 µg/µL pepstatin), and then frozen at −80 ◦C
for at least 20 min. To the thawed cell suspension, 5 µL of 1 M MgCl2, 50 µL of DNAseI
(1 mg/mL), and 50 µL of lysozyme (10 mg/mL) were added, followed by incubation on
ice for 60 min. The lysates were then centrifuged at 12,000× g for 20 min at 4 ◦C, and the
supernatants applied for protein purification by metal-chelate affinity chromatography.
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Each 600 µL of the clarified lysates was loaded onto Ni-NTA spin kit 50 (Qiagen, Venlo,
Netherlands) columns equilibrated with column loading buffer. Samples were centrifuged
at 270× g for 10 min, and the bound proteins washed three times (890× g for 2 min) with
column washing buffer (50 mM sodium phosphate pH 8.0, 300 mM NaCl, 20 mM imi-
dazole). The His-tagged proteins were then eluted by centrifugation (890× g for 2 min)
using column elution buffer (50 mM sodium phosphate pH 8.0, 300 mM NaCl, 500 mM
imidazole) and quantified by Nanodrop photometry (PeqLab/Avantor, Radnor, PA, USA)
and SDS-PAGE. The proteins were stored in aliquots at −80 ◦C.

2.6. Protein Analysis

SDS-PAGE and immunoblotting were carried out as described in [25,32]. Specific
rabbit antisera recognizing v-Myc (anti-Myc-CT, anti-Myc-NT) have been described in [25].
Mouse antibodies directed against anti-tubulin (TUBA) and the HA-tag have been described
in [33]. The monoclonal anti-GAPDH (#AB8245, Abcam, Cambridge, UK) was applied in a
1:1000 dilution.

2.7. Protein–DNA Interaction Analysis

Electrophoretic mobility shift assay (EMSA) analysis, radioactive 32P-labeling of the
DNA probe, and signal quantification were performed as described in [18]. To generate
a double-stranded DNA probe, each two complementary oligodeoxynucleotides were
annealed containing either the canonical Myc binding site (E-box) from the Hydra myc2
promoter (5′-ATAGCTCACGTGTCAATA-3′) [25,34], or in the context of an upstream
stimulatory factor binding site (E-box USF), as described in [18]. DNA binding reactions
(20 µL) were performed at 25 ◦C for 45 min in a buffer containing 10 mM Tris HCl pH
7.5, 0.5 mM EDTA, 65 mM KCl, 5 mM MgCl2, 1 mM DTT, 100 µg/mL BSA, and 10%
(vol/vol) glycerol. Protein–DNA complexes were resolved by native 6% (wt/vol) PAGE,
and radioactive signals were quantified by using a PhosphorImager and the program
Image-Quant TL (GE Healthcare, Chicago, IL, USA), as described in [25].

2.8. Protein Structure and Homology Modeling

Homology models of the Hydra Myc/Max/E-box binding complexes were built and
optimized based on the crystal Myc/Max/E-box structure [35] (PDB accession code: 1NKP)
using MOE (Molecular Operating Environment, 2022.02 Chemical Computing Group
ULC, Montreal, QC, Canada). The electrostatic properties of the Hydra Myc3/Max/E-box
binding interface were calculated based on the respective charges and mapped on the
surface of the heterodimer structure. The resulting structure models were overlaid to
facilitate the comparison of interactions within the different Hydra Myc complexes. To
prepare the individual systems for superposing, we restrained E-box and Hydra Max to
allow only sidechain movements, and minimized them with the Amber10:EHT forcefield
with periodic boundary conditions (AMBER 10, University of California, San Francisco,
CA, USA, 2008). Structure representations were made with Schrödinger Pymol package
(PyMOL Molecular Graphics System, Version 2.0, Schrödinger, LLC). Signature analysis of
the Hydra Myc3 protein sequence was performed using the program ScanProsite (https:
//prosite.expasy.org/) (accessed on 20 April 2023). Additional computational protein
structure analysis of the full-length Hydra Myc3 (A0A0H5FMB4) protein was carried out
using the program AlphaFold (https://alphafold.ebi.ac.uk/) (accessed on 20 April 2023).

3. Results
3.1. Structure of the Hydra myc3 Gene and Its Protein Product

The Hydra Myc1 and Myc2 proteins display a highly conserved C-terminal bHLH-LZ
DNA binding domain and most of the Myc-boxes in the larger N-terminal transactivation
domain (Figure 1A) [18,25]. In addition to myc1 and myc2, the Hydra genome contains
the myc3 gene, which is highly divergent. Although its predicted C-terminal bHLH-LZ
domain is well conserved, the predicted N-terminal domain is short and does not contain

https://prosite.expasy.org/
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any Myc-boxes (Figure 1A,B). Computational protein structure analysis of the full-length
Hydra Myc3 using the program AlphaFold predicts a largely unstructured N-terminus,
whereas the C-terminus clearly shows the typical signature of a bHLH-LZ domain. Protein
motif analysis of the Hydra Myc3 N-terminus predicts the occurrence of a casein kinase II
phosphorylation site (pos. 21), two protein kinase C phosphorylation sites (pos. 39/105),
and one N-glycosylation site (pos. 55). Alignment of the Hydra Myc3 protein sequence
with that of Myc1 and Myc2 showed that in all three Hydra paralogs the C-terminal domain
encompassing dimerization surface and DNA binding regions are very similar to the
human MYC (c-Myc) or viral Myc (v-Myc) proteins (Figure 1B). Phylogenic tree analysis
using the C-terminal bHLH-LZ domains of transcription factors of the Myc-Max-Mlx
network as well as related Mitf and Usf proteins confirmed that Myc3 is a member of the
Myc protein family (Figure S1). The Hydra myc3 gene is located on chromosome 2 and
contains three exons (Figure S2), and the predicted 1420-nt mRNA (accession no. LN868213)
encodes a 197-amino acid protein, which is significantly shorter than the 314-aa Myc1 or
332-aa Myc2 proteins. Similar to the regulatory sites of myc1 and myc2, the putative myc3
promoter contains TBE motifs representing binding sites for the transcription factor Tcf
(TCF) (Figure S3) suggesting that myc3 may also be regulated by canonical Wnt signaling, as
was described for the myc1 and myc2 genes in [34]. Further inspection of the myc3 promoter
revealed the presence of binding motifs for additional transcriptional enhancers such as
GATA-1 or C/EBPα (Figure S3).
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and Hydra (hy) Myc proteins using the program Clustal Omega (GenBank accession nos.: hu c-Myc, 
NP002458; v-Myc, P01110; hyMyc2, ADA57607; hyMyc1, ACX32068; hyMyc3, CRX73227) with 
shading based on the similarity to human c-Myc (MYC). Identical amino acid residues are shaded 
in light brown, and gaps are indicated by points. The positions of conserved Myc boxes (MBs), basic 
region (BR) and helix-loop-helix/leucine zipper domain (HLH-LZ) are indicated above the align-
ment in blue or grey, respectively. 
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of precursor cells committed to nerve cell and gland cell differentiation (Figures 2A,B and 
S4). Fully differentiated nerve and gland cells do not express myc3. myc2 (blue) is ex-
pressed in all proliferating cells in Hydra. This includes interstitial stem cells, early prolif-
erating nematoblast nests, gland cells, proliferating precursors of both types of gametes, 
and proliferating epithelial cells (Figures 2A,B and S4). myc1 (red) is also expressed in 
interstitial stem cells, but its expression level increases in nematoblast nests, which are 
cells committed to differentiating into large numbers of stinging cells (nematocytes) (Fig-
ures 2A,B and S4). The expression patterns of myc1 and myc2 shown in the single-cell 

Figure 1. Structural relationship of human and Hydra Myc proteins. (A) Schematic depiction of
the human c-Myc (MYC)/v-Myc and Hydra Myc1, Myc2, and Myc3 proteins. The positions of the
C-terminal basic region (BR), helix-loop-helix/leucine zipper domain (HLH-LZ), and N-terminal
Myc boxes (MBs) are represented in grey or blue, respectively. (B) Alignment of human (hu), viral
(v), and Hydra (hy) Myc proteins using the program Clustal Omega (GenBank accession nos.: hu
c-Myc, NP002458; v-Myc, P01110; hyMyc2, ADA57607; hyMyc1, ACX32068; hyMyc3, CRX73227)
with shading based on the similarity to human c-Myc (MYC). Identical amino acid residues are
shaded in light brown, and gaps are indicated by points. The positions of conserved Myc boxes
(MBs), basic region (BR) and helix-loop-helix/leucine zipper domain (HLH-LZ) are indicated above
the alignment in blue or grey, respectively.
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3.2. Expression of the Hydra myc3 mRNA

Figure 2A shows a summary of the cell type-specific expression patterns of myc3,
myc2, and myc1 on a UMAP projection from the published and annotated Hydra single-cell
RNA sequencing atlas [28]. Corresponding UMAPs for the individual genes providing
more details are shown in Figure S4. myc3 (green) is expressed in a distinct population of
precursor cells committed to nerve cell and gland cell differentiation (Figures 2A,B and S4).
Fully differentiated nerve and gland cells do not express myc3. myc2 (blue) is expressed
in all proliferating cells in Hydra. This includes interstitial stem cells, early proliferating
nematoblast nests, gland cells, proliferating precursors of both types of gametes, and
proliferating epithelial cells (Figures 2A,B and S4). myc1 (red) is also expressed in interstitial
stem cells, but its expression level increases in nematoblast nests, which are cells committed
to differentiating into large numbers of stinging cells (nematocytes) (Figures 2A,B and S4).
The expression patterns of myc1 and myc2 shown in the single-cell RNA-seq atlas are
consistent with the previously described expression patterns based on in situ hybridization
experiments [18].
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Figure 2. Expression patterns of the different myc genes in Hydra. (A) The interstitial stem cell lineage
in Hydra resolved by single cell RNA sequencing [28,29] depicted in two-dimensional space (UMAP,
uniform manifold approximation and projection). Arrows indicate differentiation paths from the
interstitial stem cell pool to the differentiated cell types. Each cell is colored according to its expression
(myc1, red; myc2, blue; myc3, green). Cells expressing none of the three myc transcripts are colored in
grey. (B) Schematic representation of the multipotent interstitial stem cell system and its derivatives.
Colors of the arrows correspond to the expression of the different myc genes at the different stages.
myc1 (red) is expressed during nematocyte differentiation, myc2 (blue) contributes to the production
of gametes and is expressed in mature gland cells, myc3 (green) is activated in nerve and gland cell
progenitors, and both myc1 and myc2 (purple) are involved in interstitial stem cell maintenance and
early nematoblast stages. (C) Whole Hydra polyp in situ hybridization showing myc3 expression
throughout the gastric region and a magnified view of nerve and gland precursor cells occurring as
single cells, as cell pairs, and, rarely, as small nests of cells. (D) Quantification of cell cluster size of
myc3 expressing cells. Bars represent mean ± SD from 3 polyps; >100 cells and cell clusters were
counted per polyp.
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Whole-mount in situ hybridization experiments revealed the localization of myc3-
positive precursor cells throughout the gastric region and not in the differentiated parts of
the head and foot (Figure 2C), which is consistent with their expression in nerve and gland
cell precursors. In situ images at various stages of asexual bud formation demonstrated
how this spatial pattern emerges, specifically how the development of a new head and
a new foot in a bud results in the disappearance of myc3-positive cells from these tissues
(Figure S5). During nerve cell differentiation in Hydra, a committed interstitial stem cell
becomes a nerve cell precursor that undergoes a terminal mitosis. The resulting pair of
daughter cells then differentiates into mature nerve cells within 4–6 h [36]. Most of the myc3-
expressing cells occurred as single cells and pairs, indicating that myc3 is transcriptionally
active in pre- and post-mitotic precursor stages (Figure 2C,D). At low frequency, we also
observed myc3-expressing cell clusters containing four or eight cells, confirming earlier
observations that, although rare, nerve cell precursors can undergo one or two additional
rounds of replication (Figure 2C,D) [37,38].

3.3. Biochemical Properties of the Hydra Myc3 Protein

We have previously shown that the Hydra Myc1 and Myc2 proteins show the princi-
pal biochemical functions of the bilaterian Myc proteins, such as dimerization with Max
and binding to double-stranded DNA [18,25]. To investigate the Myc3 C-terminus for
DNA binding, the highly conserved coding sequence of the Myc3 carboxyl-terminal region
(amino acid residues 108–197) encompassing the dimerization and DNA binding domain
(bHLH-LZ) was inserted into the prokaryotic pET21a expression vector providing a me-
thionine start codon and a C-terminal histidine-tag to facilitate protein purification. An
analogous construct was generated using the corresponding bHLH-LZ coding region of Hy-
dra Max (amino acid residues 29–120). The proteins hyMyc3-bHLH-LZ-HIS (Mr = 11,840)
and hyMax-bHLH-LZ-HIS (Mr = 11,836) with apparent molecular weights of ~13,000
(p13) were efficiently expressed in Escherichia coli, and the soluble fractions purified in
one step, using metal-chelate affinity chromatography (Figure S6). The recombinant Myc3
p13 derivative was then tested, together with the corresponding Max p13 derivative, us-
ing electrophoretic mobility shift analysis (EMSA) with increasing protein concentrations
and constant amounts of DNA (Figure 3). The EMSA analysis showed that Myc3 p13 in
complex with Max p13 efficiently binds to double-stranded DNA containing the authentic
Myc binding site derived from the Hydra myc2 promoter [25,34] (Figure 3), and to a DNA
fragment containing the E-box of the upstream transcription factor 1 (USF) binding site [39]
(Figure S7). The analysis also showed that Myc3 p13 homodimers inefficiently bind to DNA,
in contrast to Max p13 homodimers (Figure S7). Because the proteins and the relevant
protein–DNA complexes differ in size, it is obvious that the DNA-bound complex seen
in Figure 3 must be a heterodimer between Myc3 p13 and Max p13. For quantification of
the observed protein–DNA interaction, the ratios of bound to total DNA were determined
and the dissociation constant (Kd) for the protein–DNA complex was calculated. The
estimated Kd value for the protein–DNA complex formed by Myc3 p13/Max p13 was
determined to be 1.63 × 10−8 M, which is in the range of the previously determined disso-
ciation constants of the Hydra Myc1/Max (1.70 × 10−8 M) and Myc2/Max (1.74 × 10−8 M)
heterodimers [18,25]. This indicates that the Hydra Myc3 p13/Max p13 dimer binds with a
similar or slightly higher affinity to specific DNA, and that in vivo expressed Myc3 could
efficiently compete with Myc1 or Myc2 for heterodimerization with Max.
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double-stranded 18-mer oligodeoxynucleotide containing the canonical Myc/Max-binding motif 5′-
CACGTG-3′ (E-box) in the context of the Hydra myc2 promoter [34]. Final protein concentrations 
[nM] are indicated above each lane. Lower panel: determination of the dissociation constants (Kd) 
of the protein–DNA complexes after titration with increasing amounts of proteins. The ratios of 
bound DNA to total DNA were determined by phosphor-imaging, and plotted versus the log10 of 
the applied protein concentrations. Because the experimental conditions led to partial DNA strand 
separation, only double-stranded DNA was considered for the quantification of unbound DNA. The 
sigmoidal fit function f(x) = 1/{1 + exp[(a − x)/b]} [25] was used to generate the binding curve. The 
calculated Kd value for the protein–DNA binding reaction is indicated below. 
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blasts. The empty RCAS vector and the RCAS-v-myc construct encoding the 416-amino 
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Figure 3. DNA binding of Hydra Myc3/Max dimers. Upper panel: electrophoretic mobility shift assay
(EMSA) using increasing amounts (0–2000 nM) of recombinant polypeptides (p13) encompassing
the Hydra Myc3 and Max bHLH-LZ regions, and 0.3-ng (25,000 cpm) aliquots of a 32P-labeled
double-stranded 18-mer oligodeoxynucleotide containing the canonical Myc/Max-binding motif
5′-CACGTG-3′ (E-box) in the context of the Hydra myc2 promoter [34]. Final protein concentrations
[nM] are indicated above each lane. Lower panel: determination of the dissociation constants (Kd)
of the protein–DNA complexes after titration with increasing amounts of proteins. The ratios of
bound DNA to total DNA were determined by phosphor-imaging, and plotted versus the log10 of
the applied protein concentrations. Because the experimental conditions led to partial DNA strand
separation, only double-stranded DNA was considered for the quantification of unbound DNA. The
sigmoidal fit function f(x) = 1/{1 + exp[(a − x)/b]} [25] was used to generate the binding curve. The
calculated Kd value for the protein–DNA binding reaction is indicated below.

3.4. Oncogenic Potential of the Hydra Myc3 Protein

Recently, we have reported that hybrid proteins between Hydra Myc1 or Myc2, and
viral Myc (v-Myc) have cell transforming potential [18,25]. To explore whether the Hydra
Myc3 protein also displays some of the principal biological functions of vertebrate Myc, the
myc3 coding region and hybrids between myc3 and v-myc were inserted into the replication-
competent retroviral RCAS vector. In these constructs, the myc3 coding sequences of the
N-terminal region and the C-terminal DNA binding domain were mutually exchanged
(hymyc3/v-myc, v-myc/hymyc3), and compared with two analogous v-myc/myc1 and
v-myc/myc2 hybrids [25] for their capacity to induce cell transformation in avian fibroblasts.
The empty RCAS vector and the RCAS-v-myc construct encoding the 416-amino acid viral
Myc (v-Myc) protein were used as controls, together with an RCAS construct encoding the
full-length Hydra Myc3 protein supplied with an N-terminally attached HA-tag (Figure 4A).
The retroviral constructs were transfected into primary quail embryo fibroblasts (QEF), and
the cells were passaged several times.
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Figure 4. Cell transforming capacity of Hydra Myc3. (A) Left site: schematic depiction of the coding
sequences from HA-tagged full-length hymyc3, hy/v-myc and v/hy-myc hybrids, and v-myc (green,
hymyc3; blue, hymyc2; red, hymyc1; yellow, v-myc). The coding regions were inserted into the
unique ClaI site of the replication-competent retroviral pRCAS vector used for DNA transfection into
primary quail embryo fibroblasts (QEF). Right site: cell morphology and transformed phenotype of
the transfected and passaged QEFs. Phase-contrast micrographs to monitor cell morphology (left
panel). Colony assay to monitor cell transformation (right panel). Each aliquot of 1.25 × 104 cells
were seeded into soft agar on MP24 wells and incubated for two weeks. Numbers of colonies per
1000 seeded cells are shown in the column graph. The numbers of colonies were compared using an
unpaired t-test (n = 2), where a and b are significantly different (p < 0.05). (B) Immunoblot analysis to
monitor ectopic Myc protein expression using extracts from the cells shown in (A). Antibodies are
directed against the N-terminal or C-terminal part of v-Myc to detect the different hybrid proteins.
Antibodies directed against GAPDH or α-tubulin (TUBA) were used as loading controls. Proteins
were resolved by SDS-PAGE (10%, wt/vol).
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To test for their transformed phenotypes, cells were then seeded into soft agar, and
colony formation was monitored after two weeks (Figure 4A). Unexpectedly, cells express-
ing the hybrid v-Myc/hyMyc3 protein displayed a strong transforming potential, compara-
ble to that of the original v-Myc oncoprotein, whereas the corresponding v-Myc/hyMyc2
or v-Myc/hyMyc1 proteins induced partial cell transformation manifested by lower agar
colony numbers, in accordance with previous results [25]. Likewise, cells transformed
by the v-Myc/hyMyc3 chimera showed a similar morphology and a high proliferation
rate, comparable to v-Myc-transformed cells (Figures 4A and S8) and were able to induce
focus formation with an efficiency comparable to v-Myc (Figure S8). Neither significant
morphological alterations nor a transformed phenotype was monitored in cells transfected
with the empty RCAS vector and in cells expressing the full-length HA-tagged hyMyc3
protein, or in cells expressing chimeric hyMyc3/v-Myc (Figures 4A and S8). The latter
results were expected, due to the lack of a Myc-homologous N-terminal domain in the
Hydra Myc3 protein (cf. Figure 1). Expression of the ectopic viral and hybrid Myc proteins
was monitored by immunoblot analysis, using antibodies specific for the N-terminal or
C-terminal v-Myc regions, and an antibody directed against the N-terminal HA-tag of the
Myc3 fusion protein (Figure 4B). Expression levels of v-Myc/hyMyc2 and v-Myc/hyMyc1
were slightly lower than those of v-Myc/Myc3 or v-Myc, but previous results had shown
that even equal protein expression levels did not result in higher cell transforming capac-
ities of v-Myc/myc1 or v-Myc/Myc2 compared to v-Myc [25]. Altogether, these results
show that, in contrast to Hydra Myc1 or Myc2, the C-terminal domain of Hydra Myc3 has
about the same transformation capability as the highly oncogenic retroviral v-Myc protein.

3.5. Homology Modeling of Hydra Myc3 Predicts a High Stability of Myc3/Max Heterodimers

In order to obtain hints about the higher transforming potential of the Myc3 C-terminus
compared to Myc2 or Myc1 on a structural basis, we performed homology modeling of
this domain, using as a template the 3D structure of the corresponding region of the
human MYC/MAX heterodimer in complex with a MYC binding site [35]. The analysis
revealed specific conservation of residues at the contact surfaces and led to the identification
of amino acid residues contributing to heterodimer stabilization of the different hyMyc
variants, thereby predicting that the Hydra Myc3/Max complex may form the most stable
dimer (Figure 5). Homology modeling followed by energy and geometry optimization
showed structural differences in the relevant binding interactions. Hydra Myc proteins
bind to DNA mainly through polar interactions, whereas Max is stabilized mostly by
hydrophobic contacts. The surface of the Hydra Myc3/Max complex shows that the lower
DNA binding part is more polar than the upper polypeptide-associating region (Figure 5A).
The N-terminal parts of the modeled peptides contain more positive charges near the
DNA framework to attract phosphoric acid groups and to establish polar contacts with
nucleotide base pairs and surrounding water molecules. On the other hand, the Max
binding site comprises more hydrophobic residues, even though a few polar contacts
remain essential (Figure 5B). When comparing molecular interactions within the Hydra
Myc family, superposition of the Hydra Myc variants suggests that Hydra Myc3 may bind
to Hydra Max with the highest efficiency (Figure 5C). In particular, electrostatic repulsions
within the DNA framework and mismatches of polar/hydrophobic residues render Myc1
and Myc2 less favorable for heterodimer formation, typically at the following sites. In
Myc3 there are stabilizing hydrogen bonds between residue N126 and phosphoric acid
oxygen atoms from the DNA, in contrast to Myc2 or Myc1, which contain at this position
an I263 or D238, respectively (Figure 6). Whereas Myc3 and Myc2 possibly form stabilizing
salt bridges between residues K155 or K292, respectively, and D48 from Hydra Max, the
corresponding T267 from Myc1 cannot form this type of interaction. Furthermore, the
Myc3 L175 attracts I92 in Hydra Max via hydrophobic interactions, which is not possible
for the corresponding K312 or K287 in Myc2 or Myc1, respectively (Figure 6).
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Figure 5. Template-based structure model of the bHLH-LZ regions of Hydra Myc and Max proteins
and interaction analyses of Hydra Myc/Max binding interfaces. (A) Homology model of the Hydra
Max/Myc3/E-box binding complex based on the human Myc/Max/DNA structure (PDB accession
code 1NKP). Surface representation with colors based on charges (blue, positive; red, negative). A
high number of negative charges is present at the binding interface with the DNA, favorizing the
stabilizing salt bridges of the phosphoric acid moieties present within the DNA/E-box frame. The
dimerization surface of Myc3 contains fewer charges and interacts with Max mainly by hydrophobic
interactions. (B) Residue-wise analysis of Hydra Myc3/Max/E-box binding interactions. Residues
are colored based on their physico-chemical properties (green, hydrophobic residues; blue, positive
charges: red, negative charges; purple, neutral polar residues). Polar residues of Myc3 are more
involved in DNA binding, whereas hydrophobic residues dominate in the Max interaction surface.
(C) Superposition of Hydra Myc1, Myc2, and Myc3 in complex with Max binding to DNA. Within
the Hydra Myc protein family, the DNA binding quality of the different Myc/Max complexes can be
distinguished by monitoring electrostatic clashes. The efficiency of Max dimerization depends on both
the hydrophobic and electrostatic complementarities of the relevant residue matches. According to
this model structure, the Myc3/Max dimers are more stable than the Myc1/Max or Myc2/Max dimers,
due to fewer electrostatic repulsions, which are visualized in the alignment below. Corresponding
residues in human MYC, which were used for further mutational analysis, are indicated by red boxes.
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residues in the dimerization and DNA binding region. Alignment of the relevant Hydra, 
viral, and human(hu) Myc polypeptide sequences revealed that the bHLH-LZ region of 
Myc3 shares a 52%/51% sequence identity with the homologous v-Myc/huMYC region, 
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Myc1 and v-Myc/huMYC, account for 41%/49% and 40%/47%, respectively (cf. Figure 1B). 

Figure 6. Exemplary areas with varying E-box/Max interaction profiles within the Hydra Myc family.
(A) Myc3 forms stabilizing hydrogen bonds between residue N126 and the phosphoric acid groups
present in the DNA framework. In contrast, the corresponding I263 residue in Myc2 does not further
stabilize the binding interface, and the corresponding D238 in Myc1 even repulses negatively charged
oxygen atoms from the phosphodiester linkage. (B) Myc3 and Myc2 form stabilizing salt bridges
between the residues K155 or K292, respectively, and D48 of Hydra Max, whereas T267 of Myc1
cannot form this stabilizing interaction. (C) The Myc3 L175 attracts the I92 of Max via hydrophobic
interactions, in contrast to Myc2 and Myc1, which contain at this position the hydrophilic residues
K312 or K287, respectively.

Altogether, the results from the structural modeling predict that the stabilities of Hydra
Myc/Max heterodimers may increase by the order Myc1 < Myc2 < Myc3, although the gel-
based EMSA analyses could only detect marginal differences in the dissociation constants
of Myc1 [18], Myc2 [25], or Myc3 (cf. Figure 3).

3.6. Conservation of Critical Amino Acid Residues in the Hydra Myc3 Leucine Zipper Region

The strikingly high transforming potential of the Hydra Myc3 C-terminus compared
to the corresponding Myc2 and Myc1 regions prompted us to identify critical amino acid
residues in the dimerization and DNA binding region. Alignment of the relevant Hydra,
viral, and human(hu) Myc polypeptide sequences revealed that the bHLH-LZ region of
Myc3 shares a 52%/51% sequence identity with the homologous v-Myc/huMYC region,
whereas the corresponding sequence identities between Myc2 and v-Myc/huMYC, or
Myc1 and v-Myc/huMYC, account for 41%/49% and 40%/47%, respectively (cf. Figure 1B).
Therefore, the Hydra Myc3 C-terminal region offers the closest homology to its viral or
human counterparts. Concerning the dimerization surface, four amino acid residues in
the human MYC leucine zipper (LZ) region (E410, E417, R423, R424) confer steric and
electrostatic repulsions, which are responsible for inefficient MYC homodimerization
but favor the formation of MYC/MAX heterodimers [40]. These findings have led to
the development of a competitive dominant negative MYC inhibitor termed Omomyc,
which was applied to treat MYC-dependent tumor cells [41]. Interestingly, comparison of
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orthologous Hydra Myc protein regions with those from human or viral Myc showed that
three of the four residues are conserved in Hydra Myc3 (E410, R423, R424), whereas Myc2
(E410) and Myc1 (E410D) each contain only one conserved residue (Figure S9).

To test if mutations at these residues affect the transforming potential of Myc in our cell
system, mutagenesis was performed using the retroviral expression plasmid pRCAS(A)BP-
HA-MYC as a template encoding an N-terminally HA-tagged human MYC protein [31].
The resulting expression plasmids pRCAS(A)BP-HA-c-myc-QN and pRCAS(A)BP-HA-
c-myc-TIQN encode human HA-MYC proteins with the mutations R423Q/R424N (QN)
and E410T/E417I/R423Q/R424N (TIQN) and thus carry the same mutations found in the
Omomyc inhibitor (Figure 7A). The constructs were transfected into QEF, and the resulting
cell cultures were tested for their transformed phenotype using focus and agar colony
formation. Immunoblot analysis from parallel cultures showed efficient expression of all
HA-tagged ectopic MYC proteins (Figure 7B).
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Figure 7. Cell transformation interference caused by leucine zipper-mutations in human MYC.
(A) Amino acid sequences of the leucine zipper regions in which Omomyc-specific mutations [40]
(shaded in grey) have been introduced by site-directed mutagenesis into the MYC coding sequence
in the construct pRCAS-HA-c-myc (shaded in blue). (B) HA-MYC protein expression monitored by
immunoblot analysis using extracts from QEF transfected with RCAS constructs encoding HA-tagged
human MYC wild-type and mutant constructs after several passages. Antibodies specific for the
HA-tag or GAPDH were applied. Proteins were resolved by SDS-PAGE (10%, wt/vol). (C) Cell
transformation assays of QEF transfected with the same RCAS constructs as above. Each 1 µg of
plasmid DNA was transfected into QEF grown onto MP12 wells and then kept under agar overlay
for 2 weeks, followed by staining with eosin methylene blue (left panel). The numbers of foci were
compared using an unpaired t-test (n = 2), where a, b, c and d are significantly different to each other
(p < 0.05). For mass cultures, each 4 µg of plasmid DNA was transfected into QEF grown on 60 mm
dishes. Cells were passaged several times and phase-contrast micrographs were taken to visualize
cell morphologies (right panel). Equal numbers of these cells (5 × 103) were seeded into soft agar on
MP24 wells and incubated for 2 weeks. Numbers of colonies per 1,000 cells seeded are shown next
to the bright-field micrographs. The numbers of colonies were compared using an unpaired t-test
(n = 2), where a and b are significantly different (p < 0.05).
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After transfection, cells were overlayed with agar, and then stained after two weeks to
visualize the emergence of cell foci (Figure 7C). A significant reduction in focus formation
was observed in the case of the TIQN mutant, whereas substitution of only two residues
(QN) was not sufficient to strongly interfere with the oncogenic potential of MYC. Moreover,
when parallel cell cultures were passaged several times, the morphology of cells expressing
HA-MYC(QN) or HA-MYC(TIQN) was more similar to cells expressing wild-type HA-MYC
than to untransformed cells transfected with the empty RCAS vector (Figure 7C). Testing for
agar colony formation confirmed that substitution of these dimerization-sensitive residues
in human MYC does not completely block cell transformation, but rather induces a partially
transformed phenotype. However, the result suggests that the higher conservation grade of
these four critical residues in Hydra Myc3 contributes to the intrinsically high transforming
potential of the Myc3 C-terminus upon fusion with an authentic Myc N-terminal domain
(cf. Figures 4 and S8).

4. Discussion

Myc is a cellular master regulator with pleiotropic functions, which has been in-
tensively studied in recent decades to elucidate many aspects of human MYC biology.
However, there still remain multiple open questions with respect to the molecular mecha-
nisms by which Myc controls cellular proliferation, growth, metabolism, programmed cell
death, or differentiation [5,11,42–44]. Dissecting the multiple roles of Myc benefits from the
use of defined genetic systems in which conserved functions can be addressed. Like many
other oncogenes, myc was originally isolated from a transforming chicken retrovirus. This
viral myc allele, termed v-myc, was transduced from the cellular gene c-myc, which was
later identified virtually by its homology to viral myc [3,5,6]. Therefore, using avian cell
systems derived from chicken or quail embryo fibroblasts is highly suitable for functional
analyses of Myc’s oncogenicity. In these cells, activated myc alleles are sufficient to induce
neoplastic transformation and tumorigenesis within days. This is in contrast to primary
mammalian cells, which require the presence of a second cooperative oncogene to achieve
neoplastic transformation [45]. Here, we combine the use of avian cell lines with structural
variants of the myc proto-oncogene naturally occurring in a cnidarian to reveal insights into
the relationship between the Myc protein structure and function.

Cnidarians such as Hydra are the sister group to bilaterians, which branched off before
the Cambrian radiation more than 600 M years ago. Cnidarians are relatively simple
animals, with a small number of cell types and simple body plans. Hydra is commonly used
to investigate pattern formation, regeneration, and stem cell dynamics [21,23,24,46–48] and
offers powerful molecular tools and resources [20,49–51]. More recently, it has also been
used to study the cancer driver Myc and its upstream-acting signaling network, thereby
demonstrating that principal biochemical and oncogenic functions of Myc arose very early
in metazoan evolution [18,25,52]. The Hydra genome encodes four myc-related genes (myc1-
4). myc1 and myc2 show the closest homology to vertebrate c-myc, while myc3 and myc4 are
significantly less conserved [18,20,25]. Whereas Myc1 and Myc2 proteins display the same
principal topography as compared with the human MYC protein [18], full-length Myc3
displays a shortened N-terminal transactivation domain, and lacks all the conserved Myc
boxes (cf. Figure 1). While it is likely that the earliest metazoans had only one c-myc gene,
myc genes have diversified in all cnidarian lineages, resulting in between four and seven
paralogs being present in most extant species. Moreover, loss of N-terminal Myc boxes
occurred in myc paralogs in all major cnidarian lineages, and we detected myc genes of the
Myc3-type completely lacking N-terminal Myc boxes in all classes of this phylum. A study
describing the detailed evolutionary history and dynamics of the Myc protein family in
cnidaria and across all metazoa is in progress.

4.1. Myc/Max Dimerization and Oncogenic Transformation

The presence of a myc-related gene in Hydra encoding a Myc protein with fully func-
tional dimerization and DNA binding domain but a truncated transcriptional regulation
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domain increases the complexity of the known Myc/Max dimerization network. The
structural and functional analysis of Hydra myc3 presented here revealed that the encoded
Myc3 protein efficiently dimerizes with Hydra Max and binds to a canonical Myc binding
site. Surprisingly, the C-terminal dimerization and DNA binding domain of Myc3 offers
the highest structural conservation in comparison to Myc1 or Myc2. This may be the reason
why Myc3 derivatives containing the v-Myc N-terminus display a transforming potential
comparable to that of vertebrate Myc orthologues.

Combining the data from previous [18,25] and present (cf. Figure 3) protein–DNA
interaction studies, we observed that all Hydra Myc/Max heterodimers bind with com-
parable efficiencies to DNA with Kd values in the range of 1–2 × 10−8 M. However, the
results from the molecular modeling analysis (cf. Figures 5 and 6) suggest that Myc3/Max
heterodimers have a higher stability compared to Myc2/Max or Myc1/Max dimers. A
possible reason for this discrepancy might be that the gel-based EMSA technique only
allows estimation, but not precise determination, of dissociation constants from protein–
DNA complexes for the following reasons. During gel electrophoresis, samples are no
longer in chemical equilibrium where rapid dissociation can prevent complex detection,
and slow dissociation can result in underestimation of the binding density [53]. On the
other hand, many complexes are significantly more stable in the gel matrix as they are
in free solution, which limits studies to measure reaction kinetics with larger relaxation
times [53]. If the individual Hydra Myc proteins vary in these parameters, as suggested
by structural modeling (cf. Figures 5 and 6), the differences are not recorded by using the
applied classical protein–DNA detection technique. Gel-free alternatives for quantification
of protein–DNA interactions have been developed, such as surface plasmon resonance plat-
forms or microscale thermophoresis, as demonstrated recently using recombinant MYC and
MAX proteins [54]. These biophysical techniques would represent an option for the future
to precisely quantify Hydra Myc/Max dimerization and DNA interaction in free solution.

The high conservation grade of Hydra Myc3 on the leucine zipper dimerization surface
prompted us to analyze the functional relevance of specific residues, thereby showing that
those are required for full cell transformation (cf. Figure 7). These residues have been
originally identified as crucial for heterodimerization with Max, and were mutated to create
a dominant negative Myc polypeptide. This molecule, termed Omomyc, encompasses the
bHLH-LZ region of MYC with four amino acid substitutions conferring different dimer-
ization properties. Omomyc interferes with Myc/Max dimerization and DNA binding by
competitive inhibition and sequestration of oncogenic Myc [55,56], and overexpression
of Omomyc inhibits Myc-mediated transcription and cell transformation [40]. Likewise,
the application of Omomyc as a cell-penetrating peptide in patients suffering from solid
cancers has provided promising results in a first phase-I clinical trial [57]. The high con-
servation of these charged residues in the leucine zipper region of Myc3 compared to
Myc1 or Myc2 suggests that the Hydra Myc proteins have different dimerization properties
(cf. Figures 5 and 6), which could represent a structural reason for the stronger intrinsic
transforming potential of Myc3, compared to Myc2 or Myc1 (Figure 8A).
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Figure 8. Models comparing the actions of the three Hydra Myc proteins in cell transformation and
differentiation. (A) Transforming activities of the different protein chimera compared to the original
v-Myc protein. Chimeric v-Myc/hyMyc3 induces full cell transformation, contrary to v-Myc/hyMyc2
or v-Myc/hyMyc1, which only partially transform cells. Bars between different heterodimers depict
the conservation grade of amino acid residues relevant for Myc’s heterodimerization potential (cf.
Figures 5 and 6) and for its oncogenic capacity (cf. Figure 4). Each bar represents one of four Myc
residues required for Myc/Max interaction (from left to right in hyMyc3: E410, R423, and R424),
which are identical for the relevant Hydra Myc protein and v-Myc. The dotted bar indicates chemical
conservation between two residues (E/D). The fourth residue, E417, is not conserved between v-
Myc and human MYC (not shown). (B) Proposed model of how the Hydra Myc proteins regulate
proliferation and differentiation in Hydra. Upper panel: Myc3/Max dimers dominate binding to
E-box signatures, due to transcriptional down-regulation of myc2 and myc1 in committed nerve and
gland cell precursors and high affinity of Myc3 for interaction with Max. This induces a shift in gene
expression, leading to nerve and gland cell differentiation. Lower panel: Myc3 is transcriptionally
repressed in the stem cell pool, and Myc2/Max and Myc1/Max bind to the promoters of relevant
target genes and thereby mediate stem cell proliferation and maintenance.

4.2. A Possible Role for Hydra Myc3 in Balancing Stemness and Differentiation

myc3 is specifically expressed in progenitor cells committed to nerve and gland cell dif-
ferentiation, while myc2 expression is downregulated in these cells; myc2 is associated with
cell cycle progression and may mediate stemness in interstitial stem cells. Another transcrip-
tion factor-encoding gene, myb-like (G020130) (formerly myb), exhibits a myc3-equivalent
expression pattern in nerve and gland cell precursors [29]. In terminally differentiated nerve
and gland cells, myc3 and myb-like expression is down-regulated. These data suggest that
myc3 is part of a transcriptional program directing interstitial stem cells toward the neuron-
and gland-cell fates. One of the upstream players activating myc3 in the precursor cells
could be β-Catenin/Tcf signaling. Several findings support this view: (1) pharmacological
activation of β-Catenin activates neuronal marker genes in Hydra [58]; (2) neuron density
in the tissue in β-Catenin over-activated β-Cat-Tg transgenic polyps is about twice as high
(own unpublished data), and (3) putative Tcf-binding elements in the myc3 promoter are
located close to the transcriptional start site (Figure S3).

Based on the data presented here, we propose a model in which Myc3/Max dimeriza-
tion contributes to changes in the stemness–differentiation balance in interstitial stem cells
exiting to nerve- and gland-cell differentiation (Figure 8B). Equal, or even higher, affinity for
Max dimerization and DNA binding of Myc3 as compared with Myc2 indicates that effec-
tive competition for E-box Myc binding sites could take place as soon as the Myc3 protein
becomes prevalent. Thereby, the equilibrium of Myc/Max heterodimers would shift away
from Myc2/Max in favor of Myc3/Max, leading to a transcriptionally inactive complex,
due to the lack of a functional N-terminal transactivation domain in Myc3. Consequently,
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the transcriptional network relevant for stem cell maintenance changes towards a network
stabilizing the committed state and driving cells more towards nerve-and gland-cell differ-
entiation (Figure 8B). At present, this model is only supported by descriptive in vivo data
and in vitro biochemical data. To further test this model in the future, gene-specific gain-
and loss-of-function assays should be conducted in vivo.

This strategy of using a truncated Myc protein to direct a specific interstitial differenti-
ation pathway may be more broadly used in hydrozoans. A comparison with the single cell
atlas from the hydromedusa Clytia hemisphaerica [30] revealed a myc paralog (XLOC_007085)
encoding a Myc protein with reduced N-terminal Myc boxes and a highly conserved bHLH-
LZ region (65% identity with human MYC), which is specifically expressed in nerve cell
precursors (Figure S10). Another Clytia myc paralog (XLOC_000985) encodes the prototypic
Myc protein with Myc boxes but a less-conserved bHLH-LZ region (56% identity with
human MYC). This gene is expressed in interstitial stem cells and in a variety of other cell
types, including germ cells similar to Hydra myc2 (Figure S10). Therefore, a common ances-
tor of the Hydra and Clytia lineages living about 400 M years ago may have already used
an N-terminally reduced Myc variant acting as a competitor for Max and DNA binding
and thereby shifting the stemness–differentiation balance in interstitial stem cells towards
a commitment to neuronal differentiation.

5. Conclusions

The characterization of a third myc gene in Hydra with conserved biochemical and
oncogenic functions revealed a high complexity of the Myc network in this cnidarian.
Based on its specific expression pattern, myc3 appears to function in nerve- and gland-cell
differentiation, where its protein product could act as a dominant negative competitor of the
stem cell-specific Myc1 and Myc2 proteins. In contrast to its highly divergent N-terminus,
the Myc3 C-terminus displays the best conservation grade compared to vertebrate Myc
proteins, which may explain its strong intrinsic oncogenicity. Comparison of different
Myc isoforms in terms of structure and function could therefore lead to the identification
of potentially druggable surfaces on Myc, which represents an oncogenic driver in most
human tumors.
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